刚体动力学

合集下载

《刚体动力学 》课件

《刚体动力学 》课件

牛顿第二定律
物体的加速度与作用在物 体上的力成正比,与物体 的质量成反比。
牛顿第三定律
对于任何两个相互作用的 物体,作用力和反作用力 总是大小相等,方向相反 ,作用在同一条直线上。
刚体的平动
刚体的平动是指刚体在空间中 的位置随时间的变化而变化, 而刚体的形状和大小保持不变
的运动。
刚体的平动具有三个自由度 ,即三个方向的平动。
05
刚体的动力学方程
刚体的动力学方程
牛顿第二定律
刚体的加速度与作用力成正比,与刚体质量 成反比。
刚体的转动定律
刚体的角加速度与作用力矩成正比,与刚体 对转动轴的转动惯量成反比。
刚体的动量方程
刚体的动量变化率等于作用力对时间的积分 。
刚体的自由度与约束
自由度
描述刚体运动的独立变量,如平动自由度和转动 自由度。
约束
限制刚体运动的条件,如固定约束、滑动约束等 。
约束方程
描述刚体运动受约束的数学表达式。
刚体的动力学方程的求解方法
解析法
通过代数运算求解动力学方程,适用于简单问 题。
数值法
通过迭代逼近求解动力学方程,适用于复杂问 题。
近似法
通过近似模型求解动力学方程,适用于实际问题。
06
刚体动力学中的问题与实例 分析
人工智能和机器学习的发展将为刚体 动力学的研究提供新的思路和方法, 有助于解决复杂动力学问题。
感谢您的观看
THANKS
船舶工程
在船舶工程中,刚体动力学 用于研究船舶的航行稳定性 、推进效率以及船舶结构的 安全性等。
兵器科学与技术
在兵器科学与技术领域,刚 体动力学用于研究弹药的发 射动力学、火炮的射击精度 和稳定性等。

刚体动力学

刚体动力学

n i 1
1 2
Δmi
vi2
o ri vi
mi

1 2

n i 1
Δmi ri 2
2

1
式中
n

mi
ri2
称为刚体对转轴的转动惯量

i 1
用J 表示:
n
J mi ri2
i 1
代入动能公式中, 得到刚体转动动能的一般表达式
Ek

1 2
J2
Ek

1 2
mv2
刚体转动动能与质点运动动能在表达形式上是相
3
若刚体的质量连续分布 , 转动惯量中的求和号 用积分号代替
J r 2dm r 2 dV
单位:kg.m2
讨论:1.质量越大,转动惯量越大。 2.在总质量一定的条件下,刚体的质元分布 离轴越远,转动惯量越大。和质量分布有关。 3.转轴位置不一样,转动惯量不同。
与转动惯量有关的因素:
0
R 2πr 3 d r
0
2π R r3 d r 1 mR2
0
2
9
三、力矩作的功
力 矩 (moment of force)
力矩
M

r

F
大小 M= F r sinθ= F d
方向 右手定则
力臂:从转轴Z与截面
的交点O到力F的作用
线的垂直距离d称为力
对转轴的力臂
M


i 1
矩的代数和, 也就是作用于刚体的外力对转轴的合外
力矩Mz 。14来自如果刚体在力矩Mz 的作用下绕固定轴从位置1转 到2 , 在此过程中力矩所作的功为

《刚体动力学 》课件

《刚体动力学 》课件

常用方法:拉格朗日方程、 哈密顿原理等
注意事项:需要熟练掌握 数学基础
数值法
定义:数值法 是一种通过数 值计算求解刚 体动力学问题
的方法
特点:精度高、 计算速度快、 适用于复杂问

常用算法:有 限元法、有限 差分法、有限
体积法等
应用领域:航 空航天、机械 制造、土木工
程等领域
近似法
近似法的定义和特点
刚体转动实例
风力发电机:利用风力驱动风车叶片旋转,通过变速器和齿轮装置将动力传递至发电机,最终 转化为电能。
搅拌机:利用电动机驱动搅拌器旋转,对物料进行搅拌、混合和输送等操作。
洗衣机:利用电动机驱动洗衣机的滚筒旋转,通过水和洗涤剂的作用将衣物清洗干净。
旋转木马:利用电动机驱动旋转木马旋转,使人们能够欣赏到各种美丽的景观和音乐。
物理教师
需要了解刚体 动力学知识的
相关人员
Part Three
刚体动力学概述
刚体定义
刚体:在运动过程中,其内部任意两点间的距离始终保持不变的物体 刚体运动:刚体的运动是相对于其他物体的位置和姿态的变化
刚体动力学:研究刚体运动过程中所受到的力、力矩以及运动状态变化规律的科学
刚体动力学的研究对象:各种工程实际中的刚体,如机械零件、构件、机构等
动能定理
定义:动能定理是描述物体动能变化的定理 表达式:动能定理的表达式为ΔE=W 应用范围:动能定理适用于一切具有动能变化的物理系统 注意事项:在使用动能定理时需要注意初始和终了状态的动能
Part Five
刚体动力学应用实 例
刚体平动实例
刚体平动定义 刚体平动应用实例1 刚体平动应用实例2 刚体平动应用实例3
刚体动力学在各领 域的应用

第4章刚体的运动学和动力学

第4章刚体的运动学和动力学

P
II
M
d d 2 2 f " (t ) ቤተ መጻሕፍቲ ባይዱt dt
当 β c
0 t 1 2 ( ) t t 0 2 2 2 0 2 ( 0 )
z ω,
与质点的匀加速直线运动公式相象
二. 定轴转动刚体上各点的速度和加速度
端,试计算飞轮的角加速 解 (1) Fr J
(2) mg T ma
rO
T
Fr 98 0.2 39.2 rad/s 2 J 0.5
mgr J mr 2
两者区别
F
mg
Tr J a r
98 0.2 2 21 . 8 rad/s 0.5 10 0.22
例如 T' T
x dx
x
• 在定轴转动中,力矩可用代数值进行计算
T' T
M i TR T' R
M i TR T' r
二. 刚体对定轴的转动定律
实验证明 当 M 为零时,则刚体保持静止或匀速转动 当存在 M 时, 与 M 成正比,而与J 成反比
M J
刚体的转动定律
M kJ
例 一根长为 l ,质量为 m 的均匀细直棒,可绕轴 O 在竖直平 面内转动,初始时它在水平位置 m l x O 求 它由此下摆 角时的 解 取一质元
M xdm g g xdm

C
mg
dm
M mgxC
1 M mgl cos 2
xdm mxC
重力对整个棒的合力矩等于重力全部 集中于质心所产生的力矩
L x
J
1 x dx ML2 3

第二篇动力学第五章 刚体动力学的基本概念

第二篇动力学第五章 刚体动力学的基本概念

第二篇动力学第五章刚体动力学的基本概念一、目的要求1.深入地理解力、刚体、平衡和约束等重要概念。

2.静力学公理(或力的基本性质)是静力学的理论基础,要求深入理解。

3.能正确地将力沿坐标轴分解和求力在坐标轴上的投影,对合力投影定理有清晰的理解。

4. 理解力对点之矩的概念,并能熟练地计算。

5.深入理解力偶和力偶矩的概念,明确力偶的性质和力偶的等效条件。

6.明确和掌握约束的基本特征及约束反力的画法。

7.熟练而正确地对单个物体与物体系统进行受力分析,画出受力图。

二、基本内容1.重要概念1)平衡:物体机械运动的一种特殊状态。

在静力学中,若物体相对于地面保持静止或作匀速直线平动,则称物体处于平衡。

2)刚体:在力作用下不变形的物体。

刚体是静力学中的理想化力学模型。

3)约束:对非自由体的运动所加的限制条件。

在刚体静力学中指限制研究对象运动的物体。

约束对非自由体施加的力称为约束反力。

约束反力的方向总是与约束所能阻碍的物体的运动或运动趋势的方向相反。

4)力:物体之间的相互机械作用。

其作用效果可使物体的运动状态发生改变和使物体产生变形。

前者称为力的运动效应或外效应,后者称为力的变形效应或内效应,理论力学只研究力的外效应。

力对物体作用的效应取决于力的大小、方向、作用点这三个要素,且满足平行四边形法则,故力是定位矢量。

5)力的分类:集中力、分布力;主动力、约束反力6)力系:同时作用于物体上的一群力称为力系。

按其作用线所在的位置,力系可以分为平面力系和空间力系,按其作用线的相互关系,力系分为共线力系、平行力系、汇交力系和任意力系等等。

7)等效力系:分别作用于同一刚体上的两组力系,如果它们对该刚体的作用效果完全相同,则此两组力系互为等效力系。

8)平衡力系:若物体在某力系作用下保持平衡,则称此力系为平衡力系。

9)力的合成与分解:若力系与一个力FR 等效,则力FR 称为力系的合力,而力系中的各力称为合力FR 的分力。

力系用其合力FR 代替,称为力的合成;反之,一个力FR 用其分力代替,称为力的分解。

《刚体动力学》课件

《刚体动力学》课件
动量定理公式:Ft=mv
单击此处输入你的项正文,文字是您思想的提炼。
应用场景:碰撞、打击、爆炸等 角动量定理 角动量定理
定义:角动量是物体转动惯量和角速度的乘积 单击此处输入你的项正文,文字是您思想的提炼。
角动量定理公式:L=Iω
单击此处输入你的项正文,文字是您思想的提炼。
应用场景:行星运动、陀螺仪等
刚体的滚动和滑动摩擦
刚体滚动:刚体在平面内绕固定点转动,滚动摩擦力产生的原因和影响
刚体滑动摩擦:刚体在平面内滑动时产生的摩擦力,滑动摩擦系数与接触面材料和粗糙度等因素 的关系
刚体滚动和滑动摩擦的应用实例:例如,汽车轮胎与地面之间的滚动摩擦力,以及机械零件之间 的滑动摩擦力等
刚体滚动和滑动摩擦的实验研究:通过实验研究刚体滚动和滑动摩擦力的影响因素和规律,为实 际应用提供理论支持
04
刚体动力学基本原理
牛顿第二定律
定义:物体加速度的大小跟作用 力成正比,跟物体的质量成反比
应用:解释物体运动状态变化的 原因
添加标题
添加标题
公式:F=ma
添加标题
添加标题
注意事项:只适用于宏观低速运 动的物体
动量定理和角动量定理
定义:动量是物体质量与速度的乘积
单击此处输入你的项正文,文字是您思想的提炼。
刚体动力学研究内容
刚体的定义和性质 刚体运动的基本形式 刚体动力学的基本方程 刚体动力学的研究方法
刚体动力学发展历程
早期发展:古代力学对刚体的研究 经典力学时期:牛顿、伽利略等经典力学大师对刚体动力学的研究 弹性力学时期:弹性力学的发展对刚体动力学的影响 现代发展:计算机技术和数值模拟方法在刚体动力学中的应用
课程内容:刚体 的平动、转动、 碰撞等动力、力学等相关专 业的本科生和研 究生

高中物理竞赛辅导之刚体动力学

高中物理竞赛辅导之刚体动力学

其轴的转动惯量与圆盘的相同。
球体绕其直径的转动惯量
将均质球体分割成一系
列彼此平行且都与对称轴垂
直得圆盘,则有
JO
1 dm r 2 2
1 2
r 2dz
r
2
R 1( R2 z2 )2 dz
R 2
8 R5 2 mR2
15
5
z
r
z
dz R
om
JO
2 mR2 5
设任意物体绕某固定轴O的转动惯量为J,绕 通过质心而平行于轴O的转动惯量为Jc,则有
0 t 2 gt R
达到纯滚动时有: vc R
解得作纯滚动经历的时间:
t v0 2g h R
3 g
3 g
2)达到纯滚动时经历的距离:
x
v0t
1 2
at 2
v02
3 g
1 2
g
v02
3g 2
5v02
5h R
18 g 9
例 5 质量为 mA 的物体 A 静止在光滑水平面上,
和一质量不计的绳索相连接,绳索跨过一半径为 R、质
J 1 ml2 3
球壳: 转轴沿直径
J 2 mr2 3
竿









飞轮的质量为什么

大都分布于外轮缘?

例1 一长为 l 质量为 m 匀质细杆竖直放置,其
下端与一固定铰链 O 相接,并可绕其转动. 由于此竖
直放置的细杆处于非稳定平衡状态,当其受到微小扰
动时,细杆将在重力作用下由静止开始绕铰链O 转动.
压力N 和刹车片与圆盘间的摩擦系数均已被实验测出.试

刚体动力学

刚体动力学

刚体动力学
刚体动力学是指研究力和质量对刚体运动的影响,它涉及物理
和数学,主要研究力对物体运动的影响。

它广泛应用于工程和物理领域,用于描述物体在局部或全局中的运动状态。

如何利用运动学理论
来分析和解释物理世界中物体的运动轨迹,最终揭示物体运动的物理
原理至关重要。

在刚体动力学的概念中,物体的运动被建模为一种力对对对象的
瞬时影响。

通过应用力,物体的运动可以得到估计。

瞬时力是指在特
定时空会给物体造成瞬时影响的力。

可以从特征定律出发,将其用于
物体运动分析。

这些定律涉及到物理力学,牛顿力学和拉普拉斯力学,上述定律可将物体的运动状态的分类。

与此同时,通过测量物体的加
速度、速度和位移,有可能解释其运动轨迹,解析物体的运动和定义
有关的物理参数,这些物理参数的累积可以描述物体的运动状态,从
而揭示物体运动的原理。

刚体动力学的原理也可以用来处理运动学中更加抽象的问题,例
如变换,尤其是物体受力时联合受力的问题。

此外,它还可以用于研
究物理系统中某些复杂的力的运动模式,包括动量、角动量、能量和
声学等。

可以说,它是物理上最基本的模型,用于解释物体的局部或
全局运动。

利用刚体动力学的原理,可以研究物体运动在各种复杂条
件下的变化,从而揭示物体运动的物理原理。

刚体的知识点总结

刚体的知识点总结

刚体的知识点总结一、刚体的概念刚体是物理学中的一个重要概念,它是指在运动或静止过程中,形状和大小不发生改变的物体。

刚体具有以下特点:1. 刚体的分子结构相对固定,对外力的变形能力非常小。

2. 刚体受到外力作用时,其内部分子之间的相对位置发生微小变化,但整体上保持不变。

3. 刚体在变形后会恢复原状,即使外力作用消失后也会保持所受外力时的状态。

刚体的概念在物理学中有重要的应用,在力学、动力学、静力学等领域都有广泛的应用。

二、刚体的基本性质1. 自由度刚体在运动过程中具有自由度的概念,即刚体在空间中的自由度是指其可以围绕固定坐标系的运动方式。

2. 平移运动刚体在空间中可以进行平移运动,即整个刚体的位置随时间发生变化,但其形状和大小保持不变。

3. 旋转运动刚体在空间中也可以进行旋转运动,即围绕某一固定点或者固定轴进行旋转运动,这种运动称为刚体的自由旋转。

4. 刚体的定点定轴运动刚体在空间中也可以进行以某一固定点为中心或者以某一固定轴为旋转轴的运动,这种运动称为刚体的定点定轴运动。

5. 定点定轴自由度刚体在空间中具有三个定点定轴自由度,即刚体的位置可以变化,且可以绕三个固定轴进行旋转运动。

6. 刚体的平移自由度刚体在空间中具有三个平移自由度,即刚体在空间中可以相对于三个坐标轴进行平移运动。

7. 刚体的旋转自由度刚体在空间中具有三个旋转自由度,即刚体在空间中可以绕三个坐标轴进行旋转运动。

以上是刚体的基本性质,了解这些性质有助于我们在物理学研究中更深入地理解刚体的运动规律。

三、刚体的运动学分析1. 刚体的速度刚体在空间中的运动状态可以用速度来描述,刚体的速度分为线速度和角速度。

线速度是描述刚体中任一点的速度,通常用矢量来表示,可以用向量表示。

角速度则是描述刚体的旋转运动状态,通常用矢量来表示,可以用向量表示。

2. 刚体的加速度刚体在运动中会受到外力的影响,导致其速度发生变化,这种速度变化的率就是刚体的加速度。

刚体动力学 有限元

刚体动力学 有限元

刚体动力学是研究刚体运动的力学学科。

刚体是指形状和大小在运动过程中保持不变的物体,刚体动力学研究刚体在受力作用下的运动规律和动力学特性。

刚体动力学主要包括以下几个方面:
运动学:研究刚体的位移、速度和加速度等与时间的关系,描述刚体的运动状态。

动力学方程:根据牛顿第二定律,建立刚体的动力学方程,描述刚体受到的力和加速度之间的关系。

转动运动:研究刚体绕固定轴进行转动的规律,包括转动惯量、角速度、角加速度等的计算和分析。

能量与动量守恒:研究刚体运动过程中的能量守恒和动量守恒定律,用于分析刚体的碰撞、旋转和平移等情况。

有限元方法(Finite Element Method,简称FEM)是一种数值计算方法,广泛应用于工程和科学领域,包括力学、结构分析、流体力学等。

有限元方法将连续的物体或结构分割成有限数量的小单元,通过求解这些小单元的力学方程,得到整个物体或结构的力学行为。

在刚体动力学中,有限元方法可以用于建立刚体的数学模型,通过将刚体分割成有限数量的单元,利用数值计算方法求解刚体的运动和力学响应。

这种方法可以有效地模拟复杂的刚体运动和受力情况,帮助分析和优化刚体系统的设计和性能。

有限元方法在刚体动力学中的应用包括刚体结构的动力学分析、碰撞和撞击的模拟、机械系统的优化等。

它提供了一种灵活、高效的数值计算工具,用于解决刚体动力学问题和工程实践中的设计和分析任务。

第1章-刚体转动动力学基础

第1章-刚体转动动力学基础

cos cos n Cb sin sin cos cos sin -cos sin cos sin sin
cos sin sin sin sin cos cos cos sin sin sin cos
-sin cos cos cos
2013-7-17 10
§1.1 刚体的角位置与角速度描述方法
四 定点转动刚体角位置的欧拉角描述 选用三个独立的角度来表示定点转动刚体的方位。 依次的三次转动,转动轴的选取产生两类欧拉角。
两类欧拉角的差别在于:在第三次转动时,是用第 一次转动用过的轴还是用前两次都未用过的轴。
2013-7-17 11
cos( zb , xn ) c32 cos( zb , yn ) c33 cos( zb , zn )
yb c21 cos( yb , xn ) c22 cos( yb , yn ) c23 cos( yb , zn )
zb c
2013-7-17
31
确定刚体坐标系三根轴的九个方向余弦(一个3×3 的矩阵),可以确定刚体的角位置。
20
§1.2 常用参考坐标系
三 地理坐标系 1. 地固地理坐标系
坐标系的原点选在地球上任一点,三根轴与地球固 结,东北天指向。
(ie ) xn 0 n n ωin ωie (ie ) yn ie cos (ie ) zn ie sin
2013-7-17
V ωe cos sin K Re ωe cos cos K V sin K ωe sin tg K Re
x 2 0 0 0 C 2 C1 0 C 2 0 1 n 1 y2 z 2 0

第二节 刚体定轴转动的动力学方程

第二节 刚体定轴转动的动力学方程
刚体定轴转动的动力学方程z
F//
1. 力矩
F
力F 对z 轴的力矩 力F 在垂直于轴的平面内
M z Fd F r sin Fτr
力不在垂直于轴的平面内
dr
θ
F
P Fn
FF
M z Fd Frsin Fτr
若力 F F 也作用在P点上.
则力矩大小相等,效果不同.
力对定轴 力矩的矢量形式 M Z r F
GC F’T2 FT2
求 两物体的线加速度和水平、竖直两段绳索的张力
mB B
解 以mA , mB , m C为研究对象, 受力分析
物体 mA: FT1 mAaA
物体 mB :mB g FT 2 mBaB
滑轮
mC
:FT2R
FT1R
J
1 2
mC R2
aA aB a
FT1 FT1 FT 2 FT2
J dJ R 1(r2 dx) r2 02
R R2 x2 2 dx 2 mR2
2 R
5
x
r
dx x o
R
dJ 1 dm r2 2
转动定律的应用举例
基本方法和步骤
分析力,确 定外力矩
列出转动定律和牛 顿定律方程
列出线量和角量 之间的关系式
求解联 立方程
例 一轻绳绕在半径 r =20 cm 的飞轮边缘,在绳端施以F=98 N
a R
GB
a mBg
mA
mB
1 2
mC
FT1
mA
mAmB g
mB
1 2
mC
FT
2
mA
mA
1 2
mC
mB
mB g

第六章刚体动力学_大学物理

第六章刚体动力学_大学物理

第七章机械振动刚体转动的角坐标、角位移、角速度和角加速度的概念以及它们和有关线量的关系刚体定轴转动的动力学方程,熟练使用刚体定轴转动定律刚体对固定轴的角动量的计算,正确应用角动量定理及角动量守恒定理掌握刚体的概念和刚体的基本运动理解转动惯量的意义及计算方法,会利用平行轴定理和垂直轴定理求刚体的转动惯量掌握力矩的功,刚体的转动动能,刚体的重力势能等的计算方法了解进动现象和基本描述§6.1 刚体和自由度的概念一. 力矩力是引起质点或平动物体运动状态(用动量描述)发生变化的原因.力矩则是引起转动物体运动状态(用动量聚描述)发生变化的原因.将分解为垂直于z 轴和平行于z 轴的两个力及,如右图.由于不能改变物体绕z 轴的转动状态,因此定义对转轴z 的力矩为零.这样,任意力对z 轴的力矩就等于力对z 轴的力矩,即力矩取决于力的大小、方向和作用点.在刚体的定轴转动中,力矩只有两个指向,因此一般可视为代数量.根据力对轴的力矩定义,显然,当力平行于轴或通过轴时,力对该轴的力矩皆为零.讨论:(1)力对点的力矩.(2) 力对定轴力矩的矢量形式力矩的方向由右螺旋法则确定.(3) 力对任意点的力矩,在通过该点的任一轴上的投影,等于该力对该轴的力矩.例: 已知棒长L,质量M,在摩擦系数为μ 的桌面转动(如图)求摩擦力对y 轴的力矩.解: 以杆的端点O 为坐标原点,取Oxy坐标系,如图在坐标为x 处取线元dx,根据题意,这一线元的质量和摩擦力分别为则该线元的摩擦力对y轴的力矩为积分得摩擦力对y轴的力矩为注: 在定轴转动中,力矩可用代数值进行计算,例如二. 刚体对定轴的转动定律实验证明: 当力矩M为零时,则刚体保持静止或匀速转动,当存在M时,角加速度β与M成正比,而与转动惯量J 成反比,即.也可写成国际单位中k=1.若设作用在刚体上的外力对z轴的力矩总和为合外力矩,刚体对z 轴的转动惯量为J, 则有上式表明,刚体绕定轴转动时,刚体对该轴的转动惯量与角加速度的乘积,等于作用在刚体上所有外力对该轴的力矩的代数和.该式称为刚体绕定轴转动微分方程,也称转动定律.讨论:(1) M 正比于β ,力矩越大,刚体的β越大(2) 力矩相同,若转动惯量不同,产生的角加速度不同(3) 与牛顿定律比较,转动定律的理论证明:如右图,在刚体上任取一质量元,作用在质量元上的力可以分为两类:表示来自刚体意外一切力的合力(称外力),表示来自刚体内各质点对该质量元作用力的合理(称内力).刚体绕定轴Z 转动过程中,质量元以为半径作圆周运动,按牛顿第二定律,有将此矢量方程两边都投影到质量元的圆轨迹切线方向上,则有再将此式两边乘以,则得对固定轴的力矩对所有质量元求和,则得等式右边第一项为合外力矩;第二项为所有内力对z 轴的力矩总和,由于内力总是成对出现,而且每对内力大小相等、方向相反,且在一条作用线上,因此内力对z 轴的力矩的和恒等于零.又.则有即证.三. 转动惯量刚体对某Z 轴的转动惯量,等于刚体上各质点的质量与该质点到转轴垂直距离平方的乘积之和,即事实上刚体的质量是连续分布的,故上式中的求和可写为定积分,即刚体对轴转动惯量的大小决定于三个因素,即刚体的质量、质量对轴的分布情况和转轴的位置.(1) J 与刚体的总质量有关例 1 两根等长的细木棒和细铁棒绕端点轴转动惯量解:在如图的棒上取一线元dx,则积分得其转动惯量为显然,本题中,则(2) J 与质量分布有关例2 圆环绕中心轴旋转的转动惯量解: 在如图的圆环上取一线元dl,则积分得其转动惯量为例3 圆盘绕中心轴旋转的转动惯量解: 在如图的圆盘上取一宽为dr的圆环带,令,则质量元则积分得圆盘的转动惯量为(3) J 与转轴的位置有关例 4 均匀细棒绕端点轴转动惯量解: 在如图棒上取一线元dx,积分得棒的转动惯量为例 5 均匀细棒对通过中心并与棒垂直得轴的转动惯量解: 如图,以杆的中心O为坐标原点,取Oxz坐标系.积分得棒对z轴的转动惯量为四. 平行轴定理及垂直轴定理1. 平行轴定理设刚体得质量为M,质心为C,刚体对通过质心某轴z(称为质心轴)得转动惯量为.如有另一与z 轴平行的任意轴,且z和两轴间的垂直距离L.刚体对轴的转动惯量设为,则可以证明:.即刚体对任意轴(轴)的转动惯量等于刚体对通过质心并与该轴平行的轴(z轴)的转动惯量加上刚体的质量与两轴间垂直距离L平方的乘积.这个结论称为平行轴定理.例1 : 求均匀细棒的转动惯量.解: 如图,已知均质杆对质心轴z 的转动惯量为,为通过杆的一端、且与z 轴平行的轴的转动惯量,按平行轴定理有2.垂直轴定理如右图所示, x、y轴在刚体内, z轴垂直于刚体.则刚体对z 轴的转动惯量等于其对x、y轴的转动惯量之和此即为垂直轴定理.例求对圆盘的一条直径的转动惯量解:以圆盘圆心C为坐标圆点,建立xyz 坐标系如右图.易求得圆盘对z 轴的转动惯量为根据垂直轴定理,有又则五. 转动定律的应用举例例1 一轻绳绕在半径r =20 cm 的飞轮边缘,在绳端施以F =98 N 的拉力,飞轮的转动惯量J =0.5 kg·m 2,飞轮与转轴间的摩擦不计,(如图)求: (1) 飞轮的角加速度(2) 如以重量P =98 N 的物体挂在绳端,试计算飞轮的角加速度解: (1) 根据转动定律,有(2) 分别对物体和飞轮进行受力分析,如图所示,根据牛顿运动定律和转动定律,有,因为,所以有例2一根长为l , 质量为m 的均匀细直棒,可绕轴O 在竖直平面内转动,初始时它在水平位置求它由此下摆角时的解: 在直棒上取如图的质量元dm ,则积分得整个直棒重力对轴O的力矩为又故由上式可以看出,重力对整个棒的合力矩等于重力全部集中于质心所产生的力矩.则角加速度为:又, 则杆下摆至角速度为例3圆盘以在桌面上转动,受摩擦力而静止求到圆盘静止所需时间解:在圆盘内取一半径为r 的,厚度为dr 的环带, 其质量为该环带的摩擦力对质心轴的力矩为积分得圆盘的摩擦力力矩为由转动定律得所以,得则例4如图一个刚体系统,已知转动惯量,现有一水平作用力作用于距轴为处求轴对棒的作用力(也称轴反力)解: 设轴对棒的作用力为N,分解为.由转动定律得由质心运动定理得解得打击中心则思考题1. 刚体可有不止一个转动惯量吗? 除了刚体的形状和质量以外,要求它的转动惯量,还要已知什么信息?2.能否找到这样一个轴,刚体绕该轴的转动惯量比绕平行于该轴并通过质心的轴的转动惯量小?3.刚体在力矩作用下绕定轴转动,当力矩增大或减小时,其角速度和角加速度将如何变化?4.猫有一条长长的尾巴,它习惯于在阳台上睡觉,因而从阳台上掉下来的事情时有发生.长期的观察表明猫从高层的楼房的阳台掉到楼外的人行道上时,受伤的程度将随高度的增加而减少,据报道有只猫从32层楼掉下来,也仅仅只有胸腔和一颗牙齿有轻微的损伤.为什么会这样呢?(点击图片播放动画)§ 6.2 绕定轴转动刚体的动能动能定理一. 转动动能刚体I 绕定轴z 转动,转动惯量,某时刻t ,角速度ω ,角加速度为β,设想刚体是由大量质点组成,现研究质量为的质点i,如图.显然,质点i 的速度为,由质点动能的定义知,质量i 的动能为由于动能为标量且永为正,故整个刚体的动能E等于组成刚体所有质点动能的算数和,即即绕定轴转动刚体的动能,等于刚体对转动的转动惯量于其角速度平方乘积的一半. 将刚体绕定轴转动的动能与质点的动能加以比较,再一次看出转动惯量对应于质点的质量,即转动惯量是刚体绕轴转动惯性大小的量度.二.力矩的功力的累积过程——力矩的空间累积效应功的定义如图,设绕定轴z 转动刚体上P 点作用有一力,现研究刚体转动时力在其作用点P 的元路程ds 上的功.由图易得即作用在定轴转动刚体上的力的元功,等于该力对转轴的力矩于刚体的元角位移的乘积.这也称为力矩的元功.力矩作功的微分形式对一有限过程刚体从角坐标到的过程中,力矩对刚体所作的功为若力矩M为常数,则上式可以进一步写成既作用在定轴转动刚体上的常力矩在某一转动过程中对刚体所作的功,等于该力矩与刚体角位移的乘积.讨论:(1) 合力矩的功(2) 力矩的功就是力的功(3) 内力矩作功之和为零三. 转动动能定理——力矩功的效果力矩的元功此式表示绕定轴转动刚体动能的微分,等于作用在刚体上所有外力元功的代数和.这就是绕定轴转动刚体的动能定理的微分形式. 若定轴转动的刚体在外力作用下,角速度从变到,则由微分式,可得到式中A 表示刚体角速度从变到这一过程中,作用于刚体上的所有外力所作功的代数和. 上式表明,绕定轴转动刚体在任一过程中动能的增量,等于在该过程中作用在刚体上所有外力所作功的总和.这就是绕定轴转动刚体的动能定理的积分形式.刚体的机械能等于刚体的动能、重力势能之和.其中的重力势能为故刚体的机械能又可表示为刚体的机械能守恒,则有对于包括刚体的系统,功能原理和机械能守恒定律仍成立.例1一根长为l , 质量为m 的均匀细直棒,可绕轴O 在竖直平面内转动,初始时它在水平位置求它由此下摆角时的解: 易得杆摆至角时对O 轴的力矩为由动能定理,重力矩作的功得又,由此得即例2图示装置可用来测量物体的转动惯量.待测物体A 装在转动架上,转轴Z 上装一半径为r的轻鼓轮,绳的一端缠绕在鼓轮上,另一端绕过定滑轮悬挂一质量为m 的重物.重物下落时,由绳带动被测物体A绕Z 轴转动.今测得重物由静止下落一段距离h .所用时间为t .求物体 A 对Z 轴的转动惯量.设绳子不可伸缩,绳子、各轮质量及轮轴处的摩擦力矩忽略不计.待测物 A 的机械能:重物m 的机械能:由机械能守恒得:又则可得故,物体 A 对Z 轴的转动惯量为思考题1.两个重量相同的球分别用密度为的金属制成,今分别以角速度绕通过球心的轴转动,试问这两个球的能量之比多大?§ 6.3 动量矩和动量矩守恒定律一. 质点动量矩( 角动量) 定理和动量矩守恒定律1.质点的动量矩设一质点在平面S ,如图所示.在时刻t,质点的动量为,对某固定点O质点的位矢为,则质点对O点的动量矩(或质点对O点的角动量)定义为: 位矢和动量的矢积,即根据矢积定义,质点对O点动量的大小为:指向由右螺旋法则确定.(可以证明,质点对某点的动量矩,在通过该点的任意轴上的投影就等于质点对该轴的动量矩)特例:质点作圆周运动时,说明: (1) 质点的动量矩与质点的动量及位矢(取决于固定点的选择)有关(2) 当质点作平面运动时,质点对运动平面内某参考点O 的动量矩也称为质点对过O 垂直于运动平面的轴的动量矩例一质点m ,速度为v ,如图所示A、B、C 分别为三个参考点,此时m 相对三个点的距离分别为.求此时刻质点对三个参考点的动量矩解: 质点对某点的动量矩, 在通过该点的任意轴上的投影就等于质点对该轴的动量矩2. 质点的动量矩定理质点为m 的质点,在力的作用下运动,某一时刻t ,质点相对固定点O 的位矢为,速度为,按上述质点动量矩的定义,有两边对时间求导,得由于,故上式右边第二项为零,而第一项中,因此,上式右边第二项是作用在质点上所有力的合力对O 点的力矩,即此式表明,在惯性系中,质点对任意固定点O的动量矩对时间的导数,等于作用在质点上所有力的合力对同一点O 的力矩.这就是质点动量矩定理.质点动量矩定理的微分形式:质点动量矩定理的积分形式:质点所受合力矩的冲量矩等于质点的动量矩的增量说明:(1) 冲量矩是质点动量矩变化的原因(2) 质点动量矩的变化是力矩对时间的积累结果质点动量矩定理也可直接用来求解质点动力学问题,特别是质点在运动过程中始终和一个点或一根轴相关联的问题,例如单摆运动,行星运动等问题.3. 质点动量矩守恒定律在质点动量矩定理可以看出,当作用在质点上的合力对固定点的力矩恒为零时,质点对该点的动量矩为常矢量,即若时,=常矢量这就是质点动量守恒定律.讨论:(1) 动量矩守恒定律是物理学的基本定律之一,它不仅适用于宏观体系,也适用于微观体系, 且在高速低速范围均适用(2) 通常对有心力:过O 点,M= 0, 动量矩守恒.例如由动量矩守恒定律可导出行星运动的开普勒第二定律行星对太阳的位矢在相等的时间内扫过相等的面积例发射一宇宙飞船去考察一质量为M 、半径为R 的行星, 当飞船静止于空间距行星中心4R 时,以速度发射一质量为m 的仪器.要使该仪器恰好掠过行星表面求θ 角及着陆滑行的初速度多大解:由引力场(有心力)系统的机械能守恒得由质点的动量矩守恒得则所以有二. 刚体定轴转动的动量矩定理和动量矩守恒定律1. 刚体定轴转动的动量矩刚体以角速度ω 绕定轴z转动时,刚体上任意一点均在各自所在的垂至于z轴的平面那作圆周运动,如图.由于刚体上任一质点对z轴的动量矩都具有相同的方向(或者说都具有相同的正负号),因此整个刚体对z轴的动量矩应为各质点对z轴的动量矩之和,即上式表明,绕定轴转动刚体对z 轴的动量矩,等于刚体对该轴的转动惯量与角速度的乘积.2. 刚体定轴转动的动量矩定理将动量矩表达式对时间求导,得由于刚体对给定轴的转动惯量是一常量,因此利用前面讲过的转动定律,可以将上式进一步写成上式表明,绕定轴转动刚体对z轴的动量矩对时间的导数,等于作用在刚体上所有外力对z轴的力矩的代数和.这就是刚体绕定轴转动情况下的动量矩定理.动量矩定理微分形式:将上式两边乘以dt并积分,得动量矩定理积分形式:,分别表示在时刻转动刚体对z轴得动量矩,成为在时间内对z 轴得冲量矩.冲量矩表示了力矩在一段时间间隔内的积累效应.上式表明,定轴转动刚体的动量矩在某一时间间隔内的增量,等于同一时间间隔内作用在刚体上的冲量矩.3. 刚体绕定轴转动的动量矩守恒定律当作用在定轴转动刚体上的所有外力对转轴的力矩代数和为零时,根据动量矩定理式,刚体在运动过程中动量矩保持不变(守恒),即=0时,=常量.以上的讨论是对绕定轴转动的刚体进行的.对绕定轴转动的可变形物体来说,如果物体上各点绕定轴转动的角速度相同,即可用同一角速度来描述整个物体的转动状态,则某一时刻t , 物体对转动轴的动量矩也可表示为该物体在时刻t 对同一轴的转动惯量与角速度的乘积.只是由于物体上各点相对于轴的位置是可变的,所以对轴的转动惯量不再是一个常量,可表示为可以证明,这是可变形物体对转轴的动量矩对时间的导数仍然等于作用于该可变形物体的所有外力对同一轴的力矩的代数和,即仍成立. 这时如果作用在可变形物体上所有外力对该轴的力矩的代数和恒为零,则在运动过程中,可变形物体对转轴的动量矩保持不变(守恒).更一般地说,如果作用在质点系上所有外力对某一固定轴的力矩之和为零,则质点系对该轴的动量矩保持不变,这是动量矩守恒定律的更为一般的表述形式.动量矩守恒定律在实际生活中及工程中有着广泛的应用.例如花样滑冰的表演者可以容过伸展或收回手脚(改变对轴的转动惯量)的动作来调节旋转的角速度.例一长为l 的匀质细杆,可绕通过中心的固定水平轴在铅垂面内自由转动,开始时杆静止于水平位置.一质量与杆相同的昆虫以速度垂直落到距O点l /4 处的杆上,昆虫落下后立即向杆的端点爬行,如图所示.若要使杆以匀角速度转动.求昆虫沿杆爬行的速度解:设杆和昆虫的质量均为m ,昆虫与杆碰后以共同的角速度转动.昆虫落到杆上的过程为完全非弹性碰撞,对于昆虫和杆构成的系统,和外力矩为零,动量矩守恒,故有化简此式可得杆的转动角速度,即由题可知,此后杆以此角速度作匀速转动.设碰后t 时刻,杆转过角,昆虫爬到距O 点为r的位置处, 此时,昆虫和杆系统所受合外力矩为根据动量定理,有由题设不变,所以其中的值为带入上式有因此,为了使保持不变,昆虫的爬行速率应为说明:此题使一个系统绕定轴转动问题.在解此题的过程中应用了动量矩定理,该定理与刚体绕定轴转动定律的区别.三. 进动如图为一玩具陀螺,我们发现如果陀螺不绕自身对称轴旋转,则它将在起重力对质点O的力矩作用下翻到.但是当陀螺以很高的转速绕自身对称轴(称作自转或自旋)时,尽管陀螺仍然受重力矩作用,陀螺却不会翻到.陀螺的重力对O点的力矩作用结果将使陀螺的自转轴沿虚线所示的路径画出一个圆锥面来.我们称陀螺高速旋转时,其轴绕铅直轴的转动为进动.陀螺绕其对称轴以角速度高速旋转,如下图.对固定点O,它的动量矩L 可近似(未计进动部分的动量矩)表示为作用在陀螺上的力对O 点的力矩只有重力的力矩.显然, 垂至于动量矩矢量,按动量矩定理→可见在极短的时间内,动量矩的增量与d与平行, 也垂直于.这表明,在dt 时间内,陀螺在重力矩作用下,其动量矩的大小未变,但方向却改变了(方向绕铅直轴z 转过了dθ角)事实上,由于,带入动量矩定理式中.得所以,若陀螺自转角速度保持不变,则进动角速度也应保持不变.实际上由于各种摩擦阻力矩的作用,将使不断减小,与此同时,进动角速度Ω 将逐渐增大,进动将变得不稳定.以上的分析是近似的,只适用于自转角速度比进动角速度Ω 大得多得情况.因为有进动的存在,陀螺的总动量矩除了上面考虑到的因自转运动产生的一部分外,尚有进动产生的部分.只有在时,才能不计及因进动而产生的动量矩.思考题1. 如果一个质点在作直线运动,那么质点相对于那些点动量矩守恒?2. 如果作用在质点上的总力矩垂直于质点的动量矩,那么质点动量矩的大小和方向会发生变化吗?3. 当刚体转动的角速度很大时,作用在上面的力及力矩是否一定很大?4. 一个人随着转台转动,两手各拿一只重量相等的哑铃,当他将两臂伸平,他和转台的转动角速度是否改变?5. 试说明: 两极冰山的融化是地球自转速度变化的原因之一.。

刚体的转动知识点总结

刚体的转动知识点总结

一、刚体的基本概念1. 刚体的定义:刚体是一个质点系列,这些质点之间的相对位置在任意时刻都是固定的,不会改变。

2. 刚体的运动方式:除了平动外,刚体还可以进行转动运动。

3. 刚体的主要特征:刚体在转动运动中的主要特征是角位移、角速度和角加速度。

二、刚体的转动定律1. 牛顿第一定律在转动中的应用:刚体静止或匀速转动时,对固定轴的力矩为零。

2. 牛顿第二定律在转动中的应用:刚体转动的加速度和力矩之间的关系。

3. 牛顿第三定律在转动中的应用:力矩的作用对应地产生反作用力矩。

三、刚体的转动运动学1. 角度和弧度的关系:1弧度对应角度2pi,即1弧度=180°/π。

2. 角速度和角位移的关系:角位移是角速度随时间的积分。

3. 角加速度和角速度的关系:角加速度是角速度随时间的导数。

4. 刚体的角度运动学方程:θ=θ0+ω0t+1/2αt²,ω=ω0+αt,ω²=ω0²+2α(θ-θ0)。

四、刚体的转动动力学1. 转动惯量的概念:刚体对任意轴的转动惯量是对角速度与角动量之间关系的比较重要的物理量。

2. 转动惯量与质量的关系:转动惯量与质量和物体形状有关,质量越大,转动惯量越大。

3. 转动惯量的计算方法:在一个轴上转动的刚体对该轴的转动惯量的计算方法是对每个质点的质量进行求和。

4. 牛顿第二定律在转动中的适用条件:转动惯量与角加速度的关系。

五、刚体的转动运动与平动的转换1. 垂直平动和转动的关系:刚体在平动运动中的质心对其转动惯量有影响。

2. 能量守恒在转动中的应用:刚体在转动运动中的动能和势能之间的转换过程与保守力的性质有关。

1. 刚体的转动平衡条件:刚体在平衡时,合外力和合力矩均为零。

2. 刚体的稳定条件:刚体在平衡时,摆子有稳定和不稳定平衡之分。

以上便是刚体的转动知识点总结,这些知识点涵盖了刚体的基本概念、转动定律、转动运动学、转动动力学、转动运动与平动的转换以及转动稳定性等内容。

物理-刚体平面运动动力学

物理-刚体平面运动动力学
一、刚体平面运动的动力学方程
【平面运动】刚体上各点均在平面ຫໍສະໝຸດ 运动, 且这些平面均与一固定平面平行。
例:圆柱体沿直线路径的滚动。
一、刚体平面运动的动力学方程
刚体的平面运动可分解为
随质心的平动 绕过质心且垂直于固定平面的轴的转动
ω C
一、刚体平面运动的动力学方程
1、质心的运动
——刚体的质量 ——合外力
2l
故有
N2
f
Wl Pl1 2l
cot
梯子不滑动的条件 f N1
Wl Pl1 cot (W P) 2l
线的垂直距离为l. 求: 质心的加速度和圆柱所受的静摩擦力.
F l
ac
Rm
f
随堂练习
圆柱在竖直面内作平面运动。 由质心运动定理:
F f maC
又由对质心轴的转动定理:
Fl fR 1 mR 2
2
纯滚动的运动学判据 aC R
以上三式联立,可解得
2F(R 3mR 2
l);
f (R 2l) F 3R
则梯子的倾角?
Mq Ogf
x
随堂练习
设梯子不滑动时与地面的夹角为q, y N2 C
水平方向的力平衡: N 2 f 竖直方向的力平衡: N1 W P
为简化计算,取C为力矩的参考点,
2 fl sin Wl cos Pl1 cos
m g
l1 N1
Mq x
Ogf
解之得
f Wl Pl1 cot
由质心的运动定理决定
C
aC
——代表刚体作整体平移运动的加速度
一、刚体平面运动的动力学方程
对刚体的平面运动 y
在固定平面投影
Fx
m

刚体运动的动力学方程解析

刚体运动的动力学方程解析

二、刚体定轴转动的动力学方程
三、刚体定轴转动动力学方程的应用
四、动静法
质点系的达朗伯原理
五、点的复合运动
• 点的速度合成
六、刚体的复杂运动
基点法
速度投影法
速度瞬心法
J
=J=1对2 对M1mRmM:2
:m
Rm2 g
T m2a a
g T1
T ma
R
m
a
amgR
a R
2
解方程得:
a
m m M
g
2
R
例2 一个飞轮的质量为69kg ,半径为0.25m,正在以每分1000转 的转速转动。现在要制动飞轮,要求在5.0秒内使它均匀减速而 最后停下来。摩擦系数为0.46。求闸瓦对轮子的压力N为多大? (J = mR2 )
J

A
J

C
m
L 2
2
1 12
mL2
1 4
mL2
1 mL2 3
推广: 若有任一轴与过质心的轴 平行且相距d ,刚体对其转动惯 量为: J J C m d 2 , 称为平行轴 定理。
dc
第三节 刚体简单运动动力学方程的应用
主要研究刚体定轴转动动力学方程的应用
一、已知刚体的转动规律,求作用于刚体上的外力 例12-4
二、已知作用于刚体上的力矩,求转动规律 例12-5 例12-6
第四节 动静法

一、质点的达朗伯原理
二、质点系的达朗伯原理
平面任意力系的平衡条件: (1)力系中各力在X 轴和Y轴上投影的代数和为零; (2)力系中各力对平面内任一点的力矩的代数和为零
动静法的应用:刚体的平动和绕定轴转动 1、刚体的平动

ansys 刚体动力学运动范围

ansys 刚体动力学运动范围

ansys 刚体动力学运动范围ANSYS刚体动力学是一种广泛使用的工程仿真软件,用于模拟和分析刚体物体的运动和力学行为。

它广泛应用于机械工程、航空航天、汽车工程和土木工程等领域。

在ANSYS中,刚体动力学模块提供了一整套用于建模、仿真和分析刚体运动的工具和功能。

刚体动力学是研究物体在力的作用下如何运动的学科。

刚体是指在力的作用下不发生形变的物体,这意味着刚体的形状和尺寸不会改变。

ANSYS刚体动力学通过解析刚体的运动方程,可以帮助工程师预测和评估刚体在特定工况下的运动及其对周围环境的影响。

刚体动力学模块的主要功能包括建模、求解和分析刚体运动。

首先,工程师可以使用ANSYS提供的建模工具创建刚体对象,并定义其几何形状、材料性质、边界条件等。

刚体建模可以是二维的,也可以是三维的。

其次,工程师需要定义刚体的初始条件和外部力的作用方式。

外部力可以是静力,如重力或约束力,也可以是动力,如冲击或振动力。

然后,使用ANSYS提供的求解器,可以求解刚体的运动方程,并得到刚体在时间和空间上的运动轨迹。

最后,工程师可以使用ANSYS 的分析工具来评估刚体的运动参数,如速度、加速度、位移等。

刚体动力学模块还提供了其他一些特殊功能,例如碰撞分析、动力学模拟和优化设计。

碰撞分析用于研究不同刚体之间的碰撞效应,可以帮助工程师优化设计,减少碰撞对系统造成的损坏。

动力学模拟可以模拟刚体在复杂工况下的运动,如高速运动、非线性力和不可预测的环境变化。

优化设计可以通过调整刚体的几何结构和材料性质,来改善刚体的运动性能和力学行为。

刚体动力学模块的优点在于其灵活性和可靠性。

ANSYS提供了丰富的刚体建模工具和物理模型,可以满足不同工程领域的需求。

它还提供了可靠的求解器和分析工具,可以处理复杂的刚体运动问题。

此外,ANSYS还提供了强大的后处理功能,可以可视化和分析刚体的运动结果,便于工程师对仿真结果进行理解和解释。

总之,ANSYS刚体动力学是一种强大的工程仿真软件,可用于模拟和分析刚体物体的运动和力学行为。

刚体力学刚体动力学举例

刚体力学刚体动力学举例
1

2
2
1 M zdt 1 M zd
T
1 2
x
y
z
I xx
I yx


I
zx
I xy I yy Izy
I xz x I yz y I zz z
T

1 2
I z
2
刚体的动能定理可表示为:A
Jo

1 4
mR2( 2k

21k')
(六) 动能定理
五、 刚体动力学—动能定理
对于刚体来说,由于内力功的代数和为零,故动能
定理可表为: W e T T2 T1
①刚体动能的一般表示 — 柯尼希定理
T
i
1 2
mi ri
ri

1 2
mrc
rc

2 1
M zd

1 2
I
2
z2

1 2
I
2
z1
机械能守恒:
1 2
I zz 2
V

E
(5) 刚体的重力势能
刚体的定轴转动
对于一个不太大的质量为 m 的物体,它的重
力势能应是组成刚体的各个质点的重力势能之和
即:
质心高度为:
hc

mihi
m
Ep mghc
若只有保守力做功
E

mghc
刚体的定轴转动
刚体的定轴转动
(4) 定轴转动的动能定理


对定轴转动的情况,假设 k ,则:
W e
2 2 F dr F vdt
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


刚体基本动力学量
现在取 Axyz 坐标系为一个平动参考系 , 则刚体上的 R 点相对速度为 v r R =× R
dV
【定理】刚体相对动量为 p r =× mt R C
证明:pr =∫ v r R dV =∫ × R R dV
=×∫ R R dV =×m t RC(证毕)
⇒ L'A =∫ R2 I − R R ⋅ R dV =[∫ R2 I − R R R dV ]⋅
= J A⋅
(证毕)
1 1 ' 【定理】刚体相对动能为 T r = ⋅L A= ⋅J A⋅ 2 2
证明: T r=
1 1 2 v r R dV = ∫ v r⋅v r R dV ∫ 2 2 1 1 × R ⋅ v R dV = R × v r ⋅ R dV ∫ ∫ r 2 2
【推论】匀质刚体如果有一过 A 的镜像对称面,则过 A 且 与该镜像面垂直的轴是主轴;如果过 A 有两个正交的 镜像面,则两镜像面过 A 点的法线以及镜像面的交线 构成主轴系;匀质旋转体的旋转轴和任意与之正交的 两正交轴构成主轴系 . (请自己根据定义证明) 【定理】假定角速度在主轴坐标系下表示为
d d' J A⋅ 是矢量, J A⋅ = J A⋅× J A⋅ dt dt
⇒⋯⇒ J A⋅ = J XZ X J YZ Y J ZZ Z = ˙ Z ˙
d e ⋅M A ⇒ Z⋅ J A⋅= J ZZ = ≡M Z ¨ Z dt
2
J lk = J kl
(证毕)
因为:
lk =kl , Rl R k = Rk Rl
注:一般把 Jlk 称为惯量系数,由于对称性,只有 6 个是独立的 注:如果 AXYZ 不是固连在刚体上的坐标系,则 R 相对 AXYZ 有 转动,那么在 AXYZ 上看到的质量分布一般会随时间改变, 故在这个坐标系中惯量系数依赖于时间 . 注:如果 AXYZ 不是固连在刚体上的坐标系,在少数有良好对称性 的情况下 AXYZ 上看到的质量分布可能不随时间改变,此时在 这个坐标系中惯量系数是常数 .
【定义】坐标基矢 e*=[e1*, e2*, e3*]T 使得所代表的坐标系称为
∗ ∗ , J , J 主轴坐标系 , 相应的惯量系数 J ∗ 11 22 33 称为主转动惯量
思考题:怎样寻找主轴坐标系和主转动惯量?(特征向量和特征值)
【推论】任意两个主转动惯量之和大于剩余的第三个
证明:直接在主轴坐标系内用惯量系数的定义即可得证 . 略
(证毕)
注:对于定轴转动,可以证明 Jzz 也是常数( =JZZ ), 故运动微分方程也可表示为 J zz = ¨ Mz
d 1 2 【推论】定轴转动的刚体满足动能定理 J ZZ ˙ =M Z ˙ dt 2 2 ⇒ J A⋅= J XZ X J YZ Y J ZZ Z ˙ 证明: = ˙ Z ˙ ⇒ ⋅J A⋅= J ZZ
' A ∗ 11 ∗ 1 ∗ 22 ∗ 2 ∗ 33 ∗ 3

动力学基本定理
dV
【动量定理】
mt [ a A × ˙ RC ×× RC ]=F
证明:质心加速度为
e
z
z A
R y y
a C = a A × ˙ RC ×× RC
利用质心运动定理得证 . (证毕) 注:也可应用 Axyz 参考系中的动量定理 e p ˙ r =F − mt a A 证明 x
˙ 利用动能定理 由于 A 点不动,加速度为 0, 且 ⋅M A = M Z
d 1 e ⋅J A⋅ =⋅ M A − R C × mt a A dt 2
e




可导出上述推论 . (证毕) 注:对于定轴转动刚体,由于 Jzz=JZZ 是常数,故动能定理 也可表示为
d 1 2 J zz ˙ =M z ˙ dt 2
z (Z)
ω A x φ X
Y y
【推论】定轴转动刚体的运动微分方程为 J ZZ = ¨ MZ
证明:由于 A 点不动,加速度为 0 ,利用角动量定理
d e J A⋅ = M A dt d d' ˙ 注意 φ 是标量, = 微商可不加区别地记为 dt dt
参考系 Axyz 中的微商 固连坐标系 AXYZ 中的微商
得证!
d 1 e ⋅J C⋅ =⋅M C 【推论】在质心系中,动能定理为 dt 2


证明:注意到质心系中 RC=0 即可 . (证毕)
§6.2 定轴转动

运动微分方程
在轴上取基点 A ,建立静止参考系 Axyz 以及与刚体固连的坐标系 AXYZ. 使得 z(Z) 恰好为转动轴 . 自由度: DOF=1, 用转角 φ 表示 , 只需要 1 个运动微分方程 注意:参考系和坐标系关系!在一个参考系中 可建立很多个不同的坐标系 . 可取最方便 的一个坐标系来解决问题 . 例如在与刚体固连的坐标系 AXYZ 中讨论问题 . 在这个坐标系中惯量系数是常数 .
z
z A
R y y
O x
【定理】刚体相对 A 角动量为 L'A= J A⋅
证明: L'A=∫ R× v r R dV =∫ R×× R R dV
Oxyz :本征参考系 Axyz: 平动参考系
R ×× R = R⋅R − R R⋅ = R2 − R R⋅ = R2 I − R R ⋅
第六章
刚体动力学
§6.1 动力学基本方程

刚体的惯量张量
【定义】张量:坐标旋转下的不变量,它与任意矢量的 点积结果是矢量
在给定坐标系下,设坐标系的基矢为 e=[e1, e2, e3]T, 矢量 u 可 表示为 u =u i ei, 张量 T 可表示为 T = T kl e k e l , 它们的点积
T⋅u =T kl ek el⋅ ui e i=T kl ui ek el⋅e i =T kl ui ek li =T kl u l e k T 11 T 12 T 13 u1 =[ e 1 , e 2 , e3 ] T 21 T 22 T 23 u2 T 31 T 32 T 33 u3
注意:当 j≠k 时 ejek 和 ekej 是不同的
证明:注意到质心系中 RC=0 即可 . (证毕)
【动能定理】
d 1 e ⋅J A⋅ =⋅ M A − R C × mt a A dt 2


证明:应用任意平动参考系的动能定理
注:刚体的动能定理 与角动量定理不独立
d T r=∑n F ne ⋅d R n ∑n F ni ⋅d R n − m t a A⋅d R C
(证毕)
=
1 1 ' 1 ' = [∫ R × v r R dV ]⋅= L A⋅= ⋅L A 2 2 2
【推论】刚体惯量系数构成的矩阵 [Jlk]3×3 是正定的 .
证明:一方面 T r =
1 2 v ∫ r R dV 0 2 J 11 J 12 J 13 1 另一方面,由上一定理知道 T r =[1 , 2 , 3 ] J 21 J 22 J 23 2
[
][ ]
矢量 如果 Tkl=Tlk 则称 T 为对称张量
【定义】单位张量(或球形张量) I :满足 I ⋅v = v , ∀ v
注:在坐标基矢 e=[e1, e2, e3]T 下,可表示为 I =kl e k e l
【定义】刚体惯量张量:
J A =∫ [ R I − R R ] R dV


附:关于 Jzz=JZZ 的证明 . 证明:坐标变换关系为 z=Z, x=Xcosφ+Ysinφ, y=-Xsinφ+Ycosφ 可以证明 dxdydz=dXdYdZ, x2+y2=X2+Y2 ,ρ(x,y,z)=ρ'(X,Y,Z), 故有
J zz =∭ dxdydz x 2 y 2 x , y , z =∭ dXdYdZ X 2Y 2 ' X ,Y , Z = J ZZ
O
Oxyz :本征参考系 Axyz: 平动参考系
d e 【角动量定理】 [ J A⋅ ]= M A − RC × mt a A dt
˙ 'A= M Ae − RC × mt a A 证明:根据任意平动参考系中角动量定理 L
以及 L A= J A⋅ 即可得证 . (证毕)
'
d e 【推论】在质心系中,角动量定理为 [ J C⋅ ]= M C dt
刚体任意两点距离不变,故内力不做功 .
d Rn e d Rn =× R n ⇒ ∑n F n ⋅ =∑n F ne ⋅× R n =∑n ⋅ R n × F ne dt dt d RC d RC =× R C ⇒− mt a A⋅ =−⋅ R C × mt a A dt dt
2
Z z A O x y R
dV
注:在 AXYZ 坐标基矢 e=[e1, e2, e3] 下,
T
Y X
R = R1 e 1 R2 e 2 R3 e 3 ⇒
R R = R1 e 1 R 2 e 2 R3 e 3 R1 e 1 R 2 e 2 R3 e 3 = R e1 e1 R1 R2 e1 e 2 R1 R3 e1 e3 R2 R 1 e 2 e 1 R 2 e 2 e 2 R2 R3 e 2 e 3 R3 R1 e 3 e 1 R3 R 2 e 3 e 2 R3 e 3 e3
【定义】惯量椭球:由下面方程决定的椭球
J 11 J 12 J 13 x [ x , y , z ] J 21 J 22 J 23 y =1 J 31 J 32 J 33 z
相关文档
最新文档