“工程问题”和“行程问题
小升初专题复习-行程问题和工程问题(课件)人教版六年级下册数学
队每天完成工作总量的115,也就是说甲、乙的工作效率分别是110、115。 工作总量减去甲、乙两队合干的工作量得到剩下的工作量,再除以乙队 的工作效率得到乙队单独干剩下的工作量所需的时间。 【答案】 [1-(110+115)×2]÷115=10(天) 答:剩下的工程由乙队单独完成还需要 10 天。
用了 1 小时,小刚往返的平均速度是每小时( B )。
A.5 km B.10 km C.430 km D.30 km
5.(广东·深圳)在比例尺 1∶6000000 的地图上,甲、乙两地相距 8 cm,
一列客车和一列货车分别从甲、乙两地同时开出,相向而行,4 小时后相 遇。已知客车与货车的速度比是 8∶7,货车的速度是( A )千米/时。
解:设乙每小时生产 x 个零件。 18∶x=3∶5 x=30 12×30=360(个)
3 360×3+5=135(个) 答:甲一共生产了 135 个零件。
3.甲、乙两个码头相距 130 km,汽船从乙码头逆水行驶 6.5 小时到达甲 码头,汽船在静水中每小时行驶 23 km。汽船从甲码头顺流开到乙码头需
要几小时?
23-130÷6.5=3(千米/时) 130÷(23+3)=5(小时) 答:汽船从甲码头顺流开到乙码头需要 5 小时。
工程问题 (北京)单独干某项工程,甲队需要 10 天完成,乙队需要 15 天完成。 甲、乙两队合干 2 天后,剩下的工程由乙队单独完成还需要多少天? 思路点拨:解决工程问题时,把工作总量看作单位“1”,理解工作总量、 工作时间和工作效率的对应关系。如果这项工作由几个人共同完成,则
答:这段路甲队单独修需要 36 天完成。
行测数量关系常见题型与答题技巧
行测数量关系常见题型与答题技巧在公务员考试的行政职业能力测验(简称行测)中,数量关系一直是让众多考生感到头疼的模块。
但只要我们掌握了常见的题型和有效的答题技巧,就能在考试中轻松应对,提高得分。
一、常见题型1、工程问题工程问题是研究工作效率、工作时间和工作总量之间关系的问题。
通常会给出不同人员或团队完成某项工作的时间,要求计算工作效率或完成工作所需的时间。
例如:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成,两人合作需要多少天完成?答题技巧:工程问题一般采用“设工作总量为1”的方法,然后根据工作效率=工作总量÷工作时间,求出各自的工作效率,再根据合作时间=工作总量÷合作工作效率来计算。
2、行程问题行程问题主要涉及速度、时间和路程之间的关系。
包括相遇问题、追及问题、流水行船问题等。
比如:甲、乙两人分别从 A、B 两地同时出发相向而行,甲的速度为 5 千米/小时,乙的速度为 3 千米/小时,经过 2 小时相遇,A、B 两地相距多远?解题技巧:对于相遇问题,路程=(甲的速度+乙的速度)×相遇时间;追及问题,路程差=(快的速度慢的速度)×追及时间;流水行船问题,顺水速度=船速+水速,逆水速度=船速水速。
3、利润问题利润问题与商品的成本、售价、利润、利润率等有关。
常见的例子:某商品进价为 100 元,按 20%的利润率定价,然后打9 折出售,该商品的利润是多少?答题要点:利润=售价成本,售价=定价×折扣,利润率=利润÷成本×100% 。
4、排列组合问题排列组合问题是研究从给定元素中选取若干元素进行排列或组合的方式。
例如:从 5 个不同的元素中选取 3 个进行排列,有多少种排列方式?解题思路:排列用 A 表示,组合用 C 表示。
排列时考虑顺序,组合不考虑顺序。
要准确区分是排列还是组合问题,然后运用相应的公式进行计算。
5、容斥问题容斥问题是研究集合之间重叠部分的问题。
行程问题工程问题
工程问题+行程问题典型应用题工程问题+行程问题首先给大家讲下分数工程问题,这种题一般不给出总量。
这种题的解法重点是:1 把总工作量看做单位“1”2 工作效率*工作时间=工作量3 变式关系式:工作量÷工作效率=工作时间;工作量÷工作时间=工作效率4 比如一项工程甲单独做需要6天完成,乙单独做需要10天完成,那么甲的工作效率就是可1/6,乙的为1/10(即1天工作全部工程1/6或1/10)例题1一项工程,甲、乙队合作20天可以完成。
共同做了8天后,甲离开了,由乙继续做了18天才完成。
如果这项工程单独由甲队或乙队单独完成,各需要几天?思路导航:设这项工程为单位“1”,当甲离开后,乙做的工作量为:1-1/20*8=3/5乙单独做这项工程的时间为18除以3/5 18÷3/5=30天甲单独做的时间:1÷(1/20-1/30)=60天例题2师傅和徒弟合做一件工作要15天才能完成。
若让师傅先做10天,则剩下的工作,徒弟单独做还需要17天才能完成。
徒弟单独做这件工作需要多少天才能完成?思路导航:由于给出条件是“合做15天完成”,所以,将分开做的转化成为合做10天共做多少:1/15*10;还剩下多少:1-1/15*10=1/3。
徒弟单独做几天完成:(17-10)/1/3=21天。
写下解析就是:1-1/15*10=1/317-10=77÷1/3=21当然可以解方程,但是比较麻烦:1/X+1/Y=1/1510/X+17/Y=1例题3一批稿件,甲单独做20分钟打完;乙单独30分钟打完。
现在两人合打这批稿件,合做中,甲因有事离开了5分钟,乙休息了若干分钟,这样共用了16分钟打完。
乙休息了多少分钟?思路导航:由于不知16分钟有多少是在合作,也不知道甲、乙各自单独做了几分钟,因此,假设既没有离开也没有休息,16分钟全部在工作,次题就好做了。
甲、乙合作不休息16分钟能打:(1/20+1/30)*16=4/34/3-1=1/3-------表示甲5分钟打的加上乙为休息做的甲5分钟能打多少?5*1/20=1/4乙休息的时间能打多少?1/3-1/4=1/12乙休息了多少时间?1/12÷1/30=5/2即乙休息了5/2分钟。
实际问题与一元一次方程(工程与行程问题)
60×
28 60
+60x+80x=448
解得:x=3
答:快车开出3小时后,两车相遇。
例4、A、B两站间的路程为448千米,一列慢车从A站出发,每小 时行驶60千米,一列快车从B站出发,每小时行驶80千米,问: (3)两车同时、同向而行,如果慢车在前,出发后多长时间快 车追上慢车?
画图分析 快车行驶路程
顺水航行速度= 水流速度 +静水航行速度.
逆水航行速度=静水航行速度-水流速度.
解:设船在静水中的平均速度为x千米/小时,则船顺水的速 度为(x+3)千米/小时,而逆水的速度为(x-3)千米/小时。 则依题意可得: 2(x+3)=2.5(x-3) 解得:x=27
答:该船在静水中的速度为27千米/小时。
工程问题 与
行程问题
一元一次 方程应用
(二)
探究1:工程问题
1.一件工作,若甲单独做2小时完成,那么
1
甲单独做1小时完成全部工作量的2 .
2.一件工作,若甲单独做a小时完成,则甲单独做
1
1小时,完成全部工作量的 a ,m小时完成全部
m
工作量的 a .a小时完成全部工作量的 1 .
3.一件工作,若甲单独做7天完成,乙单
①几小时后两车相遇? ②若吉普车先开40分钟,那么客车开出多长时间两车相遇?
甲
相 遇
丙 40分钟 乙
分析:若吉普车先出发40分钟(即2/3小时),则等量 关系为:吉普车先行的路程+吉普车后行路程+客车 的路程=1500
例1 甲、乙两地相距1 500千米,两辆汽车同时从两地相向而 行,其中吉普车每小时行60千米,是另一辆客车的1.5倍.
工程问题和行程问题
行全程的 3 ,如果两车从两地同时对开,
5
几小时相遇?
2、一辆车从甲地出发到乙地,行完全程需要 8小时,行了5小时后,距乙地还有150千米。 甲地到乙地的距离是多少千米?
3、甲乙两车从A、B两地同时相对开出,3小
1
程的 3
5
1
这时两车相距80千米的 ,A、B两地2间的距离
是多少千米?
一批零件,张师傅独做20时完成,王师傅独 做30时完成.如果两人同时做,那么完成 任务时张师傅比王师傅多做60个零件.这 批零件共有多少个?
3
3小时可以行全程的几分之几 ?
修一条路,甲队独修要12天,乙队独修要15天。
(1)两队合修,多少天可以完成? (2)甲队先修4天后,剩下的由乙队来修,
还要多少天才能修完? (3)两队合修5天后,剩下的由甲队来修,
还要多少天才能修完?
我来试一试
想挑战吗?
1、甲车4小时可行全程的 1 ,乙车6小时可
2、一辆车从甲地到乙地,平均每小时行 1 ,
行完全程需要几小时?
5
3、做200个零件,平均每天做50个,几天可 以完成任务?
4、做一批零件,平均每天做 1 ,几天可以
完成任务?
4
我 1.一项工程,10天完成。
能 行
平均每天完成工程的几分之几?
3天可以完成工程的几分之几?
完成工程的
1 2
需要几天?
2.一辆汽车从甲地到乙地,行完全程 需要6小时。平均每小时行全程的 几分之几?行全程的 2 需要几小时?
典型应用题
——工程问题与行程问题
几种常用的等量关系
工程问题:工作总量、工作时间、工作效率
工作总量=工作效率×工作时间 工作效率=工作总量÷工作时间 工作时间=工作总量÷工作效率
行程问题的公式和工程问题的公式
文章标题:深度探讨行程问题的公式与工程问题的公式一、前言在数学中,行程问题的公式和工程问题的公式是两个重要的概念。
它们在实际生活和工作中有着广泛的应用,并且对于深入理解数学和物理学的原理有着重要的作用。
本文将就行程问题的公式和工程问题的公式进行全面的评估,为读者提供深度、广度兼具的知识。
二、行程问题的公式1. 行程问题的定义行程问题是数学中一个重要的概念,它描述了物体在一定时间内的运动情况。
常见的行程问题包括匀速直线运动、加速直线运动等。
在行程问题中,最重要的是要确定物体的位移、速度和加速度之间的关系。
2. 行程问题的公式在行程问题中,位移、速度和加速度之间有着一定的关系。
根据物体的运动情况,可以得到一些重要的公式,如匀速直线运动的位移公式:$s=vt$,加速直线运动的位移公式:$s=vt+\frac{1}{2}at^2$等。
这些公式在实际生活和工作中都有着重要的应用,可以帮助人们更准确地描述物体的运动情况。
3. 个人观点和理解对于行程问题的公式,我个人认为它们是数学在实际生活中的重要应用。
通过这些公式,我们可以更好地理解物体的运动规律,为工程和科学研究提供重要的参考。
行程问题的公式也可以帮助我们更好地解决一些实际问题,如交通规划、物流运输等。
三、工程问题的公式1. 工程问题的定义工程问题是指在工程实践中常见的一些数学问题。
这些问题往往涉及到力学、热力学、流体力学等领域,对工程师和科学家有着重要的指导作用。
工程问题的公式是解决这些问题的重要工具之一。
2. 工程问题的公式在工程问题中,常见的公式包括动力学公式、热力学公式、流体力学公式等。
这些公式帮助工程师和科学家更好地理解和解决工程实践中的问题,如牛顿第二定律$F=ma$、热传导方程$q=ks\frac{\Delta T}{\Delta x}$等。
这些公式的应用使工程实践更加科学和高效。
3. 个人观点和理解工程问题的公式是解决工程实践中的重要工具,它们对于工程师和科学家来说是不可或缺的。
列方程中常见的实际问题中的等量关系
列方程中常见的实际问题中的等量关系:
1.行程问题: 路程=时间×速度
2.工程问题: 工作总量=工作效率×工作时间
3.浓度问题: 溶质质量=溶液质量×溶液浓度
4.营销问题: 商品利润=商品进价×商品利润率
(或商品利润=商品售价-商品进价)
5.水上航行中的有关量之间的关系:
逆水速度=船在静水中的速度-水速
顺水速度=船在静水中的速度+水速
6.数字数位问题: 数字×数位=数
7.和倍差倍问题: 因实际问题具体处理
8.相遇时,分段距离和等于相距.追及时,快者路程=慢者路程与相距之和
列方程解应用题的步骤:
1.审题:理解题意,弄清已知量、未知量及它们之间的关系
2.设元:选择适当的未知数,可直接设元,也可间接设元(设元的语句必须完整,并包括元素名称及单位)
3.列方程:用含未知数的式子表示问题中的相等关系
4.解方程:解所列方程,准确求出未知数的值
5.写答案:检验所列方程的解,符合题意后,写出答案,并注明单位名称。
行程问题的公式和工程问题的公式
行程问题的公式和工程问题的公式行程问题的公式和工程问题的公式一、行程问题的公式:行程问题是运用数学知识来解决关于时间、速度和距离之间关系的问题。
在行程问题中,我们经常需要根据已知的速度和时间,计算出距离;或者根据已知的速度和距离,计算出时间;又或者根据已知的时间和距离,计算出速度。
为了解决这些问题,我们可以利用行程问题的公式。
1. 速度、时间、距离的关系公式:在行程问题中,速度、时间和距离的关系可以用以下公式表达:距离 = 速度× 时间时间 = 距离÷ 速度速度 = 距离÷时间这些公式是解决行程问题的基础,通过灵活运用这些公式,我们可以轻松解决各种与行程有关的数学问题。
2. 示例分析:如果一辆汽车以每小时60英里的速度行驶,我们可以通过以上公式计算出,这辆汽车行驶100英里需要的时间是多少。
根据时间 = 距离÷ 速度的公式,可以得出时间= 100 ÷ 60 = 1.67小时。
二、工程问题的公式:工程问题是指在实际工程实践中,通过数学公式和方法来解决各种与工程相关的问题。
工程问题的公式通常涉及到面积、体积、力学、热力学等方面的计算。
在工程问题中,我们需要根据已知的条件,利用数学方法来计算出所需的参数,以便解决实际工程中遇到的各种问题。
1. 面积和体积的计算公式:在工程问题中,我们经常需要计算各种形状的面积和体积。
常见的面积和体积的计算公式包括:矩形的面积 = 长× 宽圆的面积= π × 半径的平方立方体的体积 = 长× 宽× 高球体的体积= (4/3)π × 半径的立方通过这些公式,我们可以有效地解决各种与面积和体积有关的工程问题。
2. 力学和热力学的公式:在工程问题中,力学和热力学方面的公式也占据重要的地位。
牛顿第二定律 F = ma,能量守恒定律 E = mc^2,热传导公式 Q =kAΔT/Δx 等,这些公式在解决各种工程问题时发挥着重要作用。
专题四:行程与工程问题
专题四:行程与工程问题一、行程问题1、一艘轮船从甲地到乙地每小时航行30千米,然后按原路返回,若想往返的平均速度为40千米,则返回时每小时应航行( )千米。
2、一列车通过 250 米的隧道用 25秒,通过 210 米长的隧道用 23秒。
①若列车的前方有一辆与它同向行驶的货车,货车车身长 320米,速度为每秒17米。
列车与货车从车头追上到车尾相离需要多少秒?②若列车与另一列长150米、时速为72千米的列车相向而行,错车而过需要几秒钟?3、一只小船在静水中速度为每小时25千米,在210千米的河流中顺水而行时用了6小时,则返回原处需用( )小时。
4、甲、乙、丙三人进行100米赛跑,当甲到达终点时,乙离终点还有8米,丙离终点还有12米.如果甲、乙、丙赛跑时速度不变,那么,当乙到达终点时,丙离终点还有( )米。
5、一辆货车每小时行驶70千米,一辆客车与货车的速度比为8:7,两车同时从甲、乙两地相对开出,在距中点50千米处相遇。
问甲、乙两地相距多少千米?6、甲、乙两车同时从A 、B 两地相向而行,甲行完全程需6小时,比乙的速度快50%,相遇时,甲比乙多行180千米,求乙车的速度。
7、客车和货车同时从甲、乙两城之间的中点向相反的方向相反的方向行驶,3小时后,客车到达甲城,货车离乙城还有30千米.已知货车的速度是客车的43,问甲、乙两城相距多少千米?8、甲、乙两人同时从A 、B 两地相向而行,相遇时距A 地120米,相遇后,他们继续前进,到达目的地后立即返回,在距A 地150米处再次相遇,求AB 两地的距离。
二、工程问题1、修一条公路,甲单独做6天完成,乙单独做8天完成,现在两队分别从公路两头同时开工,修了3天后,还剩下180米,求甲队每天修多少米?2、一批零件甲独做要6小时完成,乙每小时完成36个,甲乙合作完成任务时所做零件个数比是5∶3,这批零件一共多少个?3、加工一批零件,原计划每天加工15个,若干天可以完成。
常见实际问题中的数量关系
一.工程问题
工作量=工作效率×工作时间
二.行程问题
路程=速度×时间
★相遇问题:
甲的路程+乙的路程=距离
(甲的速度+乙的速度)×时间=距离
★追击问题:
追者的路程-被追者的路程=距离
(追者的速度-被追者的速度)×时间=距离
★顺逆问题:
顺风(水)速度=本身的速度+风(水)的速度
逆风(水)速度=本身的速度-风(水)的速度
三.销售问题中的数量关系
1.进价(成本)售价利润-=
2. %100⨯=进价(成本)
利润利润率 3. 利润率)(进价售价+⨯=1
提高率)(进价标价+⨯=1 4. 10
折扣数标价售价⨯
= 四.增长率
1.原来量增加量增长率÷=
2 )1增长率(原来量增加量原来量现在量+⨯=+= 3. 期数利率本金利息⨯⨯=
4.利息本金本息和+=。
初一-数学最新-初一-一元一次方程应用——行程问题与工程问题--
一元一次方程应用——行程问题与工程问题知识典例(注意咯,下面可是黄金部分!)一、行程问题1.行程问题中的基本关系式行程问题是在匀速运动的条件下,所有研究物体运动的路程、速度和时间,及运动状态的问题的统称.行程问题中路程、速度和时间三个量之间的关系①路程=速度×时间;②速度=错误!;③时间=错误!。
例题1、一列火车从车头进隧洞到车尾出隧洞共用了10分钟,已知火车的速度是500米/分,隧洞长为4 800米,问这列火车长是多少米?变式1、在一段双轨铁道上,两列火车同时驶过,A列车车速为20米/秒,B列车车速为24米/秒,若A列车全长180米,B列车全长160米,两列车错车的时间是多长时间?2、相遇问题的解决方法相遇问题是比较重要的行程问题,其特点是相向而行.如图1就是相遇问题.图2也可看成相遇问题来解决.相遇问题中的相等关系①甲、乙的速度和×相遇时间=总路程;②甲行的路程+乙行的路程=总路程,即s甲+s乙=s总;③甲用的时间=乙用的时间.变式2—1、甲、乙两人从相距为180千米的A、B两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行驶。
已知甲的速度为15千米/小时,乙的速度为45千米/小时. (1)经过多少时间两人相遇?(2)相遇后经过多少时间乙到达A地?变式2—1、已知AB两地相距120千米,乙的速度比甲每小时快1千米,甲先从A地出发2小时后,乙从B地出发,与甲相向而行经过10小时后相遇,求甲乙的速度。
变式2—2、甲、乙两人从A,B两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行驶。
出发后经3 小时两人相遇.已知在相遇时乙比甲多行了90千米,相遇后经 1小时乙到达A地。
问甲、乙行驶的速度分别是多少?3、追及问题的特点是同向而行.追及问题有两类:①同时不同地,如下图:等量关系:乙的行程-甲的行程=行程差;速度差×追及时间=追及距离.即s乙-s甲=s差.甲用的时间=乙用的时间.②同地不同时,如下图:等量关系:甲的行程=乙的行程.即s甲=s乙.“同时不同地”中,双方行驶所用的时间相同,行驶的路程却不同(出发点不同);而“同地不同时"中,由于行驶双方出发时间有先后,故行驶过程中用的时间不同,双方出发地相同,故行驶的路程相同.例题3—1、李成在王亮的前方10米处,若李成每秒跑7米,王亮每秒跑7。
列方程解应用题常用公式
列方程解应用题中常用的基本等量关系1.行程问题:(1)追及问题:追及问题是行程问题中很重要的一种,它的特点是同向而行。
这类问题比较直观,画线段图便于理解、分析。
其等量关系式是:两者的行程差=开始时两者相距的路程;路程=速度×时间;速度=;时间=。
(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。
这类问题的等量关系是:双方所走的路程之和=总路程。
(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③顺水速度-逆水速度=2×水速。
顺风速度=无风速度+风速度逆风速度=无风速度-风速度2.工程问题:工作效率×工作时间=工作量.3.浓度问题:溶液质量×浓度=溶质质量.4.教育储蓄问题:(1)基本概念①本金:顾客存入银行的钱叫做本金。
②利息:银行付给顾客的酬金叫做利息。
③本息和:本金与利息的和叫做本息和。
④期数:存入银行的时间叫做期数。
⑤利率:每个期数内的利息与本金的比叫做利率。
⑥利息税:利息的税款叫做利息税。
(2)基本关系式①利息=本金×利率×期数②本息和=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)③利息税=利息×利息税率=本金×利率×期数×利息税率。
④税后利息=利息×(1-利息税率)⑤年利率=月利率×12⑥月利率=年利率×。
注意:免税利息=利息5.销售中的盈亏问题:(1)利润=售价-成本(进价);(2);(3)利润=成本×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。
打几折就是按标价的十分之几或百分之几十销售。
6.优化方案问题:在解决问题时,常常需合理安排。
五年级数学的典型的工程和行程应用题及详解
小学经常遇到的行程问题行程问题是小学数学中经常遇到的,解决起来往往有些困难,因为还没有深入学习方程,所以有些题目很不好理解,可以利用单位1解决问题,这里举一些例子,由浅入深,结合方程的解法,同学们自己比较一下。
我们先来了解一下,关于行程问题的公式:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和相遇问题:(直线):甲的路程+乙的路程=总路程相遇问题:(环形):甲的路程 +乙的路程=环形周长追及问题:追及时间=路程差÷速度差速度差=路程差÷追及时间追及时间×速度差=路程差追及问题:(直线):距离差=追者路程-被追者路程=速度差X追击时间追及问题:(环形):快的路程-慢的路程=曲线的周长流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速:(顺水速度-逆水速度)÷2流水速度+流水速度÷2 水速:流水速度-流水速度÷2关键是确定物体所运动的速度,参照以上公式。
列车过桥问题:关键是确定物体所运动的路程,参照以上公式。
一、相遇问题1、一列客车从甲地开往乙地,同时一列货车从甲地开往乙地,当货车行了180千米时,客车行了全程的七分之四;当客车到达乙地时,货车行了全程的八分之七。
甲乙两地相距多少千米?2、甲、乙两车同时从A、B两地相对开出,2小时相遇。
相遇后两车继续前行,当甲车到达B地时,乙车离A地还有60千米,一直两车速度比是3:2。
求甲乙两车的速度。
3、甲、乙两车分别同时从A、B两成相对开出,甲车从A城开往B城,每小时行全程的10%,乙车从B城开往A城,每小时行8千米,当甲车距A城260千米时,乙车距B地320千米。
四年级数学中的应用题有哪些常见类型
四年级数学中的应用题有哪些常见类型在四年级的数学学习中,应用题是一个重要的组成部分。
通过解决应用题,同学们能够将所学的数学知识运用到实际生活中,提高解决问题的能力。
下面我们就来看看四年级数学中的应用题常见类型有哪些。
一、行程问题行程问题是四年级数学应用题中常见的类型之一。
比如,“小明骑自行车的速度是每小时 15 千米,他骑了 3 小时,一共骑了多少千米?”这就是一个简单的行程问题,涉及到速度、时间和路程的关系,公式为:路程=速度×时间。
还有稍微复杂一点的,比如“甲、乙两地相距 300 千米,一辆汽车从甲地开往乙地,平均每小时行驶 60 千米,几小时能到达?”这种问题就是已知路程和速度,求时间,公式变形为:时间=路程÷速度。
更复杂的行程问题可能会涉及到相向而行、相背而行等情况。
例如,“A、B 两地相距 480 千米,甲车从 A 地开往 B 地,每小时行驶 80 千米,乙车从 B 地开往 A 地,每小时行驶 60 千米,两车同时出发,几小时后相遇?”这种问题需要先求出两车的速度和,然后用路程除以速度和,得到相遇时间,公式为:相遇时间=路程÷速度和。
二、工程问题工程问题也是经常出现的。
比如,“一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成,他们合作需要几天完成?”这里把工作总量看作单位“1”,甲的工作效率就是 1÷10 = 1/10,乙的工作效率就是 1÷15 = 1/15,两人合作的工作效率就是 1/10 + 1/15 ,然后用工作总量除以合作的工作效率,就能得到合作完成的时间,公式为:合作时间=工作总量÷工作效率和。
还有类似的,“一条水渠,甲队每天修 20 米,乙队每天修 30 米,两队合作 8 天修完,这条水渠长多少米?”这种问题是先求出工作效率和,再乘以工作时间得到工作总量。
三、价格问题在生活中,我们经常会遇到价格问题。
六年级行程问题以及工程问题应用题答案解析
六年级行程问题以及工程问题应用题答案解析1.甲乙两人从北京和天津出发,甲每小时行48千米,乙每小时行44千米,他们几小时能相遇?解析:根据题意,甲和乙的相对速度为48+44=92千米/小时,所以他们能相遇的时间为138/92=1.5小时。
2.一辆汽车从甲地到乙地,如果每小时行45千米,就要晚0.5小时到达,如果每小时行50千米,就可提前0.5小时到达。
问甲、乙两地相距多少千米?解析:设甲乙两地相距x千米,根据题意,可以列出方程:0.5=(x/45)-(x/50),解得x=450千米。
3.从甲地到乙地,小轿车每小时行驶90千米,大客车每小时行驶55千米,乘小轿车要用4.4小时,乘大客车要用几小时?解析:设乘大客车需要的时间为x小时,根据题意,可以列出方程:55x=90*4.4,解得x=7.2小时。
4.甲、乙两列火车同时从A、B两城相向开出,4小时相遇。
相遇时,两车所行路程的比是3:4,已知乙车每小时行60千米,求A、B两城相距多少千米?解析:设A、B两城相距x千米,根据题意,可以列出方程:4(60+3x)=4(60+4x),解得x=420千米。
5.XXX开车从甲地到乙地,3小时行驶330千米,照这样计算,还需5小时就可以到达乙地,甲乙两地相距多少千米?解析:设甲乙两地相距x千米,根据题意,可以列出方程:3(110)+5(110)=x,解得x=880千米。
6.两辆汽车同时从北京和上海出发,相向而行,每小时分别行115千米和95千米,京沪高速公路长1260千米,大约经过几小时两车相遇?解析:根据题意,两车的相对速度为115+95=210千米/小时,所以它们相遇的时间为1260/210=6小时。
7.一辆汽车从甲地开往乙地,第一小时行了全程的1/4,第二小时比第一小时多行16千米,这时距离乙地还有94千米,甲乙两地间的公路长多少千米?解析:设甲乙两地间的公路长为x千米,根据题意,可以列出方程:x=(1/4)x+(1/4)x+16+94,解得x=220千米。
分数乘除法问题之工程问题行程问题
分数乘除法问题(二)—工程问题、行程问题在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等,我们把解决这一类问题叫做工程问题,工程问题都要涉及到工作总量、工作效率、工作时间这三个量,它们之间的基本数量关系是:工作总量=工作效率的和×工作时间和工程问题相似的问题有行程问题,行程问题分为相遇问题和追击问题,它们之间的数量关系式是:①路程和=速度和×相遇时间 ②路程差=速度差×追及时间例:1:一批零件有3000个,甲单独做每天做300个,乙单独做每天做200个,甲乙合作需要多少天?例2: 一批零件,甲单独做10天可以完成任务,乙单独做15天可以完成任务,甲乙合作需要多少天?例3:一段路,甲单独走需要20分钟走完,乙单独走需要30分钟走完,现在甲乙两人从AB两地相向而行,需要多长时间?例4:一段路,甲单独走需要10分钟走完,乙单独走需要15分钟走完,现在甲乙两人从A地同向而行,如果乙先走5分钟,问甲追上乙需要多长时间?例5:一项工程,A 单独做需要小时,B 单独做需要小时,AB 两人合作多少小时可以完成工程的5/6?2131例6:一项工程,甲乙两人合作一共需要15天完成,如果甲单独做要20天完成,那么乙单独做要多少天完成?例7:一项工程,甲单独做要15天完成,乙单独做要20天完成,丙单独做要30天完成,①甲乙丙三人合作多少天完成?②如果让乙丙先合作8天,剩下的由甲单独做,还需要多少天?闯关题:1、一条路,甲乙两队合修10天完成,甲独做30天可以完成。
甲乙两队合作4天后,乙因事被抽走,剩下的由甲队完成。
甲队还需多少天才能完成任务?2、一批零件,师傅单独加工需要12小时,徒弟单独加工需要15小时。
师徒二人合作,完成任务时,师傅比徒弟多加工20个。
问这批零件共有多少个?3、一份稿件,甲独抄10小时抄完,乙独抄12小时抄完。
现在由甲乙两人合抄2小时,抄完这份稿件的3/4 还差46页,这份稿件有多少页?4、加工一批零件,甲单独做30小时完成,乙单独做20小时完成。
【数学知识点】分式应用题六种类型整理总结
【数学知识点】分式应用题六种类型整理总结
分式应用题的六种类型分别是:工程问题、行程问题、销售问题、轮船顺逆水应用问题浓度应用性问题、货物运输应用性问题。
甲、乙两个工程队共同承包某一城市美化工程,已知甲队单独完成需要30天,若由甲队先做10天,剩下的工程有甲、乙两队合作8天可完成,问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x天,则可列方程为?
轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/时,求船在静水中的速度?
高速铁路列车已成为中国人出行的重要交通工具,其平均速度是普通铁路列车平均速度的3倍,同样行使690km,高速铁路列车比普通铁路列车少运行了4.6h,(1)求高速铁路列车的平均速度。
(2)百色距南宁234km,高速铁路列车要多长时间到达?
要在15%的盐水40千克中加入多少盐才能使盐水的浓度变为20%?
某学校后勤人员到一家文具店给九年级的同学购买考试用的文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元。
请问该学校九年级学生有多少人?
队学生去校外参观,他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍,若骑车的速度是队伍进行速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?
感谢您的阅读,祝您生活愉快。
五年级数学的典型的工程和行程应用题及详解
小学经常遇到的行程问题行程问题是小学数学中经常遇到的,解决起来往往有些困难,因为还没有深入学习方程,所以有些题目很不好理解,可以利用单位1解决问题,这里举一些例子,由浅入深,结合方程的解法,同学们自己比较一下。
我们先来了解一下,关于行程问题的公式:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和相遇问题:(直线):甲的路程+乙的路程=总路程相遇问题:(环形):甲的路程 +乙的路程=环形周长追及问题:追及时间=路程差÷速度差速度差=路程差÷追及时间追及时间×速度差=路程差追及问题:(直线):距离差=追者路程-被追者路程=速度差X追击时间追及问题:(环形):快的路程-慢的路程=曲线的周长流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速:(顺水速度-逆水速度)÷2流水速度+流水速度÷2 水速:流水速度-流水速度÷2关键是确定物体所运动的速度,参照以上公式。
列车过桥问题:关键是确定物体所运动的路程,参照以上公式。
一、相遇问题1、一列客车从甲地开往乙地,同时一列货车从甲地开往乙地,当货车行了180千米时,客车行了全程的七分之四;当客车到达乙地时,货车行了全程的八分之七。
甲乙两地相距多少千米2、甲、乙两车同时从A、B两地相对开出,2小时相遇。
相遇后两车继续前行,当甲车到达B地时,乙车离A地还有60千米,一直两车速度比是3:2。
求甲乙两车的速度。
3、甲、乙两车分别同时从A、B两成相对开出,甲车从A城开往B城,每小时行全程的10%,乙车从B城开往A城,每小时行8千米,当甲车距A城260千米时,乙车距B地320千米。
小升初应用题工程浓度问题复习、行程、
工程问题一、工程问题:工程问题是将一般的工作问题分数化,换句话说从分率的角度研究工作总量、工作时间(完成工作总量所需的时间)、工作效率(单位时间内完成的工作量)三者之间关系的问题。
它的特点是将工作总量看成单位“1”,用分率表示工作效率,对做工的问题进行分析解答。
工程问题的三个基本数量关系式是:工作效率×工作时间=工作总量工作总量÷工作时间=工作效率工作总量÷工作效率=工作时间二、解答工程问题的一般方法:(一)用“组合法”解工程问题在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。
【例1】一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的,乙队单独完成全部工程需要几天?【例2】一项工程,甲队独做12天可以完成。
甲队先做了3天,再由乙队做2天,则能完成这项工程的。
现在甲、乙两队合做若干天后,再由乙队单独做。
做完后发现两段所用时间相等。
求两段一共用了几天?(二)特殊工程问题有些工程题中,工作效率、工作时间和工作总量三者之间的数量关系很不明显,这时我们就可以考虑运用一些特殊的思路,如综合转化、整体思考等方法来解题。
【例3】修一条路,甲队每天修8小时,5天完成;乙队每天修10小时,6天完成。
两队合作,每天工作6小时,几天可以完成?【例4】一件工作,甲独做要20天完成,乙独做要12天完成。
这件工作先由甲做了若干天,然后由乙继续做完,从开始到完工共用了14天。
这件工作由甲先做了几天?(三)周期工程问题周期工程问题中,工作时工作人员(或物体)是按一定顺序轮流交替工作的。
解答时,首先要弄清一个循环周期的工作量,利用周期性规律,使貌似复杂的问题迅速地化难为易。
其次要注意最后不满一个周期的部分所需的工作时间,这样才能正确解答。
四年级下册数学应用题中常用公式及数量关系知识点汇总
四年级下册数学应用题中常用公式及数量关系知识点汇总一、应用题中常用数量关系公式1、行程问题:速度×时间=路程路程÷速度=时间路程÷时间=速度2、工程问题:工效×时间=工作总量工作总量÷时间=工效工作总量÷工效=时间3、价格问题:单价×数量=总价总价÷数量=单价总价÷单价=数量4、产量问题:单产量×数量=总产量总产量÷数量=单产量总产量÷单产量=数量5、和差问题:(和+差)÷2=大的数(和-差)÷2=小的数6、和倍问题:和÷(倍数+1)=小的数小的数×倍数=大的数7、差倍问题:差÷(倍数-1)=小的数小的数×倍数=大的数8、相遇问题:相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间相二、应用题中常用的单位换算(1)长度换算1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1千米=1公里(2)面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米(3)质量单位换算1吨=1000 千克1千克=1000克1千克=1公斤(4)图形周长、面积有关的公式1、长方形的周长=(长+宽)×2 C=(a+b)×2长=周长÷2-宽宽=周长÷2-长长+宽=周长÷22、正方形的周长=边长×4C=4a边长=周长÷43、长方形的面积=长×宽S= a×b长=面积÷宽宽=面积÷长4、正方形的面积=边长×边长S= a×a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“工程问题”和“行程问题”是国家公务员考试和联考的重中之重,也是绝大多数地方公务员考试的必考点。
“行程问题”很容易出难题、新题,但“工程问题”解题方式却容易把握。
本文将“工程问题”解题方式流程化、固定化,养成解决“工程问题”的机械思维,帮*****生彻底解决“工程问题”。
本文将“工程问题”分为三个层级处理:
第一个层级:设总量为“最小公倍数”型
处理方式:设总量为最小公倍数,然后求出效率。
【例1】一个游泳池,甲管注满需水需要6小时,甲、乙同时注水,注满需要4小时,如果只用乙管注水,注满水需要()小时?【河南招警08】
A.14
B.12
C.10
D.8
【段伟解析】设总量为12(6和4的最小公倍数),然后求出甲的效率为2,甲和乙的效率为3;因此乙的效率为1;所以最后乙需要的时间=12÷1=12;答案选B
【例2】一项工程,甲一人做完需30天,甲、乙合作完成需18天,乙、丙合作完成需15天,甲、乙、丙三人共同完成该工程需:【联考2012-65】
A. 10天
B. 12天
C. 8天
D. 9天
【段伟解析】设总量为90(30、18、15的最小公倍数),然后求出甲的效率=90÷30=3;甲和乙合作的效率=90÷18=5;乙和丙合作的效率=90÷15=6;所以甲乙丙合作的效率=3+6=9;因此答案=90÷9=10,选A
【例3】甲、乙两队开挖一条水渠。
甲队单独挖要8天,乙队单独挖要12天。
现在两个队同时挖了几天后,
乙队调走,余下的甲队在3天内挖完。
乙队挖的天数是()。
【福建事业单位2012-68】 A. 3 B. 4 C. 6 D. 7
【段伟解析】设总量为24(8、12的最小公倍数),然后求出甲的效率=24÷8=3;乙的效率=24÷12=2;假设乙队挖了x天,则有方程:(3+2)×x+3×3=24,解得x=3,答案选A 【总结】:如果以恒定不变的搭配将工程干完时,即可以设出最小公倍数为工程总量;设完总量后根据时间求出效率。
第二个层级:设总量为“1”型
处理方式:设总量为1,然后设效率为未知数。
【例4】一项工程,甲做5小时后,乙继续做,3个小时做完。
乙做9小时,甲继续做,3个小时做完。
问:甲做1小时后乙接着做,几小时可以做完?()
A. 12
B. 14
C. 15
D. 20
【段伟解析】设总量为1,然后设甲的效率为x;乙的效率为y;因此有方程5x+3y=1,9y+3x=1;解得x=1/6
,y=1/18;甲做1小时做了1/6×1=1/6,剩余5/6,所以乙还需要做5/6÷1/18=15小时,答案选C
【例5】某动漫开发公司的一项开发工作,甲组做3个月,乙组做4个月可完成,乙组做3个月,甲组做4个月可完成,则甲、乙合做需要()个月才能完成该项工作。
【四川招警2008-8】
A. 7
B. 8
C. 9
D. 10
【段伟解析】设总量为1,然后设甲的效率为x;乙的效率为y;因此有方程3x+4y=1/2,3y+4x=1/2;两式
相加可得7x+7y=1,所以如果甲和乙合作7小时可完成,答案选A
【例6】三个快递员进行一堆快件的分拣工作,乙和丙的效率都是甲的1.5倍。
如果乙和丙一起分拣所有的快件,将能比甲和丙一起分拣提前36分钟完成。
问如果甲乙丙三人一起工作,需要多长时间能够完成所有快件的分拣工作?()【北京2012-83】
A.1小时45分
B.2小时
C.2小时15分
D.2小时30分
【段伟解析】设总量为1,然后设甲的效率为x;乙的效率为1.5x;丙的效率为1.5x;因此有方程1/(x+1.5x)-1/(1.5x+1.5x)=36/60;解得x=1/9,所以甲乙丙合作的效率=4x=4/9,因此合作所需时间=1÷4/9=9/4小时,答案选C。
【总结】:如果中途换搭配,则不能设出总量为最小公倍数,设总量为1即可,然后设出效率为未知数,列出方程。
第三个层级:蒙题型
处理方式:利用常识排除法或者是数字特征法,进行题目的快速蒙题,主要解决的是难题或者是非常费时间的题目。
【例7】甲、乙两车运一堆货物。
若单独运,则甲车运的次数比乙车少5次;如果两车合运,那么各运6次就能运完,甲车单独运完这堆货物需要()次【北京2009上-19】
A.9
B.10
C.13
D.15
【段伟解析】该题“甲车运的次数比乙车少5次”表现出一个常识,即甲运的快。
两车合运时,各运6次运完,即运了12次,所以如果该货物单独甲来运,不需要12次即可运完,排除CD选项,排除两个大的选项,蒙剩下两个里面比较大的选项即可,因此答案蒙C。
【例8】甲、乙、丙三人合修一条公路,甲、乙合修6天修好公路的1/3,乙、丙合修2天修好余下的1/4,剩余的三人又修了5天才完成。
共得收入1800元,如果按工作量计酬,则乙可获得收入为?()【江苏2008A-21】
A.330元
B.910元
C.560元
D.980元
【段伟解析】法一:该题“甲、乙合修6天修好公路的1/3,乙、丙合修2天修好余下的1/4,剩余的三人又修了5天才完成。
”表现出一个常识,即乙每天都干活,没有休息。
因此按常理来说,乙赚的钱应该多一些,超过平均数。
1800÷3=600,因此乙赚的应该超过600,排除AC,排除两个小的选项,蒙剩下两个里面比较小的选项即可,因此答案蒙B。
法二:该题可以用数字特征法的因子法来解决。
乙赚的钱=乙工作的天数×每天赚的钱=13×每天赚的钱。
因此答案应该能被13整除。
只有答案B选项可以被13整除,因此答案选B。
【例9】王明抄写一份报告,如果每分钟抄写30个字,则用若干小时可以抄完。
当抄完2/5时,将工作效率提高40%,结果比原计划提前半小时完成。
问这份报告共有多少字?() 【天津事业单位2012-13】
A. 6025字
B. 7200字
C. 7250字
D. 5250字
【段伟解析】该题问总字数,由“每分钟抄写30个字”可以得知总字数应该能被30整除,排除AC。
工作效率提高40%,即提高为140%,出现7因子,因此报告文字应能被7整除,所以蒙D即可。
【总结】:如果工程问题找不到总量或者难找到效率时,题目一般比较难,可以选择蒙题或者直接放弃。
但工程问题中的难题一般会出现在国考中,地方性省考工程问题一般属于第一个层级或者第二个层级,因此工程问题属于考试中的拿分题目。