高考数学二轮复习 专题一 函数与导数、不等式 第2讲 不等式问题练习

合集下载

2020届高考数学(理)二轮专题复习: 专题二 函数、不等式、导数 1-2-2 Word版含答案.doc

2020届高考数学(理)二轮专题复习: 专题二 函数、不等式、导数 1-2-2 Word版含答案.doc

限时规范训练五 不等式及线性规划限时45分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分) 1.设0<a <b <1,则下列不等式成立的是( ) A .a 3>b 3B.1a <1bC .a b >1D .lg(b -a )<a解析:选D.∵0<a <b <1,∴0<b -a <1-a ,∴lg(b -a )<0<a ,故选D. 2.已知a ,b 是正数,且a +b =1,则1a +4b( )A .有最小值8B .有最小值9C .有最大值8D .有最大值9解析:选B.因为1a +4b =⎝ ⎛⎭⎪⎫1a +4b (a +b )=5+b a +4ab≥5+2b a ·4a b =9,当且仅当b a =4a b且a +b =1,即a =13,b =23时取“=”,所以1a +4b的最小值为9,故选B.3.对于任意实数a ,b ,c ,d ,有以下四个命题: ①若ac 2>bc 2,则a >b ;②若a >b ,c >d ,则a +c >b +d ; ③若a >b ,c >d ,则ac >bd ; ④若a >b ,则1a >1b.其中正确的有( ) A .1个 B .2个 C .3个D .4个解析:选B.①ac 2>bc 2,则c ≠0,则a >b ,①正确; ②由不等式的同向可加性可知②正确; ③需满足a 、b 、c 、d 均为正数才成立;④错误,如:令a =-1,b =-2,满足-1>-2,但1-1<1-2.故选B. 4.已知不等式ax 2-bx -1>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13,则不等式x 2-bx -a ≥0的解集是( )A .{x |2<x <3}B .{x |x ≤2或x ≥3}C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13<x <12 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或x >12解析:选B.∵不等式ax 2-bx -1>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13, ∴ax 2-bx -1=0的解是x 1=-12和x 2=-13,且a <0.∴⎩⎪⎨⎪⎧-12-13=ba ,⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得⎩⎪⎨⎪⎧a =-6,b =5.则不等式x 2-bx -a ≥0即为x 2-5x +6≥0,解得x ≤2或x ≥3. 5.若x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y ≥0,x +y -4≤0,y ≥12x 2,则z =y -x 的取值范围为( )A .[-2,2] B.⎣⎢⎡⎦⎥⎤-12,2C .[-1,2]D.⎣⎢⎡⎦⎥⎤-12,1 解析:选B.作出可行域(图略),设直线l :y =x +z ,平移直线l ,易知当l 过直线3x -y =0与x +y -4=0的交点(1,3)时,z 取得最大值2;当l 与抛物线y =12x 2相切时,z 取得最小值,由⎩⎪⎨⎪⎧z =y -x ,y =12x 2,消去y 得x 2-2x -2z =0,由Δ=4+8z =0,得z =-12,故-12≤z ≤2,故选B.6.设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是( ) A.92 B.72 C .22+12D .22-12解析:选A.∵a n =a 1+(n -1)d =n ,S n =n+n2, ∴S n +8a n=n+n2+8n=12⎝ ⎛⎭⎪⎫n +16n +1≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时取等号.∴S n +8a n 的最小值是92,故选A.7.一条长为2的线段,它的三个视图分别是长为3,a ,b 的三条线段,则ab 的最大值为( ) A. 5 B. 6 C.52D .3解析:选C.如图,构造一个长方体,体对角线长为2,由题意知a 2+x 2=4,b 2+y 2=4,x2+y 2=3,则a 2+b 2=x 2+y 2+2=3+2=5,又5=a 2+b 2≥2ab ,所以ab ≤52,当且仅当a =b 时取等号,所以选C.8.设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则x +2y +3x +1的取值范围是( ) A .[1,5] B .[2,6] C .[3,11]D .[3,10]解析:选C.画出约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12的可行域如图阴影部分所示,则x +2y +3x +1=x +1+2y +2x +1=1+2×y +1x +1,y +1x +1的几何意义为过点(x ,y )和(-1,-1)的直线的斜率.由可行域知y +1x +1的取值范围为k MA ≤y +1x +1≤k MB ,即y +1x +1∈[1,5],所以x +2y +3x +1的取值范围是[3,11].9.设x ,y 满足不等式⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,若M =3x +y ,N =⎝ ⎛⎭⎪⎫12x-72,则M -N 的最小值为( )A.12 B .-12C .1D .-1解析:选A.作出不等式组所表示的平面区域,如图中阴影部分所示,易求得A (-1,2),B (3,2),当直线3x +y -M =0经过点A (-1,2)时,目标函数M =3x +y 取得最小值-1.又由平面区域知-1≤x ≤3,所以函数N =⎝ ⎛⎭⎪⎫12x-72在x =-1处取得最大值-32,由此可得M -N 的最小值为-1-⎝ ⎛⎭⎪⎫-32=12.10.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域的形状是三角形,则a 的取值范围是( )A .a ≥43B .0<a ≤1C .1≤a ≤43D .0<a ≤1或a ≥43解析:选D.作出不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图中阴影部分所示.其中直线x -y =0与直线2x +y =2的交点是⎝ ⎛⎭⎪⎫23,23,而直线x +y =a 与x 轴的交点是(a,0).由图知,要使原不等式组表示的平面区域的形状为三角形,只需a ≥23+23或0<a ≤1,所以选D.11.已知不等式组⎩⎪⎨⎪⎧3x +4y -10≥0,x ≤4,y ≤3表示区域D ,过区域D 中任意一点P 作圆x 2+y 2=1的两条切线,切点分别为A 、B ,当∠APB 最大时,cos∠APB =( )A.32 B.12 C .-32D .-12解析:选B.画出不等式组表示的可行域如图中阴影部分所示,易知当点P 到点O 距离最小时,∠APB 最大,此时|OP |=|3×0+4×0-10|32+42=2,又OA =1,故∠OPA =π6, ∴∠APB =π3,∴cos∠APB =12.12.已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A .c ≤3 B .3<c ≤6 C .6<c ≤9D .c >9解析:选C.由0<f (-1)=f (-2)=f (-3)≤3,得0<-1+a -b +c =-8+4a -2b +c =-27+9a -3b +c ≤3,由-1+a -b +c =-8+4a -2b +c ,得3a -b -7=0,① 由-1+a -b +c =-27+9a -3b +c ,得 4a -b -13=0,②由①②,解得a =6,b =11,∴0<c -6≤3, 即6<c ≤9,故选C.二、填空题(本题共4小题,每小题5分,共20分)13.函数f (x )=1+log a x (a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -2=0上,其中mn >0,则1m +1n的最小值为________.解析:因为log a 1=0,所以f (1)=1,故函数f (x )的图象恒过定点A (1,1). 由题意,点A 在直线mx +ny -2=0上,所以m +n -2=0,即m +n =2.而1m +1n =12⎝ ⎛⎭⎪⎫1m +1n ×(m +n ) =12⎝⎛⎭⎪⎫2+n m +m n ,因为mn >0,所以nm >0,m n>0. 由均值不等式,可得n m +m n ≥2×n m ×mn=2(当且仅当m =n 时等号成立), 所以1m +1n =12⎝ ⎛⎭⎪⎫2+n m +m n ≥12×(2+2)=2,即1m +1n 的最小值为2.答案:214.设P (x ,y )是函数y =2x(x >0)图象上的点,则x +y 的最小值为________.解析:因为x >0,所以y >0,且xy =2.由基本不等式得x +y ≥2xy =22,当且仅当x =y 时等号成立.答案:2 215.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,y ≥x ,3x +2y ≤15,则w =4x ·2y的最大值是________.解析:作出不等式组表示的可行域如图阴影部分所示.w =4x ·2y =22x +y,要求其最大值,只需求出2x +y =t 的最大值即可,由平移可知t =2x +y 在A (3,3)处取得最大值t =2×3+3=9,故w =4x·2y的最大值为29=512.答案:51216.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,若对任意的x ∈R ,不等式f (x )≤m 2-34m 恒成立,则实数m 的取值范围为________.解析:由题意知,m 2-34m ≥f (x )max .当x >1时,f (x )=log 13x 是减函数,且f (x )<0;当x ≤1时,f (x )=-x 2+x ,其图象的对称轴方程是x =12,且开口向下,∴f (x )max =-14+12=14.∴m 2-34m ≥14,即4m 2-3m -1≥0,∴m ≤-14或m ≥1.答案:⎝ ⎛⎦⎥⎤-∞,-14∪[1,+∞)。

高考数学二轮复习不等式

高考数学二轮复习不等式

(2)(2022·新高考全国Ⅱ改编)若x,y满足x2+y2-xy=1,则下列结论正确 的是__②__③____.(填序号) ①x+y≤1;②x+y≥-2;③x2+y2≤2;④x2+y2≥1.
由x2+y2-xy=1可变形为(x+y)2-1=3xy≤3x+2 y2, 解得-2≤x+y≤2, 当且仅当x=y=-1时,x+y=-2, 当且仅当x=y=1时,x+y=2,所以①错误,②正确; 由x2+y2-xy=1可变形为x2+y2-1=xy≤x2+2 y2, 解得x2+y2≤2,当且仅当x=y=±1时取等号,所以③正确; x2+y2-xy=1 可变形为x-2y2+34y2=1,
考点二
线性规划
核心提炼
1.截距型:形如z=ax+by,求这类目标函数的最值常将函数z=ax+by转
化为y=-abx+bz
(b≠0),通过求直线的截距
z b
的最值间接求出z的最值.
2.距离型:形如z=(x-a)2+(y-b)2,设动点P(x,y),定点M(a,b),则z
=|PM|2. 3.斜率型:形如z=yx- -ba (x≠a),设动点P(x,y),定点M(a,b),则z=kPM.
作出不等式组2x-3y-6≤0, x+2y+2≥0
表示的平面区域如图
中阴影部分(包括边界)所示,
函数z=(x+1)2+(y+2)2表示可行域内
的点与点(-1,-2)的距离的平方. 由图知, z= x+12+y+22的最小值为点(-1,-2)到直线 x+2y
+2=0 的距离,
即|-1-4+2|=3 5
C.[-1,3]
D.[-3,1]
作出约束条件的可行域,如图阴影部分(含边界)所示,
其中 A(1,0),B(0,1),C(2,3),z=22yx+-11=yx+-1212, 表示定点 M12,-12与可行域内点(x,y)连线的斜率,

数学高考二轮复习第1部分 专题2 规范答题示例

数学高考二轮复习第1部分 专题2 规范答题示例

最大值为f(1a)=ln(1a)+a(1-1a)=-lna+a-1.
二 轮 复 习
因此f(1a)>2a-2等价于lna+a-1<0.
令g(a)=lna+a-1,则g(a)在(0,+∞)上单调递增,g(1)=0.
于是,当0<a<1时,g(a)<0;当a>1时,g(a)>0.
因此,a的取值范围是(0,1).
则h′(x)=x+3x2x-1,

二 轮
①当x∈(0,1)时,h′(x)<0,h(x)单调递减;



②当x∈(1,+∞)时,h′(x)>0,h(x)单调递增;
所以h(x)min=h(1)=4. 因为对一切x∈(0,+∞),2f(x)≥g(x)恒成立,
所以a≤h(x)min=4,即a的取值范围为(-∞,4].
当a=-1时,f(x)=-x+lnx,f ′(x)=1-x x;
数 学
二 轮 复
当0<x<1时,f ′(x)>0;当x>1时,f ′(x)<0;

所以f(x)的单调增区间为(0,1).
专题二 函数与导数
(2)因为f ′(x)=a+1x,
令f ′(x)=0,解得x=-1a;
由f ′(x)>0,解得0<x<-1a;
[解析] (1)f′(x)=lnx+1,


二 轮 复 习
当x∈(0,1e)时,f′(x)<0,f(x)单调递减;
当x∈(1e,+∞)时,f′(x)>0,f(x)单调递增;
所以f(x)的最小值为f(1e)=-1e.
专题二 函数与导数
(2)2xlnx≥-x2+ax-3,则a≤2lnx+x+3x,
设h(x)=2lnx+x+3x(x>0),
专题二 函数与导数

高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第二讲 函数的图象与性质教案 理-

高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第二讲 函数的图象与性质教案 理-

第二讲函数的图象与性质年份卷别考查角度及命题位置命题分析2018Ⅱ卷函数图象的识别·T3 1.高考对此部分内容的命题多集中于函数的概念、函数的性质及分段函数等方面,多以选择、填空题形式考查,一般出现在第5~10或第13~15题的位置上,难度一般.主要考查函数的定义域,分段函数求值或分段函数中参数的求解及函数图象的判断.2.此部分内容有时出现在选择、填空题压轴题的位置,多与导数、不等式、创新性问题结合命题,难度较大.函数奇偶性、周期性的应用·T11Ⅲ卷函数图象的识别·T72017Ⅰ卷函数单调性、奇偶性与不等式解法·T5Ⅲ卷分段函数与不等式解法·T152016Ⅰ卷函数的图象判断·T7Ⅱ卷函数图象的对称性·T12函数及其表示授课提示:对应学生用书第5页[悟通——方法结论]求解函数的定义域时要注意三式——分式、根式、对数式,分式中的分母不为零,偶次方根中的被开方数非负,对数的真数大于零.底数大于零且不大于1.解决此类问题的关键在于准确列出不等式(或不等式组),求解即可.确定条件时应先看整体,后看部分,约束条件一个也不能少.[全练——快速解答]1.(2016·高考全国卷Ⅱ)以下函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )A.y=x B.y=lg xC .y =2xD .y =1x解析:函数y =10lg x的定义域与值域均为(0,+∞).结合选项知,只有函数y =1x的定义域与值域均为(0,+∞).应选D.答案:D2.(2018·某某名校联考)函数f (x )=⎩⎪⎨⎪⎧f (x -4),x >2,e x,-2≤x ≤2,f (-x ),x <-2,那么f (-2 017)=( )A .1B .eC .1eD .e 2解析:由题意f (-2 017)=f (2 017),当x >2时,4是函数f (x )的周期,所以f (2 017)=f (1+4×504)=f (1)=e.答案:B3.函数f (x )=x -1ln (1-ln x )的定义域为________.解析:由函数解析式可知,x 需满足⎩⎪⎨⎪⎧x -1≥01-ln x >0x >01-ln x ≠1,解得1<xf (x )=x -1ln (1-ln x )的定义域为(1,e).答案:(1,e)4.(2017·高考全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,那么满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值X 围是__________.解析: 当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x 的取值X 围是⎝ ⎛⎭⎪⎫-14,+∞.答案:⎝ ⎛⎭⎪⎫-14,+∞求函数的定义域,其实质就是以函数解析式所含运算有意义为准那么,列出不等式或不等式组,然后求出解集即可.2.分段函数问题的5种常见类型及解题策略 常见类型 解题策略求函数值弄清自变量所在区间,然后代入对应的解析式,求“层层套〞的函数值,要从最内层逐层往外计算求函数最值 分别求出每个区间上的最值,然后比较大小解不等式根据分段函数中自变量取值X 围的界定,代入相应的解析式求解,但要注意取值X 围的大前提求参数 “分段处理〞,采用代入法列出各区间上的方程利用函数性质求值必须依据条件找到函数满足的性质,利用该性质求解函数图象及应用授课提示:对应学生用书第5页[悟通——方法结论]1.作函数图象有两种基本方法:一是描点法、二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换等.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.(1)(2017·高考全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )解析:令函数f (x )=sin 2x 1-cos x ,其定义域为{x |x ≠2k π,k ∈Z },又f (-x )=sin (-2x )1-cos (-x )=-sin 2x 1-cos x =-f (x ),所以f (x )=sin 2x1-cos x 为奇函数,其图象关于原点对称,故排除B ;因为f (1)=sin 2 1-cos 1>0,f (π)=sin 2π1-cos π=0,故排除A 、D ,选C.答案:C(2)(2017·高考全国卷Ⅲ)函数y =1+x +sin xx2的部分图象大致为( )解析:法一:易知函数g (x )=x +sin xx2是奇函数,其函数图象关于原点对称,所以函数y =1+x +sin xx2的图象只需把g (x )的图象向上平移一个单位长度,结合选项知选D.法二:当x →+∞时,sin x x 2→0,1+x →+∞,y =1+x +sin xx2→+∞,故排除选项B.当0<x <π2时,y =1+x +sin xx2>0,故排除选项A 、C.选D.答案:D由函数解析式识别函数图象的策略[练通——即学即用]1.(2018·高考全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )解析:法一:ƒ′(x )=-4x 3+2x ,那么ƒ′(x )>0的解集为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫0,22,ƒ(x )单调递增;ƒ′(x )<0的解集为⎝ ⎛⎭⎪⎫-22,0∪⎝ ⎛⎭⎪⎫22,+∞,ƒ(x )单调递减. 应选D.法二:当x =1时,y =2,所以排除A ,B 选项.当x =0时,y =2,而当x =12时,y =-116+14+2=2316>2,所以排除C 选项.应选D. 答案:D 2.函数f (x )=⎝⎛⎭⎪⎫21+e x -1cos x 的图象的大致形状是( )解析:∵f (x )=⎝⎛⎭⎪⎫21+e x -1cos x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1cos(-x )=-⎝ ⎛⎭⎪⎫21+e x -1cosx =-f (x ),∴函数f (x )为奇函数,其图象关于原点对称,可排除选项A ,C ,又当x ∈⎝⎛⎭⎪⎫0,π2时,e x >e 0=1,21+ex -1<0,cos x >0,∴f (x )<0,可排除选项D ,应选B.答案:B3.(2018·某某调研)函数f (x )的图象如下图,那么f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1D .f (x )=x -1x解析:由函数图象可知,函数f (xf (x )=x -1x,那么当x →+∞时,f (x )→+∞,排除D ,应选A.答案:A函数的性质及应用授课提示:对应学生用书第6页[悟通——方法结论]1.判断函数单调性的一般规律对于选择、填空题,假设能画出图象,一般用数形结合法;而对于由基本初等函数通过加、减运算或复合运算而成的函数常转化为基本初等函数单调性的判断问题;对于解析式为分式、指数函数式、对数函数式等较复杂的函数,用导数法;对于抽象函数,一般用定义法.2.函数的奇偶性(1)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称.(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.3.记住几个周期性结论(1)假设函数f(x)满足f(x+a)=-f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(2)假设函数f(x)满足f(x+a)=1f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(1)(2017·高考全国卷Ⅱ)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2) B.(-∞,1)C.(1,+∞)D.(4,+∞)解析:由x2-2x-8>0,得x>4或x<-2.因此,函数f(x)=ln(x2-2x-8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y=x2-2x-8在(4,+∞)上单调递增,由复合函数的单调性知,f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞).答案:D(2)(2017·高考全国卷Ⅰ)函数f(x)在(-∞,+∞)单调递减,且为奇函数.假设f(1)=-1,那么满足-1≤f(x-2)≤1的x的取值X围是( )A.[-2,2] B.[-1,1]C.[0,4] D.[1,3]解析:∵f(x)为奇函数,∴f(-x)=-f(x).∵f(1)=-1,∴f(-1)=-f(1)=1.故由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)单调递减,∴-1≤x-2≤1,∴1≤x≤3.答案:D(3)(2018·高考全国卷Ⅲ)函数ƒ(x )=ln(1+x 2-x )+1,ƒ(a )=4,那么ƒ(-a )=________.解析:∵ƒ(x )+ƒ(-x )=ln(1+x 2-x )+1+ln(1+x 2+x )+1=ln(1+x 2-x 2)+2=2,∴ƒ(a )+ƒ(-a )=2,∴ƒ(-a )=-2. 答案:-21.掌握判断函数单调性的常用方法数形结合法、结论法(“增+增〞得增、“减+减〞得减及复合函数的“同增异减〞)、定义法和导数法.2.熟知函数奇偶性的3个特点(1)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称. (3)对于偶函数而言,有f (-x )=f (x )=f (|x |).3.周期性:利用周期性可以转化函数的解析式、图象和性质,把不在区间上的问题,转化到区间上求解.4.注意数形结合思想的应用.[练通——即学即用]1.(2018·某某模拟)以下函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A .y =e x+e -xB .y =ln(|x |+1)C .y =sin x |x |D .y =x -1x解析:选项A 、B 显然是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调递增函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x在(0,+∞)上均为增函数,故y =x -1x在(0,+∞)上为增函数,所以选项D 正确.答案:D2.(2018·某某八中摸底)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,那么以下结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1)D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:因为函数f (x +2)是偶函数, 所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称. 又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52, 即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 答案:B授课提示:对应学生用书第116页一、选择题1.以下四个函数: ①y =3-x ;②y =2x -1(x >0);③y =x 2+2x -10;④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0).其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .4解析:①y =3-x 的定义域和值域均为R ,②y =2x -1(x >0)的定义域为(0,+∞),值域为⎝ ⎛⎭⎪⎫12,+∞,③y =x 2+2x -10的定义域为R ,值域为[-11,+∞),④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0)的定义域和值域均为R ,所以定义域与值域相同的函数是①④,共有2个,应选B.答案:B2.设定义在R 上的奇函数y =f (x )满足对任意的x ∈R ,都有f (x )=f (1-x ),且当x ∈[0,12]时,f (x )=(x +1),那么f (3)+f (-32)的值为( )A .0B .1C .-1D .2解析:由于函数f (x )是奇函数,所以f (x )=f (1-x )⇒f (x )=-f (x +1)⇒f (x +1)=-f (x )⇒f (x +2)=f (x ),所以f (3)=f (1)=f (1-1)=f (0)=0,f (-32)=f (12)=32f (3)+f (-32)=-1.答案:C3.函数f (x )=1+ln ()x 2+2的图象大致是( )解析:因为f (0)=1+ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D.答案:D4.(2017·高考某某卷)奇函数f (x )在R 上是增函数,g (x )=xf (x ).假设a =g (-log 2 5.1),b =g (2),c =g (3),那么a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:奇函数f (x )在R 上是增函数,当x >0时,f (x )>f (0)=0,当x 1>x 2>0时,f (x 1)>f (x 2)>0,∴x 1f (x 1)>x 2f (x 2),∴g (x )在(0,+∞)上单调递增,且g (x )=xf (x )是偶函数,∴a =g (-log 2 5.1)=g (log 2 5.1).易知2<log 2 5.1<3,1<2<2,由g (x )在(0,+∞)上单调递增,得g (2)<g (log 2 5.1)<g (3),∴b <a <c ,应选C.答案:C5.(2018·某某模拟)函数f (x )=e xx 的图象大致为( )解析:由f (x )=e x x ,可得f ′(x )=x e x -e x x 2=(x -1)e x x2, 那么当x ∈(-∞,0)和x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.又当x <0时,f (x )<0,应选B.答案:B6.定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,那么( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,那么f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).答案:D7.(2018·某某模拟)函数f (x )=ex -1+4x -4,g (x )=ln x -1x ,假设f (x 1)=g (x 2)=0,那么( )A .0<g (x 1)<f (x 2)B .f (x 2)<g (x 1)<0C .f (x 2)<0<g (x 1)D .g (x 1)<0<f (x 2) 解析:易知f (x )=e x -1+4x -4,g (x )=ln x -1x在各自的定义域内是增函数,而f (0)=e -1+0-4=1e -4<0,f (1)=e 0+4×1-4=1>0,g (1)=ln 1-11=-1<0,g (2)=ln 2-12=ln 2e f (x 1)=g (x 2)=0,所以0<x 1<1,1<x 2<2,所以f (x 2)>f (1)>0,g (x 1)<g (1)<0,故g (x 1)<0<f (x 2).答案:D8.函数f (x )=(x 2-2x )·sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,那么M +m =( )A .4B .2C .1D .0 解析:f (x )=[(x -1)2-1]sin(x -1)+x -1+2,令t =x -1,g (t)=(t 2-1)sin t +t ,那么y =f (x )=g (t)+2,t ∈[-2,2].显然M =g (t)max +2,m =g (t)min +2.又g (t)为奇函数,那么g (t)max +g (t)min =0,所以M +m =4,应选A.答案:A9.g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,g (x ),x >0,假设f (2-x 2)>f (x ),那么x 的取值X 围是( ) A .(-∞,-2)∪(1,+∞)B .(-∞,1)∪(2,+∞)C .(-2,1)D .(1,2)解析:因为g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),所以当x >0时,-x <0,g (-x )=-ln(1+x ),即当x >0时,g (x )=ln(1+x ),那么函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0,作出函数f (x )的图象,如图:由图象可知f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0在(-∞,+∞)上单调递增. 因为f (2-x 2)>f (x ),所以2-x 2>x ,解得-2<x <1,应选C.答案:C10.(2018·高考全国卷Ⅱ)ƒ(x )是定义域为(-∞,+∞)的奇函数,满足ƒ(1-x )=ƒ(1+x ).假设ƒ(1)=2,那么ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(50)=( )A .-50B .0C .2D .50解析:∵ƒ(x )是奇函数,∴ƒ(-x )=-ƒ(x ),∴ƒ(1-x )=-ƒ(x -1).由ƒ(1-x )=ƒ(1+x ),∴-ƒ(x -1)=ƒ(x +1),∴ƒ(x +2)=-ƒ(x ),∴ƒ(x +4)=-ƒ(x +2)=-[-ƒ(x )]=ƒ(x ),∴函数ƒ(x )是周期为4的周期函数.由ƒ(x )为奇函数得ƒ(0)=0.又∵ƒ(1-x )=ƒ(1+x ),∴ƒ(x )的图象关于直线x =1对称,∴ƒ(2)=ƒ(0)=0,∴ƒ(-2)=0.又ƒ(1)=2,∴ƒ(-1)=-2,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)=ƒ(1)+ƒ(2)+ƒ(-1)+ƒ(0)=2+0-2+0=0,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)+…+ƒ(49)+ƒ(50)=0×12+ƒ(49)+ƒ(50)=ƒ(1)+ƒ(2)=2+0=2.应选C.答案:C11.定义在R 上的函数f (x )对任意0<x 2<x 1都有f (x 1)-f (x 2)x 1-x 2<1,且函数y =f (x )的图象关于原点对称,假设f (2)=2,那么不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞) 解析:由f (x 1)-f (x 2)x 1-x 2<1, 可得[f (x 1)-x 1]-[f (x 2)-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,又是奇函数,且F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2,应选C.答案:C12.(2018·某某三市联考)函数f (x )=e |x |,函数g (x )=⎩⎪⎨⎪⎧ e x ,x ≤4,4e 5-x ,x >4对任意的x ∈[1,m ](m >1),都有f (x -2)≤g (x ),那么m 的取值X 围是( )A .(1,2+ln 2) B.⎝ ⎛⎭⎪⎫2,72+ln 2 C .(ln 2,2] D.⎝ ⎛⎦⎥⎤1,72+ln 2 解析:作出函数y 1=e |x -2|和y =g (x )的图象,如下图,由图可知当x=1时,y 1=g (1),又当x =4时,y 1=e 2<g (4)=4e ,当x >4时,由ex -2≤4e 5-x ,得e 2x -7≤4,即2x -7≤ln 4,解得x ≤72+ln 2,又m >1,∴1<m ≤72+ln 2.答案:D二、填空题13.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),那么f ⎝ ⎛⎭⎪⎫-52=________.解析:由题意得f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫2-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-12. 答案:-1214.假设函数f (x )=x (x -1)(x +a )为奇函数,那么a =________.解析:法一:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-x )=-f (x )对x ∈R 恒成立,所以-x ·(-x -1)(-x +a )=-x (x -1)(x +a )对x ∈R 恒成立,所以x (a -1)=0对x ∈R 恒成立,所以a =1.法二:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-1)=-f (1),所以-1×(-1-1)×(-1+a )=-1×(1-1)×(1+a ),解得a =1.答案:115.函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,那么实数a 的取值X 围是________.解析: 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,那么⎩⎪⎨⎪⎧ 1-2a >0,1-2a +3a ≥1,解得0≤a <12. 答案:⎣⎢⎡⎭⎪⎫0,12 16.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点,设顶点P (x ,y )的轨迹方程是y =f (x ),那么对函数y =f (x )有以下判断:①函数y =f (x )是偶函数;②对任意的x ∈R ,都有f (x +2)=f (x -2);③函数y =f (x )在区间[2,3]上单调递减;④函数y =f (x )在区间[4,6]上是减函数.其中判断正确的序号是________.解析:如图,从函数y =f (x )的图象可以判断出,图象关于y 轴对称,每4个单位图象重复出现一次,在区间[2,3]上,随x 增大,图象是往上的,在区间[4,6]上图象是往下的,所以①②④正确,③错误.答案:①②④。

高三理科数学二轮复习专题能力提升训练:函数、导数、不等式的综合问题(含答案解析).pdf

高三理科数学二轮复习专题能力提升训练:函数、导数、不等式的综合问题(含答案解析).pdf

训练 函数、导数、不等式的综合问题 一、选择题(每小题5分,共25分) 1.下面四个图象中,有一个是函数f(x)=x3+ax2+(a2-1)x+1(aR)的导函数y=f′(x)的图象,则f(-1)等于( ). A. B.- C. D.-或 2.设直线x=t与函数f(x)=x2,g(x)=ln x的图象分别交于点M,N,则当|MN|达到最小时t的值为( ). A.1 B. C. D. 3.已知函数f(x)=x4-2x3+3m,xR,若f(x)+9≥0恒成立,则实数m的取值范围是( ). A. B. C. D. 4.已知函数f(x)=x2-ax+3在(0,1)上为减函数,函数g(x)=x2-aln x在(1,2)上为增函数,则a的值等于( ). A.1 B.2 C.0 D. 5.设aR,若函数y=eax+3x,xR有大于零的极值点,则( ). A.a>-3 B. a<-3 C.a>- D.a<- 二、填空题(每小题5分,共15分) 6.若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于________. 7.函数f(x)=x3-x2+ax-5在区间[-1,2]上不单调,则实数a的范围是________. 8.关于x的方程x3-3x2-a=0有三个不同的实数解,则实数a的取值范围是________. 三、解答题(本题共3小题,共35分) 9.(11分)已知函数f(x)=x3-x2+bx+a.(a,bR)的导函数f′(x)的图象过原点. (1)当a=1时,求函数f(x)的图象在x=3处的切线方程; (2)若存在x<0,使得f′(x)=-9,求a的最大值. 10.(12分)已知a,b为常数,且a≠0,函数f(x)=-ax+b+axln x,f(e)=2(e=2.718 28…是自然对数的底数). (1)求实数b的值; (2)求函数f(x)的单调区间; (3)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t[m, M],直线y=t与曲线y=f(x)都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由. 11.(12分)已知f(x)=xln x,g(x)=-x2+ax-3. (1)求函数f(x)在[t,t+2](t>0)上的最小值; (2)对一切的x(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围; (3)证明:对一切x(0,+∞),都有ln x>-.参考答案 1.D [f′(x)=x2+2ax+a2-1,f′(x)的图象开口向上,若图象不过原点,则a=0时,f(-1)=,若图象过原点,则a2-1=0,又对称轴x=-a>0,a=-1,f(-1)=-.] 2.D [|MN|的最小值,即函数h(x)=x2-ln x的最小值,h′(x)=2x-=,显然x=是函数h(x)在其定义域内唯一的极小值点,也是最小值点,故t=.] 3.A [因为函数f(x)=x4-2x3+3m,所以f′(x)=2x3-6x2,令f′(x)=0,得x=0或x=3,经检验知x=3是函数的一个最小值点,所以函数的最小值为f(3)=3m-,不等式f(x)+9≥0恒成立,即f(x)≥-9恒成立,所以3m-≥-9,解得m≥.] 4.B [函数f(x)=x2-ax+3在(0,1)上为减函数,≥1,得a≥2.又g′(x)=2x-,依题意g′(x)≥0在x(1,2)上恒成立,得2x2≥a在x(1, 2)上恒成立,有a≤2,a=2.] 5.B [令f(x)=eax+3x,可求得f′(x)=3+aeax,若函数在xR上有大于零的极值点,即f′(x)=3+aeax=0有正根.当f′(x)=3+aeax=0成立时,显然有a<0,此时x=ln.由x>0,解得a<-3,a的取值范围为(-∞,-3).] 6.解析 由题得f′ (x)=12x2-2ax-2b=0,f′(1)=12-2a-2b=0,a+b=6.a+b≥2,6≥2,ab≤9,当且仅当a=b=3时取到最大值. 答案 9 7.解析 f(x)=x3-x2+ax-5,f′(x)=x2-2x+a=(x-1)2+a-1,如果函数f(x)=x3-x2+ax-5在区间[-1,2]上单调,那么a-1≥0或f′(-1)=3+a≤0且f′(2)=a≤0,a≥1或a≤-3.于是满足条件的a(-3,1). 答案 (-3,1) 8.解析 由题意知使函数f(x)=x3-3x2-a的极大值大于0且极小值小于0即可,又f′(x)=3x2-6x=3x(x-2),令f′(x)=0得,x1=0,x2=2,当x<0时,f′(x)>0;当0<x<2时,f′(x)<0;当x>2时,f′(x)>0,所以当x=0时,f(x)取得极大值,即f(x)极大值=f(0)=-a;当x=2时,f(x)取得极小值,即f(x)极小值=f(2)=-4-a,所以,解得-4<a<0. 答案 (-4,0) 9.解 由已知,得f′(x)=x2-(a+1)x+b. 由f′(0)=0,得b=0,f′(x)=x(x-a-1). (1)当a=1时,f(x)=x3-x2+1,f′(x)=x(x-2),f(3)=1, f′(3)=3. 所以函数f(x)的图象在x=3处的切线方程为y-1=3(x-3), 即3x-y-8=0. (2)存在x<0,使得f′(x)=x(x-a-1)=-9,-a-1=-x-=(-x)+≥2=6,a≤-7,当且仅当x=-3时,a=-7. 所以a的最大值为-7. 10.解 (1)由f(e)=2,得b=2. (2)由 (1)可得f(x)=-ax+2+axln x. 从而f′(x)=aln x. 因为a≠0,故 当a>0时,由f′(x)>0,得x>1,由f′(x)<0得, 0<x<1; 当a<0时,由f′(x)>0,得0<x<1,由f′(x)<0得,x>1. 综上,当a>0时,函数f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1);当a<0时,函数f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞). (3)当a=1时,f(x)=-x+2+xln x,f′(x)=ln x. 由(2)可得,当x在区间内变化时,f′(x),f(x)的变化情况如下表: x1(1,e)ef′(x) -0 +f(x)2-单调递减极小值1单调递增2又2-<2, 所以函数f(x)的值域为[1,2]. 据此可得,若则对每一个t[m,M],直线y=t与曲线y=f(x)都有公共点; 并且对每一个t(-∞,m)(M,+∞),直线y=t与曲线y=f(x)都没有公共点. 综上,当a=1时,存在最小的实数m=1,最大的实数M=2,使得对每一个t[m,M],直线y=t与曲线y=f(x)都有公共点. 11.(1)解 f′(x)=ln x+1. 当x时,f′(x)<0,f(x)单调递减; 当x时,f′(x)>0,f(x)单调递增. 则当0<t<t+2<时,t无解; 当0<t<<t+2,即0<t<时, [f(x)]min=f=-; 当≤t<t+2,即t≥时, f(x)在[t,t+2]上单调递增. 所以[f(x)]min=f(t)=tln t.所以[f(x)]min= (2)解 2f(x)≥g(x),即2xln x≥-x2+ax-3, 则a≤2ln x+x+.设h(x)=2ln x+x+(x>0), h′(x)=. 当x(0,1)时,h′(x)<0,h(x)单调递减; 当x(1,+∞)时,h′(x)>0,h(x)单调递增. 所以[h(x)]min=h(1)=4.因为对一切x(0,+∞),2f(x)≥g(x)恒成立, 所以a≤[h(x)] min=4.故实数a的取值范围是(-∞,4]. (3)证明 问题等价于证明xln x>-,x(0,+∞). 由(1)可知f(x)=xln x,x(0,+∞)的最小值为-, 当且仅当x=时取得.设m(x)=-,x(0,+∞),则m′(x)=,易得[m(x)]max=m(1)=-. 从而对一切x(0,+∞),都有ln x>-成立.。

高三数学二轮复习重点

高三数学二轮复习重点

高三数学二轮复习重点高三数学第二轮重点复习内容专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。

这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。

一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。

不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。

当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。

专题二:数列。

以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。

专题三:三角函数,平面向量,解三角形。

三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。

向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。

专题四:立体几何。

立体几何中,三视图是每年必考点,主要出现在选择,填空题中。

大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。

另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。

空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。

专题五:解析几何。

高考数学二轮复习专题

高考数学二轮复习专题

高考数学二轮复习专题汇总1专题一:集合、函数、导数与不等式。

此专题函数和导数以及应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。

每年高考中导数所占的比重都非常大,一般情况是在客观题中考查导数的几何意义和导数的计算,属于容易题;二是在解答题中进行综合考查,主要考查用导数研究函数的性质,用函数的单调性证明不等式等,此题具有很高的综合性,并且与思想方法紧密结合。

2专题二:数列、推理与证明。

数列由旧高考中的压轴题变成了新高考中的中档题,主要考查等差等比数列的通项与求和,与不等式的简单综合问题是近年来的热门问题。

3专题三:三角函数、平面向量和解三角形。

平面向量和三角函数的图像与性质、恒等变换是重点。

近几年高考中三角函数内容的难度和比重有所降低,但仍保留一个选择题、一个填空题和一个解答题的题量,难度都不大,但是解三角形的内容应用性较强,将解三角形的知识与实际问题结合起来将是今后命题的一个热点。

平面向量具有几何与代数形式的“双重性”,是一个重要的知识交汇点,它与三角函数、解析几何都可以整合。

4专题四:立体几何。

注重几何体的三视图、空间点线面的关系及空间角的计算,用空间向量解决点线面的问题是重点。

5专题五:解析几何。

直线与圆锥曲线的位置关系、轨迹方程的探求以及最值范围、定点定值、对称问题是命题的主旋律。

近几年高考中圆锥曲线问题具有两大特色:一是融“综合性、开放性、探索性”为一体;二是向量关系的引入、三角变换的渗透和导数工具的使用。

我们在注重基础的同时,要兼顾直线与圆锥曲线综合问题的强化训练,尤其是推理、运算变形能力的训练。

6专题六:概率与统计、算法与复数。

要求具有较高的阅读理解和分析问题、解决问题的能力。

高考对算法的考查集中在程序框图,主要通过数列求和、求积设计问题。

高考数学二轮复习策略1.加强思维训练,规范答题过程解题一定要非常规范,俗语说:“不怕难题不得分,就怕每题都扣分”,所以大家要形成良好的思维品质和学习习惯,务必将解题过程写得层次分明结构完整。

高考数学二轮复习专题一函数与导数不等式第2讲不等式问题课件理

高考数学二轮复习专题一函数与导数不等式第2讲不等式问题课件理

A.ac<bc
B.abc<bac
C.alogbc<blogac D.logac<logbc 解析 取 a=4,b=2,c=12,逐一验证 C 正确. 答案 C
2.(2016·北京卷)若 x,y 满足2x+x-y≤y≤30,,则 2x+y 的最大值为 x≥0,
()
A.0
B.3
C.4
D.5
解析 不等式组表示的可行域如图中阴影部分所示.令 z=2x +y,则 y=-2x+z,作直线 2x+y=0 并平移,当直线过点 A
解得[-3,1].
g(-1)≥0,
(2)法一 函数法. 若 a>0,则对称轴 x=-21a<0, 故 f(x)在[0,2]上为增函数,且 f(0)=1, 因此在 x∈[0,2]上恒有 f(x)>0 成立. 若 a<0,则应有 f(2)>0,即 4a+3>0,∴a>-34.
∴-34<a<0.综上所述,a 的取值范围是-34,0∪(0,+∞).
答案 (1)[-3,1] (2)-34,0∪(0,+∞)
探究提高 参数不易分离的恒成立问题,特别是与二次函数 有关的恒成立问题的求解,常用的方法是借助函数图象根的 分布,转化为求函数在区间上的最值或值域问题.
【训练2】 (1)若不等式x2-ax+1≥0对于一切a∈[-2,2]恒成立, 则x的取值范围是________.
第2讲 不等式问题
高考定位 1.利用不等式性质比较大小,不等式的求解,利 用基本不等式求最值及线性规划问题是高考的热点,主要 以选择题、填空题为主;2.但在解答题中,特别是在解析几 何中求最值、范围问题或在解决导数问题时常利用不等式 进行求解,难度较大.
真题感悟
1.(2016·全国Ⅰ卷)若a>b>1,0<c<1,则( )

高三数学二轮复习讲义专题一函数性质与图象

高三数学二轮复习讲义专题一函数性质与图象

专题一 集合,常用逻辑用语,不等式,函数与导数(讲案)第二讲 函数的基本性质与图象【最新考纲透析】预计时间:3.13---3.18函数与基本初等函数的主要考点是:函数的表示方法、分段函数、函数的定义域和值域、函数的单调性、函数的奇偶性、指数函数与对数函数的图象与性质、幂函数的图象与性质。

本部分一般以选择题或填空题的形式出现,考查的重点是函数的性质和图象的应用,重在检测对该部分的基础知识和基本方法的掌握程度。

复习该部分以基础知识为主,注意培养函数性质和函数图象分析问题和解决问题的能力。

【考点精析】题型一 函数的概念与表示例1 (1)函数21sin()(10)()0x x x f x e x π-⎧-<<=⎨≥⎩,若(1)()2f f a +=,则的所有可能值为( ) A .1,2- B.2- C .1,2- D .1,2(2)根据统计,一名工作组装第x 件某产品所用的时间(单位:分钟)为 ⎪⎪⎩⎪⎪⎨⎧≥<=Ax A c A x x c x f ,,,)((A ,C 为常数)。

已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么C 和A 的值分别是A .75,25B .75,16C .60,25D .60,16(3)已知集合A 到集合{}0,1,2,3B =的映射1:1f x x →-,则集合A 中的元素最多有 个。

解析:1:1f x x →-是集合A 到集合B 的映射,∴A 中的每一个元素在集合B 中都应该有象。

令101x =-,该方程无解,所以0无原象,分别令11,2,3,1x =-解得:342,,23x x x =±=±=±。

故集合A 中的元素最多为6个。

(4)如图,已知底角为450的等腰梯形ABCD ,底边BC 长为7cm,腰长为cm ,当一条垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF x =,试写出左边部分的面积y 与x 的函数解析式。

2018届高考数学(文)二轮专题复习习题:第1部分 专题二 函数、不等式、导数 1-2-3

2018届高考数学(文)二轮专题复习习题:第1部分 专题二 函数、不等式、导数 1-2-3

限时规范训练六 导数的简单应用 限时45分钟,实际用时________ 分值81分,实际得分________一、选择题(本题共6小题,每小题5分,共30分)1.设函数f (x )=x 24-a ln x ,若f ′(2)=3,则实数a 的值为( )A .4B .-4C .2D .-2解析:选B.f ′(x )=x 2-a x ,故f ′(2)=22-a2=3,因此a =-4.2.曲线y =e x在点A 处的切线与直线x -y +3=0平行,则点A 的坐标为( ) A .(-1,e -1) B .(0,1) C .(1,e)D .(0,2)解析:选B.设A (x 0,e x 0),y ′=e x,∴y ′|x =x 0=e x 0.由导数的几何意义可知切线的斜率k =e x 0.由切线与直线x -y +3=0平行可得切线的斜率k =1. ∴e x 0=1,∴x 0=0,∴A (0,1).故选B.3.若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为 ( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B.⎝⎛⎭⎪⎫32,+∞ C.⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞ D.⎝⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫32,+∞ 解析:选D.若函数f (x )=x 3-2cx 2+x 有极值点,则f ′(x )=3x 2-4cx +1=0有两根,故Δ=(-4c )2-12>0,从而c >32或c <-32. 4.已知f (x )=a ln x +12x 2(a >0),若对任意两个不等的正实数x 1,x 2都有f x 1-f x 2x 1-x 2≥2恒成立,则实数a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(0,1)D .(0,1]解析:选A.由条件可知在定义域上函数图象的切线斜率大于等于2,所以函数的导数f ′(x )=a x+x ≥2.可得x =a 时,f ′(x )有最小值2.∴a ≥1.5.若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .f ⎝ ⎛⎭⎪⎫1k<1kB .f ⎝ ⎛⎭⎪⎫1k >1k -1C .f ⎝⎛⎭⎪⎫1k -1<1k -1D .f ⎝⎛⎭⎪⎫1k -1>1k -1解析:选C.构造函数g (x )=f (x )-kx +1,则g ′(x )=f ′(x )-k >0,∴g (x )在R 上为增函数. ∵k >1,∴1k -1>0,则g ⎝ ⎛⎭⎪⎫1k -1>g (0). 而g (0)=f (0)+1=0, ∴g ⎝⎛⎭⎪⎫1k -1=f ⎝ ⎛⎭⎪⎫1k -1-k k -1+1>0,即f ⎝⎛⎭⎪⎫1k -1>k k -1-1=1k -1,所以选项C 错误,故选C.6.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析:选C.因为当x ∈(-∞,1)时,(x -1)f ′(x )<0,所以f ′(x )>0,所以函数f (x )在(-∞,1)上是单调递增函数,所以a =f (0)<f ⎝ ⎛⎭⎪⎫12=b ,又f (x )=f (2-x ),所以c =f (3)=f (-1),所以c =f (-1)<f (0)=a ,所以c <a <b ,故选C.二、填空题(本题共3小题,每小题5分,共15分)7.(2017·高考全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为________.解析:∵y ′=2x -1x2,∴y ′|x =1=1,即曲线在点(1,2)处的切线的斜率k =1, ∴切线方程为y -2=x -1, 即x -y +1=0. 答案:x -y +1=08.已知函数f (x )=-12x 2-3x +4ln x 在(t ,t +1)上不单调,则实数t 的取值范围是________.解析:由题意得,f (x )的定义域为(0,+∞),∴t >0, ∴f ′(x )=-x -3+4x=0在(t ,t +1)上有解,∴x 2+3x -4x=0在(t ,t +1)上有解,∴x 2+3x -4=0在(t ,t +1)上有解,由x 2+3x -4=0得x =1或x =-4(舍去),∴1∈(t ,t +1),∴t ∈(0,1),故实数t 的取值范围是(0,1).答案:(0,1)9.已知函数f (x )=1-xax+ln x ,若函数f (x )在[1,+∞)上为增函数,则正实数a 的取值范围为________.解析:∵f (x )=1-x ax +ln x ,∴f ′(x )=ax -1ax2(a >0).∵函数f (x )在[1,+∞)上为增函数,∴f ′(x )=ax -1ax 2≥0在x ∈[1,+∞)上恒成立,∴ax -1≥0在x ∈[1,+∞)上恒成立,即a ≥1x在x ∈[1,+∞)上恒成立,∴a ≥1.答案:[1,+∞)三、解答题(本题共3小题,每小题12分,共36分) 10.(2017·高考全国卷Ⅱ)设函数f (x )=(1-x 2)e x. (1)讨论f (x )的单调性;(2)当x ≥0时,f (x )≤ax +1,求a 的取值范围. 解:(1)f ′(x )=(1-2x -x 2)e x.令f ′(x )=0得x =-1-2或x =-1+ 2. 当x ∈(-∞,-1-2)时,f ′(x )<0; 当x ∈(-1-2,-1+2)时,f ′(x )>0; 当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)单调递减,在(-1-2,-1+2)单调递增.(2)f (x )=(1+x )(1-x )e x.当a ≥1时,设函数h (x )=(1-x )e x,则h ′(x )=-x e x<0(x >0),因此h (x )在[0,+∞)单调递减.而h (0)=1,故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1.当0<a <1时,设函数g (x )=e x-x -1,则g ′(x )=e x-1>0(x >0),所以g (x )在[0,+∞)单调递增.而g (0)=0,故e x≥x +1.当0<x <1时,f (x )>(1-x )(1+x )2,(1-x )(1+x )2-ax -1=x (1-a -x -x 2),取x 0=5-4a -12,则x 0∈(0,1),(1-x 0)(1+x 0)2-ax 0-1=0,故f (x 0)>ax 0+1. 当a ≤0时,取x 0=5-12,则x 0∈(0,1),f (x 0)>(1-x 0)(1+x 0)2=1≥ax 0+1. 综上,a 的取值范围是[1,+∞).11.(2017·河南郑州质量检测)设函数f (x )=12x 2-m ln x ,g (x )=x 2-(m +1)x .(1)求函数f (x )的单调区间;(2)当m ≥0时,讨论函数f (x )与g (x )图象的交点个数.解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=x 2-mx,当m ≤0时,f ′(x )>0,所以函数f (x )的单调递增区间是(0,+∞),无单调递减区间. 当m >0时,f ′(x )=x +mx -mx,当0<x <m 时,f ′(x )<0,函数f (x )单调递减;当x >m 时,f ′(x )>0,函数f (x )单调递增.综上,当m ≤0时,函数f (x )的单调递增区间是(0,+∞),无单调递减区间;当m >0时,函数f (x )的单调递增区间是(m ,+∞),单调递减区间是(0,m ).(2)令F (x )=f (x )-g (x )=-12x 2+(m +1)x -m ln x ,x >0,问题等价于求函数F (x )的零点个数,当m =0时,F (x )=-12x 2+x ,x >0,有唯一零点;当m ≠0时,F ′(x )=-x -x -m x,当m =1时,F ′(x )≤0,函数F (x )为减函数,注意到F (1)=32>0,F (4)=-ln 4<0,所以F (x )有唯一零点.当m >1时,0<x <1或x >m 时,F ′(x )<0;1<x <m 时,F ′(x )>0,所以函数F (x )在(0,1)和(m ,+∞)上单调递减,在(1,m )上单调递增,注意到F (1)=m +12>0,F (2m +2)=-m ln(2m +2)<0,所以F (x )有唯一零点.当0<m <1时,0<x <m 或x >1时,F ′(x )<0;m <x <1时,F ′(x )>0,所以函数F (x )在(0,m )和(1,+∞)上单调递减,在(m,1)上单调递增,易得ln m <0, 所以F (m )=m2(m +2-2ln m )>0,而F (2m +2)=-m ln(2m +2)<0,所以F (x )有唯一零点.综上,函数F (x )有唯一零点,即两函数图象有一个交点. 12.(2017·河南洛阳模拟)已知函数f (x )=ln x -a x +x -1,曲线y =f (x )在点⎝ ⎛⎭⎪⎫12,f ⎝ ⎛⎭⎪⎫12处的切线平行于直线y =10x +1.(1)求函数f (x )的单调区间;(2)设直线l 为函数g (x )=ln x 的图象上任意一点A (x 0,y 0)处的切线,在区间(1,+∞)上是否存在x 0,使得直线l 与曲线h (x )=e x也相切?若存在,满足条件的x 0有几个?解:(1)∵函数f (x )=ln x -a x +x -1,∴f ′(x )=1x+2a x -2,∵曲线y =f (x )在点⎝ ⎛⎭⎪⎫12,f ⎝ ⎛⎭⎪⎫12处的切线平行于直线y =10x +1, ∴f ′⎝ ⎛⎭⎪⎫12=2+8a =10,∴a =1,∴f ′(x )=x 2+1x x -2.∵x >0且x ≠1,∴f ′(x )>0,∴函数f (x )的单调递增区间为(0,1)和(1,+∞). (2)存在且唯一,证明如下:∵g (x )=ln x ,∴切线l 的方程为y -ln x 0=1x 0(x -x 0),即y =1x 0x +ln x 0-1 ①,设直线l 与曲线h (x )=e x相切于点(x 1,e x 1), ∵h ′(x )=e x,∴e x 1=1x 0,∴x 1=-ln x 0,∴直线l 的方程也可以写成y -1x 0=1x 0(x +ln x 0),即y =1x 0x +ln x 0x 0+1x 0②,由①②得ln x 0-1=ln x 0x 0+1x 0,∴ln x 0=x 0+1x 0-1.证明:在区间(1,+∞)上x 0存在且唯一. 由(1)可知,f (x )=ln x -x +1x -1在区间(1,+∞)上单调递增, 又f (e)=-2e -1<0,f (e 2)=e 2-3e 2-1>0,结合零点存在性定理,说明方程f (x )=0必在区间(e ,e 2)上有唯一的根,这个根就是所求的唯一x 0.。

高三数学第二轮复习专题讲座 人教版

高三数学第二轮复习专题讲座 人教版

高三数学第二轮复习专题讲座 人教版专题一 函数考点高考要求 1 映射的概念 了解 2 函数的概念 理解 3 函数的单调性的概念 了解 4 简单函数单调性的判断 掌握 5 函数的奇偶性 了解 6 反函数的概念了解 7 互为反函数的函数图象间的关系 了解 8 简单函数的反函数的求法 掌握 9 分数指数幂的概念 理解 10 有理数指数幂的运算性质 掌握 11 指数函数的概念、图象和性质 掌握 12 对数的概念 理解 13 对数的运算法制掌握 14 对数函数的概念、图象和性质 掌握 15运用函数的性质解决简单的实际问题掌握说明:1.了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,并能在有关的问题中直接应用;2.理解和掌握:要求对所列知识内容有较为深刻的理性认识,能够解释、举例或变形、推断,并能利用知识解决有关问题;3.灵活和综合运用:要求系统的掌握知识的内在联系,能够运用所列知识分析和解决较为复杂的或综合性的问题.(以下两点分析主要针对的是2004年全国各地的高考试题,共15套) 二、高考考点分析:在2004年全国各地的高考题中,考查函数的试题或与函数有关的试题大约有56道,在150分中约占25分到30分.对函数,常常从以下几个方面加以考查.1知识点函数的解析式 定义域和值域(包括最大值和最小值) 函数的单调性 函数的奇偶性和周期性 函数的反函数 题量27335函数和一些分段函数,简单的函数方程为背景,难度以中等题和容易题为主,如: 例1.(重庆市)函数)23(log 21-=x y 的定义域是( D )A 、[1,)+∞B 、23(,)+∞C 、23[,1]D 、23(,1]例2.(天津市)函数123-=xy (01<≤-x )的反函数是( D )A 、)31(log 13≥+=x x yB 、)31(log 13≥+-=x x yC 、)131(log 13≤<+=x x yD 、)131(log 13≤<+-=x x y也有个别小题的难度较大,如 例3.(北京市)函数,,(),,x x P f x x x M ∈⎧=⎨-∈⎩其中P 、M 为实数集R 的两个非空子集,又规定f P y y f x x P (){|(),}==∈,f M y y f x x M (){|(),}==∈,给出下列四个判断:①若P M ⋂=∅,则f P f M ()()⋂=∅ ②若P M ⋂≠∅,则f P f M ()()⋂≠∅ ③若P M ⋃=R ,则()()f P f M ⋃=R ④若P M R ⋃≠,则()()f P f M ⋃≠R 其中正确判断有( B )A 、 1个B 、 2个C 、 3个D 、 4个分析:若P M ⋂≠∅,则只有}0{=⋂M P 这一种可能.②和④是正确的.2.对数形结合思想、函数图象及其变换的考查.对图象的考查有6道试题,也以小题为主,难度为中等. 例4.(上海市)设奇函数f (x )的定义域为[-5,5].若当x ∈[0,5]时f (x )的图象如右图,则不等式f (x )<0的解是]5,2()0,2( -. 例5.(上海市)若函数y =f (x )的图象可由函数y =lg(x +1)的图象绕坐标原点O 逆时针旋转2π得到,则f (x )为( A ) A 、10-x-1 B 、10x-1 C 、1-10-xD 、1-10x3.对函数思想的考查.利用函数的图象研究方程的解;利用函数的单调性证明不等式(常常利用函数的导数来判断和证明函数的单调性);利用函数的最值说明不等式恒成立等问题.在全部考题中,有7道小题考查了用函数研究方程或不等式的问题,有14道大题考查了函数与方程、不等式、数列等的综合问题. 例6.(1)(浙江省)已知⎩⎨⎧≥<-=,0,1,0,1)(x x x f 则不等式)2()2(+⋅++x f x x ≤5的解集是]23,(-∞.(2)(全国卷3)设函数2(1),1,()41, 1,x x f x x x ⎧+<⎪=⎨--≥⎪⎩则使得f (x )≥1的自变量x 的取值范围为( A )A 、(-∞,-2][0,10]B 、(-∞,-2][0,1]C 、(-∞,-2][1,10] D 、[-2,0][1,10]例7.(上海市)已知二次函数y =f 1(x )的图象以原点为顶点且过点(1,1),反比例函数y =f 2(x )的图象与直线y =x 的两个交点间距离为8,f (x )= f 1(x )+ f 2(x ). (1)求函数f (x )的表达式;(2)证明:当a >3时,关于x 的方程f (x )= f (a )有三个实数解.解:(1)由已知,设f 1(x )=ax 2,由f 1(1)=1,得a =1,故f 1(x )= x 2.设f 2(x )=xk(k >0),它的图象与直线y =x 的交点分别为A (k ,k )、B (-k ,-k ) 由AB =8,得k =8,故f 2(x )=x 8.所以f (x )=x 2+x8. (2)证法一:由f (x )=f (a )得x 2+x 8=a 2+a 8, 即x 8=-x 2+a 2+a 8.在同一坐标系内作出f 2(x )=x 8和f 3(x )= -x 2+a 2+a8的大致图象,其中f 2(x )的图象是以坐标轴为渐近线,且位于第一、三象限的双曲线,f 3(x )的图象是以(0,a 2+a8)为顶点,开口向下的抛物线.因此,,f 2(x )与f 3(x )的图象在第三象限有一个交点,即f (x )=f (a )有一个负数解. 又因为f 2(2)=4,,f 3(2)= -4+a 2+a8 当a >3时,f 3(2)-f 2(2)= a 2+a8-8>0, 所以当a >3时,在第一象限f 3(x )的图象上存在一点(2,f (2))在f 2(x )图象的上方. 所以f 2(x )与f 3(x )的图象在第一象限有两个交点,即f (x )=f (a )有两个正数解. 因此,方程f (x )=f (a )有三个实数解. 证法二:由f (x )=f (a ),得x 2+x 8=a 2+a 8, 即(x -a )(x +a -ax8)=0,得方程的一个解x 1=a . 方程x +a -ax8=0化为ax 2+a 2x -8=0,由a >3,∆=a 4+32a >0,得 x 2=a a a a 23242+--, x 3=aa a a 23242++-,因为x 2<0, x 3>0, 所以x 1≠ x 2,且x 2≠ x 3.若x 1= x 3,即a =aa a a 23242++-,则3a 2=a a 324+, a 4=4a ,得a =0或a =34,这与a >3矛盾,所以x 1≠ x 3. 故原方程f (x )=f (a )有三个实数解. 例8.(福建高考题)已知f (x )=2324()3x ax x x +-∈R 在区间[-1,1]上是增函数. (Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f (x )=3312x x +的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范围;若不存在,请说明理由.解:(Ⅰ)f '(x )=4+2,22x ax - ∵f (x )在[-1,1]上是增函数,∴f '(x)≥0对x ∈[-1,1]恒成立,即x 2-ax -2≤0对x ∈[-1,1]恒成立. ①设ϕ(x )=x 2-ax -2,方法一:① ⇔ ⎩⎨⎧≤-+=-≤--=021)1(021)1(a a ϕϕ ⇔-1≤a ≤1,∵对x ∈[-1,1],只有当a =1时,f '(-1)=0以及当a =-1时,f '(1)=0∴A ={a |-1≤a ≤1}.方法二:①⇔ ⎪⎩⎪⎨⎧≤-+=-≥021)1(02a a ϕ或⎪⎩⎪⎨⎧≤--=<021)1(02a a ϕ⇔ 0≤a ≤1或-1≤a ≤0⇔ -1≤a ≤1.∵对x ∈[-1,1],只有当a =1时,f '(-1)=0以及当a =-1时,f '(1)=0, ∴A ={a |-1≤a ≤1}. (Ⅱ)由,02,0,3123242332=--=+=-+ax x x x x x ax x 或得 ∵△=a 2+8>0,∴x 1,x 2是方程x 2-ax -2=0的两非零实根,x 1+x 2=a ,x 1x 2=-2, 从而|x 1-x 2|=212214)(x x x x -+=82+a . ∵-1≤a ≤1,∴|x 1-x 2|=82+a ≤3.要使不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立, 当且仅当m 2+tm +1≥3对任意t ∈[-1,1]恒成立,即m 2+tm -2≥0对任意t ∈[-1,1]恒成立. ②设g(t)=m 2+tm -2=mt +(m 2-2),方法一:②⇔ g (-1)=m 2-m -2≥0且g (1)=m 2+m -2≥0,⇔m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m |m ≥2,或m ≤-2}. 方法二:当m =0时,②显然不成立;当m ≠0时,②⇔m >0,g (-1)=m 2-m -2≥0 或m <0,g (1)=m 2+m -2≥0 ⇔ m ≥2或m ≤-2.所以,存在实数m ,使不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立,其取值范围是{m |m ≥2,或m ≤-2}.说明:本题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨论思想和灵活运用数学知识分析问题和解决问题的能力. 三、高考热点分析函数几乎贯穿了高中数学的始末,它与高中数学的每一部分内容几乎都有联系.对函数的认识,应该包含对函数的概念和性质的理解;对二次函数、指数函数、对数函数、三角函数等基本初等函数和分段函数的概念和性质的理解;函数图象的变换和应用;建立函数模型解决问题的意识等.在复习过程中,以下几点值得重视:1.重视对函数概念和基本性质的理解.包括定义域、值域(最值)、对应法则、对称性(包括奇偶性)、单调性、周期性、反函数、图象变换、基本初等函数(常常是载体)等.研究函数的性质要注意分析函数解析式的特征,同时要注意函数图象(形)的作用.对这部分知识的考查,除了一部分比较简单的小题直接考查函数某一方面的性质外,常常是对函数综合的类型较多(中等难度题,以小题和前三道大题为主),包括函数内部多种知识的综合,函数同方程、不等式、数列的综合.例1.(北京市)函数f x x ax ()=--223在区间[1,2]上存在反函数的充分必要条件是( D )A . a ∈-∞(,]1B . a ∈+∞[,)2C . a ∈[,]12D . a ∈-∞⋃+∞(,][,)12 说明:涉及二次函数的单调性、反函数的概念、充分必要条件等知识.例2. (福建省)已知函数y =log 2x 的反函数是y =f —1(x ),则函数y = f —1(1-x )的图象是( C )例3.(全国高考题3)已知函数y =f (x )是奇函数,当x ≥0时,f (x )=3x -1,设f (x )的反函数是y =g (x ),则g (-8)=___-2_____.例4.(湖北省)函数]1,0[)1(log )(2在++=x a x f a 上的最大值和最小值之和为a ,则a 的值为( B )A 、41B 、21 C 、2 D 、4例5.(北京市)在函数f x ax bx c ()=++2中,若a ,b ,c 成等比数列且f ()04=-,则f x ()有最大 值(填“大”或“小”),且该值为-3.例6.(湖南省)设函数,2)2(),0()4(.0,2,0,)(2-=-=-⎩⎨⎧>≤++=f f f x x c bx x x f 若则关于x 的方程x x f =)(解的个数为( C )A 、1B 、2C 、3D 、4例7.(江苏省)设k >1,f (x )=k (x -1)(x ∈R ) .在平面直角坐标系xOy 中,函数y =f (x )的图象与x 轴交于A 点,它的反函数y =f -1(x )的图象与y 轴交于B 点,并且这两个函数的图象交于P 点.已知四边形OAPB 的面积是3,则k 等于( B )A 、3B 、32C 、43D 、65例8.(上海市)记函数f (x )=132++-x x 的定义域为A ,g (x )=lg [(x -a -1)(2a -x )](a <1) 的定义域为B . (1)求A ;(2)若B ⊆A , 求实数a 的取值范围. 解:(1)2-13++x x ≥0,得11+-x x ≥0, x <-1或x ≥1,即A =(-∞,-1) [1,+ ∞). (2)由(x -a -1)(2a -x )>0,得(x -a -1)(x -2a )<0.因为a <1,所以a +1>2a ,故B =(2a ,a +1). 因为B ⊆A ,所以2a ≥1或a +1≤-1,即a ≥21或a ≤-2,而a <1, 所以21≤a <1或a ≤-2,故当B ⊆A 时,实数a 的取值范围是(-∞,-2] [21,1).例9.(2003年全国理科高考题)已知.0>c 设P :函数xc y =在R 上单调递减.Q :不等式1|2|>-+c x x 的解集为R ,如果P 和Q 有且仅有一个正确,求c 的取值范围.解:函数xc y =在R 上单调递减.10<<⇔c不等式|2|1|2| 1.x x c R y x x c +->⇔=+-R 的解集为函数在上恒大于 22,2,|2|2,2,1|2|2.|2|121.211,,0.,, 1.(0,][1,).22x c x c x x c c x c y x x c c x x c R c c P Q c P Q c c -≥⎧+-=⎨<⎩∴=+-∴+->⇔>⇔><≤≥⋃+∞R 函数在上的最小值为不等式的解集为如果正确且不正确则如果不正确且正确则所以的取值范围为 2.重视利用导数研究函数的单调性等性质,进而证明一些不等式或转化一些不等式恒成立问题. 例10.(全国高考题1)已知13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围. 分析:函数13)(23+-+=x x ax x f 在R 上递减等价于0)(≤'x f 恒成立.解:函数f (x )的导数:.163)(2-+='x ax x f当0)(≤'x f (x ∈R )时,)(x f 是减函数.23610()ax x x +-≤∈R .3012360-≤⇔≤+=∆<⇔a a a 且所以,所求a 的取值范围是(].3,-∞-说明:这类问题在2004年全国各地的高考题中大量出现,需重视. 例11.(重庆市)设函数()(1)(),(1)f x x x x a a =-->(1)求导数/()f x ;并证明()f x 有两个不同的极值点12,x x ; (2)若不等式12()()0f x f x +≤成立,求a 的取值范围. 解:(1).)1(23)(2a x a x x f ++-='.0)(,;0)(,;0)(,:)())((3)(,,,,04)1(4.0)1(230)(221121212122>'><'<<<'<'--='<>≥+-=∆=++-='x f x x x f x x x x f x x x f x x x x x f x x x x a a a a x a x x f 时当时当时当的符号如下可判断由不妨设故方程有两个不同实根因得方程令因此1x 是极大值点,2x 是极小值点.(2)因故得不等式,0)()(21≤+x f x f :.0)(]2))[(1(]3))[((.0)())(1(212122121221212122213231≤++-++--++≤++++-+x x a x x x x a x x x x x x x x a x x a x x 即又由(I )知⎪⎪⎩⎪⎪⎨⎧=+=+.3),1(322121a x x a x x ,代入前面不等式,两边除以(1+a ),并化简得.02522≥+-a a.0)()(,2,.)(212:21成立不等式时当因此舍去或解不等式得≤+≥≤≥x f x f a a a 例12.(2003年江苏高考题)已知n a ,0>为正整数. (Ⅰ)设1)(,)(--='-=n n a x n y a x y 证明;(Ⅱ)设).()1()1(,,)()(1n f n n f a n a x x x f n n n n n '+>+'≥--=+证明对任意证明:(Ⅰ)因为nk knnC a x 0)(=∑=-k kn x a --)(,所以1)(--=-='∑k kn nk kn xa kC y nk n 0=∑=.)()(1111------=-n k k n k n a x n x a C (Ⅱ)对函数nn n a x x x f )()(--=求导数:nn n n n n n n n n n n n n a n n a n n a n x a x x x f a x x f a x a n n n n f a x n nx x f )()1()1(,,.)()(,.0)(,0].)([)(,)()(1111-->-+-+≥--=≥∴>'>≥--='--='----时当因此的增函数是关于时当时当所以∴))()(1(])1()1)[(1()1(1n n n n n a n n n a n n n n f --+>-+-++=+'+ ).()1())()(1(1n f n a n n n n n n n '+=--+>- 即对任意).()1()1(,1n f n n f a n n n '+>+'≥+四、二轮复习建议(正文用宋体五号字)1.进一步加强对基本概念、基础知识、基本方法的理解和训练(在函数性质和函数与其他知识的小综合上要多加训练,这是关键).2.在二轮复习过程中,做两件事情:一是分专题讲解“函数、导数与不等式”(重点)、“函数与数列”,二是在整个复习过程中,不断渗透函数的思想方法和数形结合的思想方法. 一些备选例题:1.(2000年春季)已知函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则( A )A 、b ∈(-∞,0)B 、 b ∈(0,1)C 、 b ∈(1,2)D 、 b ∈(2,+∞) 分析:显然,(想方程)方程f (x )=0的根为0、1、2,所以,可以设f (x )=ax (x -1)(x -2),与f (x )=ax 3+bx 2+cx +d 比较可得:b =-3a .(想不等式)又x >2时,有f (x )>0,于是有a >0,故b <0.2.(2000年上海)已知函数f (x )=xax x ++22,x ∈[)+∞,1.(1)当a =21时,求函数f (x )的最小值; (2)若对任意的x ∈[)+∞,1,f (x )>0恒成立,试求a 的取值范围.分析:本题考查求函数的最值的方法,以及等价变换和函数思想的运用.当a =21时,f (x )=221++xx ≥222212+=+⋅x x ,当且仅当22,21==x x x 即时等号成立,而[)∞+∉122,也就是说这个最小值是取不到的. 解:(1)当a =21时,f (x )=221++xx ,函数f (x )在区间[)+∞,1上为增函数(证明略),所以当x =1时,取到最小值f (1)=3.5.(2)解法一:f (x )>0恒成立,就是x 2+2x +a >0恒成立,而函数g (x )=x 2+2x +a 在[)+∞,1上增函数,所以当x =1时,g (x )取到最小值3+a ,故3+a >0,得:a >-3.解法二:f (x )>0恒成立,就是x 2+2x +a >0恒成立,即a >-x 2-2x 恒成立,这只要a 大于函数-x 2-2x 的最大值即可.而函数-x 2-2x 在[)+∞,1上为减函数,当x =1时,函数-x 2-2x 取到最大值-3,所以a >-3.说明:函数、方程不等式之间有着密切的联系,在解题时要重视这种联系,要善于从函数的高度理解方程和不等式的问题,也要善于利用方程和不等式的知识解决函数的问题.3.某工厂有一个容量为300吨的水塔,每天从早上6时起到晚上10时止供应该厂的生产和生活用水,已知该厂生活用水为每小时10吨,工业用水量W (吨)与时间t (小时,且规定早上6时t =0)的函数关系为W =100t .水塔的进水量分为10级,第一级每小时进水10吨,以后每提高一级,每小时进水量就增加10吨.若某天水塔原有水100吨,在开始供水的同时打开进水管,问进水量选择为第几级时,既能保证该厂的用水(水塔中水不空)又不会使水溢出?分析:本题主要考查由实际问题建立函数关系式、并利用函数关系解决实际问题.解本题时, 在建立函数关系式后,根据题意应有0<y ≤300对t 恒成立(注意区分不等式恒成立和解不等式的关系). 解:设进水量选第x 级,则t 小时后水塔中水的剩余量为y =100+10xt -10t -100t ,且0≤t ≤16.根据题意0<y ≤300,∴0<100+10xt -10t -100t ≤300.0 1 2 xy由左边得x >1+10(t t11-)=1+10〔-2)211(-t +41〕, 当t =4时,1+10〔-2)211(-t +41〕有最大值3.5.∴x >3.5.由右边得x ≤t t 1020++1,当t =16时,tt 1020++1有最小值4.75,∴x ≤4.75. 综合上述,进水量应选为第4级.说明:a 为实数,函数f (x )定义域为D ,若a >f (x )对x D ∈恒成立,则a >f (x )的最大值;若a <f (x )对x D ∈恒成立,则a <f (x )的最小值.4.设()x f 是定义在[-1,1]上的偶函数,()x g 与()x f 的图象关于直线01=-x 对称.且当[]3,2∈x 时,()()()()为实数a x x a x g 32422---⋅=(1)求函数()x f 的表达式;(2)在(]6,2∈a 或()+∞,6的情况下,分别讨论函数()x f 的最大值,并指出a 为何值时,()x f 的图像的最高点恰好落在直线12=y 上.分析:(1)注意到()x g 是定义在区间[]3,2上的函数,因此,根据对称性,我们只能求出()x f 在区间[]0,1-上的解析式,()x f 在区间[]1,0上的解析式,则可以根据函数的奇偶性去求.简答:()⎪⎩⎪⎨⎧≤≤+-≤≤-+-=1024012433x ax x x ax x x f(2)因为()x f 为偶函数,所以,()x f (11≤≤-x )的最大值,必等于()x f 在区间[]1,0上的最大值.故只需考虑10≤≤x 的情形,此时,()ax x x f 243+-=.对于这个三次函数,要求其最大值,比较容易想到的方法是:考虑其单调性.因此,可以求函数()x f 的导数.简答:如果()+∞∈,6a 可解得:8=a ; 如果(]6,2∈a ,可解得:61833>=a ,与(]6,2∈a 矛盾.故当8=a 时,函数()x f 的图像的最高点恰好落在直线12=y 上.说明:(1)函数的单调性为研究最值提供了可能;(2)奇偶性可以使得我们在研究函数性质时,将问题简化到定义域的对称区间上. 5.已知函数3211()(1)32f x x b x cx =+-+ (b 、c 为常数),(Ⅰ) 若()f x 在x =1和x =3处取得极值,试求b 、c 的值;(Ⅱ)若()f x 在12(,),(,)x x x ∈-∞+∞上单调递增且在12(,)x x x ∈上单调递减,又满足211x x ->,求证:22(2)b b c >+;(Ⅲ) 在(Ⅱ)的条件下,若1t x <,试比较2t bt c ++与1x 的大小,并加以证明. 解: (Ⅰ)'2()(1)f x x b x c =+-+,由题意得:1和3是方程2(1)0x b x c +-+=的两根,113,1 3.b c -=+⎧∴⎨=⨯⎩解得3,3.b c =-⎧⎨=⎩ (Ⅱ)由题得:当12(,),(,)x x x ∈-∞+∞时,'()0f x >;12(,)x x x ∈时, '()0f x <.12,x x ∴是方程2(1)0x b x c +-+=的两根,则12121,,x x b x x c +=-=222121212212122212(2)24[1()]2[1()]4()41() 1.b bc b b cx x x x x x x x x x x x ∴-+=--=-+--+-=+--=--211x x ->,2221()10,2(2)x x b b c ∴-->∴>+.(Ⅲ) 在(Ⅱ)的条件下,由上一问知212(1)()(),x b x c x x x x +-+=-- 即212()(),x bx c x x x x x ++=--+所以2112112()()()(1),t bt c x t x t x t x t x t x ++-=--+-=-+-2121111,10,0,0,x x t t x t x t x >+>+∴+-<<<∴-<又 2121()(1)0,.t x t x t bt c x ∴-+->++>即。

高考数学二轮复习上篇专题整合突破专题一函数与导数不等式第2讲不等式问题课件理

高考数学二轮复习上篇专题整合突破专题一函数与导数不等式第2讲不等式问题课件理
第2讲 不等式问题
高考定位 高考对本内容的考查主要有:(1)一元二次不等 式是C级要求,要求在初中所学二次函数的基础上,掌握二 次函数、二次不等式、二次方程之间的联系和区别,可以单 独考查,也可以与函数、方程等构成综合题;(2)线性规划 的要求是A级,理解二元一次不等式对应的平面区域,能够 求线性目标函数在给定区域上的最值,同时对一次分式型函 数、二次型函数的最值也要有所了解;(3)基本不等式是C级 要求,理解基本不等式在不等式证明、函数最值的求解方面 的重要应用.
c=m, c=m+6,
① ②
②-①,得 2 c=6,∴c=9.
答案 (1)(-5,0)∪(5,+∞) (2)9
探究提高 解一元二次不等式一般要先判断二次 项系数的正负也即考虑对应的二次函数图象的开 口方向,再考虑方程根的个数也即求出其判别式 的符号,有时还需要考虑其对称轴的位置,根据 条件列出方程组或结合对应的函数图象求解.
探究提高 在利用基本不等式时往往都需要变形, 变形的原则是在已知条件下通过变形凑出基本不 等式应用的条件,即“和”或“积”为定值,等号能够 取得.
[微题型 2] 基本不等式在实际问题中的应用 【例 2-2】 (2016·南通调研)如图,在 C 城周边已有
两条公路 l1,l2 在点 O 处交汇.已知 OC=( 2+ 6)km,∠AOB=75°,∠AOC=45°,现规划在
32+1(x-2+x-4 2+4)≥
3+1 2
×8=4( 3+1).
当且仅当 x=4 时取等号,此时 y=4 2.
故 OA=4 km,OB=4 2 km 时,△OAB 面积的
最小值为 4( 3+1) km2.
探究提高 在利用基本不等式求最值时,要特别注意“拆、 拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中 字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号 取得的条件)的条件才能应用,否则会出现错误.

2020届高考理科数学二轮复习训练:专题1_第2讲 函数与导数

2020届高考理科数学二轮复习训练:专题1_第2讲 函数与导数

专题复习检测A 卷1.(2019年天津)已知a =log 52,b =log 0.50.2,c =0.50.2,则a ,b ,c 的大小关系为( ) A .a <c <b B .a <b <c C .b <c <a D .c <a <b【答案】A【解析】a =log 52<1,b =log 0.50.2=log 1215=log 25>log 24=1,c =0.50.2<1,所以b 最大.因为a =log 52=1log 25,c =0.50.2=⎝⎛⎭⎫1215 =512=152.而log 25>log 24=2>52,所以1log 25<152,即a <c .故选A .2.(2019年甘肃白银模拟)若函数f (x )=⎩⎪⎨⎪⎧2x +2+a ,x ≤1,log 12(x +1),x >1有最大值,则a 的取值范围为( )A .(-5,+∞)B .[-5,+∞)C .(-∞,-5)D .(-∞,-5]【答案】B【解析】易知f (x )在(-∞,1]上单调递增,在(1,+∞)上单调递减,要使f (x )有最大值,则f (1)=4+a ≥log 12(1+1)=-1,解得a ≥-5.3.(2018年新课标Ⅲ)下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( )A .y =ln(1-x )B .y =ln(2-x )C .y =ln(1+x )D .y =ln(2+x )【答案】B【解析】y =ln x 的图象与y =ln(-x )的图象关于y 轴即x =0对称,要使新的图象与y =ln x 关于直线x =1对称,则y =ln(-x )的图象需向右平移2个单位,即y =ln(2-x ).4.设a ∈R ,若函数y =e x +ax 有大于零的极值点,则( ) A .a <-1 B .a >-1 C .a >-1eD .a <-1e【答案】A【解析】∵y =e x +ax ,∴y ′=e x +a .∵函数y =e x +ax 有大于零的极值点,∴方程y ′=e x +a =0有大于零的解.∵x >0时,-e x <-1,∴a =-e x <-1.5.(2019年云南玉溪模拟)函数f (x )=x 2ln x 的最小值为( )A .-1eB .1eC .-12eD .12e【答案】C【解析】由f (x )=x 2ln x ,得定义域为(0,+∞)且f ′(x )=2x ln x +x 2·1x=x (2ln x +1).令f ′(x )=0,得x =e -12.当0<x <e -12时,f ′(x )<0,f (x )单调递减;当x >e -12时,f ′(x )>0,f (x )单调递增.所以当x =e -12时,f (x )取得最小值,即f (x )min =f (e -12)=-12e.故选C .6.(2019年贵州遵义模拟)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.【答案】6【解析】由f (x +4)=f (x -2),可得f (x +6)=f (x ),则f (x )是周期为6的周期函数,所以f (919)=f (153×6+1)=f (1).又f (x )是偶函数,所以f (919)=f (1)=f (-1)=6-(-1)=6.7.(2019年广东模拟)已知曲线f (x )=a e x +b (a ,b ∈R )在点(0,f (0))处的切线方程为y =2x +1,则a -b =________.【答案】3【解析】由f (x )=a e x +b ,得f ′(x )=a e x .因为曲线f (x )在点(0,f (0))处的切线方程为y =2x+1,所以⎩⎪⎨⎪⎧ f (0)=a +b =1,f ′(0)=a =2,解得⎩⎪⎨⎪⎧a =2,b =-1.所以a -b =3.8.定义在R 内的可导函数f (x ),已知y =2f′(x )的图象如图所示,则y =f (x )的减区间是______.【答案】(2,+∞)【解析】令f ′(x )<0,则y =2f′(x )<1,由图知,当x >2时,2f′(x )<1,故y =f (x )的减区间是(2,+∞).9.已知函数f (x )=x e x -ax 2-x .(1)若f (x )在(-∞,-1]内单调递增,在[-1,0]上单调递减,求f (x )的极小值; (2)若x ≥0时,恒有f (x )≥0,求实数a 的取值范围.【解析】(1)∵f (x )在(-∞,-1]内单调递增,在[-1,0]上单调递减,∴f ′(-1)=0. ∵f ′(x )=(x +1)e x -2ax -1,∴2a -1=0,a =12.∴f ′(x )=(x +1)e x -x -1=(x +1)(e x -1).∴f (x )在(-∞,-1)内单调递增,在(-1,0)内单调递减,在(0,+∞)内单调递增,f (x )的极小值为f (0)=0.(2)f (x )=x (e x -ax -1),令g (x )=e x -ax -1,则g ′(x )=e x -a , 若a ≤1,则x ∈(0,+∞)时,g ′(x )>0,g (x )为增函数, 而g (0)=0,∴当x ≥0时,g (x )≥0.从而f (x )≥0. 若a >1,则x ∈(0,ln a )时,g ′(x )<0,g (x )为减函数, g (0)=0,当x ∈(0,ln a )时,g (x )<0,从而f (x )<0. 综上,实数a 的取值范围是(-∞,1].10.(2019年江苏节选)设函数f (x )=(x -a )(x -b )(x -c ),a ,b ,c ∈R ,f ′(x )为f (x )的导函数.(1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和f ′(x )的零点均在集合{-3,1,3}中,求f (x )的极小值. 【解析】(1)若a =b =c ,则f (x )=(x -a )3. 由f (4)=8,得(4-a )3=8,解得a =2. (2)若a ≠b ,b =c ,f (x )=(x -a )(x -b )2. 令f (x )=0,得x =a 或x =b .f ′(x )=(x -b )2+2(x -a )(x -b )=(x -b )(3x -b -2a ). 令f ′(x )=0,得x =b 或x =2a +b3. f (x )和f ′(x )的零点均在集合A ={-3,1,3}中, 若a =-3,b =1,则2a +b 3=-53∉A ,舍去.若a =1,b =-3,则2a +b 3=-13∉A ,舍去.若a =-3,b =3,则2a +b3=-1∉A ,舍去.若a =3,b =1,则2a +b 3=73∉A ,舍去.若a =1,b =3,则2a +b 3=53∉A ,舍去.若a =3,b =-3,则2a +b3=1∈A .∴f (x )=(x -3)(x +3)2,f ′(x )=3(x +3)(x -1). 易知x =1时,f (x )取得极小值-32. B 卷11.(2019年甘肃兰州模拟)定义在(0,+∞)上的函数f (x )满足f ′(x )+1x 2>0,f (2)=52,则关于x 的不等式f (ln x )>1ln x+2的解集为( )A .(1,e 2)B .(0,e 2)C .(e ,e 2)D .(e 2,+∞)【答案】D【解析】设g (x )=f (x )-1x (x >0),则g ′(x )=f ′(x )+1x 2>0,所以函数g (x )在(0,+∞)上单调递增.由f (ln x )>1ln x +2,可得f (ln x )-1ln x >2,又g (2)=f (2)-12=2,所以待解不等式等价于解g (ln x )>g (2).所以ln x >2,解得x >e 2.故选D .12.(2018年江西师大附中月考)已知函数f (x )=⎪⎪⎪⎪2x -a2x 在[0,1]上单调递增,则a 的取值范围为________.【答案】[-1,1]【解析】令2x =t ,t ∈[1,2],则y =⎪⎪⎪⎪t -at 在[1,2]上单调递增.当a =0时,y =|t |=t 在[1,2]上单调递增显然成立;当a >0时,y =⎪⎪⎪⎪t -at ,t ∈(0,+∞)的单调递增区间是[a ,+∞),此时a ≤1,即0<a ≤1时成立;当a <0时,y =⎪⎪⎪⎪t -a t =t -at ,t ∈(0,+∞)的单调递增区间是[-a ,+∞),此时-a ≤1,即-1≤a <0时成立.综上,a 的取值范围是[-1,1].13.(2018年新课标Ⅰ)已知函数f (x )=1x -x +a ln x .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,求证:f (x 1)-f (x 2)x 1-x 2<a -2.【解析】(1)f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+ax =-x 2-ax +1x 2.①若a ≤2,则f ′(x )≤0,当且仅当a =2,x =1时f ′(x )=0,所以f (x )在(0,+∞)上单调递减.②若a >2,令f ′(x )=0得,x =a -a 2-42或x =a +a 2-42,易得0<a -a 2-42<a +a 2-42.当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∪⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0.所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增. (2)证明:由(1)知,f (x )存在两个极值点当且仅当a >2.由于f (x )的两个极值点x 1,x 2满足x 2-ax +1=0,所以x 1x 2=1,不妨设x 1<x 2,则x 2>1. 由于f (x 1)-f (x 2)x 1-x 2=-1x 1x 2-1+a ln x 1-ln x 2x 1-x 2=-2+a ln x 1-ln x 2x 1-x 2=-2+a ln x 1-ln x 2x 1-x 2=-2+a -2ln x 21x 2-x 2,所以f (x 1)-f (x 2)x 1-x 2<a -2等价于1x 2-x 2+2ln x 2<0.设函数g (x )=1x -x +2ln x ,由(1)知,g (x )在(0,+∞)上单调递减,又g (1)=0,则当x ∈(1,+∞)时,g (x )<0.所以1x 2-x 2+2ln x 2<0,即f (x 1)-f (x 2)x 1-x 2<a -2.。

高中高三数学二轮复习精选专题练(理科)不等式函数与导数 含答案

高中高三数学二轮复习精选专题练(理科)不等式函数与导数 含答案

河南省罗山高中2016届高三数学二轮复习精选专题练(理科,有解析):不等式、函数与导数1、若()f x =则(3)f =( )A. 2B. 4C. 2±D. 【答案】A2、如果函数F (x )= ()f x )1lg(2x x ++,(∈x R )是奇函数,那么函数()f x 是( ) A .奇函数 B .偶函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数 【答案】B3、设二次函数2()32(1)2f x x a x =-+-+在区间(1,)-+∞上为减函数,则实数a 的范围为( )A .2a =-B .2a =C .2a ≤-D .2a ≥ 【答案】C4、若函数2()|(21)(2)|f x mx m x m =-+++恰有四个单调区间,则实数m 的取值范围( ) A.14m <B. 14m < 且0m ≠C. 104m <<D. 14m > 【答案】B【解析】函数2()|(21)(2)|f x mx m x m =-+++恰有四个单调区间,所以,结合函数图象的特点,0m ≠时,2(21)20mx m x m -+++=应有不等实根,所以,2(21)4(2)0m m m +-+>,解得,14m <, 故选B 。

5、下列各函数中,最小值为2的是 ( ) A .1y x x =+ B .1sin sin y x x =+,(0,)2x π∈ C .y =D .1y x =+- 【答案】D【解析】对于A :不能保证0x >,对于B :不能保证1sin sin x x=,对于C=,对于D:112y x =-≥= 6、下列函数中,不满足:(2)2()f x f x =的是( ) A.()f x x = B.()f x x x =- C.()f x x =+1 D.()f x x =- 【答案】C7、已知函数2()f x x bx =+的图像在点()1,(1)A f 处切线的斜率为3,数列1()f n ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则2009S =( )A .20082007 B .20082009 C .20092010 D .20102011【答案】C8在区间M 上的反函数是其本身,则M 可以是( ) A .[1,1]-B .[1,0]-C .[0,1]D . (1,1)-【答案】B9、下列函数中既是奇函数,又在区间(0,+∞)上单调递增的是( ) A . x y sin = B .2x y -= C . 21g x y = D .3x y -= 【答案】C10、对于正实数α,记M α为满足下述条件的函数()f x 构成的集合:12,x x R ∀∈且21x x >,有212121()()()()x x f x f x x x αα--<-<-.下列结论中正确的是 ( )A .若12(),()f x M g x M αα∈∈,则12()()f x g x M αα++∈B .若12(),()f x M g x M αα∈∈且12αα>,则12()()f x g x M αα--∈C .若12(),()f x M g x M αα∈∈,则12()()f x g x M αα⋅⋅∈D .若12(),()f x M g x M αα∈∈且()0g x ≠,则12()()f x M g x αα∈ 【答案】A11、己知函数2()f x x bx =+的图象在点(1,(1))A f 处的切线与直线3x- y+2=0平行,若数列1()f n ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则2014S 的值为( )A .20142015 B .20122013 C .20132014 D .20152016【答案】A【解析】由已知得,'()2f x x b =+,函数2()f x x bx =+的图象在点(1,(1))A f 处的切线斜率为'(1)23k f b ==+=,故1b =,所以2()f x x x=+,则1111()(1)1f n n n n n ==-++,所以111111(1)())122311n S n n n =-+-+-=-++…+(,故2014S =20142015. 考点:本题考查导数的几何意义,裂项相消法求和点评:解决本题的关键是用导数求出切线方程,利用裂项相消求和12、设函数()f x (x R ∈)的导函数为()f x ',满足()()f x f x '>,则当0a >时,()f a 与(0)a e f 的大小关系为( )A .()f a =(0)a e fB .()f a >(0)a e fC .()f a <(0)a e fD .不能确定 【答案】B13、下图展示了一个由区间(0,4)到实数集R 的映射过程:区间(0,4)中的实数m 对应数轴上的点M (如图1),将线段AB 围成一个正方形,使两端点A B 、恰好重合(如图2),再将这个正方形放在平面直角坐标系中,使其中两个顶点在y 轴上,点A 的坐标为(0,4)(如图3),若图3中直线AM 与x 轴交于点(,0)N n ,则m 的象就是n ,记作()f m n =.现给出以下命题:(2)0f =②()f x 的图象关于点(2,0)对称;③()f x 在区间(3,4)上为常数函数; ④()f x 为偶函数。

高考数学二轮复习 专题一 函数与导数、不等式 第2讲 不等式问题练习(2021年整理)

高考数学二轮复习 专题一 函数与导数、不等式 第2讲 不等式问题练习(2021年整理)

创新设计(浙江专用)2017届高考数学二轮复习专题一函数与导数、不等式第2讲不等式问题练习编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(创新设计(浙江专用)2017届高考数学二轮复习专题一函数与导数、不等式第2讲不等式问题练习)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为创新设计(浙江专用)2017届高考数学二轮复习专题一函数与导数、不等式第2讲不等式问题练习的全部内容。

专题一函数与导数、不等式第2讲不等式问题练习一、选择题1。

(2016·全国Ⅲ卷)已知a=2错误!,b=3错误!,c=25错误!,则( )A.b<a<c B。

a<b<cC。

b<c<a D.c<a<b解析a=2错误!=错误!,b=3错误!=错误!,c=25错误!=错误!,所以b<a<c.答案A2。

(2016·杭州模拟)已知函数f(x)=错误!若f(-a)+f(a)≤2f(1),则实数a的取值范围是()A.[0,1]B.[-1,0]C。

[-1,1]D。

[-1,0]解析f(-a)+f(a)≤2f(1)⇔错误!或错误!即错误!或错误!解得0≤a≤1,或-1≤a<0。

故-1≤a≤1。

答案C3.(2016·浙江卷)已知a,b>0且a≠1,b≠1,若log a b>1,则()A。

(a-1)(b-1)<0 B.(a-1)(a-b)>0C。

(b-1)(b-a)<0 D.(b-1)(b-a)>0解析由a,b>0且a≠1,b≠1,及log a b>1=log a a可得:当a>1时,b>a>1,当0<a<1时,0<b<a<1,代入验证只有D满足题意.答案D4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题一 函数与导数、不等式 第2讲 不等式问题练习一、选择题1.(2016·全国Ⅲ卷)已知a =243,b =323,c =2513,则( )A.b <a <cB.a <b <cC.b <c <aD.c <a <b解析 a =243=316,b =323=39,c =2513=325,所以b <a <c .答案 A2.(2016·杭州模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,x 2-2x ,x <0,若f (-a )+f (a )≤2f (1),则实数a 的取值范围是( ) A.[0,1] B.[-1,0] C.[-1,1]D.[-1,0]解析 f (-a )+f (a )≤2f (1)⇔⎩⎪⎨⎪⎧a ≥0,(-a )2-2×(-a )+a 2+2a ≤2×3或⎩⎪⎨⎪⎧a <0,(-a )2+2×(-a )+a 2-2a ≤2×3即⎩⎪⎨⎪⎧a ≥0,a 2+2a -3≤0或⎩⎪⎨⎪⎧a <0,a 2-2a -3≤0,解得0≤a ≤1,或-1≤a <0.故-1≤a ≤1. 答案 C3.(2016·浙江卷)已知a ,b >0且a ≠1,b ≠1,若log a b >1,则( ) A.(a -1)(b -1)<0 B.(a -1)(a -b )>0 C.(b -1)(b -a )<0D.(b -1)(b -a )>0解析 由a ,b >0且a ≠1,b ≠1,及log a b >1=log a a 可得:当a >1时,b >a >1,当0<a <1时,0<b <a <1, 代入验证只有D 满足题意. 答案 D4.已知当x <0时,2x 2-mx +1>0恒成立,则m 的取值范围为( ) A.[22,+∞) B.(-∞,22] C.(-22,+∞)D.(-∞,-22)解析 由2x 2-mx +1>0,得mx <2x 2+1, 因为x <0,所以m >2x 2+1x =2x +1x.而2x +1x =-⎣⎢⎡⎦⎥⎤(-2x )+1(-x )≤ -2(-2x )×1(-x )=-22.当且仅当-2x =-1x,即x =-22时取等号,所以m >-2 2.答案 C5.(2016·珠海模拟)若x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y -2≥0,x -y +1≥0,3x +y -6≤0,则x 2+y 2的最小值是( )A.235B.255C.45D.1解析 不等式组所表示的平面区域如图阴影部分所示,x 2+y 2表示原点(0,0)到此区域内的点P (x ,y )的距离.显然该距离的最小值为原点到直线x +2y -2=0的距离.故最小值为|0+0-2|12+22=255.答案 B 二、填空题6.已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝ ⎛⎭⎪⎫13x ,x ≤0,那么不等式f (x )≥1的解集为________.解析 当x >0时,由log 3x ≥1可得x ≥3,当x ≤0时,由⎝ ⎛⎭⎪⎫13x≥1可得x ≤0,∴不等式f (x )≥1的解集为(-∞,0]∪[3,+∞). 答案 (-∞,0]∪[3,+∞)7.设目标函数z =x +y ,其中实数x ,y 满足⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k .若z 的最大值为12,则z 的最小值为________.解析 作出不等式组所表示的可行域如图阴影所示,平移直线x +y =0,显然当直线过点A (k ,k )时,目标函数z =x +y 取得最大值,且最大值为k +k =12,则k =6,直线过点B 时目标函数z =x +y 取得最小值,点B 为直线x +2y =0与y =6的交点,即B (-12,6),所以z min =-12+6=-6. 答案 -68.(2016·大同模拟)已知x >0,y >0,且2x +1y=1,若x +2y >m 2+2m 恒成立,则实数m的取值范围为________.解析 记t =x +2y ,由不等式恒成立可得m 2+2m <t min .因为2x +1y=1,所以t =x +2y =(x +2y )⎝ ⎛⎭⎪⎫2x +1y =4+4y x +xy.而x >0,y >0,所以4y x +xy≥24y x ·x y =4(当且仅当4y x =xy,即x =2y 时取等号).所以t =4+4y x +xy≥4+4=8,即t min =8.故m 2+2m <8,即(m -2)(m +4)<0.解得-4<m <2. 答案 (-4,2)三、解答题 9.已知函数f (x )=2xx 2+6.(1)若f (x )>k 的解集为{x |x <-3,或x >-2},求k 的值; (2)对任意x >0,f (x )≤t 恒成立,求t 的取值范围. 解 (1)f (x )>k ⇔kx 2-2x +6k <0.由已知{x |x <-3,或x >-2}是其解集,得kx 2-2x +6k =0的两根是-3, -2.由根与系数的关系可知(-2)+(-3)=2k ,即k =-25.(2)因为x >0,f (x )=2xx 2+6=2x +6x≤226=66,当且仅当x =6时取等号.由已知f (x )≤t对任意x >0恒成立,故t ≥66,即t 的取值范围是⎣⎢⎢⎡⎭⎪⎪⎫66,+∞.10.(1)解关于x 的不等式x 2-2mx +m +1>0; (2)解关于x 的不等式ax 2-(2a +1)x +2<0.解 (1)原不等式对应方程的判别式Δ=(-2m )2-4(m +1)=4(m 2-m -1).当m 2-m -1>0,即m >1+52或m <1-52时,由于方程x 2-2mx +m +1=0的两根是m ±m 2-m -1,所以原不等式的解集是{x |x <m -m 2-m -1,或x >m +m 2-m -1};当Δ=0,即m =1±52时,不等式的解集为{x |x ∈R ,且x ≠m };当Δ<0,即1-52<m <1+52时,不等式的解集为R .综上,当m >1+52或m <1-52时,不等式的解集为{x |x <m -m 2-m -1,或x>m +m 2-m -1};当m =1±52时,不等式的解集为{x |x ∈R ,且x ≠m };当1-52<m <1+52时,不等式的解集为R .(2)原不等式可化为(ax -1)(x -2)<0.①当a >0时,原不等式可以化为a (x -2)⎝ ⎛⎭⎪⎫x -1a <0,根据不等式的性质,这个不等式等价于(x -2)·⎝ ⎛⎭⎪⎫x -1a <0.因为方程(x -2)⎝ ⎛⎭⎪⎫x -1a =0的两个根分别是2,1a ,所以当0<a <12时,2<1a ,则原不等式的解集是⎩⎨⎧⎭⎬⎫x |2<x <1a ;当a =12时,原不等式的解集是∅;当a >12时,1a <2,则原不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1a <x <2.②当a =0时,原不等式为-(x -2)<0,解得x >2,即原不等式的解集是{x |x >2}.③当a <0时,原不等式可以化为a (x -2)⎝ ⎛⎭⎪⎫x -1a <0,根据不等式的性质,这个不等式等价于(x -2)⎝ ⎛⎭⎪⎫x -1a >0,由于1a <2,故原不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <1a 或x >2.综上,当a =0时不等式解集为(2,+∞);当0<a <12时,不等式解集为⎝ ⎛⎭⎪⎫2,1a ;当a =12时,不等式解集为∅;当a >12时,不等式解集为⎝ ⎛⎭⎪⎫1a ,2,当a <0时,不等式解集为⎝⎛⎭⎪⎫-∞,1a ∪(2,+∞).11.已知函数f (x )=x 2+bx +c (b ,c ∈R ),对任意的x ∈R ,恒有f ′(x )≤f (x ). (1)证明:当x ≥0时,f (x )≤(x +c )2;(2)若对满足题设条件的任意b ,c ,不等式f (c )-f (b )≤M (c 2-b 2)恒成立,求M 的最小值. (1)证明 易知f ′(x )=2x +b .由题设,对任意的x ∈R ,2x +b ≤x 2+bx +c ,即x 2+(b -2)x +c -b ≥0恒成立,所以(b -2)2-4(c -b )≤0,从而c ≥b 24+1,于是c ≥1,且c ≥2b 24×1=|b |,因此2c -b =c +(c -b )>0.故当x ≥0时,有(x +c )2-f (x )=(2c -b )x +c (c -1)≥0.即当x ≥0时,f (x )≤(x +c )2. (2)解 由(1)知c ≥|b |.当c >|b |时,有M ≥f (c )-f (b )c 2-b 2=c 2-b 2+bc -b 2c 2-b 2=c +2bb +c.令t =b c,则-1<t <1,c +2b b +c=2-11+t.而函数g (t )=2-11+t (-1<t <1)的值域是⎝⎛⎭⎪⎫-∞,32.因此,当c >|b |时,M 的取值范围为⎣⎢⎡⎭⎪⎫32,+∞.当c =|b |时,由(1)知b =±2,c =2.此时f (c )-f (b )=-8或0,c 2-b 2=0,从而f (c )-f (b )≤32(c 2-b 2)恒成立.综上所述,M 的最小值为32.。

相关文档
最新文档