祥符区高级中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载

高2018级高三(上)11月月考数学试题(理科)

高2018级高三(上)11月月考数学试题(理科)

高2018级高三(上)11月月考数学(理科)试题 共 1 张4 页考试时间:120分钟 满分:150分注意事项:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。

考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。

第Ⅰ卷 (选择题 共60分)一、单选题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的) 1.已知集合(){}3|A x y lg x ==-,2{|680}B x x x =-+<,则AB =( )A .{}|23x x <<B .{}|23x x <≤C .{|24}x x <<D .{}|34x x << 2.已知复数z 满足(1)2z i i -=,则复数z 在复平面内对应的点所在象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限3.“直线l 与平面α内无数条直线垂直”是“直线l 与平面α垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不必要也不充分条件 4.已知等差数列{}n a 、{}n b ,其前n 项和分别为n S 、n T ,2331n n a n b n +=-,则1111S T =( ) A .1517B .2532C .1D .25.若3tan 4α=,则2cos 2sin 2αα+=( ) A .6425 B .4825C .1D .16256.某几何体的三视图如下图所示,则该几何体的体积是( )A .23B .43C .2D .47.祖冲之是中国古代数学家、天文学家,他将圆周率推算到小数点后第七位.利用随机模拟的方法也可以估计圆周率的值,如右图程序框图中rand ( )表示产生区间0,1上的随机数,则由此可估计π的近似值为( ) A .0.001n B.0.002nC.0.003n D .0.004n8. 2020年2月,受新冠肺炎的影响,医卫市场上出现了“一罩难求”的现象.在政府部门的牵头下,部分工厂转业生产口罩,下表为某小型工厂2-5月份生产的口罩数(单位:万)口罩数y 与月份x 之间有较好的线性相关关系,其线性回归直线方程是0.7y x a =-+,则a 的值为( ) A .6.1B .5.8C .5.95D .6.759.若变量x ,y 满足约束条件2,1,1y x x y x ≤⎧⎪+≥⎨⎪≤⎩,则的11y z x -=+取值范围是( )A .11,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭ B .13,22⎡⎤⎢⎥⎣⎦ C .11,22⎡⎤-⎢⎥⎣⎦ D .13,,22⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭10.设()f x 是定义在R 上的偶函数,对任意的x ∈R ,都有()()22f x f x-=+,且当[]2,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()()log 20(1)a f x x a -+=>在区间(]2,6-内恰有三个不同实根,则实数a 的取值范围是( ) A .B .)2C .2⎤⎦D.2⎤⎦11.已知双曲线()222210,0xy a b a b-=>>的左、右焦点分别为12F F ,,过2F 作一条直线与双曲线右支交于A B,两点,坐标原点为O ,若15OA c BF a ,==,则该双曲线的离心率为( ) A B C D 12.若不等式2sin 12cos 2x x a x ⎛⎫≤+ ⎪⎝⎭对(0,]x π∀∈恒成立,则实数a 的取值范围是( ) A .[1,)+∞B .1,π⎡⎫+∞⎪⎢⎣⎭ C .1,3π⎡⎫+∞⎪⎢⎣⎭D .1,3⎡⎫+∞⎪⎢⎣⎭第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把答案填在答题卷上) 13.已知抛物线24x y =上一点A 的纵坐标为4,则点A 到抛物线焦点的距离为 14.在6(2)(1)x x -+展开式中,含4x 的项的系数是__________. 15.在ABC 中,已知2AB =,||||CA CB CA CB +=-,2cos 22sin 12B CA ++=,则BA 在BC 方向上的投影为__________.16.已知数列{}n a 的前n 项和为n S,直线y x =-2222n x y a +=+交于n A ,()*n B n N∈两点,且214n n n S A B =.若2123232n n a a a na a λ++++<+对*n N ∀∈成立,则实数λ的取值范围是______.三、解答题(本大题共6小题,共70分。

西湖区高级中学2018-2019学年高三上学期11月月考数学试卷含答案

西湖区高级中学2018-2019学年高三上学期11月月考数学试卷含答案

西湖区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在等差数列{a n }中,a 1=2,a 3+a 5=8,则a 7=( )A .3B .6C .7D .82. 设函数f (x )的定义域为A ,若存在非零实数l 使得对于任意x ∈I (I ⊆A ),有x+l ∈A ,且f (x+l )≥f (x),则称f (x )为I 上的l 高调函数,如果定义域为R 的函数f (x )是奇函数,当x ≥0时,f (x )=|x ﹣a 2|﹣a 2,且函数f (x )为R 上的1高调函数,那么实数a 的取值范围为( )A .0<a <1B .﹣≤a≤C .﹣1≤a ≤1D .﹣2≤a ≤23. 若a ,b ,c 成等比数列,m 是a ,b 的等差中项,n 是b ,c 的等差中项,则=()A .4B .3C .2D .14. 设曲线y=ax 2在点(1,a )处的切线与直线2x ﹣y ﹣6=0平行,则a=( )A .1B .C .D .﹣15. 棱长为的正方体的8个顶点都在球的表面上,则球的表面积为( )2O O A .B .C .D .π4π6π8π106. 若将函数y=tan (ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan (ωx+)的图象重合,则ω的最小值为( )A .B .C .D .7. 函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则下列结论成立的是()A .a >0,b <0,c >0,d >0B .a >0,b <0,c <0,d >0C .a <0,b <0,c <0,d >0D .a >0,b >0,c >0,d <08. 已知两点M (1,),N (﹣4,﹣),给出下列曲线方程:①4x+2y ﹣1=0; ②x 2+y 2=3; ③+y 2=1; ④﹣y 2=1.在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( )A .①③B .②④C .①②③D .②③④班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 若某几何体的三视图 (单位:cm ) 如图所示,则此几何体的体积是( )cm 3A .πB .2πC .3πD .4π10.设偶函数f (x )在(0,+∞)上为减函数,且f (2)=0,则不等式>0的解集为( )A .(﹣2,0)∪(2,+∞)B .(﹣∞,﹣2)∪(0,2)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,0)∪(0,2)11.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2﹣b 2=bc ,sinC=2sinB ,则A=( )A .30°B .60°C .120°D .150°12.如果过点M (﹣2,0)的直线l 与椭圆有公共点,那么直线l 的斜率k 的取值范围是( )A .B .C .D .二、填空题13.已知(ax+1)5的展开式中x 2的系数与的展开式中x 3的系数相等,则a= .14.已知点M (x ,y )满足,当a >0,b >0时,若ax+by 的最大值为12,则+的最小值是 .15.【启东中学2018届高三上学期第一次月考(10月)】在平面直角坐标系xOy 中,P 是曲线上xC y e :=一点,直线经过点P ,且与曲线C 在P 点处的切线垂直,则实数c 的值为________.20l x y c :++=16.已知两个单位向量满足:,向量与的夹角为,则.,a b r r 12a b ∙=-r r 2a b -r r cos θ=17.已知点E 、F 分别在正方体的棱上,且, ,则面AEF 与面ABC 所成的二面角的正切值等于 .18.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为 .三、解答题19.现有5名男生和3名女生.(1)若3名女生必须相邻排在一起,则这8人站成一排,共有多少种不同的排法?(2)若从中选5人,且要求女生只有2名,站成一排,共有多少种不同的排法?20.21.2008年奥运会在中国举行,某商场预计2008年从1日起前x个月,顾客对某种奥运商品的需求总量p(x )件与月份x的近似关系是且x≤12),该商品的进价q(x)元与月份x的近似关系是q(x)=150+2x,(x∈N*且x≤12).(1)写出今年第x月的需求量f(x)件与月份x的函数关系式;(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,则此商场今年销售该商品的月利润预计最大是多少元?22.如图所示,PA为圆O的切线,A为切点,PO交圆O于B,C两点,PA=20,PB=10,∠BAC的角平分线与BC和圆O分别交于点D和E.(Ⅰ)求证AB•PC=PA•AC(Ⅱ)求AD•AE的值.23.已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,0<φ<)图象如图,P是图象的最高点,Q为图象与x轴的交点,O为原点.且|OQ|=2,|OP|=,|PQ|=.(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)将函数y=f(x)图象向右平移1个单位后得到函数y=g(x)的图象,当x∈[0,2]时,求函数h(x)=f (x)•g(x)的最大值.24.已知﹣2≤x≤2,﹣2≤y≤2,点P的坐标为(x,y)(1)求当x,y∈Z时,点P满足(x﹣2)2+(y﹣2)2≤4的概率;(2)求当x,y∈R时,点P满足(x﹣2)2+(y﹣2)2≤4的概率.西湖区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案B B C A D A D B B题号1112答案A D二、填空题13. .14. 4 .15.-4-ln216..17.18. 3+ .三、解答题19.20.一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图),(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X,求X的分布列和数学期望.(以直方图中的频率作为概率)【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.【专题】概率与统计.【分析】(1)求解得a=0.03,由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20根据平均数值公式求解即可.(2)X~B(3,),根据二项分布求解P(X=0),P(X=1),P(X=2)=,P(X=3),列出分布列,求解数学期望即可.21.22.23.24.。

西安区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(1)

西安区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(1)

西安区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 数列﹣1,4,﹣7,10,…,(﹣1)n (3n ﹣2)的前n 项和为S n ,则S 11+S 20=( )A .﹣16B .14C .28D .302. 复数是虚数单位)的虚部为( )i iiz (21+=A .B .C .D .1-i -i 22【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力.3. 已知直线l 1:(3+m )x+4y=5﹣3m ,l 2:2x+(5+m )y=8平行,则实数m 的值为( )A .﹣7B .﹣1C .﹣1或﹣7D .4. 数列{a n }的通项公式为a n =﹣n+p ,数列{b n }的通项公式为b n =2n ﹣5,设c n =,若在数列{c n }中c 8>c n (n ∈N *,n ≠8),则实数p 的取值范围是( )A .(11,25)B .(12,16]C .(12,17)D .[16,17) 5. 不等式恒成立的条件是( )A .m >2B .m <2C .m <0或m >2D .0<m <26. 下列函数中,既是偶函数又在单调递增的函数是( )(0,)+∞A .B .C .D .3y x =21y x =-+||1y x =+2xy -=7. 设=(1,2),=(1,1),=+k ,若,则实数k 的值等于()A .﹣B .﹣C .D .8. 已知2a =3b =m ,ab ≠0且a ,ab ,b 成等差数列,则m=( )A .B .C .D .69. “互联网”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶+段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为( )A .10B .20C .30D .4010.已知F 1,F 2是椭圆和双曲线的公共焦点,M 是它们的一个公共点,且∠F 1MF 2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A .2B .C .D .411.(理)已知tan α=2,则=()A .B .C .D .班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________12.四棱锥的底面为正方形,底面,,若该四棱锥的所有顶点都在P ABCD -ABCD PA ⊥ABCD 2AB =体积为同一球面上,则( )24316πPA =A .3B .C .D .7292【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.二、填空题13.定义为与中值的较小者,则函数的取值范围是 )}(),(min{x g x f )(x f )(x g },2min{)(2x x x f -=14.已知函数的三个零点成等比数列,则 .5()sin (02f x x a x π=-≤≤2log a =15.在△ABC 中,已知=2,b=2a ,那么cosB 的值是 .16.若x ,y 满足线性约束条件,则z=2x+4y 的最大值为 .17.函数y=sin 2x ﹣2sinx 的值域是y ∈ .18.如图,在三棱锥中,,,,为等边三角形,则P ABC -PA PB PC ==PA PB ⊥PA PC ⊥PBC △PC 与平面所成角的正弦值为______________.ABC【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力.三、解答题19.【南师附中2017届高三模拟二】已知函数.()()323131,02f x x a x ax a =+--+>(1)试讨论的单调性;()()0f x x ≥(2)证明:对于正数,存在正数,使得当时,有;a p []0,x p ∈()11f x -≤≤(3)设(1)中的的最大值为,求得最大值.p ()g a ()g a20.已知y=f (x )是R 上的偶函数,x ≥0时,f (x )=x 2﹣2x (1)当x <0时,求f (x )的解析式.(2)作出函数f (x )的图象,并指出其单调区间.21.已知f (x )=log 3(1+x )﹣log 3(1﹣x ).(1)判断函数f (x )的奇偶性,并加以证明;(2)已知函数g (x )=log,当x ∈[,]时,不等式 f (x )≥g (x )有解,求k 的取值范围.22.某公司春节联欢会中设一抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖;奖金30元,三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金.(1)员工甲抽奖一次所得奖金的分布列与期望;(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少? 23.【泰州中学2018届高三10月月考】已知函数.()(),,xf x eg x x m m R ==-∈(1)若曲线与直线相切,求实数的值;()y f x =()y g x =m (2)记,求在上的最大值;()()()h x f x g x =⋅()h x []0,1(3)当时,试比较与的大小.0m =()2f x e-()g x24.(本小题满分12分)已知平面向量,,.(1,)a x =r (23,)b x x =+-r()x R ∈(1)若,求;//a b r r ||a b -r r(2)若与夹角为锐角,求的取值范围.西安区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案B A ACDCAC .BC题号1112答案DB二、填空题13.(],1-∞14.12-考点:三角函数的图象与性质,等比数列的性质,对数运算.【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题.把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题.15. .16. 38 .17. [﹣1,3] .18三、解答题19.(1)证明过程如解析;(2)对于正数,存在正数,使得当时,有;(3)a p []0,x p ∈()11f x -≤≤()g a 20.21. 22.23.(1);(2)当时,;当时,;(3)1m =-1e m e <-()()max 1h x m e =-1e m e ≥-()max h x m =-.()()2f x e g x ->24.(1)2或2).(1,0)(0,3)-U。

祥符区实验中学2018-2019学年高三上学期11月月考数学试卷含答案

祥符区实验中学2018-2019学年高三上学期11月月考数学试卷含答案

祥符区实验中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如图,正方体ABCD ﹣A 1B 1C 1D 1的棱线长为1,线段B 1D 1上有两个动点E ,F ,且EF=,则下列结论中错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A ﹣BEF 的体积为定值D .异面直线AE ,BF 所成的角为定值2. 已知空间四边形ABCD ,M 、N 分别是AB 、CD 的中点,且4AC =,6BD =,则( ) A .15MN << B .210MN << C .15MN ≤≤ D .25MN << 3. 阅读如图所示的程序框图,运行相应的程序.若该程序运行后输出的结果不大于20,则输入的整数i 的最大值为( )A .3B .4C .5D .64. 双曲线4x 2+ty 2﹣4t=0的虚轴长等于( ) A.B .﹣2t C.D .45. 定义集合运算:A*B={z|z=xy ,x ∈A ,y ∈B}.设A={1,2},B={0,2},则集合A*B 的所有元素之和为( ) A .0B .2C .3D .6班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________6. 已知复合命题p ∧(¬q )是真命题,则下列命题中也是真命题的是( ) A .(¬p )∨q B .p ∨q C .p ∧q D .(¬p )∧(¬q )7.设=(1,2),=(1,1),=+k,若,则实数k 的值等于( )A.﹣B.﹣C.D.8. 已知2a =3b=m ,ab ≠0且a ,ab ,b 成等差数列,则m=( ) A.B.C.D .69. 487被7除的余数为a (0≤a <7),则展开式中x ﹣3的系数为( )A .4320B .﹣4320C .20D .﹣20 10.若,,且,则λ与μ的值分别为( ) A.B .5,2C.D .﹣5,﹣211.已知PD ⊥矩形ABCD 所在的平面,图中相互垂直的平面有( )A .2对B .3对C .4对D .5对12.在ABC ∆中,角A ,B ,C 的对边分别是,,,BH 为AC 边上的高,5BH =,若2015120aBC bCA cAB ++=,则H 到AB 边的距离为( )A .2B .3 C.1 D .4二、填空题13.设,y x 满足约束条件2110y x x y y ≤⎧⎪+≤⎨⎪+≥⎩,则3z x y =+的最大值是____________.14.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()1e exx f x =-,其中e 为自然对数的底数,则不等式()()2240f x f x -+-<的解集为________.15.已知一组数据1x ,2x ,3x ,4x ,5x 的方差是2,另一组数据1ax ,2ax ,3ax ,4ax ,5ax (0a >)的标准差是a = .16.当a >0,a ≠1时,函数f (x )=log a (x ﹣1)+1的图象恒过定点A ,若点A 在直线mx ﹣y+n=0上,则4m +2n 的最小值是 .17.已知定义域为(0,+∞)的函数f (x )满足:(1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立;(2)当x ∈(1,2]时,f (x )=2﹣x .给出如下结论:①对任意m∈Z,有f(2m)=0;②函数f(x)的值域为[0,+∞);③存在n∈Z,使得f(2n+1)=9;④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)⊆(2k,2k+1)”;其中所有正确结论的序号是.18.设不等式组表示的平面区域为M,若直线l:y=k(x+2)上存在区域M内的点,则k的取值范围是.三、解答题19.设△ABC的内角A,B,C所对应的边长分别是a,b,c且cosB=,b=2(Ⅰ)当A=30°时,求a的值;(Ⅱ)当△ABC的面积为3时,求a+c的值.20.已知数列{a n}满足a1=﹣1,a n+1=(n∈N*).(Ⅰ)证明:数列{+}是等比数列;(Ⅱ)令b n=,数列{b n}的前n项和为S n.①证明:b n+1+b n+2+…+b2n<②证明:当n≥2时,S n2>2(++…+)21.(本题满分12分)为了了解某地区心肺疾病是否与性别有关,在某医院随机地对入院的50人进行了问2卷调查,得到了如下的2(1(2)在上述抽取的6人中选2人,求恰有一名女性的概率.(3)为了研究心肺疾病是否与性别有关,请计算出统计量2K ,判断心肺疾病与性别是否有关?(参考公式:))()()(()(2d b c a d c b a bc ad n K ++++-=,其中d c b a n +++=)22.24.(本小题满分10分)选修4-5:不等式选讲. 已知函数f (x )=|x +1|+2|x -a 2|(a ∈R ). (1)若函数f (x )的最小值为3,求a 的值;(2)在(1)的条件下,若直线y =m 与函数y =f (x )的图象围成一个三角形,求m 的范围,并求围成的三角形面积的最大值.23.在数列{a n }中,a 1=1,a n+1=1﹣,b n =,其中n ∈N *.(1)求证:数列{b n }为等差数列;(2)设c n =b n+1•(),数列{c n }的前n 项和为T n ,求T n ;(3)证明:1+++…+≤2﹣1(n ∈N *)24.已知{a n}为等比数列,a1=1,a6=243.S n为等差数列{b n}的前n项和,b1=3,S5=35.(1)求{a n}和{B n}的通项公式;(2)设T n=a1b1+a2b2+…+a n b n,求T n.祥符区实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】 D【解析】解:∵在正方体中,AC ⊥BD ,∴AC ⊥平面B 1D 1DB ,BE ⊂平面B 1D 1DB ,∴AC ⊥BE ,故A 正确; ∵平面ABCD ∥平面A 1B 1C 1D 1,EF ⊂平面A 1B 1C 1D 1,∴EF ∥平面ABCD ,故B 正确;∵EF=,∴△BEF 的面积为定值×EF ×1=,又AC ⊥平面BDD 1B 1,∴AO 为棱锥A ﹣BEF 的高,∴三棱锥A ﹣BEF 的体积为定值,故C 正确;∵利用图形设异面直线所成的角为α,当E 与D 1重合时sin α=,α=30°;当F 与B 1重合时tan α=,∴异面直线AE 、BF 所成的角不是定值,故D 错误; 故选D .2. 【答案】A 【解析】试题分析:取BC 的中点E ,连接,ME NE ,2,3ME NE ==,根据三角形中两边之和大于第三边,两边之差小于第三边,所以15MN <<,故选A .考点:点、线、面之间的距离的计算.1【方法点晴】本题主要考查了点、线、面的位置关系及其应用,其中解答中涉及三角形的边与边之间的关系、三棱锥的结构特征、三角形的中位线定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据三角形的两边之和大于第三边和三角形的两边之差小于第三边是解答的关键,属于基础题. 3. 【答案】B【解析】解:模拟执行程序框图,可得s=0,n=0满足条件n<i,s=2,n=1满足条件n<i,s=5,n=2满足条件n<i,s=10,n=3满足条件n<i,s=19,n=4满足条件n<i,s=36,n=5所以,若该程序运行后输出的结果不大于20,则输入的整数i的最大值为4,有n=4时,不满足条件n<i,退出循环,输出s的值为19.故选:B.【点评】本题主要考查了循环结构的程序框图,属于基础题.4.【答案】C【解析】解:双曲线4x2+ty2﹣4t=0可化为:∴∴双曲线4x2+ty2﹣4t=0的虚轴长等于故选C.5.【答案】D【解析】解:根据题意,设A={1,2},B={0,2},则集合A*B中的元素可能为:0、2、0、4,又有集合元素的互异性,则A*B={0,2,4},其所有元素之和为6;故选D.【点评】解题时,注意结合集合元素的互异性,对所得集合的元素的分析,对其进行取舍.6.【答案】B【解析】解:命题p∧(¬q)是真命题,则p为真命题,¬q也为真命题,可推出¬p为假命题,q为假命题,故为真命题的是p∨q,故选:B.【点评】本题考查复合命题的真假判断,注意p∨q全假时假,p∧q全真时真.7.【答案】A【解析】解:∵=(1,2),=(1,1),∴=+k=(1+k,2+k)∵,∴=0,∴1+k+2+k=0,解得k=﹣故选:A【点评】本题考查数量积和向量的垂直关系,属基础题.8.【答案】C.【解析】解:∵2a=3b=m,∴a=log2m,b=log3m,∵a,ab,b成等差数列,∴2ab=a+b,∵ab≠0,∴+=2,∴=log m2,=log m3,∴log m2+log m3=log m6=2,解得m=.故选C【点评】本题考查了指数与对数的运算的应用及等差数列的性质应用.9.【答案】B解析:解:487=(49﹣1)7=﹣+…+﹣1,∵487被7除的余数为a(0≤a<7),∴a=6,∴展开式的通项为T r+1=,令6﹣3r=﹣3,可得r=3,∴展开式中x﹣3的系数为=﹣4320,故选:B..10.【答案】A【解析】解:由,得.又,,∴,解得.故选:A.【点评】本题考查了平行向量与共线向量,考查向量的性质,大小和方向是向量的两个要素,分别是向量的代数特征和几何特征,借助于向量可以实现某些代数问题与几何问题的相互转化,该题是基础题.11.【答案】D【解析】解:∵PD ⊥矩形ABCD 所在的平面且PD ⊆面PDA ,PD ⊆面PDC , ∴面PDA ⊥面ABCD ,面PDC ⊥面ABCD , 又∵四边形ABCD 为矩形 ∴BC ⊥CD ,CD ⊥AD ∵PD ⊥矩形ABCD 所在的平面 ∴PD ⊥BC ,PD ⊥CD ∵PD ∩AD=D ,PD ∩CD=D∴CD ⊥面PAD ,BC ⊥面PDC ,AB ⊥面PAD , ∵CD ⊆面PDC ,BC ⊆面PBC ,AB ⊆面PAB ,∴面PDC ⊥面PAD ,面PBC ⊥面PCD ,面PAB ⊥面PAD 综上相互垂直的平面有5对 故答案选D12.【答案】D 【解析】考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差OA OB BA -=,这是一个易错点,两个向量的和2OA OB OD +=(D 点是AB 的中点),另外,要选好基底向量,如本题就要灵活使用向量,AB AC ,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几何意义等.二、填空题13.【答案】73【解析】试题分析:画出可行域如下图所示,由图可知目标函数在点12,33A ⎛⎫⎪⎝⎭处取得最大值为73.考点:线性规划. 14.【答案】()32-,【解析】∵()1e ,e x x f x x R =-∈,∴()()11xx x x f x e e f x e e --⎛⎫-=-=--=- ⎪⎝⎭,即函数()f x 为奇函数,又∵()0xxf x e e-=+>'恒成立,故函数()f x 在R 上单调递增,不等式()()2240f x f x -+-<可转化为()()224f x f x -<-,即224x x -<-,解得:32x -<<,即不等式()()2240f x f x -+-<的解集为()32-,,故答案为()32-,. 15.【答案】2 【解析】试题分析:第一组数据平均数为2)()()()()(,2524232221=-+-+-+-+-∴x x x x x x x x x x x ,22222212345()()()()()8,4,2ax ax ax ax ax ax ax ax ax ax a a -+-+-+-+-=∴=∴=.考点:方差;标准差.16.【答案】 2 .【解析】解:整理函数解析式得f (x )﹣1=log a (x ﹣1),故可知函数f (x )的图象恒过(2,1)即A (2,1), 故2m+n=1.∴4m+2n≥2=2=2.当且仅当4m =2n,即2m=n ,即n=,m=时取等号.∴4m+2n的最小值为2.故答案为:217.【答案】 ①②④ .【解析】解:∵x ∈(1,2]时,f (x )=2﹣x .∴f(2)=0.f(1)=f(2)=0.∵f(2x)=2f(x),∴f(2k x)=2k f(x).①f(2m)=f(2•2m﹣1)=2f(2m﹣1)=…=2m﹣1f(2)=0,故正确;②设x∈(2,4]时,则x∈(1,2],∴f(x)=2f()=4﹣x≥0.若x∈(4,8]时,则x∈(2,4],∴f(x)=2f()=8﹣x≥0.…一般地当x∈(2m,2m+1),则∈(1,2],f(x)=2m+1﹣x≥0,从而f(x)∈[0,+∞),故正确;③由②知当x∈(2m,2m+1),f(x)=2m+1﹣x≥0,∴f(2n+1)=2n+1﹣2n﹣1=2n﹣1,假设存在n使f(2n+1)=9,即2n﹣1=9,∴2n=10,∵n∈Z,∴2n=10不成立,故错误;④由②知当x∈(2k,2k+1)时,f(x)=2k+1﹣x单调递减,为减函数,∴若(a,b)⊆(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确.故答案为:①②④.18.【答案】.【解析】解:作出不等式组对应的平面区域,直线y=k(x+2)过定点D(﹣2,0),由图象可知当直线l经过点A时,直线斜率最大,当经过点B时,直线斜率最小,由,解得,即A(1,3),此时k==,由,解得,即B(1,1),此时k==,故k的取值范围是,故答案为:【点评】本题主要考查线性规划的应用以及直线斜率的公式的计算,利用数形结合是解决此类问题的基本方法.三、解答题19.【答案】【解析】解:(Ⅰ)∵cosB=,B∈(0,π),∴sinB==,由正弦定理可知:,∴a=.(Ⅱ)∵S△ABC===3,∴ac=.由余弦定理得:b2=a2+c2﹣2accosB=(a+c)2﹣2ac﹣2ac×=4,∴(a+c)2=+4=28,故:a+c=2.20.【答案】【解析】(Ⅰ)证明:∵数列{a n}满足a1=﹣1,a n+1=(n∈N*),∴na n=3(n+1)a n+4n+6,两边同除n(n+1)得,,即,也即,又a1=﹣1,∴,∴数列{+}是等比数列是以1为首项,3为公比的等比数列.(Ⅱ)(ⅰ)证明:由(Ⅰ)得,=3n﹣1,∴,∴,原不等式即为:<,先用数学归纳法证明不等式:当n≥2时,,证明过程如下:当n=2时,左边==<,不等式成立假设n=k时,不等式成立,即<,则n=k+1时,左边=<+=<,∴当n=k+1时,不等式也成立.因此,当n≥2时,,当n≥2时,<,∴当n≥2时,,又当n=1时,左边=,不等式成立故b n+1+b n+2+…+b2n<.(ⅱ)证明:由(i)得,S n=1+,当n≥2,=(1+)2﹣(1+)2==2﹣,,…=2•,将上面式子累加得,﹣,又<=1﹣=1﹣,∴,即>2(),∴当n≥2时,S n2>2(++…+).【点评】本题考查等比数列的证明,考查不等式的证明,解题时要认真审题,注意构造法、累加法、裂项求和法、数学归纳法、放缩法的合理运用,综合性强,难度大,对数学思维能力的要求较高.21.【答案】【解析】【命题意图】本题综合考查统计中的相关分析、概率中的古典概型,突出了统计和概率知识的交汇,对归纳、分析推理的能力有一定要求,属于中等难度.22.【答案】【解析】解:(1)f(x)=|x+1|+2|x-a2|=⎩⎪⎨⎪⎧-3x +2a 2-1,x ≤-1,-x +2a 2+1,-1<x <a 2,3x -2a 2+1,x ≥a 2,当x ≤-1时,f (x )≥f (-1)=2a 2+2, -1<x <a 2,f (a 2)<f (x )<f (-1), 即a 2+1<f (x )<2a 2+2, 当x ≥a 2,f (x )≥f (a 2)=a 2+1,所以当x =a 2时,f (x )min =a 2+1,由题意得a 2+1=3,∴a =±2. (2)当a =±2时,由(1)知f (x )= ⎩⎪⎨⎪⎧-3x +3,x ≤-1,-x +5,-1<x <2,3x -3,x ≥2,由y =f (x )与y =m 的图象知,当它们围成三角形时,m 的范围为(3,6],当m =6时,围成的三角形面积最大,此时面积为12×|3-(-1)|×|6-3|=6.23.【答案】【解析】(1)证明:b n+1﹣b n=﹣=﹣=1,又b 1=1.∴数列{b n }为等差数列,首项为1,公差为1. (2)解:由(1)可得:b n =n . c n =b n+1•()=(n+1). ∴数列{c n }的前n 项和为T n=+3×++…+(n+1).=+3×+…+n+(n+1),∴T n=+++…+﹣(n+1)=+﹣(n+1),可得T n=﹣.(3)证明:1+++…+≤2﹣1(n∈N*)即为:1+++…+≤﹣1.∵=<=2(k=2,3,…).∴1+++…+≤1+2[(﹣1)+()+…+(﹣)]=1+2=2﹣1.∴1+++…+≤2﹣1(n∈N*).24.【答案】【解析】解:(Ⅰ)∵{a n}为等比数列,a1=1,a6=243,∴1×q5=243,解得q=3,∴.∵S n为等差数列{b n}的前n项和,b1=3,S5=35.∴5×3+d=35,解得d=2,b n=3+(n﹣1)×2=2n+1.(Ⅱ)∵T n=a1b1+a2b2+…+a n b n,∴①②①﹣②得:,整理得:.【点评】本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.。

城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(3)

城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(3)

城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 给出下列命题:①在区间(0,+∞)上,函数y=x ﹣1,y=,y=(x ﹣1)2,y=x 3中有三个是增函数;②若log m 3<log n 3<0,则0<n <m <1;③若函数f (x )是奇函数,则f (x ﹣1)的图象关于点A (1,0)对称;④若函数f (x )=3x ﹣2x ﹣3,则方程f (x )=0有2个实数根.其中假命题的个数为( )A .1B .2C .3D .42. 下列函数中,与函数的奇偶性、单调性相同的是( )()3x xe ef x --=A .B .C . D.(ln y x =+2y x =tan y x =xy e =3. 袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A .至少有一个白球;都是白球B .至少有一个白球;至少有一个红球C .恰有一个白球;一个白球一个黑球D .至少有一个白球;红、黑球各一个4. 设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( )A .m ⊥α,m ⊥β,则α∥βB .m ∥n ,m ⊥α,则n ⊥αC .m ⊥α,n ⊥α,则m ∥nD .m ∥α,α∩β=n ,则m ∥n5. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( )A .(1,+∞)B .(﹣∞,﹣1)C .D . 6. 已知曲线的焦点为,过点的直线与曲线交于两点,且,则2:4C y x =F F C ,P Q 20FP FQ +=u u u r u u u r r OPQ ∆的面积等于()A .B .CD7. 双曲线4x 2+ty 2﹣4t=0的虚轴长等于( )A .B .﹣2tC .D .48. 已知命题和命题,若为真命题,则下面结论正确的是( )p p q ∧A .是真命题B .是真命题C .是真命题D .是真命题p ⌝q ⌝p q ∨()()p q ⌝∨⌝9. 已知命题“如果﹣1≤a ≤1,那么关于x 的不等式(a 2﹣4)x 2+(a+2)x ﹣1≥0的解集为∅”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A .0个B .1个C .2个D .4个班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.已知直线x+ay ﹣1=0是圆C :x 2+y 2﹣4x ﹣2y+1=0的对称轴,过点A (﹣4,a )作圆C 的一条切线,切点为B ,则|AB|=( )A .2B .6C .4D .211.下列函数中,在其定义域内既是奇函数又是减函数的是()A .y=|x|(x ∈R )B .y=(x ≠0)C .y=x (x ∈R )D .y=﹣x 3(x ∈R )12.关于函数,下列说法错误的是( )2()ln f x x x=+(A )是的极小值点2x =()f x ( B ) 函数有且只有1个零点 ()y f x x =- (C )存在正实数,使得恒成立k ()f x kx >(D )对任意两个正实数,且,若,则12,x x 21x x >12()()f x f x =124x x +>二、填空题13.已知点A (2,0),点B (0,3),点C 在圆x 2+y 2=1上,当△ABC 的面积最小时,点C 的坐标为 . 14.设不等式组表示的平面区域为M ,若直线l :y=k (x+2)上存在区域M 内的点,则k 的取值范围是 .15.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,则函数y=ax 2﹣2bx+1在(﹣∞,2]上为减函数的概率是 .16.函数y=lgx 的定义域为 .17.如图是函数y=f (x )的导函数y=f ′(x )的图象,对此图象,有如下结论:①在区间(﹣2,1)内f (x )是增函数;②在区间(1,3)内f (x )是减函数;③在x=2时,f (x )取得极大值;④在x=3时,f (x )取得极小值.其中正确的是 .18.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 不是直角三角形,则下列命题正确的是 (写出所有正确命题的编号)①tanA•tanB•tanC=tanA+tanB+tanC②tanA+tanB+tanC的最小值为3③tanA,tanB,tanC中存在两个数互为倒数④若tanA:tanB:tanC=1:2:3,则A=45°⑤当tanB﹣1=时,则sin2C≥sinA•sinB.三、解答题19.如图所示,已知在四边形ABCD中,AD⊥CD,AD=5,AB=7,BD=8,∠BCD=135°.(1)求∠BDA的大小(2)求BC的长.20.已知等差数列{a n}的首项为a,公差为b,且不等式log2(ax2﹣3x+6)>2的解集为{x|x<1或x>b}.(Ⅰ)求数列{a n}的通项公式及前n项和S n公式;(Ⅱ)求数列{}的前n项和T n.21.已知函数的图象在y轴右侧的第一个最大值点和最小值点分别为(π,2)和(4π,﹣2).(1)试求f(x)的解析式;(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数y=g(x)的图象.写出函数y=g(x)的解析式.22.如图,AB 是⊙O 的直径,AC 是弦,∠BAC 的平分线AD 交⊙O 于点D ,DE ⊥AC ,交AC 的延长线于点E ,OE 交AD 于点F .(1)求证:DE 是⊙O 的切线.(2)若,求的值.23.(本小题满分12分)数列满足:,,且.{}n b 122n n b b +=+1n n n b a a +=-122,4a a ==(1)求数列的通项公式;{}n b (2)求数列的前项和.{}n a n S 24.已知函数f (x )=ax 2﹣2lnx .(Ⅰ)若f (x )在x=e 处取得极值,求a 的值;(Ⅱ)若x ∈(0,e],求f (x )的单调区间;(Ⅲ)设a>,g(x)=﹣5+ln,∃x1,x2∈(0,e],使得|f(x1)﹣g(x2)|<9成立,求a的取值范围.城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案A A DDCCCCCB题号1112答案DC二、填空题13. (,) .14. . 15.  .16. {x|x >0} .17. ③ .18. ①④⑤ 三、解答题19. 20. 21. 22.23.(1);(2).122n n b +=-222(4)n n S n n +=-++24.。

祥符区高中2018-2019学年高三下学期第三次月考试卷数学

祥符区高中2018-2019学年高三下学期第三次月考试卷数学

祥符区高中2018-2019学年高三下学期第三次月考试卷数学一、选择题1.一枚质地均匀的正方体骰子,六个面上分别刻着1点至6点.甲、乙二人各掷骰子一次,则甲掷得的向上的点数比乙大的概率为()A.B.C.D.A.甲B.乙C.丙D.丁3.设函数f(x)满足f(x+π)=f(x)+cosx,当0≤x≤π时,f(x)=0,则f()=()A.B.C.0 D.﹣4.已知集合A={x|x≥0},且A∩B=B,则集合B可能是()A.{x|x≥0} B.{x|x≤1} C.{﹣1,0,1} D.R5.已知直线ax+by+c=0与圆O:x2+y2=1相交于A,B两点,且,则的值是()A.B.C . D.6.已知等差数列{a n}中,a n=4n﹣3,则首项a1和公差d的值分别为()A.1,3 B.﹣3,4 C.1,4 D.1,27.已知直线x+y+a=0与圆x2+y2=1交于不同的两点A、B,O是坐标原点,且,那么实数a的取值范围是()A.B.C.D.8.在△ABC中,AB边上的中线CO=2,若动点P满足=(sin2θ)+(cos2θ)(θ∈R),则(+)•的最小值是()A.1 B.﹣1 C.﹣2 D.09.已知定义域为R的偶函数)(xf满足对任意的Rx∈,有)1()()2(fxfxf-=+,且当]3,2[∈x时,18122)(2-+-=xxxf.若函数)1(log)(+-=xxfya在),0(+∞上至少有三个零点,则实数的取值范围是()111]A.)22,0(B.)33,0(C.)55,0(D.)66,0(班级_______________座号______姓名_______________分数__________________________________________________________________________________________________________________10.有下列四个命题:①“若a 2+b 2=0,则a ,b 全为0”的逆否命题; ②“全等三角形的面积相等”的否命题; ③“若“q ≤1”,则x 2+2x+q=0有实根”的逆否命题;④“矩形的对角线相等”的逆命题. 其中真命题为( )A .①②B .①③C .②③D .③④11.口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是( )A .0.42B .0.28C .0.3D .0.712.等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则( )A .B 2=ACB .A+C=2BC .B (B ﹣A )=A (C ﹣A )D .B (B ﹣A )=C (C ﹣A )二、填空题13.已知关于的不等式20x ax b ++<的解集为(1,2),则关于的不等式210bx ax ++>的解集 为___________.14.阅读如图所示的程序框图,运行相应的程序,若输入的X 的值为2,则输出的结果是 .15.已知是等差数列,为其公差,是其前项和,若只有是中的最小项,则可得出的结论中所有正确的序号是___________ ①②③④⑤16.若等比数列{a n }的前n 项和为S n ,且,则= .17.下列关于圆锥曲线的命题:其中真命题的序号 .(写出所有真命题的序号). ①设A ,B 为两个定点,若|PA|﹣|PB|=2,则动点P 的轨迹为双曲线;②设A ,B 为两个定点,若动点P 满足|PA|=10﹣|PB|,且|AB|=6,则|PA|的最大值为8;③方程2x 2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率; ④双曲线﹣=1与椭圆有相同的焦点.18.已知数列的前项和是, 则数列的通项__________三、解答题19.已知函数f (x )=(Ⅰ)求函数f (x )单调递增区间;(Ⅱ)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a ﹣c )cosB=bcosC ,求f (A )的取值范围.20.(本小题满分13分)在四棱锥P ABCD -中,底面ABCD 是直角梯形,//AB DC ,2ABC π∠=,AD =33AB DC ==.(Ⅰ)在棱PB 上确定一点E ,使得//CE 平面PAD ;(Ⅱ)若PA PD ==PB PC =,求直线PA 与平面PBC 所成角的大小.21.设,证明:(Ⅰ)当x >1时,f (x)<( x ﹣1);ABCDP(Ⅱ)当1<x <3时,.22.(本题满分12分) 已知数列{a n }满足a 1=1,a n+1=2a n +1. (1)求数列{a n }的通项公式;(2)令b n =n (a n +1),求数列{b n }的前n 项和T n .23.如图,在四棱锥O ﹣ABCD 中,底面ABCD 四边长为1的菱形,∠ABC=,OA ⊥底面ABCD ,OA=2,M 为OA 的中点,N 为BC 的中点. (Ⅰ)证明:直线MN ∥平面OCD ; (Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离.24.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()2ln R f x x ax x a =-+-∈.(1)若函数()f x 是单调递减函数,求实数a 的取值范围;(2)若函数()f x 在区间()0,3上既有极大值又有极小值,求实数a 的取值范围.25.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=ax 2+lnx (a ∈R ). (1)当a=12时,求f (x )在区间[1,e]上的最大值和最小值; (2)如果函数g (x ),f 1(x ),f 2(x ),在公共定义域D 上,满足f 1(x )<g (x )<f 2(x ),那么就称g (x )为f 1(x ),f 2(x )的“活动函数”.已知函数()()221121-a ln ,2f x a x ax x ⎛⎫=-++ ⎪⎝⎭.()22122f x x ax =+。

西夏区高级中学2018-2019学年高三上学期11月月考数学试卷含答案

西夏区高级中学2018-2019学年高三上学期11月月考数学试卷含答案

西夏区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 双曲线上一点P 到左焦点的距离为5,则点P 到右焦点的距离为( )A .13B .15C .12D .112. 已知f (x )是定义在R 上周期为2的奇函数,当x ∈(0,1)时,f (x )=3x ﹣1,则f (log 35)=( )A .B .﹣C .4D .3. 已知角的终边经过点,则的值为( )α(sin15,cos15)-oo2cos αA .B .C. D .012+12344.执行如图所示的程序,若输入的,则输出的所有的值的和为( )3x =x A .243 B .363 C .729 D .1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________5.已知函数f(x)是定义在R上的奇函数,若f(x)=,则关于x的方程f(x)+a=0(0<a<1)的所有根之和为()A.1﹣()a B.()a﹣1C.1﹣2a D.2a﹣16.设函数,则有()A.f(x)是奇函数,B.f(x)是奇函数,y=b xC.f(x)是偶函数D.f(x)是偶函数,7.袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是()A.至少有一个白球;都是白球B.至少有一个白球;至少有一个红球C.恰有一个白球;一个白球一个黑球D.至少有一个白球;红、黑球各一个8.投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.3129.在△ABC中,AB边上的中线CO=2,若动点P满足=(sin2θ)+(cos2θ)(θ∈R),则(+)•的最小值是()A.1B.﹣1C.﹣2D.010.己知x0=是函数f(x)=sin(2x+φ)的一个极大值点,则f(x)的一个单调递减区间是()A.(,)B.(,)C.(,π)D.(,π)11.设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x2,下面的不等式在R内恒成立的是()A.f(x)>0B.f(x)<0C.f(x)>x D.f(x)<x12.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离.二、填空题13.如图为长方体积木块堆成的几何体的三视图,此几何体共由 块木块堆成.14.若执行如图3所示的框图,输入,则输出的数等于15.直线与抛物线交于,两点,且与轴负半轴相交,若为坐标原点,则16y x =A B x O 面积的最大值为.OAB ∆【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.16.对于函数(),,y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“()y f x =是奇函数”的▲ 条件. (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”)17.已知函数,,其图象上任意一点处的切线的斜率恒()ln a f x x x =+(0,3]x ∈00(,)P x y 12k ≤成立,则实数的取值范围是 .18.已知,是空间二向量,若=3,||=2,|﹣|=,则与的夹角为 .三、解答题19.设0<||≤2,函数f (x )=cos 2x ﹣||sinx ﹣||的最大值为0,最小值为﹣4,且与的夹角为45°,求|+|.20.已知函数.()21ln ,2f x x ax x a R =-+∈(1)令,讨论的单调区间;()()()1g x f x ax =--()g x(2)若,正实数满足,证明.2a =-12,x x ()()12120f x f x x x ++=12x x +≥21.(本小题满分12分)设函数()()2741201x x f x a a a --=->≠且.(1)当a =时,求不等式()0f x <的解集;(2)当[]01x ∈,时,()0f x <恒成立,求实数的取值范围.22.(本小题满分12分)若二次函数满足,()()20f x ax bx c a =++≠()()+12f x f x x -=且.()01f =(1)求的解析式;()f x(2)若在区间上,不等式恒成立,求实数的取值范围.[]1,1-()2f x x m >+m 23.已知数列{a n }满足a 1=,a n+1=a n +(n ∈N *).证明:对一切n ∈N *,有(Ⅰ)<;(Ⅱ)0<a n <1. 24.十八届四中全会明确提出“以法治手段推进生态文明建设”,为响应号召,某市红星路小区的环保人士向该市政府部门提议“在全市范围内禁放烟花、炮竹”.为此,红星路小区的环保人士对该小区年龄在[15,75)的市民进行问卷调查,随机抽查了50人,并将调查情况进行整理后制成下表:年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)频数610121255赞成人数3610643(1)请估计红星路小区年龄在[15,75)的市民对“禁放烟花、炮竹”的赞成率和被调查者的年龄平均值;(2)若从年龄在[55,65)、[65,75)的被调查者中各随机选取两人进行追踪调查,记被选4人中不赞成“禁放烟花、炮竹”的人数为ξ,求随机变量ξ的分布列和数学期望.西夏区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案A B BDCCDACB题号1112答案A二、填空题13. 4 14.1516.必要而不充分17.21≥a 18. 60° .三、解答题19.20.(1)当时,函数单调递增区间为,无递减区间,当时,函数单调递增区间为0a ≤()0,+∞0a >,单调递减区间为;(2)证明见解析.10,a ⎛⎫ ⎪⎝⎭1,a ⎛⎫+∞ ⎪⎝⎭21.(1)158⎛⎫-∞ ⎪⎝⎭,;(2)()11128a ⎫∈⎪⎪⎭U ,,.22.(1);(2).()2=+1f x x x -1m <-23. 24.。

城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案

城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案

城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的()A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也非必要条件2. 复数是虚数单位)的虚部为( )i iiz (21+=A .B .C .D .1-i -i 22【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力.3. 设a ,b ∈R ,i 为虚数单位,若=3+b i ,则a -b 为( )2+a i1+iA .3B .2C .1D .04. 如图,四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,D 为四面体OABC 外一点.给出下列命题.①不存在点D ,使四面体ABCD 有三个面是直角三角形②不存在点D ,使四面体ABCD 是正三棱锥③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上其中真命题的序号是( )A .①②B .②③C .③D .③④5. 已知双曲线的方程为﹣=1,则双曲线的离心率为( )A .B .C .或D .或6. 命题“存在实数x ,使x >1”的否定是( )A .对任意实数x ,都有x >1B .不存在实数x ,使x ≤1C .对任意实数x ,都有x ≤1D .存在实数x ,使x ≤17. 下列函数在(0,+∞)上是增函数的是( )A .B .y=﹣2x+5C .y=lnxD .y=8. 利用计算机在区间(0,1)上产生随机数a ,则不等式ln (3a ﹣1)<0成立的概率是( )A .B .C .D .班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 若函数则的值为( )1,0,()(2),0,x x f x f x x +≥⎧=⎨+<⎩(3)f -A .5B .C .D .21-7-10.已知向量=(1,1,0),=(﹣1,0,2)且k+与2﹣互相垂直,则k 的值是( )A .1B .C .D .11.已知是虚数单位,若复数在复平面内对应的点在第四象限,则实数的值可以是( )22aiZ i+=+A .-2 B .1C .2D .312.函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数,则a 的取值范围为()A .0<a ≤B .0≤a ≤C .0<a <D .a >二、填空题13.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{52128lnx x xf x m x mx x +>=-++≤,,,,若有三个零点,则实数m 的取值范围是________.()()g x f x m =-14.若函数为奇函数,则___________.63e ()()32ex x bf x x a =-∈R ab =【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力.15.若实数x ,y 满足x 2+y 2﹣2x+4y=0,则x ﹣2y 的最大值为 .16.一个正四棱台,其上、下底面均为正方形,边长分别为2cm 和4cm ,侧棱长为2cm ,则其表面积为__________2cm .17.数列{a n }是等差数列,a 4=7,S 7= .18.在中,已知角的对边分别为,且,则角ABC ∆C B A ,,c b a ,,B c C b a sin cos +=B 为.三、解答题19.已知函数f (x )=x 2﹣mx 在[1,+∞)上是单调函数.(1)求实数m 的取值范围;(2)设向量,求满足不等式的α的取值范围.20.已知f(x)=log3(1+x)﹣log3(1﹣x).(1)判断函数f(x)的奇偶性,并加以证明;(2)已知函数g(x)=log,当x∈[,]时,不等式f(x)≥g(x)有解,求k的取值范围.21.如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中点.(1)求证:AC⊥平面BDEF;(2)求二面角H﹣BD﹣C的大小.22.已知p:,q:x2﹣(a2+1)x+a2<0,若p是q的必要不充分条件,求实数a的取值范围.23.已知函数f (x )=(log 2x ﹣2)(log 4x ﹣)(1)当x ∈[2,4]时,求该函数的值域;(2)若f (x )>mlog 2x 对于x ∈[4,16]恒成立,求m 的取值范围.24.(本小题满分12分)已知函数.1()ln (42)()f x m x m x m x=+-+∈R (1)时,求函数的单调区间;当2m >()f x (2)设,不等式对任意的恒成立,求实数的[],1,3t s ∈|()()|(ln 3)(2)2ln 3f t f s a m -<+--()4,6m ∈a 取值范围.【命题意图】本题考查函数单调性与导数的关系、不等式的性质与解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、运算求解能力.城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案A A D C C C C D111]D题号1112答案A B二、填空题13.7 14⎛⎤ ⎥⎝⎦,14.2016 15.1016.20 17.4918.4π三、解答题19.20.21.22.23.24.。

新华区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(1)

新华区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(1)

新华区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在等差数列中,已知,则( )A .12B .24C .36D .482. 某单位综合治理领导小组成员之问的领导关系可以用框图表示,这种框图通常称为()A .程序流程图B .工序流程图C .知识结构图D .组织结构图3. 已知命题p :对任意()0x ∈+∞,,48log log x x <,命题:存在x ∈R ,使得tan 13x x =-,则下列命题为真命题的是( )A .p q ∧B .()()p q ⌝∧⌝C .()p q ∧⌝D .()p q⌝∧4. 设=(1,2),=(1,1),=+k ,若,则实数k 的值等于()A .﹣B .﹣C .D .5. 如图,函数f (x )=Asin (2x+φ)(A >0,|φ|<)的图象过点(0,),则f (x )的图象的一个对称中心是()A .(﹣,0)B .(﹣,0)C .(,0)D .(,0)6. 数列中,,对所有的,都有,则等于( ){}n a 11a =2n ≥2123n a a a a n =g g L 35a a +A .B .C .D .2592516611631157. 直角梯形中,,直线截该梯形所得位于左边图OABC ,1,2AB OC AB OC BC ===P :l x t =形面积为,则函数的图像大致为()()S f t =8. 已知角θ的终边经过点P (4,m ),且sin θ=,则m 等于( )A .﹣3B .3C .D .±3班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 设x ,y 满足线性约束条件,若z=ax ﹣y (a >0)取得最大值的最优解有数多个,则实数a的值为( )A .2B .C .D .310.已知四个函数f (x )=sin (sinx ),g (x )=sin (cosx ),h (x )=cos (sinx ),φ(x )=cos (cosx )在x ∈[﹣π,π]上的图象如图,则函数与序号匹配正确的是()A .f (x )﹣①,g (x )﹣②,h (x )﹣③,φ(x )﹣④B .f (x )﹣①,φ(x )﹣②,g (x )﹣③,h (x )﹣④C .g (x )﹣①,h (x )﹣②,f (x )﹣③,φ(x )﹣④D .f (x )﹣①,h (x )﹣②,g (x )﹣③,φ(x )﹣④11.已知一个算法的程序框图如图所示,当输出的结果为时,则输入的值为()21A .B .C .或D .或21-1-21-1012.已知点P (x ,y )的坐标满足条件,(k 为常数),若z=3x+y 的最大值为8,则k 的值为()A .B .C .﹣6D .6二、填空题13.若x 、y 满足约束条件,z =3x +y +m 的最小值为1,则m =________.{x -2y +1≤02x -y +2≥0x +y -2≤0)14.命题“∃x ∈R ,2x 2﹣3ax+9<0”为假命题,则实数a 的取值范围为 .15.已知点A 的坐标为(﹣1,0),点B 是圆心为C 的圆(x ﹣1)2+y 2=16上一动点,线段AB 的垂直平分线交BC 与点M ,则动点M 的轨迹方程为 .16.已知(x 2﹣)n )的展开式中第三项与第五项的系数之比为,则展开式中常数项是 .17.【徐州市2018届高三上学期期中】已知函数(为自然对数的底数),若,则实数 的取值范围为______.18.已知直线:()被圆:所截的弦长是圆心到直线的043=++m y x 0>m C 062222=--++y x y x C 距离的2倍,则.=m 三、解答题19.(本题满分13分)已知圆的圆心在坐标原点,且与直线:相切,设点为圆上1C O 1l 062=+-y x A一动点,轴于点,且动点满足,设动点的轨迹为曲线.⊥AM x M N OM ON 2133(-+=N C (1)求曲线的方程;C (2)若动直线:与曲线有且仅有一个公共点,过,两点分别作,2l m kx y +=C )0,1(1-F )0,1(2F 21l P F ⊥,垂足分别为,,且记为点到直线的距离,为点到直线的距离,为点21l Q F ⊥P Q 1d 1F 2l 2d 2F 2l 3d P到点的距离,试探索是否存在最值?若存在,请求出最值.Q 321)(d d d ⋅+20.在平面直角坐标系中,△ABC 各顶点的坐标分别为:A (0,4);B (﹣3,0),C (1,1)(1)求点C 到直线AB 的距离;(2)求AB 边的高所在直线的方程.21.已知等差数列{a n }中,其前n 项和S n =n 2+c (其中c 为常数),(1)求{a n }的通项公式;(2)设b 1=1,{a n +b n }是公比为a 2等比数列,求数列{b n }的前n 项和T n .22.(本小题满分12分)一直线被两直线截得线段的中点是12:460,:3560l x y l x y ++=--=P 点, 当点为时, 求此直线方程.P ()0,023.已知复数z 1满足(z 1﹣2)(1+i )=1﹣i (i 为虚数单位),复数z 2的虚部为2,且z 1z 2是实数,求z 2. 24.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)(不等式选做题)设,且,则的最小值为(几何证明选做题)如图,中,,以为直径的半圆分别交于点,若,则新华区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案B D DABCCBBD题号1112答案B二、填空题13.14.﹣2≤a ≤215.=116. 45 . 17.18.9三、解答题19.20. 21. 22..16y x =-23. 24.。

城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案

城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案

城区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如果定义在R 上的函数满足:对于任意,都有)(x f 21x x ≠)()(2211x f x x f x +,则称为“函数”.给出下列函数:①;②)()(1221x f x x f x +>)(x f H 13++-=x x y ;③;④,其中“函数”的个数是( ))cos sin (23x x x y --=1+=xe y ⎩⎨⎧=≠=000||ln x x x y H A . B . C . D .43212. 已知定义在区间[0,2]上的函数y=f (x )的图象如图所示,则y=f (2﹣x )的图象为()A .B .C .D .3. 若等式(2x ﹣1)2014=a 0+a 1x+a 2x 2+…+a 2014x 2014对于一切实数x 都成立,则a 0+1+a 2+…+a 2014=()A .B .C .D .04. 下列说法正确的是()A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线.5. 若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A .3B .2C .3D .46. 已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ()A .为直角三角形B .为锐角三角形C .为钝角三角形D .前三种形状都有可能班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________7. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AB ,BB 1的中点,则异面直线EF 和BC 1所成的角是()A .60°B .45°C .90°D .120°8. “p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要9. 随机变量x 1~N (2,1),x 2~N (4,1),若P (x 1<3)=P (x 2≥a ),则a=( )A .1B .2C .3D .410.下列各组函数中,表示同一函数的是()A 、x 与B 、 与()f x =()f x =2x x()1f x x =-()f x =C 、与D 、与()f x x =()f x =()f x x =2()f x =11.已知α,β为锐角△ABC 的两个内角,x ∈R ,f (x )=()|x ﹣2|+()|x ﹣2|,则关于x 的不等式f (2x ﹣1)﹣f (x+1)>0的解集为( )A .(﹣∞,)∪(2,+∞)B .(,2)C .(﹣∞,﹣)∪(2,+∞)D .(﹣,2)12.在ABC ∆中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111]A .(0,6πB .[,)6ππ C. (0,]3πD .[,)3ππ二、填空题13.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2;②当i=3,j=1时,x=0;③当x=1时,(i ,j )有4种不同取值;④当x=﹣1时,(i ,j )有2种不同取值;⑤M 中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号) 14.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全校学生中抽取1名学生,抽到高二年级女生的概率为,先采用分层抽样(按年级分层)在全校抽取19.0100人,则应在高三年级中抽取的人数等于 .15.如图,在三棱锥中,,,,为等边三角形,则P ABC -PA PB PC ==PA PB ⊥PA PC ⊥PBC △PC与平面所成角的正弦值为______________.ABC【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力.16.图中的三个直角三角形是一个体积为20的几何体的三视图,则__________.h =17.运行如图所示的程序框图后,输出的结果是 18.已知一组数据,,,,的方差是2,另一组数据,,,,()1x 2x 3x 4x 5x 1ax 2ax 3ax 4ax 5ax 0a >的标准差是,则.a =三、解答题19.(本小题满分12分)设函数()()2741201x x f x a a a --=->≠且.(1)当a =时,求不等式()0f x <的解集;(2)当[]01x ∈,时,()0f x <恒成立,求实数的取值范围.20.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量(毫克)与时间(小时)成正比;药物释放完毕后,与的函数关系式为(为常数),y t y t 1()16t ay -=a如图所示.据图中提供的信息,回答下列问题:(1)写出从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式;y t (2)据测定,当空气中每立方米的含药量降低到毫克以下时,学生方可进教室。

郊区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(1)

郊区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(1)

郊区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设集合()A .B .C .D.2. 已知直线x+ay ﹣1=0是圆C :x 2+y 2﹣4x ﹣2y+1=0的对称轴,过点A (﹣4,a )作圆C 的一条切线,切点为B ,则|AB|=( )A .2B .6C .4D .23. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )=+6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( )A .2B .3C .4D .54. 命题“,使得”是“”成立的( )0x ∃>a x b +≤a b <A .充分不必要条件 B .必要不充分条件C .充要条件 D .既不充分也不必要条件5. 与命题“若x ∈A ,则y ∉A ”等价的命题是()A .若x ∉A ,则y ∉AB .若y ∉A ,则x ∈AC .若x ∉A ,则y ∈AD .若y ∈A ,则x ∉A6. 在等比数列中,,,且数列的前项和,则此数列的项数}{n a 821=+n a a 8123=⋅-n a a }{n a n 121=n S n等于( )A .4B .5C .6D .7【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一定要求,难度中等.7. 已知双曲线和离心率为的椭圆有相同的焦点,是两曲线的一个公共点,若4sinπ21F F 、P ,则双曲线的离心率等于( )21cos 21=∠PF F A . B .C .D .2526278. 过点(2,﹣2)且与双曲线﹣y 2=1有公共渐近线的双曲线方程是( )A .﹣=1B .﹣=1C .﹣=1D .﹣=19. 若cos (﹣α)=,则cos (+α)的值是()A .B .﹣C .D .﹣10.为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知三个社区分别有低收入家C B A ,,庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从社C 班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________区抽取低收入家庭的户数为( )A .48B .36C .24D .18【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题.11.如图,三行三列的方阵中有9个数a ij (i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )A .B .C .D .12.若,则等于()A .B .C .D .二、填空题13.定义:[x](x ∈R )表示不超过x 的最大整数.例如[1.5]=1,[﹣0.5]=﹣1.给出下列结论:①函数y=[sinx]是奇函数;②函数y=[sinx]是周期为2π的周期函数;③函数y=[sinx]﹣cosx 不存在零点;④函数y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}.其中正确的是 .(填上所有正确命题的编号) 14.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2﹣5x+4=0的两个根,则S 6= .15.已知集合(){}221A x y x y xy =∈+=R ,,,,(){}241B x y x y y x =∈=-R ,,,,则A BI的元素个数是 .16.若在圆C :x 2+(y ﹣a )2=4上有且仅有两个点到原点O 距离为1,则实数a 的取值范围是 .17.已知实数,满足约束条件,若目标函数仅在点取得最小值,则的x y ⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ay x z +=2)4,3(a 取值范围是.18.设集合A={x|x+m ≥0},B={x|﹣2<x <4},全集U=R ,且(∁U A )∩B=∅,求实数m 的取值范围为 .三、解答题19.定义在R 上的增函数y=f (x )对任意x ,y ∈R 都有f (x+y )=f (x )+f (y ),则(1)求f (0); (2)证明:f (x )为奇函数;(3)若f (k •3x )+f (3x ﹣9x ﹣2)<0对任意x ∈R 恒成立,求实数k 的取值范围.20.已知函数f(x)的定义域为{x|x≠kπ,k∈Z},且对定义域内的任意x,y都有f(x﹣y)=成立,且f(1)=1,当0<x<2时,f(x)>0.(1)证明:函数f(x)是奇函数;(2)试求f(2),f(3)的值,并求出函数f(x)在[2,3]上的最值.21.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()ABCD22.已知函数且f(1)=2.(1)求实数k的值及函数的定义域;(2)判断函数在(1,+∞)上的单调性,并用定义加以证明.23.已知直线l 的方程为y=x+4,圆C 的参数方程为(θ为参数),以原点为极点,x 轴正半轴为极轴.建立极坐标系.(Ⅰ)求直线l 与圆C 的交点的极坐标;(Ⅱ)若P 为圆C 上的动点.求P 到直线l 的距离d 的最大值. 24.(本小题满分10分)已知曲线,直线(为参数).22:149x y C +=2,:22,x t l y t =+⎧⎨=-⎩(1)写出曲线的参数方程,直线的普通方程;C (2)过曲线上任意一点作与夹角为的直线,交于点,求的最大值与最小值.C P 30oA ||PA郊区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案B B CCDBCAB题号1112答案DB二、填空题13. ②③④ 14.6315.16. ﹣3<a <﹣1或1<a <3 .17.(,2)-∞-18. m ≥2 .三、解答题19. 20. 21.C 22. 23.24.(1),;(22cos 3sin x y θθ=⎧⎨=⎩26y x =-+。

丰台区高级中学2018-2019学年高三上学期11月月考数学试卷含答案

丰台区高级中学2018-2019学年高三上学期11月月考数学试卷含答案

丰台区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知是虚数单位,若复数在复平面内对应的点在第四象限,则实数的值可以是( )22aiZ i+=+A .-2B .1C .2D .32. 如图是某工厂对一批新产品长度(单位:mm )检测结果的频率分布直方图.估计这批产品的中位数为()A .20B .25C .22.5D .22.753. 设S n 是等比数列{a n }的前n 项和,S 4=5S 2,则的值为( )A .﹣2或﹣1B .1或2C .±2或﹣1D .±1或24. 如果a >b ,那么下列不等式中正确的是( )A .B .|a|>|b|C .a 2>b 2D .a 3>b 35. 椭圆=1的离心率为()A .B .C.D .6. 在平面直角坐标系中,直线y=x 与圆x 2+y 2﹣8x+4=0交于A 、B 两点,则线段AB 的长为()A .4B .4C .2D .27. 设F 1,F 2是双曲线的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .B .C .24D .488.若直线l 的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则( )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α相交但不垂直9. 已知 m 、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中 正确的是( )A .若 m ∥α,n ∥α,则 m ∥nB .若α⊥γ,β⊥γ,则 α∥β班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________C .若m ⊥α,n ⊥α,则 m ∥nD .若 m ∥α,m ∥β,则 α∥β10.在平行四边形ABCD 中,AC 为一条对角线, =(2,4),=(1,3),则等于( )A .(2,4)B .(3,5)C .(﹣3,﹣5)D .(﹣2,﹣4)11.己知x 0=是函数f (x )=sin (2x+φ)的一个极大值点,则f (x )的一个单调递减区间是( )A .(,)B .(,)C .(,π)D .(,π)12.如果双曲线经过点P (2,),且它的一条渐近线方程为y=x ,那么该双曲线的方程是( )A .x 2﹣=1B .﹣=1C .﹣=1D .﹣=1二、填空题13.在下列给出的命题中,所有正确命题的序号为 . ①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称;②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1;③若实数x ,y 满足x 2+y 2=1,则的最大值为;④若△ABC 为锐角三角形,则sinA <cosB .⑤在△ABC 中,BC=5,G ,O 分别为△ABC 的重心和外心,且•=5,则△ABC 的形状是直角三角形.14.命题“对任意的x ∈R ,x 3﹣x 2+1≤0”的否定是 . 15.已知正方体ABCD ﹣A 1B 1C 1D 1的一个面A 1B 1C 1D 1在半径为的半球底面上,A 、B 、C 、D 四个顶点都在此半球面上,则正方体ABCD ﹣A 1B 1C 1D 1的体积为 .16.已知是定义在上函数,是的导数,给出结论如下:()f x R ()f x '()f x ①若,且,则不等式的解集为;()()0f x f x '+>(0)1f =()xf x e -<(0,)+∞②若,则;()()0f x f x '->(2015)(2014)f ef >③若,则;()2()0xf x f x '+>1(2)4(2),n n f f n N +*<∈④若,且,则函数有极小值;()()0f x f x x'+>(0)f e =()xf x 0⑤若,且,则函数在上递增.()()xe xf x f x x'+=(1)f e =()f x (0,)+∞其中所有正确结论的序号是.17.若点p (1,1)为圆(x ﹣3)2+y 2=9的弦MN 的中点,则弦MN 所在直线方程为 18.无论m 为何值时,直线(2m+1)x+(m+1)y ﹣7m ﹣4=0恒过定点 .三、解答题19.在平面直角坐标系xOy 中,经过点且斜率为k 的直线l 与椭圆有两个不同的交点P和Q .(Ⅰ)求k 的取值范围;(Ⅱ)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数k ,使得向量与共线?如果存在,求k 值;如果不存在,请说明理由.20.【徐州市2018届高三上学期期中】已知函数(,是自然对数的底数).(1)若函数在区间上是单调减函数,求实数的取值范围;(2)求函数的极值;(3)设函数图象上任意一点处的切线为,求在轴上的截距的取值范围.21.(本题满分14分)在ABC ∆中,角,,所对的边分别为,已知cos (cos )cos 0C A A B +=.A B C c b a ,,(1)求角B 的大小;(2)若,求b 的取值范围.2=+c a 【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力.22.设a >0,是R 上的偶函数.(Ⅰ)求a 的值;(Ⅱ)证明:f (x )在(0,+∞)上是增函数.23.已知函数f(x)=a x(a>0且a≠1)的图象经过点(2,).(1)求a的值;(2)比较f(2)与f(b2+2)的大小;(3)求函数f(x)=a(x≥0)的值域.24.已知函数f(x)=sin2x+(1﹣2sin2x).(Ⅰ)求f(x)的单调减区间;(Ⅱ)当x∈[﹣,]时,求f(x)的值域.丰台区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】A 【解析】试题分析:,对应点在第四象限,故,A 选项正确.()()()()2224(22)2225ai i ai a a ii i i +-+++-==++-40220a a +>⎧⎨-<⎩考点:复数运算.2. 【答案】C【解析】解:根据频率分布直方图,得;∵0.02×5+0.04×5=0.3<0.5,0.3+0.08×5=0.7>0.5;∴中位数应在20~25内,设中位数为x ,则0.3+(x ﹣20)×0.08=0.5,解得x=22.5;∴这批产品的中位数是22.5.故选:C .【点评】本题考查了利用频率分布直方图求数据的中位数的应用问题,是基础题目.3. 【答案】C【解析】解:由题设知a 1≠0,当q=1时,S 4=4a 1≠10a 1=5S 2;q=1不成立.当q ≠1时,S n =,由S 4=5S 2得1﹣q 4=5(1﹣q 2),(q 2﹣4)(q 2﹣1)=0,(q ﹣2)(q+2)(q ﹣1)(q+1)=0,解得q=﹣1或q=﹣2,或q=2.==q ,∴=﹣1或=±2.故选:C .【点评】本题主要考查等比数列和等差数列的通项公式的应用,利用条件求出等比数列的通项公式,以及对数的运算法则是解决本题的关键. 4. 【答案】D【解析】解:若a >0>b ,则,故A 错误;若a >0>b 且a ,b 互为相反数,则|a|=|b|,故B 错误;若a>0>b且a,b互为相反数,则a2>b2,故C错误;函数y=x3在R上为增函数,若a>b,则a3>b3,故D正确;故选:D【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题.5.【答案】D【解析】解:根据椭圆的方程=1,可得a=4,b=2,则c==2;则椭圆的离心率为e==,故选D.【点评】本题考查椭圆的基本性质:a2=b2+c2,以及离心率的计算公式,注意与双曲线的对应性质的区分. 6.【答案】A【解析】解:圆x2+y2﹣8x+4=0,即圆(x﹣4)2+y2 =12,圆心(4,0)、半径等于2.由于弦心距d==2,∴弦长为2=4,故选:A.【点评】本题主要考查求圆的标准方程的方法,直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,属于基础题.7.【答案】C【解析】解:F1(﹣5,0),F2(5,0),|F1F2|=10,∵3|PF1|=4|PF2|,∴设|PF2|=x,则,由双曲线的性质知,解得x=6.∴|PF1|=8,|PF2|=6,∴∠F1PF2=90°,∴△PF1F2的面积=.故选C.【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.8.【答案】B【解析】解:∵=(1,0,2),=(﹣2,0,4),∴=﹣2,∴∥,故选:B.9.【答案】C【解析】解:对于A,若m∥α,n∥α,则m与n相交、平行或者异面;故A错误;对于B,若α⊥γ,β⊥γ,则α与β可能相交,如墙角;故B错误;对于C,若m⊥α,n⊥α,根据线面垂直的性质定理得到m∥n;故C正确;对于D,若m∥α,m∥β,则α与β可能相交;故D错误;故选C.【点评】本题考查了空间线线关系.面面关系的判断;熟练的运用相关的定理是关键. 10.【答案】C【解析】解:∵,∴==(﹣3,﹣5).故选:C.【点评】本题考查向量的基本运算,向量的坐标求法,考查计算能力.11.【答案】B【解析】解:∵x0=是函数f(x)=sin(2x+φ)的一个极大值点,∴sin(2×+φ)=1,∴2×+φ=2kπ+,解得φ=2kπ﹣,k∈Z,不妨取φ=﹣,此时f(x)=sin(2x﹣)令2kπ+<2x﹣<2kπ+可得kπ+<x<kπ+,∴函数f(x)的单调递减区间为(kπ+,kπ+)k∈Z,结合选项可知当k=0时,函数的一个单调递减区间为(,),故选:B.【点评】本题考查正弦函数的图象和单调性,数形结合是解决问题的关键,属基础题. 12.【答案】B【解析】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.二、填空题13.【答案】:①②③【解析】解:对于①函数y=2x3﹣3x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上,则其关于①点(0,1)的对称点为(﹣x0,2﹣y0)也满足函数的解析式,则①正确;对于②对∀x,y∈R,若x+y≠0,对应的是直线y=﹣x以外的点,则x≠1,或y≠﹣1,②正确;对于③若实数x,y满足x2+y2=1,则=,可以看作是圆x2+y2=1上的点与点(﹣2,0)连线的斜率,其最大值为,③正确;对于④若△ABC为锐角三角形,则A,B,π﹣A﹣B都是锐角,即π﹣A﹣B<,即A+B>,B>﹣A,则cosB<cos(﹣A),即cosB<sinA,故④不正确.对于⑤在△ABC中,G,O分别为△ABC的重心和外心,取BC的中点为D,连接AD、OD、GD,如图:则OD⊥BC,GD=AD,∵=|,由则,即则又BC=5则有由余弦定理可得cosC<0,即有C为钝角.则三角形ABC为钝角三角形;⑤不正确.故答案为:①②③14.【答案】 存在x∈R,x3﹣x2+1>0 .【解析】解:因为全称命题的否定是特称命题,所以命题“对任意的x∈R,x3﹣x2+1≤0”的否定是:存在x∈R,x3﹣x2+1>0.故答案为:存在x∈R,x3﹣x2+1>0.【点评】本题考查命题的否定,特称命题与全称命题的否定关系.15.【答案】 2 .【解析】解:如图所示,连接A 1C 1,B 1D 1,相交于点O .则点O 为球心,OA=.设正方体的边长为x ,则A 1O=x .在Rt △OAA 1中,由勾股定理可得: +x 2=,解得x=.∴正方体ABCD ﹣A 1B 1C 1D 1的体积V==2.故答案为:2.16.【答案】②④⑤【解析】解析:构造函数,,在上递增,()()x g x e f x =()[()()]0xg x e f x f x ''=+>()g x R ∴,∴①错误;()xf x e-<()1x e f x ⇔<()(0)g x g ⇔<0x ⇔<构造函数,,在上递增,∴,()()x f x g x e =()()()0xf x f xg x e '-'=>()g x R (2015)(2014)g g >∴∴②正确;(2015)(2014)f ef >构造函数,,当时,,∴2()()g x x f x =2()2()()[2()()]g x xf x x f x x f x xf x '''=+=+0x >()0g x '>,∴,∴③错误;1(2)(2)n n g g +>1(2)4(2)n n f f +>由得,即,∴函数在上递增,在上递()()0f x f x x '+>()()0xf x f x x '+>()()0xf x x'>()xf x (0,)+∞(,0)-∞减,∴函数的极小值为,∴④正确;()xf x 0(0)0f ⋅=由得,设,则()()x e xf x f x x '+=2()()x e xf x f x x-'=()()x g x e xf x =-()()()xg x e f x xf x ''=--,当时,,当时,,∴当时,,(1)x x xe e e x x x=-=-1x >()0g x '>01x <<()0g x '<0x >()(1)0g x g ≥=即,∴⑤正确.()0f x '≥17.【答案】:2x ﹣y ﹣1=0解:∵P (1,1)为圆(x ﹣3)2+y 2=9的弦MN 的中点,∴圆心与点P 确定的直线斜率为=﹣,∴弦MN所在直线的斜率为2,则弦MN所在直线的方程为y﹣1=2(x﹣1),即2x﹣y﹣1=0.故答案为:2x﹣y﹣1=018.【答案】 (3,1) .【解析】解:由(2m+1)x+(m+1)y﹣7m﹣4=0,得即(2x+y﹣7)m+(x+y﹣4)=0,∴2x+y﹣7=0,①且x+y﹣4=0,②∴一次函数(2m+1)x+(m+1)y﹣7m﹣4=0的图象就和m无关,恒过一定点.由①②,解得解之得:x=3 y=1 所以过定点(3,1);故答案为:(3,1)三、解答题19.【答案】【解析】解:(Ⅰ)由已知条件,直线l的方程为,代入椭圆方程得.整理得①直线l与椭圆有两个不同的交点P和Q,等价于①的判别式△=,解得或.即k的取值范围为.(Ⅱ)设P(x1,y1),Q(x2,y2),则,由方程①,.②又.③而.所以与共线等价于,将②③代入上式,解得.由(Ⅰ)知或,故没有符合题意的常数k.【点评】本题主要考查直线和椭圆相交的性质,2个向量共线的条件,体现了转化的数学而思想,属于中档题.20.【答案】(1)(2)见解析(3)【解析】试题分析:(1)由题意转化为在区间上恒成立,化简可得一次函数恒成立,根据一次函数性质得不等式,解不等式得实数的取值范围;(2)导函数有一个零点,再根据a的正负讨论导函数符号变化规律,确定极值取法(3)先根据导数得切线斜率再根据点斜式得切线方程,即得切线在x轴上的截距,最后根据a的正负以及基本不等式求截距的取值范围.试题解析:(1)函数的导函数,则在区间上恒成立,且等号不恒成立,又,所以在区间上恒成立,记,只需,即,解得.(2)由,得,①当时,有;,所以函数在单调递增,单调递减,所以函数在取得极大值,没有极小值.②当时,有;,所以函数在单调递减,单调递增,所以函数在取得极小值,没有极大值.综上可知: 当时,函数在取得极大值,没有极小值;当时,函数在取得极小值,没有极大值.(3)设切点为,则曲线在点处的切线方程为,当时,切线的方程为,其在轴上的截距不存在.当时,令,得切线在轴上的截距为,当时,,当且仅当,即或时取等号;当时,,当且仅当,即或时取等号.所以切线在轴上的截距范围是.点睛:函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求→求方程的根→列表检验在的根的附近两侧的符号→下结论.(3)已知极值求参数.若函数在点处取得极值,则,且在该点左、右两侧的导数值符号相反.21.【答案】(1);(2).3B π=[1,2)【解析】22.【答案】【解析】解:(1)∵a>0,是R上的偶函数.∴f(﹣x)=f(x),即+=,∴+a•2x=+,2x(a﹣)﹣(a﹣)=0,∴(a﹣)(2x+)=0,∵2x+>0,a>0,∴a﹣=0,解得a=1,或a=﹣1(舍去),∴a=1;(2)证明:由(1)可知,∴∵x>0,∴22x>1,∴f'(x)>0,∴f(x)在(0,+∞)上单调递增;【点评】本题主要考查函数单调性的判断问题.函数的单调性判断一般有两种方法,即定义法和求导判断导数正负.23.【答案】【解析】解:(1)f(x)=a x(a>0且a≠1)的图象经过点(2,),∴a2=,∴a=(2)∵f(x)=()x在R上单调递减,又2<b2+2,∴f(2)≥f(b2+2),(3)∵x≥0,x2﹣2x≥﹣1,∴≤()﹣1=3∴0<f(x)≤(0,3]24.【答案】【解析】解:(Ⅰ)f(x)=sin2x+(1﹣2sin2x)=sin2x+cos2x=2(sin2x+cos2x)=2sin(2x+),由2kπ+≤2x+≤2kπ+(k∈Z)得:kπ+≤x≤kπ+(k∈Z),故f(x)的单调减区间为:[kπ+,kπ+](k∈Z);(Ⅱ)当x∈[﹣,]时,(2x+)∈[0,],2sin(2x+)∈[0,2],所以,f(x)的值域为[0,2].。

东湖区高级中学2018-2019学年高三上学期11月月考数学试卷含答案

东湖区高级中学2018-2019学年高三上学期11月月考数学试卷含答案

东湖区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数f (x )=2x ,则f ′(x )=()A .2xB .2x ln2C .2x +ln2D .2. 数列1,﹣4,7,﹣10,13,…,的通项公式a n 为( )A .2n ﹣1B .﹣3n+2C .(﹣1)n+1(3n ﹣2)D .(﹣1)n+13n ﹣23. 已知抛物线:的焦点为,定点,若射线与抛物线交于点,与抛C 24y x =F (0,2)A FA C M 物线的准线交于点,则的值是( )C N ||:||MN FNA .B .C .D 2)21:(1+4. 直线的倾斜角是( )A .B .C .D .5. 奇函数f (x )在区间[3,6]上是增函数,在区间[3,6]上的最大值为8,最小值为﹣1,则f (6)+f (﹣3)的值为( )A .10B .﹣10C .9D .156. 如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )A .B .4C .D .27. 阅读如下所示的程序框图,若运行相应的程序,则输出的的值是( )S A .39B .21C .81D .102班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8.下列说法正确的是()A.类比推理是由特殊到一般的推理B.演绎推理是特殊到一般的推理C.归纳推理是个别到一般的推理D.合情推理可以作为证明的步骤9.在等比数列中,,前项和为,若数列也是等比数列,则等于()A .B.C.D.10.已知命题p:“∀x∈R,e x>0”,命题q:“∃x0∈R,x0﹣2>x02”,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∧(¬q)是真命题D.命题p∨(¬q)是假命题11.已知正项数列{a n}的前n项和为S n,且2S n=a n+,则S2015的值是()A.B.C.2015D.12.已知全集U=R,集合A={1,2,3,4,5},B={x∈R|x≥3},图中阴影部分所表示的集合为()A.{1}B.{1,2}C.{1,2,3}D.{0,1,2}二、填空题13.圆柱形玻璃杯高8cm ,杯口周长为12cm ,内壁距杯口2cm 的点A 处有一点蜜糖.A 点正对面的外壁(不是A 点的外壁)距杯底2cm 的点B 处有一小虫.若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少 cm .(不计杯壁厚度与小虫的尺寸)14.已知函数y=f (x )的图象是折线段ABC ,其中A (0,0)、、C (1,0),函数y=xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为 .15.已知函数,且,则,的大小关系()f x 23(2)5x =-+12|2||2|x x ->-1()f x 2()f x 是 .16.曲线y =x 2+3x 在点(-1,-2)处的切线与曲线y =ax +ln x 相切,则a =________.17.台风“海马”以25km/h 的速度向正北方向移动,观测站位于海上的A 点,早上9点观测,台风中心位于其东南方向的B 点;早上10点观测,台风中心位于其南偏东75°方向上的C 点,这时观测站与台风中心的距离AC 等于 km .18.如图,一船以每小时20km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°方向,行驶4小时后,船到达C 处,看到这个灯塔在北偏东15°方向,这时船与灯塔间的距离为 km .三、解答题19.已知A 、B 、C 为△ABC 的三个内角,他们的对边分别为a 、b 、c ,且.(1)求A ;(2)若,求bc 的值,并求△ABC 的面积.20.在长方体ABCD﹣A1B1C1D1中,AB=BC=2,过A1、C1、B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD﹣A1C1D1,且这个几何体的体积为10.(Ⅰ)求棱AA1的长;(Ⅱ)若A1C1的中点为O1,求异面直线BO1与A1D1所成角的余弦值.21.设0<||≤2,函数f(x)=cos2x﹣||sinx﹣||的最大值为0,最小值为﹣4,且与的夹角为45°,求|+|.22.已知函数f(x)=x﹣alnx(a∈R)(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;(2)求函数f(x)的极值.23.已知函数y=f(x)的图象与g(x)=log a x(a>0,且a≠1)的图象关于x轴对称,且g(x)的图象过(4,2)点.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若f(x﹣1)>f(5﹣x),求x的取值范围.24.甲、乙两位选手为为备战我市即将举办的“推广妈祖文化•印象莆田”知识竞赛活动,进行针对性训练,近8次的训练成绩如下(单位:分):甲 83 81 93 79 78 84 88 94乙 87 89 89 77 74 78 88 98(Ⅰ)依据上述数据,从平均水平和发挥的稳定程度考虑,你认为应派哪位选手参加?并说明理由;(Ⅱ)本次竞赛设置A、B两问题,规定:问题A的得分不低于80分时答题成功,否则答题失败,答题成功可获得价值100元的奖品,问题B的得分不低于90分时答题成功,否则答题失败,答题成功可获得价值300元的奖品.答题顺序可自由选择,但答题失败则终止答题.选手答题问题A,B成功与否互不影响,且以训练成绩作为样本,将样本频率视为概率,请问在(I)中被选中的选手应选择何种答题顺序,使获得的奖品价值更高?并说明理由.东湖区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案B C D AC C ]CD C题号1112答案D B二、填空题13. 10 cm14. .15.]12()()f x f x 16.17. 25 18. 三、解答题19.20.21.22.23.24.。

祥符区高级中学2018-2019学年上学期高二数学12月月考试题含解析

祥符区高级中学2018-2019学年上学期高二数学12月月考试题含解析

祥符区高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知直线l :2y kx =+过椭圆)0(12222>>=+b a b y a x 的上顶点B 和左焦点F ,且被圆224x y +=截得的弦长为L,若5L ≥e 的取值范围是( ) (A ) ⎥⎦⎤⎝⎛550, ( B )0⎛ ⎝⎦ (C ) ⎥⎦⎤ ⎝⎛5530, (D ) ⎥⎦⎤⎝⎛5540, 2. 已知f (x )是R 上的偶函数,且在(﹣∞,0)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2)则a ,b ,c 的大小关系为( )A .a <c <bB .b <a <cC .c <a <bD .c <b <a 3. 若cos(﹣α)=,则cos(+α)的值是( )A.B.﹣ C.D.﹣4. 执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k 的最大值为( ) A .4B .5C .6D .75.已知双曲线的方程为﹣=1,则双曲线的离心率为( )A .B .C .或D .或6. 在△ABC 中,b=,c=3,B=30°,则a=( )A .B .2C .或2D .27. 设集合A={x|2x ≤4},集合B={x|y=lg (x ﹣1)},则A ∩B 等于( ) A .(1,2) B .[1,2]C .[1,2)D .(1,2]8. 已知函数f (x )=2ax 3﹣3x 2+1,若 f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A .(1,+∞) B .(0,1) C .(﹣1,0) D .(﹣∞,﹣1)9. 已知f (x )是定义在R 上的奇函数,且f (x ﹣2)=f (x+2),当0<x <2时,f (x )=1﹣log 2(x+1),则当0<x <4时,不等式(x ﹣2)f (x )>0的解集是( )A .(0,1)∪(2,3)B .(0,1)∪(3,4)C .(1,2)∪(3,4)D .(1,2)∪(2,3)10.随机变量x 1~N (2,1),x 2~N (4,1),若P (x 1<3)=P (x 2≥a ),则a=( ) A .1 B .2 C .3 D .411.抛物线y 2=2x 的焦点到直线x ﹣y=0的距离是( )A .B .C .D .12.函数f (x )=sin ωx+acos ωx (a >0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是( )A .2B .3C .7D .9二、填空题13.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为___________.【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.14.已知函数()f x 23(2)5x =-+,且12|2||2|x x ->-,则1()f x ,2()f x 的大小关系是 . 15.不等式的解为 .16.如图,△ABC 是直角三角形,∠ACB=90°,PA ⊥平面ABC ,此图形中有 个直角三角形.17.命题“(0,)2x π∀∈,sin 1x <”的否定是 ▲ .18.△ABC 外接圆半径为,内角A ,B ,C 对应的边分别为a ,b ,c ,若A=60°,b=2,则c 的值为 .三、解答题19.(本题满分13分)已知函数x x ax x f ln 221)(2-+=. (1)当0=a 时,求)(x f 的极值;(2)若)(x f 在区间]2,31[上是增函数,求实数a 的取值范围.【命题意图】本题考查利用导数知识求函数的极值及利用导数来研究函数单调性问题,本题渗透了分类讨论思想,化归思想的考查,对运算能力、函数的构建能力要求高,难度大.20. 坐标系与参数方程线l :3x+4y ﹣12=0与圆C :(θ为参数 )试判断他们的公共点个数.21.如图,在Rt△ABC中,∠EBC=30°,∠BEC=90°,CE=1,现在分别以BE,CE为边向Rt△BEC外作正△EBA 和正△CED.(Ⅰ)求线段AD的长;(Ⅱ)比较∠ADC和∠ABC的大小.22.设函数f(x)=lnx+,k∈R.(Ⅰ)若曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,求k值;(Ⅱ)若对任意x1>x2>0,f(x1)﹣f(x2)<x1﹣x2恒成立,求k的取值范围;(Ⅲ)已知函数f(x)在x=e处取得极小值,不等式f(x)<的解集为P,若M={x|e≤x≤3},且M∩P≠∅,求实数m的取值范围.23.已知f(x)=log3(1+x)﹣log3(1﹣x).(1)判断函数f(x)的奇偶性,并加以证明;(2)已知函数g(x)=log,当x∈[,]时,不等式f(x)≥g(x)有解,求k的取值范围.24.已知函数()21ln ,2f x x ax x a R =-+∈. (1)令()()()1g x f x ax =--,讨论()g x 的单调区间;(2)若2a =-,正实数12,x x 满足()()12120f x f x x x ++=,证明12x x +≥.祥符区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】 B【解析】依题意,2, 2.b kc ==设圆心到直线l 的距离为d ,则L =≥解得2165d ≤。

祥符区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案

祥符区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案

祥符区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在等差数列{}n a 中,首项10,a =公差0d ≠,若1237k a a a a a =++++,则k =A 、22B 、23C 、24D 、252. 已知F 1、F 2是椭圆的两个焦点,满足=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( ) A .(0,1)B .(0,]C .(0,)D .[,1)3. 已知的终边过点()2,3,则7tan 4πθ⎛⎫+⎪⎝⎭等于( ) A .15- B .15C .-5D .54. 已知函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x+2)=f (x ).当0≤x ≤1时,f (x )=x 2.若直线y=x+a 与函数y=f (x )的图象在[0,2]内恰有两个不同的公共点,则实数a 的值是( ) A .0B .0或C.或D .0或5. 已知等差数列{a n }中,a 6+a 8=16,a 4=1,则a 10的值是( ) A .15B .30C .31D .646.已知向量=(﹣1,3),=(x ,2),且,则x=( )A. B.C. D.7.若,,且,则λ与μ的值分别为( )A.B .5,2C.D .﹣5,﹣2 8. 若方程C :x 2+=1(a 是常数)则下列结论正确的是( )A .∀a ∈R +,方程C 表示椭圆B .∀a ∈R ﹣,方程C 表示双曲线C .∃a ∈R ﹣,方程C 表示椭圆D .∃a ∈R ,方程C 表示抛物线 9. 已知a >0,实数x ,y满足:,若z=2x+y 的最小值为1,则a=( )A .2B .1C.D.10.下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( )A .3y x =B . 21y x =-+C .||1y x =+D .2xy -=11.将函数)63sin(2)(π+=x x f 的图象向左平移4π个单位,再向上平移3个单位,得到函数)(x g 的图象, 则)(x g 的解析式为( ) A .3)43sin(2)(--=πx x g B .3)43sin(2)(++=πx x g 班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________C .3)123sin(2)(+-=πx x g D .3)123sin(2)(--=πx x g 【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度. 12.已知直线 a 平面α,直线b ⊆平面α,则( )A .a bB .与异面C .与相交D .与无公共点二、填空题13.抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF|=4,则点M 的横坐标x= .14.设曲线y=x n+1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lgx n ,则a 1+a 2+…+a 99的值为 .15.已知抛物线1C :x y 42=的焦点为F ,点P 为抛物线上一点,且3||=PF ,双曲线2C :12222=-by a x(0>a ,0>b )的渐近线恰好过P 点,则双曲线2C 的离心率为 .【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.16.当时,4x<log a x ,则a 的取值范围 .17.函数f (x )=log a (x ﹣1)+2(a >0且a ≠1)过定点A ,则点A 的坐标为 .18.若a ,b 是函数f (x )=x 2﹣px+q (p >0,q >0)的两个不同的零点,且a ,b ,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值等于 .三、解答题19.设函数,若对于任意x ∈[﹣1,2]都有f (x )<m 成立,求实数m 的取值范围.20.如图,ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF ∥DE ,DE=3AF ,BE 与平面ABCD 所成角为60°.(Ⅰ)求证:AC ⊥平面BDE ;(Ⅱ)求二面角F ﹣BE ﹣D 的余弦值;(Ⅲ)设点M 是线段BD 上一个动点,试确定点M 的位置,使得AM ∥平面BEF ,并证明你的结论.21.已知二阶矩阵M 有特征值λ1=4及属于特征值4的一个特征向量=并有特征值λ2=﹣1及属于特征值﹣1的一个特征向量=, =(Ⅰ)求矩阵M ;(Ⅱ)求M 5.22.(本小题满分12分)如图所示,已知⊥AB 平面ACD ,⊥DE 平面ACD ,ACD ∆为等边 三角形,AB DE AD 2==,F 为CD 的中点. (1)求证://AF 平面BCE ; (2)平面⊥BCE 平面CDE .23.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且=2csinA(1)确定角C的大小;(2)若c=,且△ABC的面积为,求a+b的值.24.(本题满分12分)有人在路边设局,宣传牌上写有“掷骰子,赢大奖”.其游戏规则是这样的:你可以在1,2,3,4,5,6点中任选一个,并押上赌注m元,然后掷1颗骰子,连续掷3次,若你所押的点数在3次掷骰子过程中出现1次,2次,3次,那么原来的赌注仍还给你,并且庄家分别给予你所押赌注的1倍,2倍,3倍的奖励.如果3次掷骰子过程中,你所押的点数没出现,那么你的赌注就被庄家没收. (1)求掷3次骰子,至少出现1次为5点的概率;(2)如果你打算尝试一次,请计算一下你获利的期望值,并给大家一个正确的建议.祥符区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】A【解析】1237k a a a a a =++++17672a d ⨯=+121(221)d a d ==+-, ∴22k =. 2. 【答案】C 【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a ,b ,c ,∵=0,∴M 点的轨迹是以原点O 为圆心,半焦距c 为半径的圆. 又M 点总在椭圆内部,∴该圆内含于椭圆,即c <b ,c 2<b 2=a 2﹣c 2.∴e 2=<,∴0<e <.故选:C .【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.3. 【答案】B 【解析】考点:三角恒等变换.4. 【答案】D【解析】解:∵f (x )是定义在R 上的偶函数,当0≤x ≤1时,f (x )=x 2,∴当﹣1≤x ≤0时,0≤﹣x ≤1,f (﹣x )=(﹣x )2=x 2=f (x ),又f (x+2)=f (x ),∴f (x )是周期为2的函数,又直线y=x+a 与函数y=f (x )的图象在[0,2]内恰有两个不同的公共点,其图象如下:当a=0时,直线y=x+a变为直线l1,其方程为:y=x,显然,l1与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点;当a≠0时,直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,由图可知,直线y=x+a与函数y=f(x)相切,切点的横坐标x0∈[0,1].由得:x2﹣x﹣a=0,由△=1+4a=0得a=﹣,此时,x0=x=∈[0,1].综上所述,a=﹣或0故选D.5.【答案】A【解析】解:∵等差数列{a n},∴a6+a8=a4+a10,即16=1+a10,∴a10=15,故选:A.6.【答案】C【解析】解:∵,∴3x+2=0,解得x=﹣.故选:C.【点评】本题考查了向量共线定理、方程的解法,考查了推理能力与计算能力,属于中档题.7.【答案】A【解析】解:由,得.又,,∴,解得.故选:A.【点评】本题考查了平行向量与共线向量,考查向量的性质,大小和方向是向量的两个要素,分别是向量的代数特征和几何特征,借助于向量可以实现某些代数问题与几何问题的相互转化,该题是基础题.8.【答案】B【解析】解:∵当a=1时,方程C:即x2+y2=1,表示单位圆∴∃a∈R+,使方程C不表示椭圆.故A项不正确;∵当a<0时,方程C:表示焦点在x轴上的双曲线∴∀a∈R﹣,方程C表示双曲线,得B项正确;∀a∈R﹣,方程C不表示椭圆,得C项不正确∵不论a取何值,方程C:中没有一次项∴∀a∈R,方程C不能表示抛物线,故D项不正确综上所述,可得B为正确答案故选:B9.【答案】C【解析】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.即2x+y=1,由,解得,即C(1,﹣1),∵点C也在直线y=a(x﹣3)上,∴﹣1=﹣2a,解得a=.故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.10.【答案】C 【解析】试题分析:函数3y x =为奇函数,不合题意;函数21y x =-+是偶函数,但是在区间()0,+∞上单调递减,不合题意;函数2x y -=为非奇非偶函数。

祥符区一中2018-2019学年高三上学期11月月考数学试卷含答案

祥符区一中2018-2019学年高三上学期11月月考数学试卷含答案

D. 3
第 1 页,共 6 页
【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用.
8.
若关于的不等式
x2
xa 4x 3
0 的解集为 3
x 1或 x
2 ,则的取值为(

A.
B. 1
C. 1
2
2
D. 2
9.
=( )
A.2 B.4 C.π D.2π
②若 logm3<logn3<0,则 0<n<m<1;
③若函数 f(x)是奇函数,则 f(x﹣1)的图象关于点 A(1,0)对称;
④若函数 f(x)=3x﹣2x﹣3,则方程 f(x)=0 有 2 个实数根.
其中假命题的个数为( )
A.1
B.2
C.3
D.4
6. 双曲线 E 与椭圆 C:x2+y2=1 有相同焦点,且以 E 的一个焦点为圆心与双曲线的渐近线相切的圆的面积 93
10.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问
各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分 5 钱,甲、乙两人所得与丙、丁、戊三人所得相同,且
甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题
(Ⅰ)在棱 PB 上确定一点 E ,使得 CE / / 平面 PAD ;
(Ⅱ)若 PA PD 6 , PB PC ,求直线 PA 与平面 PBC 所成角的大小.
第 4 页,共 6 页
P
D
C
A
B
第 5 页,共 6 页
祥符区一中 2018-2019 学年高三上学期 11 月月考数学试卷含答案(参考答案) 一、选择题

淮安区高级中学2018-2019学年高三上学期11月月考数学试卷含答案

淮安区高级中学2018-2019学年高三上学期11月月考数学试卷含答案

淮安区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 执行如图所示的程序,若输入的3x ,则输出的所有x 的值的和为( ) A .243 B .363 C .729 D .1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力. 2. △ABC 中,A (﹣5,0),B (5,0),点C在双曲线上,则=( )A.B.C.D .± 3. 阅读如图所示的程序框图,运行相应的程序.若该程序运行后输出的结果不大于20,则输入的整数i 的最大值为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .3B .4C .5D .64. 单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则( )A .该几何体体积为B .该几何体体积可能为C .该几何体表面积应为+D .该几何体唯一5. 设集合{}|||2A x R x =∈≤,{}|10B x Z x =∈-≥,则A B =( )A.{}|12x x <≤B.{}|21x x -≤≤C. {}2,1,1,2--D. {}1,2【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题.6. 由小到大排列的一组数据x 1,x 2,x 3,x 4,x 5,其中每个数据都小于﹣1,则样本1,x 1,﹣x 2,x 3,﹣x 4,x 5的中位数为( )A .B .C .D .7. 过点P (﹣2,2)作直线l ,使直线l 与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l 一共有( )A .3条B .2条C .1条D .0条8. 设曲线2()1f x x =+在点(,())x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象 可以为( )A .B . C. D .9. 已知f (x )在R 上是奇函数,且f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( ) A .﹣2 B .2 C .﹣98 D .9810.以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2C π=”的充要条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力. 11.已知命题:()(0x p f x a a =>且1)a ≠是单调增函数;命题5:(,)44q x ππ∀∈,sin cos x x >.则下列命题为真命题的是( )A .p q ∧B .p q ∨⌝ C. p q ⌝∧⌝ D .p q ⌝∧ 12.函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数,则a 的取值范围为( ) A .0<a ≤ B .0≤a ≤C .0<a <D .a >二、填空题13.已知函数f (x )是定义在R 上的单调函数,且满足对任意的实数x 都有f[f (x )﹣2x ]=6,则f (x )+f (﹣x )的最小值等于 .14.阅读如图所示的程序框图,运行相应的程序,若输入的X 的值为2,则输出的结果是 .15.如图,在平面直角坐标系xOy 中,将直线y=与直线x=1及x 轴所围成的图形旋转一周得到一个圆锥,圆锥的体积V 圆锥=π()2dx=x 3|=.据此类推:将曲线y=x 2与直线y=4所围成的图形绕y 轴旋转一周得到一个旋转体,该旋转体的体积V= .16.已知x 是400和1600的等差中项,则x= .17.已知x ,y 为实数,代数式2222)3(9)2(1y x x y ++-++-+的最小值是 .【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力. 18.设函数32()(1)f x x a x ax =+++有两个不同的极值点1x ,2x ,且对不等式12()()0f x f x +≤ 恒成立,则实数的取值范围是 .三、解答题19.在平面直角坐标系xOy 中,点B 与点A (﹣1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于﹣.(Ⅰ)求动点P 的轨迹方程;(Ⅱ)设直线AP 和BP 分别与直线x=3交于点M ,N ,问:是否存在点P 使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由.20.已知P (m ,n )是函授f (x )=e x ﹣1图象上任一于点(Ⅰ)若点P 关于直线y=x ﹣1的对称点为Q (x ,y ),求Q 点坐标满足的函数关系式(Ⅱ)已知点M(x0,y0)到直线l:Ax+By+C=0的距离d=,当点M在函数y=h(x)图象上时,公式变为,请参考该公式求出函数ω(s,t)=|s﹣e x﹣1﹣1|+|t﹣ln(t﹣1)|,(s∈R,t>0)的最小值.21.已知函数f(x)=•,其中=(2cosx,sin2x),=(cosx,1),x∈R.(1)求函数y=f(x)的单调递增区间;(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,a=,且sinB=2sinC,求△ABC的面积.22.已知函数f(x)=1+(﹣2<x≤2).(1)用分段函数的形式表示函数;(2)画出该函数的图象;(3)写出该函数的值域.23.(本小题满分12分)某旅行社组织了100人旅游散团,其年龄均在[10,60]岁间,旅游途中导游发现该旅游散团人人都会使用微信,所有团员的年龄结构按[10,20),[20,30),[30,40),[40,50),[50,60]分成5组,分A B C D E,其频率分布直方图如下图所示.别记为,,,,(Ⅰ)根据频率分布直方图,估计该旅游散团团员的平均年龄;(Ⅱ)该团导游首先在,,C D E 三组中用分层抽样的方法抽取了6名团员负责全团协调,然后从这6名团员中随机选出2名团员为主要协调负责人,求选出的2名团员均来自C 组的概率.24.(本小题满分12分)已知圆M 与圆N :222)35()35(r y x =++-关于直线x y =对称,且点)35,31(-D 在圆M 上.(1)判断圆M 与圆N 的位置关系;(2)设P 为圆M 上任意一点,)35,1(-A ,)35,1(B ,B A P 、、三点不共线,PG 为APB ∠的平分线,且交AB 于G . 求证:PBG ∆与APG ∆的面积之比为定值.淮安区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题13.6.14.﹣3.15.8π.16.1000.17.18.1 (,1],22⎡⎤-∞-⎢⎥⎣⎦三、解答题19.20.21.22.23.24.(1)圆与圆相离;(2)定值为2.。

比如县高级中学2018-2019学年高三上学期11月月考数学试卷含答案

比如县高级中学2018-2019学年高三上学期11月月考数学试卷含答案

比如县高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知f (x )为偶函数,且f (x+2)=﹣f (x ),当﹣2≤x ≤0时,f (x )=2x ;若n ∈N *,a n =f (n ),则a 2017等于( )A .2017B .﹣8C .D .2. 若某几何体的三视图 (单位:cm ) 如图所示,则此几何体的体积是( )cm 3A .πB .2πC .3πD .4π3. 设集合,,则( )ABC D4. 两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .akm B. akmC .2akm D.akm5. 在等比数列中,,前项和为,若数列也是等比数列,则等于( )A .B .C .D .6. 已知是虚数单位,若复数22aiZ i+=+在复平面内对应的点在第四象限,则实数的值可以是( ) A .-2 B .1 C .2 D .3 7. 已知命题p :“∀∈[1,e],a >lnx ”,命题q :“∃x ∈R ,x 2﹣4x+a=0””若“p ∧q ”是真命题,则实数a 的取值范围是( )A .(1,4]B .(0,1]C .[﹣1,1]D .(4,+∞)8. 设直线y=t 与曲线C :y=x (x ﹣3)2的三个交点分别为A (a ,t ),B (b ,t ),C (c ,t ),且a <b <c .现给出如下结论:①abc 的取值范围是(0,4); ②a 2+b 2+c 2为定值;班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________③c ﹣a 有最小值无最大值. 其中正确结论的个数为( )A .0B .1C .2D .39. 如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若PA=AB ,求PB 与AC 所成角的余弦值; (Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离.10.三个实数a 、b 、c 成等比数列,且a+b+c=6,则b 的取值范围是( ) A .[﹣6,2] B .[﹣6,0)∪( 0,2] C .[﹣2,0)∪( 0,6] D .(0,2]11.如果a >b ,那么下列不等式中正确的是( ) A .B .|a|>|b|C .a 2>b 2D .a 3>b 312.已知函数,函数,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A .B .C .D .二、填空题13.如图,P 是直线x +y -5=0上的动点,过P 作圆C :x 2+y 2-2x +4y -4=0的两切线、切点分别为A 、B ,当四边形P ACB 的周长最小时,△ABC 的面积为________.14.等比数列{a n }的前n 项和S n =k 1+k 2·2n (k 1,k 2为常数),且a 2,a 3,a 4-2成等差数列,则a n =________. 15.若复数34sin (cos )i 55z αα=-+-是纯虚数,则tan α的值为 .【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力.16.已知点E、F分别在正方体的棱上,且, ,则面AEF与面ABC所成的二面角的正切值等于 .17.S n=++…+=.18.某城市近10年居民的年收入x与支出y之间的关系大致符合=0.9x+0.2(单位:亿元),预计今年该城市居民年收入为20亿元,则年支出估计是亿元.三、解答题19.某校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是:[50,60][60,70][70,80][80,90][90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分.20.某单位组织职工开展构建绿色家园活动,在今年3月份参加义务植树活动的职工中,随机抽取M名职工为样本,得到这些职工植树的株数,根据此数据作出了频数与频率统计表和频率分布直方图如图:(1)求出表中M,p及图中a的值;(2)单位决定对参加植树的职工进行表彰,对植树株数在[25,30)区间的职工发放价值800元的奖品,对植树株数在[20,25)区间的职工发放价值600元的奖品,对植树株数在[15,20)区间的职工发放价值400元的奖品,对植树株数在[10,15)区间的职工发放价值200元的奖品,在所取样本中,任意取出2人,并设X为合计21.已知向量=(,1),=(cos,),记f(x)=.(1)求函数f(x)的最小正周期和单调递增区间;(2)将函数y=f(x)的图象向右平移个单位得到y=g(x)的图象,讨论函数y=g(x)﹣k在的零点个数.22.已知函数f(x)=|x﹣a|.(1)若不等式f(x)≤3的解集为{x|﹣1≤x≤5},求实数a的值;(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.23.如图,在平面直角坐标系xOy中,以x为始边作两个锐角α,β,它们的终边分别与单位圆交于A,B两点.已知A,B的横坐标分别为,.(1)求tan(α+β)的值;(2)求2α+β的值.24.请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.比如县高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题13.14.15.3 416.17.18.18.2三、解答题19.20.21.22.23.24.。

祥符区高级中学2018-2019学年上学期高三数学10月月考试题

祥符区高级中学2018-2019学年上学期高三数学10月月考试题

祥符区高级中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 奇函数()f x 满足()10f =,且()f x 在()0+∞,上是单调递减,则()()210x f x f x -<--的解集为( ) A .()11-, B .()()11-∞-+∞,,C .()1-∞-,D .()1+∞,2. 如果集合 ,A B ,同时满足{}{}{}{}1,2,3,41,1,1AB B A B =≠≠,A =,就称有序集对(),A B 为“ 好集对”. 这里有序集对(),A B 是指当A B ≠时,(),A B 和(),B A 是不同的集对, 那么“好集对” 一共有( )个A .个B .个C .个D .个 3. 过点(﹣1,3)且平行于直线x ﹣2y+3=0的直线方程为( )A .x ﹣2y+7=0B .2x+y ﹣1=0C .x ﹣2y ﹣5=0D .2x+y ﹣5=04. 在曲线y=x 2上切线倾斜角为的点是( )A .(0,0)B .(2,4)C .(,)D .(,)5. 已知全集R U =,集合{|||1,}A x x x R =≤∈,集合{|21,}xB x x R =≤∈,则集合U AC B 为( )A.]1,1[-B.]1,0[C.]1,0(D.)0,1[- 【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.6. 设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( )A .m ⊥α,m ⊥β,则α∥βB .m ∥n ,m ⊥α,则n ⊥αC .m ⊥α,n ⊥α,则m ∥nD .m ∥α,α∩β=n ,则m ∥n7. 已知a n =(n ∈N *),则在数列{a n }的前30项中最大项和最小项分别是( )A .a 1,a 30B .a 1,a 9C .a 10,a 9D .a 10,a 308. 设向量,满足:||=3,||=4, =0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )A .3B .4C .5D .69. 已知函数x x x f 2sin )(-=,且)2(),31(log ),23(ln 3.02f c f b f a ===,则( )A .c a b >>B .a c b >>C .a b c >>D .b a c >>【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力. 10.沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为( )A .B .C .D .11.已知F 1,F 2是椭圆和双曲线的公共焦点,M 是它们的一个公共点,且∠F 1MF 2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A .2B .C .D .412.如图可能是下列哪个函数的图象( )A .y=2x ﹣x 2﹣1B .y=C .y=(x 2﹣2x )e xD .y=二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知过双曲线22221(0,0)x y a b a b-=>>的右焦点2F 的直线交双曲线于,A B 两点,连结11,AF BF ,若1||||AB BF =,且190ABF ∠=︒,则双曲线的离心率为( )A .5-BC .6- D【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想.14.已知一个算法,其流程图如图,则输出结果是 .15.在ABC ∆中,90C ∠=,2BC =,M 为BC 的中点,1sin 3BAM ∠=,则AC 的长为_________. 16.已知tan β=,tan (α﹣β)=,其中α,β均为锐角,则α= .三、解答题(本大共6小题,共70分。

祥符区一中2018-2019学年上学期高三数学10月月考试题

祥符区一中2018-2019学年上学期高三数学10月月考试题

祥符区一中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 下列函数中,与函数()3x xe ef x --=的奇偶性、单调性相同的是( )A.(ln y x = B .2y x = C .tan y x = D .xy e = 2. 定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是( ) A .T 1=T 19 B .T 3=T 17 C .T 5=T 12 D .T 8=T 113. 已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点M (0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A .3B.C.D.4. 已知函数,,若,则( )A1 B2 C3 D-15. 在ABC ∆中,角A ,B ,C 的对边分别是,,,BH 为AC 边上的高,5BH =,若2015120aBC bCA cAB ++=,则H 到AB 边的距离为( )A .2B .3 C.1 D .4 6. 函数f (x )=kx +bx +1,关于点(-1,2)对称,且f (-2)=3,则b 的值为( )A .-1B .1C .2D .47. 在等差数列{}n a 中,11a =,公差0d ≠,n S 为{}n a 的前n 项和.若向量13(,)m a a =,133(,)n a a =-, 且0m n ?,则2163n n S a ++的最小值为( )A .4B .3 C.2 D .92【命题意图】本题考查等差数列的性质,等差数列的前n 项和,向量的数量积,基本不等式等基础知识,意在考查学生的学生运算能力,观察分析,解决问题的能力.8. 某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( ) A .36种 B .38种 C .108种 D .114种9. 已知()(2)(0)x b g x ax a e a x =-->,若存在0(1,)x ∈+∞,使得00()'()0g x g x +=,则ba的 取值范围是( )A .(1,)-+∞B .(1,0)- C. (2,)-+∞ D .(2,0)- 10.偶函数f (x )的定义域为R ,若f (x+2)为奇函数,且f (1)=1,则f (89)+f (90)为( ) A .﹣2 B .﹣1C .0D .111.不等式≤0的解集是( )A .(﹣∞,﹣1)∪(﹣1,2)B .[﹣1,2]C .(﹣∞,﹣1)∪[2,+∞)D .(﹣1,2]12.已知集合23111{1,(),,}122i A i i i i -=-+-+(其中为虚数单位),2{1}B x x =<,则A B =( ) A .{1}- B .{1} C .{1,}2- D .{}2二、填空题13.已知函数21,0()1,0x x f x x x ⎧-≤=⎨->⎩,()21xg x =-,则((2))f g = ,[()]f g x 的值域为 .【命题意图】本题考查分段函数的函数值与值域等基础知识,意在考查分类讨论的数学思想与运算求解能力. 14.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全 校学生中抽取1名学生,抽到高二年级女生的概率为19.0,先采用分层抽样(按年级分层)在全校抽取 100人,则应在高三年级中抽取的人数等于 .15.函数)(x f (R x ∈)满足2)1(=f 且)(x f 在R 上的导数)('x f 满足03)('>-x f ,则不等式1log 3)(log 33-<x x f 的解集为 .【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.16.在下列给出的命题中,所有正确命题的序号为 . ①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称; ②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1;③若实数x ,y 满足x 2+y 2=1,则的最大值为;④若△ABC 为锐角三角形,则sinA <cosB .⑤在△ABC 中,BC=5,G ,O 分别为△ABC 的重心和外心,且•=5,则△ABC 的形状是直角三角形.17.若6()mx y +展开式中33x y 的系数为160-,则m =__________.【命题意图】本题考查二项式定理的应用,意在考查逆向思维能力、方程思想.三、解答题18.已知函数f (x )=lg (2016+x ),g (x )=lg (2016﹣x ) (1)判断函数f (x )﹣g (x )的奇偶性,并予以证明. (2)求使f (x )﹣g (x )<0成立x 的集合.19.(本小题满分13分)如图,已知椭圆22:14x C y +=的上、下顶点分别为,A B ,点P 在椭圆上,且异于点,A B ,直线,AP BP 与直线:2l y =-分别交于点,M N ,(1)设直线,AP BP 的斜率分别为12,k k ,求证:12k k ⋅为定值; (2)求线段MN 的长的最小值;(3)当点P 运动时,以MN 为直径的圆是否经过某定点?请证明你的结论.【命题意图】本题主要考查椭圆的标准方程及性质、直线与椭圆的位置关系,考查考生运算求解能力,分析问题与解决问题的能力,是中档题.20.已知抛物线C:x2=2y的焦点为F.(Ⅰ)设抛物线上任一点P(m,n).求证:以P为切点与抛物线相切的方程是mx=y+n;(Ⅱ)若过动点M(x0,0)(x0≠0)的直线l与抛物线C相切,试判断直线MF与直线l的位置关系,并予以证明.21.(本小题满分12分)某市拟定2016年城市建设,,A B C三项重点工程,该市一大型城建公司准备参加这三个工程的竞标,假设这三个工程竞标成功与否相互独立,该公司对,,A B C三项重点工程竞标成功的概率分别为a,b,14()a b,已知三项工程都竞标成功的概率为124,至少有一项工程竞标成功的概率为34.(1)求a与b的值;(2)公司准备对该公司参加,,A B C三个项目的竞标团队进行奖励,A项目竞标成功奖励2万元,B项目竞标成功奖励4万元,C项目竞标成功奖励6万元,求竞标团队获得奖励金额的分布列与数学期望.【命题意图】本题考查相互独立事件、离散型随机变量分布列与期望等基础知识,意在考查学生的运算求解能力、审读能力、获取数据信息的能力,以及方程思想与分类讨论思想的应用.22.已知命题p:∀x∈[2,4],x2﹣2x﹣2a≤0恒成立,命题q:f(x)=x2﹣ax+1在区间上是增函数.若p∨q为真命题,p∧q为假命题,求实数a的取值范围.23.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,且120ABC ∠=︒.点E 是棱PC 的中点,平面ABE 与棱PD 交于点F . (1)求证://AB EF ;(2)若2PA PD AD ===,且平面PAD ⊥平面ABCD ,求平面PAF 与平面AFE 所成的锐二面角的余 弦值.【命题意图】本小题主要考查空间直线与平面,直线与直线垂直的判定,二面角等基础知识,考查空间想象能力,推理论证能力,运算求解能力,以及数形结合思想、化归与转化思想.24.已知函数f (x )=lnx 的反函数为g (x ).(Ⅰ)若直线l :y=k 1x 是函数y=f (﹣x )的图象的切线,直线m :y=k 2x 是函数y=g (x)图象的切线,求证:l ⊥m ;(Ⅱ)设a ,b ∈R ,且a ≠b ,P=g (),Q=,R=,试比较P ,Q ,R 的大小,并说明理由.祥符区一中2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】A 【解析】试题分析:()()f x f x -=-所以函数为奇函数,且为增函数.B 为偶函数,C 定义域与()f x 不相同,D 为非奇非偶函数,故选A.考点:函数的单调性与奇偶性. 2. 【答案】C【解析】解:∵a n =29﹣n,∴T n =a 1•a 2•…•a n =28+7+…+9﹣n=∴T 1=28,T 19=2﹣19,故A 不正确T 3=221,T 17=20,故B 不正确 T 5=230,T 12=230,故C 正确 T 8=236,T 11=233,故D 不正确 故选C3. 【答案】B【解析】解:依题设P 在抛物线准线的投影为P ′,抛物线的焦点为F ,则F (,0),依抛物线的定义知P 到该抛物线准线的距离为|PP ′|=|PF|, 则点P 到点M (0,2)的距离与P 到该抛物线准线的距离之和,d=|PF|+|PM|≥|MF|==.即有当M ,P ,F 三点共线时,取得最小值,为.故选:B . 【点评】本题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思想.4. 【答案】A【解析】g (1)=a ﹣1, 若f[g (1)]=1, 则f (a ﹣1)=1, 即5|a ﹣1|=1,则|a ﹣1|=0,解得a=1 5. 【答案】D 【解析】考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差OA OB BA -=,这是一个易错点,两个向量的和2OA OB OD +=(D 点是AB 的中点),另外,要选好基底向量,如本题就要灵活使用向量,AB AC ,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几何意义等. 6. 【答案】【解析】解析:选B.设点P (m ,n )是函数图象上任一点,P 关于(-1,2)的对称点为Q (-2-m ,4-n ),则⎩⎪⎨⎪⎧n =km +b m +14-n =k (-2-m )+b -1-m ,恒成立.由方程组得4m +4=2km +2k 恒成立, ∴4=2k ,即k =2,∴f (x )=2x +b x +1,又f (-2)=-4+b -1=3,∴b =1,故选B. 7. 【答案】A【解析】8.【答案】A【解析】解:由题意可得,有2种分配方案:①甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法.根据分步计数原理,共有3×2×3=18种分配方案.②甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共3×2×3=18种分配方案.由分类计数原理,可得不同的分配方案共有18+18=36种,故选A.【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法.9.【答案】A【解析】考点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值.【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小).10.【答案】D【解析】解:∵f (x+2)为奇函数, ∴f (﹣x+2)=﹣f (x+2), ∵f (x )是偶函数,∴f (﹣x+2)=﹣f (x+2)=f (x ﹣2), 即﹣f (x+4)=f (x ),则f (x+4)=﹣f (x ),f (x+8)=﹣f (x+4)=f (x ),即函数f (x )是周期为8的周期函数, 则f (89)=f (88+1)=f (1)=1, f (90)=f (88+2)=f (2), 由﹣f (x+4)=f (x ), 得当x=﹣2时,﹣f (2)=f (﹣2)=f (2), 则f (2)=0,故f (89)+f (90)=0+1=1,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.11.【答案】D【解析】解:依题意,不等式化为,解得﹣1<x≤2,故选D【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解.12.【答案】D【解析】考点:1.复数的相关概念;2.集合的运算二、填空题-+∞.13.【答案】2,[1,)【解析】14.【答案】25【解析】考点:分层抽样方法. 15.【答案】)3,0(【解析】构造函数x x f x F 3)()(-=,则03)(')('>-=x f x F ,说明)(x F 在R 上是增函数,且13)1()1(-=-=f F .又不等式1log 3)(log 33-<x x f 可化为1l o g 3)(l o g 33-<-x x f ,即)1()(l o g3F x F <,∴1log 3<x ,解得30<<x .∴不等式1log 3)(log 33-<x x f 的解集为)3,0(. 16.【答案】 :①②③【解析】解:对于①函数y=2x 3﹣3x+1=的图象关于点(0,1)成中心对称,假设点(x 0,y 0)在函数图象上,则其关于①点(0,1)的对称点为(﹣x 0,2﹣y 0)也满足函数的解析式,则①正确; 对于②对∀x ,y ∈R ,若x+y ≠0,对应的是直线y=﹣x 以外的点,则x ≠1,或y ≠﹣1,②正确;对于③若实数x ,y 满足x 2+y 2=1,则=,可以看作是圆x 2+y 2=1上的点与点(﹣2,0)连线的斜率,其最大值为,③正确;对于④若△ABC 为锐角三角形,则A ,B ,π﹣A ﹣B 都是锐角,即π﹣A ﹣B <,即A+B >,B >﹣A ,则cosB <cos (﹣A ),即cosB <sinA ,故④不正确.对于⑤在△ABC 中,G ,O 分别为△ABC 的重心和外心,取BC 的中点为D ,连接AD 、OD 、GD ,如图:则OD ⊥BC ,GD=AD ,∵=|,由则,即则又BC=5则有由余弦定理可得cosC <0, 即有C 为钝角.则三角形ABC 为钝角三角形;⑤不正确. 故答案为:①②③ 17.【答案】2-【解析】由题意,得336160C m =-,即38m =-,所以2m =-.三、解答题18.【答案】 【解析】解:(1)设h (x )=f (x )﹣g (x )=lg (2016+x )﹣lg (2016﹣x ),h (x )的定义域为(﹣2016,2016);h (﹣x )=lg (2016﹣x )﹣lg (2016+x )=﹣h (x );∴f (x )﹣g (x )为奇函数; (2)由f (x )﹣g (x )<0得,f (x )<g (x );即lg (2016+x )<lg (2016﹣x );∴;解得﹣2016<x <0;∴使f (x )﹣g (x )<0成立x 的集合为(﹣2016,0).【点评】考查奇函数的定义及判断方法和过程,对数的真数需大于0,以及对数函数的单调性.19.【答案】【解析】(1)易知()()0,1,0,1A B -,设()00,P x y ,则由题设可知00x ≠ ,∴ 直线AP 的斜率0101y k x -=,BP 的斜率0201y k x +=,又点P 在椭圆上,所以 20014x y +=,()00x ≠,从而有200012200011114y y y k k x x x -+-⋅===-.(4分)20.【答案】【解析】证明:(Ⅰ)由抛物线C:x2=2y得,y=x2,则y′=x,∴在点P(m,n)切线的斜率k=m,∴切线方程是y﹣n=m(x﹣m),即y﹣n=mx﹣m2,又点P(m,n)是抛物线上一点,∴m2=2n,∴切线方程是mx ﹣2n=y ﹣n ,即mx=y+n … (Ⅱ)直线MF 与直线l 位置关系是垂直.由(Ⅰ)得,设切点为P (m ,n ),则切线l 方程为mx=y+n , ∴切线l 的斜率k=m ,点M(,0), 又点F (0,), 此时,k MF ==== …∴k •k MF =m ×()=﹣1,∴直线MF ⊥直线l …【点评】本题考查直线与抛物线的位置关系,导数的几何意义,直线垂直的条件等,属于中档题.21.【答案】【解析】(1)由题意,得11424131(1)(1)(1)44ab a b ⎧=⎪⎪⎨⎪----=⎪⎩,因为a b >,解得1213a b ⎧=⎪⎪⎨⎪=⎪⎩.…………………4分(Ⅱ)由题意,令竞标团队获得奖励金额为随机变量X ,则X 的值可以为0,2,4,6,8,10,12.…………5分而41433221)0(=⨯⨯==X P ;1231(2)2344P X ==⨯⨯=;1131(4)2348P X ==⨯⨯=; 1211135(6)23423424P X ==⨯⨯+⨯⨯=; 1211(8)23412P X ==⨯⨯=; 1111(10)23424P X ==⨯⨯=; 1111(12)23424P X ==⨯⨯=.…………………9分 所以X 的分布列为:于是,11()012345644824122424E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯12=.……………12分22.【答案】【解析】解:∀x ∈[2,4],x 2﹣2x ﹣2a ≤0恒成立,等价于a≥x2﹣x在x∈[2,4]恒成立,而函数g(x)=x2﹣x在x∈[2,4]递增,其最大值是g(4)=4,∴a≥4,若p为真命题,则a≥4;f(x)=x2﹣ax+1在区间上是增函数,对称轴x=≤,∴a≤1,若q为真命题,则a≤1;由题意知p、q一真一假,当p真q假时,a≥4;当p假q真时,a≤1,所以a的取值范围为(﹣∞,1]∪[4,+∞).23.【答案】【解析】∵BG ⊥平面PAD ,∴)0,3,0(=GB 是平面PAF 的一个法向量,24.【答案】【解析】解:(Ⅰ)∵函数f(x)=lnx的反函数为g(x).∴g(x)=e x.,f(﹣x)=ln(﹣x),则函数的导数g′(x)=e x,f′(x)=,(x<0),设直线m与g(x)相切与点(x1,),则切线斜率k2==,则x1=1,k2=e,设直线l与f(x)相切与点(x2,ln(﹣x2)),则切线斜率k1==,则x2=﹣e,k1=﹣,故k2k1=﹣×e=﹣1,则l⊥m.(Ⅱ)不妨设a>b,∵P﹣R=g()﹣=﹣=﹣<0,∴P<R,∵P﹣Q=g()﹣=﹣==,令φ(x)=2x﹣e x+e﹣x,则φ′(x)=2﹣e x﹣e﹣x<0,则φ(x)在(0,+∞)上为减函数,故φ(x)<φ(0)=0,取x=,则a﹣b﹣+<0,∴P<Q,⇔==1﹣令t(x)=﹣1+,则t′(x)=﹣=≥0,则t(x)在(0,+∞)上单调递增,故t(x)>t(0)=0,取x=a﹣b,则﹣1+>0,∴R>Q,综上,P<Q<R,【点评】本题主要考查导数的几何意义的应用以及利用作差法比较大小,考查学生的运算和推理能力,综合性较强,难度较大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

祥符区高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 记
,那么
A
B
C D
2. 下列说法正确的是( ) A .类比推理是由特殊到一般的推理 B .演绎推理是特殊到一般的推理 C .归纳推理是个别到一般的推理 D .合情推理可以作为证明的步骤
3. 在ABC ∆中,角A ,B ,C 的对边分别是,,,BH 为AC 边上的高,5BH =,若
2015120aBC bCA cAB ++=,则H 到AB 边的距离为( )
A .2
B .3 C.1 D .4 4.
一个算法的程序框图如图所示,若运行该程序后输出的结果为,则判断框中应填入的条件是( )
A .i ≤5?
B .i ≤4?
C .i ≥4?
D .i ≥5?
5. 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V
≈L 2h ,它实际上是将圆锥体积公式中的圆周率π近似取为3,
那么,近似公式V
≈L 2h 相当于将圆锥体积公式中的π近似取为( )
A

B

C

D

班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
6. 复数=( )
A .
B .
C .
D .
7. 若不等式1≤a ﹣b ≤2,2≤a+b ≤4,则4a ﹣2b 的取值范围是( )
A .[5,10]
B .(5,10)
C .[3,12]
D .(3,12) 8. 已知集合A={x|x ≥0},且A ∩B=B ,则集合B 可能是( )
A .{x|x ≥0}
B .{x|x ≤1}
C .{﹣1,0,1}
D .R
9. 以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =
B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<
C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数
D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2
C π
=
”的充要条件
【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力. 10.下列语句所表示的事件不具有相关关系的是( )
A .瑞雪兆丰年
B .名师出高徒
C .吸烟有害健康
D .喜鹊叫喜
11.现要完成下列3项抽样调查:
①从10盒酸奶中抽取3盒进行食品卫生检查.
②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.
③高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员2名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本. 较为合理的抽样方法是( )
A .①简单随机抽样,②系统抽样,③分层抽样
B .①简单随机抽样,②分层抽样,③系统抽样
C .①系统抽样,②简单随机抽样,③分层抽样
D .①分层抽样,②系统抽样,③简单随机抽样
12.函数()log 1x
a f x a x =-有两个不同的零点,则实数的取值范围是( )
A .()1,10
B .()1,+∞
C .()0,1
D .()10,+∞
二、填空题
13.一个总体分为A ,B ,C 三层,用分层抽样的方法从中抽取一个容量为15的样本,若B 层中每个个体被
抽到的概率都为
,则总体的个数为 .
14.(若集合A ⊊{2,3,7},且A 中至多有1个奇数,则这样的集合共有 个.
15.已知复数
,则1+z 50+z 100
= .
16.一质点从正四面体A ﹣BCD 的顶点A 出发沿正四面体的棱运动,每经过一条棱称为一次运动.第1次运动经过棱AB 由A 到B ,第2次运动经过棱BC 由B 到C ,第3次运动经过棱CA 由C 到A ,第4次经过棱AD 由A 到D ,…对于N ∈n *,第3n 次运动回到点A ,第3n+1次运动经过的棱与3n ﹣1次运动经过的棱异面,第3n+2次运动经过的棱与第3n 次运动经过的棱异面.按此运动规律,质点经过2015次运动到达的点为 . 17.将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为 .
18.已知函数f (x )=
,若f (f (0))=4a ,则实数a= .
三、解答题
19.在平面直角坐标系xOy 中,圆C :x 2+y 2=4,A (,0),A 1(﹣
,0),点P 为平面内一动点,以
PA 为直径的圆与圆C 相切.
(Ⅰ)求证:|PA 1|+|PA|为定值,并求出点P 的轨迹方程C 1;
(Ⅱ)若直线PA 与曲线C 1的另一交点为Q ,求△POQ 面积的最大值.
20.已知α、β、是三个平面,且c αβ=,a βγ=,b αγ=,且a b O =.求证:、
、三线共点.
21.已知函数f (x )=,求不等式f (x )<4的解集.
22.已知函数f(x)=4sinxcosx﹣5sin2x﹣cos2x+3.
(Ⅰ)当x∈[0,]时,求函数f(x)的值域;
(Ⅱ)若△ABC的内角A,B,C的对边分别为a,b,c,且满足=,=2+2cos(A+C),
求f(B)的值.
23.如图所示,一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2﹣6x﹣91=0内切,求动圆圆心M的轨迹方程,并说明它是什么样的曲线.
24.已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC﹣ccosA.
(1)求A;
(2)若a=2,△ABC的面积为,求b,c.
祥符区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
13.300.
14.6
15.i.
16.D.
17.4+.
18.2.
三、解答题
19.
20.证明见解析.
21.
22.
23.
24.。

相关文档
最新文档