高考数学一轮复习复习学案:函数与方程
高考数学一轮复习 函数与方程教案
山东省泰安市肥城市第三中学高考数学一轮复习函数与方程教案几个等价关系上的图象是连续不断的一条曲线,并且有轴的交点但不宜用二分法求交点横坐标的是( B )、方程125x x +-=的解所在区间( B )A (0,1)B (1,2)C (2,3) D(3,4)则下一个有根区间是(精确度即函数只有一个解。
的交点。
个不同实数解,即0(C<=(4m)^2-8(m+1)(2m-1)>0 -m+1>0,则二次函数,取值范围是,精美句子1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。
蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。
航船,如果害怕风浪,那它永远不能到达彼岸。
5、墙角的花,当你孤芳自赏时,天地便小了。
井底的蛙,当你自我欢唱时,视野便窄了。
笼中的鸟,当你安于供养时,自由便没了。
高考数学一轮复习第二章函数的概念基本初等函数(Ⅰ)及函数的应用2.6函数与方程习题理
§2.6函数与方程1.函数的零点(1)定义:对于函数y=f(x),我们把使的实数x叫做函数y=f(x)的零点.函数y=f(x)的零点就是方程f(x)=0的________,也是函数y=f(x)的图象与x轴的________.(2)函数有零点的几个等价关系:方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴⇔函数y=f(x) .由此可知,求方程f(x)=0的实数根,就是确定函数y=f(x)的________.一般地,对于不能用公式求根的方程f(x)=0来说,我们可以将它与________联系起来,利用函数的性质找出零点,从而求出方程的根.2.函数的零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有,那么,函数y=f(x)在区间内有零点,即存在c∈,使得,这个c 也就是方程f(x)=0的根.3.二次函数的零点分布(即一元二次方程根的分布,见2.4节“考点梳理”5)自查自纠1.(1)f(x)=0 实数根交点的横坐标(2)有交点有零点零点函数y=f(x)2.f(a)·f(b)<0 (a,b) (a,b) f(c)=0(2015·安徽)下列函数中,既是偶函数又存在零点的是( )A.y=cos x B.y=sin xC.y=ln x D.y=x2+1解:y=cos x是偶函数且有无数多个零点,y=sin x为奇函数,y=ln x既不是奇函数也不是偶函数,y=x2+1是偶函数但没有零点.故选A.函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是( )A .0B .1C .2D .3解:易知函数f (x )=2x+x 3-2单调递增,∵f (0)=1-2=-1<0,f (1)=2+1-2=1>0,∴函数f (x )在区间(0,1)内零点的个数为1.故选B .(2014·山东)已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫12,1 C .(1,2)D .(2,+∞)解:在同一平面直角坐标系中分别画出函数y =f (x ),y =g (x )的图象.如图所示,方程f (x )=g (x )有两个不相等的实根,等价于两个函数的图象有两个不同的交点.结合图象可知,当直线y =kx 的斜率大于坐标原点与点(2,1)连线的斜率且小于直线y =x -1的斜率时符合题意,故12<k <1.故选B .方程ln x =8-2x 的实数根x ∈(k ,k+1),k ∈Z ,则k =________.解:构造函数f (x )=ln x +2x -8,∴f ′(x )=1x+2>0(x >0),则f (x )在(0,+∞)上单调递增,又f (1)=-6<0,f (2)=ln2-4<0,f (3)=ln3-2<0,f (4)=ln4>0,∴f (x )的唯一零点在(3,4)内,因此k =3.故填3.(2014·苏锡模拟)已知奇函数f (x )是R 上的单调函数,若函数y =f (x 2)+f (k -x )只有一个零点,则实数k 的值是________.解:由f (x 2)+f (k -x )=0得f (x 2)=-f (k -x ),因为f (x )是奇函数,有-f (k -x )=f (x -k ),故有f (x 2)=f (x -k ),又f (x )是R 上的单调函数,所以方程x 2=x -k 即x 2-x +k=0有唯一解,由Δ=0解得k =14,故填14.类型一 判断函数零点所在的区间(2014·北京)已知函数f (x )=6x-log 2x .在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)解:f (x )在(0,+∞)为减函数,又f (1)=6>0,f (2)=2>0,f (4)=32-2=-12<0.故选C .【点拨】要判断在给定区间连续的函数是否存在零点,只需计算区间端点的函数值是否满足零点存在性定理的条件;如果题目没有给出具体区间,则需要估算函数值并利用函数的单调性等性质来求.但应注意到:不满足f (a )·f (b )<0的函数也可能有零点,此时,应结合函数性质分析判断.(2013·北京朝阳检测)函数f (x )=ln x -2x的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(1,e)和(3,4)D .(e ,+∞)解:∵f ′(x )=1x +2x 2>0(x >0),∴f (x )在(0,+∞)上单调递增,又f (3)=ln3-23>0,f (2)=ln2-1<0,∴f (2)·f (3)<0,∴f (x )唯一的零点在区间(2,3)内.故选B .类型二 零点个数的判断(2015·江苏)已知函数f (x )=|ln x |,g (x )=⎩⎪⎨⎪⎧0, 0<x ≤1,|x 2-4|-2,x >1,则方程|f (x )+g (x )|=1实根的个数为________.解:由题意知,方程|f (x )+g (x )|=1实根的个数即为函数y =f (x )与y =1-g (x )交点个数及函数y =f (x )与y =-1-g (x )交点个数之和,而y =1-g (x )=⎩⎪⎨⎪⎧1, 0<x ≤1,7-x 2,x ≥2,x 2-1,1<x <2,作图易知函数y =f (x )与y =1-g (x )有两个交点,又y =-1-g (x )=⎩⎪⎨⎪⎧-1, 0<x <1,5-x 2,x ≥2,x 2-3,1<x <2,作图易知函数y =f (x )与y =-1-g (x )有两个交点,因此共有4个交点.故填4.【点拨】(1)连续函数在区间[a ,b ]上满足f (a )·f (b )<0时,函数在(a ,b )内的零点至少有一个,但不能确定究竟有多少个.要更准确地判断函数在(a ,b )内零点的个数,还得结合函数在该区间的单调性、极值等性质进行判断;(2)对于解析式较复杂的函数,可根据解析式特征化为f (x )=g (x )的形式,通过考察两个函数图象的交点个数来求原函数的零点个数;(3)有时求两函数图象交点的个数,不仅要研究其走势(单调性、极值点、渐近线等),而且要明确其变化速度快慢.(2014·福建)函数f (x )=⎩⎪⎨⎪⎧x 2-2, x ≤0,2x -6+ln x ,x >0的零点个数是________. 解:当x ≤0时,f (x )=x 2-2,令x 2-2=0,得x =2(舍)或x =-2, 即在区间(-∞,0]上,函数只有一个零点. 当x >0时,f (x )=2x -6+ln x ,解法一:令2x -6+ln x =0,得ln x =6-2x .作出函数y =ln x 与y =6-2x 在区间(0,+∞)上的图象,易得两函数图象只有一个交点,即函数f (x )=2x -6+ln x (x >0)只有一个零点.解法二:f ′(x )=2+1x,由x >0知f ′(x )>0,∴f (x )在(0,+∞)上单调递增, 而f (1)=-4<0,f (e)=2e -5>0,f (1)f (e)<0,从而f (x )在(0,+∞)上只有一个零点.综上可知,函数f (x )的零点个数是2.故填2.类型三 已知零点情况求参数范围(2014·江苏)已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪⎪⎪x 2-2x +12,若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.解:函数y =f (x )-a 在区间[-3,4]上有互不相同的10个零点,即函数y =f (x ),x ∈[-3,4]与y =a 的图象有10个不同交点.在坐标系中作出函数f (x )在一个周期[0,3)上的图象如图,可知当0<a <12时满足题意.故填⎝ ⎛⎭⎪⎫0,12. 【点拨】(1)解答本题的关键在于依据函数的对称性、周期性等知识作出函数图象,将函数的零点个数问题转化为求两个函数的交点个数问题;(2)对于含参数的函数零点问题,一般先分离参数,针对参数进行分类讨论,按照题目所给零点的条件,找出符合要求的参数值或范围,但讨论要注意全面及数形结合.(2015·河南模拟)已知函数f (x )=⎩⎪⎨⎪⎧x +2, x >a ,x 2+5x +2,x ≤a ,函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a 的取值范围是( )A .[-1,1)B .[0,2]C .[-2,2)D .[-1,2)解:∵f (x )=⎩⎪⎨⎪⎧x +2, x >a ,x 2+5x +2,x ≤a ,∴g (x )=f (x )-2x =⎩⎪⎨⎪⎧-x +2, x >a ,x 2+3x +2,x ≤a .方程-x +2=0的解为x =2,方程x 2+3x +2=0的解为x =-1或-2.若函数g (x )=f (x )-2x 恰有三个不同的零点,则⎩⎪⎨⎪⎧a <2,-1≤a ,-2≤a ,解得-1≤a <2,即实数a的取值范围是[-1,2).故选D .1.函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x 轴交点的横坐标,注意它是数而不是点.2.判断函数在给定区间零点的步骤(1)确定函数的图象在闭区间[a,b]上连续;(2)计算f(a),f(b)的值并判断f(a)·f(b)的符号;(3)若f(a)·f(b)<0,则有实数解.除了用上面的零点存在性定理判断外,有时还需结合相应函数的图象来作出判断.3.确定函数f(x)零点个数(方程f(x)=0的实根个数)的方法:(1)判断二次函数f(x)在R上的零点个数,一般由对应的二次方程f(x)=0的判别式Δ>0,Δ=0,Δ<0来完成;对于一些不便用判别式判断零点个数的二次函数,则要结合二次函数的图象进行判断.(2)对于一般函数零点个数的判断,不仅要用到零点存在性定理,还必须结合函数的图象和性质才能确定,如三次函数的零点个数问题.(3)若函数f(x)在[a,b]上的图象是连续不断的一条曲线,且是单调函数,又f(a)·f(b)<0,则y=f(x)在区间(a,b)内有唯一零点.1.函数y =x 12-⎝ ⎛⎭⎪⎫12x 的零点个数为( ) A .0B .1C .2D .3解:在同一坐标系内分别做出y 1=x ,y 2=⎝ ⎛⎭⎪⎫12x的图象,根据图象可以看出交点的个数为1.故选B .2.(2015·青岛模拟)若函数f (x )=3ax +1-2a 在区间(-1,1)上存在一个零点,则实数a 的取值范围是( )A .a >15B .a >15或a <-1C .-1<a <15D .a <-1解:由题可知函数f (x )的图象是一条直线,所以f (x )在区间(-1,1)上存在一个零点等价于f (-1)f (1)<0,即(1-5a )(a +1)<0.解得a >15或a <-1.故选B .3.(2013·天津)函数f (x )=2x|log 0.5x |-1的零点个数为( ) A .1B .2C .3D .4解:判断函数f (x )的零点个数可转化为判断方程f (x )=2x|log 0.5x |-1=0的根的个数,由此得到|log 0.5x |=⎝ ⎛⎭⎪⎫12x ,设y 1=|log 0.5x |,y 2=⎝ ⎛⎭⎪⎫12x,则两个函数y 1与y 2的交点个数即为所求,如图所示,可知交点有两个.故选B .4.已知x 0是函数f (x )=2x+11-x的一个零点,若x 1∈(1,x 0),x 2∈(x 0,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解:由于函数g (x )=11-x =-1x -1在(1,+∞)上单调递增,函数h (x )=2x在(1,+∞)上单调递增,故函数f (x )=h (x )+g (x )在(1,+∞)上单调递增,所以函数在(1,+∞)上只有唯一的零点x 0,且在(1,x 0)上,f (x 1)<f (x 0)=0;在(x 0,+∞)上,f (x 2)>f (x 0)=0.故选B .5.(2014·黄冈九月质检)函数f (x )=⎝ ⎛⎭⎪⎫1+x -x 22+x 33cos2x 在区间[-3,3]上零点的个数为( )A .3B .4C .5D .6解:令g (x )=1+x -x22+x33, 则g ′(x )=1-x +x 2>0,故g (x )在R 上单调递增,而g (-3)g (3)<0,故g (x )在(-3,3)上仅有1个零点.作图易知y =cos2x 在[-3,3]上有4个零点,且易判断这5个零点互不相同.故选C .6.(2015·浙江模拟)函数y =ln|x -1|的图象与函数y =-2cos πx (-2≤x ≤4)的图象所有交点的横坐标之和等于( )A .8B .6C .4D .2解:作出两函数的大致图象如图所示.两函数图象都关于直线x =1对称,且共有6个交点, 故所有交点的横坐标之和为6.故选B .7.设f (x )=2x-x -4,x 0是函数f (x )的一个正数零点,且x 0∈(a ,a +1),其中a ∈N ,则a = .解:∵x 0是函数f (x )的一个正数零点,即f (x 0)=2x 0-x 0-4=0,知f (2)=22-2-4<0,f (3)=23-3-4>0,∴x 0∈(2,3),再由y =2x与y =x +4在(0,+∞)上只有一个交点知a 值惟一.又∵a ∈N ,∴a =2.故填2.8.(2014·安庆六校联考)已知函数f (x )=⎩⎪⎨⎪⎧|x |, x >0,-x 2-2x +1,x ≤0, 若函数g (x )=f (x )+2m 有三个零点,则实数m 的取值范围是________.解:作出函数f (x )=⎩⎪⎨⎪⎧|x |,x >0,-x 2-2x +1,x ≤0 的图象如图所示,令g (x )=f (x )+2m =0,则f (x )=-2m ,由图象知,当1≤-2m <2,即-1<m ≤-12时,直线y =-2m 与y =f (x )的图象有三个交点.故填⎝⎛⎦⎥⎤-1,-12.9.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,求函数y =f (f (x ))+1的所有零点构成的集合.解:先解方程f (t )=-1,即⎩⎪⎨⎪⎧t ≤0,t +1=-1或⎩⎪⎨⎪⎧t >0,log 2t =-1. 得t =-2或t =12.再解方程f (x )=-2和f (x )=12.即⎩⎪⎨⎪⎧x ≤0,x +1=-2或⎩⎪⎨⎪⎧x >0,log 2x =-2和⎩⎪⎨⎪⎧x ≤0,x +1=12或⎩⎪⎨⎪⎧x >0,log 2x =12. 得x =-3或x =14和x =-12或x = 2.故所求为⎩⎨⎧⎭⎬⎫-3,-12,14,2.10.若函数f (x )=2ax 2-x -1在(0,1)上恰有一个零点,求实数a 的取值范围. 解:f (x )在(0,1)上恰有一个零点,显然a ≠0. ∴有两种情形:①f (0)f (1)<0,得(-1)·(2a -2)<0⇒a >1;②Δ=0且方程f (x )=0的根在(0,1)内,令Δ=0⇒1+8a =0⇒a =-18,得f (x )=-14(x 2+4x +4),此时f (x )=0的根x 0=-2∉(0,1).综上知a >1,即实数a 的取值范围为(1,+∞). 11.已知二次函数f (x )=ax 2+bx +c (a ≠0). (1)若f (-1)=0,试判断函数f (x )的零点个数;(2)若对任意x 1,x 2∈R ,且x 1<x 2,f (x 1)≠f (x 2),试证明存在x 0∈(x 1,x 2),使f (x 0)=12[f (x 1)+f (x 2)]成立. 解:(1)∵f (-1)=0,∴a -b +c =0,b =a +c . ∵Δ=b 2-4ac =(a +c )2-4ac =(a -c )2, 当a =c 时,Δ=0,函数f (x )有一个零点; 当a ≠c 时,Δ>0,函数f (x )有两个零点.(2)证明:令g (x )=f (x )-12[f (x 1)+f (x 2)],则g (x 1)=f (x 1)-12[f (x 1)+f (x 2)]=f (x 1)-f (x 2)2,g (x 2)=f (x 2)-12[f (x 1)+f (x 2)]=f (x 2)-f (x 1)2,∴g (x 1)·g (x 2)=-14[f (x 1)-f (x 2)]2.∵f (x 1)≠f (x 2),∴g (x 1)·g (x 2)<0,即g (x )=0在(x 1,x 2)内必有一个实根.即存在x 0∈(x 1,x 2),使f (x 0)=12[f (x 1)+f (x 2)]成立.设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x )=f (2-x ),且当x ∈[0,1]时,f (x )=x 3.又函数g (x )=||x cos (πx ),则函数h (x )=g (x )-f (x )在⎣⎢⎡⎦⎥⎤-12,32上的零点个数为( ) A .5B .6C .7D .8解:原问题可转化为函数f (x )与g (x )的图象在[-12,32]上的交点个数问题.由题意知函数f (x )为偶函数,且周期为2.当x =32,12,0,-12时,g (x )=0,当x =1时,g (x )=1,且g (x )是偶函数,g (x )≥0,由此可画出函数y =g (x )和函数y =f (x )的大致图象如图所示,由图可知在⎣⎢⎡⎦⎥⎤-12,32上两函数图象有6个交点,故选B .。
高考数学一轮复习 基本初等函数、函数与方程及函数的应用专题训练(1)
基本初等函数、函数与方程及函数的应用一、基础知识要记牢指数函数y =a x(a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图像和性质,分0<a <1,a >1两种情况,当a >1时,两函数在定义域内都为增函数,当0<a <1时,两函数在定义域内都为减函数.二、经典例题领悟好[例1] (1)(2012·四川高考)函数y =a x-1a(a >0,且a ≠1)的图像可能是( )(2)(2013·全国卷Ⅱ)设a =log 36,b =log 510,c =log 714,则( ) A .c >b >a B .b >c >a C .a >c >b D .a >b >c[解析] (1)当x =-1时,y =1a -1a =0,所以函数y =a x-1a的图像必过定点(-1,0),结合选项可知选D.(2)a =log 36=log 33+log 32=1+log 32, b =log 510=log 55+log 52=1+log 52, c =log 714=log 77+log 72=1+log 72, ∵log 32>log 52>log 72,∴a >b >c . [答案] (1)D (2)D比较指数函数值、对数函数值、幂函数值大小有三种方法:一是根据同类函数的单调性进行比较;二是采用中间值0或1等进行比较;三是将对数式转化为指数式,或将指数式转化为对数式,通过转化进行比较. 三、预测押题不能少1.(1)函数y =x -x 13的图像大致为( )解析:选A 函数y =x -x 13为奇函数.当x >0时,由x -x 13>0,即x 3>x ,可得x 2>1,故x >1,结合选项,选A. (2)若x ∈(e-1,1),a =ln x ,b =⎝ ⎛⎭⎪⎫12ln x ,c =e ln x,则a ,b ,c 的大小关系为( )A .c >b >aB .b >c >aC .a >b >cD .b >a >c解析:选B 依题意得a =ln x ∈(-1,0),b =⎝ ⎛⎭⎪⎫12ln x ∈(1,2),c =x ∈(e -1,1),因此b >c >a .一、基础知识要记牢确定函数零点的常用方法:(1)解方程判定法,方程易解时用此法; (2)利用零点存在的判定定理;(3)利用数形结合,尤其是那些方程两端对应的函数类型不同时多以数形结合法求解. 二、经典例题领悟好[例2] (1)函数f (x )=2x+3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)(2)已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f [f (x )+1]的零点个数是( )A .2B .3C .4D .5[解析] (1)由f (-1)=12-3<0,f (0)=1>0及零点定理,知f (x )的零点在区间(-1,0)上.(2)当f (x )=0时,x =-1或x =1,故f [f (x )+1]=0时,f (x )+1=-1或1.当f (x )+1=-1,即f (x )=-2时,解得x =-3或x =14;当f (x )+1=1,即f (x )=0时,解得x =-1或x =1.故函数y =f [f (x )+1]有四个不同的零点. [答案] (1)B (2)C函数的零点、方程的根,都可以转化为函数图像与x 轴的交点,数形结合法是解决函数零点、方程根的分布、零点个数、方程根的个数的一个有效方法.在解决函数零点问题时,既要注意利用函数的图像,也要注意根据函数的零点存在性定理、函数的性质等进行相关的计算,把数与形紧密结合起来. 三、预测押题不能少2.若函数f (x )=⎩⎪⎨⎪⎧2x-a ,x ≤0ln x ,x >0有两个不同的零点,则实数a 的取值范围是________.解析:当x >0时,由f (x )=ln x =0,得x =1.因为函数f (x )有两个不同的零点,则当x ≤0时,函数f (x )=2x -a 有一个零点,令f (x )=0得a =2x ,因为0<2x ≤20=1,所以0<a ≤1,所以实数a 的取值范围是0<a ≤1. 答案:(0,1]一、经典例题领悟好[例3] 某企业为打入国际市场,决定从A ,B 两种产品中只选择一种进行投资生产.已知投资生产这两种产品的有关数据如表:(单位:万美元)其中年固定成本与年生产的件数无关,为待定常数,其值由生产产品的原材料价格决定,预计m ∈[6,8].另外,年销售x 件B 产品时需上交0.05x 2万美元的特别关税.假设生产出来的产品都能在当年销售出去.(1)写出该厂分别投资生产A ,B 两种产品的年利润y 1,y 2与生产相应产品的件数x 之间的函数关系并指明其定义域;(2)如何投资最合理(可获得最大年利润)?请你做出规划.[解] (1)由年销售量为x 件,按利润的计算公式,有生产A ,B 两产品的年利润y 1,y 2分别为y 1=10x -(20+mx )=(10-m )x -20(x ∈N,0≤x ≤200),y 2=18x -(8x +40)-0.05x 2=-0.05x 2+10x -40(x ∈N,0≤x ≤120).(2)因为6≤m ≤8,所以10-m >0,函数y 1=(10-m )x -20在[0,200]上是增函数,所以当x =200时,生产A 产品有最大利润,且y 1max =(10-m )×200-20=1 980-200m (万美元).又y 2=-0.05(x -100)2+460(x ∈N,0≤x ≤120),所以当x =100时,生产B 产品有最大利润,且y 2max =460(万美元). 因为y 1max -y 2max =1 980-200m -460 =1 520-200m ⎩⎪⎨⎪⎧>0,6≤m <7.6,=0,m =7.6,<0,7.6<m ≤8.所以当6≤m <7.6时,可投资生产A 产品200件;当m =7.6时,生产A 产品或生产B 产品均可(投资生产A 产品200件或生产B 产品100件);当7.6<m ≤8时,可投资生产B 产品100件.解决函数实际应用题的关键有两点:一是认真读题,缜密审题,确切理解题意,明确问题的实际背景,然后进行科学地抽象概括,将实际问题归纳为相应的数学问题;二是要合理选取参变量,设定变量之后,就要寻找它们之间的内在联系,选用恰当的代数式表示问题中的关系,建立相应的函数模型,最终求解数学模型使实际问题获解. 二、预测押题不能少3.某集团为了获得更大的利润,每年要投入一定的资金用于广告促销.经调查,每年投入广告费t (百万元)可增加销售额约为-t 2+5t (百万元)(0≤t ≤3).(1)若该集团将当年的广告费控制在三百万元以内,则应投入多少广告费,才能使集团由广告费而产生的收益最大?(2)现在该集团准备投入三百万元,分别用于广告促销和技术改造.经预算,每投入技术改造费x (百万元),可增加的销售额约为-13x 3+x 2+3x (百万元).请设计一个资金分配方案,使该集团由这两项共同产生的收益最大.解:(1)设投入广告费t (百万元)后由此增加的收益为f (t )(百万元), 则 f (t )=(-t 2+5t )-t =-t 2+4t =-(t -2)2+4(0≤t ≤3). 所以当t =2时,f (t )max =4,即当集团投入两百万元广告费时,才能使集团由广告费而产生的收益最大.(2)设用于技术改造的资金为x (百万元),则用于广告的费用为(3-x )(百万元),则由此两项所增加的收益为g (x )=⎝ ⎛⎭⎪⎫-13x 3+x 2+3x +[-(3-x )2+5(3-x )]-3=-13x 3+4x +3(0≤x ≤3). 对g (x )求导,得g ′(x )=-x 2+4,令g ′(x )=-x 2+4=0, 得x =2或x =-2(舍去).当0≤x <2时,g ′(x )>0,即g (x )在[0,2)上单调递增; 当2<x ≤3时,g ′(x )<0,即g (x )在(2,3]上单调递减. ∴当x =2时,g (x )max =g (2)=253.故在三百万元资金中,两百万元用于技术改造,一百万元用于广告促销,这样集团由此所增加的收益最大,最大收益为253百万元.函数的性质与零点的交汇函数零点(方程的根)的问题,常见的类型有: (1)零点或零点存在区间的确定; (2)零点个数的确定;(3)利用零点求参数范围问题.函数的性质与零点的交汇问题成为新的命题点. 一、经典例题领悟好[例] (2012·湖南高考)设定义在R 上的函数f (x )是最小正周期为2π的偶函数,f ′(x )是f (x )的导函数,当x ∈[0,π]时,0<f (x )<1;当x ∈(0,π)且x ≠π2时,(x -π2)f ′(x )>0.则函数y =f (x )-sin x 在[-2π,2π]上的零点个数为( )A .2B .4C .5D .8学审题——审结论之逆向分析函数y =f (x )-sin x 的零点――→转化 y =f (x )与y =sin x 图像交点――→作用 f (x )的范围――――→函数f x的性质确定f ′(x )的正负――――→分类讨论 ⎝ ⎛⎭⎪⎫x -π2·f ′(x )>0. 用“思想”——尝试用“转化与化归思想”解题∵⎝⎛⎭⎪⎫x -π2f ′(x )>0,x ∈(0,π)且x ≠π2,∴当0<x <π2时,f ′(x )<0,f (x )在⎝ ⎛⎭⎪⎫0,π2上单调递减.当π2<x <π时,f ′(x )>0,f (x )在⎝ ⎛⎭⎪⎫π2,π上单调递增.∵当x ∈[0,π]时,0<f (x )<1.∴当x ∈[π,2π],则0≤2π-x ≤π. 又f (x )是以2π为最小正周期的偶函数, 知f (2π-x )=f (x ).∴x ∈[π,2π]时,仍有0<f (x )<1.依题意及y =f (x )与y =sin x 的性质,在同一坐标系内作y =f (x )与y =sin x 的简图.则y =f (x )与y =sin x 在x ∈[-2π,2π]有4个交点. 故函数y =f (x )-sin x 在[-2π,2π]上有4个零点. [答案] B1本题在求解时,用了转化与化归、数形结合、分类讨论思想.个别学生不会利用题设条件判定y =f x 的值域以及函数y =f x 图像的变化趋势,导致求解受阻. 2函数与方程应用转化与化归的常见类型①判断函数零点个数常转化为两函数的图像交点.②由函数的零点情况确定参数范围,常转化为利用函数图像求解. ③方程根的讨论转化为函数零点的问题. 二、预测押题不能少函数y =f (x )满足f ⎝ ⎛⎭⎪⎫x +54=-f ⎝ ⎛⎭⎪⎫x -54,当x ∈[-1,4]时,f (x )=x 2-2x ,则f (x )在区间[0,2012]上零点的个数为( )A .2 011B .2 012C .1 026D .1 027解析:选D 根据f ⎝ ⎛⎭⎪⎫x +54=-f ⎝ ⎛⎭⎪⎫x -54,可得f ⎝⎛⎭⎪⎫x +52=-f (x ),进而得f (x +5)=f (x ),即函数y =f (x )是以5为周期的周期函数.当x ∈[-1,4]时,f (x )=x 2-2x,在[-1,0]内有一个零点,在(0,4]内有x 1=2,x 2=4两个零点,故在一个周期内函数有三个零点.又因为2 012=402×5+2,故函数在区间[0,2 010]内有402×3=1 206个零点,在区间(2 010,2 012]内的零点个数与在区间(0,2]内零点的个数相同,即只有一个零点,所以函数f (x )在[0,2 012]上零点的个数为1 207.1.(2013·广州惠州调研)已知幂函数y =f (x )的图像过点⎝ ⎛⎭⎪⎫12,22,则log 4f (2)的值为( )A.14 B .-14 C .2 D .-2解析:选A 设f (x )=x a,由其图像过点⎝ ⎛⎭⎪⎫12,22得⎝ ⎛⎭⎪⎫12a =22=⎝ ⎛⎭⎪⎫1212⇒a =12,故log 4f (2)=log 4212=14.2.(2013·陕西高考)设a ,b ,c 均为不等于1的正实数, 则下列等式中恒成立的是( ) A .log a b ·log c b =log c a B .log a b ·log c a =log c b C .log a (bc )=log a b ·log a c D .log a (b +c )=log a b +log a c解析:选B 利用对数的换底公式进行验证,log a b ·log c a =log c blog c a ·log c a =log c b ,则B 对.3.(2013·河北质检)若f (x )是奇函数,且x 0是y =f (x )+e x的一个零点,则-x 0一定是下列哪个函数的零点( )A .y =f (-x )e x -1B .y =f (x )e -x+1C .y =e x f (x )-1D .y =e xf (x )+1解析:选C 由已知可得f (x 0)=-e x 0,则e -x 0f (x 0)=-1,e -x 0f (-x 0)=1,故-x 0一定是y =e xf (x )-1的零点.4.(2013·天津一中模拟)设a =⎝ ⎛⎭⎪⎫340.5,b =⎝ ⎛⎭⎪⎫430.4,c =log 34(log 34),则( )A .c <b <aB .a <b <cC .c <a <bD .a <c <b解析:选C 由题意得0<a <1,b >1,而log 34>1,c =log 34(log 34),得c <0,故c <a <b .5.下列区间中,函数f (x )=|ln(2-x )|在其上为增函数的是( ) A .(-∞,1] B.⎣⎢⎡⎦⎥⎤-1,43 C.⎣⎢⎡⎭⎪⎫0,32D .[1,2)解析:选D 法一:当2-x >1,即x <1时,f (x )=|ln(2-x )|=ln(2-x ),此时函数f (x )在(-∞,1]上单调递减.当0<2-x ≤1,即1≤x <2时,f (x )=|ln(2-x )|=-ln(2-x ),此时函数f (x )在[1,2)上单调递增,故选D. 法二:f (x )=|ln(2-x )|的图像如图所示.由图像可得,函数f (x )在区间[1,2)上为增函数,故选D.6.(2013·东北三校联合模拟)已知函数f (x )=⎩⎪⎨⎪⎧a ·2x,x ≤0,log 12x ,x >0.若关于x 的方程f (f (x ))=0有且仅有一个实数解,则实数a 的取值范围是( )A .(-∞,0)B .(-∞,0)∪(0,1)C .(0,1)D .(0,1)∪(1,+∞)解析:选B 若a =0,当x ≤0时,f (x )=0,故f (f (x ))=f (0)=0有无数解,不符合题意,故a ≠0.显然当x ≤0时,a ·2x≠0,故f (x )=0的根为1,从而f (f (x ))=0有唯一根,即为f (x )=1有唯一根.而x >0时,f (x )=1有唯一根12,故a ·2x=1在(-∞,0]上无根,当a ·2x =1在(-∞,0]上有根可得a =12x ≥1,故由a ·2x =1在(-∞,0]上无根可知a <0或0<a <1. 7.已知a =5-22,函数f (x )=a x,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为________. 解析:由题意知,a =5-22∈(0,1),故函数f (x )=a x是减函数,由f (m )>f (n )得m <n . 答案:m <n 8.(2013·陕西高考)在如图所示的锐角三角形空地中, 欲建一个面积最大的内接矩形花园(阴影部分), 则其边长x 为________(m).解析:如图,过A 作AH ⊥BC 于H ,交DE 于F ,易知DE BC =x 40=AD AB =AF AH ⇒AF =x ⇒FH =40-x .则S =x (40-x )≤x +40-x 22=⎝ ⎛⎭⎪⎫4022,当且仅当40-x =x ,即x =20时取等号.所以满足题意的边长x 为20(m).答案:209.(2013·江苏扬州中学期中)已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+ax ,x ≤1,ax -1,x >1,若∃x 1,x 2∈R ,x 1≠x 2,使得f (x 1)=f (x 2)成立,则实数a 的取值范围是________.解析:由已知∃x 1,x 2∈R ,x 1≠x 2,使得f (x 1)=f (x 2)成立,则需x ≤1时,f (x )不单调即可,即对称轴a 2<1,解得a <2. 答案:a <210.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x(x >0). (1)若g (x )=m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.解:(1)∵g (x )=x +e 2x ≥2e 2=2e(x >0), 当且仅当x =e 2x时取等号. ∴当x =e 时,g (x )有最小值2e.因此g (x )=m 有零点,只需m ≥2e.∴m ∈[2e ,+∞).(2)若g (x )-f (x )=0有两个相异实根,则函数g (x )与f (x )的图像有两个不同的交点.如图所示,作出函数g (x )=x +e 2x(x >0)的大致图像. ∵f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2,∴其对称轴为x =e ,f (x )max =m -1+e 2.若函数f (x )与g (x )的图像有两个交点,必须有m -1+e 2>2e ,即m >-e 2+2e +1.即g (x )-f (x )=0有两个相异实根,则m 的取值范围是(-e 2+2e +1,+∞).11.某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出场单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件.(1)设一次订购x 件,服装的实际出厂单价为p 元,写出函数p =f (x )的表达式;(2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少? 解:(1)当0<x ≤100时,p =60;当100<x ≤600时,p =60-(x -100)×0.02=62-0.02x .所以p =⎩⎪⎨⎪⎧ 60, 0<x ≤100,62-0.02x , 100<x ≤600.(2)设利润为y 元,则当0<x ≤100时,y =60x -40x =20x ;当100<x ≤600时,y =(62-0.02x )x -40x =22x -0.02x 2.所以y =⎩⎪⎨⎪⎧ 20x , 0<x ≤100,22x -0.02x 2, 100<x ≤600.当0<x ≤100时,y =20x 是单调增函数,当x =100时,y 最大,此时y =20×100=2 000; 当100<x ≤600时,y =22x -0.02x 2=-0.02(x -550)2+6 050,所以当x =550时,y 最大,此时y =6 050.显然6 050>2 000.所以当一次订购550件时,利润最大,最大利润为6 050元.12.(2013·江西七校联考)已知函数f (x )=log 4(4x +1)+kx (k ∈R )为偶函数.(1)求k 的值;(2)若方程f (x )=log 4(a ·2x -a )有且只有一个根,求实数a 的取值范围.解:(1)∵f (x )为偶函数,∴f (-x )=f (x ),即log 4(4-x +1)-kx =log 4(4x +1)+kx ,即(2k +1)x =0,∴k =-12. (2)依题意令log 4(4x +1)-12x =log 4(a ·2x -a ), 即⎩⎪⎨⎪⎧ 4x +1=a ·2x -a ·2x ,a ·2x -a >0.令t =2x ,则(1-a )t 2+at +1=0,只需其有一正根即可满足题意.①当a =1时,t =-1,不合题意,舍去.②上式有一正一负根t 1,t 2,即⎩⎪⎨⎪⎧ Δ=a 2-41-a >0,t 1t 2=11-a <0,经验证满足a ·2x-a >0,∴a >1. ③上式有两根相等,即Δ=0⇒a =±22-2,此时t =a 2a -1,若a =2(2-1),则有t =a 2a -1<0,此时方程(1-a )t 2+at +1=0无正根,故a =2(2-1)舍去; 若a =-2(2+1),则有t =a 2a -1>0,且a · 2x -a =a (t -1)=a ⎣⎢⎡⎦⎥⎤a 2a -1-1=a 2-a 2a -1>0, 因此a =-2(2+1).综上所述,a 的取值范围为{a |a >1或a =-2-22}.。
高三数学复习学案:第1讲 函数与方程思想
函数与方程是中学数学的重要概念,它们之间有着密切的联系.函数与方程的思想是中学数学的基本思想,主要依据题意,构造恰当的函数,或建立相应的方程来解决问题,是历年高考的重点和热点.1.函数的思想用运动和变化的观点,集合与对应的思想分析和研究具体问题中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题使问题获得解决.函数思想是对函数概念的本质认识.2.方程的思想在解决问题时,用事先设定的未知数沟通问题中所涉及的各量间的等量关系,建立方程或方程组,求出未知数及各量的值,或者用方程的性质去分析、转化问题,使问题获得解决.题型二 函数与方程思想在方程问题中的应用例2 如果方程cos 2x -sin x +a =0在(0,π2]上有解,求a 的取值范围.变式训练 已知方程9x -2·3x +(3k -1)=0有两个实根,求实数k 的取值范围.题型三 函数与方程思想在不等式问题中的应用例3 已知f (t )=log 2t ,t ∈[2,8],对于f (t )值域内的所有的实数m ,不等式x 2+mx +4>2m +4x 恒成立,求x 的取值范围.变式训练 设不等式2x -1>m (x 2-1)对满足|m |≤2的一切实数m 的取值都成立,求x 的取值范围.第1讲 函数与方程思想(推荐时间:60分钟)一、填空题1.双曲线x 29-y 216=1的两个焦点为F 1、F 2,点P 在双曲线上.若PF 1⊥PF 2,则点P 到x 轴的距离为________.2.对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于零,则x 的取值范围是________.3.已知向量a =(3,2),b =(-6,1),而(λa +b )⊥(a -λb ),则实数λ=__________.4.方程m +1-x =x 有解,则m 的最大值为________.5.已知R 上的减函数y =f (x )的图象过P (-2,3)、Q (3,-3)两个点,那么|f (x +2)|≤3的解集为________.6.当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围为__________.7.若关于x 的方程4cos x -cos 2x +m -3=0恒有实数解,则实数m 的取值范围是________.8.已知函数f (x )=(x -a )(x -b )-2,其中a <b ,且α,β(α<β)是函数f (x )的两个零点,则实数a ,b ,α,β的大小关系为________.9.已知等差数列{a n }共有10项,其奇数项的和为15,偶数项的和为30,则它的公差d =________.10.已知数列{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是__________.11.若存在a ∈[1,3],使得不等式ax 2+(a -2)x -2>0成立,则实数x 的取值范围是____________.12.已知函数f (x )=⎩⎨⎧-x 2, -3≤x ≤3,x 2-6,x <-3或x >3,若0<m <n ,且f (m )=f (n ),则mn 2的取值范围是________.二、解答题13.设P (x ,y )是椭圆x 24+y 22=1上的动点,定点M (12,0),求动点P 到定点M 距离的最大值与最小值.14.已知{a n }是一个等差数列,且a 2=1,a 5=-5.(1)求{a n }的通项公式;(2)求{a n }前n 项和S n 的最大值.15.已知二次函数f (x )=ax 2+bx (a ,b 为常数,且a ≠0)满足条件:f (x -1)=f (3-x ),且方程f (x )=2x 有等根.是否存在实数m ,n (m <n ),使f (x )定义域和值域分别为[m ,n ]和[4m,4n ],如果存在,求出m ,n 的值;如果不存在,说明理由.。
高考数学一轮总复习函数与方程的巧妙技巧
高考数学一轮总复习函数与方程的巧妙技巧函数和方程是高中数学重要的内容之一,在高考数学中占有很大的比重。
掌握函数和方程的巧妙技巧,将对我们的考试成绩起到明显的提升作用。
本文将介绍一些高考数学函数与方程的巧妙技巧,帮助同学们更好地备考。
一、函数的巧妙技巧1. 利用平移变换简化函数图像当函数图像进行平移操作时,可以通过学习特定的平移规律,快速推导出平移后函数的性质。
例如,对于$f(x)$的图像进行横向平移$h$个单位,得到$f(x-h)$。
同样,对于纵向平移$k$个单位,可得到$f(x)+k$。
利用这样的平移规律,可以简化函数图像的分析和计算。
2. 利用对称性简化函数的运算对称性是函数图像常见的性质之一。
利用函数的对称性,可以简化函数的运算过程。
例如,假设函数$f(x)$满足奇函数的性质,即$f(-x)=-f(x)$,如果我们需要计算$f(-3)$,可以直接利用奇函数性质得出结论,即$f(-3)=-f(3)$,从而省去了对函数图像的具体计算过程。
3. 复合函数的分解求解对于复合函数的求解,有时会比较复杂,需要进行多次代入和运算。
这时,我们可以灵活运用分解的技巧,将复合函数拆解成多个简单的函数。
通过简化复合函数的形式,可以更加快速地求解和计算。
二、方程的巧妙技巧1. 倍角公式的巧妙应用倍角公式是高中数学中常用的公式之一,可以用来求解一些特定的方程。
例如,对于$sin2x=0$的方程,我们可以运用倍角公式将其转化为$sinx\cdot cosx = 0$,从而得到$x=0$或$x=\frac{\pi}{2}$。
这样,在方程的求解过程中,我们可以通过巧妙地应用倍角公式,将方程转化为更简单的形式,减少计算难度。
2. 参数法的灵活运用参数法是解二元一次方程组的一种常用方法,也可以用于求解高中数学中的一元方程。
通过引入一个新的参数,将方程转化为参数方程,则可以通过参数的取值范围,最终求解得出方程的解。
3. 方程的化简与转化有时,方程较为复杂,难以直接进行求解。
高考数学一轮复习第二章函数导数及其应用第八节函数与方程学案理(含解析)新人教A版
第八节函数与方程2019考纲考题考情1.函数的零点(1)函数零点的定义对于函数y=f(x)(x∈D),把使f(x)=0的实数x叫做函数y=f(x)(x∈D)的零点。
(2)几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点。
(3)函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。
2.二分法对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。
3.二次函数y=ax2+bx+c(a>0)的图象与零点的关系1.若连续不断的函数f (x )在定义域上是单调函数,则f (x )至多有一个零点。
函数的零点不是一个“点”,而是方程f (x )=0的实根。
2.函数零点存在定理是零点存在的一个充分不必要条件。
3.周期函数如果有零点,则必有无穷多个零点。
一、走进教材1.(必修1P 92A 组T 2改编)已知函数f (x )的图象是连续不断的,且有如下对应值表:A .(1,2)B .(2,3)C .(3,4)D .(4,5)解析 由所给的函数值的表格可以看出,x =2与x =3这两个数字对应的函数值的符号不同,即f (2)·f (3)<0,所以函数在(2,3)内有零点。
故选B 。
答案 B2.(必修1P 88例1改编)函数f (x )=e x+3x 的零点个数是( ) A .0 B .1 C .2 D .3解析 由f ′(x )=e x+3>0,所以f (x )在R 上单调递增,又f (-1)=1e -3<0,f (0)=1>0,因此函数f (x )有且只有一个零点。
2020年数学(理)一轮复习: 函数与方程
返回
2.函数 f(x)=exx2-+x2-x,2,x<x≥0 0, 的零点个数是____2____. 解析:当 x<0 时,令 f(x)=0,即 x2+2x=0,解得 x=-2 或 x=0(舍去),所以当 x<0 时,只有一个零点;当 x≥0 时, f(x)=ex-x-2,而 f′(x)=ex-1,显然 f′(x)≥0,所以 f(x) 在[0,+∞)上单调递增,又 f(0)=e0-0-2=-1<0,f(2)= e2-4>0,所以当 x≥0 时,函数 f(x)有且只有一个零点.综 上,函数 f(x)只有 2 个零点.
B.[1,+∞)
C.(0,1)
D.(-∞,1]
返回
[解析] (1)画出函数 f(x)的大致图象如 图所示.因为函数 f(x)在 R 上有两个零点, 所以 f(x)在(-∞,0]和(0,+∞)上各有一个 零点.当 x≤0 时,f(x)有一个零点,需 0<a≤1;当 x>0 时, f(x)有一个零点,需-a<0,即 a>0.综上,0<a≤1,故选 A.
>f13=13
1 3
,
结合图象可得13<x0<12.
返回
( C)
返回
3.(2019·河北武邑中学调研)函数f(x)=3x-7+ln x的零点位 于区间(n,n+1)(n∈N)内,则n=____2____. 解析:因为f(x)在(0,+∞)上单调递增,且f(2)=-1+ln 2< 0,f(3)=2+ln 3>0,所以函数f(x)的零点位于区间(2,3)内, 故n=2.
返回
[规律探求]
考法(一)是根据函数零点的个数及零点存在情况求参数 范围,解决此类问题通常先对解析式变形,然后在同一 坐标系内画出函数的图象,数形结合求解. 考法(二)是根据函数零点所在区间求参数,解决此类问题 看 应先判断函数的单调性,再利用零点存在性定理,建立 个 参数所满足的不等式,解不等式,即得参数的取值范围. 性 考法(三)是求函数零点的和,求函数的多个零点(或方程
高考一轮复习第二章 第九节 函数与方程
f(1.375)=-
0.260
f(1.437 5)=
0.162
f(1.406 25)=-
0.054
那么方程x3+x2-2x-2=0的一个近似根(精确度0.1)为
________. 返回
[自主解答]
通过参考数据可以得到:
f(1.375)=-0.260<0,f(1.437 5)=0.162>0,且1.437 5- 1.375=0.062 5<0.1, 所以,方程x3+x2-2x-2=0的一个近似根为1.4. [答案] 1.4
返回
[巧妙运用] 当x<2时,f ′ (x)=3(x-1)2≥0,说明函 数在(-∞,2)上单调递增,函数的值域
是(-∞,1),又函数在[2,+∞)上单调
递减,函数的值域是(0,1].方程f(x)=k有两个不同的实 根,转化为函数y=f(x)和y=k有两个不同的交点,如图 所示,当0<k<1时直线y=k与函数f(x)图像有两个交点, 即方程f(x)=k有两个不同的实根. 答案:(0,1)
1=0有实数解,则实数m的取值范围是________.
解析:方程sin2x+cos x+m+1=0⇒m=cos2x-cos x-2. 12 9 2 令y=cos x-cos x-2得,y=(cos x- ) - . 2 4 9 因此,ymin=- ,ymax=0. 4 因此,方程sin2x+cos x+m+1=0有实数解时,实数m的 9 取值范围是[- ,0]. 4 9 答案:[- ,0] 4
不同的交点,因此只需f(x)的极大值与极小值异号即可. f′(x)=3x2-3,令3x2-3=0,则x=±1, 故极值为f(-1)和f(1),f(-1)=a+2,f(1)=a-2, 所以应有(a+2)(a-2)<0,故a∈(-2,2). 答案: A
高三一轮复习教案-函数与方程
课题:函数与方程(高三第一轮复习课)教学内容分析:本节课选自人教版必修一第三章第一节《函数与方程》内容。
函数与方程在高中数学中占举足轻重的地位,高考对函数零点的考查有:(1)求函数零点;(2)确定函数零点的个数:(3)根据函数零点的存在情况求参数值或取值范围。
题型既有选择题、填空题,又有解答题,客观题主要考查相应函数的图像和性质,主观题考查较为综合,涉及函数与方程、转化与化归、分类讨论、数形结合的思想方法等。
本节课通过对函数零点的讨论,将函数零点与方程的根、与函数图像三者有机结合起来。
它既揭示了函数与方程之间的内在联系,又对函数知识进行了总结拓展,同时将方程与函数图像联系起来,渗透了“数形结合”、“方程与函数”等重要思想。
学情分析:这是一个理科的普通班,学生基础普遍不扎实,学生具有强烈的畏难情绪,且眼高手低。
通过高一高二的知识积累,学生虽然对本节内容有简单的认识,但是时间较长,知识点大多遗忘。
所以,在本课开始前,先通过简单的知识梳理让学生把知识点贯穿起来,然后根据学生的实际情况进行适当的知识点拓展。
设计思想:教学理念:以第一轮复习为抓手,让学生把各个相关的知识点有机的结合起来。
教学原则:夯实基础,注重各个层面的学生。
教学方法:讲练结合,师生互动。
教学目标:知识与技能:让学生理清函数零点、函数图象与x轴的交点、方程的根三者之间的关系;弄清零点的存在性、零点的个数、零点的求解方法等三个问题。
过程与方法:利用已学过的函数的图像、性质去研究函数的零点。
情感态度与价值观:体会数形结合的数学思想及从特殊到一般的归纳思想,提高辩证思维以及分析问题解决问题的能力。
教学重点难点:重点:函数零点,方程的根,函数图象与x轴交点三者之间的互相联系。
难点:零点个数问题,含参数的零点问题。
教学程序框图:教学环节与设计意图:(一)、知识梳理设计意图:第一部分知识梳理要求学生在课前完成,学生回顾已学过的内容,结合相关知识整理出“函数与方程”的知识体系。
2022届高考数学一轮专题复习_函数与方程思想(含解析)
A.18 B.15 C.10D.
答案:C 当点P的横坐标最大时,射线OA的斜率k>0,设OA:y=kx,k>0,与椭圆 + =1联立解得xA= .又 · =xAxP+k2xAxP=48,解得xP= = = ,令9+25k2=t>9,即k2= ,则xP= = ×25 =80 ≤80× =10,当且仅当t=16,即k2= 时取等号,所以点P的横坐标的最大值为10,故选C.
10.已知函数f(x)= ,x∈[0,1].
(1)求f(x)的单调区间和值域;
(2)设a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1],若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范围.
解:(1)f′(x)= =- .
令f′(x)=0,解得x= 或x= (舍去).
从而当x∈[0,1]时,有g(x)∈[g(1),g(0)].又g(1)=1-2a-3a2,g(0)=-2a,
即当x∈[0,1]时,有g(x)∈[1-2a-3a2,-2a].对于任意x1∈[0,1],f(x1)∈[-4,-3],
存在x0∈[0,1]使得g(x0)=f(x1)成立,则[1-2a-3a2,-2a]⊇[-4,-3].即
当x变化时,f′(x),f(x)的变化情况如下表:
x
0
1
f′(x)
不存在
-
0
+
不存在
f(x)
-
-4
-3
∴函数f(x)的单调增区间是 ,单调减区间是 .
当x∈[0,1]时,f(x)的值域为[-4,-3].
(2)g′(x)=3(x2-a2).∵a≥1,当x∈(0,1)时,g′(x)<3(1-a2)≤0,因此当x∈(0,1)时,g(x)为减函数,
高三数学一轮复习专题:函数与方程
函数与方程一.课标要求:1.结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;2.根据具体函数的图像,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。
二.命题走向函数与方程的理论是高中新课标教材中新增的知识点,特别是“二分法”求方程的近似解也一定会是高考的考点。
从近几年高考的形势来看,十分注重对三个“二次”(即一元二次函数、一元二次方程、一元二次不等式)的考察力度,同时也研究了它的许多重要的结论,并付诸应用。
高考试题中有近一半的试题与这三个“二次”问题有关。
三.要点精讲1.方程的根与函数的零点(1)函数零点概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。
即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点。
二次函数)0(2≠++=a c bx ax y 的零点:1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点;2)△=0,方程02=++c bx ax 有两相等实根(二重根),二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点;3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点。
零点存在性定理:如果函数)(x f y =在区间],[b a 上的图象是连续不断的一条曲线,并且有0)()(<b f a f ,那么函数)(x f y =在区间),(b a 内有零点。
既存在),(b a c ∈,使得0)(=c f ,这个c 也就是方程的根。
2.二分法二分法及步骤:对于在区间a [,]b 上连续不断,且满足)(a f ·)(b f 0<的函数)(x f y =,通过不断地把函数)(x f 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.给定精度ε,用二分法求函数)(x f 的零点近似值的步骤如下: (1)确定区间a [,]b ,验证)(a f ·)(b f 0<,给定精度ε; (2)求区间a (,)b 的中点1x ; (3)计算)(1x f :①若)(1x f =0,则1x 就是函数的零点;②若)(a f ·)(1x f <0,则令b =1x (此时零点),(10x a x ∈); ③若)(1x f ·)(b f <0,则令a =1x (此时零点),(10b x x ∈); (4)判断是否达到精度ε;即若ε<-||b a ,则得到零点零点值a (或b );否则重复步骤2~4。
2025届高考数学一轮复习教案:函数-函数的零点与方程的解、二分法
第七节函数的应用第1课时函数的零点与方程的解、二分法【课程标准】1.会结合二次函数的图象,判断一元二次方程实根的存在性及实根的个数,了解函数的零点与方程根的关系.2.根据具体函数的图象,能够借助计算工具利用二分法求相应方程的近似解.【考情分析】考点考法:高考命题常以基本初等函数及其图象为载体,考查函数零点是否存在、存在的区间及个数,利用零点的存在情况求参数是高考热点,常以选择题或填空题的形式出现.核心素养:数学抽象、逻辑推理、直观想象.【必备知识·逐点夯实】【知识梳理·归纳】1.函数的零点与方程的解(1)函数零点的概念对于一般函数y =f (x ),我们把使f (x )=0的实数x 叫做函数y =f (x )的零点.(2)函数零点与方程实数解的关系方程f (x )=0有实数解⇔函数y =f (x )有零点⇔函数y =f (x )的图象与x 轴有公共点.(3)函数零点存在定理如果函数y =f (x )在区间[a ,b ]上的图象是一条连续不断的曲线,且有f (a )f (b )<0,那么,函数y =f (x )在区间(a ,b )内至少有一个零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的解.【微点拨】函数零点存在定理只能判断函数在某个区间上的变号零点,而不能判断函数的不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分不必要条件.2.二分法对于在区间[a,b]上图象连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.【基础小题·自测】类型辨析改编易错高考题号12431.(多维辨析)(多选题)下列结论错误的是()A.函数f(x)=2x的零点为0B.函数f(x)的零点,即函数f(x)的图象与x轴的交点C.二次函数y=ax2+bx+c(a≠0)在b2-4ac<0时没有零点D.图象连续的函数y=f(x)(x∈D)在区间(a,b)⊆D内有零点,则f(a)·f(b)<0【解析】选BD.B函数y=f(x)的零点,即函数y=f(x)的图象与x轴的交点的横坐标.×D f(a)·f(b)<0是连续函数y=f(x)在(a,b)内有零点的充分不必要条件.×2.(必修一P144T2·变形式)函数f(x)=log2x+x-2的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】选B.函数f(x)在(0,+∞)上单调递增,则f(x)=0在(0,+∞)上只有一个根,且f(1)=-1,f(2)=1,则f(1)f(2)<0,故f(x)的零点所在的区间为(1,2).的零点个数为()3.(2022·北京高考)函数f(x)=2+-2,≤0,-1+ln,>0A.3B.2C.7D.0【解析】选B.由≤0,2+-2=0或>0,-1+ln=0,解得x=-2或x=e,故f(x)有2个零点.4.(忽视区间端点值)函数f(x)=kx+1在[1,2]上有零点,则k的取值范围是[-1,-12].【解析】依题意函数f(x)=kx+1在[1,2]上有零点,所以k≠0,函数f(x)在定义域上是单调函数,所以f(1)·f(2)≤0,即(k+1)(2k+1)≤0,解得-1≤k≤-12.【巧记结论·速算】1.由函数y=f(x)(图象是连续不断的)在闭区间[a,b]上有零点不一定能推出f(a)·f(b)<0,如图所示,所以f(a)·f(b)<0是y=f(x)在闭区间[a,b]上有零点的充分不必要条件.2.若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.【即时练】1.已知函数y=f(x)的图象是连续不断的曲线,且有如下的对应值表:x123456y124.433-7424.5-36.7-123.6则函数y=f(x)在区间[1,6]上的零点至少有()A.2个B.3个C.4个D.5个【解析】选B.依题意,f(2)>0,f(3)<0,f(4)>0,f(5)<0,根据函数零点存在定理可知,f(x)在区间(2,3),(3,4),(4,5)上均至少含有一个零点,故函数y=f(x)在区间[1,6]上的零点至少有3个.2.函数f(x)=e x+3x的零点有1个.【解析】f(x)在R上单调递增,又f(-1)=1e-3<0,f(0)=1>0,因此函数f(x)有且只有一个零点.【核心考点·分类突破】考点一函数零点所在区间的判定[例1](1)(2023·唐山模拟)函数f(x)=1-x log2x的零点所在的区间是() A.(14,12)B.(12,1)C.(1,2)D.(2,3)【解析】选C.因为y=1与y=log2x的图象只有一个交点,所以f(x)只有一个零点.又因为f(1)=1,f(2)=-1,f(1)·f(2)<0,所以函数f(x)=1-x log2x的零点所在的区间是(1,2).(2)(一题多法)设函数f(x)=13x-ln x,则函数y=f(x)()A.在区间(1e,1),(1,e)内均有零点B.在区间(1e,1),(1,e)内均无零点C.在区间(1e,1)内有零点,在区间(1,e)内无零点D.在区间(1e,1)内无零点,在区间(1,e)内有零点【解析】选D.方法一(图象法):令f(x)=0,得13x=ln x.作出函数y=13x和y=ln x的图象,如图,显然y=f(x)在(1e,1)内无零点,在(1,e)内有零点.方法二(函数零点存在定理法):当x∈(1e,e)时,函数图象是连续的,且f'(x)=13-1=-33<0,所以函数f(x)在(1e,e)上单调递减.又f(1e)=13e+1>0,f(1)=13>0,f(e)=13e-1<0,所以函数在区间(1e,1)内无零点,在区间(1,e)内有零点.【解题技法】确定函数零点所在区间的常用方法(1)利用函数零点存在定理:首先看函数y=f(x)在区间[a,b]上的图象是否连续,再看是否有f(a)·f(b)<0.若有,则函数y=f(x)在区间(a,b)内必有零点.(2)数形结合法:通过画函数图象,观察图象与x轴在给定区间上是否有交点来判断.【对点训练】1.(2023·荆州模拟)若x0是方程(12)x=13的根,则x0属于区间()A.(23,1)B.(12,23)C.(13,12)D.(0,13)【解析】选C.构造函数f(x)=(12)x-13,易知函数f(x)在R上单调递减,且函数f(x)的图象是一条连续不断的曲线,易知f(0)=(12)0-0=1>0,f(13)=(12)13-(13)13f(12)=(12)12-(12)13<0,f(23)=(12)23-(23)13<0,f(1)=12-1=-12<0,结合选项,因为f(13)·f(12)<0,故函数f(x)的零点所在的区间为(13,12),即方程(12)x=13的根x0属于区间(13,12).2.根据表格中的数据可以判定方程ln x-x+2=0的一个根所在的区间为()x12345ln x00.6931.0991.3861.609x-2-10123A.(1,2)B.(2,3)C.(3,4)D.(4,5)【解析】选C.设f(x)=ln x-x+2=ln x-(x-2),易知函数f(x)在(1,+∞)上的图象连续,由题中表格数据得f(1)>0,f(2)>0,f(3)=ln3-(3-2)=1.099-1=0.099>0,f(4)=ln4-2=1.386-2<0,f(5)<0,则f(3)·f(4)<0,即在区间(3,4)上,函数f(x)存在一个零点,即方程ln x-x+2=0的一个根所在的区间为(3,4).3.[x]表示不超过x的最大整数,例如[3.5]=3,[-0.5]=-1.已知x0是方程ln x+3x-15=0的根,则[x0]=()A.2B.3C.4D.5【解析】选C.设f(x)=ln x+3x-15,显然f(x)在定义域(0,+∞)上单调递增,故f(x)=0只有一个根,又f(4)=ln4-3=2ln2-3<2(ln2-1)<0,f(5)=ln5>0,所以x0∈(4,5),故[x0]=4.考点二函数零点个数的判定[例2](1)(一题多法)函数f(x)=2x+x3-2在区间(0,1)内的零点个数是()A.0B.1C.2D.3【解析】选B.方法一:因为f(0)f(1)=(-1)×1=-1<0,且函数在定义域上单调递增且连续,所以函数f(x)在区间(0,1)内有且只有1个零点.方法二:设y1=2x,y2=2-x3,在同一坐标系中画出两函数的图象如图所示,在区间(0,1)内,两图象的交点个数即为f(x)的零点个数.故函数f(x)在区间(0,1)内有且只有1个零点.(2)(2023·唐山模拟)已知函数f(x)=2-2,≤0,1+1,>0,则函数y=f(x)+3x的零点个数是()A.0B.1C.2D.3【解析】选C.令f(x)+3x=0,则≤0,2-2+3=0或>0,1+1+3=0,解得x=0或x=-1,所以函数y=f(x)+3x的零点个数是2.(3)已知f(x)是定义在R上的奇函数,且当x∈(0,+∞)时,f(x)=2024x+log2024x,则函数f(x)的零点个数是()A.1B.2C.3D.4【解析】选C.作出函数y=2024x和y=-log2024x的图象如图所示,可知函数f(x)=2024x+log2024x在x∈(0,+∞)上只有一个零点,又f(x)是定义在R上的奇函数,所以f(x)在x∈(-∞,0)上只有一个零点,又f(0)=0,所以函数f(x)的零点个数是3.【解题技法】函数零点个数的判断方法(1)直接求零点:令f(x)=0,有几个解就有几个零点.(2)函数零点存在定理:首先确定函数f(x)在区间[a,b]上是连续不断的曲线,且f(a)f(b)<0,再结合函数的图象与性质确定函数零点个数.(3)利用图象交点个数:作出两函数图象,观察其交点个数即得零点个数.【对点训练】1.函数f(x)=2x|log0.5x|-1的零点个数为()A.1B.2C.3D.4【解析】选B.由2x|log0.5x|-1=0得|log0.5x|=(12)x,作出y=|log0.5x|和y=(12)x的图象,如图所示,则两个函数图象有2个交点,故函数f(x)=2x|log0.5x|-1有2个零点.2.(一题多法)(2023·长沙模拟)已知函数f(x)=|ln|,>0,-2(+2),≤0,则函数y=f(x)-3的零点个数是()A.1B.2C.3D.4【解析】选B.方法一(直接法):由y=f(x)-3=0得f(x)=3.当x>0时,得ln x=3或ln x=-3,解得x=e3或x=e-3;当x≤0时,得-2x(x+2)=3,无解.所以函数y=f(x)-3的零点个数是2.方法二(图象法):作出函数f(x)的图象,如图,函数y=f(x)-3的零点个数即y=f(x)的图象与直线y=3的交点个数,作出直线y=3,由图知y=f(x)的图象与直线y=3有2个交点,故函数y=f(x)-3的零点个数是2.3.函数f(x)=36-2·cos x的零点个数为6.【解析】令36-x2≥0,解得-6≤x≤6,所以f(x)的定义域为[-6,6].令f(x)=0,得36-x2=0或cos x=0,由36-x2=0得x=±6,由cos x=0得x=π2+kπ,k∈Z,又x∈[-6,6],所以x为-3π2,-π2,π2,3π2.故f(x)共有6个零点.考点三函数零点的应用【考情提示】函数的零点问题充分体现了函数与方程的联系,蕴含了丰富的数形结合思想,因此函数的零点问题成为了近年来高考新的生长点和热点,且形式逐渐多样化,各种题型均可考查,属于中档题.角度1根据函数零点个数求参数[例3](1)(多选题)(2023·廊坊模拟)已知函数f(x)=|x2+3x+1|-a|x|,则下列结论正确的是()A.若f(x)没有零点,则a∈(-∞,0)B.若f(x)恰有2个零点,则a∈(1,5)C.若f(x)恰有3个零点,则a=1或a=5D.若f(x)恰有4个零点,则a∈(5,+∞)【解析】选AC.当x=0时,f(0)=1≠0,所以x=0不是f(x)的零点;当x≠0时,由f(x)=0,整理得a=|x+1+3|,令g(x)=|x+1+3|,则函数f(x)的零点个数即为函数g(x)=|x+1+3|的图象与直线y=a的交点个数,作出函数g(x)=|x+1+3|的大致图象(如图).由图可知,若f(x)没有零点,则a∈(-∞,0),故A正确;若f(x)恰有2个零点,则a∈{0}∪(1,5),故B不正确;若f(x)恰有3个零点,则a=1或a=5,故C正确;若f(x)恰有4个零点,则a∈(0,1)∪(5,+∞),故D不正确.(2)已知函数f(x)=e,≤0,ln,>0,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[-1,0)B.[0,+∞)C.[-1,+∞)D.[1,+∞)【解析】选C.函数g(x)=f(x)+x+a存在2个零点,即关于x的方程f(x)=-x-a有2个不同的实根,即函数y=f(x)的图象与直线y=-x-a有2个交点,作出函数f(x)的图象,并平移直线y=-x,如图所示,由图可知,当且仅当-a≤1,即a≥-1时,函数y=f(x)的图象与直线y=-x-a有2个交点.角度2根据函数零点范围求参数[例4](1)若函数f(x)=2x-2-a的一个零点在区间(1,2)内,则实数a的取值范围是()A.(1,3)B.(1,2)C.(0,3)D.(0,2)【解析】选C.因为函数f(x)=2x-2-a在区间(1,2)上单调递增,且函数f(x)=2x-2-a的一个零点在区间(1,2)内,所以f(1)·f(2)<0,所以(-a)(4-1-a)<0,即a(a-3)<0,解得0<a<3.(2)(2023·北京模拟)已知函数f(x)=3x-1+B.若存在x0∈(-∞,-1),使得f(x0)=0,则实数a的取值范围是()A.(-∞,43)B.(0,43)C.(-∞,0)D.(43,+∞)【解析】选B.由f(x)=3x-1+B=0,可得a=3x-1,令g(x)=3x-1,其中x∈(-∞,-1),由于存在x0∈(-∞,-1),使得f(x0)=0,则实数a的取值范围即为函数g(x)在(-∞,-1)上的值域.由于函数y=3x,y=-1在区间(-∞,-1)上均单调递增,所以函数g(x)在(-∞,-1)上单调递增.当x∈(-∞,-1)时,g(x)=3x-1<g(-1)=3-1+1=43,又g(x)=3x-1>0,所以函数g(x)在(-∞,-1)上的值域为(0,43).因此实数a的取值范围是(0,43).【解题技法】已知函数有零点求参数值或取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围.(2)分离参数法:将参数分离,转化成求已知函数零点情况的问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.【对点训练】1.已知函数f(x)=log2(x+1)-1+m在区间(1,3]上有零点,则m的取值范围为()A.(-53,0)B.(-∞,-53)∪(0,+∞)C.(-∞,-53]∪(0,+∞)D.[-53,0)【解析】选D.因为函数y=log2(x+1),y=m-1在区间(1,3]上单调递增,所以函数f(x)在(1,3]上单调递增,由于函数f(x)=log2(x+1)-1+m在区间(1,3]上有零点,则(1)<0,(3)≥0,即<0,+53≥0,解得-53≤m<0.因此,实数m的取值范围是[-53,0).2.已知关于x的方程ax+6=2x在区间(1,2)内有解,则实数a的取值范围是()A.(-4,-1)B.[-4,-1]C.(-2,-12)D.[-2,-12]【解析】选A.根据题意可得ax=2x-6,故转化为函数y=ax和y=2x-6的图象的交点.易知y=2x-6的图象上的两个点为(1,-4)和(2,-2),如图所示,当直线y=ax过(1,-4)时,a=-4,当直线y=ax过(2,-2)时,a=-1.所以a的取值范围是(-4,-1).3.(2023·济南模拟)已知函数f(x)=,≤0,|2-3|,>0,g(x)=f(x)-12x+a,若g(x)存在3个零点,则实数a的取值范围为[0,34).【解析】函数g(x)=f(x)-12x+a存在3个零点,等价于函数f(x)的图象与y=12x-a的图象有3个交点.画出函数f(x)和y=12x-a的图象,如图所示.根据图象易知,要使函数f(x)和y=12x-a的图象有3个交点,则-34<-a≤0,即0≤a<34.【重难突破】复合函数的零点、方程的根的综合【本质】复合函数涉及内外两层函数,问题的解决往往涵盖函数方程、数形结合、分类讨论和化归转化等数学思想.复合函数零点问题具有关系复杂、综合性强的特点.【常见方法】先将复合函数的解析式写出,再根据函数的解析式画出函数的图象,根据函数的图象研究零点问题.类型一判断复合函数零点的个数[例1]已知函数f(x)=ln-1,>0,2+2,≤0,则函数y=f[f(x)+1]的零点个数是() A.2 B.3 C.4D.5【解析】选D.令t=f(x)+1=ln-1+1,>0,(+1)2,≤0.当t>0时,f(t)=ln t-1,则函数f(t)在(0,+∞)上单调递增,因为f(1)=-1<0,f(2)=ln2-12>0,所以由函数零点存在定理可知,存在t1∈(1,2),使得f(t1)=0;当t≤0时,f(t)=t2+2t,由f(t)=t2+2t=0,解得t2=-2,t3=0.作出函数t=f(x)+1的图象,直线t=t1,t=-2,t=0如图所示,由图象可知,直线t=t1与函数t=f(x)+1的图象有两个交点;直线t=0与函数t=f(x)+1的图象有两个交点;直线t=-2与函数t=f(x)+1的图象有且只有一个交点.综上,函数y=f[f(x)+1]的零点个数为5.【解题技法】求复合函数y=f(g(x))的零点的个数或方程解的个数的策略(1)先换元解“套”,令t=g(x),则y=f(t),再作出y=f(t)与t=g(x)的图象.(2)由y=f(t)的图象观察有几个t的值满足条件,结合t的值观察t=g(x)的图象,求出每一个t被几个x对应,将x的个数汇总后即为y=f(g(x))的根的个数,即“从外到内”.【对点训练】已知f(x)=|lg|,>0,2||,≤0,则函数y=2[f(x)]2-3f(x)+1的零点个数是5.【解析】由2[f(x)]2-3f(x)+1=0得f(x)=12或f(x)=1,作出函数y=f(x)的图象.由图象知y=12与y=f(x)的图象有2个交点,y=1与y=f(x)的图象有3个交点.因此函数y=2[f(x)]2-3f(x)+1的零点有5个.类型二由复合函数零点情况求参数[例2]已知函数f(x)=B+3,≥0,(12),<0,若方程f(f(x))-2=0恰有三个实数根,则实数k的取值范围是()A.[0,+∞)B.[1,3]C.(-1,-13]D.[-1,-13]【解析】选C.因为f(f(x))-2=0,所以f(f(x))=2,所以f(x)=-1或f(x)=-1(k≠0).(ⅰ)当k=0时,作出函数f(x)的图象如图①所示,由图象可知f(x)=-1无解,所以k=0不符合题意;(ⅱ)当k>0时,作出函数f(x)的图象如图②所示,由图象可知f(x)=-1无解且f(x)=-1无解,即f(f(x))-2=0无解,不符合题意;(ⅲ)当k<0时,作出函数f(x)的图象如图③所示,由图象可知f(x)=-1有1个实根,因为f(f(x))-2=0有3个实根,所以f(x)=-1有2个实根,所以1<-1≤3,解得-1<k≤-13.综上,k的取值范围是(-1,-13].【解题技法】已知复合函数y=f(g(x))零点的个数,求参数的取值范围的问题的方法(1)先换元解“套”,令t=g(x),则y=f(t),再作出y=f(t)与t=g(x)的图象.(2)由零点个数结合t=g(x)与y=f(t)的图象特点,从而确定t的取值范围,进而决定参数的范围,即“从内到外”.此法称为双图象法(换元法+数形结合).【对点训练】已知函数f(x)=-x2-2x,g(x)=+14,>0,+1,≤0.若方程g(f(x))-a=0有4个不同的实数根,则实数a的取值范围是[1,54).【解析】令f(x)=t(t<1),则原方程化为g(t)=a,易知方程f(x)=t在t∈(-∞,1)时有2个不同的解,则原方程有4个不同的实数根等价于函数y=g(t)(t<1)与y=a的图象有2个不同的交点,作出函数y=g(t)(t<1)的图象如图,由图象可知,当1≤a<54时,函数y=g(t)(t<1)与y=a有2个不同的交点,即所求a的取值范围是[1,54).。
高三数学一轮复习精品教案2:2.8函数与方程教学设计
第八节函数与方程1.函数零点(1)定义:对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点.(2)函数零点与方程根的关系:方程f(x)=0有实根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.(3)零点存在性定理:如果函数y=f(x)在区间『a,b』上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在x0∈(a,b),使得f(x0)=0.2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系续表3.二分法对于在区间『a,b』上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.1.(人教A 版教材习题改编)用二分法求函数y =f (x )在区间(2,4)上的近似解,验证f (2)·f (4)<0,给定精确度ε=0.01,取区间(2,4)的中点x 1=2+42=3,计算得f (2)·f (x 1)<0,则此时零点x 0所在的区间为( )A .(2,4)B .(3,4)C .(2,3)D .(2.5,3)『解析』 由零点存在性定理知x 0∈(2,3),故选C. 『答案』 C2.在下列区间中,函数f (x )=e x +4x -3的零点所在的区间为( ) A .(-14,0) B .(0,14)C .(14,12)D .(12,34)『解析』 显然f (x )=e x +4x -3的图象连续不间断,又f (12)=e -1>0,f (14)=4e -2<0.∴由零点存在定理知,f (x )在(14,12)内存在零点.『答案』 C3.若函数f (x )=ax +b 有一个零点是2,那么函数g (x )=bx 2-ax 的零点是( ) A .0,2 B .0,12C .0,-12D .2,-12『解析』 由题意知2a +b =0, 即b =-2a .令g (x )=bx 2-ax =0得x =0或x =a b =-12,故选C.『答案』 C4.(2012·北京高考)函数f (x )=x 12-(12)x 的零点的个数为( )A .0B .1C .2D .3『解析』 在同一平面直角坐标系内作出y 1=x 12与y 2=(12)x 的图象如图所示,易知,两函数图象只有一个交点.因此函数f (x )=x 12-(12)x 只有1个零点.『答案』 B5.(2013·德州调研)已知函数f (x )=x 2+x +a 在区间(0,1)上有零点,则实数a 的取值范围是________.『解析』 函数f (x )=x 2+x +a 在(0,1)上递增. 由已知条件f (0)f (1)<0,即a (a +2)<0,解得-2<a <0. 『答案』 (-2,0)(1)(2012·天津高考)函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是( ) A .0 B .1 C .2 D .3(2)(2013·湛江模拟)设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),则x 0所在的区间(端点值为连续整数的开区间)是________.『思路点拨』 (1)先根据零点存在性定理证明有零点,再根据函数的单调性判断零点的个数.(2)画出两个函数的图象寻找零点所在的区间.『尝试解答』 (1)因为f ′(x )=2x ln 2+3x 2>0,所以函数f (x )=2x +x 3-2在(0,1)上递增,且f (0)=1+0-2=-1<0,f (1)=2+1-2=1>0,所以有1个零点.(2)设f (x )=x 3-(12)x -2,则x 0是函数f (x )的零点.在同一坐标系下画出函数y =x 3与y =(12)x-2的图象,如图所示. ∵f (1)=1-(12)-1=-1<0,f (2)=8-(12)0=7>0∴f (1)f (2)<0, ∴x 0∈(1,2).『答案』 (1)B (2)(1,2),确定函数f (x )零点所在区间的常用方法(1)解方程法:当对应方程f (x )=0易解时,可先解方程,再看求得的根是否落在给定区间上;(2)利用函数零点的存在性定理:首先看函数y =f (x )在区间『a ,b 』上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(3)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.(1)函数f (x )=x -cos x 在『0,+∞)内( )A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点(2)(2013·汕头模拟)函数f (x )=ln(x -2)-2x 的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(3,4)D .(4,5)『解析』 (1)令f (x )=x -cos x =0,则x =cos x ,设函数y =x 和y =cos x ,在同一坐标系下做出它们在『0,+∞)的图象,显然两函数的图象的交点有且只有一个,所以函数f (x )=x -cos x 在『0,+∞)内有且仅有一个零点.(2)由题意知函数f (x )的定义域为{x |x >2},∴排除A. ∵f (3)=-23<0,f (4)=ln 2-12>0,f (5)=ln 3-25>0,∴f (3)·f (4)<0,f (4)·f (5)>0,∴函数f (x )的零点在(3,4)之间,故选C.『答案』(1)B(2)C若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,参考数据如下:那么方程x3+x2-2x-2=0的一个近似根(精确度0.1)为()A.1.25B.1.375C.1.406 25 D.1.5『思路点拨』(1)二分法求近似零点,需将区间一分为二,逐渐逼近;(2)必须满足精确度要求,即|a-b|<0.1.『尝试解答』根据题意知函数的零点在1.406 25至1.437 5之间,又|1.437 5-1.406 25|=0.031 25<0.1,故方程的一个近似根可以是1.406 25.『答案』C,1.解答本题一要从图表中寻找数量信息,二要注意“精确度”的含义,切不可与“精确到”混淆.2.(1)用二分法求函数零点的近似解必须满足①y=f(x)的图象在『a,b』内连续不间断,②f (a )·f (b )<0.(2)在第一步中,尽量使区间长度缩短,以减少计算量及计算次数.在用二分法求方程x 3-2x -1=0的一个近似解时,现在已经将根锁定在区间(1,2)内,则下一步可断定该根所在的区间为________.『解析』 在(1,2)内取中点x 0=32,令f (x )=x 3-2x -1,∵f (32)=278-4<0,f (2)=8-4-1>0,f (1)<0,∴f (x )=0的根在(32,2)内.『答案』 (32,2)(2013·临沂模拟)已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x(x >0). (1)若g (x )=m 有实数根,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.『思路点拨』 解答(1)可用基本不等式求出最值或数形结合法求解,(2)转化为两个函数f (x )与g (x )有两个交点,从而数形结合求解.『尝试解答』 (1)法一 ∵g (x )=x +e 2x ≥2e 2=2e ,等号成立的条件是x =e ,故g (x )的值域是『2e ,+∞),因此,只需m ≥2e ,则g (x )=m 就有零点.故当g (x )=m 有实数根时,m 的取值范围为『2e ,+∞). 法二 作出g (x )=x +e 2x(x >0)的大致图象如图:可知若使g (x )=m 有零点,则只需m ≥2e.故当g (x )=m 有实数根时,m 的取值范围为『2e ,+∞).(2)若g (x )-f (x )=0有两个相异的实根,即g (x )与f (x )的图象有两个不同的交点,作出g (x )=x +e 2x(x >0)的大致图象.∵f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2,∴其图象的对称轴为x =e ,开口向下,最大值为m -1+e 2,故当m -1+e 2>2e ,即m >-e 2+2e +1时,g (x )与f (x )有两个交点,即g (x )-f (x )=0有两个相异实根.∴m 的取值范围是(-e 2+2e +1,+∞).已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.(2013·淮南模拟)函数f (x )=⎩⎪⎨⎪⎧|x 2+2x -1|,x ≤0,2x -1+a , x >0有两个不同的零点,则实数a 的取值范围为________.『解析』 由于当x ≤0,f (x )=|x 2+2x -1|时图象与x 轴只有1个交点,即只有1个零点,故由题意只需方程2x -1+a =0有1个正根即可,变形为2x =-2a ,结合图形只需-2a >1⇒a <-12即可.『答案』 a <-12一个口诀用二分法求函数零点近似值的口诀为:定区间,找中点,中值计算两边看.同号去,异号算,零点落在异号间.周而复始怎么办?精确度上来判断.两个防范1.函数的零点不是点,是方程f (x )=0的实根.2.函数零点的存在性定理只能判断函数在某个区间上的变号零点,而不能判断函数的不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分不必要条件.三种方法函数零点个数的判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点;(2)零点存在性定理:利用定理不仅要求函数在区间『a ,b 』上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图象交点的个数:画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.从近两年高考试题看,函数的零点、方程的根的问题是高考的热点,题型以客观题为主,主要考查学生转化与化归及函数与方程的思想.思想方法之五 用函数与方程思想解决图象公共点问题(2012·山东高考)设函数f (x )=1x,g (x )=ax 2+bx (a ,b ∈R ,a ≠0).若y =f (x )的图象与y =g (x )的图象有且仅有两个不同的公共点A (x 1,y 1),B (x 2,y 2),则下列判断正确的是( )A .当a <0时,x 1+x 2<0,y 1+y 2>0B .当a <0时,x 1+x 2>0,y 1+y 2<0C .当a >0时,x 1+x 2<0,y 1+y 2<0D .当a >0时,x 1+x 2>0,y 1+y 2>0『解析』 由题意知函数f (x )=1x ,g (x )=ax 2+bx (a ,b ∈R ,a ≠0)的图象有且仅有两个公共点A (x 1,y 1),B (x 2,y 2),等价于方程1x =ax 2+bx (a ,b ∈R ,a ≠0)有两个不同的根x 1,x 2,即方程ax 3+bx 2-1=0有两个不同非零实根x 1,x 2,因而可设ax 3+bx 2-1=a (x -x 1)2(x -x 2),即ax 3+bx 2-1=a (x 3-2x 1x 2+x 21x -x 2x 2+2x 1x 2x -x 2x 21),∴b =a (-2x 1-x 2), x 21+2x 1x 2=0,-ax 2x 21=-1,∴x 1+2x 2=0,ax 2>0,当a >0时,x 2>0,∴x 1+x 2=-x 2<0,x 1<0, ∴y 1+y 2=1x 1+1x 2=x 1+x 2x 1x 2>0.当a <0时,x 2<0,∴x 1+x 2=-x 2>0,x 1>0, ∴y 1+y 2=1x 1+1x 2=x 1+x 2x 1x 2<0.『答案』 B易错提示:(1)不能把函数图象的交点问题转化为方程的根的问题,找不到解决问题的切入点.(2)不能把方程根的情况与相应函数的极值大小联系起来,思维受阻,无法解答. 防范措施:(1)明确函数图象的交点、方程的根与函数的零点三者之间的关系是解决问题的关键所在.(2)方程的根的情况与函数的极值的大小有密切的关系,求解时应注意寻找它们之间的关系.1.(2012·湖北高考)函数f (x )=x cos x 2在区间『0,4』上的零点个数为( ) A .4 B .5 C .6 D .7『解析』 根据x 2的范围判断y =cos x 2在区间『0,4』上的零点个数.当x =0时,f (x )=0.又因为x ∈『0,4』,所以0≤x 2≤16.因为5π<16<11π2,所以函数y=cos x 2在x 2取π2,3π2,5π2,7π2,9π2时为0,此时f (x )=0,所以f (x )=x cos x 2在区间『0,4』上的零点个数为6.『答案』 C2.(2013·威海模拟)设方程log 4x -(14)x =0,log 14x -(14)x =0的根分别为x 1、x 2,则( )A .0<x 1x 2<1B .x 1x 2=1C .1<x 1x 2<2D .x 1x 2≥2『解析』 在同一坐标系内画出函数y =(14)x ,y =log 4x ,y =log 14x 的图象,如图所示,则x 1>1>x 2>0,由log 4x 1=(14)x 1,log 14x 2=(14)x 2得log 4x 1x 2=(14)x 1-(14)x 2<0,∴0<x 1x 2<1,故选A. 『答案』 A。
高考数学一轮复习第8讲 函数与方程
第8讲函数与方程1.函数的零点(1)函数零点的定义对于函数y=f(x)(x∈区间D),把使01f(x)=0的实数x叫做函数y=f(x)(x∈区间D)的零点.(2)三个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与02x轴有交点⇔函数y=f(x)有03零点.(3)函数零点的判定(零点存在定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有04 f(a)·f(b)<0,那么,函数y=f(x)在区间05(a,b)内有零点,即存在c∈(a,b),使得06f(c)=0,这个07c也就是方程f(x)=0的根.2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系Δ>0Δ=0Δ<0 二次函数y=ax2+bx+c(a>0)的图象与x轴的交点08(x0),(x2,0)09(x1,0)无交点1,零点个数102111120有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.(4)函数的零点是实数,而不是点,是方程f(x)=0的实根.(5)由函数y=f(x)(图象是连续不断的)在闭区间[a,b]上有零点不一定能推出f(a)·f(b)<0,如图所示,所以f(a)·f(b)<0是y=f(x)在闭区间[a,b]上有零点的充分不必要条件.1.(2020·云南玉溪一中二调)函数f(x)=2x+3x的零点所在的一个区间是() A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)答案 B解析易知函数f(x)=2x+3x在定义域上单调递增,且f(-2)=2-2-6<0,f(-1)=2-1-3<0,f(0)=1>0,所以由函数零点存在定理得,零点所在的区间是(-1,0).故选B.2.已知函数y=f(x)的图象是连续不断的曲线,且有如下的对应值表:x 12345 6y 124.433-7424.5-36.7-123.6 则函数y=f(x)在区间[1,6]上的零点至少有()A.2个B.3个C.4个D.5个答案 B解析∵f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,故函数f(x)在区间[1,6]上至少有3个零点.3.函数f (x )=|x -2|-ln x 在定义域内的零点的个数为( ) A .0 B .1 C .2 D .3答案 C解析 作出函数y =|x -2|与g (x )=ln x 的图象,如图所示.由图象可知两个函数的图象有两个交点,即函数f (x )在定义域内有2个零点.故选C .4.函数f (x )=e x +3x 的零点有________个. 答案 1解析 ∵f (x )=e x +3x 在R 上单调递增,且f (-1)=e -1-3<0,f (0)=1>0,∴函数f (x )有1个零点.5.(2020·河南信阳调研)若函数f (x )=3mx -4在[-2,0]上存在x 0,使f (x 0)=0,则实数m 的取值范围是________.答案 ⎝⎛⎦⎥⎥⎤-∞,-23解析 由已知得f (-2)·f (0)=(-6m -4)·(-4)≤0,解得m ≤-23,故实数m 的取值范围为⎝⎛⎦⎥⎥⎤-∞,-23.6.若函数f (x )=⎩⎪⎨⎪⎧ex ,x≤0,x2-1,x >0,则函数y =f (x )-1的零点是________.答案 0或2解析 要求函数y =f (x )-1的零点,则令y =f (x )-1=0,即f (x )=1,又因为f (x )=⎩⎪⎨⎪⎧ex ,x≤0,x2-1,x >0,①当x ≤0时,f (x )=e x ,由e x =1,解得x =0.②当x >0时,f (x )=x 2-1,由x 2-1=1,解得x =2(负值舍去).综上可知,函数y =f (x )-1的零点是0或2.考向一 函数零点所在区间的判断例1 (1)(2020·济南模拟)已知f (x )=x 3+x -4,则函数f (x )的零点所在区间是( ) A .(-1,0) B .(0,1) C .(1,2) D .(2,3)答案 C解析 由函数f (x )=x 3+x -4在定义域上单调递增,且f (1)=1+1-4=-2<0,f (2)=8+2-4=6>0,再根据函数零点存在定理可得零点所在区间是(1,2),故选C .(2)(2020·长春模拟)设函数f (x )=log 4x -⎝ ⎛⎭⎪⎪⎫14x ,g (x )=log x -⎝ ⎛⎭⎪⎪⎫14x 的零点分别是x 1,x 2,则( )A .x 1x 2=1B .0<x 1x 2<1C .1<x 1x 2<2D .x 1x 2>2 答案 B解析 由题意可得x 1是函数y =log 4x 的图象和y =⎝ ⎛⎭⎪⎪⎫14x 的图象的交点的横坐标,x 2是y =log x 的图象和函数y =⎝ ⎛⎭⎪⎪⎫14x 的图象的交点的横坐标,且x 1,x 2都是正实数,如图所示:故有log x 2>log 4x 1,故log 4x 1-log x 2<0,∴log 4x 1+log 4x 2<0,∴log 4(x 1x 2)<0,∴0<x 1x 2<1,故选B .判断函数零点所在区间的常用方法(1)定义法:利用函数零点存在定理,首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )上必有零点.(2)解方程法:当对应方程易解时,可通过解方程确定方程是否有根落在给定区间上.(3)数形结合法:画出相应的函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.1.已知函数f (x )=ln x +3x -8的零点x 0∈[a ,b ],且b -a =1,a ,b∈N *,则a +b =( )A .0B .2C .5D .7答案 C解析 ∵f (2)=ln 2+6-8=ln 2-2<0,f (3)=ln 3+9-8=ln 3+1>0,且函数f (x )=ln x +3x -8在(0,+∞)上单调递增,∴x 0∈[2,3],即a =2,b =3,∴a +b =5.2.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内答案 A解析 函数y =f (x )是图象开口向上的二次函数,最多有两个零点,由于a <b <c ,则a -b <0,a -c <0,b -c <0,因此f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.所以f (a )f (b )<0,f (b )f (c )<0,即f (x )在区间(a ,b )和区间(b ,c )内各有一个零点.考向二 函数零点个数的讨论例2 (1)(2020·青岛模拟)已知图象连续不断的函数f (x )的定义域为R ,f (x )是周期为2的奇函数,y =|f (x )|在区间[-1,1]上恰有5个零点,则f (x )在区间[0,2020]上的零点个数为( )A .5050B .4041C .4040D .2020答案 B解析 因为图象连续不断的函数f (x )的定义域为R ,f (x )是周期为2的奇函数,y =|f (x )|在区间[-1,1]上恰有5个零点,所以f (0)=0,f (1)=0,x ∈(0,1)时,函数有1个零点,所以x ∈(0,1]时,函数有2个零点,所以x ∈(0,2020]时,函数有4040个零点,则f (x )在区间[0,2020]上的零点个数为4041.故选B .(2)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x <0,x2+12x ,x≥0,则函数y =f (f (x ))-1的零点个数为( )A .2B .3C .4D .5答案 B解析 由题意,令f (f (x ))-1=0,得f (f (x ))=1,令f (x )=t ,由f (t )=1,得t =-1或t =-1+174,作出函数f (x )的图象,如图所示,结合函数f (x )的图象可知,f (x )=-1有1个解,f (x )=-1+174有2个解,故y =f (f (x ))-1的零点个数为3,故选B .确定函数零点个数的方法及思路(1)解方程法:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)函数零点存在定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质.(3)数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.3.函数f (x )=x 2-⎝ ⎛⎭⎪⎪⎫12|x |的零点个数为( )A .0B .1C .2D .3答案 C解析 由f (x )=x 2-⎝ ⎛⎭⎪⎪⎫12|x |,得f (-x )=(-x )2-⎝ ⎛⎭⎪⎪⎫12|-x |=f (x ),∴f (x )为偶函数,且在(0,+∞)上单调递增,又f (0)·f (1)<0,∴f (x )在(0,+∞)上有且仅有1个零点.∴函数f (x )的零点个数为2,故选C .4.函数f (x )=2x |log 0.5x |-1的零点个数为( ) A .1 B .2 C .3D .4答案 B解析 由2x |log 0.5x |-1=0得|log 0.5x |=⎝ ⎛⎭⎪⎪⎫12x ,作出y =|log 0.5x |和y =⎝ ⎛⎭⎪⎪⎫12x 的图象,如图所示,则两个函数图象有两个交点,故函数f (x )=2x |log 0.5x |-1有两个零点.多角度探究突破考向三 函数零点的应用 角度1 利用零点比较大小例3 (1)已知a 是函数f (x )=2x -log x 的零点,若0<x 0<a ,则f (x 0)的值满足( ) A .f (x 0)=0 B .f (x 0)>0 C .f (x 0)<0D .f (x 0)与0的大小关系不确定 答案 C解析 在同一平面直角坐标系中作出函数y =2x ,y =log x 的图象(图略),由图象可知,当0<x 0<a 时,有2x 0<log x 0,即f (x 0)<0.(2)已知函数f (x )=x +2x ,g (x )=x +ln x ,h (x )=x -x -1的零点分别为x 1,x 2,x 3,则x 1,x 2,x 3的大小关系是( )A .x 2<x 1<x 3B .x 1<x 2<x 3C .x 1<x 3<x 2D .x 3<x 2<x 1答案 B解析 令y 1=2x ,y 2=ln x ,y 3=-x -1,因为函数f (x )=x +2x ,g (x )=x +ln x ,h (x )=x -x -1的零点分别为x 1,x 2,x 3,则y 1=2x ,y 2=ln x ,y 3=-x -1与y =-x 的图象的交点的横坐标分别为x 1,x 2,x 3,在同一平面直角坐标系内分别作出函数y 1=2x ,y 2=ln x ,y 3=-x -1及y =-x 的图象如图,结合图象可得x 1<x 2<x 3,故选B .在同一平面直角坐标系内准确作出已知函数的图象,数形结合,对图象进行分析,找出零点的范围,进行大小比较.5.已知函数f (x )=⎝ ⎛⎭⎪⎪⎫15x -log 3x ,若实数x 0是方程f (x )=0的解,且x 0<x 1,则f (x 1)的值( )A .恒为负B .等于零C .恒为正D .不大于零答案 A解析 由于函数f (x )=⎝ ⎛⎭⎪⎪⎫15x -log 3x 在定义域内是减函数,于是,若f (x 0)=0,当x 0<x 1时,一定有f (x 1)<0.故选A .6.已知x 0是函数f (x )=2x+11-x的一个零点.若x 1∈(1,x 0),x 2∈(x 0,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0答案 B解析 在同一平面直角坐标系内作出函数y =2x和函数y =1x -1的图象,如图所示.由图象可知函数y =2x和函数y =1x -1的图象只有一个交点,即函数f (x )=2x +11-x只有一个零点x 0,且x 0>1.因为x 1∈(1,x 0),x 2∈(x 0,+∞),则由函数图象可知,f (x 1)<0,f (x 2)>0.角度2 由函数零点存在情况或个数求参数范围 例4 (1)(2020·海南省新高考诊断性测试)已知函数 f (x )=⎩⎪⎨⎪⎧-x2-4x +1,x≤0,2-2-x ,x>0,若关于x 的方程[f (x )-1]·[f (x )-m ]=0恰有5个不同的实根,则m 的取值范围为( )A .(1,2)B .(1,5)C .(2,3)D .(2,5)答案 A解析 由[f (x )-1][f (x )-m ]=0,得f (x )=1或f (x )=m ,作出y =f (x )的图象,如图所示.由图可知,方程f (x )=1有2个实根,故方程f (x )=m 有3个实根,故m 的取值范围为(1,2).(2)(2020·天津高考)已知函数f (x )=⎩⎪⎨⎪⎧x3,x≥0,-x ,x <0.若函数g (x )=f (x )-|kx 2-2x |(k ∈R )恰有4个零点,则k 的取值范围是( )A .⎝ ⎛⎭⎪⎪⎫-∞,-12∪(22,+∞)B .⎝ ⎛⎭⎪⎪⎫-∞,-12∪(0,22)C .(-∞,0)∪(0,22)D .(-∞,0)∪(22,+∞)答案 D解析 注意到g (0)=0,所以要使g (x )恰有4个零点,只需方程|kx -2|=错误!恰有3个实根即可,令h (x )=错误!,即y =|kx -2|与h (x )=错误!的图象有3个不同交点.因为h (x )=错误!=错误!当k =0时,y =2,如图1,y =2与h (x )=错误!的图象有1个交点,不满足题意;当k <0时,如图2,y =|kx -2|与h (x )=错误!的图象恒有3个不同交点,满足题意;当k >0时,如图3,当y =kx -2与y =x 2的图象相切时,联立方程得x 2-kx +2=0,令Δ=0得k 2-8=0,解得k =22(负值舍去),所以k >22.综上,k的取值范围为(-∞,0)∪(22,+∞).故选D .已知函数零点求参数范围的常用方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,作出函数的图象,然后数形结合求解.7.当x ∈[1,2]时,若函数y =12x 2与y =a x (a >0)的图象有交点,则a 的取值范围是________.答案 ⎣⎢⎢⎡⎦⎥⎥⎤12,2 解析 当a =1时,显然成立.当a >1时,如图①所示,使得两个函数图象有交点,需满足12×22≥a 2,即1<a ≤2;当0<a <1时,如图②所示,要使两个函数图象有交点,需满足12×12≤a 1,即12≤a <1,综上可知,a ∈⎣⎢⎢⎡⎦⎥⎥⎤12,2. 8.若函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,则实数a 的取值范围是________. 答案 -14,2解析 因为函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,所以方程4x -2x -a =0在[-1,1]上有解,即方程a =4x -2x 在[-1,1]上有解.方程a =4x -2x 可变形为a =⎝ ⎛⎭⎪⎪⎫2x -122-14,因为x ∈[-1,1],所以2x∈12,2,所以⎝ ⎛⎭⎪⎪⎫2x -122-14∈-14,2.所以实数a 的取值范围是-14,2.一、单项选择题1.已知函数f (x )=6x -log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)答案 C解析 因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).故选C .2.(2021·长郡中学高三月考)设函数f (x )=x +log 2x -m ,则“函数f (x )在⎝ ⎛⎭⎪⎪⎫12,4上存在零点”是“m ∈(1,6)”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 函数f (x )=x +log 2x -m 在区间(0,+∞)上单调递增,由函数f (x )在⎝ ⎛⎭⎪⎪⎫12,4上存在零点,得f ⎝ ⎛⎭⎪⎪⎫12=-12-m <0,f (4)=6-m >0,解得-12<m <6,故“函数f (x )在⎝ ⎛⎭⎪⎪⎫12,4上存在零点”是“m ∈(1,6)”的必要不充分条件.故选B . 3.(2020·北京市大兴区一模)下列函数中,在区间(0,+∞)上单调递增且存在零点的是( )A .y =e xB .y =x +1C .y =-log xD .y =(x -1)2答案 C解析 函数y =e x >0恒成立,不存在零点,即A 不符合题意;函数y =x +1>0恒成立,不存在零点,即B 不符合题意;函数y =-log x =log 2x 在(0,+∞)上单调递增,且当x =1时,y =0,所以函数的零点为x =1,即C 正确;函数y =(x -1)2在(0,1)上单调递减,在(1,+∞)上单调递增,即D 不符合题意.故选C .4.函数f (x )=x -cos x 在[0,+∞)内( )A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点答案 B解析 当x ∈(0,1]时,因为f ′(x )=12x+sin x ,x >0,sin x >0,所以f ′(x )>0,故f (x )在[0,1]上单调递增,且f (0)=-1<0,f (1)=1-cos1>0,所以f (x )在[0,1]内有唯一零点.当x >1时,f (x )=x -cos x >0,故函数f (x )在[0,+∞)上有且仅有一个零点,故选B .5.函数f (x )=x cos2x 在区间[0,2π]上的零点的个数为( ) A .2 B .3 C .4 D .5答案 D解析 f (x )=x cos2x =0⇒x =0或cos2x =0,又cos2x =0在[0,2π]上的根有π4,3π4,5π4,7π4,共4个,故f (x )有5个零点. 6.若x 0是方程⎝ ⎛⎭⎪⎪⎫12x =x 的解,则x 0属于区间( )A .⎝ ⎛⎭⎪⎪⎫23,1B .⎝ ⎛⎭⎪⎪⎫12,23C .⎝ ⎛⎭⎪⎪⎫13,12D .⎝⎛⎭⎪⎪⎫0,13答案 C解析令g (x )=⎝ ⎛⎭⎪⎪⎫12x ,f (x )=x ,则g (0)=1>f (0)=0,g ⎝ ⎛⎭⎪⎪⎫12=⎝ ⎛⎭⎪⎪⎫12<f ⎝ ⎛⎭⎪⎪⎫12=⎝ ⎛⎭⎪⎪⎫12,g ⎝ ⎛⎭⎪⎪⎫13=⎝ ⎛⎭⎪⎪⎫12>f ⎝ ⎛⎭⎪⎪⎫13=⎝ ⎛⎭⎪⎪⎫13,所以由图象关系可得13<x 0<12.7.f (x )=3x -log 2(-x )的零点的个数是( ) A .0 B .1 C .2 D .3答案 B解析 f (x )的定义域为(-∞,0),且f (x )在(-∞,0)上单调递增,f (-1)=13>0,f (-2)=-89<0,所以函数f (x )=3x -log 2(-x )有且仅有1个零点,故选B .8.[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5,已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( )A .1B .2C .3D .4答案 B解析 作出函数f (x )与g (x )的图象如图所示,发现有两个不同的交点,故选B .二、多项选择题9.(2020·山东德州高三模拟)已知函数f (x )=e |x |+|x |.则关于x 的方程f (x )=k 的根的情况,下列结论正确的是( )A .当k =1时,方程有一个实根B .当k >1时,方程有两个实根C .当k =0时,方程有一个实根D.当k≥1时,方程有实根答案ABD解析方程f(x)=k化为e|x|=k-|x|,设y1=e|x|,y2=k-|x|.y2=k-|x|表示斜率为1或-1的平行折线系,折线与曲线y1=e|x|恰好有一个公共点时,k=1.如图,若关于x 的方程f(x)=k有两个不同的实根,则实数k的取值范围是(1,+∞).故选ABD.10.(2021·湖南郴州高三质检)已知函数f(x)=|2x-2|+b的两个零点分别为x1,x2(x1>x2),则下列结论正确的是()A.1<x1<2 B.x1+x2<1C.x1+x2<2 D.x1<1答案AC解析函数f(x)=|2x-2|+b有两个零点,即y=|2x-2|的图象与直线y=-b有两个交点,交点的横坐标就是x1,x2(x1>x2),在同一平面直角坐标系中画出y=|2x-2|与y =-b的图象如图所示,可知1<x1<2,2x1-2+2x2-2=0,即4=2x1+2x2>22x1×2x2=22x1+x2,所以2x1+x2<4,所以x1+x2<2.11.(2020·海南中学高三月考)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石.布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer),简单地讲就是对于满足一定条件的连续函数f (x ),存在一个点x 0,使得f (x 0)=x 0,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是( )A .f (x )=2x +xB .f (x )=x 2-x -3C .f (x )=⎩⎪⎨⎪⎧2x2-1,x≤1,|2-x|,x >1D .f (x )=1x-x答案 BCD解析 根据定义可知,若f (x )有不动点,则f (x )=x 有解.对于A ,令2x +x =x ,所以2x =0,此时无解,故f (x )不是“不动点”函数;对于B ,令x 2-x -3=x ,所以x =3或x =-1,所以f (x )是“不动点”函数;对于C ,当x ≤1时,令2x 2-1=x ,所以x =-12或x =1,所以f (x )是“不动点”函数;对于D ,令1x -x =x ,所以x =±22,所以f (x )是“不动点”函数.故选BCD .12.(2020·山东临沂高三模拟)定义域和值域均为[-a ,a ]的函数y =f (x )和y =g (x )的图象如图所示,其中a >c >b >0,给出下列四个结论,其中正确的是( )A .方程f (g (x ))=0有且仅有三个解B .方程g (f (x ))=0有且仅有四个解C .方程f (f (x ))=0有且仅有八个解D .方程g (g (x ))=0有且仅有一个解 答案 AD解析 由图象可知对于函数y =f (x ),当-a ≤y <-c 时,方程有一解,当y =-c 时,方程有两解,当-c <y <c 时方程有三解,当y =c 时,方程有两解,当c <y ≤a时,方程有一解,对于函数y =g (x ),由图象可知,函数g (x )为单调递减函数,当-a ≤y ≤a 时,方程有唯一解.对于A ,设t =g (x ),则由f (g (x ))=0,即f (t )=0,此时t =-b 或t =0或t =b ,即t =g (x )有三个不同的值,又由函数g (x )为单调递减函数且a >c >b >0,所以方程f (g (x ))=0有三个不同的解,所以是正确的;对于B ,设t =f (x ),则由g (f (x ))=0,即g (t )=0,此时只有唯一的解t =b ,即方程b =f (x ),此时有三解,所以不正确;对于C ,设t =f (x ),则由f (f (x ))=0,即f (t )=0,此时t =-b 或t =0或t =b ,当t =-b,0或b 时,方程t =f (x )均有三个不同的解,则f (f (x ))=0有九个解,所以不正确;对于D ,设t =g (x ),则由g (g (x ))=0,即g (t )=0,此时t =b ,对于方程b =g (x ),只有唯一的解,所以是正确的.故选AD .三、填空题13.函数f (x )=ax +1-2a 在区间(-1,1)上存在一个零点,则实数a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎪⎫13,1解析 ∵函数f (x )的图象为直线,由题意可得f (-1)f (1)<0,∴(-3a +1)(1-a )<0,解得13<a <1,∴实数a 的取值范围是⎝ ⎛⎭⎪⎪⎫13,1.14.已知f (x )=⎩⎪⎨⎪⎧xln x ,x>0,x2-x -2,x≤0,则其零点为________.答案 -1,1解析 当x >0时,由f (x )=0,即x ln x =0得ln x =0,解得x =1;当x ≤0时,由f (x )=0,即x 2-x -2=0,也就是(x +1)(x -2)=0,解得x =-1或x =2.因为x ≤0,所以x =-1.综上,函数的零点为-1,1.15.已知函数f (x )=⎩⎪⎨⎪⎧|x|,x≤m,x2-2mx +4m ,x>m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的实根,则m 的取值范围是________.答案 (3,+∞)解析 f (x )的图象如图所示,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的实根,只需4m -m 2<m ,解得m >3或m <0,又m >0,所以m >3.16.(2020·聊城二模)已知f (x )=⎩⎪⎨⎪⎧1-ln x ,0<x≤1,-1+ln x ,x>1,若f (a )=f (b ),则1a +1b的最小值为________.答案 1+1e2解析 已知分段函数f (x )在两段区间内都是单调函数,若f (a )=f (b ),则必然分属两段内,不妨设0<a ≤1,b >1,则f (a )=1-ln a ,f (b )=-1+ln b ,即1-ln a =-1+ln b ⇒ln a +ln b =ln (ab )=2⇒ab =e 2.当1a +1b =be2+1b =1e2⎝ ⎛⎭⎪⎪⎫b +e2b 时,令g (b )=1e2⎝ ⎛⎭⎪⎪⎫b +e2b ,b ∈(1,+∞),由双勾函数性质可知g (b )在区间(1,e)上单调递减,在区间(e ,+∞)上单调递增,所以g (b )min =g (e)=2e ,此时a =e(不符合题意),当1a +1b =1a +ae2=1e2⎝ ⎛⎭⎪⎪⎫a +e2a 时,令h (a )=1e2⎝ ⎛⎭⎪⎪⎫a +e2a ,a ∈(0,1],由双勾函数性质可知h (a )在区间(0,1]上单调递减,所以h (a )min =h (1)=1+1e2,此时a =1,b =e 2.故1a +1b的最小值为1+1e2.四、解答题17.函数f(x)的定义域为实数集R,且f(x)=错误!对任意的x∈R都有f(x+2)=f(x-2).若在区间[-5,3]上函数g(x)=f(x)-mx+m恰好有三个不同的零点,求实数m的取值范围.解因为对任意的x∈R都有f(x+2)=f(x-2),所以函数f(x)的周期为4.由在区间[-5,3]上函数g(x)=f(x)-mx+m有三个不同的零点,知函数f(x)与函数h(x)=mx-m 的图象在[-5,3]上有三个不同的交点.在同一平面直角坐标系内作出函数f(x)与h(x)在区间[-5,3]上的图象,如图所示.由图可知1-0-1-1≤m<1-0-5-1,即-12≤m<-16.21 / 21。
2025届高考数学一轮复习教案:一元二次函数、方程、不等式-二次函数与一元二次方程、不等式
第三节二次函数与一元二次方程、不等式课程标准1.会从实际情境中抽象出一元二次不等式.2.结合二次函数图象,会判断一元二次方程的根的个数,以及解一元二次不等式.3.了解简单的分式、绝对值不等式的解法.考情分析考点考法:本节是高考的必考内容之一,常与函数、导数、解析几何等内容相结合命题,重点考查不等式的求解等问题.核心素养:数学运算、逻辑推理、直观想象【必备知识·逐点夯实】【知识梳理·归纳】1.一元二次不等式只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式,一元二次不等式的一般形式是ax 2+bx +c >0或ax 2+bx +c <0(a ,b ,c 均为常数,a ≠0).2.二次函数的零点一般地,对于二次函数y =ax 2+bx +c ,我们把使ax 2+bx +c =0的实数x叫做二次函数的零点.【微点拨】二次函数的零点为对应方程的根,是一个实数,不是点的坐标.3.三个二次的对应关系(其中a >0)判别式Δ=b 2-4ac Δ>0Δ=0Δ<0二次函数y =ax 2+bx +c 的图象方程ax 2+bx +c =0的根有两个不相等的实数根x 1,x 2(x 1<x 2)有两个相等的实数根x 1=x 2=-b2a没有实数根ax 2+bx +c >0的解集{x |x <x 1,或x >x 2}|2⎧⎫≠-⎨⎬⎩⎭b x x a __R __ax 2+bx +c <0的解集{x |x 1<x <x 2}⌀⌀【微点拨】1.解一元二次不等式一定要结合二次函数开口方向和不等号的方向下结论.2.若关于x 的一元二次不等式ax 2+bx +c <0(a >0)的解集为(m ,n ),则x =m 与x =n 为一元二次方程ax 2+bx +c =0(a >0)的两个根.4.简单的绝对值不等式|x |>a (a >0)的解集为(-∞,-a )∪(a ,+∞),|x |<a (a >0)的解集为(-a ,a ).【基础小题·自测】类型辨析改编易错题号12,341.(多维辨析)(多选题)下列结论正确的是()A .若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2B .若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0C .不等式x 2≤a 的解集为[-,]D .若方程ax 2+bx +c =0(a <0)没有实数根,则不等式ax 2+bx +c >0(a <0)的解集为R 【解析】选AB .C .对于不等式x 2≤a ,当a >0时,其解集为[-,];当a =0时,其解集为{0},当a <0时,其解集为∅.D.若方程ax2+bx+c=0(a<0)没有实数根,则不等式ax2+bx+c>0(a<0)的解集为∅.2.(必修第一册P52例3变条件)不等式-x2-5x+6≥0的解集为()A.{x|-6≤x≤1}B.{x|2≤x≤3}C.{x|x≥3或x≤2}D.{x|x≥1或x≤-6}【解析】选A.不等式-x2-5x+6≥0可化为x2+5x-6≤0,即(x+6)(x-1)≤0,解得-6≤x≤1,所以不等式的解集为{x|-6≤x≤1}.3.(必修第一册P55习题2.3T3变条件)已知集合A=U2−2−3≤0,B== 2−4,则A∩B=()A.2,3B.2,3C.2,3D.2,3【解析】选C.因为x2-2x-3≤0,所以+1−3≤0,即-1≤x≤3,所以A=U−1≤≤3,B=U≥2,所以A∩B=2,3.4.(忽略a=0的情形致误)不等式ax2-ax+a+1>0对∀x∈R恒成立,则实数a的取值范围为()A.0,+∞B.0,+∞C.−∞,−0,+∞D.−∞,−+∞)【解析】选B.①当a=0时,1>0成立,②当a≠0时,只需>0=2−4+1<0,解得a>0,综上可得a≥0,即实数a的取值范围为0,+∞.【巧记结论·速算】1.已知关于x的一元二次不等式ax2+bx+c>0的解集为R,则一定满足>0<0;2.已知关于x的一元二次不等式ax2+bx+c>0的解集为⌀,则一定满足<0≤0;3.已知关于x的一元二次不等式ax2+bx+c<0的解集为R,则一定满足<0<0;4.已知关于x的一元二次不等式ax2+bx+c<0的解集为⌀,则一定满足>0≤0.【即时练】1.“-3<m<1”是“不等式−1x2+−1x-1<0对任意的x∈R恒成立”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选A.当m=1时,−1x2+−1x-1<0对任意的x∈R恒成立,当m≠1时,则<1<0,解得-3<m<1,故m的取值范围为{m|-3<m≤1}.故“-3<m<1”是“-3<m≤1”的充分不必要条件.2.若关于x的不等式mx2-mx-1≥0的解集是⌀,则m的取值范围是()A.[-4,0]B.(-4,0]C.[0,4)D.(-4,0)【解析】选B.当m=0时,mx2-mx-1≥0即-1≥0,解集是⌀,当m≠0时,不等式mx2-mx-1≥0的解集是⌀,需满足<0=−2+4<0,解得-4<m<0,所以m的取值范围是(-4,0].【核心考点·分类突破】考点一一元二次不等式的解法【考情提示】一元二次不等式是高考的热点问题,它常与集合的交集、并集、补集相结合出现在选择题中.含参数的一元二次不等式常与导数、圆锥曲线相交汇出现在解答题中,重点考查分类讨论思想和推理论证能力.角度1不含参数的一元二次不等式[例1]解下列不等式:(1)2x2+5x-3<0;(2)-3x2+6x≤2;(3)9x2-6x+1>0;(4)x2<6x-10.【解析】(1)因为Δ=49>0,所以方程2x2+5x-3=0有两个不相等的实数根,解得x1=-3,x2=12,画出函数y=2x2+5x-3的图象,如图①所示.由图可得原不等式的解集为{x−3< <12}.(2)原不等式等价于3x2-6x+2≥0.因为Δ=12>0,所以方程3x2-6x+2=0有两个不相等的实数根,解得x1=3−33,x2=3+33,画出函数y=3x2-6x+2的图象,如图②所示,由图可得原不等式的解集为{x≤3−33或≥3+33}.(3)因为Δ=0,所以方程9x2-6x+1=0有两个相等的实数根,解得x1=x2=13.画出函数y=9x2-6x+1的图象如图③所示.由图可得原不等式的解集为{x≠13}.(4)原不等式可化为x2-6x+10<0,因为Δ=-4<0,所以方程x2-6x+10=0无实数根,画出函数y=x2-6x+10的图象如图④所示,由图象可得原不等式的解集为∅.【解题技法】解一元二次不等式的一般方法和步骤(1)化:把不等式变形为二次项系数大于零的标准形式.(2)判:计算对应方程的判别式,根据判别式判断方程有没有实根(无实根时,不等式的解集为R或∅).(3)求:求出对应的一元二次方程的根.(4)写:利用“大于取两边,小于取中间”写出不等式的解集.角度2含参数的一元二次不等式[例2]解关于x的不等式.(1)x2+ax+1<0(a∈R);(2)ax2-(a+1)x+1<0.【解析】(1)Δ=a2-4.①当Δ=a2-4≤0,即-2≤a≤2时,原不等式无解.②当Δ=a2-4>0,即a>2或a<-2时,方程x2+ax+1=0的两根分别为x1x2则原不等式的解集为<<综上所述,当-2≤a≤2时,原不等式无解;当a>2或a<-2时,原不等式的解集为<<(2)若a=0,原不等式等价于-x+1<0,解得x>1.若a<0,原不等式等价于−x-1)>0,解得x<1或x>1.若a>0,原不等式等价于−x-1)<0.①当a=1时,1=1,−x-1)<0无解;②当a>1时,1<1,解−x-1)<0,得1<x<1;③当0<a<1时,1>1,解−x-1)<0,得1<x<1.综上所述,当a<0时,解集为{x|x<1或x>1};当a=0时,解集为{x|x>1};当0<a<1时,解集为{x|1<x<1};当a=1时,解集为⌀;当a>1时,解集为{x|1<x<1}.【解题技法】解含参数的一元二次不等式时分类讨论的方法(1)当二次项系数中含有参数时,应讨论二次项系数是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应的一元二次方程的根的个数不确定时,讨论判别式Δ与0的关系.(3)确定无根时可直接写出解集;确定方程有两个不相等的实根时,要讨论两根的大小关系,从而确定解集形式.【对点训练】1.(2024·莆田模拟)不等式1−−3<0的解集是()A.−1,3B.−3,1C.{x<1或x>3}D.{x<-3或x>1}【解析】选C.由1−−3<0,可得(x-1)(x-3)>0,所以x<1或x>3,所以不等式的解集为{x<1或x>3}.2.不等式−2r5K2>0的解集为________.【解析】不等式−2r5K2>0等价于−2+5−2>0,即2−5−2<0,解得2<x<52,所以不等式−2r5K2>0的解集为2<<答案:2<<3.(2024·玉林模拟)已知关于x的不等式ax2-b≥2x-ax s∈R.(1)若不等式的解集为−2≤≤−1,求a,b的值;(2)若a<0,b=2,解不等式.【解析】(1)原不等式可化为ax2+−2x-b≥0,由题知,-2,-1是方程ax 2+−2x -b =0的两根,由根与系数的关系得<0−K2=−3−=2,解得=−1=2.(2)当a <0时,原不等式化为−+1≤0,当2>-1,即a <-2时,解原不等式可得-1≤x ≤2;当2=-1,即a =-2时,原不等式即为+12≤0,解得x =-1;当2<-1,即-2<a <0时,解得2≤x ≤-1,综上所述,当-2<a <0时,不等式的解集为≤≤−1;当a =-2时,不等式的解集为−1;当a <-2时,不等式的解集为−1≤≤考点二三个二次的关系[例3](1)(2024·通辽模拟)已知不等式ax 2+bx -1>0的解集为−12<<−则不等式x 2-bx -a ≥0的解集为()A .{x |x ≤-3或x ≥-2}B .{x |-3≤x ≤-2}C .{x |2≤x ≤3}D .{x |x ≤2或x ≥3}【解析】选A .因为不等式ax 2+bx -1>0的解集为−12<<−所以ax 2+bx -1=0的两根分别为-12,-13,即−12+−=−−12×−=−1,解得a =-6,b =-5.所以不等式x 2-bx -a ≥0可化为x 2+5x +6≥0,其解集为{x |x ≤-3或x ≥-2}.(2)(多选题)(2024·安庆模拟)已知不等式ax 2+bx +c >0的解集为−12<<2,则下列结论正确的是()A.b>0B.c>0C.a+b+c>0D.a-b+c>0【解析】选ABC.由题意可知,方程ax2+bx+c=0的解为x1=-12,x2=2,且a<0,则-=x1+x2=32,=x1x2=-1,解得b=-32a,c=-a,令f=ax2+bx+c=ax2-32ax-a<0,对于A,b=-32a>0,故A正确;对于B,c=-a>0,故B正确;对于C,a+b+c=f1=a-32a-a=-32a>0,故C正确;对于D,a-b+c=f−1=a+32a-a=32a<0,故D错误.【解题技法】一元二次不等式与方程的关系的解题策略1.一元二次方程的根就是相应一元二次函数的零点,也是相应一元二次不等式解集的端点值.2.给出一元二次不等式的解集,相当于知道了相应二次函数图象的开口方向及与x轴的交点,可以利用代入根或利用根与系数的关系求解.【对点训练】(多选题)已知不等式ax2+bx+c>0的解集为<<,其中n>m>0,则以下结论正确的有()A.a<0B.b>0C.cx2+bx+a>0的解集为<<D.cx2+bx+a>0的解集为<1或>【解析】选ABC.因为不等式ax2+bx+c>0的解集为<<,所以a<0,故A 正确;因为n>m>0,令f=ax2+bx+c,所以-2>0,即b>0,故B正确;由上所述,易知f0<0,c<0,由题意可得m,n为一元二次方程ax2+bx+c=0的两根,则m+n=-,mn=,则1·1=,1+1=r B=-,即1,1为方程cx2+bx+a=0的解,则不等式cx2+bx+a>0的解集为<<故C正确,D错误.考点三一元二次不等式恒(能)成立问题角度1在R上的恒成立问题[例4](2024·重庆模拟)当a∈(t1,t2)时,不等式2−B−21−r2<3对任意实数x恒成立,则t1+t2的值为()A.-7B.6C.7D.8【解析】选B.由于1-x+x2=(−12)2+34>0,则不等式2−B−21−r2<3等价于4x2+(a-3)x+1>0,依题意,不等式4x2+(a-3)x+1>0对任意实数x恒成立,则Δ=(a-3)2-16<0,解得-1<a<7,于是t1=-1,t2=7,所以t1+t2=6.【解题技法】ax2+bx+c>0(<0)在R上恒成立的条件1.ax2+bx+c>0的解集为R,则一定满足(1)a =b =0,c >0或(2)>0<0;2.ax 2+bx +c <0的解集为R ,则一定满足(1)a =b =0,c <0或(2)<0<0.角度2在给定区间上的恒成立问题[例5]金榜原创·易错对对碰(1)(一题多法)若对于x ∈[1,3],mx 2-mx +m -6<0(m ≠0)恒成立,则m 的取值范围是________.【解析】由已知得,m (x -12)2+34m -6<0(m ≠0)在x ∈[1,3]上恒成立.方法一:令g (x )=m (x -12)2+34m -6(m ≠0),x ∈[1,3].当m >0时,g (x )在[1,3]上单调递增,所以g (x )max =g (3)=7m -6<0,所以m <67,则0<m <67.当m <0时,g (x )在[1,3]上单调递减,所以g (x )max =g (1)=m -6<0,所以m <6,所以m <0.综上所述,m 的取值范围是{m 0<<67或<0}.方法二:因为x 2-x +1=(x -12)2+34>0,又因为m (x 2-x +1)-6<0,所以m <62−r1.因为函数y =62−r1=6(K 12)2+34在[1,3]上的最小值为67,所以只需m <67即可.因为m ≠0,所以m 的取值范围是{m 0<<67或<0}.答案:{m 0<<67或<0}(2)若mx 2-mx -1<0对于m ∈[1,2]恒成立,则实数x 的取值范围为________.【解析】设g (m )=mx 2-mx -1=(x 2-x )m -1,其图象是直线,当m ∈[1,2]时,图象为一条线段,则o1)<0,o2)<0,即2−−1<0,22−2−1<0,解得1−32<x <1+32,故实数x 的取值范围为(1−32,1+32).答案:(1−32,1+32)【解题技法】在给定区间上的恒成立问题的求解方法(1)若f(x)>0在集合A中恒成立,即集合A是不等式f(x)>0的解集的子集,可以先求解集,再由子集的含义求解参数的值(或范围).(2)转化为函数值域问题,即已知函数f(x)的值域为[m,n],则f(x)≥a恒成立⇒f(x)min≥a,即m≥a;f(x)≤a恒成立⇒f(x)max≤a,即n≤a.(3)对于以下两种题型,可以利用二次函数在端点m,n处的取值特点确定不等式求范围.①ax2+bx+c<0(a>0)对x∈[m,n]恒成立;②ax2+bx+c>0(a<0)对x∈[m,n]恒成立.提醒:一般地,知道谁的范围,就选谁当主元;求谁的范围,谁就是参数.如本例(1)中建立关于x的函数,m为参数,本例(2)中建立关于m的函数,x为参数.角度3不等式能成立或有解问题[例6](一题多法)若关于x的不等式x2-ax+7>0在2,7上有实数解,则a的取值范围是()A.−∞,8B.−∞,8C.−∞,27D.【解析】选A.方法一:(分离参数法)不等式x2-ax+7>0在2,7上有实数解,等价于不等式a<x+7在2,7上有实数解,因为函数f(x)=x+7在(2,7)上单调递减,在(7,7)上单调递增,又由f(2)=2+72=112,f7=7+77=8,所以f max<f7=8,所以a<8,即实数a的取值范围是−∞,8.方法二:(最值转化法)原不等式在(2,7)上有解,它的否定是不等式x2-ax+7>0在(2,7)上无解,则4−2+7≤049−7+7≤0,解得a≥8,因此不等式x2-ax+7>0在(2,7)上有解时a<8.【解题技法】一元二次不等式在给定区间上的有解问题解题策略(1)分离参数法:把不等式化为a>f(x)或a<f(x)的形式,只需a>f(x)min或a<f(x)max.(2)最值转化法;若f(x)>0在集合A中有解,则函数y=f(x)在集合A中的最大值大于0;若f(x)<0在集合A中有解,则函数y=f(x)在集合A中的最小值小于0.(3)数形结合法:根据图象列出约束条件求解.(4)最后一定要注意检验区间的开闭.【对点训练】1.(2024·大同模拟)已知命题p:∃x∈R,使得ax2+2x+1<0成立为真命题,则实数a的取值范围是()A.−∞,0B.−∞,1C.0,1D.0,1【解析】选B.命题p为真命题等价于不等式ax2+2x+1<0有解.当a=0时,不等式变形为2x+1<0,则x<-12,符合题意;当a>0时,Δ=4-4a>0,解得0<a<1;当a<0时,总存在x∈R,使得ax2+2x+1<0;综上可得实数a的取值范围为−∞,1.2.若不等式x2+a(x-1)+1≥0对一切x∈(1,2]都成立,则a的最小值为()A.0B.-22C.-22-2D.-5【解析】选D.记f(x)=x2+a(x-1)+1=x2+ax+1-a,要使不等式x2+a−1+1≥0对一切x∈(1,2]都成立,则−2≤1o1)=2≥0或1<−2<2o−2)=−24−+1≥0或−2≥2o2)=+5≥0,解得a≥-2或-4<a<-2或-5≤a≤-4,综上,a≥-5.3.已知对任意m∈1,3,mx2-mx-1<-m+5恒成立,则实数x的取值范围是()B.,+∞C.【解析】选D.对任意m∈1,3,不等式mx2-mx-1<-m+5恒成立,即对任意m∈1,3,m2−+1<6恒成立,所以对任意m∈1,3,x2-x+1<6恒成立,所以对任意m∈1,3,x2-x6=2恒成立,所以x2-x+1<2,解得1−52<x<1+5,故实数x【加练备选】已知f=x2+2−x+3a+b,若存在常数a,使f(x)≥0恒成立,则b的取值范围是________.【解析】使f(x)≥0恒成立,则Δ=(2-a)2-4×1×(3a+b)≤0,化简整理得4b≥a2-16a+4=(a-8)2-60,由于存在常数a,使f(x)≥0恒成立,可知4b≥(2−16+4)min,因此4b≥-60,解得b≥-15.答案:[-15,+∞)。
2024届高考一轮复习数学教案(新人教B版):函数与方程
必刷小题4函数与方程一、单项选择题1.函数f(x)=e x+2x-5的零点所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)答案B解析函数f(x)=e x+2x-5在R上单调递增,而f(1)=e-3<0,f(2)=e2-1>0,由函数零点存在定理知,函数f(x)的唯一零点在区间(1,2)内.2.如图,公园里有一处扇形花坛,小明同学从A点出发,沿花坛外侧的小路顺时针方向匀速走了一圈(路线为AB→BO→OA),则小明到O点的直线距离y与他从A点出发后运动的时间t之间的函数图象大致是()答案DAB走时,与O点的直线距离保持不变,解析小明沿沿BO走时,随时间增加与O点的距离越来越小,沿OA走时,随时间增加与O点的距离越来越大,故结合选项可知D正确.3.函数y=lg|x-1|的图象大致是()x-1答案D 解析因为y =lg|-x |-x=-lg|x |x ,x ≠0,故y =lg|x |x 为奇函数,图象关于原点成中心对称,将函数图象向右平移1个单位长度可得y =lg|x -1|x -1的图象,所以y =lg|x -1|x -1的图象关于点(1,0)成中心对称,排除A ,B ;又当y =lg|x -1|x -1=0时,x =0或x =2,故y =lg|x -1|x -1的图象与x 轴有2个交点,排除C.4.在使用二分法计算函数f (x )=lg x +x -2的零点的近似解时,现已知其所在区间为(1,2),如果要求近似解的精确度为0.1,则接下来需要计算________次区间中点的函数值()A .2B .3C .4D .5答案C 解析因为区间(1,2)的长度为1,每次二等分都使区间长度变为原来的12,3次取中间值后,区间(1,2)的长度变为12=18>0.1,不满足题意,4次取中间值后,区间(1,2)的长度变为12=116<0.1,满足题意.5.信号在传输介质中传播时,将会有一部分能量转化为热能或被传输介质吸收,从而造成信号强度不断减弱,这种现象称为衰减.在试验环境下,超声波在某种介质的传播过程中,声压的衰减过程可以用指数模型:P (s )=P 0e -Ks 描述声压P (s )(单位:帕斯卡)随传播距离s (单位:米)的变化规律,其中P 0为声压的初始值,常数K 为试验参数.若试验中声压初始值为900帕斯卡,传播5米声压降低为400帕斯卡,据此可得试验参数K 的估计值约为(参考数据:ln 2≈0.69,ln 3≈1.10)()A .0.162B .0.164C .0.166D .0.168答案B 解析由题意知,400=900e -5K ,两边取自然对数,则ln 4=ln 9-5K ,所以K =ln 9-ln 45=2(ln 3-ln 2)5≈2×0.415=0.164.6.已知f (x )(-x ),x <0,-x ,x ≥0,则函数y =3f 2(x )-2f (x )的零点个数为()A .1B .2C .3D .4答案C 解析由题设,当x <0时,f (x )∈R 且单调递减,当x ≥0时,f (x )∈(0,1)且单调递减,令t =f (x ),则y =3t 2-2t =0,可得t =0或t =23,作出函数f (x )的图象,如图所示,由图知,当t =0时有一个零点,当t =23时有两个零点,故共有3个零点.7.已知函数f (x )=2x +log 2x ,且实数a >b >c >0,满足f (a )f (b )f (c )<0,若实数x 0是函数y =f (x )的一个零点,那么下列不等式中一定不成立的是()A .x 0<aB .x 0>aC .x 0<bD .x 0<c 答案D 解析由函数的单调性可得,函数f (x )=2x +log 2x 在(0,+∞)上单调递增,由f (a )f (b )f (c )<0,则f (a ),f (b ),f (c )为负数的个数为奇数,选项A ,B ,C 可能成立;对于选项D ,当x 0<c 时,由函数的单调性可得f (a )>0,f (b )>0,f (c )>0,即不满足f (a )f (b )f (c )<0,故选项D 不可能成立.8.(2022·西安模拟)已知函数f (x )x -2),x >1,|-1,-1≤x ≤1,若函数g (x )=f (x )-log a (x +1)恰有3个零点,则实数a 的取值范围为()A.15,D.16,答案B解析令g (x )=f (x )-log a (x +1)=0,可得f (x )=log a (x +1),所以曲线y =f (x )与曲线y =log a (x +1)有三个交点,当a >1时,曲线y =f (x )与曲线y =log a (x +1)只有一个交点,不符合题意;当0<a <1时,若使得曲线y =f (x )与曲线y =log a (x +1)有三个交点,a 3>-1,a 5<-1,a <1,解得15<a <13.二、多项选择题9.净水机通过分级过滤的方式使自来水逐步达到纯净水的标准,其中第一级过滤一般由孔径为5微米的PP 棉滤芯(聚丙烯熔喷滤芯)构成,其结构是多层式,主要用于去除铁锈、泥沙、悬浮物等各种大颗粒杂质.假设每一层PP 棉滤芯可以过滤掉三分之一的大颗粒杂质,过滤前水中大颗粒杂质含量为50mg/L ,若要满足过滤后水中大颗粒杂质含量不超过2.5mg/L ,则PP 棉滤芯层数不可能为()(参考数据:lg 2≈0.30,lg 3≈0.48)A .5B .6C .7D .8答案ABC解析由题意得,经n 层棉滤芯过滤后水中大颗粒杂质含量为=50,n ∈N +,则50≤2.5得,20≤1,所以lg 20+≤0,lg 10+lg 2+n (lg 2-lg 3)≤0,所以1+0.3+(0.3-0.48)n ≤0,1.3≤0.18n ,得n ≥659,因为n 为正整数,所以n 的最小值为8.10.设函数f (x )2+2x ,x ≤0,x -x ,x >0,则g (x )=f (x )-m 的零点个数可能是()A .1B .2C .3D .4答案AB解析由函数f (x )2+2x ,x ≤0,x -x ,x >0,得f (-1)=f (1)=-1,则函数g (x )=f (x )-m 的零点个数就是函数y =f (x )的图象与y =m 的交点个数,画出y =f (x )和y =m 的图象,如图所示,由图可知,当m >0时,两个函数的图象有1个交点,当m ≤0时,两个函数的图象有2个交点,所以函数g (x )=f (x )-m 的零点可能有1个或2个.11.某医药研究机构开发了一种新药,据监测,如果患者每次按规定的剂量注射该药物,注射后每毫升血液中的含药量y (微克)与时间t (小时)之间的关系近似满足如图所示的曲线.据进一步测定,当每毫升血液中含药量不少于0.125微克时,治疗该病有效,则()A .a =3B .注射一次治疗该病的有效时间长度为6小时C .注射该药物18小时后每毫升血液中的含药量为0.4微克D .注射一次治疗该病的有效时间长度为53132小时答案AD解析由函数图象可知y 0≤t <1,-a ,t ≥1,当t =1时,y =4,即-a =4,解得a =3,∴y 0≤t <1,3,t ≥1,故A 正确,药物刚好起效的时间,当4t =0.125,即t =132,药物刚好失效的时间3=0.125,解得t =6,故药物有效时长为6-132=53132(小时),注射一次治疗该病的有效时间长度不到6个小时,故B 错误,D 正确;注射该药物18小时后每毫升血液含药量为4×18=0.5(微克),故C 错误.12.已知定义域为R 的偶函数f (x )有4个零点x 1,x 2,x 3,x 4(x 1<x 2<x 3<x 4),并且当x ≥0时,f (x )=x 2-ax +1,则下列说法中正确的是()A .实数a 的取值范围是(-∞,-2)∪(2,+∞)B .当x <0时,f (x )=x 2+ax +1C .x 1x 2x 3x 4=1D .x 1+2x 2+3x 3+4x 4的取值范围是[23,+∞)答案BC 解析因为f (x )为偶函数且有4个零点,则当x >0时f (x )有2个零点,=a 2-4>0,--a 2>0,解得a >2,A 不正确;当x <0时,-x >0,则f (x )=f (-x )=x 2+ax +1,B 正确;偶函数f (x )的4个零点满足:x 1<x 2<x 3<x 4,则x 3,x 4是方程x 2-ax +1=0的两个根,则有x 3>0,x 3x 4=1且x 1=-x 4,x 2=-x 3,于是得x 1x 2x 3x 4=(x 3x 4)2=1,C 正确;由C 选项知,x 1+2x 2+3x 3+4x 4=x 3+3x 4=x 3+3x 3,且0<x 3<1,而函数y =x +3x在(0,1)上单调递减,从而得x 3+3x 3∈(4,+∞),D 不正确.三、填空题13.为了预防信息泄露,保证信息的安全传输,在传输过程中都需要对文件加密,有一种加密密钥密码系统(Private Key Cryptosystem),其加密、解密原理为:发送方由明文→密文(加密),接收方由密文→明文.现在加密密钥为y =kx 3,如“4”通过加密后得到密文“2”,若接收方接到密文“1256”,则解密后得到的明文是________.答案12解析由题可知,加密密钥为y =kx 3,由已知可得,当x =4时,y =2,所以2=k ×43,解得k =243=132,故y =132x 3,显然令y =1256,即1256=132x 3,解得x 3=18,即x =12.14.若函数f (x )=e -x -ln(x +a )在(0,+∞)上存在零点,则实数a 的取值范围是________.答案(-∞,e)解析由题意可得,函数y =e -x 与g (x )=ln(x +a )的图象在(0,+∞)上有交点,当a >0时,g (x )=ln(x +a )的图象是由函数y =ln x 的图象向左平移得到的,由图象可得,若想两函数图象在(0,+∞)上有交点只需要g (0)=ln a <1,即0<a <e ;当a ≤0时,g (x )=ln(x +a )的图象是由函数y =ln x 的图象向右平移得到的,此时两函数图象在(0,+∞)上恒有交点,满足条件.综上可得a <e.15.已知函数y =f (x )的表达式为f (x ),x ≤0,2x ,x >0,则函数y =f (f (x ))的所有零点之和为________.答案3解析∵f (x )=0⇒x =0或x =1,∴f (f (x ))=0⇒f (x )=0或f (x )=1,由f (x )=0⇒x =0或x =1,由f (x )=1⇒x =2,∴0,1,2为函数y =f (f (x ))的零点,∴函数y =f (f (x ))的零点之和为3.16.渔民出海打鱼,为了保证获得的鱼新鲜,鱼被打上船后,要在最短的时间内将其分拣、冷藏,若不及时处理,打上来的鱼会很快失去新鲜度.已知某种鱼失去的新鲜度h 与其出水后时间t (分钟)满足的函数关系式为h =m ·a t .若出水后10分钟,这种鱼失去的新鲜度为10%,出水后20分钟,这种鱼失去的新鲜度为20%,那么若不及时处理,打上来的这种鱼在________分钟后开始失去全部新鲜度.(已知lg 2≈0.3,结果取整数)答案43解析·a10=0.1,·a20=0.2,m=120,=110,所以h=120×102t,令h=120×102t=1,可得102t=20,所以t=10log220=10lg20lg2=10(lg10+lg2)lg2=10(1+lg2)lg2≈10×1.30.3≈43(分钟).因此,打上来的这种鱼在43分钟后开始失去全部新鲜度.。
函数与方程导学案-2025届高三数学一轮复习
高三(直升部)数学翻转课堂课时学案班级 小组 姓名________ 使用时间______年______月______日 编号 一轮复习-30 第 1 页课题 函数与方程 编制 审核课标 结合学过的函数图象,了解函数零点与方程解的关系。
目标 导学 理解函数零点的概念以及函数的零点与方程的根之间的关系,并会求函数的零点或判断个数; 会根据函数的零点求参数,了解函数零点存在定理,会判断零点所在区间。
重点难点 重点: 能判断方程根的个数,会判断零点所在区间;难点: 方程的根和函数的零点灵活转换。
自 学 质 疑 学 案一、基础练习1.函数()21f x x =-的零点是_____ 2.函数22y x x m =-+无零点,则m 的取值范围为( ) .(,1)A -∞ .(,1)B -∞- .(1,)C +∞ .(1,)D -+∞问题1:阅读课本119页,说出函数零点的定义,并写出函数零点及对应方程,不等式解集之间的关系,思考如何求函数的零点。
3.设()2f x lnx x =+-,则函数f (x )的零点所在的区间为( ).1(0)A , ).(12?B , .3(2)C ,.4(3)D ,4.用二分法求函数f (x )在区间(a ,b )内的唯一零点时,精确度为0.001,则结果计算的条件是( )A .|a -b |<0.1B .|a -b |<0.001C .|a -b |>0.001D .|a -b |=0.001问题2:阅读课本P115,叙述零点存在定理5.函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是( )A .0B .1C .2D .3问题3:如何确定零点的个数?二、考点突破考向一 函数零点所在区间的判断 例1.(1)若x 0是方程3121x x =⎪⎭⎫ ⎝⎛的解,则x 0属于区间( ) A.⎝⎛⎭⎫23,1 B.⎝⎛⎭⎫12,23 C.⎝⎛⎭⎫13,12 D.⎝⎛⎭⎫0,13(2)若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内变式1:函数f (x )=2x -2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( ) A .(1,3) B .(1,2) C .(0,3) D .(0,2)变式2:函数f (x )=x ·2x -kx -2在区间(1,2)内有零点,则实数k 的取值范围是________.考向二 函数零点个数问题 例2.已知函数f (x )=⎩⎪⎨⎪⎧ ⎝ ⎛⎭⎪⎫12x ,x ≤0,|log 2x |,x >0,则函数g (x )=f (x )-12的零点个数为( ) A .0 B .1 C .2 D .3练习:已知函数y =f (x )是周期为2的周期函数,且当x ∈[-1,1]时,f (x )=2|x |-1,则函数F (x )=f (x )-|lg x |的零点个数是( )A .9B .10C .11D .18训 练 展 示 学 案变式:已知函数f (x )=⎩⎨⎧x e x ,x ≤0,ln x ,x >0,若g (x )=f (x )-ax 有四个不同的零点,则a 的取值范围为( )A.⎝ ⎛⎭⎪⎫0,1e B.⎣⎢⎡⎭⎪⎫1e ,1 C.[1,e) D.[e ,+∞)拓展:已知M 是函数f (x )=|2x -3|-8sin πx (x ∈R )的所有零点之和,则M 的值为_______.A 组:1.设函数f (x )=13x -ln x ,则函数y =f (x )( ) A .在区间(1e ,1),(1,e)内均有零点 B .在区间(1e,1),(1,e)内均无零点 C .在区间(1e,1)内有零点,在区间(1,e)内无零点 D .在区间(1e,1)内无零点,在区间(1,e)内有零点2. 函数f (x )=e x +3x 的零点个数是( )A .0B .1C .2D .33.若函数f (x )=(m -2)x 2+mx +2m +1的两个零点分别在区间(-1,0)和区间(1,2)内,则m 的取值范围是________.4.已知函数f (x )=⎩⎪⎨⎪⎧2|x |,x ≤1,x 2-3x +3,x >1,若关于x 的方程f (x )=2a (a ∈R )恰有两个不同的实根,则实数a 的取值范围为( )A .⎝⎛⎭⎫12,1B .⎩⎨⎧⎭⎬⎫12 C .⎝⎛⎦⎤38,12∪(1,+∞) D .RB 组5.已知函数的图象与函数的图象恰有两个交点,则实数k 的取值范围是_________.6.(多选题)已知函数f (x )=⎩⎨⎧-x 2-2x ,x ≤0,|log 2x |,x >0,若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则下列结论正确的是( )A . 121-=+x xB .143=x xC .214<<xD .104321<<x x x xC 组 7.已知f (x )=⎩⎨⎧|lg x |,x >0,2|x |,x ≤0,则函数y =2f 2(x )-3f (x )+1的零点个数为________.8. 函数f (x )=⎩⎨⎧ln (-x -1),x <-1,2x +1,x ≥-1,若函数g (x )=f (f (x ))-a 有三个不同的零点,则实数a 的取值范围是________.高考链接:9.(2020浙江卷)已知a ,b ∈R 且ab ≠0,若(x –a )(x –b )(x –2a –b )≥0在x ≥0上恒成立,则( )A. a <0B. a >0C. b <0D. b >0考查点:函数与方程的转化,变号不变号零点,穿根法能力要求:观察方程不等式的特征;提取出穿根法;穿根过程要全面考虑零点的类别;核心素养:数学抽象,逻辑推理,数据分析112--=x x y 2-=kx y第 4 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数与方程1、函数零点的定义:(1)对于函数,我们把方程的实数根叫做函数的零点。
(2)方程有实根函数的图像与x轴有交点函数有零点。
因此判断一个函数是否有零点,有几个零点,就是判断方程是否有实数根,有几个实数根。
函数零点的求法:解方程,所得实数根就是的零点(3)变号零点与不变号零点:①若函数在零点左右两侧的函数值异号,则称该零点为函数的变号零点。
②若函数在零点左右两侧的函数值同号,则称该零点为函数的不变号零点。
③若函数在区间上的图像是一条连续的曲线,则是在区间内有零点的充分不必要条件。
2.映射定义:设非空集合A,B,若对集合A中任一元素a,在集合B中有唯一元素b与之对应,则称从A 到B的对应为映射。
若集合A中有m个元素,集合B中有n个元素,则从A到B可建立n m个映射。
3.定义域、对应法则和值域构成了函数的三要素。
相同函数的判断方法:①定义域、值域;②对应法则。
(两点必须同时具备)4.求函数的定义域常涉及到的依据为:①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题要考虑实际意义;⑥正切函数角的终边不在y轴上。
5.函数解析式的求法:①配凑法;②换元法:③待定系数法;④赋值法;⑤消元法等。
6.函数值域的求法:①配方法;②分离常数法;③逆求法;④换元法;⑤判别式法;⑥单调性法等。
7.函数单调性及证明方法:如果对于定义域内某个区间上的任意..两个自变量的值x1,x2,当x1<x2时,都有f(x1)< f(x2)(或f(x1)>f(x2)),那么就说f(x)在这个区间上是增函数(或减函数)。
第一步:设x1、x2是给定区间内的两个任意的值,且x1<x2;第二步:作差f(x2)-f(x1),并对“差式”变形,主要方法是:整式——分解因式或配方;分式——通分;根式——分子有理化,等);第三步:判断差式f(x2)-f(x1)的正负号,从而证得其增减性。
8.函数单调区间的求法:①定义法;②图象法;③同增异减原则。
9.函数的奇偶性:如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x) (或f(-x)=-f(x)),那么函数f(x)就叫做偶函数(或奇函数)。
如f(x)=x2+2,f(x)=x3-x等。
10.定义域关于原点对称是函数具有奇偶性的必要条件,也即是说定义域不关于原点对称的函数既不是奇函数也不是偶函数。
11.判断函数奇偶性的常用形式:奇函数:f(-x)=-f(x),f(-x)+f(x)=0(对数函数),(f(x)≠0)(指数函数);偶函数:f(-x)=f(x),f(-x)-f(x)=0,(fx)≠0)。
12.①若奇函数f(x)在x=0处有定义,则f(0)=0,常用于待定系数;②偶函数f(x)满足f(x)=f(|x|);③定义域关于原点对称且函数值恒为0的函数既是奇函数又是偶函数。
13.①奇函数的图象关于原点对称,反之,图象关于原点对称的函数是奇函数;②偶函数的图象关于y轴对称,反之,图象关于y轴对称的函数是偶函数;③关于原点对称的区间上,奇函数单调性相同,偶函数单调性相反。
14.函数图像变换:①平移变换:形如y=f(x+a):把函数y=f(x)的图象沿x轴方向向左(a>0)或向右(a<0)平移|a |个单位,就得到y=f(x+a)的图象;形如y=f(x)+a:把函数y=f(x)的图象沿y轴方向向上(a>0)或向下(a<0)平移|a|个单位,就得到y=f(x)+a的图象。
②对称变换:y=f(x)→ y=f(-x),关于y轴对称;y=f(x)→ y=-f(x) ,关于x轴对称。
③翻折变换:y=f(x)→y=f(|x|), (左折变换) 把y轴右边的图象保留,然后将y轴右边部分关于y轴对称;y=f(x)→y=|f(x)|(上折变换)把x轴上方的图象保留,x轴下方的图象关于x轴对称。
15.反函数:f(a)=b a=f-1(b)。
原函数的定义域和值域分别是反函数的值域及定义域。
16.求反函数的步骤:①求反函数的定义域(即y=f(x)的值域);②将x,y互换,得y=f-1 (x);③将y=f(x)看成关于x的方程,解出x=f-1(y),若有两解,要注意解的选择。
17.互为反函数的图象间的关系:关于直线y=x对称;18.原函数与反函数的图象交点可在直线y=x上,也可是关于直线y=x对称的两点。
19.原函数与反函数在对称区间上具有相同的单调性;奇函数的反函数仍为奇函数。
20.在定义域上单调的函数一定具有反函数;反之,并不成立(如y=1/x)。
21.复合函数的定义域求法:①已知y=f(x)的定义域为A,求y=f[g(x)]的定义域时,可令g(x)∈A,求得x的取值范围即可。
②已知y=f[g(x)]的定义域为A,求y=f(x)的定义域时,可令x∈A,求得g(x)的函数值范围即可。
22.复合函数y=f[g(x)]的值域求法:首先根据定义域求出u=g(x)的取值范围A,在u∈A的情况下,求出y=f(u)的值域即可。
23 .复合函数内层函数与外层函数在定义域内单调性相同,则函数是增函数;单调性不同则函数是减函数。
增增、减减为增;增减、减增才减(同增异减)。
①f(x)与f(x)+c (c为常数)具有相同的单调性;②f(x)与c·f(x)当c>0是单调性相同,当c<0时具有相反的单调性;③当f(x)恒不为0时,f(x)与1/f(x)具有相反的单调性;④当f(x)恒为非负时,f(x)与具有相同的单调性;⑤当f(x)、g(x)都是增(减)函数时,f(x)+g(x)也是增(减)函数。
⑥设f(x)、g(x)都是增(减)函数,则f(x)·g(x)当f (x),g(x)两者都恒大于0时也是增(减)函数,当两者都恒小于0时是减(增)函数。
24.二次函数求最值问题:根据抛物线的对称轴与区间关系进行分析。
Ⅰ、若顶点的横坐标在给定的区间上,则a>0时:在顶点处取得最小值,最大值在距离对称轴较远的端点处取得;a<0时:在顶点处取得最大值,最小值在距离对称轴较远的端点处取得。
Ⅱ、若顶点的横坐标不在给定的区间上,则a>0时:最小值在离对称轴近的端点处取得,最大值在离对称轴远的端点处取得;a<0时:最大值在离对称轴近的端点处取得,最小值在离对称轴远的端点处取得。
25.一元二次方程实根分布问题解法:①将方程的根视为二次函数的图像与x轴交点的横坐标;②从抛物线开口方向、对称轴、判别式、区间端点函数值等方面分析限制条件。
26.分式函数y=(ax+b)/(cx+d)的图像画法:①确定定义域渐近线x=-d/c;②确定值域渐近线y=a/c;③根据y轴上的交点坐标确定曲线所在象限位置。
27、函数零点的判定:(1)零点存在性定理:如果函数在区间上的图象是连续不断的曲线,并且有,那么,函数在区间内有零点,即存在,使得,这个也就是方程的根。
(2)函数零点个数(或方程实数根的个数)确定方法①代数法:函数的零点的根;②(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。
(3)零点个数确定:有2个零点有两个不等实根;有1个零点有两个相等实根;无零点无实根;对于二次函数在区间上的零点个数,要结合图像进行确定.28. 二分法:(1)二分法的定义:对于在区间上连续不断且的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法;(2)用二分法求方程的近似解的步骤:①确定区间,验证,给定精确度;②求区间的中点;③计算;(ⅰ)若,则就是函数的零点;(ⅱ) 若,则令(此时零点);(ⅲ) 若,则令(此时零点);④判断是否达到精确度,即,则得到零点近似值为(或);否则重复②至④步.29.抽象函数的性质所对应的一些具体特殊函数模型:①f(x1+x2)=f(x1)+f(x2):正比例函数f(x)=kx(k≠0);②f(x1+x2)=f(x1)·f(x2);f(x1-x2)=f(x1)/f(x2):指数函数y=a x;③f(x1•x2)=f(x1)+f(x2);f(x1/x2)=f(x1)-f(x2):对数函数y=log a x;④f(x1•x2)=f(x1)•f(x2);f(x1/x2)=f(x1)/f(x2):幂函数y=x a。
30.如果f(a+x)=f(b-x)成立,则y=f(x)图像关于x=(a+b)/2对称;特别地,f(x)=f(-x)成立,则y=f(x)图像关于y轴对称。
如果f(a+x)=f(b+x)成立(a≠b),则y=f(x)是周期函数,2|a-b|是它的一个周期;两个函数y=f(a+x)和y=f(b-x)的图象关于直线对称。
31.a>f(x)恒成立a>f(x)的最大值;a<f(x)恒成立a<f(x)的最小值;a>f(x)恒有解a>f(x)的最小值;a<f(x)恒有解a<f(x)的最大值;a=f(x)恒有解f min(x)≤a≤f max(x)。
【esp1】函数在区间内的零点个数是()A、0B、1C、2D、3【解析】解法1:因为,,即且函数在内连续不断,故在内的零点个数是1.【答案】:B解法2:设,,在同一坐标系中作出两函数的图像如图所示:可知B正确.【esp2】函数f(x)=2x+3x的零点所在的一个区间是 ( )A、(-2,-1)B、(-1,0)C、(0,1)D、(1,2)【解析】∵f(-1)=2-1+3×(-1)=-<0,f(0)=20+0=1>0,∴f(-1) f(0)<0.∴f(x)=2x+3x的零点所在的一个区间为(-1,0).【答案】B【esp3】若函数 (且)有两个零点,则实数的取值范围是 . 【解析】函数= (且)有两个零点,方程有两个不相等的实数根,即两个函数与的图像有两个不同的交点,当时,两个函数的图像有且仅有一个交点,不合题意;当时,两个函数的图像有两个交点,满足题意.【答案】【esp4】设函数f(x)满足f()=f(x),f(x)=f(2x),且当时,f(x)=x3.又函数g(x)= |x cos|,则函数h(x)=g(x)-f(x)在上的零点个数为()A、5B、6C、7D、8【解析】因为当时,f(x)=x3. 所以当时,,,当时,;当时,,注意到函数f(x)、g(x)都是偶函数,且f(0)=g(0),f(1)=g(1),,作出函数f(x)、g(x)的大致图象,函数h(x)除了0、1这两个零点之外,分别在区间上各有一个零点,共有6个零点,【答案】B【esp5】函数在区间[0,4]上的零点个数为()A、4B、5C、6D、7【解析】:f(x)=0,则x=0或cosx2=0,x2=kπ+,k∈Z,又x∈[0,4],k=0,1,2,3,4,所以共有6个解.【答案】C【esp6】函数在内()A、没有零点B、有且仅有一个零点C、有且仅有两个零点D、有无穷多个零点【解析】解法一:数形结合法,令,则,设函数和,它们在的图像如图所示,显然两函数的图像的交点有且只有一个,所以函数在内有且仅有一个零点;【答案】B解法二:在上,,,所以;在,,所以函数是增函数,又因为,,所以在上有且只有一个零点.【esp7】求下列函数的零点:(1);(2).【解析】(1)由故函数的零点是2,1,-1.(2)故函数的零点是2,-2.【答案】(1)2,1,-1.(2)2,-2.esp8: 已知函数的一个零点比1大,一个零点比1小,求实数的取值范围。