【数学】比例和反比例 测试题

合集下载

中考数学复习《反比例函数》专项测试卷(带答案)

中考数学复习《反比例函数》专项测试卷(带答案)

中考数学复习《反比例函数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点()1,2A x ,()2,1B x -和()3,4C x 都在反比例函数8y x=的图像上,则1x ,2x 和3x 的大小关系是( ) A.123x x x <<B.231x x x <<C.132x x x <<D.213x x x <<2.若点()26-,在反比例函数ky x=的图象上,则下列说法正确的是( ) A.该函数的图象经过点()34--,B.该函数的图象位于第一、三象限C.当0x >时,y 的值随x 值的增大而增大D.当1x >-时,4y >3.如图,在同一平面直角坐标系中函数y ax a =+与函数ay x=的图象可能是( ) A. B. C. D.4.如图,点A 是双曲线()160y x x =-<上的一点,点B 是双曲线()60y x x=-<上的一点,AB 所在直线垂直x 轴于点C ,点M 是y 轴上一点,连接MA 、MB ,则MAB △的面积为( )A.5B.6C.10D.165.如图,点A ,B 为反比例函数()0ky x x=>的图象上的两点,且满足45AOB ∠=︒,若点A 的坐标为()3,5,则点B 的坐标是( ).A.15215,2⎛⎫ ⎪ ⎪⎝⎭B.1010,2⎛ ⎝⎭C.()8,2D.()8,36.如图,已知点A 、B 分别在反比例函数y =1x (x >0),y =-4x(x >0)的图象上,且OA⊥OB ,则OBOA的值为( )A.4B.2C.14D.127.如图,在ABC 中2AC BC == 90ACB ∠=︒ AC x ∥轴 点D 是AB 的中点 点C 、D 在(k 0,x 0)ky x=≠>的图象上 则k 的值为( )A.1-B.2-C.1D.28.已知蓄电池的电压为定值(电压三星近总度阻) 使用蓄电池时 电流(单位:A )与电阻尺(单位:Ω)是反比例函数关系 它的图象如图所示 下列说法不正确的是( )A.函数解析式为60I R=B.蓄电池的电压是C.当6ΩR =时 8A I =D.当10A I ≤时 6R ≥Ω9.如图 在平面直角坐标系中直线24y x =-+与x 轴、y 轴分别交于A 、B 两点 以AB 为边在第一象限作正方形ABCD 点D 在双曲线()0ky k x=≠上.将正方形沿x 轴负方向平移a 个单位长度后 点C 恰好落在该双曲线上 则a 的值( )A.1B.2C.3D.410.如图 直线22y x =-与x 轴 y 轴分别交于点A B 与反比例函数()0ky k x=>图像交于点C .点D 为x 轴上一点(点D 在点A 右侧) 连接BD 以BA BD 为边作ABDE E 点刚好在反比例函数图像上 设(),E m n 连接EC DC 若1()2ACED S AD AD n =+四边形 则k 的值为( )A.8B.10C.12D.1611.如图 直线y kx =与双曲线3y x -=在同一坐标系中如图所示 则不等式3x-<的解集为( )A.01x <<B.1x <-C.1x <-或01x <<D.10x -<<或1x >12.智能手机已遍及生活中的各个角落 手机拍照功能也越来越强 高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值 也可计算为像距与物距的比值) 小明用某透镜进行了模拟成像实验 得到如图所示的像距v 随物距u 变化的关系图像 下列说法不正确的是( )A.当物距为45.0cm 时 像距为13.0cmB.当像距为15.0cm 时 透镜的放大率为2C.物距越大 像距越小D.当透镜的放大率为1时 物距和像距均为20cm13.某商家设计了一个水箱水位自动报警仪 其电路图如图1所示 其中定值电阻110ΩR =2R 是一个压敏电阻 用绝缘薄膜包好后放在一个硬质凹形绝缘盒中放入水箱底部 受力面水平 承受水压的面积S 为0.012m 压敏电阻的阻值随所受液体压力F 的变化关系如图2所示(水深h 越深 压力F 越大) 电源电压保持6V 不变 当电路中的电流为0.3A 时 报警器(电阻不计)开始报警 水的压强随深度变化的关系图象如图3所示(参考公式:UI R=1000Pa 1kPa =).则下列说法中不正确的是( )2R F pS =A.当水箱未装水()时 压强p 为0kPaB.当报警器刚好开始报警时 水箱受到的压力F 为40NC.当报警器刚好开始报警时 水箱中水的深度h 是0.8mD.若想使水深1m 时报警 应使定值电阻1R 的阻值为 二、填空题14.一个圆柱形蓄水池的底面半径为x cm 蓄水池的侧面积为40π2cm 则这个蓄水池的高h (cm )与底面半径x (cm )之间的函数关系式为_____.15.在反比例函数12my x-=的图象上的图象在二、四象限 则m 的取值范围是_______. 16.若点()11,A y -、21,4B y ⎛⎫- ⎪⎝⎭、()31,C y 都在反比例函数21x k y +=(k 为常数)的图象上 则1y 、2y 、3y 的大小关系为_____.17.如图 点(3,1)P -是反比例函数m y x =的图象上的一点 设直线y kx =与双曲my x=的两个交点分别为P 和P 当mkx x>时 写出x 的取值范围_____.18.如图 在平面直角坐标系xOy 中正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10 点D 是边AB 上靠近点A 的三等分点 将⊥OAD 沿直线OD 折叠后得到⊥OA ′D 若反比例函数y kx=(k ≠0)的图象经过A ′点 则k 的值为_____. 0m h =12Ω19.如图 在平面直角坐标系中直线12y k x =+与x 轴交于点A 与y 轴交于点B 与双曲线2(0)k y x x=>交于点C 连接OC .若52,sin 5OBC S BOC =∠=△ 则12k +的值是______.20.如图 点1A 2A 3A …在反比例函数()10y x x=>的图象上 点1B 2B 3B … n B 在y 轴上 且11212323B OA B B A B B A ∠=∠=∠=直线y x =与双曲线1y x=交于点1A 111B A OA ⊥ 2221B A B A ⊥ 3323B A B A ⊥ … 则2023B 的坐标是________.三、解答题21.如图所示 一次函数y kx b =+的图象与反比例函数my x=的图象相交于两点(1),A n (2,1)B -- 与y 轴相交于点C .(1)求反比例函数和一次函数解析式; (2)直接写出:不等式mkx b x+>解集是______; (3)依据相关数据求AOB 的面积.22.如图 菱形OABC 的边OA 在y 轴正半轴上 点B 的坐标为()48,.反比例函数11k y x=的图象经过菱形对角线AC OB ,的交点D 设直线OC 的解析式为22y k x =.(1)求反比例函数的解析式; (2)求菱形OABC 的边长;(3)请结合图象直接写出不等式120k k x x-<的解集. 23.如图▱OABC 的顶点O 与坐标原点重合 边OA 在x 轴正半轴上 60AOC ∠=︒2OC = 反比例函数()0ky x x=>的图像经过顶点C 与边AB 交于点D.(1)求反比例函数的表达式.(2)尺规作图:作OCB ∠的平分线交x 轴于点E.(保留作图痕迹 不写作法) (3)在(2)的条件下 连接DE 若DE CE ⊥ 求证:AD AE =. 24.如图 已知一次函数26y x =+与反比例函数()0ky x x=>的图象交于点()1,A m 与x 轴交于点B .(1)填空:m 的值为______ 反比例函数的解析式为______; (2)直接写出当0x >时 26kx x+<的解集; (3)点P 是线段AB 上一动点(不与A 、B 点重合) 过P 作直线PM x ∥轴交反比例函数的图象于点M 连接BM .若PMB △的面积为S 求S 的取值范围.25.如图 已知抛物线2y x bx =+与x 轴交于O (4,0)A 两点 点B 的坐标为(0,3)-. (1)求抛物线的对称轴;(2)已知点P 在抛物线的对称轴上 连接OP BP .若要使OP BP +的值最小 求出点P 的坐标;(3)将抛物线在x 轴下方的部分沿x 轴翻折 其余部分保持不变 得到一个新的图象.当直线(0)y x m m =+≠与这个新图象有两个公共点时 在反比例函数y mx=的图象中y 的值随x 怎样变化?判断并说明理由.26.如图 在平面直角坐标系中正六边形ABCDEF 的对称中心P 在反比例函数()10,0ky k x x=>>的图象上 边AB 在x 轴上 点F 在y 轴上 已知23AB =.(1)判断点E 是否在该反比例函数的图象上 请说明理由;(2)求出直线EP :()20y ax b a =+≠的解析式 并根据图象直接写出当0x >时 不等式kax b x+>的解集. 27.如图① 有一块边角料ABCDE 其中AB BC DE EA 是线段 曲线CD 可以看成反比例函数图象的一部分.测量发现:90A E ∠=∠=︒ 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4.(1)小宁把A B C D E 这5个点先描到平面直角坐标系上 记点A 的坐标为()1,0-;点B 的坐标为()1,1-.请你在图②中补全平面直角坐标系并画出图形ABCDE ; (2)求直线BC 曲线CD 的函数表达式;(3)小宁想利用这块边角料截取一个矩形MNQP 其中M N 在AE 上(点M 在点N 左侧)点P 在线段BC 上 点Q 在曲线CD 上.若矩形的面积是53则=_________.参考答案1.答案:B解析:将三点坐标分别代入函数解析式8y x=得: 182x = 解得14x =; 28-1x =解得28x =-; 384x =解得; 824-<<故选:B. 2.答案:C解析:⊥点()26-,在函数ky x=的图象上 ⊥2(6)120k =⨯-=-< ⊥函数ky x=位于第二、四象限 在每个象限内 y 的值随x 的增大增大 ⊥()341212-⨯-=≠-⊥该函数的图象不经过点()34--,把=1x -代入12y x=求得12y = ⊥当10x -<<时 12y > 综上 只有选项C 说法正确 故选:C. 3.答案:A解析:当0a >时 一次函数图像经过第一、二、三象限 反比例函数图像位于一、三象限 可知A 符合题意;32x =231x x x ∴<<当0a <时 一次函数图像经过第二、三、四象限 反比例函数图像位于二、四象限 可知B C D 不符合题意.故选:A.4.答案:A解析:如图所示 作MN BA ⊥交BA 的延长线于N则12AMB S BA MN =⋅设点A 的坐标为16a a ⎛⎫- ⎪⎝⎭, <0aAB 所在直线垂直x 轴于点CB ∴点坐标为6a a ⎛⎫- ⎪⎝⎭,16610AB a a a ⎛⎫∴=---=- ⎪⎝⎭ MN a =()11101105222ABM S AB MN a a a a ⎛⎫⎛⎫∴=⋅=⨯-⨯=⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭故选:A.5.答案:A解析:将OA 绕O 点顺时针旋转90︒到OC 连接AB 、CB作AM y ⊥轴于MCN x ⊥轴于N点A 的坐标为()3,53AM ∴= 5OM =45AOB ∠=︒45BOC ∠=︒∴在AOB 和COB △中OA OC AOB COBOB OB =⎧⎪∠=∠⎨⎪=⎩(SAS)AOB COB ∴△≌△AB CB ∴=90AOM AON CON AON ∠+∠=︒=∠+∠AOM CON ∴∠=∠ 在AOM 和CON 中AOM CON AMO ONCOA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩ (AAS)AOM CON ∴△≌△3CN AM ∴== 5ON OM == (5,3)C ∴-点A 为反比例函数(0)k y x x=>图象上的点 3515k ∴=⨯= 15y x ∴=设B 点的坐标为15(,)m m AB CB =22221515(3)(5)(5)(3)m m m m ∴-+-=-++解得215m =(负数舍去)15215,B ⎛∴ ⎝⎭故选A.6.答案:B解析:作AC y ⊥轴于C BD y ⊥轴于D 如图点A 、B 分别在反比例函数1(0)y x x => 4(0)y x x=->的图象上 11122OAC S ∆∴=⨯= 1|4|22OBD ∆=⨯-=OA OB ⊥90AOB ∠=︒∴90AOC BOD ∴∠+∠=︒AOC DBO ∴∠=∠Rt AOC Rt OBD ∴∆∆∽ ∴212()2AOC OBD S OA S OB ∆∆== ∴12OA OB =. ∴2OB OA=. 故答案为B. 7.答案:B解析:设(0,)A b 根据题意(2,)C b - (2,2)B b -+点D 是AB 的中点(1,1)D b ∴-+点C 、D 在(k 0,x 0)k y x=≠>的图象上 2(1)k b b ∴=-=-+解得1b =22k b ∴=-=-故选:B.8.答案:C解析:设图象过蓄电池的电压是A 、B 选项正确 不符合题意;当=6ΩR 时 (A 6010)6I ==∴C 选项错误 符合题意;当10I =时 6R =由图象知:当10A I ≤时 6R ≥Ω∴D 选项正确 不符合题意;故选:C.9.答案:B解析:作CE y ⊥轴于点E 交双曲线于点G 作DF x ⊥轴于点F在24y x =-+中令0x = 解得4y =∴B 的坐标是(0,4)令0y = 解得2x =∴A 的坐标是(2,0)kI R =(5,12)60k ∴=60I R ∴=∴60V ∴4OB ∴= 2OA =90BAD ∠=︒90BAO DAF ∴∠+∠=︒直角ABO △中90BAO OBA ∠+∠=︒DAF OBA ∴∠=∠在OAB △和FDA △中DAF OBA BOA AFD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)OAB FDA ∴≌△△同理 OAB FDA BEC ≌≌△△△ 4AF OB EC ∴=== 2DF OA BE ===∴D 的坐标是(6,2) C 的坐标是(4,6)点D 在双曲线(0)k y k x=≠上 6212k ∴=⨯=∴函数的解析式是:12y x =把6y =代入12y x=得:2x = 422a ∴=-=故选B.10.答案:C解析:直线与x 轴 y 轴分别交于点A B(1,0)A ∴ (0,2)B -作EF x ⊥轴于F 如图所示:22y x =-四边形是平行四边形在和中E 点刚好在反比例函数图像上设C 的纵坐标为hABDE AE BD ∴=//DE AB DAE ADB ∴∠=∠AEF △DBO △EAF BDO AFE DOB AE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)AEF DBO ∴≌△△2EF OB ∴==AF OD =1DF OA ∴==(,)E m n 2m AD ∴=+2n =2(2)k mn AD ∴==+122AD k ∴=-//DE BC AED CED S S ∴=△△()11122222ACD CED ACD AED ACED S S S S S AD h AD AD h ∴=+=+=⋅+⋅=+四边形△△△△()12ACED S AD AD n =+四边形122h AD k ∴==-C 的纵坐标为代入得解得反比例函数图像经过点C 解得 20k =(舍去) 12k∴=故选:C.11.答案:D解析:有题意可知 当3y =时 33x= 解得=1x - ∴直线y kx =与双曲线3y x=在第二象限交点的坐标为1,3)- 由中心对称可得 直线y kx =与双曲线3y x=在第四象限交点的坐标为3)- ∴观察图象可得 不等式3kx x<的解集为10x <<或1x >. 故选:D.12.答案:B解析:由函数图象可知:当物距为45.0cm 时 像距为13.0cm 故选项A 说法正确;由函数图象可知:当像距为15.0cm 时 物距为300cm . 放大率为15.00.530.0= 故选项B 说法错误;由函数图象可知:物距越大 像距越小 故选项C 说法正确;由题意可知:当透镜的放大率为1时 物距和像距均为20cm 故选项D 说法正确 故选:B.13.答案:B解析:A.由图3得:当0h =时 0p = 故此项说法正确;122-22y x =-12222x -=-14x k =11(,2)42C k k ∴-(0)k y k x=>11(2)42k k k ∴-=112k =B.当报警器刚好开始报警时 260.310R =+ 解得210R =Ω 由图2可求得:2800R F =80010F∴= 解得80F N = 故此项说法错误; C.当报警器刚好开始报警时 由上得80F N = 则有800.01p =⨯ 8P p k a ∴= 由图3求得10p h = 810h = 解得:0.8h = 故此项说法正确;D.当报警器刚好开始报警时:1260.3R R =+ 1220R R ∴+=Ω 当1h =时 10110kPa p =⨯= 100000.01100F N ∴=⨯= 28008100R ==Ω 120812R ∴=-=Ω 故此项说法正确. 故选:B.14.答案:20h x = 解析:根据题意 得240x h ππ⋅= ⊥20h x=. 故答案为:20h x=. 15.答案:12m > 解析:由题意得 反比例函数12m y x -=的图象在二、四象限内 则120m -< 解得12m >. 故答案为12m >. 16.答案:213y y y << 解析:反比例函数2(1k k y x+=为常数) 210k +> ∴该函数图象在第一、三象限 在每个象限内y 随x 的增大而减小点1(1,)A y -、1(4B 2)y 、3(1,)C y 都在反比例函数2(1k k y x +=为常数)的图象上 114-<- 点A 、B 在第三象限 点C 在第一象限213y y y ∴<<故答案为:213y y y <<.17.答案:-3<x <0或x >3 解析:⊥直线y =kx 与双曲线y =m x的两个交点分别为P 和P ′ P (-3 1) ⊥P ′的坐标为(3 -1)当mx >kx 时 x 的取值范围为-3<x <0或x >3故答案为:-3<x <0或x >3. 18.答案:48解析:如图所示:过A '作EF OC ⊥于F 交AB 于E⊥90OA D '∠=︒90OA F DA E ∴∠'+∠'=︒⊥90A F AOF O ∠'+∠'=︒D AOF AE ∴'=∠'∠D A FO AE '=∠∠'A OF DA E ∴''∠△△设A '(m n )OF m ∴= A F n '=.正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10点D 是边AB 上靠近点A 的三等分点∴ 103DE m = 10A E n '=-.310103m n m m ==-- 解得:m =6 n =8. ∴A '(6,8) ∴ 反比例函数中k =xy (0k ≠)=48 故答案为:48.19.答案:9解析:据题意可知(0,2)B 设(,)Cx y 52,sin OBC S BOC =∠=△1222x ∴⨯= 52xOC = 解得2,25x OC ==2225OC x y =+=即2425y +=得4y = 故(2,4)C 将(2,4)C 代入直线12y k x =+ 双曲线2(0)k y x x => 得到 121,8k k == 故12189k k +=+= 故答案为:9.20.答案:(0,22023解析:联立1y xy x =⎧⎪⎨=⎪⎩解得1x =由题意可知145AOB ∠=︒111B A OA ⊥11OA B ∴△为等腰直角三角形1122OB OA ∴==过2A 作22A H OB ⊥交y 轴于H 则容易得到21A H B H = 设21A H B H x == 则()2,2A x x +()21x x ∴+=解得121x = 221x =-(舍去)2121A H B H ∴== 1212222B B B H ==2222222OB ∴=+=同理可得323OB =则2n OB n =即(0,2n B n(20230,22023B ∴故答案为:(0,22023. 21.答案:(1)2y x = 1y x =+ (2)1x >或20x -<<(3)32解析:(1)反比例函数m y x =的图象过(2,1)--∴反比例函数的解析式为:2y x = 点(1),A n 在反比例函数图象上∴12n ⨯=∴2n =∴点A 的坐标为(1,2)将点A B 坐标代入一次函数y kx b =+中得221k b k b +=⎧⎨-+=-⎩解得11k b =⎧⎨=⎩∴一次函数的解析式为:1y x =+.(2)根据图象可知 不等式0m kx b x+>>的解集是:1x >或20x -<<. 故答案为:1x >或20x -<<; (3)过点A 作AG y ⊥轴于点G 过点B 作BH y ⊥轴于点H 如下图所示:一次函数1y x =+与y 轴相交于点C∴C 点坐标为(0,1)∴1OC =A 点坐标为(1,2)∴1AG =B 点坐标为(2,1)--∴2BH =∴11123222AOB AOC BOC S S S ⨯⨯=+=+=△△△. 22.答案:(1)18y x = (2)5 (3)463x <或63x << 解析:(1)⊥菱形OABC 的对角线交于点D⊥OD DB =⊥点B 的坐标为()48,⊥点D 的坐标为()24, 又⊥反比例函数11k y x=经过点D ⊥1248k =⨯= ⊥18y x =; (2)过点B 作BE y ⊥轴于点E设OA AB a == 则8AE a =- 4BE =在Rt ABE 中222BE AE AB += 即()22248x x +-= 解得:5x =⊥菱形OABC 的边长为5;(3)⊥点B 的坐标为()48, 5BC =⊥点C 的坐标为()43,代入22y k x =得:234k = 解得:234k =⊥234y x =令1y y = 则834x x = 解得:63x =±结合图象 不等式120k k x x -<的解集为463x <或463x <<.23.答案:(1))30y x =>(2)见解析(3)见解析解析:(1)过点C 作CF OA ⊥于点F 如解图所示.在Rt COF △中2OC = 60COF ∠=︒30sin 6023CF C ∴=⋅==︒1cos60212OF OC =⋅︒=⨯=.(1,3C ∴. 把(3C 代入反比例函数()0ky x x =>中得3k =∴反比例函数的表达式为)30y x =>.(2)如解图所示 所作射线CE 即为所求.(3)证明:在OABC 中//OC AB //CB OA .60AOC ∠=︒120OCB OAB ∴∠=∠=︒. CE 平分OCB ∠60OCE BCE OEC ∴∠=∠=∠=︒.DE CE ⊥90CED ∴∠=︒.180609030AED ∴∠=︒-︒-︒=︒.1801203030ADE ∴∠=︒-︒-︒=︒.AED ADE ∴∠=∠.AD AE ∴=.24.答案:(1)8 8y x= (2)01x << (3)S 的取值范围是2504S <≤ 解析:(1)⊥一次函数26y x =+的图象经过点()1,A m ⊥268m =+=⊥点()18A ,⊥反比例函数()0k y x x =>的图象经过点()18A , ⊥188k =⨯=⊥反比例函数的解析式为8y x=; 故答案为:8 8y x =;(2)观察图象得 26k x x+<的解集为1x <<; (3)设点P 的纵坐标为n ⊥点P 在线段AB 上 点M 在8y x =的图象上 ⊥0n << 点P 的横坐标为62n -⊥PM x ∥轴⊥点M 的坐标为8n n ⎛⎫ ⎪⎝⎭, ⊥862n MP n -=. ⊥()21186125322244PMBn S MP n n n n -⎛⎫=⨯⨯=⨯-⨯=--+ ⎪⎝⎭. ⊥08n << 且104-<⊥当03n <<时 S 随n 的增大而增大 当38n ≤<时 S 随n 的增大而减小. ⊥当3n =时 △的面积最大 最大值为254 ⊥S 的取值范围是2504S <≤. 25.答案:(1)抛物线的对称轴为直线2x =(2)点P 的坐标为32,2⎛⎫- ⎪⎝⎭ (3)y 的值随x 的增大而增大解析:(1)由题意得:2440b +=4b ∴=-∴函数关系式为:24y x x =-∴对称轴为:4222b x a -=-=-=; (2)由题意得:OP PB +的值最小 实际就是在同一直线一旁有两点 在直线上求点只要取O 点关于直线2x =对称的点 过AB 的直线与直线的交点就是点P设过AB 的直线为 由在上()4,0A 2x =3y kx =-()4,0B 3y kx =-得34k =334AB y x =-P 在直线2x =上332342y ∴=⨯-=-32,2P ⎛⎫∴- ⎪⎝⎭; (3)24y x x =-在x 轴下方的部分沿x 轴翻转当直线()0y x m m =+≠有两个不相同的解0∴∆> 2340m -⨯> 得94m <又0> 904m ∴<< 在反比例函数m y x=中 904m k <=< y 随x 的增大而减小. 26.答案:(1)点E 在该反比例函数的图象上 理由见解析(2)39y x =+ 323x <<解析:(1)六边形ABCDEF 为正六边形 23AB =23AB AF ∴== 60FAO =︒cos 603OA AF ∴=⋅︒= sin603AF =⋅︒=()0,3F ∴ )3,0A 连接PF PA六边形ABCDEF 为正六边形PE PF PA PB ∴=== 60EPF FPA APB ∠=∠=∠=︒EFP ∴△ FAP △ ABP △为等边三角形23AF PF ∴==()23,3P ∴ 把()23,3P 代入1k y x =得:23=解得:63k =043k ∴=-∴反比例函数表达式为163y x=. EFP △ FAP △为等边三角形∴点E 和点A 关于PF 对称)3,6E ∴ 把3x =代入163y x =得:13663y == ∴点E 在该反比例函数的图象上; (2)把()3,6E ()23,3P 代入()20y ax b a =+≠得: 6333a b a b ⎧=+⎪⎨=+⎪⎩ 解得:39a b ⎧=-⎪⎨=⎪⎩∴直线EP 的解析式为:39y x =+()3,6E ()23,3P由图可知 当323x <<时 k b x +>. 27.答案:(1)见解析(2)直线BC 的函数表达式3522y x =曲线的函数表达式4y x= (3)72 解析:(1)根据点A 的坐标为()1,0- 点B 的坐标为()1,1- 补全x 轴和y 轴 90A E ∠︒∠== 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4 ()1,4C ∴ ()4,1D根据AB BC DE EA 是线段 曲线CD 是反比例函数图象的一部分 画出图形ABCDE如图所示 (2)设线段BC 的解析式为y kx b =+ 把()1,1B - ()1,4C 代入得 14k b k b -+=⎧⎨+=⎩解得 3252k b ⎧=⎪⎪⎨⎪=⎪⎩3522y x ∴=+设曲线CD 的解析式为'k y x =把()1,4C 代入得 '41k = '4= 4y x ∴=; (3)设(),0M m 则35,22P m m ⎛⎫+ ⎪⎝⎭ 435,352222Q m m ⎛⎫ ⎪+ ⎪ ⎪+⎝⎭3522PM m ∴=+ 43522m m =-+354352222PM PQ m m m ⎛⎫ ⎪⎛⎫⋅=+- ⎪ ⎪⎝⎭ ⎪+⎝⎭23554223m m ∴--= 2915140m m ∴+-= 23m ∴= 或73m =-(舍去) 32572322PM ∴=⨯+=. 故答案为:72.。

苏教版六年级下册数学正比例和反比例 试卷 (含答案)

苏教版六年级下册数学正比例和反比例 试卷 (含答案)

苏教版六年级下册数学正比例和反比例试卷 (含答案)第6章正比例和反比例单元测试卷一.选择题(共16小题)1.已知,当y一定时,x与z()。

A。

成正比例关系 B。

成反比例关系 C。

不成比例关系2.下面x和y成正比例关系的是()。

A。

y/x = 常数 B。

3x = 4y C。

y = x - 33.如图表示的数量之间的关系是()。

A。

正比例 B。

反比例 C。

不成比例4.正方形的周长和它的边长()。

A。

成正比例 B。

成反比例 C。

不成比例5.汽车从甲地开往乙地,汽车行驶的速度与行驶的时间()。

A。

成正比例 B。

成反比例 C。

不成比例6.下列各种关系中,反比例关系的是()。

A。

平行四边形的面积一定,它的底与高B。

三角形的高不变,它的底和面积C。

圆的面积固定,它的半径与圆周率7.XXX从家到学校,她每小时所走的路程与所用时间()。

A。

成正比例 B。

成反比例 C。

不成比例 D。

无法确定8.圆的周长和它的直径()。

A。

成正比例 B。

成反比例 C。

不成比例 D。

无法判断9.下面各选项中的两种量,成正比例关系的是()。

A。

当xy = 8时,x和y B。

购买物品的总价和数量C。

正方形的周长和它的边长 D。

圆锥的高一定,体积和底面半径10.XXX从家里去学校,所需时间与所行速度()。

11.下面几句话中,正确的有()。

①路程一定,速度和时间成反比例;②正方形的面积和边长成正比例;③三角形面积一定,底和高成反比例;④x+y=25,x与y成反比例。

A。

①和② B。

①和③ C。

①和④ D。

③和④12.下面各题中,()成反比例关系。

A。

一本书看过的页数和剩余的页数B。

圆的周长和直径C。

长方形的面积一定,它的长和宽D。

行驶时间一定,速度和路程13.一本书,已经看的页数与剩余的页数如下表,它们()。

已看的页数剩余的页数10 9020 8030 7014.比例尺一定,图上距离与实际距离()。

A。

成正比例 B。

成反比例 C。

可成正比例也可成反比例D。

苏教版六年级下册数学第6单元《正比例和反比例》测试卷附参考答案(典型题)

苏教版六年级下册数学第6单元《正比例和反比例》测试卷附参考答案(典型题)

苏教版六年级下册数学第6单元《正比例和反比例》测试卷一.选择题(共6题, 共12分)1.如果x=y 那么y:x=()。

A.1: /B./: 1C.3: 42.利率一定, 本金和利息()。

A.不成比例B.成正比例C.成反比例3.下面各组中的两种量, 成正比例关系的是()。

A.圆的面积和局长。

B.圆桔的侧面积一定, 它的底面积和高。

C.正方形的面积和边长。

D.圆柱的高一定, 它的体积和底面积。

4.下面四句话中错误的有()句。

①教师节、儿童节、国庆节所在的月份都是小月。

②四个圆心角是90°的扇形可以拼成一个圆。

③如果两个质数的和仍是质数, 那么它俩的积一定是偶数。

④如果ab+4=40, 那么a与b成反比例。

A.1B.2C.3D.45.如果A×2=B÷3, 那么A∶B=()。

A.2∶3B.6∶1C.1∶66.将一个三角形按2: 1的比放大后, 面积是原来的()倍。

A.1B.2C.4D.8二.判断题(共6题, 共12分)1.a和b是两个不同的非0自然数, 如果/=/,那么a一定小于b。

()2.在比例尺是/的地图上, 图上1厘米表示实际160千米。

()3.=,则x=。

()4.圆锥的底面积一定, 高和体积成正比例。

()5.长方体的高一定, 体积与底面积成正比例。

()6./, 4, /和5能组成比例。

()三.填空题(共6题, 共8分)1.一个车间有两个小组, 第一组人数与第二组人数的比是5:3, 如果第一组有14人调到第二组后, 这时第一组与第二组人数的比是1:2, 这个车间共有()人。

2.一根48cm长的铁丝, 刚好围成一个长方形。

围成的长方形的长和宽的比是5:3, 它的面积是()cm2。

3.甲乙两人分别从A.B两地同时出发, 相向而行。

出发时他们的速度比是3:2, 他们第一次相遇后甲的速度提高了20%, 乙的速度提高了30%, 这样当甲到达B地时, 乙离A地还有14千米, AB两地之间的距离是()千米。

苏教版六年级下册数学第6章《正比例和反比例》单元测评必刷卷(原版)

苏教版六年级下册数学第6章《正比例和反比例》单元测评必刷卷(原版)

苏教版六年级下册数学单元测评必刷卷 第6章《正比例和反比例》测试 +30分题号 一 二 三 四 五 B 卷 总分 得分A 卷 基础训练(100 分)一、选择题(每题2分,共18分)1.(江苏六年级单元测试)在C =2πr 中,当C 一定时,π和r ( )。

A .成正比例B .成反比例C .不成比例2.(江苏六年级)下列等式中,成正比例的是( )。

A .a÷b =5B .a +b =12C .a×b =303.(江苏六年级单元测试)下列各式中,a 和b 成反比例的是( )。

A .a×3b=1B .a×8=5bC .9a =6bD .85a b 4.(江苏六年级单元测试)张佳的淘宝店儿在“三八节”这天准备了足量的服装,卖出的件数和剩下的件数( )。

A .成正比例B .成反比例C .不成比例5.(江苏六年级单元测试)包装盒的长是33厘米,宽是4厘米,高是1厘米,圆柱形零件的底面直径是2厘米,高是1厘米,这个包装盒内最多能放( )个零件。

A .25B .32C .206.(江苏六年级单元测试)下面图( )表示的是成正比例关系的图像。

A .B .C .D .7.(全国六年级期末)王师傅一天织布6小时,他织1米布所用的时间和织布的总米数( )。

A .成正比例B .成反比例C .不成比例8.(江苏六年级单元测试)甲、乙是两个成反比例的量,当甲减少20%时,乙( )。

A .增加20%B .减少20%C .增加25%D .减少25%9.(新洲区月考)下面中两种量成正比例关系,中两种量成反比例关系.A.甲、乙两地相距120千米,汽车每小时所行路程和时间B.圆的周长和圆周率C.总钱数一定,花了的钱和剩余的钱D.正方体一个面的面积和它的表面积.二、填空题(每题2分,共20分)1.(江苏六年级单元测试)一辆自行车行驶的路程与它车轮转的圈数成(______)比例。

2.(江苏六年级期中)已知x=y(x,y都不为0),则x∶y=(________)∶(________);若0.4 x=y(x≠0),则x与y成(________)比例。

小学数学“正比例和反比例”过关测试题(3套)

小学数学“正比例和反比例”过关测试题(3套)

比习题精编1一、对号入座。

1.( )÷10=0.6=( )%=( ):( )=()9 2.把158:43化成最简单的比是( );43千克: 400克的比值是( )。

3.甲乙两数的比是3:5,甲数是乙数的( )%,乙数是甲数的( )%,甲数与两数和的比是( )。

4.一杯400克的糖水,含糖率是20%,糖与糖水的比是( ),再加入20克糖,糖与糖水的比是( )。

5.把3:8的前项加上6,要使比值不变,后项可以乘( )或加( )二、慎重选择。

1.如果减数相当于被减数的53,那么差与减数的比是( )。

A 2:3B 2:5C 3:5D 3:22.同一段路程,甲车行完要4小时,乙车行完要6小时,甲、乙两车速度的最简比是( )A 4:6B 6:4C 2:3D 3:23.甲乙两个正方体棱长的比是1:2。

它们的表面积的比是( ),体积比是( );A 1:2B 1:4C 1:6D 1:84.一个三角形三个内角的度数比是2:3:5,这是()三角形。

A 锐角B 钝角C 直角 D无法确定五、解决问题。

1.一种药水是把药粉和水按照1∶100的比例配成的.要配成这种水4040千克,需要药粉多少千克?2.一个长方形周长50米,长与宽的比是3∶2,这个长方形的面积是多少?3.建筑工人用2份水泥、3份沙子和5份石子配置一种混凝土.配置6000千克这种混凝土,需要水泥、沙子和石子各多少千克?4.加工一批零件,已完成个数与零件总个数的比是1:3。

如果再加工15个,那么完成个数与剩下的个数同样多,这批零件共有多少个?5.画一个长3厘米,宽2厘米的长方形,把这个长方形按2:1放大后,画下来。

想一想:这两个长方形的面积的比是多少?比例尺习题精编2一、对号入座。

1.在比例尺是1:4000000的地图上,图上距离1厘米表示实际距离()千米。

也就是图上距离是实际距离的1,实际距离是图上距离的()倍。

()0 20 402.一幅图的比例尺是,那么图上的1厘米表示实际距离();实际距离50千米在图上要画()厘米。

初中数学反比例函数基础测试题含答案

初中数学反比例函数基础测试题含答案

初中数学反比例函数基础测试题含答案一、选择题1.如图,正方形OABC 的边长为6,D 为AB 中点,OB 交CD 于点Q ,Q 是y =k x上一点,k 的值是( )A .4B .8C .16D .24【答案】C【解析】【分析】 延长根据相似三角形得到:1:2BQ OQ =,再过点Q 作垂线,利用相似三角形的性质求出QF 、OF ,进而确定点Q 的坐标,确定k 的值.【详解】解:过点Q 作QF OA ⊥,垂足为F ,OABC Q 是正方形,6OA AB BC OC ∴====,90ABC OAB DAE ∠=∠=︒=∠,D Q 是AB 的中点,12BD AB ∴=, //BD OC Q , OCQ BDQ ∴∆∆∽,∴12BQ BD OQ OC ==, 又//QF AB Q ,OFQ OAB ∴∆∆∽,∴22213QF OF OQ AB OA OB ====+, 6AB =Q ,2643QF ∴=⨯=,2643OF =⨯=, (4,4)Q ∴,Q 点Q 在反比例函数的图象上,4416k ∴=⨯=,故选:C .【点睛】本题考查了待定系数法求反比例函数、相似三角形的性质和判定,利用相似三角形性质求出点Q 的坐标是解决问题的关键.2.如图,点A 在双曲线4y x =上,点B 在双曲线(0)k y k x=≠上,AB x P 轴,交y 轴于点C .若2AB AC =,则k 的值为( )A .6B .8C .10D .12【答案】D【解析】【分析】 过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,得出四边形ACOD 是矩形,四边形BCOE 是矩形,得出ACOD S 矩形=4,BCOE S k =矩形,根据AB=2AC ,即BC=3AC ,即可求得矩形BCOE 的面积,根据反比例函数系数k 的几何意义即可求得k 的值.【详解】过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,∵AB ∥x 轴,∴四边形ACOD 是矩形,四边形BCOE 是矩形,∵AB=2AC ,∴BC=3AC ,∵点A 在双曲线4y x=上, ∴ACOD S 矩形=4,同理BCOE S k =矩形,∴矩形3BCOE ACOD S S =矩形矩形=12,∴k=12,故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,反比例系数k 的几何意义,作出辅助线,构建矩形是解题的关键.3.下列函数中,当x >0时,函数值y 随自变量x 的增大而减小的是( )A .y =x 2B .y =xC .y =x+1D .1y x = 【答案】D【解析】【分析】需根据函数的性质得出函数的增减性,即可求出当x >0时,y 随x 的增大而减小的函数.【详解】解:A 、y =x 2是二次函数,开口向上,对称轴是y 轴,当x >0时,y 随x 的增大而增大,错误; B 、y =x 是一次函数k =1>0,y 随x 的增大而增大,错误;C 、y =x+1是一次函数k =1>0,y 随x 的增大而减小,错误;D 、1y x=是反比例函数,图象无语一三象限,在每个象限y 随x 的增大而减小,正确; 故选D .【点睛】本题综合考查了二次函数、一次函数、反比例函数的性质,熟练掌握函数的性质是解题的关键.4.如图直线y =mx 与双曲线y=k x交于点A 、B ,过A 作AM ⊥x 轴于M 点,连接BM ,若S △AMB =2,则k 的值是( )A.1 B.2 C.3 D.4【答案】B【解析】【分析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=2S△AOM并结合反比例函数系数k的几何意义得到k的值.【详解】根据双曲线的对称性可得:OA=OB,则S△ABM=2S△AOM=2,S△AOM=12|k|=1,则k=±2.又由于反比例函数图象位于一三象限,k>0,所以k=2.故选B.【点睛】本题主要考查了反比例函数y=kx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.5.给出下列函数:①y=﹣3x+2:②y=3x;③y=﹣5x:④y=3x,上述函数中符合条件“当x>1时,函数值y随自变量x增大而增大”的是()A.①③B.③④C.②④D.②③【答案】B【解析】【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】解:①y=﹣3x+2,当x>1时,函数值y随自变量x增大而减小,故此选项不符合题意;②y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项不符合题意;③y=﹣5x,当x>1时,函数值y随自变量x增大而增大,故此选项符合题意;④y=3x,当x>1时,函数值y随自变量x增大而增大,故此选项符合题意;故选:B.【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键.6.在平面直角坐标系xoy 中,函数()20y x x =<的图象与直线1l :()103y x b b =+<交于点A ,与直线2l :x b =交于点B ,直线1l 与2l 交于点C ,记函数()20y x x =<的图象在点A 、B 之间的部分与线段AC ,线段BC 围城的区域(不含边界)为W ,当4233b -≤≤-时,区域W 的整点个数为( )A .3个B .2个C .1个D .没有【答案】D【解析】【分析】根据解析式画出函数图象,根据图形W 得到整点个数进行选择.【详解】∵()20y x x =<,过整点(-1,-2),(-2,-1),当b=43-时,如图:区域W 内没有整点,当b=23-时,区域W 内没有整点,∴4233b-≤≤-时图形W增大过程中,图形内没有整点,故选:D.【点睛】此题考查函数图象,根据函数解析式正确画出图象是解题的关键.7.若一个圆锥侧面展开图的圆心角是270°,圆锥母线l与底面半径r之间的函数关系图象大致是()A.B.C.D.【答案】A【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长得到2πr=270180lπ⋅⋅,整理得l=43r(r>0),然后根据正比例函数图象求解.【详解】解:根据题意得2πr=270180lπ⋅⋅,所以l=43r(r>0),即l与r为正比例函数关系,其图象在第一象限.故选A.【点睛】本题考查圆锥的计算;函数的图象.8.如图,一次函数1y ax b =+和反比例函数2k y x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x >【答案】B【解析】【分析】 根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方, ∴使12y y >成立的x 取值范围是2x <-或04x <<,故选B .【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.9.如图,ABDC Y 的顶点,A B 的坐标分别是()(), 0,3 1, 0A B -,顶点,C D 在双曲线k y x=上,边BD 交y 轴于点E ,且四边形ACDE 的面积是ABE ∆面积的3倍,则k 的值为:( )A .6-B .4-C .3-D .12-【答案】A【解析】【分析】 过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,利用平行四边形的性质证明,DCF ABO ∆≅∆利用平移写好,C D 的坐标,由四边形ACDE 的面积是ABE ∆面积的3倍,得到2,DB BE =利用中点坐标公式求横坐标,再利用反比例函数写D 的坐标,列方程求解k .【详解】解:过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,则,CF DF ⊥ABDC QY ,,CDF BAO ∴∠∠的两边互相平行,,AB DC =CDF BAO ∴∠=∠,90,DFC BOA ∠=∠=︒Q,DCF ABO ∴∆≅∆,,CF BO DF AO ∴== 设(,),k C m m由()(), 0,3 1, 0A B -结合平移可得:(1,3)k D m m ++, Q 四边形ACDE 的面积是ABE ∆面积的3倍,11()322BD BE DE CA h h BE ∴+=⨯⨯, ,,BD BE h h AC BD ==Q3DE AC BE ∴+=,4,DE BD BE BE ∴++=2,DB BE ∴=(1,3),(1,0),0,E k D m B x m++=Q ∴ 由中点坐标公式知:110,2m ++= 2m ∴=- ,(1,)1k D m m ++Q , 3212k k ∴=+-+-, 6.k ∴=-故选A .【点睛】本题考查的是反比例函数的图像与性质,平行四边形的性质,平移性质,中点坐标公式,掌握以上知识点是解题关键.10.下列函数:①y=-x ;②y=2x ;③1y x=-;④y=x 2 . 当x<0时,y 随x 的增大而减小的函数有( )A .1 个B .2 个C .3 个D .4 个 【答案】B【解析】【分析】分别根据一次函数、反比例函数及二次函数的性质进行逐一判断即可.【详解】一次函数y =-x 中k <0,∴y 随x 的增大而减小,故本选项正确;∵正比例函数y =2x 中,k =2,∴当x <0时,y 随x 的增大而增大,故本选项错误;∵反比例函数1y x=中,k =-1<0,∴当x <0时函数的图像在第二象限,此时y 随x 的增大而增大,故本选项错误; ∵二次函数y =x 2,中a =1>0,∴此抛物线开口向上,当x <0时,y 随x 的增大而减小,故本选项正确.故选B .【点睛】本题考查的是一次函数、反比例函数及二次函数的性质,解题关键是根据题意判断出各函数的增减性.11.如图,平行于x 轴的直线与函数y =1k x(k 1>0,x >0),y =2k x (k 2>0,x >0)的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若△ABC 的面积为6,则k 1﹣k 2的值为( )A .12B .﹣12C .6D .﹣6【答案】A【解析】【分析】 △ABC 的面积=12•AB•y A ,先设A 、B 两点坐标(其y 坐标相同),然后计算相应线段长度,用面积公式即可求解.【详解】 解:设:A 、B 点的坐标分别是A (1k m ,m )、B (2k m ,m ), 则:△ABC 的面积=12•AB•y A =12•(1k m ﹣2k m )•m =6, 则k 1﹣k 2=12.故选:A .【点睛】此题主要考查了反比例函数系数的几何意义,以及图象上点的特点,求解函数问题的关键是要确定相应点坐标,通过设A 、B 两点坐标,表示出相应线段长度即可求解问题.12.如图,过反比例函数()0k y x x=>的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若2AOB S ∆=,则k 的值为( )A .2B .3C .4D .5【答案】C【解析】【分析】 根据2AOB S ∆=,利用反比例函数系数k 的几何意义即可求出k 值,再根据函数在第一象限可确定k 的符号.【详解】解:由AB x ⊥轴于点B ,2AOB S ∆=,得到122AOB S k ∆== 又因图象过第一象限, 122AOB S k ∆==,解得4k = 故选C【点睛】本题考查了反比例函数系数k 的几何意义.13.反比例函数k y x=在第一象限的图象如图所示,则k 的值可能是( )A .3B .5C .6D .8【答案】B【解析】【分析】 根据点(1,3)在反比例函数图象下方,点(3,2)在反比例函数图象上方可得出k 的取值范围,即可得答案.【详解】∵点(1,3)在反比例函数图象下方,∴k>3,∵点(3,2)在反比例函数图象上方, ∴3k <2,即k<6, ∴3<k<6,故选:B.【点睛】 本题考查了反比例函数的图象的性质,熟记k=xy 是解题关键.14.已知反比例函数k y x=的图象分别位于第二、第四象限,()11,A x y 、()22,B x y 两点在该图象上,下列命题:①过点A 作AC x ⊥轴,C 为垂足,连接OA .若ACO ∆的面积为3,则6k=-;②若120x x <<,则12y y >;③若120x x +=,则120y y +=其中真命题个数是( ) A .0B .1C .2D .3 【答案】D【解析】【分析】根据反比例函数的性质,由题意可得k <0,y 1=,,sin cos 22x x x ππ⎡⎤∃∈-≤⎢⎥⎣⎦,y 2=2k x ,然后根据反比例函数k 的几何意义判断①,根据点位于的象限判断②,结合已知条件列式计算判断③,由此即可求得答案.【详解】 ∵反比例函数k y x=的图象分别位于第二、第四象限, ∴k<0,∵()11,A x y 、()22,B x y 两点在该图象上, ∴y 1=,,sin cos 22x x x ππ⎡⎤∃∈-≤⎢⎥⎣⎦,y 2=2k x , ∴x 1y 1=k ,x 2y 2=k ,①过点A 作AC x ⊥轴,C 为垂足,∴S △AOC =1OC?AC 2=11x ?y k =322=, ∴6k =-,故①正确;②若120x x <<,则点A 在第二象限,点B 在第四象限,所以12y y >,故②正确; ③∵120x x +=,∴()121212120k x x k k y y x x x x ++=+==,故③正确, 故选D.【点睛】 本题考查了反比例函数的性质,反比例函数图象上点的坐标特征等,熟练掌握和灵活运用相关知识是解题的关键.15.若A (-3,y 1)、B (-1,y 2)、C (1,y 3)三点都在反比例函数y=k x (k >0)的图象上,则y 1、y 2、y 3的大小关系是( )A . y 1>y 2>y 3B . y 3>y 1>y 2C . y 3>y 2>y 1D . y 2>y 1>y 3 【答案】B【解析】【分析】反比例函数y=k x(k >0)的图象在一、三象限,根据反比例函数的性质,在每个象限内y 随x 的增大而减小,而A (-3,y 1)、B (-1,y 2)在第三象限双曲线上的点,可得y 2<y 1<0,C (1,y 3)在第一象限双曲线上的点y 3>0,于是对y 1、y 2、y 3的大小关系做出判断.【详解】∵反比例函数y=k x(k >0)的图象在一、三象限, ∴在每个象限内y 随x 的增大而减小,∵A (-3,y 1)、B (-1,y 2)在第三象限双曲线上,∴y 2<y 1<0,∵C (1,y 3)在第一象限双曲线上,∴y 3>0,∴y 3>y 1>y 2,故选:B .【点睛】此题考查反比例函数的图象和性质,解题关键在于当k >0,时,在每个象限内y 随x 的增大而减小;当k <0时,y 随x 的增大而增大,注意“在每个象限内”的意义,这种类型题目用图象法比较直观得出答案.16.反比例函数21k y x+=的图象上有两点()11,A a y -,()21,B a y +,若12y y <,则a 的取值范围( )A .1a <-B .1a >C .11a -<<D .这样的a 值不存在【答案】C【解析】【分析】由210k +>得出在同一分支上,反比例函数y 随x 的增大而减小,然后结合反比例函数的图象进行求解.【详解】210k +>Q ,∴在同一分支上,反比例函数y 随x 的增大而减小,11a a -<+Q ,12y y <,∴点A ,B 不可能在同一分支上,只能为位于不同的两支上,10a ∴-<且10a +>,11a ∴-<<,故选C .【点睛】本题考查反比例函数的图象与性质,熟练掌握反比例函数的性质是解题的关键,注意反比例函数的图象有两个分支.17.如图,矩形ABCD 的边AB 在x 轴上,反比例函数(0)k y k x=≠的图象过D 点和边BC 的中点E ,连接DE ,若△CDE 的面积是1,则k 的值是( )A .3B .4C .25D .6【答案】B【解析】【分析】 设E 的坐标是m n k mn =(,),, 则C 的坐标是2m n (,),求得D 的坐标,然后根据三角形的面积公式求得mn 的值,即k 的值.【详解】设E 的坐标是m n k mn =(,),,, 则C 的坐标是(m ,2n ),在mn y x = 中,令2y n =,解得:2m x =, ∵1CDE S =V ,∴111,12222m m n m n -=⨯=g 即 ∴4mn =∴4k =故选:B【点睛】本题考查了待定系数法求函数的解析式,利用mn 表示出三角形的面积是关键.18.已知反比例函数b y x=与一次函数y ax c =+有一个交点在第四象限,该交点横坐标为1,抛物线2y ax bx c =++与x 轴只有一个交点,则一次函数b c y x a a=+的图象可能是( ) A . B . C . D .【答案】B【解析】【分析】根据题意得b <0,a+c <0,240b ac =>,可得a <0,c <0,进而即可判断一次函数b c y x a a=+的图象所经过的象限. 【详解】 ∵反比例函数b y x=与一次函数y ax c =+有一个交点在第四象限, ∴反比例函数的图象在二、四象限,即b <0,∵该交点横坐标为1,∴y=a+c <0,∵抛物线2y ax bx c =++与x 轴只有一个交点, ∴240b ac -=,即:240b ac =>,∴a <0,c <0,∴0b a>,0c a >, ∴b c y x a a=+的图象过一、二、三象限. 故选B .【点睛】本题主要考查反比例函数与一次函数的图象和性质,掌握函数图象上点的坐标特征以及函数解析式的系数的几何意义,是解题的关键.19.如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数k yx =在第一象限内的图象经过点D,交BC于点E.若4AB=,2CEBE=,34ADOA=,则线段BC的长度为()A.1 B.32C.2 D.23【答案】B【解析】【分析】设OA为4a,则根据题干中的比例关系,可得AD=3a,CE=2a,BE=a,从而得出点D和点E 的坐标(用a表示),代入反比例函数可求得a的值,进而得出BC长.【详解】设OA=4a根据2CEBE=,34ADOA=得:AD=3a,CE=2a,BE=a∴D(4a,3a),E(4a+4,a)将这两点代入解析得;3444kaakaa⎧=⎪⎪⎨⎪=⎪+⎩解得:a=12∴BC=AD=32故选:B【点睛】本题考查反比例函数和矩形的性质,解题关键是用含有字母的式子表示出点D、E的坐标,然后代入解析式求解.20.若函数2myx+=的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2C.m>2 D.m<2【答案】B【解析】【分析】根据反比例函数的性质,可得m+2<0,从而得出m的取值范围.【详解】∵函数2myx+=的图象在其象限内y的值随x值的增大而增大,∴m+2<0,解得m<-2.故选B.。

八年级正比例和反比例比例练习题

八年级正比例和反比例比例练习题

八年级正比例和反比例比例练习题1. 正比例关系问题1:某汽车行驶600公里需要消耗30升汽油,如果行驶900公里,需要消耗多少升汽油?解答:设行驶900公里需要消耗的汽油量为x升。

根据正比例关系,可得以下比例:600公里 / 30升 = 900公里 / x升通过交叉乘积,得到:600x =解方程可得:x = 45因此,行驶900公里需要消耗45升汽油。

问题2:某商品的价格为20元,如果买3个,总金额是多少?解答:设买3个商品的总金额为y元。

根据正比例关系,可得以下比例:1个商品 / 20元 = 3个商品 / y元通过交叉乘积,得到:y = 60因此,买3个商品的总金额是60元。

2. 反比例关系问题1:工人A 2小时可以完成一项工作,如果工人B只有1小时的时间,能完成多少该项工作?解答:设工人B在1小时内完成的工作量为y。

根据反比例关系,可得以下比例:工人A的工作时间 / 工人B的工作时间 = 工人B的工作量 / 工人A的工作量通过交叉乘积,得到:2小时 / 1小时 = y / 1解方程可得:y = 2因此,工人B在1小时内能完成2个该项工作。

问题2:某项任务需要10个工人一起完成,如果只有5个工人能来,完成该任务需要多少时间?解答:设完成该任务需要的时间为t小时。

根据反比例关系,可得以下比例:工人数 / 时间 = 原先的工人数 / 原先的时间通过交叉乘积,得到:10个工人 / t小时 = 5个工人 / 1小时解方程可得:t = 2因此,如果只有5个工人能来,完成该任务需要2小时。

以上为八年级正比例和反比例比例练题的部分解答。

年级正比例和反比例比例练习题

年级正比例和反比例比例练习题

年级正比例和反比例比例练习题
正比例和反比例是数学中重要的概念,在年级研究中经常会遇到这两种类型的题目。

以下是一些年级正比例和反比例比例练题,希望能帮助你更好地理解这两种关系。

正比例题目
1. 一辆汽车以每小时60公里的速度行驶,求2小时内汽车行驶的路程。

解答:
设汽车行驶的路程为x公里,则根据正比例关系可得:
60公里/1小时 = x公里/2小时
解方程得:x = 60 * 2 = 120公里
2. 小明去超市买苹果,苹果的单价是每个2元。

如果小明买了5个苹果,他要支付的金额是多少?
解答:
设小明支付的金额为y元,则根据正比例关系可得:
2元/1个 = y元/5个
解方程得:y = 2 * 5 = 10元
反比例题目
1. 一辆车以每小时60公里的速度行驶,行驶1小时后发现油
箱中的油量减少了1/6。

求这辆车油箱的容量。

解答:
设油箱的容量为z升,则根据反比例关系可得:
60公里/1小时 = z升/1/6升
解方程得:z = 60 * (1/6) = 10升
2. 5个工人需要3天时间完成一项任务,如果再增加3个工人,那么完成该任务需要多少天?
解答:
设完成任务需要的天数为t天,则根据反比例关系可得:
5个工人/3天 = 8个工人/t天
解方程得:t = 3 * 5 / 8 = 1.875天,约等于1.88天
以上是一些年级正比例和反比例比例练题的解答,在解题过程中需要注意明确所给的条件,并正确运用正比例和反比例的概念。

希望这些题目对你的研究有所帮助!。

北师大版六年级数学下册《式与方程、正比例和反比例》测试卷(含答案)

北师大版六年级数学下册《式与方程、正比例和反比例》测试卷(含答案)

式与方程、正比例和反比例一、选择。

(每小题2分,共18分)1.下列是方程的是()。

A.3x-bB.0.5×4=2C.1.5-0.7x=0.1D.5x>72.王强家距植物园15km,在一张图纸上量得这两地间的距离是5cm。

这幅图的比例尺是()。

A.1∶3B.1∶3000C.1∶30000D.1∶3000003.根据线段图(如下图),所列方程正确的是()。

A.4m+20=280B.4m+40=280C.4m-40=280D.4m-20=2804.小兰的体重是30kg,正好比小梅轻25%,小梅的体重是多少千克?下面是四个同学列的式子,其中()是正确的。

淘气:30×(1-25%)笑笑:30÷(1-25%)妙想:设小梅的体重是x kg。

奇思:30÷4×3x-25%x=30A.淘气B.笑笑C.淘气和奇思D.笑笑和妙想5.x和y表示两个相关联的量,同时5x=7y(x、y均不为0),则x和y()。

A.成正比例B.成反比例C.不成比例D.无法判断6.小明每分走80m,小强每分走75m,小明家距离学校1200m,小强家距离学校1170m,两个人同时从家出发去学校,多少分后他们与学校之间的距离相等?若设x分后他们与学校之间的距离相等,则()。

A.80x+75x=1200+1170B.80x-75x=1200C.1200-80x=1170-75xD.1200-75x=1170-80x7.如图,正五边形的边长为a,正八边形的边长为b。

这两个图形的周长相等,那么下面比例一定正确的是()。

A.a∶b=5∶8B.a∶5=b∶8C.5∶a=b∶8D.b∶5=a∶88.如图,一个正方形被分成A、B、C、D四个部分。

其中,A和B的面积比是2∶3,B和C的面积比是2∶1,如果D的面积是42cm2,那么这个正方形的面积是()cm2。

A.126B.120C.105D.1409.下面两个相关联的量不成比例关系的是()。

新苏教版小学数学六年级下册第6单元《正比例与反比例》测试卷(共2套)含答案

新苏教版小学数学六年级下册第6单元《正比例与反比例》测试卷(共2套)含答案

新苏教版六年级下册第六单元《正比例与反比例》测试卷(一)姓名: 班级: 得分:一、选择题(5分)1.同时同地,竿高和影长().A.成正比例B.成反比例C.不成比例2.下面各组数量关系中,()之间成反比例关系A.汽车的行驶时间一定,行驶的路程和速度 B.三角形的面积一定,它的底和高C.订阅报刊的数量一定,报刊的单价和总价 D.没有一组数量关系成反比例3.下面成正比例的是()A.路程一定,速度和时间 B.比例尺一定,图上距离和实际距离C.体积一定,圆柱的底面积和高4.一本书,已看的页数与剩余的页数如下表,则已看的页数与剩余的页数()已看的页数10 20 30 …剩余的页数90 80 70 …A.成正比例B.成反比例C.不成比例5.倒一杯水,1小时后水温为40℃,2小时后水温为 20℃,经过时间与水温()A.成正比例B.成反比例C.不成比例D.以上都有可能二、填空题(33分)6.如图星期天小明骑自行车从家出发到图书馆查阅有关资料,之后就返回了家,路线如图:(1)小明去图书馆每小时行驶________千米,用了________分钟,这段时间内他骑车行驶的路程和时间成________(2)他在书店图书馆用去________分钟。

(3)小明从图书馆返回家中的速度是每小时________千米,用了________分钟,这段时间内他骑车行驶的路程和时间成________。

7.圆的周长和它的直径成(______)比例。

8.若n=m3,则m 和n 成(______)比例;若a ×3=b ×5(b ≠0),则a :b=(_____):(______)。

9.长方形面积一定,长和宽成(______)比例;速度一定,时间和路程成(______)比例。

10.生产一批零件,计划按8∶5分配给甲、乙二人加工,实际乙加工了480个,只完成了生产任务的60%.甲加工的超过分配任务的25%,甲实际加工了______个零件.(用比例解)11.甲乙两堆水泥,已知甲堆水泥比乙堆多50袋,当甲堆运走80%,乙堆运走 后,甲、乙两堆剩下的水泥袋数的比是6∶5,甲堆水泥原来有____袋.(用比例解)12.要加工一批零件,师傅和徒弟合干7.5小时后,已加工的零件和未加工零件数量的比为3∶7, 如果师傅单独加工全部零件需要30小时完成,徒弟每小时只能加工6个,这批零件一共有____个.(用比例解)13.工地要运一批水泥,每天运的吨数和运的天数如下表(1)表中相关联的两种量是_____和_____.(2)每天运的吨数扩大,运的天数反而_____,每天运的吨数缩小,运的天数反而_____.它们 扩大、缩小的规律是:每天运的吨数和运的天数这两个量中相对应的两个数的____一定,也就是运的总吨数___.(3)在运的总吨数,每天运的吨数、运的天数三者之间存在下面的数量关系: 每天运的吨数×运的天数=运的总吨数(一定)也就是: 运的总吨数一定,每天运的吨数和运的天数成______比例.14.运一批货物,甲队单独运要3小时,乙队单独运要4.5小时,甲乙两队运货所用时间的比是______,两队工作效率的比是____15.一张精密零件的图纸的比例尺是10:1,在图纸上量得这个零件的长是6厘米。

北师大版六年级下册数学第四单元 正比例和反比例 测试卷【原创题】

北师大版六年级下册数学第四单元 正比例和反比例 测试卷【原创题】

北师大版六年级下册数学第四单元正比例和反比例测试卷一.选择题(共6题,共12分)1.订阅“新民晚报”的份数和钱数()。

A.成反比例B.成正比例C.不成比例D.不成正比例2.在比例尺是1∶8的图纸上,甲、乙两个圆的直径比是2∶3,那么甲、乙两个圆的实际直径比是()。

A.1∶8B.4∶9C.2∶33.班级人数一定,每行站的人数和站的行数()。

A.成正比例B.成反比例C.不成比例4.在下面各比中,能与6:8 组成比例的比是()。

A.4:3B.3:4C.5 :35.下列各种关系中,成反比例关系的是()。

A.某人年龄一定,他的身高与体重。

B.平行四边形的面积一定,它的底和高。

C.圆的面积一定,它的半径与圆周率。

D.三角形的高不变,它的底和面积。

6.订购练习册总数一定,学生的人数和每位学生分得练习册的数量。

()A.成正比例B.成反比例C.不成比例二.判断题(共6题,共12分)1.出盐率一定,出盐的重量和海水的重量成正比例。

()2.圆柱的高一定,底面周长和侧面积成正比例。

()3.圆的半径和面积成正比例。

()4.阳光下同时同地的杆高和影长成正比例。

()5.在一幅地图上量得甲乙两地相距5厘米,实际距离是25千米,这幅地图的比例尺是。

()6.在比例尺是10:1的图纸上,4厘米相当于实际距离4毫米。

()三.填空题(共6题,共11分)1.六年级有42人,负责学校的两块卫生区.第一块卫生区30平方米,第二块卫生区40平方米.如果按照面积的大小分配值日生,两块卫生区各应派多少人?第一块()、第二块()。

(按第一块、第二块卫生区的顺序填写)2.三角形的面积一定,它的底和高成________比例。

3.():12===()÷9。

4.一个长5cm、宽3cm的长方形按3:1放大,得到的图形的面积是()cm2。

5.学校图书馆有一批书,借出40%以后,又买进新书360本,这时有书和原来存书的比是3:4,借出图书()本。

6.把下面的除式改写成比的形式。

判断正比例与反比例专项练习题

判断正比例与反比例专项练习题

判断正比例与反比例专项练习题
问题一:
某公司生产玩具,根据数据统计表可得出结果如下:
请判断公司的玩具数量和利润是否成正比例关系。

问题二:
甲、乙两家饭店的服务员人数和顾客人数之间的关系如下:
请判断饭店的服务员人数和顾客人数是否成反比例关系。

问题三:
某池塘中的鱼的数量和水的深度之间的关系如下:
请判断池塘的水深和鱼的数量是否成反比例关系。

问题四:
某学校的学生数和书籍数的关系如下:
请判断学校的学生数和书籍数是否成反比例关系。

问题五:
某工厂织布时,织机每小时的织布米数与织物重量的关系如下:
请判断织机的织布米数和织物重量是否成正比例关系。

【数学】北师大版数学六年级下册第4单元《正比例与反比例》测试卷(一)含答案

【数学】北师大版数学六年级下册第4单元《正比例与反比例》测试卷(一)含答案

北师大版数学六年级下册第4单元《正比例与反比例》测试卷(一)含答案姓名: 班级: 得分:一、选择题(5分)1.下面的说法中,不是变量的是( )。

A .工作效率一定,工作总量和工作时间B .长方形的面积一定,它的长和宽C .圆锥的底面积一定,它的体积和高D .一堆小麦,每次运的数量和汽车的速度2.下面各组中,两种量成正比例关系的是( )。

A .时间一定,每分钟打字个数和打字总个数B .长方形的周长一定,它的长和宽C .互为倒数的两个数3.表示c 和a 成反比例关系的式子是( )。

A .ca=15B .c=54a C .c+a=0 D .c-a=04.下列判断种正确的有( )个①因为周长相等的两个圆,面积一定相等,所以周长相等的两个长方形,面积也一定相等:②圆 锥的体积是等底等高的圆柱体的31:③xy=k+5.4(k+5.4≠0),当k 一定时,x 和y 成反比例: ④一个圆的半径增加10%,它的面积增加21%:⑤甲数比乙数多51,乙数比甲数少61。

A .4个B .3个C .2个D .1个 5.下列说法不正确的是( )。

A .购买《童话故事》的份数和总钱数成正比例B .除数一定,被除数和商成正比例C .直角三角形中,两个锐角的度数成反比例D .工作量一定,工作效率和工作时间成反比例二、填空题(46分)6.修路队修一条长800米的路,已修的米数和剩下的米数如下表。

已修米数(米) 50 100 150 200 250 300 ... 剩下米数(米) 750700650600550500...(1)表中反映了(_______)和(_______)这两个量的变化情况。

(2)如果修路队已修400米,剩下的米数应该是(_______)米。

已修米数和剩下米数的(_______)一定,也就是(_______)一定。

7.一台织布机的生产情况如下表。

工作总量(米)15 30 45 60 75 ...工作时间(时)1 2 3 4 5 ...(2)这台织布机2小时织布(_______)米,它6小时织布(_______)米。

北师大版小学数学六年级下册第四单元正比例与反比例必考题检测卷(单元测试)(含答案)

北师大版小学数学六年级下册第四单元正比例与反比例必考题检测卷(单元测试)(含答案)

北师大版小学数学六年级下册第四单元正比例与反比例必考题检测卷(单元测试)一、选择题1.下列说法不正确的是()。

A.因为圆周长C=πd,所以π与d成反比例B.长方形的周长一定,它的长和宽不成比例C.订《小学生天地》的份数与钱数成正比例D.三角形的面积一定,它的底和高成反比例2.小麦的重量一定,出粉率和面粉的重量()。

A.成正比例B.成反比例C.不成比例D.无法确定3.在计算器上按下面的程序操作,输入的数x与计算结果y()。

A.不成比例B.成正比例C.成反比例D.无法判断是否成比例4.下面两种量成反比例关系的是()。

A.总路程一定,已行驶的路程和剩下的路程。

B.圆锥的底面积一定,圆锥的体积与高。

C.全班人数一定,出勤人数与出勤率。

D.完成总时间一定,每个零件所需要时间与所做零件个数。

5.截至2022年5月3日,深圳已建成1238个公园,2843公里绿道,生态网络连通山海生境和都市家园,成为名副其实的“千园之城”,光明区已建成279个公园,照这样发展下去,光明区的公园数与深圳公园总数是()比例。

A.正B.反C.不成D.无法确定6.下列每组两个量中,成正比例的是(),成反比例的是()。

①盐水的浓度一定,盐和盐水的质量②比例尺一定,图上距离与实际距离③武汉到上海的火车速度与行驶时间④体积一定,圆柱的高和底面半径A.①②;③B.③;④C.②④;①D.①②;④二、填空题7.已知A B C÷=,当C一定时,A和B成( )比例关系;当A一定时,B和C成( )比例关系。

8.一辆汽车的载重量一定,这辆汽车运送货物的重量和运送次数成( )比例;加工一批零件,每小时加工的数量和加工的时间成( )比例。

9.如果34x y=(x,y均不为0),那么x和y成( )比例。

10.一袋米,吃去的质量和剩下的质量( )。

11.判断下面两种量成正比例还是反比例。

(1)圆的周长和圆的半径成( )比例。

(2)修一条路,每天修的米数和所需天数成( )比例。

六年级数学下册试题 -《第4章 比例 第2课时 正比例和反比例》同步测试题 人教版(含解析)

六年级数学下册试题 -《第4章 比例 第2课时 正比例和反比例》同步测试题  人教版(含解析)

人教版六年级数学下册《第4章比例第2课时正比例和反比例》同步测试题一.选择题(共6小题)1.下列等式中,a与b(a、b均不为0)成反比例的是()A.2a=5b B.a×7=C.a×=12.下列两种量的关系成正比例关系的是()A.圆的半径和圆的面积B.写字总数一定,写一个字所用时间和写字总时间C.写字总数一定,每分钟写字个数和写字总时间D.两个互相咬合的齿轮,齿轮的齿数和转数3.圆的周长和直径()A.成正比例B.成反比例C.不成比例4.a和b成反比例关系的式子是()A.5a=4b B.=C.5a=D.5a=b+45.如果ab=3,那么a与b()A.不成比例B.成反比例C.成正比例6.总价一定,单价和数量()A.成正比例B.成反比例C.不成比例D.以上都不对二.填空题(共6小题)7.A、B、C三量的关系时A×B=C中,当C一定时,A和B成关系.8.表格中,如果A和B成正比例,x=,如果A和B成反比例,x=.A28B0.5x9.少先队员每人做好事的件数一定,做好事的总件数与做好事的少先队员人数成正比例..10.表中如果x和y成正比例,那么空格里应填;如果x和y成反比例,那么空格里应填.x26y2411.一种练习本销售的数量与总价的关系如表.数量/本12345总价/元 5.51116.52227.5(1)表中有和两种相关联的量,总价随着的变化而变化,且总价与相应数量的比值都是,实际就是练习本的.(2)像这样,两种的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的一定,这两种量就叫做的量,它们的关系叫做关系.上表中,总价和数量是成的量,总价与数量成关系.12.在比例中,两个外项的积一定,两个两内项成比例.三.判断题(共5小题)13.工作总量一定,工作效率和工作时间成正比例.(判断对错)14.在一定的距离内,车轮周长和它转动的圈数成反比例..(判断对错)15.小明应完成的作业量一定,他已完成的作业量和未完成的作业量成反比例.(判断对错)16.式子=k(一定)表示的是正比例关系..(判断对错)17.如果a和b成正比例,b和c成反比例,那么a和c一定成反比例..(判断对错)四.应用题(共3小题)18.淘淘家在装修房屋时,买了同样大小的地板砖,铺地面积与所需块数的关系如图.他家的客厅面积是36m2,需要铺多少块这样的地板砖?(用比例解决问题)19.下面的图象表示小强从甲地到乙地不同的速度和所对应的时间.(1)在这个过程中,哪种量没有变?(2)速度和所对应的时间成什么比例关系?(3)不计算,观察图象,如果每小时行40km,那么从甲地到乙地大约需要多少小时?20.食堂有一批大米.如表记录的是每天的用量和所用的天数.每天的用量/kg40255所用的天数8102080(1)把上表填写完整.(2)每天的用量和所用的天数成反比例吗?为什么?(3)如果每天用8kg,那么可以用多少天?(4)如果计划用100天,那么每天应该用多少千克?五.操作题(共2小题)21.甲、乙两台机器的工作时间和耗电量如表.时间/时123456甲机器耗电量/千瓦时306090120150180乙机器耗电量/千瓦时3065100130160200根据表中的数据,在下图中描出每一组工作时间与耗电量所对应的点,再把它们按顺序连接起来.(1)根据画出的图象,机器的工作时间和耗电量成正比例.(2)根据画出的图象,工作2.5小时,甲机器的耗电量大约是千瓦时,乙机器的耗电量大约是千瓦时.22.文具店有一种电动橡皮擦,销售的数量与总价的关系如下表:数量/个246总价/元163248(1)把橡皮擦的数量与总价所对应的点在图中描出来,并连线;(2)利用图象估计7个这样的橡皮擦总价是元.六.解答题(共2小题)23.一辆汽车所行的时间与路程的关系,可以用如图来表示,请你根据图上信息填一填、算一算下列问题.(1)从图上可以看出这辆车所行的路程与时间,这两个量成比例.(2)如果这辆汽车以这样的速度从甲地行到乙地用了5小时,问甲、乙两地之间的路程是多少千米?24.一种岩石的体积与质量的关系如下表.体积/cm326101213质量/g618303639(1)在如图中描出各点,并顺次连起来.(2)这种岩石的体积与质量成比例吗?成什么比例?(3)如果一块岩石的体积是8cm2,那么这块岩石的质量是多少克?参考答案与试题解析一.选择题(共6小题)1.【分析】判断两个相关联的量成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例,由此逐一分析即可解答.【解答】解:A,因为2a=5b,所以=(一定),所以a、b成正比例;B,因为a×7=,所以=14(一定),所以a、b成正比例;C,因为a×=1,所以ab=3(一定),所以a、b成反比例;故选:C.【点评】此题属于辨识成正、反比例的量,就看这两种量是对应的比值一定,还是对应的乘积一定,再做出判断.2.【分析】判断两种相关联的量之间是否成正比例,就看这两种量是否是对应的比值一定,如果是比值一定,就成正比例,如果不是比值一定或比值不一定,就不成正比例.【解答】解:A.圆的面积=π×圆的半径2,不符合正比例的意义,所以圆的半径和圆的面积不成正比例关系;B.因为写字总时间=写字总数×写一个字所用时间,所以写字总时间÷写一个字所用时间=写字总数(一定)符合正比例的意义,写字总数一定,写一个字所用时间和写字总时间成正比例关系;C.因为每分钟写字个数×写字总时间=写字总数(一定),符合反比例的意义,不符合正比例的意义,所以写字总数一定,每分钟写字个数和写字总时间不成正比例关系;D.两个互相咬合的齿轮,齿轮的齿数是一定的与转数没关系,不符合正比例的意义,所以两个互相咬合的齿轮,齿轮的齿数和转数不成正比例关系,故选:B。

第三单元正比例和反比例(单元测试)-六年级下册数学西师大版(含答案)

第三单元正比例和反比例(单元测试)-六年级下册数学西师大版(含答案)

第三单元正比例和反比例(单元测试)一、选择题(每题2分,共14分)1.某游泳池的进水管的进水量与时间的比例如图。

按图中的速度,给这个游泳池注水400m3需要()分。

A.10B.20C.40D.2002.下列每个选项中的两个量成正比例的是()。

A.一捆50米长的电线,用去的长度与剩下的长度B.长方形的面积一定,它的长与宽C.《小学生数学报》的单价一定,订的份数与总价D.一个数(0除外)与它的倒数3.成反比例的两种量的()不变。

A.和B.差C.积D.商4.下列关系式中x、y都不为0,则x与y不是成反比例关系的是()。

A.x=4yB.y=3÷x C.x=1y×πD.x=y45.成反比例的两种量在变化时的规律是:它们的一定。

A.和B.差C.积D.商6.8:20与18:x成比例,则x为().A.25B.35C.45D.55 7.下面的数中能和5、8、20组成比例的是()A.10B.12.5C.15 D.20二、填空题(每空1分,共17分)8.在比例里,两个( )的积和两个( )积相等.9.已知关系式3(0)6yx yx=≠、,则y和x成( )比例。

10.用3,6,2,9四个数组成两个不同的比例是( ),( )。

11.一个比例的两个外项之积是2,其中一个内项是12,另一个内项是( )。

12.( )一定时,( )和( )成反比例。

13.把4a=5b改写成比例是( )。

14.根据2.4×3=0.8×9写出两个比例:( ),( )。

15.一个比例的两外项互为倒数,它的一个内项是14,另一内项是( )。

16.组成比例的四个数叫做比例的( ),中间的两个数叫做比例的( ),两端的两个数叫做比例的( )。

17.一个机器零件长5毫米,画在图纸上是4厘米,这幅图纸的比例尺是( )。

三、判断题(每题2分,共16分)18.因为圆的半径越大,它的面积也越大,所以圆的半径和面积成正比例.( ) 19.已知5x-3y=0,那么x与y成正比例。

【数学】 六年级数学比例和反比例 易错题训练

【数学】 六年级数学比例和反比例 易错题训练

【数学】六年级数学比例和反比例易错题训练一、比例和反比例1.如果10千克菜籽可以榨6.5千克菜油,那么有这种菜籽360千克,可以榨多少千克油?(用比例解)【答案】解:设可以榨x千克油。

10:6.5=360:x10x=6.5×360x=2340÷10x=234答:可以榨油234千克。

【解析】【分析】菜籽的重量和榨油的质量的比值是不变的,二者成正比例,设出未知数,根据正比例关系列出比例,解比例求出可以榨油的重量即可。

2.如图是某地区6~~12岁儿童平均体重情况:看图回答问题:(1)从统计图中可以看出,随年龄的增长,平均体重有什么变化?(2)从统计图中可以看出,女生在哪个年龄段平均体重增加最快?(3)平均体重的增加与年龄增长成正比例吗?(4)从图中,你还能得到哪些信息?【答案】(1)解:随着年龄的增加折线的数值在增大,所以平均体重是在增加。

(2)解:女生体重的折线在11﹣12岁时最陡,说明这一时期变化的最快,所以11﹣12岁时女生的平均体重变化的最快。

(3)解:男生6岁时的平均体重是19.3千克,体重与年龄的比值是:19.3:6≈3.2;当男生7岁时平均体重是21千克,体重与年龄的比值是:21:7=3;比值不相同,所以体重的增加与年龄的增长不成正比例。

(4)解:由图可知:11岁之前,男生和女生体重的增长速度相当,但11﹣﹣12岁女生体重增长的速度要快于男生【解析】【分析】(1)观察复式折线统计图可知,两条折线都是上升趋势,说明:随着年龄的增加,折线的数值在增大,所以平均体重是在增加;(2)观察女生的折线可知,女生体重的折线在11~12岁时最陡,说明这一时期变化的最快,所以11~12岁时女生的平均体重变化的最快;(3)根据题意可知,可以求出体重与年龄的比值,然后对比比值,比值不相等,则不成正比例;(4)观察统计图可知,11岁之前,男生和女生体重的增长速度相当,但11~12岁女生体重增长的速度要快于男生,据此解答.3.兄弟俩在玩跷跷板,哥哥体重30千克,坐的地方距支点10分米,弟弟体重20千克,他坐的地方距支点多远才能保持跷跷板的平衡?【答案】解:30×10÷20=15(分米)答:他坐的地方距支点15分米才能保持跷跷板的平衡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【数学】比例和反比例测试题
一、比例和反比例
1.有6箱蜜蜂一年可以酿蜂蜜450千克.小明家养了这样的蜜蜂18箱,一年可以酿蜂蜜多少千克?(用两种方法计算)
【答案】解:方法一:450÷6×18
=75×18
=1350(千克)
方法二:设一年可以酿蜂蜜x千克,
6x=450×18
x=
x=1350
答:一年可以酿蜂蜜1350千克。

【解析】【分析】先求出平均每箱一年酿蜂蜜多少千克,再求18箱一年可以酿多少千克。

也可以设一年可以酿蜂蜜x千克,再用方程解答即可。

2.给一间房子铺地,如果用边长6分米的方砖,需要80块。

如果改用边长8分米的方砖,需要多少块?
【答案】解:设需要x块。

(8×8)x=6×6×80
64x=2880
x=2880÷64
x=45
答:需要45块。

【解析】【分析】每块方砖的面积×方砖的块数=房间的面积,每块方砖的面积与方砖的块数成反比例;设出未知数,根据总面积不变列出比例,解比例求出需要方砖的块数即可。

3.在下面的方格纸上画一画。

(每一个小方格的边长代表1cm)
画一个长方形,周长是32cm,长与宽的比是5∶3。

【答案】解:32÷2=16(cm),16÷(5+3)=2(cm),
长方形的长:5×2=10(cm),宽:3×2=6(cm)
【解析】【分析】用长方形的周长除以2求出长与宽的和,然后把长与宽的和按5:3的比分配后分别求出长和宽,然后画出指定长和宽的长方形。

4.一幅地图上,用3cm的线段表示实际距离900km。

一条长480km的高速公路,在这幅地图上是多少厘米?(用比例解)
【答案】解:设该条公路在这幅地图上是x厘米.
900km=90000000cm,480km=48000000cm,
90000000x=3×48000000
x=1.6
答:该条公路在这幅地图上是1.6厘米.
【解析】【分析】设这条公路在这幅图上是x厘米,根据图上距离与实际距离的比不变列出比例,解比例求出图上距离即可.
5.反比例关系可以用________式子表示。

【答案】 xy=k
【解析】【解答】反比例关系可以用 xy=k式子表示。

故答案为:xy=k。

【分析】根据反比例关系的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系,即可解答。

6.圆柱的高一定,圆柱的体积和底面积成________比例;圆柱的侧面积一定,底面周长和高成________比例。

【答案】正;反
【解析】【解答】解:圆柱的体积÷底面积=高(一定),圆柱的体积和底面积成正比例;圆柱的底面周长×高=侧面积(一定),圆柱的底面周长和高成反比例。

故答案为:正;反。

【分析】根据圆柱的体积公式和侧面积公式分别判断圆柱的体积和底面积、圆柱的底面周长和高的商一定还是乘积一定,如果商一定就成正比例,如果乘积一定就成反比例。

7.王师傅用地砖铺一间房间的地面,用边长为6分米的地砖来铺,需要50块。

如果改用边长为3分米的地砖来铺,需要________块。

【答案】 200
【解析】【解答】解:设需要x块。

3×3×x=6×6×50
9x=36×50
9x=1800
x=200
需要200块。

故答案为:200
【分析】根据问题的条件,可知房间的铺地面积是不变的,每块砖的面积和砖的块数的乘积不变的,所以它们是成反比例。

可以通过列比例解决。

正方形的面积=边长×边长
8.一个长方形的面积是36平方米,它的________会随着________的变化而变化。

【答案】长;宽
【解析】【解答】一个长方形的面积是36平方米,它的长会随着宽的变化而变化.
故答案为:长;宽.
【分析】因为长方形的面积=长×宽,所以当长方形的面积一定时,它的长会随着宽的变化而变化,当长变长时,宽会变短,据此解答.
9.某种型号的铁丝,它的长度与质量()
A. 成正比例
B. 成反比例
C. 不成比例
【答案】 A
【解析】【解答】解:某种型号的铁丝,它的长度与质量成正比例关系。

故答案为:A。

【分析】因为铁丝的型号被确定了,那么它的横截面积也就确定了,横截面积一定时,它的体积和长度成正比,而质量=体积×重度,重度是一定的,所以质量和体积成正比,综上长度与质量成正比例关系。

10.xy-9=k(一定),x和y的关系是()。

A. 成正比例
B. 成反比例
C. 不成比例
D. 无法确定【答案】 B
【解析】【解答】解:因为xy-9=k,所以xy=k+9(一定),x与y的乘积一定,二者成反比例关系。

故答案为:B。

【分析】根据原来的等式判断出x与y的商一定还是乘积一定,如果商一定就成正比例,如果乘积一定就成反比例,否则不成比例。

11.做一节圆柱形烟囱,至少需要多少铁皮,是求圆柱的()
A. 表面积
B. 侧面积
C. 体积
【答案】 B
【解析】【解答】解:做一节圆柱形通风管,至少需要多少铁皮,是求圆柱的侧面积。

故答案为:B。

【分析】通风管没有底面,只有侧面,因此是求圆柱的侧面积。

12.圆柱的底面直径扩大到原来的2倍,高缩小到原来的,圆柱的体积()
A. 扩大到原来的2倍
B. 缩小到原来的
C. 不变
D. 扩大到原来的4倍
【答案】 A
【解析】【解答】圆柱的底面直径扩大到原来的2倍,高缩小到原来的,圆柱的体积扩
大到原来的2×2×=2倍.
故答案为:A.
【分析】根据圆柱的体积公式:V=πr2h,当圆柱的底面直径扩大到原来的2倍,则底面半径也扩大到原来的2倍,底面积扩大到原来的2×2=4倍,高缩小到原来的,圆柱的体积
扩大到原来的2×2×=2倍,据此解答.
13.一个圆柱侧面展开后是正方形,这个圆柱的底面半径与高的比为()。

A. π∶1
B. 1∶1
C. 1∶2π
D. 2π∶1
【答案】 C
【解析】【解答】设这个正方形的边长为1,则
底面半径:1÷(2π)=;
故答案为:C
【分析】一个圆柱侧面展开后是正方形,则这个正方形的边长就是圆柱的底面周长和高,设这个正方形的边长为1,则底面周长是1,高是1。

先求出底面半径,底面半径=周长÷(2π);再写出底面半径和高的比;最后化简。

14.一个圆柱的底面半径是2cm,高是12.56cm,它的侧面沿高剪开是()。

A. 长方形
B. 正方形
C. 平行四边形
【答案】 B
【解析】【解答】3.14×2×2
=6.28×2
=12.56(cm)
12.56cm=12.56cm,它的侧面沿高剪开是一个正方形。

故答案为:B。

【分析】将一个圆柱的侧面沿高展开,可以得到一个长方形或正方形,长方形的长或正方形的边长是圆柱的底面周长,据此列式解答再判断。

15.一个圆柱与一个长15分米、宽6分米、高2分米的长方体的体积相等,已知这个圆柱的底面积是30平方分米,它的高是()分米.
A. 6
B. 8
C. 16
D. 24
【答案】 A
【解析】【解答】15×6×2
=90×2
=180(立方分米)
180÷30=6(分米)
故答案为:A.
【分析】根据条件“ 一个圆柱与一个长15分米、宽6分米、高2分米的长方体的体积相等”,用公式:长方体的体积=长×宽×高,先求出长方体的体积,也是圆柱的体积,然后用圆柱的体积÷圆柱的底面积=圆柱的高,据此列式解答.。

相关文档
最新文档