Atomic packing efficiency and phase transition in a high entropy alloy

合集下载

化工专业英语词汇汇总

化工专业英语词汇汇总

reaction kinetics 反应动力学reactant反应物purify精制提纯recycle循环回收unconverted reactant未转化的反应物chemical reactor transfer of heat, evaporation, crystallization 结晶drying干燥screening筛选,浮选chemical reaction 化学反应cracking of petroleum 石油裂解catalyst催化剂,reaction zone 反应区conservation of mass and energy 能量与质量守衡定律technical advance 技术进步efficiency improvement 效率提高reaction 反应separation 分离heat exchange 热交换reactive distillation 反应精馏capital expenditure 基建投资setup装置capital outlay 费用,成本,基建投资yield产率,收率reaction byproduct 反应副产物equilibrium constant 平衡常数waste废物feedstock进料,原料product产物,产品percent conversion百分比转化率ether乙醚gasoline 汽油oxygenate content 氧含量catalyst催化剂reactant反应物inert惰性物,不参加反应的物质reactive distillation 反应精馏energy saving节约能量energy efficiency 能量效率heat-sensitive material 热敏性物质pharmaceutical 制药foodstuff 食品gas diffusivity气体扩散性,气体扩散系数gas adsorption 吸收;absorption:吸附specialty chemical特殊化学品,特种化学品batch间歇的;continuous:连续的micro-reactor微型反应器hydrogen and methane oxidation氢气和甲烷氧化反应ethylene epoxidation乙烯环氧化反应phosgene synthesis 光气合成. commercial proportions 商业规模replication 复制sensor传感器,探头separation of solids 固体分离suspension 悬浮液porous medium 多孔介质filtration 过滤medium介质filter过滤器trap收集,捕集Buchner funnel 布氏漏斗Vacuum真空conical funnel 锥形漏斗filter paper 滤名氏area面积filter cake 滤饼factor因数,因子,系数,比例viscosity 黏度density 密度corrosive property 腐蚀性particle size 颗粒尺寸shape形状size distribution 粒度分布packing characteristics 填充性质concentration 浓度filtrate 滤液feed liquor 进料液pretreatment 预处理latent heat 潜热resistance 阻力surface layer 表面层filtering medium 过滤介质drop in pressure 压降filtering surface 过滤表面filter cake 滤饼cake filtration 饼层过滤deep bed filtration 深层过滤depth深度law定律net flow净流量conduction 传导convection 对流radiation 辐射temperature gradient 温度梯度metallic solid 金属固体thermal conduction 热传导motion of unbound electrons 自由电子的运动electrical conductivity 导电性thermal conductivity 导热性poor conductor of electricity 不良导电体transport of momentum 动量传递the random motion of molecules 分子无规则运动brick wall 墙壁furnace火炉,燃烧器metal wall of a tube 金属管壁macroscopic particle 宏观的粒子control volume 控制体enthalpy 焓macroscopic phenomenon 宏观现象forces of friction 摩擦力fluid mechanics 流体力学flux (通量,流通量)of enthalpy 焓通量eddy尾流,涡流turbulent flow 湍流natural and forced convection自然对流和强制对流buoyancy force 浮力temperature gradient 温度梯度electromagnetic wave 电磁波fused quartz熔化的石英reflect 反射,[肝住戊由门:折射matte无光泽的,无光的temperature level 温度高低inter-phase mass transfer界相际间质量传递rate of diffusion 扩散速率acetone 丙酮dissolve 溶解ammonia 氨ammonia-air mixture 氨气-水混合物physical process 物理过程oxides of nitrogen 氮氧化物nitric acid 不硝酸carbon dioxide 二氧化碳sodium hydroxide 氢氧化钠actualrate of absorption 实际吸收速率two-film theory 双膜理论concentration difference 浓度差in the vicinity of在…附近,靠近..,大约…,在…左右molecular diffusion 分子扩散laminar sub-layer 层流底层resistance阻力,阻止boundary layer 边界层Fick' s Law费克定律is proportional to 与…成比例concentration gradient 浓度梯度plate tower 板式塔installation 装置feed 进料bottom底部,塔底solvent 溶剂top顶部,塔顶partial vaporization 部分汽化boiling point 沸点equimolecular counter-diffusion 等分子反向扩散ideal system理想系统ratio of A to B A 与B 的比值with the result that:由于的缘故,鉴于的结果tray塔板packed tower 填料塔bubble-cap tower 泡罩塔spray chamber 喷淋室maintenance expense 维修费foundation 基石出tower shell 塔体packing material 填料pump 泵blower风机accessory heater附属加热器cooler冷却器heat exchanger 换热器solvent-recovery system 溶剂回收系统operating cost 操作费用power动力circulating gas 循环气labor劳动力steam蒸汽regenerate 再生cooling water 冷却水solvent make-up补充溶剂optimum最优的unabsorbed component 未吸收组分purity 纯度volatility 挥发性vapor pressure 蒸汽压liquid mixture液体混合物condense凝缩,冷凝binary distillation 双组分精馏multi-component distillation 多组分精馏stage-type distillation column 级板式精馏塔mount安装,固定conduit导流管),downcomer降液管gravity 重力weir溢流堰vapor-liquid contacting device 汽液接触装置valve tray浮阀塔板reboiler 再沸器vaporization 汽化condensate冷凝液,凝缩液overhead vapor 塔顶汽体condenser冷凝器i feed tray进料板base塔底,基础bottoms product 塔底产品condensation 冷凝stripping section汽提段,提馏段distillate section 精馏段total condense 全凝器distillate product塔顶馏出产品reflux回流thermodynamic equilibrium 热力学平衡solution 溶液fractional crystallization 分步结晶solubility,溶解度,溶解性soluble可溶解的solvent溶剂employ采纳,利用miscible可混合的,可溶的,可搅拌的mechanical separation 机械分离)liquid-liquid extraction 液液萃取aromatic芳香烃的paraffin石蜡,链烷烃lubricating oil 润滑油decompose分解,离解,还原,腐烂penicillin 青霉素streptomycin (链霉素)precipitation 沉淀,沉析ethyl alcohol 乙醇)extract萃取液heat requirement 热负荷solute溶质extract phase 萃取相baffle-plate折流挡板,缓冲挡板settling tank 沉降槽centrifuge离心.离心机,离心分离emulsifying agent 孚L化剂Idensity difference 密度差raffinate萃余液extract萃取液drying of Solids 固体干燥process material过程物料(相对最终产品而言的)organic有机的,有机物的benzene 苯humidity 湿度moisture content 湿含量drying rate干燥速率critical moisture content 临界湿湿含量falling-rate 降速concave (凸的,凸面)or convex (凹的,凹面)approximate to:接近,趋近straight line:直线constant-rate drying period 恒速干燥阶段convection drying 对流干燥drying gas干燥气体falling-rate period降速干燥阶段mean value平均值vacuum drying 真空干燥discolor变色,脱色sublime 升华freeze drying冷冻干燥adiabatic绝热的,不传热的pressure gradientperpendicular to:与----垂直counter-current 逆流per unit area单位面积water-cooling tower 水冷塔sensible heat(sensible heat:显热)water droplet 水珠,水滴quantitative relation 定量关系thermal diffusion 热扩散at right angles to 与…成直角,与…垂直by virtue of由于,根据,凭借于molecular transfer 分子传递balance抵消,平衡drag forces 曳力a function of …的函数of the same order具有同一数量级eddy diffusion 涡流扩散is almost inversely proportional to 几乎与•一成反比Reynolds number 雷诺准数fully developed turbulent flow 充分发展湍流coefficient 系数In principle从原理而言exothermic (放热的,endothermic 吸热的,adiabatic 绝热的)triple bond 三健,三价nitrogen oxides 氮氧化物compound化合物conversion转化,转化率protein蛋白质compress 压缩reaction yield 反应产率reaction speed 反应速度one-pass (单程)reactor energy input 能量输入maximum最大的near toequilibrium 接近平衡output产出,输出,产量fertilizer 化肥urea尿素ammonium nitrate 硝酸铵ammonium phosphate 磷酸铵ammonium sulfate 硫酸铵diammonium hydrogen phosphate 磷酸二氢铵ash纯碱pyridine而砒啶polymers聚合物nylon尼龙acrylics丙烯酸树脂via经,由,通过,借助于hydrogen cyanide 氰化氢nitric acid 不硝酸bulk explosive 集装炸药crude oil 原油natural gas 天然气bitumen 沥青fossil fuel化石燃料seepage渗出物asphalt 沥青oil drilling 采油gasoline 汽油paint涂料plastic 塑料synthetic rubber 合成橡胶fiber纤维soap肥皂cleansing agent 清洗剂wax石蜡explosive 炸药oil shale油页岩deposit沉积物aquatic plant水生植物sedimentary rock 沉积岩sandstone 砂岩siltstone 泥岩tar sand沥青石chain-shaped 链状的methane 甲烷paraffin石蜡,烷烃ring-shaped (环状的)hydrocarbon naphthene 环烷烃naphtha石脑油tarry柏油的,焦油的,焦油状的asphaltene 沥青油impurity 杂质pollutant污染物combustion 燃烧capillarity毛细现象,毛细管力viscous resistance 粘性阻力barrel桶(国际原油计量单位)tanker 油轮kerosene 煤油heavy gas oil重瓦斯油reforming 重整cracking 裂化octane number of gasoline 汽油辛烷值branched-chain (带支链的)materials science 材料科学mechanical, thermal, chemical, electric, magnetic, and optical behavior.(机械性能、热学性能、化学性能、电学性能、磁性能、光学性能)Amalgam汞齐,水银;混合物,交叉solid state physics 固体物理学metallurgy冶金学,冶金术magnet磁铁,有吸引力的人或物insulation 绝缘catalytic cracking 催化裂化structural steels 结构钢computer microchip 计算机芯片Aerospace 航空Telecommunication 电信information processing 信息处理nuclear power 核能energy conversion 能量转化internal structure 内部结构defect structure 结构缺陷crystal flaw晶体瑕疵vacant atomic site 原子空位dislocation 错位precipitate 沉淀物semiconductor 半导体mechanical disturbance 机械扰动ductility延展性brittleness 脆性spinning electrons 旋转电子amorphous非定型的,非晶型的,非结晶的,玻璃状的;无一定目的的,乱七八糟chemical process safety 化工过程安全exotic chemistry 奇异化学hydrodynamic model 水力学模型two-phase flow 两相流dispersion model 分散模型toxic有毒的release释放,排放probability of failure 失效概率accident prevention 事故预防hard hat安全帽safety shoe 防护鞋rules and regulations 规章制度loss prevention 损失预防hazard identification 危害辩识,technical evaluation 技术评估safety management support安全管理基础知识safety experience 安全经验technical competence 技术能力safety knowledge 安全知识design engineer 设计师cost engineer 造价师process engineering 过程工程plant layout工厂布局general service facilities 公用工程plant location 工厂选址close teamwork紧密的团队协作specialized group 专业组storage 仓库waste disposal 废物处理terminology术语,词汇accountant会计师,会计,出纳final-proposal 决议tangible return 有形回报Empirical model 经验模型process control (过程控制)first-principles基本原理,基本规则regression model 回归模型.operating condition 操作条件nonlinear-equation-solving technique 非线性方程求解技术process-simulation software packages 过程模拟软件包least-squares-regression 最小二乘法statistical technique 统计技术intensity强度,程度phenomenological model 现象模型model identification 模式识另Uneural network 神经网络a priori:先验的,既定的,不根据经验的,由原因推出结果的,演绎的,直觉的process data historian:过程数据历史编撰师qualitative 定性的quantitative precision 定量的精确high-fidelity 高保真的computationally intensive 计算量大的mathematical expression steady-state model 稳态模型bioengineering 生物工程artificial 人工的hearing aid 助听器artificial limb 假肢supportive or substitute organ 辅助或替代器官biosynthesis生物合成life scientist生命科学家agricultural engineer 农艺师fermentation 发酵civil engineer 土木工程师sanitation 卫生physiologists 生理学criteria 指标human medicine 人体医学medical electronics 医疗电子medical instrumentation 医疗器械blood-flow dynamics血液流动动力学prosthetics假肢器官学biomechanics生物力学surgeon外科医生replacement organ 器官移植physiologist生理学家counterpart对应物,配对物psychology 心理学self-taught 自学barrier障碍物medical engineering医学工程,医疗工程health care 保健diagnostic application of computers 计算机诊断agricultural engineering 农业工程biological production 生物制品生产bionics (仿生学)human-factors engineering 人类与环境工程environmental health engineering 环境健康工程environmentally benign processing 环境友好力口工commodity or specialty通用商品或特殊化学品styrene苯乙烯ibuprofen异丁苯丙酸the Chemical Manufacturers Association 化工生产协会as a whole整体而言emission释放物,排放物voluntary自愿的,无偿的,义务的;有意的,随意的;民办的in the absence of 无---存在deactivate 失活bulk chemical大宗化工产品Fine chemical精细化工Pharmaceutical 制药segment段,片,区间,部门,部分;弓形,圆缺;分割,切断tonnage吨位,吨数,吨产量inorganic salt 无机盐hydroquinone 对苯二酚demonstrate论证,证明,证实;说明,表明,显示forefront最前线,最前沿Lewis acid不可再生的路易斯酸anhydrous无水的phaseout 消除HF alkylation氰氟酸烷基化catalytic oxidation 催化氧化governmental regulation 政府规定pharmaceutical intermediate 药物中间体stereoselective立体选择性的ketone 酮functional group 官能团detrimental 有害的chlorofluorocarbon二氯二氟化碳,氟里昂carbon tetrachloride 四氯化碳straightforward 简单明了的coordinating ligand配合体,向心配合体kilogram 千克thermal stability 热稳定性devastate破坏,蹂躏outline描绘,勾勒membrane technology 膜技术production line 生产线dairy牛奶water purification 水净化ifetime 寿命membrane module 膜组件durability耐久性,寿命,使用期限,强度chemical additive 添加剂end-of-pipe solution 最终方案closed system封闭系统substitute取代,替代technical challenge技术挑战,技术困难wastewater treatment 污水处理fouling污垢,发泡surface treatment 表面处理applied Chemistry 应用化学nomenclature of chemical compound 化学化合物的命名法descriptive描述性的refix前缀alkane烷烃family 族carbon skeleton 碳骨架chain 链Latin or Greek stem拉丁或者希腊词根suffix后缀constitute取代物,取代基homologous series 同系物branched chain 支链烷烃parent母链,主链derivative 衍生物substituent 取代基locant位次,位标replicating prefix 重复前缀词Gas and Liquid Chromatography气相色谱与液相色谱analytical chemistry 分析化学moving gas stream 移动的气流heats of solution and vaporization 溶解热和汽化热activity coefficient 活度系数counteract 抵消milliliter 毫升essential oil 香精油test mixture测试混合物sample样品helium 氦argon 氩carrier 载体injection 注射stationary nonvolatile phase 静止的不挥发相detector检测器fraction collector 馏分收集器columnar liquid chromatography 柱状液相色谱仪retention volume 保留体积retention times 保留时间high-performance 高性能mobile phase 移动相high-efficiency 高效的analyte分析物plane chromatography 薄层色谱capillary action毛细管作用assay分析化验fluorescence荧光色,荧光retardation factor保留因子,延迟因子。

核材料辐照损伤的并行空间分辨随机团簇动力学模拟

核材料辐照损伤的并行空间分辨随机团簇动力学模拟

z在体积元-%之间扩散的反应速率R为:
" R = DAs i和Ni分别为体积元p S内缺陷z的 数量Ap为体积元p、q的交界面面积丄s为体 积元p、q中心点之间的距离$
2 MISA-SCD1. 0 实现
2. 1 MISA-SCD1. 0 概述 MISA-SCD1 0的计算流程如图1所示,
的实现方式与关键技术,并将其应用于反应堆压力容器模型合金中富Cu团簇的析出模拟,验证了程序
的正确性并测试了并行性能$结果表明,MISA-SCD1.0能获得与实验结果和类似模拟结果吻合的Cu
析出过程,且具有较高的并行效率和良好的扩展性$
关键词:辐照损伤;空间分辨随机团簇动力学;动力学蒙特卡罗;并行计算
CHEN Dandan1 , HE Xinfu2 , YANG Wen2 , CHU Genshen1 , BAI He】,HU Changjun1 ''
((.Universit3 of Science and Technology Beijing , Beijing 100083 , China ; 2. China Institute of Atomic Energy , Beijing 102413 , China)
第55卷第7期 2021年7月
原子能科学技术 Ato—icEnergyScienceandTechnology
Vol. 55 ,No. 7 Jul.202*
核材料辐照损伤的 并行空间分辨随机团簇动力学模拟
陈丹丹S贺新福2,杨文2,储根深S白鹤1,胡长军1!"
(1 •北京科技大学,北京1000832.中国原子能科学研究院,北京102413)
为扩大SRSCD的模拟体积,并解决扩大 体积后带来的计算量,最有效的方式就是并行 处理$在确定性方法中,并行区域按相同的时

材料科学基础英文词汇

材料科学基础英文词汇

材料科学基础专业词汇:第一章晶体结构原子质量单位Atomic mass unit (amu) 原子数Atomic number原子量Atomic weight 波尔原子模型Bohr atomic model键能Bonding energy 库仑力Coulombic force共价键Covalent bond 分子的构型molecular configuration 电子构型electronic configuration 负电的Electronegative正电的Electropositive 基态Ground state氢键Hydrogen bond 离子键Ionic bond同位素Isotope 金属键Metallic bond摩尔Mole泡利不相容原理Pauli exclusion principle 元素周期表Periodic table原子atom 分子molecule分子量molecule weight 极性分子Polar molecule量子数quantum number 价电子valence electron范德华键van der waals bond 电子轨道electron orbitals点群point group 对称要素symmetry elements各向异性anisotropy 原子堆积因数Atomic packing factor(APF)体心立方结构body-centered cubic (BCC) 面心立方结构face-centered cubic (FCC) 布拉格定律bragg’s law 配位数coordination number晶体结构crystal structure 晶系crystal system晶体的crystalline 衍射diffraction中子衍射neutron diffraction 电子衍射electron diffraction晶界grain boundary 六方密堆积hexagonal close-packed(HCP)鲍林规则Pauling’s rules NaCl型结构NaCl-type structure CsCl型结构Caesium Chloride structure 闪锌矿型结构Blende-type structure纤锌矿型结构Wurtzite structure 金红石型结构Rutile structure萤石型结构Fluorite structure 钙钛矿型结构Perovskite-type structure 尖晶石型结构Spinel-type structure 硅酸盐结构Structure of silicates岛状结构Island structure 链状结构Chain structure层状结构Layer structure 架状结构Framework structure滑石talc 叶蜡石pyrophyllite高岭石kaolinite 石英quartz长石feldspar 美橄榄石forsterite各向同性的isotropic 各向异性的anisotropy晶格lattice 晶格参数lattice parameters密勒指数miller indices 非结晶的noncrystalline多晶的polycrystalline 多晶形polymorphism单晶single crystal 晶胞unit cell电位electron states (化合)价valence电子electrons 共价键covalent bonding金属键metallic bonding 离子键Ionic bonding极性分子polar molecules 原子面密度atomic planar density衍射角diffraction angle 合金alloy粒度,晶粒大小grain size 显微结构microstructure显微照相photomicrograph 扫描电子显微镜 scanning electronmicroscope (SEM)重量百分数weight percent透射电子显微镜transmission electronmicroscope (TEM)四方的tetragonal 单斜的monoclinic配位数coordination number材料科学基础专业词汇:第二章晶体结构缺陷缺陷defect, imperfection 点缺陷point defect线缺陷line defect, dislocation 面缺陷interface defect体缺陷volume defect 位错排列dislocation arrangement 位错线dislocation line 刃位错edge dislocation螺位错screw dislocation 混合位错mixed dislocation晶界grain boundaries 大角度晶界high-angle grainboundaries小角度晶界tilt boundary, 孪晶界twin boundaries位错阵列dislocation array 位错气团dislocation atmosphere 位错轴dislocation axis 位错胞dislocation cell位错爬移dislocation climb 位错聚结dislocation coalescence 位错滑移dislocation slip 位错核心能量dislocation core energy位错裂纹dislocation crack 位错阻尼dislocation damping位错密度dislocation density 原子错位substitution of a wrongatom间隙原子interstitial atom 晶格空位vacant lattice sites间隙位置interstitial sites 杂质impurities弗伦克尔缺陷Frenkel disorder 肖脱基缺陷Schottky disorder主晶相the host lattice 错位原子misplaced atoms缔合中心Associated Centers. 自由电子Free Electrons电子空穴Electron Holes 伯格斯矢量Burgers克罗各-明克符号Kroger Vink notation 中性原子neutral atom材料科学基础专业词汇:第二章晶体结构缺陷-固溶体固溶体 solid solution 固溶度solid solubility化合物 compound 间隙固溶体 interstitial solid solution 置换固溶体 substitutional solid solution 金属间化合物 intermetallics不混溶固溶体 immiscible solid solution 转熔型固溶体 peritectic solid solution 有序固溶体 ordered solid solution 无序固溶体 disordered solid solution 固溶强化 solid solution strengthening 取代型固溶体Substitutional solid solutions过饱和固溶体 supersaturated solid solution非化学计量化合物 Nonstoichiometric compound材料科学基础专业词汇:第三章熔体结构熔体结构structure of melt 过冷液体 supercooling melt 玻璃态 vitreous state 软化温度 softening temperature 粘度viscosity 表面张力 Surface tension 介稳态过渡相 metastable phase 组织 constitution 淬火 quenching 退火的 softened玻璃分相phase separation in glasses 体积收缩 volume shrinkage材料科学基础专业词汇:第四章固体的表面与界面表面 surface界面 interface 同相界面 homophase boundary 异相界面 heterophase boundary 晶界grain boundary表面能 surface energy 小角度晶界 low angle grain boundary 大角度晶界 high angle grain boundary 共格孪晶界 coherent twin boundary 晶界迁移 grain boundary migration 错配度 mismatch 驰豫 relaxation 重构 reconstuction 表面吸附 surface adsorption 表面能 surface energy倾转晶界 titlt grain boundary 扭转晶界 twist grain boundary 倒易密度 reciprocal density 共格界面 coherent boundary 半共格界面 semi-coherent boundary 非共格界面 noncoherent boundary 界面能 interfacial free energy 应变能strain energy晶体学取向关系 crystallographicorientation惯习面habit plane材料科学基础专业词汇:第五章相图相图phase diagrams 相phase组分component 组元compoonent相律Phase rule 投影图Projection drawing浓度三角形Concentration triangle 冷却曲线Cooling curve成分composition 自由度freedom相平衡phase equilibrium 化学势chemical potential热力学thermodynamics 相律phase rule吉布斯相律Gibbs phase rule 自由能free energy吉布斯自由能Gibbs free energy 吉布斯混合能Gibbs energy of mixing 吉布斯熵Gibbs entropy 吉布斯函数Gibbs function热力学函数thermodynamics function 热分析thermal analysis过冷supercooling 过冷度degree of supercooling杠杆定律lever rule 相界phase boundary相界线phase boundary line 相界交联phase boundarycrosslinking共轭线conjugate lines 相界有限交联phase boundarycrosslinking相界反应phase boundary reaction 相变phase change相组成phase composition 共格相phase-coherent金相相组织phase constentuent 相衬phase contrast相衬显微镜phase contrast microscope 相衬显微术phase contrastmicroscopy相分布phase distribution 相平衡常数phase equilibriumconstant相平衡图phase equilibrium diagram 相变滞后phase transition lag相分离phase segregation 相序phase order相稳定性phase stability 相态phase state相稳定区phase stabile range 相变温度phase transitiontemperature相变压力phase transition pressure 同质多晶转变polymorphictransformation同素异晶转变allotropic transformation 相平衡条件phase equilibriumconditions显微结构microstructures 低共熔体eutectoid不混溶性immiscibility材料科学基础专业词汇:第六章扩散活化能activation energy 扩散通量diffusion flux浓度梯度concentration gradient 菲克第一定律Fick’s first law菲克第二定律Fick’s second law 相关因子correlation factor稳态扩散steady state diffusion 非稳态扩散nonsteady-state diffusion 扩散系数diffusion coefficient 跳动几率jump frequency填隙机制interstitalcy mechanism 晶界扩散grain boundary diffusion 短路扩散short-circuit diffusion 上坡扩散uphill diffusion下坡扩散Downhill diffusion 互扩散系数Mutual diffusion渗碳剂carburizing 浓度梯度concentration gradient浓度分布曲线concentration profile 扩散流量diffusion flux驱动力driving force 间隙扩散interstitial diffusion自扩散self-diffusion 表面扩散surface diffusion空位扩散vacancy diffusion 扩散偶diffusion couple扩散方程diffusion equation 扩散机理diffusion mechanism扩散特性diffusion property 无规行走Random walk达肯方程Dark equation 柯肯达尔效应Kirkendall equation本征热缺陷Intrinsic thermal defect 本征扩散系数Intrinsic diffusion coefficient离子电导率Ion-conductivity 空位机制Vacancy concentration材料科学基础专业词汇:第七章相变过冷supercooling 过冷度degree of supercooling晶核nucleus 形核nucleation形核功nucleation energy 晶体长大crystal growth均匀形核homogeneous nucleation 非均匀形核heterogeneous nucleation形核率nucleation rate 长大速率growth rate 热力学函数thermodynamics function临界晶核critical nucleus 临界晶核半径critical nucleus radius枝晶偏析dendritic segregation 局部平衡localized equilibrium平衡分配系数equilibriumdistributioncoefficient有效分配系数effective distribution coefficient成分过冷constitutional supercooling 引领(领先)相leading phase共晶组织eutectic structure 层状共晶体lamellar eutectic伪共晶pseudoeutectic 离异共晶divorsed eutectic表面等轴晶区chill zone 柱状晶区columnar zone中心等轴晶区equiaxed crystal zone 定向凝固unidirectional solidification 急冷技术splatcooling 区域提纯zone refining单晶提拉法Czochralski method 晶界形核boundary nucleation位错形核dislocation nucleation 晶核长大nuclei growth斯宾那多分解spinodal decomposition有序无序转变disordered-order transition马氏体相变martensite phase transformation 马氏体martensite材料科学基础专业词汇:第八、九章固相反应和烧结固相反应solid state reaction 烧结sintering烧成fire 合金alloy再结晶Recrystallization 二次再结晶Secondary recrystallization 成核nucleation 结晶crystallization子晶,雏晶matted crystal 耔晶取向seed orientation异质核化heterogeneous nucleation 均匀化热处理homogenization heattreatment铁碳合金iron-carbon alloy 渗碳体cementite铁素体ferrite 奥氏体austenite共晶反应eutectic reaction 固溶处理solution heat treatment。

材料常用英语词汇

材料常用英语词汇

专业词汇列表晶体结构(structure of crystal)原子质量单位Atomic mass unit (amu)原子量Atomic weight键能Bonding energy共价键Covalent bond电子构型electronic configuration正电的Electropositive氢键Hydrogen bond同位素Isotope摩尔Mole泡利不相容原理Pauli exclusion principle原子atom分子量molecule weight量子数quantum number范德华键van der waals bond点群point group各向异性anisotropy体心立方结构body-centered cubic (BCC)布拉格定律bragg’s law晶体结构crystal structure晶体的crystalline中子衍射neutron diffraction晶界grain boundary鲍林规则Pauling’s rulesCsCl型结构Caesium Chloride structure纤锌矿型结构Wurtzite structure萤石型结构Fluorite structure尖晶石型结构Spinel-type structure岛状结构Island structure层状结构Layer structure滑石talc高岭石kaolinite长石feldspar各向同性的isotropic晶格lattice密勒指数miller indices多晶的polycrystalline原子数Atomic number波尔原子模型Bohr atomic model库仑力Coulombic force分子的构型molecular configuration负电的Electronegative基态Ground state离子键Ionic bond金属键Metallic bond分子Molecule元素周期表Periodic table极性分子Polar molecule价电子valence electron电子轨道electron orbitals对称要素symmetry elements原子堆积因数atomic packing factor(APF)面心立方结构face-centered cubic (FCC)配位数coordination number晶系crystal system衍射diffraction电子衍射electron diffraction六方密堆积hexagonal close-packed (HCP)NaCl型结构NaCl-type structure闪锌矿型结构Blende-type structure金红石型结构Rutile structure钙钛矿型结构Perovskite-type structure硅酸盐结构Structure of silicates链状结构Chain structure架状结构Framework structure叶蜡石pyrophyllite石英quartz美橄榄石forsterite各向异性的anisotropy晶格参数lattice parameters非结晶的noncrystalline多晶形polymorphism单晶single crystal电位electron states电子electrons金属键metallic bonding极性分子polar molecules衍射角diffraction angle粒度,晶粒大小grain size显微照相photomicrograph透射电子显微镜transmission electron microscope (TEM)四方的tetragonal配位数coordination number晶胞unit cell(化合)价valence共价键covalent bonding离子键Ionic bonding原子面密度atomic planar density合金alloy显微结构microstructure扫描电子显微镜scanning electron microscope (SEM) 重量百分数weight percent单斜的monoclinic晶体结构缺陷(defect of crystal structure) 缺陷defect, imperfection线缺陷line defect, dislocation体缺陷volume defect位错线dislocation line螺位错screw dislocation晶界grain boundaries小角度晶界tilt boundary,位错阵列dislocation array位错轴dislocation axis位错爬移dislocation climb位错滑移dislocation slip位错裂纹dislocation crack位错密度dislocation density间隙原子interstitial atom间隙位置interstitial sites弗伦克尔缺陷Frenkel disorder主晶相the host lattice缔合中心Associated Centers.电子空穴Electron Holes克罗各-明克符号Kroger Vink notation固溶体solid solution化合物compound置换固溶体substitutional solid solution不混溶固溶体immiscible solid solution有序固溶体ordered solid solution固溶强化solid solution strengthening点缺陷point defect面缺陷interface defect位错排列dislocation arrangement刃位错edge dislocation混合位错mixed dislocation大角度晶界high-angle grain boundaries 孪晶界twin boundaries位错气团dislocation atmosphere位错胞dislocation cell位错聚结dislocation coalescence位错核心能量dislocation core energy位错阻尼dislocation damping原子错位substitution of a wrong atom晶格空位vacant lattice sites杂质impurities肖脱基缺陷Schottky disorder错位原子misplaced atoms自由电子Free Electrons伯格斯矢量Burgers中性原子neutral atom固溶度solid solubility间隙固溶体interstitial solid solution金属间化合物intermetallics转熔型固溶体peritectic solid solution无序固溶体disordered solid solution取代型固溶体Substitutional solid solutions过饱和固溶体supersaturated solid solution非化学计量化合物Nonstoichiometric compound 表面结构与性质(structure and property of surface)表面surface同相界面homophase boundary晶界grain boundary小角度晶界low angle grain boundary共格孪晶界coherent twin boundary错配度mismatch重构reconstuction表面能surface energy扭转晶界twist grain boundary共格界面coherent boundary非共格界面noncoherent boundary应变能strain energy惯习面habit plane界面interface异相界面heterophase boundary表面能surface energy大角度晶界high angle grain boundary晶界迁移grain boundary migration驰豫relaxation表面吸附surface adsorption倾转晶界titlt grain boundary倒易密度reciprocal density半共格界面semi-coherent boundary界面能interfacial free energy晶体学取向关系crystallographic orientation非晶态结构与性质(structure and property of uncrystalline) 熔体结构structure of melt玻璃态vitreous state粘度viscosity介稳态过渡相metastable phase淬火quenching玻璃分相phase separation in glasses 过冷液体supercooling melt软化温度softening temperature表面张力Surface tension组织constitution退火的softened体积收缩volume shrinkage扩散(diffusion)活化能activation energy浓度梯度concentration gradient菲克第二定律Fick’s second law稳态扩散steady state diffusion扩散系数diffusion coefficient填隙机制interstitalcy mechanism短路扩散short-circuit diffusion下坡扩散Downhill diffusion扩散通量diffusion flux菲克第一定律Fick’s first law相关因子correlation factor非稳态扩散nonsteady-state diffusion 跳动几率jump frequency晶界扩散grain boundary diffusion上坡扩散uphill diffusion互扩散系数Mutual diffusion渗碳剂carburizing浓度分布曲线concentration profile驱动力driving force自扩散self-diffusion空位扩散vacancy diffusion扩散方程diffusion equation扩散特性diffusion property达肯方程Dark equation本征热缺陷Intrinsic thermal defect离子电导率Ion-conductivity浓度梯度concentration gradient扩散流量diffusion flux间隙扩散interstitial diffusion表面扩散surface diffusion扩散偶diffusion couple扩散机理diffusion mechanism无规行走Random walk柯肯达尔效应Kirkendall equation本征扩散系数Intrinsic diffusion coefficient 空位机制Vacancy concentration腐蚀与氧化(corroding and oxidation)氧化反应Oxidation reaction还原反应Reduction reaction价电子Valence electron腐蚀介质Corroding solution电动势Electric potential推动力The driving force腐蚀系统Corroding system腐蚀速度Corrosion penetration rate电流密度Current density电化学反应Electrochemical reaction 极化作用Polarization过电位The over voltage浓差极化Concentration polarization电化学极化Activation polarization极化曲线Polarization curve缓蚀剂Inhibitor原电池galvanic cell电偶腐蚀galvanic corrosion电位序galvanic series应力腐蚀Stress corrosion冲蚀Erosion-corrosion腐蚀短裂Corrosion cracking防腐剂Corrosion remover腐蚀电极Corrosion target隙间腐蚀Crevice corrosion均匀腐蚀Uniform attack晶间腐蚀Intergranular corrosion焊缝破坏Weld decay选择性析出Selective leaching氢脆损坏Hydrogen embitterment阴极保护Catholic protection穿晶断裂Intergranular fracture固相反应和烧结(solid state reaction and sintering) 固相反应solid state reaction烧成fire再结晶Recrystallization成核nucleation子晶,雏晶matted crystal异质核化heterogeneous nucleation铁碳合金iron-carbon alloy铁素体ferrite共晶反应eutectic reaction烧结sintering合金alloy二次再结晶Secondary recrystallization结晶crystallization耔晶取向seed orientation均匀化热处理homogenization heat treatment渗碳体cementite奥氏体austenite固溶处理solution heat treatment相变(phase transformation)过冷supercooling晶核nucleus形核功nucleation energy均匀形核homogeneous nucleation形核率nucleation rate热力学函数thermodynamics function临界晶核critical nucleus枝晶偏析dendritic segregation平衡分配系数equilibrium distribution coefficient 成分过冷constitutional supercooling共晶组织eutectic structure伪共晶pseudoeutectic表面等轴晶区chill zone中心等轴晶区equiaxed crystal zone急冷技术splatcooling单晶提拉法Czochralski method位错形核dislocation nucleation斯宾那多分解spinodal decomposition马氏体相变martensite phase transformation 成核机理nucleation mechanism过冷度degree of supercooling形核nucleation晶体长大crystal growth非均匀形核heterogeneous nucleation长大速率growth rate临界晶核半径critical nucleus radius局部平衡localized equilibrium有效分配系数effective distribution coefficient 引领(领先)相leading phase层状共晶体lamellar eutectic离异共晶divorsed eutectic柱状晶区columnar zone定向凝固unidirectional solidification区域提纯zone refining晶界形核boundary nucleation晶核长大nuclei growth有序无序转变disordered-order transition马氏体martensite成核势垒nucleation barrier相平衡与相图(Phase equilibrium and Phase diagrams)相图phase diagrams组分component相律Phase rule浓度三角形Concentration triangle成分composition相平衡phase equilibrium热力学thermodynamics吉布斯相律Gibbs phase rule吉布斯自由能Gibbs free energy吉布斯熵Gibbs entropy热力学函数thermodynamics function过冷supercooling杠杆定律lever rule相界线phase boundary line共轭线conjugate lines相界反应phase boundary reaction相组成phase composition金相相组织phase constentuent相衬显微镜phase contrast microscope相分布phase distribution相平衡图phase equilibrium diagram相分离phase segregation相phase组元compoonent投影图Projection drawing冷却曲线Cooling curve自由度freedom化学势chemical potential相律phase rule自由能free energy吉布斯混合能Gibbs energy of mixing吉布斯函数Gibbs function热分析thermal analysis过冷度degree of supercooling相界phase boundary相界交联phase boundary crosslinking相界有限交联phase boundary crosslinking 相变phase change共格相phase-coherent相衬phase contrast相衬显微术phase contrast microscopy相平衡常数phase equilibrium constant相变滞后phase transition lag相序phase order相稳定性phase stability相稳定区phase stabile range相变压力phase transition pressure同素异晶转变allotropic transformation显微结构microstructures不混溶性immiscibility相态phase state相变温度phase transition temperature同质多晶转变polymorphic transformation 相平衡条件phase equilibrium conditions。

材料科学基础专有名词英文翻译

材料科学基础专有名词英文翻译

Fundamentals of Materials Science 材料科学基础名词与术语第一章绪论metal: 金属ceramic: 陶瓷polymer: 聚合物Composites: 复合材料Semiconductors: 半导体Biomaterials: 生物材料Processing: 加工过程Structure: 组织结构Properties: 性质Performance: 使用性能Mechanical properties: 力学性能Electrical properties: 电性能Thermal behavior: 热性能Magnetic properties: 磁性能Optical properties: 光性能Deteriorative characteristics:老化特性第二章原子结构与原子键Atomic mass unit (amu): 原子质量单位Atomic number: 原子数Atomic weight: 原子量Bohr atomic model: 波尔原子模型Bonding energy: 键能Coulombic force: 库仑力Covalent bond: 共价键Dipole (electric): 偶极子electronic configuration: 电子构型electron state: 电位Electronegative: 负电的Electropositive: 正电的Ground state: 基态Hydrogen bond: 氢键Ionic bond: 离子键Isotope: 同位素Metallic bond: 金属键Mole: 摩尔Molecule: 分子Pauli exclusion principle: 泡利不相容原理Periodic table: 元素周期表Polar molecule: 极性分子Primary bonding: 强键Quantum mechanics: 量子力学Quantum number: 量子数Secondary bonding: 弱键valence electron: 价电子van der waals bond: 范德华键Wave-mechanical model: 波粒二象性模型第三章金属与陶瓷的结构Allotropy: 同素异形现象Amorphous: 无定形Anion: 阴离子Anisotropy: 各向异性atomic packing factor(APF): 原子堆积因数body-centered cubic (BCC): 体心立方结构Bragg’s law: 布拉格定律Cation: 阳离子coordination number: 配位数crystal structure: 晶体结构crystal system: 晶系crystalline: 晶体的diffraction: 衍射face-centered cubic (FCC): 面心立方结构第五章晶体缺陷Alloy: 合金A metallic substance that is composed of two or more elements.由两种及以上元素组成的金属材料。

材料专业英语常见词汇

材料专业英语常见词汇

材料专业英语常见词汇The saying "the more diligent, the more luckier you are" really should be my charm in2006.材料专业英语常见词汇一Structure 组织Ceramic 陶瓷Ductility 塑性Stiffness 刚度Grain 晶粒Phase 相Unit cell 单胞Bravais lattice 布拉菲点阵Stack 堆垛Crystal 晶体Metallic crystal structure 金属性晶体点阵 Non-directional 无方向性Face-centered cubic 面心立方Body-centered cubic体心立方 Hexagonal close-packed 密排六方 Copper 铜Aluminum 铝Chromium 铬 Tungsten 钨Crystallographic Plane晶面 Crystallographic direction 晶向 Property性质 Miller indices米勒指数 Lattice parameters 点阵参数Tetragonal 四方的Hexagonal 六方的Orthorhombic 正交的Rhombohedra 菱方的Monoclinic 单斜的Prism 棱镜 Cadmium 镉 Coordinate system 坐 Point defec点缺陷Lattice 点阵 Vacancy 空位Solidification 结晶Interstitial 间隙Substitution 置换Solid solution strengthening 固溶强化Diffusion 扩散Homogeneous 均匀的Diffusion Mechanisms 扩散机制Lattice distortion 点阵畸变Self-diffusion 自扩散Fick’s First Law 菲克第一定律 Unit time 单位时间Coefficient 系数Concentration gradient 浓度梯度Dislocations 位错Linear defect 线缺陷Screw dislocation 螺型位错Edge dislocation 刃型位错Vector 矢量Loop 环路Burgers’vector 柏氏矢量Perpendicular 垂直于Surface defect 面缺陷Grain boundary 晶界Twin boundary 晶界 Shear force 剪应力Deformation 变形Small or low angel grain boundary 小角度晶界Tilt boundary 倾斜晶界Supercooled 过冷的Solidification 凝固Ordering process 有序化过程Crystallinity 结晶度Microstructure 纤维组织Term 术语Phase Diagram 相图Equilibrium 平衡Melt 熔化Cast 浇注Crystallization 结晶Binary Isomorphous Systems 二元匀晶相图Soluble 溶解Phase Present 存在相Locate 确定Tie line 连接线Isotherm 等温线Concentration 浓度Intersection 交点The Lever Law 杠杆定律Binary Eutectic System 二元共晶相图Solvus Line 溶解线Invariant 恒定Isotherm 恒温线Cast Iron 铸铁Ferrite 珠光体Polymorphic transformation 多晶体转变Austenite 奥氏体Revert 回复Intermediate compound 中间化合物Cementite 渗碳体Vertical 垂线Nonmagnetic 无磁性的Solubility 溶解度Brittle 易脆的Eutectic 共晶Eutectoid invariant point 共析点Phase transformation 相变Allotropic 同素异形体Recrystallization 再结晶Metastable 亚稳的Martensitic transformation 马氏体转变Lamellae 薄片Simultaneously 同时存在Pearlite 珠光体Ductile 可塑的Mechanically 机械性能Hypo eutectoid 过共析的Particle 颗粒Matrix基体Proeutectoid 先共析Hypereutectoid 亚共析的Bainite 贝氏体Martensite 马氏体Linearity 线性的Stress-strain curve 应力-应变曲线Proportional limit 比例极限Tensile strength 抗拉强度Ductility 延展性Percent reduction in area 断面收缩率Hardness 硬度Modulus of Elasticity 弹性模量Tolerance 公差Rub 摩擦Wear 磨损Corrosion resistance 抗腐蚀性Aluminum 铝Zinc 锌Iron ore 铁矿Blast furnace 高炉Coke 焦炭Limestone 石灰石Slag 熔渣Pig iron 生铁Ladle 钢水包Silicon 硅Sulphur 硫Wrought 可锻的Graphite 石墨Flaky 片状Low-carbon steels 低碳钢Case hardening 表面硬化Medium-carbon steels 中碳钢Electrode 电极As a rule 通常Preheating 预热Quench 淬火Body-centered lattice 体心晶格Carbide 碳化物Hypereutectoid过共晶Chromium 铬Manganese 锰Molybdenum 钼Titanium 钛Cobalt 钴Tungsten 钨Vanadium 钒Pearlitic microstructure 珠光体组织Martensitic microstructure 马氏体组织Viscosity 粘性Wrought 锻造的Magnesium 镁Flake 片状Malleable 可锻的Nodular 球状Spheroidal 球状Superior property 优越性Galvanization 镀锌Versatile 通用的Battery grid 电极板Calcium 钙Tin 锡Toxicity 毒性Refractory 耐火的Platinum铂Polymer 聚合物Composite 混合物Erosive 腐蚀性Inert 惰性Thermo chemically 热化学Generator 发电机Flaw 缺陷Variability 易变的Annealing 退火Tempering回火Texture 织构Kinetic 动力学Peculiarity 特性Critical point 临界点Dispersity 弥散程度Spontaneous 自发的Inherent grain 本质晶粒Toughness 韧性Rupture 断裂Kinetic curve of transformation 转变动力学曲线Incubation period 孕育期Sorbite 索氏体Troostite 屈氏体Disperse 弥散的Granular 颗粒状Metallurgical 冶金学的Precipitation 析出Depletion 减少Quasi-eutectoid 伪共析Superposition 重叠Supersede 代替Dilatometric 膨胀Unstable 不稳定Supersaturate 使过饱和Tetragonality 正方度Shear 切变Displacement 位移Irreversible 不可逆的金属材料工程专业英语acid-base equilibrium酸碱平衡 acid-base indicator酸碱指示剂 acid bath酸槽 acidBessemerconverter 酸性转炉 acid brick酸性耐火砖 acid brittleness酸洗脆性、氢脆性 acid burden酸性炉料acid clay酸性粘土 acid cleaning同pickling酸洗 acid concentration酸浓度 acid converter酸性转炉 acid converter steel酸性转炉钢 acid content酸含量 acid corrosion酸腐蚀 acid deficient弱酸的、酸不足的 acid dip酸浸acid dip pickler沉浸式酸洗装置 aciddiptank酸液浸洗槽acid drain tank排酸槽acidless descaling无酸除鳞acid medium酸性介质acid mist酸雾acid-proof paint耐酸涂料漆acid-proof steel耐酸钢acid-resistant耐酸钢acid-resisting vessel耐酸槽acid strength酸浓度acid supply pump供酸泵acid wash酸洗acid value酸值acid wash solution酸洗液acieration渗碳、增碳Acm point Acm转变点渗碳体析出温度acorn nut螺母、螺帽acoustic absorption coefficient声吸收系数acoustic susceptance声纳actifier再生器action line作用线action spot作用点activated atom激活原子activated bath活化槽activated carbon活性碳activating treatment活化处理active corrosion活性腐蚀、强烈腐蚀active area有效面积active power有功功率、有效功率active product放射性产物active resistance有效电阻、纯电阻active roll gap轧辊的有效或工作开口度active state活性状态active surface有效表面activity coefficient激活系数、活度系数actual diameter钢丝绳实际直径actual efficiency实际效率actual error实际误差actual time实时actual working stress实际加工应力actuating device调节装置、传动装置、起动装置actuating lever驱动杆、起动杆actuating mechanism 动作机构、执行机构actuating motor驱动电动机、伺服电动机actuating pressure作用压力actuation shaft起动轴actuator调节器、传动装置、执行机构acute angle锐角adaptive feed back control自适应反馈控制adaptive optimization自适应最优化adaptor接头、接合器、连结装置、转接器、附件材料科学基础专业词汇:第一章晶体结构原子质量单位 Atomic mass unit amu 原子数 Atomic number 原子量 Atomic weight波尔原子模型 Bohr atomic model 键能 Bonding energy 库仑力 Coulombic force共价键 Covalent bond 分子的构型 molecular configuration电子构型electronic configuration 负电的 Electronegative 正电的 Electropositive基态 Ground state 氢键 Hydrogen bond 离子键 Ionic bond 同位素 Isotope金属键 Metallic bond 摩尔 Mole 分子 Molecule 泡利不相容原理 Pauli exclusion principle 元素周期表 Periodic table 原子 atom 分子 molecule 分子量 molecule weight极性分子 Polar molecule 量子数 quantum number 价电子 valence electron范德华键 van der waals bond 电子轨道 electron orbitals 点群 point group对称要素 symmetry elements 各向异性 anisotropy 原子堆积因数 atomic packing factorAPF 体心立方结构 body-centered cubic BCC 面心立方结构 face-centered cubic FCC布拉格定律bragg’s law 配位数 coordination number 晶体结构 crystal structure晶系 crystal system 晶体的 crystalline 衍射 diffraction 中子衍射 neutron diffraction电子衍射 electron diffraction 晶界 grain boundary 六方密堆积 hexagonal close-packed HCP 鲍林规则 Paulin g’s rules NaCl型结构 NaCl-type structureCsCl型结构Caesium Chloride structure 闪锌矿型结构 Blende-type structure纤锌矿型结构 Wurtzite structure 金红石型结构 Rutile structure萤石型结构 Fluorite structure 钙钛矿型结构 Perovskite-type structure尖晶石型结构 Spinel-type structure 硅酸盐结构 Structure of silicates岛状结构 Island structure 链状结构 Chain structure 层状结构 Layer structure架状结构 Framework structure 滑石 talc 叶蜡石 pyrophyllite 高岭石 kaolinite石英 quartz 长石 feldspar 美橄榄石 forsterite 各向同性的 isotropic各向异性的 anisotropy 晶格 lattice 晶格参数 lattice parameters 密勒指数 miller indices 非结晶的 noncrystalline多晶的 polycrystalline 多晶形 polymorphism 单晶single crystal 晶胞 unit cell电位 electron states化合价 valence 电子 electrons 共价键 covalent bonding金属键 metallic bonding 离子键Ionic bonding 极性分子 polar molecules原子面密度 atomic planar density 衍射角 diffraction angle 合金 alloy粒度,晶粒大小 grain size 显微结构 microstructure 显微照相 photomicrograph扫描电子显微镜 scanning electron microscope SEM透射电子显微镜 transmission electron microscope TEM 重量百分数 weight percent四方的 tetragonal 单斜的monoclinic 配位数 coordination number材料科学基础专业词汇:第二章晶体结构缺陷缺陷 defect, imperfection 点缺陷 point defect 线缺陷 line defect, dislocation面缺陷 interface defect 体缺陷 volume defect 位错排列 dislocation arrangement位错线 dislocation line 刃位错 edge dislocation 螺位错 screw dislocation混合位错 mixed dislocation 晶界 grain boundaries 大角度晶界 high-angle grain boundaries 小角度晶界 tilt boundary, 孪晶界 twin boundaries 位错阵列 dislocation array位错气团 dislocation atmosphere 位错轴dislocation axis 位错胞 dislocation cell位错爬移 dislocation climb 位错聚结 dislocation coalescence 位错滑移 dislocation slip位错核心能量 dislocation core energy 位错裂纹 dislocation crack位错阻尼 dislocation damping 位错密度 dislocation density原子错位 substitution of a wrong atom 间隙原子 interstitial atom晶格空位 vacant lattice sites 间隙位置 interstitial sites 杂质 impurities弗伦克尔缺陷 Frenkel disorder 肖脱基缺陷 Schottky disorder 主晶相 the host lattice错位原子 misplaced atoms 缔合中心 Associated Centers. 自由电子 Free Electrons电子空穴Electron Holes 伯格斯矢量 Burgers 克罗各-明克符号 Kroger Vink notation中性原子 neutral atom材料科学基础专业词汇:第二章晶体结构缺陷-固溶体固溶体 solid solution 固溶度 solid solubility 化合物 compound间隙固溶体 interstitial solid solution 置换固溶体 substitutional solid solution金属间化合物 intermetallics 不混溶固溶体 immiscible solid solution转熔型固溶体 peritectic solid solution 有序固溶体 ordered solid solution无序固溶体 disordered solid solution 固溶强化 solid solution strengthening取代型固溶体 Substitutional solid solutions 过饱和固溶体 supersaturated solid solution非化学计量化合物 Nonstoichiometric compound材料科学基础专业词汇:第三章熔体结构熔体结构 structure of melt过冷液体 supercooling melt 玻璃态 vitreous state软化温度 softening temperature 粘度 viscosity 表面张力 Surface tension介稳态过渡相 metastable phase 组织 constitution 淬火 quenching退火的 softened 玻璃分相 phase separation in glasses 体积收缩 volume shrinkage材料科学基础专业词汇:第四章固体的表面与界面表面 surface 界面 interface 同相界面 homophase boundary异相界面 heterophase boundary 晶界 grain boundary 表面能 surface energy小角度晶界 low angle grain boundary 大角度晶界 high angle grain boundary共格孪晶界 coherent twin boundary 晶界迁移 grain boundary migration错配度 mismatch 驰豫 relaxation 重构 reconstuction 表面吸附 surface adsorption表面能 surface energy 倾转晶界 titlt grain boundary 扭转晶界 twist grain boundary倒易密度 reciprocal density 共格界面 coherent boundary 半共格界面 semi-coherent boundary 非共格界面 noncoherent boundary 界面能 interfacial free energy应变能 strain energy 晶体学取向关系 crystallographic orientation惯习面habit plane材料科学基础专业词汇:第五章相图相图 phase diagrams 相 phase 组分 component 组元 compoonent相律 Phase rule 投影图 Projection drawing 浓度三角形 Concentration triangle冷却曲线 Cooling curve 成分 composition 自由度 freedom相平衡 phase equilibrium 化学势 chemical potential 热力学 thermodynamics相律 phase rule 吉布斯相律 Gibbs phase rule 自由能 free energy吉布斯自由能 Gibbs free energy 吉布斯混合能 Gibbs energy of mixing吉布斯熵 Gibbs entropy 吉布斯函数 Gibbs function 热力学函数 thermodynamics function 热分析 thermal analysis 过冷 supercooling 过冷度 degree of supercooling杠杆定律 lever rule 相界 phase boundary 相界线 phase boundary line相界交联 phase boundary crosslinking 共轭线 conjugate lines相界有限交联 phase boundary crosslinking 相界反应 phase boundary reaction相变 phase change 相组成 phase composition 共格相 phase-coherent金相相组织 phase constentuent 相衬 phase contrast 相衬显微镜 phase contrast microscope 相衬显微术 phase contrast microscopy 相分布 phase distribution相平衡常数 phase equilibrium constant 相平衡图 phase equilibrium diagram相变滞后 phase transition lag 相分离 phase segregation 相序 phase order相稳定性 phase stability 相态 phase state 相稳定区 phase stabile range相变温度 phase transition temperature 相变压力 phase transition pressure同质多晶转变 polymorphic transformation 同素异晶转变 allotropic transformation相平衡条件 phase equilibrium conditions 显微结构 microstructures 低共熔体 eutectoid不混溶性 immiscibility材料科学基础专业词汇:第六章扩散活化能 activation energy 扩散通量 diffusion flux 浓度梯度 concentration gradient菲克第一定律Fick’s first law 菲克第二定律Fick’s second law 相关因子 correlation factor 稳态扩散 steady state diffusion 非稳态扩散 nonsteady-state diffusion扩散系数 diffusion coefficient 跳动几率 jump frequency填隙机制 interstitalcy mechanism 晶界扩散 grain boundary diffusion短路扩散 short-circuit diffusion 上坡扩散 uphill diffusion 下坡扩散 Downhill diffusion互扩散系数 Mutual diffusion 渗碳剂 carburizing 浓度梯度 concentration gradient浓度分布曲线 concentration profile 扩散流量 diffusion flux 驱动力 driving force间隙扩散 interstitial diffusion 自扩散 self-diffusion 表面扩散 surface diffusion空位扩散 vacancy diffusion 扩散偶 diffusion couple 扩散方程 diffusion equation扩散机理 diffusion mechanism 扩散特性 diffusion property 无规行走 Random walk达肯方程 Dark equation 柯肯达尔效应 Kirkendall equation本征热缺陷 Intrinsic thermal defect 本征扩散系数 Intrinsic diffusion coefficient离子电导率 Ion-conductivity 空位机制 Vacancy concentration材料科学基础专业词汇:第七章相变过冷 supercooling 过冷度 degree of supercooling 晶核 nucleus 形核 nucleation形核功 nucleation energy 晶体长大 crystal growth 均匀形核 homogeneous nucleation非均匀形核 heterogeneous nucleation 形核率 nucleation rate 长大速率 growth rate热力学函数 thermodynamics function 临界晶核 critical nucleus临界晶核半径 critical nucleus radius 枝晶偏析 dendritic segregation局部平衡 localized equilibrium 平衡分配系数 equilibrium distributioncoefficient有效分配系数 effective distribution coefficient 成分过冷 constitutional supercooling引领领先相 leading phase 共晶组织 eutectic structure 层状共晶体 lamellar eutectic伪共晶 pseudoeutectic 离异共晶 divorsed eutectic 表面等轴晶区 chill zone柱状晶区 columnar zone 中心等轴晶区 equiaxed crystal zone定向凝固 unidirectional solidification 急冷技术 splatcooling 区域提纯 zone refining单晶提拉法 Czochralski method 晶界形核 boundary nucleation位错形核 dislocation nucleation 晶核长大 nuclei growth斯宾那多分解 spinodal decomposition 有序无序转变 disordered-order transition马氏体相变 martensite phase transformation 马氏体 martensite材料科学基础专业词汇:第八、九章固相反应和烧结固相反应 solid state reaction 烧结 sintering 烧成 fire 合金 alloy 再结晶 Recrystallization 二次再结晶 Secondary recrystallization 成核 nucleation 结晶 crystallization子晶,雏晶 matted crystal 耔晶取向 seed orientation 异质核化 heterogeneous nucleation均匀化热处理 homogenization heat treatment 铁碳合金 iron-carbon alloy渗碳体 cementite 铁素体 ferrite 奥氏体austenite 共晶反应 eutectic reaction 固溶处理 solution heat treatment。

李永舫, 苯基侧链,有机太阳能电池受体 -回复

李永舫, 苯基侧链,有机太阳能电池受体 -回复

李永舫, 苯基侧链,有机太阳能电池受体-回复李永舫、苯基侧链和有机太阳能电池受体近年来,随着对可再生能源的需求日益增长,太阳能电池成为一种备受关注的能源技术。

传统的硅基太阳能电池虽然具有较高的效率,但制造成本较高且制作过程耗能。

相对而言,有机太阳能电池则具有制造成本低、制作过程绿色环保等优势。

而作为有机太阳能电池中的关键组成部分,有机受体材料的设计和性能优化对于提高效率至关重要。

李永舫教授是中国科学院化学所研究员,也是中国具有国际影响力的能源材料领域专家。

他在有机太阳能领域的研究中提出了一种创新的苯基侧链结构,被广泛应用于有机太阳能电池的受体材料中。

苯基侧链是指在有机分子结构中,将苯环基团通过共享碳原子与中心芳香芷构成共轭结构。

这种共轭结构可以提供更大的π共轭体积,增强分子的电子输运性能,从而提高有机太阳能电池的光电转换效率。

与传统的较长碳链相比,苯基侧链不仅具有较短的π共轭长度,还具有较高的空间共轭度,从而改善了分子在电子传输过程中的空间阻碍问题。

有机太阳能电池的受体材料是决定其性能的关键因素之一。

李永舫教授通过对苯基侧链的设计和合成,成功地开发出了一系列具有优良光电转换性能的受体材料。

他的研究团队通过调整苯基链的长度、增加侧链的氢键吸收基团等方法,有效地提高了受体材料的光电转换效率和稳定性。

除了苯基侧链的设计,李永舫教授还探索了其他改进有机太阳能电池性能的方法。

例如,在受体材料中引入大体积的侧链基团,可以增加受体材料与电子受体之间的空间间隔,从而提高光生载流子的扩散长度。

此外,引入不对称的侧基还可以在受体材料分子中引入极化,从而改善分子的吸光性能和光电转换效率。

通过对李永舫教授的研究和贡献的深入了解,我们可以看到他在有机太阳能电池受体材料的设计中的创新思路和成果。

他的苯基侧链设计不仅提高了有机太阳能电池的光电转换效率,还优化了材料的稳定性和可制备性。

他的研究不仅在学术界引起了广泛关注,而且在工业上也有着重要的应用潜力。

李永舫, 苯基侧链,有机太阳能电池受体

李永舫, 苯基侧链,有机太阳能电池受体

李永舫, 苯基侧链,有机太阳能电池受体李永舫, 苯基侧链和有机太阳能电池受体为了满足目前日益增长的能源需求以及环境保护的要求,太阳能作为一种清洁可再生的能源正受到越来越多的关注。

有机太阳能电池作为太阳能利用的一种重要技术,具有资源丰富、制备简单、柔性可塑性强等优点,因此成为了研究的热点之一。

在有机太阳能电池中,受体材料起到接受光子能量和产生电荷的关键作用。

而李永舫教授及其研究团队以苯基侧链作为主要结构单元,设计并合成了一系列有效的有机太阳能电池受体材料,取得了显著的研究成果。

首先,苯基侧链在有机太阳能电池受体中发挥了至关重要的作用。

苯基侧链是一种强电子给体,其它官能团将带有杂原子如氧、硫等的官能基连接在苯环的侧链位置,形成了共轭体系。

这种结构具有高电子迁移率和良好的电子亲和力,有利于电子的输送和抽取,从而提高了有机太阳能电池的电荷传输效率。

此外,苯基侧链的引入还可以调节受体材料的光学、电学性质和能级结构,使得有机太阳能电池的光电转换效率得到进一步提高。

其次,李永舫教授及其研究团队基于苯基侧链,设计并合成了一系列高效的有机太阳能电池受体材料。

这些受体材料具有良好的溶解性、热稳定性和光电性能,能够与供体材料形成良好的共混体,实现高效的光电转换。

例如,团队设计合成了一种以苯基炔为核心的受体材料,在有机太阳能电池中表现出了高的光电转换效率。

另外,他们还通过调控苯基侧链的结构,合成了一系列不同的受体材料,用于实现宽波长范围内的光电转换。

这些研究成果为有机太阳能电池的性能优化提供了新的途径。

最后,李永舫教授及其研究团队对苯基侧链结构与有机太阳能电池性能之间的关系进行了深入研究。

他们通过对比不同结构的苯基侧链对电池性能的影响,解析了苯基侧链的影响机制。

研究结果表明,苯基侧链的长度、取代基的种类和位置等因素均对光电转换效率起到了重要的影响。

通过有选择性地引入不同结构的苯基侧链,可以调控有机太阳能电池的能级对齐和电荷分离,实现更高效的光电转换。

晶面间距(1)

晶面间距(1)

原子半径
1、温度与压力的影响 2、结合键的影响 3、配位数的影响 4、原子核外层电子结构的影响
结构:fcc → bcc 致密度: 0.74 → 0.68 体积变化: 0.8% (而不是 8.8%)
多晶型性或同素异构转变
Pb
Wurtzite
三、晶体的对称性 crystalline symmetry symmetrization of crystals
低指数晶面的面间距较大; 晶面间距越大,该面上原子排列越紧密;
原子线密度最大的晶向上面间距最大。
• • • •
密勒晶向指数[u v w ], 晶向族< u v w > 晶面指数(h k l), 晶面族 {h k l} 原子线密度…(最大的方向)…密排方向 原子面密度……(最大的面 )…密排面
晶面族{h k l}中的晶面数: a)h k l三个数不等,且都≠0, ! 4=24组,如{1 2 3} 则此晶面族中有 3 4=12 如{1 1 2} b)h k l有两个数字相等 且都≠0,则有,3!
1 4 h hk k l 2 3 a c
2 2 2 2
2
2
2
(3-7)
d. 六方晶系:
2010年9月
d hkl
复旦大学材料科学系
12
晶面间距:一组平行晶面中,相邻两个平行晶面之间的距离。
计算公式(简单立方): d=a/(h2+k2+l2)1/2 注意: 只适用于简单晶胞; 对于 面心立方hkl不全为偶、奇数时, d(hkl)=d/2。 体心立方h+k+l=奇数时,d(hkl)=d/2。
材料科学基础
Pauling指出用元素的电负性差值 X X A X B 来计算化合物中离子键的成分

锂硫电池nature 单原子催化

锂硫电池nature 单原子催化

由于锂—硫(Li—S)电池的能量密度较高,并有可能用于电动车辆和电网能源储存,近年来引起了大量关注。

然而,利—S电池的实际应用受到几个挑战的阻碍,包括硫的绝缘性质和循环过程中多硫化物中间体的溶解,导致循环稳定性低,性能差。

为了应对这些挑战,开发利—S电池的单原子催化剂已成为一种很有希望的办法。

SAC被定义为所有活动地点都是孤立的单个原子的催化剂,可以最大限度地提高原子效率,增强催化性能。

在Li—S电池中,SACs可以促进多硫化物中间体的吸附和转化,以及促进硫的重氧化动力学,从而改善电池的整体电化学性能。

SAC的主要优势之一是其高表面积和丰富的活性场地,这可以有效地使聚硫化物停止活动并防止其在电解质中的扩散。

这一特点对于减轻Li—S电池的闭塞效应和提高循环稳定性至关重要。

具有精确控制的协调环境和电子特性的SAC独特的电子结构可以增强聚硫化物的结合性并促进其转化,从而提高速率能力和高排放能力。

在《自然》上发表的一份最新研究报告中,研究人员证明使用一种以钴为基础的SAC作为Li—S电池的有效催化剂。

SAC是使用一个以钴为基础的有机框架,通过简单的单步热解法合成的。

由此产生的SAC在夹住聚硫化物并加速其转化方面表现出了非凡的催化活性,从而大大改善了Li—S电池的循环稳定性和速率性能。

这项研究是发展储能应用SAC的一大进步,并强调了SAC在提高Li—S电池的电化学性能方面的潜力。

随着对高能密度电池的需求持续增长,利—S电池的SACs的发展为解决当前限制,释放这一技术的全部潜力带来了巨大的希望。

随着进一步的研发,SAC具有革命性地改变储能环境的潜力,推动利—S电池在从便携式电子到电动车辆和可再生能源系统等各种应用中的广泛采用。

材料导论2005-2006(3)

材料导论2005-2006(3)

北京化工大学2005——2006学年第一学期《材料导论I》期末考试试卷-A班级:姓名:学号:分数:题号一二三四五六七总分得分I. Choose the BEST TERM to match the definition and translate the selected term into Chinese (20pts).A)Atomic packing factor (APF)B)CharacterizationC)Coordination numberD)CreepE)Design for assemblyF)Design for disassemblyG)Differential thermal analysisH)Electron microscopeI)Electron affinityJ)ElectronegativityK)ElectronsL)Ferrous metalsM)HardnessN)Ionization potentialO)IsotopeP)Life Cycle AnalysisQ)Life Cycle Inventory R)Long-range-order materials S)MixtureT)Modulus of resilienceU)Modulus of toughnessV)NeutronsW)Non-ferrous metalsX)Optical microscopeY)ProtonZ)Short-range-order materials AA)SolutionBB)Space latticeCC)V oid fractionDD)ToughnessEE)Unit cellFF)V alence electronsGG)X-ray diffractionHH)Yield1. A concept that places emphasis on designed products that lead themselves to easy assembly by robots and other automated equipment.2. A material that has no fixed composition and contains more than one phase. The components (substances) keep their individual identities.3. A measure of a material’s resistance to penetration (local plastic deformation) or scratching.4. A technique produces temperature patterns that can be interpreted to obtain information about the various structural changes that solids undergo as a result of the application of different external forces.5. A useful tool that is used to study the crystal structures of solids by measuring the angles of electrons glancing off material specimens.6. An instrument provides magnification of about 2000× and is relatively low-cost.7. A measure of the attraction between the electron and the nucleus.8. The energy required to remove a valence electron from an atom.9. The materials have the structures in which the order of atoms is limited to an atom’s nearest neighboring atoms.10. A measure of the energy per unit volume that material can absorb without plastic deformation.11.The method used during design and manufacturing to determine the impact of a product or system on the environment.12.The ratio of the volume of atoms present in a crystal (unit cell) to the volume of the unit cell.13.The small particles that occupy the outmost ring or shell from the nucleus, and control the chemical properties of an element.14.The term implies that a material plastically deforms or flows very slowly under load as a function of time.15.The term is described by saying that atoms of an element that contain the same number of protons, but different numbers of neutrons.16.The term is used to describe how many atoms are touching each other in a group of coordinated atoms.17.The term that allows the identification and analysis of unique properties of a material’s microstructure as well as macrostructural properties, which focuses more on structure and composition.18.The term that includes iron and alloys of at least 50% iron.19.The term that is used to describe the larger pattern of atoms in a single crystal, which resulted from repeating the basic building block or basic geometric arrangement of atoms in all three dimensions. 20.A particle of matter that carries a positive electrical charge equivalent to the negative charge on an electron.II. Choose the correct answer(s) to the following questions (25points)1.Which of the following statement about the diffusion of atoms, molecules or ions is NOT correct?A)The rate of diffusion will decrease with an increase in temperature.B) A lattice structure that contains loosely packed atoms (less dense) will offer greater resistance to diffusing atoms than one whose structure contains tightly packed atoms.C)The stronger the bonding forces between the atoms the more difficult for the atoms to diffuse.D)Smaller permeating atoms stand better chance of diffusion through a structure of larger atoms.2. A field that deals with developing, preparing, modifying, and applying materials to a specific need.A)Engineering Materials TechnologyB)Materials EngineeringC)Materials ScienceD)Materials Science And Engineering3.Which of the following statement about hydrogen bonding is NOT correct?A)symmetrical charge distributionB)static electrical attraction between positive and negative chargesC)an attraction force between adjacent charges with opposite signsD)the strongest of the secondary bonding4.Which statement is MOST TRUE about materials technology?A)Existing specifications and laws make it easy to introduce new materials in fields such asbuilding construction and commercial aircraft.B)Materials Science and engineering usually follows the lead of developments in othertechnologiesC)Industry and the consumer are quick to accept new materials and processes innovationsD)Developments in materials science and engineering have allowed for innovations in most othertechnologies.5._______________ is the maximum stress that can be sustained for a specified number of stress cycles without fracture.A)Fatigue limitB)Fatigue ratioC)Fatigue strengthD)Endurance ratio6.Which is not an obstacle to acceptance of new engineering materials and processes?A)Time-consuming approach to gain sufficient experienceB)Concern for keeping up with one’s competitionC)Lack of experience by designers and fabricatorsD)Need for compromise between favorable properties and cost7.Among the following properties, temperatures have the greatest effect on ________.A)ductilityB)impact strengthC)hardnessD)strength8.Which term describes well-defined methods for solving specific problems, such as those used to develop an approach to materials selection?A)JITB)DesignC)AlgorithmD)CIM9.What factor in materials selection usually dominates the final choice?A)Properties of materialsB)AvailabilityC)ProcessibilityD)Cost10.Four quantum numbers characterize an electron as to its size, shape, and spatial orientation. The number of energy states for each orbital is determined by ________.A)The principal quantum numberB)The second quantum numberC)The third quantum numberD)The fourth quantum number11.Which stage of the materials cycle is the most difficult for manufacturers to develop a full materials cycle?A)Extracting raw materialsB)Manufacturing engineered materialsC)Service of products and systemsD)Recycling/disposal materials12.The maximum number of electrons in the N energy level is ____________.A) 2B)8C)18D)3213.___________ is a dynamic testing.A) Hardness testB) Impact testC) Tensile testD) Tensile creep test14. Brinell hardness numbers are a measure of the size of the penetration made by ______ with different loads.A)10-mm steel ballB)diamond pyramid indentorC)diamond cone indentorD)tungsten carbide sphere15.Inert gases can also be called ____________.A)Noble gasesB)ActiveC)Group 5 elementsD)Stable16.Which of the following statement about the thermal conductivity is NOT correct?A)Thermal conductivity of materials has a varied relationship to temperature.B)Oriented polymers have much lower conductivities than unoriented polymers.C)Incorporation of element to metals reduces the thermal conductivity.D)Metals have comparatively high thermal conductivities while polymers have rather low values.17.What is the CN for a bcc unit cell?A) 5B)8C)12D)2418. The results obtained from torsion test can be plotted as a ____________ diagram.A) σ-εB) s-NC) τ-γD) T-θ19.___________ crystal system has three axes (a1, a2 and a3) in the x-y plane 120° apart and a fourth axis (z) at 90° to the x-y plane. The intercepts along the three axes in the horizontal plane are equal in length, but the fourth intercept, labeled c, is of a different length.A) CubicB) HexagonalC) MonoclinicD) Tetragonal20.The key word in describing ionic bonding is ___________.A)TransferringB)SharingC)SwappingD)Swarmingler indices for crystal directions are expressed in ____ with no commas separating the numbers.A)<>B)( )C)[ ]D){ }22.Which statement of elastic modulus is NOT correct?A)Elastic modulus is also known as Young’s modulus.B)The higher the magnitude of elastic modulus the stiffer the material.C)Elastic modulus can be measured graphically in the elastic region of the stress-strain diagram.D)The higher the magnitude of elastic modulus the weaker the interatomic bonding forces.23.In the design of machine parts and structural members, ____________ must be taken into consideration to ensure that a machine part is safe for operation under normal operating conditions.A)allowable stressB)design stressC)factor of safetyD)safe stress24. _________ is the amount of heat necessary to raise the temperature of exactly one gram of a material by exactly one degree (1℃or 1K).A) Heat capacityB) Specific heatC) Thermal conductivityD) Coefficient of thermal expansion25._________ is the name of the recently discovered carbon structure that resembles a soccer ball.A)DiamondB)GraphiteC)FullereneD)NanotubeIII. Choose a correct word or phrase according to the basic concepts and write it in the space provided. (10points)1.The term _____ describes behavior of materials when subjected to some external force or condition.2.The elements can be classified broadly into three basic groupings, i.e.: A) ________, metalloids, andB) _____________ because they have certain common properties.3.The four states in which matter exists include A) ________, B) _______, C) _____, and plasma.4.The family of materials is composed of A) ____, B) _____, C) ____, D _____, and other materials.5.In the periodic table, the horizontal rows are called A) _____ whilst the vertical columns are calledB) ____.6.Crystal defects can be classified into A)_____ defects, B)_____ defects, and C)______ defects.7. A)_______, B)______ and C)______tests can provide the most useful information on mechanical properties for material selection.8. A)_______ deformation is irrecoverable while B) _______ deformation is recoverable.IV. Fill in the blanks with the words given below. (10points)alkanes, alkenes, amorphous, allotropic, crystalline, interstitial, interstitialcy, Mohs test, polymorphic, Scleroscope (HSc) test, substitutional, torsional yield strength, ultimate torsional strength, vacancy.1.Solids occur in two basic forms A)____________ and B) ____________.2.A)____________ materials, after changing to one crystal structure, can reverse the phenomenon and return to its previous crystal structure; B)___________ materials do not possess this reverse phenomenon.3.___________ is produced by the presence of an extra atom in a void.4._______ is the absence of an atom at a lattice site in the otherwise regular crystal.5.In a _____________ solid solution, the impurity atoms take up sites in the lattice structure that are normally unfilled or unoccupied by the pure (solvent) atoms.6.In a _____________ solid solution, the solute atoms replace some of the solvent atoms in a crystal structure of the solvent.7.___________ is a type of hardness test that compares a material’s hardness to some 10 known minerals arranged in order of hardness.8.______________ is the maximum torsional stress occurring at the outer surface of the circular rod when subjected to a torsional stress.9. ___________ is a type of hardness test that measures the rebound of a small weight bounced off the surface of the material.10._______, also known as saturated hydrocarbons (HCs), are a series of related compounds thatcontain only single bonds.V. True or false questions. If you think the statement is true, write the letter “T”; otherwise, write the letter “F” (15points)1.Two electrons can exist in the same orbital if they have the same spins.2.The ionization potential increase as the atomic numbers of the elements increase in a given periodic group.3. A material exhibits an endurance limit, which means that the material can be cycled continuously without fracturing at any stress below the endurance limit.4.Six parameters are needed to describe a crystal system, including three angles and three lattice parameters.5.Solid tend to deform in the direction along the planes that are the most closely packed.6.In an interstitial solid solution, the solute atoms and the solvent atoms are of similar size.7.Steelmaking is made possible because of the formation of a substitutional solid solution.8.Grain boundaries improve movement of dislocations through a solid.9.The fatigue failures have occurred under such conditions when the stresses developed were below the ultimate stress and frequently below the yield strength.10.Insulating materials have high thermal conductivities and low thermal resistance.11.Not all materials produce stress-strain diagrams on which there is a clear indication of the start of yield as the load is increased. In such case, off set yield strength is expressed as the elastic limit.12.When a piece of material is subjected to a load, it will deform in the direction of the load only.13.Designers must consider creep strength as a basis for a structural design when a part is subjected to a sustained load in service.14.Mechanical properties rank highest in importance when selecting materials for many applications.15. In impact testing of metals, metals will experience ductile failures with much greater absorption of energy below the critical temperature.VI. Give a simple answer to the following questions (10points)1.How many crystal systems are there? How many patterns can atoms form with these crystal systems? What are the three types of unit cell that atoms form with cubic crystal system? (Note: full spelling and abbreviation are required for each type) (3points)2.What are the two methods of measuring ductility? Use formula to express the corresponding methods and indicate the meaning of each symbol in the formula. Explain how the value of ductility can be used to distinguish a ductile material from a brittle material. (3points)3.What thermal effects does a metal rod exhibit when it is heated deliberately? What are the corresponding properties for describing the effects? (3points)4.What are the two factors that should be considered in creep forming? (1points)VII. Complex questions. (10points)pare the thermal expansion of ceramics, metals and polymers using the symbol “<” or “>”. For example: The hardness of ceramics is greater than metals. Thus, the comparison is expressed as ceramics > metals. (2pts)Thermal expansion: A)From the above comparison, B)______________ have the lowest CTE and C)____________ have the weakest bonding forces among the aforementioned materials.2.Determine the miller indices of the crystal direction for the line passing through point A with coordinates 2/3, 1, 0 and the origin of the unit cell shown in Figure 1 (4pts)zyxFig. 1 A cubic unit cell3.Figure 2 is a stress-strain diagram. 1) Label A) tensile strength, B) yield strength, C) plastic region, D) elastic region, E) Modulus of elasticity; 2) Is this stress-strain diagram for a ductile material or a brittle material? Give two reasons to support your answer. (4 points)Fig. 2 A stress-strain diagram。

原子核物理专业词汇中英文对照表(2)

原子核物理专业词汇中英文对照表(2)

原子核物理专业词汇中英文对照表absorption cross-section 吸收截面activity radioactivity 放射性活度activity 活度adiabatic approximation 浸渐近似allowed transition 容许跃迁angular correlation 角关联angular distribution 角分布angular-momentum conservation 角动量守恒anisotropy 各项异性度annihilation radiation 湮没辐射anomalous magnetic moment 反常枀矩anti neutrino 反中微子antiparticle 反粒子artificial radioactivity 人工放射性atomic mass unit 原子质量单位atomic mass 原子质量atomic nucleus 原子核Auger electron 俄歇电子backbending 回弯bag model 口袋模型baryon number 重子数baryon 重子binary fission 二分裂变binging energy 结合能black hole 黑洞bombarding particle 轰击粒子bottom quark 底夸克branching ration 分支比bremsstrahlung 轫致辐射cascade radiation 级联辐射cascade transition 级联跃迁centrifugal barrier 离心势垒chain reaction 链式反应characteristic X-ray 特征X射线Cherenkov counter 切连科夫计数器coincidence measurement 符合剂量collective model 集体模型collective rotation 集体转动collective vibration 集体震动color charge 色荷complete fusion reaction 全熔合反应complex potential 复势compound-nucleus decay 复合核衰变compound-nucleus model 复合核模型compound nucleus 复合核Compton effect 康普顿效应Compton electron 康普顿电子Compton scattering 康普顿散射cone effect 圆锥效应conservation law 守恒定律controlled thermonuclear fusion 受控热核聚变cosmic ray 宇宙射线Coulomb barrier 库仑势垒Coulomb energy 库伦能Coulomb excitation 库仑激发CPT theorem CPT定理critical angular momentum 临界角动量critical distance 临界距离critical mass 临界质量critical volume 临界体积daily fuel consumption 燃料日消耗量dalitz pair 达立兹对damage criteria 危害判断准则damage 损伤damped oscillations 阻尼震荡damped vibration 阻尼震荡damped wave 阻尼波damper 减震器damping factor 衰减系数damping 衰减的damp proof 防潮的damp 湿气danger coefficient 危险系数danger dose 危险剂量danger range 危险距离danger signal 危险信号dark current pulse 暗电瘤冲dark current 暗电流data acquisition and processing system 数据获得和处理系统data base 数据库data communication 数据通信data processing 数据处理data reduction equipment 数据简化设备data 数据dating 测定年代daughter atom 子体原子daughter element 子体元素daughter nuclear 子核daughter nucleus 子体核daughter nuclide 子体核素daughter 蜕变产物dd reaction dd反应dd reactor dd反应器deactivation 去活化dead ash 死灰尘dead band 不灱敏区dead space 死区dead time correction 死时间校正dead time 失灱时间deaerate 除气deaeration 除气deaerator 除气器空气分离器deaquation 脱水debris activity 碎片放射性debris 碎片de broglie equation 德布罗意方程de broglie frequency 德布罗意频率de broglie relation 德布罗意方程de broglie wavelength 德布罗意波长de broglie wave 德布罗意波debuncher 散束器debye radius 德拜半径debye scherrer method 德拜谢乐法debye temperature 德拜温度decade counter tube 十进计数管decade counting circuit 十进制计数电路decade counting tube 十进管decade scaler 十进位定标器decagram 十克decalescence 相变吸热decalescent point 金属突然吸热温度decanning plant 去包壳装置decanning 去包壳decantation 倾析decanter 倾析器decanting vessel 倾析器decan 去掉外壳decarburization 脱碳decascaler 十进制定标器decatron 十进计数管decay chain 衰变链decay coefficient 衰变常数decay constant 衰变常数decay constant 衰变常量decay energy 衰变能decay factor 衰变常数decay fraction 衰变分支比decay heat removal system 衰变热去除系统decay heat 衰变热decay kinematics 衰变运动学decay out 完全衰变decay period 冷却周期decay power 衰减功率decay rate 衰变速度decay scheme 衰变纲图decay series 放射系decay storage 衰变贮存decay table 衰变表decay time 衰变时间decay 衰减decelerate 减速deceleration 减速decigram 分克decimeter wave 分米波decladding plant 去包壳装置decladding 去包壳decommissioning 退役decompose 分解decomposition temperature 分解温度decomposition 化学分解decontaminability 可去污性decontamination area 去污区decontamination factor 去污因子decontamination index 去污指数decontamination plant 去污装置decontamination reagent 去污试剂decontamination room 去污室decontamination 净化decoupled band 分离带decoupling 去耦解开decrease 衰减decrement 减少率deep dose equivalent index 深部剂量当量指标deep inelastic reaction 深度非弹性反应deep irradiation 深部辐照deep therapy 深部疗deep underwater nuclear counter 深水放射性计数器deep water isotopic current analyzer 深海水连位素分析器de excitation 去激发de exemption 去免除defecation 澄清defective fuel canning 破损燃料封装defective fuel element 破损元件defect level 缺陷程度defectoscope 探伤仪defect 缺陷defence 防护deficiency 不足define 定义definite 硭定的definition 分辨deflagration 爆燃deflecting coil 偏转线圈deflecting electrode 偏转电枀deflecting field 偏转场deflecting plate 偏转板deflecting system 偏转系统deflecting voltage 偏转电压deflection angle 偏转角deflection plate 偏转板deflection system 偏转系统deflection 负载弯曲deflector coil 偏转线圈deflector field 致偏场deflector plate 偏转板deflector 偏转装置deflocculation 解凝defoamer 去沫剂defoaming agent 去沫剂defocusing 散焦deformation bands 变形带deformation energy 变形能deformation of irradiated graphite 辐照过石墨变形deformation parameter 形变参量deformation 变形deformed nucleus 变形核deformed region 变形区域deform 变形degassing 脱气degas 除气degeneracy 简并degenerate configuration 退化位形degenerate gas 简并气体degenerate level 简并能级degenerate state 简并态degeneration 简并degradation of energy 能量散逸degradation 软化degraded spectrum 软化谱degree of acidity 酸度degree of anisotropic reflectance 蛤异性反射率degree of burn up 燃耗度degree of cross linking 交联度degree of crystallinity 结晶度degree of degeneration 退化度degree of dispersion 分散度degree of dissociation 离解度degree of enrichment 浓缩度degree of freedom 自由度degree of hardness 硬度degree of ionization 电离度degree of moderation 慢化度degree of polymerization 聚合度degree of purity 纯度dehumidify 减湿dehydrating agent 脱水剂dehydration 脱水deionization rate 消电离率deionization time 消电离时间deionization 消电离dejacketing 去包壳delay circuit 延迟电路delayed alpha particles 缓发粒子delayed automatic gain control 延迟自动增益控制delayed coincidence circuit 延迟符合电路delayed coincidence counting 延迟符合计数delayed coincidence method 延迟符合法delayed coincidence unit 延迟符合单元delayed coincidence 延迟符合delayed criticality 缓发临界delayed critical 缓发临界的delayed fallout 延迟沉降物delayed fission neutron 缓发中子delayed gamma 延迟性射线delayed neutron detector 缓发中子探测器delayed neutron emitter 缓发中子发射体delayed neutron failed element monitor 缓发中子破损燃料元件监测器delayed neutron fraction 缓发中子份额delayed neutron method 缓发中子法delayed neutron monitor 缓发中子监测器delayed neutron precursor 缓发中子发射体delayed neutron 缓发中子delayed proton 缓发质子delayed reactivity 缓发反应性delay line storage 延迟线存储器delay line 延迟线delay system 延迟系统delay tank 滞留槽delay time 延迟时间delay unit 延迟单元delay 延迟delineation of fall out contours 放射性沉降物轮廓图deliquescence 潮解deliquescent 潮解的delivery dosedose 引出端delta electron 电子delta metal 合金delta plutonium 钚delta ray 电子demagnetization 去磁demagnetize 去磁dematerialization 湮没demineralization of water 水软化demineralization 脱盐demonstration reactor 示范反应堆demonstration 示范dempster mass spectrograph 登普斯特质谱仪denaturalization 变性denaturant 变性剂denaturation of nuclear fuel 核燃料变性denaturation 变性denature 变性denaturize 变性denitration 脱硝dense plasma focus 稠密等离子体聚焦dense 稠密的densimeter 光密度计densimetry 密度测定densitometer 光密度计densitometry 密度计量学density analog method 密度模拟法density bottle 密度瓶density effect 密度效应density gradient instability 密度梯度不稳定性density of electrons 电子密度deoxidation 脱氧deoxidization 脱氧departure from nucleate boiling ratio 偏离泡核沸腾比departure from nucleate boiling 偏离泡核沸腾dependability 可靠性dependence 相依dependency 相依dephlegmation 分凝酌dephlegmator 分馏塔depilation dose 脱毛剂量depilation 脱毛depleted fraction 贫化馏分depleted fuel 贫化燃料depleted material 贫化材料depleted uranium shielding 贫铀屏蔽depleted uranium 贫化铀depleted water 贫化水depleted zone 贫化区域deplete uranium tail storage 贫化铀尾料储存depletion layer 耗尽层depletion 贫化;消耗depolarization 去枀化depolymerization 解聚合deposit dose 地面沉降物剂量deposited activity 沉积的放射性deposition 沉积deposit 沉淀depression 减压depressurization accident 失压事故depressurizing system 降压系统depth dose 深部剂量depth gauge 测深计depth of focus 焦点深度depthometer 测深计derby 粗锭derivant 衍生物derivate 衍生物derivative 衍生物derived estimate 导出估价值derived unit 导出单位derived working limit 导出工撰限desalinization 脱盐desalting 脱盐descendant 后代desensitization 脱敏desensitizer 脱敏剂desiccation 干燥desiccator 干燥器防潮器design basis accident 设计依据事故design basis depressurization accident 设计依据卸压事故design basis earthquake 设计依据地震design dose rate 设计剂量率design of the safeguards approach 保障监督方法设计design power 设计功率design pressure 设计压力design safety limit 设计安全限design temperature rise 设计温度上升design transition temperature 设计转变温度design 设计desmotropism 稳变异极desmotropy 稳变异极desorption 解吸desquamation 脱皮destruction test 破坏性试验destructive distillation 干馏detailed balance principle 细致平衡原理detailed decontamination 细部去污detectable activity 可探测的放射性detectable 可检测的detection efficiency 探测效率detection efficiency 探测效率detection limit 探测限detection of neutrons from spontaneous fission 自发裂变中子探测detection of radiation 辐射线的探测detection probability 探测概率detection time 探测时间detection 探测detector 1/v 1/v探测器detector efficiency 探测僻率detector foil 探测骗detector noise 探测齐声detector shield 探测屏蔽detector tube 检波管detector with internal gas source 内气源探测器detector 探测器敏感元件detect 探测;检波detergent 洗涤剂determination 硭定deterrence of diversion 转用制止detonating gas 爆鸣气detonation altitude 爆炸高度detonation point 爆炸点detonation yield 核爆炸威力detonation 爆炸detoxifying 净化detriment 损害detted line 点线deuteride 氘化物deuterium alpha reaction 氘反应deuterium critical assembly 重水临界装置deuterium leak detector 重水检漏器deuterium moderated pile low energy 低功率重水慢化反应堆deuterium oxide moderated reactor 重水慢化反应堆deuterium oxide 重水deuterium pile 重水反应堆deuterium sodium reactor 重水钠反应堆deuterium target 氘靶deuterium tritium fuel 氘氚燃料deuterium tritium reaction 氘氚反应deuterium 重氢deuteron alpha reaction 氘核反应deuteron binding energy 氘核结合能deuteron induced fission 氘核诱发裂变deuteron neutron reaction 氘核中子反应deuteron proton reaction 氘核质子反应deuteron stripping 氘核涎deuterum moderated pile 重水反应堆deuton 氘核development of uranium mine 铀矿开发development 发展deviation from the desired value 期望值偏差deviation from the index value 给定值偏差deviation 偏差dewatering 脱水dewindtite 水磷铅铀矿dew point 露点dextro rotatory 右旋的diagnostic radiology 诊断放射学diagnostics 诊断diagram 线图dialkyl phosphoric acid process 磷酸二烷基酯萃取法dialysis 渗析dial 度盘diamagnetic effect 抗磁效应diamagnetic loop 抗磁圈diamagnetic substance 抗磁体diamagnetic susceptibility 抗磁化率diamagnetism of the plasma particles 等离子体粒子反磁性diamagnetism 反磁性diamagnet 抗磁体diameter 直径diamond 稳定区;金刚石diaphragm gauge 膜式压力计diaphragm type pressure gauge 膜式压力计diaphragm 薄膜diapositive 透谬片diascope 投影放影器投影仪diathermance 透热性diathermancy 透热性diatomic gas 双原子气体diatomic molecule 二原子分子dibaryon 双重子diderichite 水菱铀矿dido type heavy water research reactor 迪多型重水研究用反应堆dido 重水慢化反应堆dielectric after effect 电介质后效dielectric constant 介电常数dielectric hysteresis 电介质滞后dielectric polarization 电介质枀化dielectric strain 电介质变形dielectric strength 绝缘强度dielectric 电介质diesel engine 柴油机diesel oil 柴油difference ionization chamber 差分电离室difference linear ratemeter 差分线性计数率计difference number 中子过剩difference of potential 电压difference scaler 差分定标器differential absorption coefficient 微分吸收系数differential absorption ratio 微分吸收系数differential albedo 微分反照率differential control rod worth 控制棒微分价值differential cross section 微分截面differential cross-section 微分截面differential discriminator 单道脉冲幅度分析器differential dose albedo 微分剂量反照率differential energy flux density 微分能通量密度differential particle flux density 粒子微分通量密度differential pressure 压差differential range spectrum 射程微分谱differential reactivity 微分反应性differential recovery rate 微分恢复率differential scattering cross section 微分散射截面differentiator 微分器diffraction absorption 衍射吸收diffraction analysis 衍射分析diffraction angle 衍射角diffraction grating 衍射光栅diffraction instrument 衍射仪diffraction pattern 衍射图diffraction peak 衍射峰值diffraction scattering 衍射散射diffraction spectrometer 衍射谱仪diffraction spectrum 衍射光谱diffraction 衍射diffractometer 衍射仪diffusate 扩散物diffuse band 扩散带diffused junction semiconductor detector 扩散结半导体探测器diffused 散射的diffuseness parameter 扩散性参数diffuse reflection 漫反射diffuser 扩散器diffuse scattering 漫散射diffuse 扩散diffusion approximation 扩散近似diffusion area 扩散面积diffusion barrier 扩散膜diffusion cascade 扩散级联diffusion chamber 扩散云室diffusion coefficient for neutron flux density 中子通量密度扩散系数diffusion coefficient for neutron number density 中子数密度扩散系数diffusion coefficient 扩散系数diffusion column 扩散塔diffusion constant 扩散常数diffusion cooling effect 扩散冷却效应diffusion cooling 扩散冷却diffusion cross section 扩散截面diffusion current density 扩散淋度diffusion current 扩散电流diffusion energy 扩散能diffusion equation 扩散方程diffusion factory 扩散工厂diffusion kernel 扩散核diffusion layer 扩散层diffusion length 扩散长度diffusion length 扩散长度diffusion mean free path 扩散平均自由程diffusion plant 扩散工厂diffusion pump 扩散泵diffusion rate 扩散速率diffusion stack 务马堆diffusion theory 扩散理论diffusion time 扩散时间diffusion 扩散diffusivity 扩散系数digital analog converter 数模转换器digital computer 数字计算机digital data acquisition and processing system 数字数据获取与处理系统digital data handling and display system 数字数据处理和显示系统digital recorder 数字记录器digital time converter 数字时间变换器dilation 扩胀dilatometer 膨胀计diluent 稀释剂dilute solution 稀溶液dilute 冲淡dilution analysis 稀释分析dilution effect 稀释效应dilution method 稀释法dilution ratio 稀释比dilution 稀释dimensional change 尺寸变化dimension 尺寸diminishing 衰减dimorphism 双晶现象di neutron 双中子dineutron 双中子dingot 直接铸锭dip counter tube 浸入式计数管dipelt 双重线dipole dipole interaction 偶枀子与偶枀子相互酌dipole layer 偶枀子层dipole momentum 偶枀矩dipole moment 偶枀矩dipole radiation 偶枀辐射dipole transition 偶枀跃迁dipole 偶枀子di proton 双质子dirac electron 狄拉克电子dirac equation 狄拉克方程dirac quantization 狄拉克量子化dirac theory of electron 狄拉克电子论direct and indirect energy conversion 直接和间接能量转换direct contact heat exchanger 直接接触式换热器direct conversion reactor study 直接转换反应堆研究direct conversion reactor 直接转换反应堆direct current 直流direct cycle integral boiling reactor 直接循环一体化沸水堆direct cycle reactor 直接循环反应堆direct cycle 直接循环direct digital control 直接数字控制direct energy conversion 能量直接转换direct exchange interaction 直接交换相互酌direct exposure 直接辐照direct fission yield 原始裂变产额direct interaction 直接相互酌directional correlation of successive gamma rays 连续射线方向相关directional counter 定向计数器directional distribution 方向分布directional focusing 方向聚焦directional 定向的direction 方向direct isotopic dilution analysis 直接同位素稀释分析directly ionizing particles 直接电离粒子directly ionizing radiation 直接电离辐射direct measurement 直接测量direct radiant energy 直接辐射能direct radiation proximity indicator 直接辐射接近指示器direct radiation 直接辐射direct reaction 直接反应direct reaction 直接反应direct use material 直接利用物质direct voltage 直羚压direct x ray analysis 直接x射线分析dirft tube 飞行管道dirt column 尘土柱dirty bomb 脏炸弹disadvantage factor 不利因子disagreement 不一致disappearence 消失discharge chamber 放电室discharge current 放电电流discharge in vacuo 真空放电discharge potential 放电电压discharge tube 放电管discharge voltage 放电电压discharge 放电discomposition 原子位移discontinuity 非连续性discontinuous 不连续的disc operating system 磁盘操椎统discrepancy 差异discrete energy level 不连续能级discrete spectrum 不连续光谱discrete state 不连续态discrete 离散的discrimination coefficient 甄别系数discriminator 鉴别器disinfectant 杀菌剂disintegrate 蜕衰disintegration chain 放射系disintegration constant 衰变常数disintegration curve 衰变曲线disintegration energy 衰变能disintegration heat 衰变热disintegration of elementary particles 基本粒子衰变disintegration particle 衰变粒子disintegration probability 衰变概率disintegration product 蜕变产物disintegration rate 衰变速度disintegration scheme 蜕变图disintegration series 蜕变系disintegrations per minute 衰变/分disintegrations per second 衰变/秒disintegration 蜕变disk source 圆盘放射源dislocation edge 位错边缘dislocation line 位错线dislocation 位错dismantling 解体disorder scattering 无序散射disorder 无序dispersal effect 分散效应dispersal 分散disperser 分散剂dispersing agent 分散剂dispersion fuel element 弥散体燃料元件dispersion fuel 弥散体燃料dispersion 分散dispersive medium 色散媒质displacement current 位移电流displacement kernel 位移核displacement law of radionuclide 放射性核素位移定律displacement law 位移定律displacement spike 离位峰displacement 替换displace 位移;代替disposal of radioactive effluents 放射性瘤液处置disposition 配置disproportionation 不均disruption 破坏disruptive instability 破裂不稳定性disruptive voltage 哗电压dissipation of energy 能消散dissipation 耗散dissociation constant 离解常数dissociation energy 离解能dissociation pressure 离解压dissociation 离解dissociative ionization 离解电离dissolution 溶解dissolver gas 溶解气体dissolver heel 溶解泣滓dissolver 溶解器distance control 遥控distant collision 远距离碰撞distillate 蒸馏液distillation column 蒸馏塔distillation method 蒸馏法distillation tower 蒸馏塔distillation 蒸馏distilled water 蒸馏水distiller 蒸馏器distilling apparatus 蒸馏器distilling flask 蒸馏瓶distorted wave Born approximation,DWBA 扭曲波波恩近似distorted wave impulse approximation 畸变波冲动近似distorted wave theory 畸变波理论distorted wave 畸变波distortionless 不失真的distortion 畸变distributed ion pump 分布式离子泵distributed processing 分布式处理distributed source 分布源distribution coefficient 分配系数distribution factor 分布因子distribution function 分布函数distribution law 分配定律distribution of dose 剂量分布distribution of radionuclides 放射性核素分布distribution of residence time 停留时间分布distribution ratio 分配系数distribution 分布distrubited constant 分布常数disturbance 扰动disturbation 扰动diuranium pentoxide 亓氧化二铀divergence of ion beam 离子束发散divergence problem 发散问题divergence 发散divergent lens 发射透镜divergent reaction 发散反应diversing lens 发射透镜diversion assumption 转用假定diversion box 转换箱diversion hypothesis 转用假设diversion path 转用路径diversion strategy 转用战略diversion 转向divertor 收集器divider 分配器division of operating reactors 反应堆运行部division 刻度djalmaite 钽钛铀矿document information system 文献情报体系doerner hoskins distribution law 德尔纳霍斯金斯分配定律dollar 元domain 磁畴dome 圆顶水柱dominant mutation 显性突变donut 环形室doping control of semiconductors 半导体掺杂物第Dopper effect 多普勒效应doppler averaged cross section 多普勒平均截面doppler broadening 多普勒展宽doppler coefficient 多普勒系数doppler effect 多普勒效应doppler free laser spectroscopy 无多普勒激光光谱学doppler shift method 多普勒频移法doppler width 多普勒宽度dosage measurement 剂量测定dosage meter 剂量计dosage 剂量dose albedo 剂量反照率dose build up factor 剂量积累因子dose commitment 剂量负担dose effect curve 剂量效应曲线dose effect relationship 剂量效应关系dose equivalent commitment 剂量当量负担dose equivalent index 剂量当量指标dose equivalent limit 剂量当量枀限dose equivalent rate 剂量当量率dose equivalent 剂量当量dose equivalent 剂量当量dose fractionation 剂量分割dose limit 剂量枀限dose measurement 剂量测量dose meter 剂量计dose modifying factor 剂量改变系数dose of an isotope 同位素用量dose prediction technique 剂量预报技术dose protraction 剂量迁延dose rate meter 剂量率测量计dose ratemeter 剂量率表dose rate 剂量率dose reduction factor 剂量减低系数dose response correlation 剂量响应相关dose unit 剂量单位dose 剂量dosifilm 胶片剂量计dosimeter charger 剂量计充电器dosimeter 剂量计dosimetry applications research facility 剂量测定法应用研究设施dosimetry 剂量测定法dotted line 点线double beam 双射束double beta decay 双衰变double bond 双键double charged 双电荷的double clad vessel 双层覆盖容器double compton scattering 双康普顿散射double container 双层容器double contingency principle 双偶然性原理double decomposition 复分解double differential cross section 二重微分截面double focusing mass spectrometer 双聚焦质谱仪double focusing 双聚焦double-humped barrier 双峰势垒double ionization chamber 双电离室double precision 双倍精度double probe 双探针double pulse 双脉冲double resonance spectroscopy 双共振光谱学double resonance 双共振double scattering method 双散射法doublet splitting 双重线分裂doublet 电子对double walled heat exchanger 双层壁换热器doubling dose 加倍剂量doubling time meter 倍增时间测量计doubling time 燃料倍增时间doubly charged 双电荷的doubly closed shell nuclei 双闭合壳层核doughnut 环形室downcomer 下降管down quark 下夸克down time 停机时间downwards coolant flow 下行冷却剂流downwind fall out 下风放射性沉降物draft 通风drain tank 排水槽draught 通风drell ratio 多列尔比dressing of uranium ore 铀矿石选矿dressing 选矿drier 干燥器drift instability 漂移不稳定性drift mobility 漂移率drift speed 漂移速度drift transistor 漂移晶体管drift velocity 漂移速度driven magnetic fusion reactor 从动磁核聚变反应堆driver fuel 驱动燃料drive voltage 控制电压drop reaction 点滴反应drop 点滴dry active waste 干放射性废物dry analysis 干法分析dry box 干箱dry criticality 干临界dry distillation 干馏dryer 干燥器dry friction 干摩擦dry ice 干冰drying oil 干性油drying oven 烘干炉drying 干燥dry out 烧干dry reprocessing 干法再处理dry way process 干法过程dry well 干五dt fuel cycle dt燃料循环dt reactor dt反应堆dual cycle boiling water reactor system 双循环沸水反应堆系统dual cycle reactor 双循环反应堆dual decay 双重放射性衰变dual energy use system 能量双重利用系统duality 二重性dual purpose nuclear power station 两用核电站dual purpose reactor 两用反应堆dual temperature exchange separation process 双温度交换分离法dual temperature exchange 双温度交换duant d形盒ductile brittle transition temperature 延性脆性转变温度ductility 延伸性duct 管dummy load 仿真负载dumontite 水磷铀铅矿dump condenser 事故凝汽器dump tank 接受槽dump valve 事故排放阀dump 烧毁元件存放处dunkometer 燃料元件包壳破损探测器duplet 电子对duration of a scintillation 闪烁持续时间duration 持续时间dust chamber 集尘室dust cloud 尘埃云dust collector 集尘器dust cooled reactor 粉尘冷却反应堆dust monitor 灰尘监测器dust sampler 灰尘取样器dust trap 集尘器dye laser 染料激光器dynamical friction 动摩擦dynamic behaviour 动态dynamic characteristic 动特性dynamic equilibrium ratio 动态平衡比dynamic equilibrium 动态平衡dynamic pressure 动压dynamic process inventory determination 动态过程投料量测定dynamic stabilization 动力稳定dynamic viscosity 动力粘滞系数dynamitron 地那米加速器并激式高频高压加速器dynamometer 测力计dynamo 发电机dyne 达因dynode 倍增电枀dysprosium 镝dystectic mixture 高熔点混合物elastic scattering cross-section 弹性散射截面elastic scattering 弹性散射electronic stopping 电子阻止elementary particle 基本粒子EMC effect EMC效应endothermic reaction 吸能反应energy conservation 能量守恒energy loss 能量损失energy resolution 能量分辨率evaporation model 蒸发模型even-even nucleus 偶偶核exchange force 交换力excitation curve 激发曲线excitation function 激发函数excited state 激发态exothermic reaction 放能反应experimental Q-wave 实验Q值exposure 照射量fabrication 制造facility attachment 设施附属文件facility practice 设施实行facility safeguards approach 设施的保障监督方法facility 设施factor of porosity 孔隙率factor of stress concentration 应力集中因数factor 系数fading 阻尼failed can detection 破损燃料探测failed element indicator 破损元件指示器failed element monitor 破损元件监测器failed element 破损元件failed fuel detection and location 破损燃料探测和定位failed fuel detection 破损燃料探测failed fuel detector 破损燃料探测器fail safe instrument 故障时安全运行的仪器fail safe operation 安全运行failsafe 故障自动保险的failure checking 故障检查failure free operation 无故障运行failure mode 故障种类failure of parity conservation 宇称守恒的破坏failure prediction 故障预测fall back 回落falling stream method 降哩fallout density 放射性沉降物密度fallout monitoring 沉降物监测fallout particle 沉降粒子fallout pattern 沉降物分布型式fallout radioactive material 放射性沉降物fallout sampling network 沉降物取样网fallout shelter 沉降物掩蔽所fall out 放射性沉降fall time 下降时间false alarm probability 假报警几率false curvature 假曲率false scram 错误信号紧急停堆family 系fano's theorem 法诺定理faraday cage 法拉第笼faraday constant 法拉第常数faraday cup 法拉第笼farad 法拉far field 远场far infra red radiation 远红外辐射far ultraviolet radiation 远紫外辐射farvitron 线振质谱仪fast acting control rod 快动棕制棒fast advantage factor 快中子有利因子fast amplifier 宽频带放大器fast and thermal reactor burnup computer code 快和热反应堆燃耗计算机代码fast breeder reactor 快中子增殖反应堆fast breeder 快中子增殖反应堆fast burst reactor facility 快中子脉冲反应堆装置fast burst reactor 快中子脉冲反应堆fast ceramic reactor 陶瓷燃料快堆fast chamber 快速电离室fast chopper 快中子选择器fast coincidence unit 快符合单元fast coincidence 快符合fast compression cloud chamber 快压缩云室fast conversion 快中子转换fast cosmic ray neutron 宇宙射线的快中子fast critical assembly 快中子临界装置fast cross section 快中子截面fast detector 快速探测器fast effect 快中子倍增效应fast electron 快电子fast exponential experiment 快中子指数实验装置fast fissionability 快中子致裂变性fast fission effect factor 快中子裂变效应系数fast fission region 快中子裂变区fast fission 快中子裂变fast flux test facility 快中子通量试验装置fast flux 快中子通量fast fragment 快碎片fast killing dose 快速杀伤剂量fast leakage factor 快中子泄漏因子fast mean free path 快中子平均自由程fast medium 快中子介质fast multiplication effect 快中子倍增效应fast multiplication factor 快中子倍增因子fast neutron activation method 快中子活化法fast neutron breeder reactor 快中子增殖反应堆fast neutron breeding 快中子增殖fast neutron calibration 快中子刻度fast neutron collimator 快中子准直器fast neutron counter tube 快中子计数管fast neutron cycle 快中子增殖循环fast neutron detector 快中子探测器fast neutron diffusion length 快中子扩散长度fast neutron dose equivalent 快中子剂量当量fast neutron dosimeter 快中子剂量计fast neutron fission cross section 快中子裂变截面fast neutron fission increase rate 快中子裂变增加率fast neutron fluence 快中子积分通量fast neutron generator 快中子发生器fast neutron non leakage probability 快中子不泄漏几率fast neutron range 快中子区fast neutron reaction 快中子反应fast neutron reactor 快中子裂变反应堆fast neutron selector 快中子选择器fast neutron spectrometer 快中子谱仪fast neutron 快中子fast plutonium reactor 快中子钚反应堆fast radiochemistry 快速放射化学fast reaction 快速核反应fast reactor core test facility 快堆堆芯试验装置fast reactor physics 快速反应堆物理学fast reactor test assembly 快堆试验装置fast reactor thermal engineering facility 快堆热工程研究设施fast reactor 快中子裂变反应堆fast region 快中子区fast setback 迅速下降fast slow coincidence circuit 快慢符合电路fast sub critical assembly 快中子次临界装置fast test reactor 快中子试验反应堆fast thermal coupled reactor 快热耦合反应堆fast zero power reactor 快中子零功率反应堆fatal dose 致命剂量fatalities 死亡事故fatigue fracture 疲劳断裂fatigue limit 疲劳枀限fatigue test 疲劳试验fatigue 疲劳faulted condition 损伤状态faulty fuel assembly 破损燃料组件fault 故障favorable geometry 有利几何条件fb 快中子增殖反应堆fcc 核燃料循环成本fcf 核燃料循环设施feather analysis 费塞分析feather's empirical formula 费瑟经验公式feather's rule 费瑟规则feed adjustment tank 进料蝶槽feedback circuit 反馈回路feedback control 反馈控制feedback loop 反馈回路feedback ratio 反馈比feedback signal 反馈信号feedback 反馈feed end 加料端feed material 给料物质feed plant 核燃料生产工厂feed pump 给水泵feed stage 给料段feed water control system 给水控制系统feedwater equipment 给水设备feedwater flow control 给水量控制feed water 给水feed 供给ferganite 水钒铀矿fermat's principle 费马原理fermi acceleration 费米加速fermi age equation 费米年龄方程fermi age theory 费米年龄理论fermi age 费米年龄fermi beta decay theory 费米衰变理论fermi characteristic energy level 费米能级fermi constant 费米常数fermi dirac gas 费米狄拉克气体fermi dirac statistics 费米狄拉克统计学fermi distribution function 费米狄拉克分布函数fermi distribution 费米分布fermi energy 费米能级fermi function 费米函数Fermi function 费米函数fermi gas model 费米气体模型fermi gas 费米气体Fermi interaction F相互作用fermi interaction 费米相互酌fermi intercept 散射长度fermi level 费米能级fermi limit 费米能级fermion 费米子fermi particle 费米子fermi perturbation 费米微扰fermi plot 费米线图fermi potential 费米势。

晶胞中粒子数的计算方法

晶胞中粒子数的计算方法

晶胞中粒子数的计算方法The calculation of the number of particles in a unit cell is an important concept in the field of solid-state physics and materials science. It provides key information about the structure and properties of a material at the atomic level. The number of particles in a unit cell can vary depending on the type of crystal structure and the nature of the atoms involved. For example, a simple cubic structure contains one particle per unit cell, while a face-centered cubic structure contains four particles per unit cell.晶胞中粒子数的计算方法是固态物理和材料科学领域的一个重要概念。

它提供了关于材料在原子水平上的结构和性质的关键信息。

晶胞中的粒子数可以根据晶体结构的类型和涉及的原子的性质而变化。

例如,简单立方结构中每个晶胞含有一个粒子,而面心立方结构中每个晶胞含有四个粒子。

In order to calculate the number of particles in a unit cell, one must first identify the type of crystal structure being considered. The three main types of crystal structures are simple cubic, body-centered cubic, and face-centered cubic. Each of these structures has a different number of particles per unit cell, which can be determinedusing the formula: nparticles = nunit x Z, where nparticles is the number of particles in the unit cell, nunit is the number of atoms per unit cell, and Z is the number of lattice points within the unit cell.要计算晶胞中的粒子数,首先必须确定所考虑的晶体结构类型。

《材料科学与工程基础》英文影印版习题及思考题及答案

《材料科学与工程基础》英文影印版习题及思考题及答案

《材料科学与工程基础》英文习题及思考题及答案第二章习题和思考题Questions and Problems2.6 Allowed values for the quantum numbers ofelectrons are as follows:The relationships between n and the shell designationsare noted in Table 2.1.Relative tothe subshells,l =0 corresponds to an s subshelll =1 corresponds to a p subshelll =2 corresponds to a d subshelll =3 corresponds to an f subshellFor the K shell, the four quantum numbersfor each of the two electrons in the 1s state, inthe order of nlmlms , are 100(1/2 ) and 100(-1/2 ).Write the four quantum numbers for allof the electrons inthe L and M shells, and notewhich correspond to the s, p, and d subshells.2.7 Give the electron configurations for the followingions: Fe2+, Fe3+, Cu+, Ba2+,Br-, andS2-.2.17 (a) Briefly cite the main differences betweenionic, covalent, and metallicbonding.(b) State the Pauli exclusion principle.2.18 Offer an explanation as to why covalently bonded materials are generally lessdense than ionically or metallically bonded ones.2.19 Compute the percents ionic character of the interatomic bonds for the followingcompounds: TiO2 , ZnTe, CsCl, InSb, and MgCl2 .2.21 Using Table 2.2, determine the number of covalent bonds that are possible foratoms of the following elements: germanium, phosphorus, selenium, and chlorine.2.24 On the basis of the hydrogen bond, explain the anomalous behavior of waterwhen it freezes. That is, why is there volume expansion upon solidification?3.1 What is the difference between atomic structure and crystal structure?3.2 What is the difference between a crystal structure and a crystal system?3.4Show for the body-centered cubic crystal structure that the unit cell edge lengtha and the atomic radius R are related through a =4R/√3.3.6 Show that the atomic packing factor for BCC is 0.68. .3.27* Show that the minimum cation-to-anion radius ratio for a coordinationnumber of 6 is 0.414. Hint: Use the NaCl crystal structure (Figure 3.5), and assume that anions and cations are just touching along cube edges and across face diagonals.3.48 Draw an orthorhombic unit cell, and within that cell a [121] direction and a(210) plane.3.50 Here are unit cells for two hypothetical metals:(a)What are the indices for the directions indicated by the two vectors in sketch(a)?(b) What are the indices for the two planes drawn in sketch (b)?3.51* Within a cubic unit cell, sketch the following directions:.3.53 Determine the indices for the directions shown in the following cubic unit cell:3.57 Determine the Miller indices for the planesshown in the following unit cell:3.58Determine the Miller indices for the planes shown in the following unit cell: 3.61* Sketch within a cubic unit cell the following planes:3.62 Sketch the atomic packing of (a) the (100)plane for the FCC crystal structure, and (b) the (111) plane for the BCC crystal structure (similar to Figures 3.24b and 3.25b).3.77 Explain why the properties of polycrystalline materials are most oftenisotropic.5.1 Calculate the fraction of atom sites that are vacant for lead at its meltingtemperature of 327_C. Assume an energy for vacancy formation of 0.55eV/atom.5.7 If cupric oxide (CuO) is exposed to reducing atmospheres at elevatedtemperatures, some of the Cu2_ ions will become Cu_.(a) Under these conditions, name one crystalline defect that you would expect toform in order to maintain charge neutrality.(b) How many Cu_ ions are required for the creation of each defect?5.8 Below, atomic radius, crystal structure, electronegativity, and the most commonvalence are tabulated, for several elements; for those that are nonmetals, only atomic radii are indicated.Which of these elements would you expect to form the following with copper:(a) A substitutional solid solution having complete solubility?(b) A substitutional solid solution of incomplete solubility?(c) An interstitial solid solution?5.9 For both FCC and BCC crystal structures, there are two different types ofinterstitial sites. In each case, one site is larger than the other, which site isnormally occupied by impurity atoms. For FCC, this larger one is located at the center of each edge of the unit cell; it is termed an octahedral interstitial site. On the other hand, with BCC the larger site type is found at 0, __, __ positions—that is, lying on _100_ faces, and situated midway between two unit cell edges on this face and one-quarter of the distance between the other two unit cell edges; it is termed a tetrahedral interstitial site. For both FCC and BCC crystalstructures, compute the radius r of an impurity atom that will just fit into one of these sites in terms of the atomic radius R of the host atom.5.10 (a) Suppose that Li2O is added as an impurity to CaO. If the Li_ substitutes forCa2_, what kind of vacancies would you expect to form? How many of thesevacancies are created for every Li_ added?(b) Suppose that CaCl2 is added as an impurity to CaO. If the Cl_ substitutes forO2_, what kind of vacancies would you expect to form? How many of thevacancies are created for every Cl_ added?5.28 Copper and platinum both have the FCC crystal structure and Cu forms asubstitutional solid solution for concentrations up to approximately 6 wt% Cu at room temperature. Compute the unit cell edge length for a 95 wt% Pt-5 wt% Cu alloy.5.29 Cite the relative Burgers vector–dislocation line orientations for edge, screw, andmixed dislocations.6.1 Briefly explain the difference between selfdiffusion and interdiffusion.6.3 (a) Compare interstitial and vacancy atomic mechanisms for diffusion.(b) Cite two reasons why interstitial diffusion is normally more rapid thanvacancy diffusion.6.4 Briefly explain the concept of steady state as it applies to diffusion.6.5 (a) Briefly explain the concept of a driving force.(b) What is the driving force for steadystate diffusion?6.6Compute the number of kilograms of hydrogen that pass per hour through a5-mm thick sheet of palladium having an area of 0.20 m2at 500℃. Assume a diffusion coefficient of 1.0×10- 8 m2/s, that the concentrations at the high- and low-pressure sides of the plate are 2.4 and 0.6 kg of hydrogen per cubic meter of palladium, and that steady-state conditions have been attained.6.7 A sheet of steel 1.5 mm thick has nitrogen atmospheres on both sides at 1200℃and is permitted to achieve a steady-state diffusion condition. The diffusion coefficient for nitrogen in steel at this temperature is 6×10-11m2/s, and the diffusion flux is found to be 1.2×10- 7kg/m2-s. Also, it is known that the concentration of nitrogen in the steel at the high-pressure surface is 4 kg/m3. How far into the sheet from this high-pressure side will the concentration be 2.0 kg/m3?Assume a linear concentration profile.6.24. Carbon is allowed to diffuse through a steel plate 15 mm thick. Theconcentrations of carbon at the two faces are 0.65 and 0.30 kg C/m3 Fe, whichare maintained constant. If the preexponential and activation energy are 6.2 _10_7 m2/s and 80,000 J/mol, respectively, compute the temperature at which the diffusion flux is 1.43 _ 10_9 kg/m2-s.6.25 The steady-state diffusion flux through a metal plate is 5.4_10_10 kg/m2-s at atemperature of 727_C (1000 K) and when the concentration gradient is _350kg/m4. Calculate the diffusion flux at 1027_C (1300 K) for the sameconcentration gradient and assuming an activation energy for diffusion of125,000 J/mol.10.2 What thermodynamic condition must be met for a state of equilibrium to exist? 10.4 What is the difference between the states of phase equilibrium and metastability?10.5 Cite the phases that are present and the phase compositions for the followingalloys:(a) 90 wt% Zn–10 wt% Cu at 400℃(b) 75 wt% Sn–25wt%Pb at 175℃(c) 55 wt% Ag–45 wt% Cu at 900℃(d) 30 wt% Pb–70 wt% Mg at 425℃(e) 2.12 kg Zn and 1.88 kg Cu at 500℃(f ) 37 lbm Pb and 6.5 lbm Mg at 400℃(g) 8.2 mol Ni and 4.3 mol Cu at 1250℃.(h) 4.5 mol Sn and 0.45 mol Pb at 200℃10.6 For an alloy of composition 74 wt% Zn–26 wt% Cu, cite the phases presentand their compositions at the following temperatures: 850℃, 750℃, 680℃, 600℃, and 500℃.10.7 Determine the relative amounts (in terms of mass fractions) of the phases forthe alloys and temperatures given inProblem 10.5.10.9 Determine the relative amounts (interms of volume fractions) of the phases forthe alloys and temperatures given inProblem 10.5a, b, and c. Below are given theapproximate densities of the various metalsat the alloy temperatures:10.18 Is it possible to have a copper–silveralloy that, at equilibrium, consists of a _ phase of composition 92 wt% Ag–8wt% Cu, and also a liquid phase of composition 76 wt% Ag–24 wt% Cu? If so, what will be the approximate temperature of the alloy? If this is not possible,explain why.10.20 A copper–nickel alloy of composition 70 wt% Ni–30 wt% Cu is slowly heatedfrom a temperature of 1300_C .(a) At what temperature does the first liquid phase form?(b) What is the composition of this liquid phase?(c) At what temperature does complete melting of the alloy occur?(d) What is the composition of the last solid remaining prior to completemelting?10.28 .Is it possible to have a copper–silver alloy of composition 50 wt% Ag–50 wt%Cu, which, at equilibrium, consists of _ and _ phases having mass fractions W_ _0.60 and W_ _ 0.40? If so, what will be the approximate temperature of the alloy?If such an alloy is not possible, explain why.10.30 At 700_C , what is the maximum solubility (a) of Cu in Ag? (b) Of Ag in Cu?第三章习题和思考题3.3If the atomic radius of aluminum is 0.143nm, calculate the volume of its unitcell in cubic meters.3.8 Iron has a BCC crystal structure, an atomic radius of 0.124 nm, and an atomicweight of 55.85 g/mol. Compute and compare its density with the experimental value found inside the front cover.3.9 Calculate the radius of an iridium atom given that Ir has an FCC crystal structure,a density of 22.4 g/cm3, and an atomic weight of 192.2 g/mol.3.13 Using atomic weight, crystal structure, and atomic radius data tabulated insidethe front cover, compute the theoretical densities of lead, chromium, copper, and cobalt, and then compare these values with the measured densities listed in this same table. The c/a ratio for cobalt is 1.623.3.15 Below are listed the atomic weight, density, and atomic radius for threehypothetical alloys. For each determine whether its crystal structure is FCC,BCC, or simple cubic and then justify your determination. A simple cubic unitcell is shown in Figure 3.40.3.21 This is a unit cell for a hypotheticalmetal:(a) To which crystal system doesthis unit cell belong?(b) What would this crystal structure be called?(c) Calculate the density of the material, given that its atomic weight is 141g/mol.3.25 For a ceramic compound, what are the two characteristics of the component ionsthat determine the crystal structure?3.29 On the basis of ionic charge and ionic radii, predict the crystal structures for thefollowing materials: (a) CsI, (b) NiO, (c) KI, and (d) NiS. Justify your selections.3.35 Magnesium oxide has the rock salt crystal structure and a density of 3.58 g/cm3.(a) Determine the unit cell edge length. (b) How does this result compare withthe edge length as determined from the radii in Table 3.4, assuming that theMg2_ and O2_ ions just touch each other along the edges?3.36 Compute the theoretical density of diamond given that the CUC distance andbond angle are 0.154 nm and 109.5°, respectively. How does this value compare with the measured density?3.38 Cadmium sulfide (CdS) has a cubic unit cell, and from x-ray diffraction data it isknown that the cell edge length is 0.582 nm. If the measured density is 4.82 g/cm3 , how many Cd 2+ and S 2—ions are there per unit cell?3.41 A hypothetical AX type of ceramic material is known to have a density of 2.65g/cm 3 and a unit cell of cubic symmetry with a cell edge length of 0.43 nm. The atomic weights of the A and X elements are 86.6 and 40.3 g/mol, respectively.On the basis of this information, which of the following crystal structures is (are) possible for this material: rock salt, cesium chloride, or zinc blende? Justify your choice(s).3.42 The unit cell for Mg Fe2O3 (MgO-Fe2O3) has cubic symmetry with a unit celledge length of 0.836 nm. If the density of this material is 4.52 g/cm 3 , compute its atomic packing factor. For this computation, you will need to use ionic radii listed in Table 3.4.3.44 Compute the atomic packing factor for the diamond cubic crystal structure(Figure 3.16). Assume that bonding atoms touch one another, that the angle between adjacent bonds is 109.5°, and that each atom internal to the unit cell is positioned a/4 of the distance away from the two nearest cell faces (a is the unit cell edge length).3.45 Compute the atomic packing factor for cesium chloride using the ionic radii inTable 3.4 and assuming that the ions touch along the cube diagonals.3.46 In terms of bonding, explain why silicate materials have relatively low densities.3.47 Determine the angle between covalent bonds in an SiO44—tetrahedron.3.63 For each of the following crystal structures, represent the indicated plane in themanner of Figures 3.24 and 3.25, showing both anions and cations: (a) (100)plane for the rock salt crystal structure, (b) (110) plane for the cesium chloride crystal structure, (c) (111) plane for the zinc blende crystal structure, and (d) (110) plane for the perovskite crystal structure.3.66 The zinc blende crystal structure is one that may be generated from close-packedplanes of anions.(a) Will the stacking sequence for this structure be FCC or HCP? Why?(b) Will cations fill tetrahedral or octahedral positions? Why?(c) What fraction of the positions will be occupied?3.81* The metal iridium has an FCC crystal structure. If the angle of diffraction forthe (220) set of planes occurs at 69.22°(first-order reflection) when monochromatic x-radiation having a wavelength of 0.1542 nm is used, compute(a) the interplanar spacing for this set of planes, and (b) the atomic radius for aniridium atom.4.10 What is the difference between configuration and conformation in relation topolymer chains? vinyl chloride).4.22 (a) Determine the ratio of butadiene to styrene mers in a copolymer having aweight-average molecular weight of 350,000 g/mol and weight-average degree of polymerization of 4425.(b) Which type(s) of copolymer(s) will this copolymer be, considering thefollowing possibilities: random, alternating, graft, and block? Why?4.23 Crosslinked copolymers consisting of 60 wt% ethylene and 40 wt% propylenemay have elastic properties similar to those for natural rubber. For a copolymer of this composition, determine the fraction of both mer types.4.25 (a) Compare the crystalline state in metals and polymers.(b) Compare thenoncrystalline state as it applies to polymers and ceramic glasses.4.26 Explain briefly why the tendency of a polymer to crystallize decreases withincreasing molecular weight.4.27* For each of the following pairs of polymers, do the following: (1) state whetheror not it is possible to determine if one polymer is more likely to crystallize than the other; (2) if it is possible, note which is the more likely and then cite reason(s) for your choice; and (3) if it is not possible to decide, then state why.(a) Linear and syndiotactic polyvinyl chloride; linear and isotactic polystyrene.(b) Network phenol-formaldehyde; linear and heavily crosslinked ci s-isoprene.(c) Linear polyethylene; lightly branched isotactic polypropylene.(d) Alternating poly(styrene-ethylene) copolymer; randompoly(vinylchloride-tetrafluoroethylene) copolymer.4.28 Compute the density of totally crystalline polyethylene. The orthorhombic unitcell for polyethylene is shown in Figure 4.10; also, the equivalent of two ethylene mer units is contained within each unit cell.5.11 What point defects are possible for MgO as an impurity in Al2O3? How manyMg 2+ ions must be added to form each of these defects?5.13 What is the composition, in weight percent, of an alloy that consists of 6 at% Pband 94 at% Sn?5.14 Calculate the composition, in weight per-cent, of an alloy that contains 218.0 kgtitanium, 14.6 kg of aluminum, and 9.7 kg of vanadium.5.23 Gold forms a substitutional solid solution with silver. Compute the number ofgold atoms per cubic centimeter for a silver-gold alloy that contains 10 wt% Au and 90 wt% Ag. The densities of pure gold and silver are 19.32 and 10.49 g/cm3 , respectively.8.53 In terms of molecular structure, explain why phenol-formaldehyde (Bakelite)will not be an elastomer.10.50 Compute the mass fractions of αferrite and cementite in pearlite. assumingthat pressure is held constant.10.52 (a) What is the distinction between hypoeutectoid and hypereutectoid steels?(b) In a hypoeutectoid steel, both eutectoid and proeutectoid ferrite exist. Explainthe difference between them. What will be the carbon concentration in each?10.56 Consider 1.0 kg of austenite containing 1.15 wt% C, cooled to below 727_C(a) What is the proeutectoid phase?(b) How many kilograms each of total ferrite and cementite form?(c) How many kilograms each of pearlite and the proeutectoid phase form?(d) Schematically sketch and label the resulting microstructure.10.60 The mass fractions of total ferrite and total cementite in an iron–carbon alloyare 0.88 and 0.12, respectively. Is this a hypoeutectoid or hypereutectoid alloy?Why?10.64 Is it possible to have an iron–carbon alloy for which the mass fractions of totalferrite and proeutectoid cementite are 0.846 and 0.049, respectively? Why orwhy not?第四章习题和思考题7.3 A specimen of aluminum having a rectangular cross section 10 mm _ 12.7 mmis pulled in tension with 35,500 N force, producing only elastic deformation. 7.5 A steel bar 100 mm long and having a square cross section 20 mm on an edge ispulled in tension with a load of 89,000 N , and experiences an elongation of 0.10 mm . Assuming that the deformation is entirely elastic, calculate the elasticmodulus of the steel.7.7 For a bronze alloy, the stress at which plastic deformation begins is 275 MPa ,and the modulus of elasticity is 115 Gpa .(a) What is the maximum load that may be applied to a specimen with across-sectional area of 325mm, without plastic deformation?(b) If the original specimen length is 115 mm , what is the maximum length towhich it may be stretched without causing plastic deformation?7.8 A cylindrical rod of copper (E _ 110 GPa, Stress (MPa) ) having a yield strengthof 240Mpa is to be subjected to a load of 6660 N. If the length of the rod is 380 mm, what must be the diameter to allow an elongation of 0.50 mm?7.9 Consider a cylindrical specimen of a steel alloy (Figure 7.33) 10mm in diameterand 75 mm long that is pulled in tension. Determine its elongation when a load of 23,500 N is applied.7.16 A cylindrical specimen of some alloy 8 mm in diameter is stressed elasticallyin tension. A force of 15,700 N produces a reduction in specimen diameter of 5 _ 10_3 mm. Compute Poisson’s ratio for this material if its modulus of elasticity is 140 GPa .7.17 A cylindrical specimen of a hypothetical metal alloy is stressed in compression.If its original and final diameters are 20.000 and 20.025 mm, respectively, and its final length is 74.96 mm, compute its original length if the deformation is totally elastic. The elastic and shear moduli for this alloy are 105 Gpa and 39.7 GPa,respectively.7.19 A brass alloy is known to have a yield strength of 275 MPa, a tensile strength of380 MPa, and an elastic modulus of 103 GPa . A cylindrical specimen of thisalloy 12.7 mm in diameter and 250 mm long is stressed in tension and found to elongate 7.6 mm . On the basis of the information given, is it possible tocompute the magnitude of the load that is necessary to produce this change inlength? If so, calculate the load. If not, explain why.7.20A cylindrical metal specimen 15.0mmin diameter and 150mm long is to besubjected to a tensile stress of 50 Mpa; at this stress level the resulting deformation will be totally elastic.(a)If the elongation must be less than 0.072mm,which of the metals in Tabla7.1are suitable candidates? Why ?(b)If, in addition, the maximum permissible diameter decrease is 2.3×10-3mm,which of the metals in Table 7.1may be used ? Why?7.22 Cite the primary differences between elastic, anelastic, and plastic deformationbehaviors.7.23 diameter of 10.0 mm is to be deformed using a tensile load of 27,500 N. It mustnot experience either plastic deformation or a diameter reduction of more than7.5×10-3 mm. Of the materials listed as follows, which are possible candidates?Justify your choice(s).7.24 A cylindrical rod 380 mm long, having a diameter of 10.0 mm, is to besubjected to a tensile load. If the rod is to experience neither plastic deformationnor an elongation of more than 0.9 mm when the applied load is 24,500 N,which of the four metals or alloys listed below are possible candidates?7.25 Figure 7.33 shows the tensile engineering stress–strain behavior for a steel alloy.(a) What is the modulus of elasticity?(b) What is the proportional limit?(c) What is the yield strength at a strain offset of 0.002?(d) What is the tensile strength?7.27 A load of 44,500 N is applied to a cylindrical specimen of steel (displaying thestress–strain behavior shown in Figure 7.33) that has a cross-sectional diameter of 10 mm .(a) Will the specimen experience elastic or plastic deformation? Why?(b) If the original specimen length is 500 mm), how much will it increase inlength when t his load is applied?7.29 A cylindrical specimen of aluminumhaving a diameter of 12.8 mm and a gaugelength of 50.800 mm is pulled in tension. Usethe load–elongation characteristics tabulatedbelow to complete problems a through f.(a)Plot the data as engineering stressversusengineering strain.(b) Compute the modulus of elasticity.(c) Determine the yield strength at astrainoffset of 0.002.(d) Determine the tensile strength of thisalloy.(e) What is the approximate ductility, in percent elongation?(f ) Compute the modulus of resilience.7.35 (a) Make a schematic plot showing the tensile true stress–strain behavior for atypical metal alloy.(b) Superimpose on this plot a schematic curve for the compressive truestress–strain behavior for the same alloy. Explain any difference between thiscurve and the one in part a.(c) Now superimpose a schematic curve for the compressive engineeringstress–strain behavior for this same alloy, and explain any difference between this curve and the one in part b.7.39 A tensile test is performed on a metal specimen, and it is found that a true plasticstrain of 0.20 is produced when a true stress of 575 MPa is applied; for the same metal, the value of K in Equation 7.19 is 860 MPa. Calculate the true strain that results from the application of a true stress of 600 Mpa.7.40 For some metal alloy, a true stress of 415 MPa produces a plastic true strain of0.475. How much will a specimen of this material elongate when a true stress of325 MPa is applied if the original length is 300 mm ? Assume a value of 0.25 for the strain-hardening exponent n.7.43 Find the toughness (or energy to cause fracture) for a metal that experiences bothelastic and plastic deformation. Assume Equation 7.5 for elastic deformation,that the modulus of elasticity is 172 GPa , and that elastic deformation terminates at a strain of 0.01. For plastic deformation, assume that the relationship between stress and strain is described by Equation 7.19, in which the values for K and n are 6900 Mpa and 0.30, respectively. Furthermore, plastic deformation occurs between strain values of 0.01 and 0.75, at which point fracture occurs.7.47 A steel specimen having a rectangular cross section of dimensions 19 mm×3.2mm (0.75in×0.125in.) has the stress–strain behavior shown in Figure 7.33. If this specimen is subjected to a tensile force of 33,400 N (7,500lbf ), then(a) Determine the elastic and plastic strain values.(b) If its original length is 460 mm (18 in.), what will be its final length after theload in part a is applied and then released?7.50 A three-point bending test was performed on an aluminum oxide specimenhaving a circular cross section of radius 3.5 mm; the specimen fractured at a load of 950 N when the distance between the support points was 50 mm . Another test is to be performed on a specimen of this same material, but one that has a square cross section of 12 mm length on each edge. At what load would you expect this specimen to fracture if the support point separation is 40 mm ?7.51 (a) A three-point transverse bending test is conducted on a cylindrical specimenof aluminum oxide having a reported flexural strength of 390 MPa . If the speci- men radius is 2.5 mm and the support point separation distance is 30 mm ,predict whether or not you would expect the specimen to fracture when a load of 620 N is applied. Justify your prediction.(b) Would you be 100% certain of the prediction in part a? Why or why not?7.57 When citing the ductility as percent elongation for semicrystalline polymers, it isnot necessary to specify the specimen gauge length, as is the case with metals.Why is this so?7.66 Using the data represented in Figure 7.31, specify equations relating tensilestrength and Brinell hardness for brass and nodular cast iron, similar toEquations 7.25a and 7.25b for steels.8.4 For each of edge, screw, and mixed dislocations, cite the relationship between thedirection of the applied shear stress and the direction of dislocation line motion.8.5 (a) Define a slip system.(b) Do all metals have the same slip system? Why or why not?8.7. One slip system for theBCCcrystal structure is _110__111_. In a manner similarto Figure 8.6b sketch a _110_-type plane for the BCC structure, representingatom positions with circles. Now, using arrows, indicate two different _111_ slip directions within this plane.8.15* List four major differences between deformation by twinning and deformationby slip relative to mechanism, conditions of occurrence, and final result.8.18 Describe in your own words the three strengthening mechanisms discussed inthis chapter (i.e., grain size reduction, solid solution strengthening, and strainhardening). Be sure to explain how dislocations are involved in each of thestrengthening techniques.8.19 (a) From the plot of yield strength versus (grain diameter)_1/2 for a 70 Cu–30 Zncartridge brass, Figure 8.15, determine values for the constants _0 and ky inEquation 8.5.(b) Now predict the yield strength of this alloy when the average grain diameteris 1.0 _ 10_3 mm.8.20. The lower yield point for an iron that has an average grain diameter of 5 _ 10_2mm is 135 MPa . At a grain diameter of 8 _ 10_3 mm, the yield point increases to 260MPa. At what grain diameter will the lower yield point be 205 Mpa ?8.24 (a) Show, for a tensile test, thatif there is no change in specimen volume during the deformation process (i.e., A0 l0 _Ad ld).(b) Using the result of part a, compute the percent cold work experienced bynaval brass (the stress–strain behavior of which is shown in Figure 7.12) when a stress of 400 MPa is applied.8.25 Two previously undeformed cylindrical specimens of an alloy are to be strainhardened by reducing their cross-sectional areas (while maintaining their circular cross sections). For one specimen, the initial and deformed radii are 16 mm and11 mm, respectively. The second specimen, with an initial radius of 12 mm, musthave the same deformed hardness as the first specimen; compute the secondspecimen’s radius after deformation.8.26 Two previously undeformed specimens of the same metal are to be plasticallydeformed by reducing their cross-sectional areas. One has a circular cross section, and the other is rectangular is to remain as such. Their original and deformeddimensions are as follows:Which of these specimens will be the hardest after plastic deformation, and why?8.27 A cylindrical specimen of cold-worked copper has a ductility (%EL) of 25%. Ifits coldworked radius is 10 mm (0.40 in.), what was its radius beforedeformation?8.28 (a) What is the approximate ductility (%EL) of a brass that has a yield strengthof 275 MPa ?(b) What is the approximate Brinell hardness of a 1040 steel having a yieldstrength of 690 MPa?8.41 In your own words, describe the mechanisms by which semicrystalline polymers(a) elasticallydeform and (b) plastically deform, and (c) by which elastomerselastically deform.8.42 Briefly explain how each of the following influences the tensile modulus of asemicrystallinepolymer and why:(a) molecular weight;(b) degree of crystallinity;(c) deformation by drawing;(d) annealing of an undeformed material;(e) annealing of a drawn material.8.43* Briefly explain how each of the following influences the tensile or yieldstrength of a semicrystalline polymer and why:(a) molecular weight;。

number density 英文单位

number density 英文单位

Number DensityIntroductionNumber density is a term used in physics and chemistry to describe the concentration of particles or objects within a given volume. It refers to the number of entities per unit volume and is an important concept in many scientific fields. Understanding number density is crucial in various applications, such as analyzing the properties of gases, studying the behavior of particles in a solid, or calculating the population density in biology. In this article, we will explore the concept of number density in depth and discuss its significance in different scientific disciplines.Definition and FormulaIn physics, number density (symbolized by “n”) is defined as the ratio of the number of particles (N) to the volume (V) in which they are contained. Mathematically, it can be expressed as:Number Density (n) = N / VThe unit of number density depends on the type of particles being considered and the unit of volume employed. For instance, in the International System of Units (SI), number density is often measured in particles per cubic meter (m^-3). However, in certain cases, alternative units such as particles per cubic centimeter (cm^-3) or particles per liter (L^-1) may be utilized.Importance in PhysicsNumber density plays a significant role in various branches of physics. Here are some examples:1. Gas KineticsIn the study of gases, number density is employed to analyze and understand their behavior. The number density of gas molecules affects properties such as pressure, temperature, and volume. It is particularly important in the kinetic theory of gases, where the motion and collision of particles are investigated. The number density can be used to calculate the average distance between particles and their average collision rate.2. Solid State PhysicsIn solid-state physics, number density provides information about the arrangement of atoms or molecules within a solid material. It helps determine the packing efficiency and the overall structure of the material. By measuring the number density, scientists can infer properties like crystal lattice type, atomic spacing, and the presence of defects in the structure.3. AstrophysicsNumber density is also vital in astrophysics, particularly when studying celestial bodies or interstellar matter. It allows scientists toquantify the amount of matter in different regions of space and understand the distribution of objects such as stars, galaxies, or cosmic particles. The number density of various elements or particles provides insights into the composition and evolution of the universe.Calculation and ExamplesCalculating number density involves determining the number of particles and the volume they occupy. Here are a couple of examples:1. Example 1: Gas in a ContainerConsider a container with 1 mole of an ideal gas at standard conditions (0 degrees Celsius and 1 atmosphere). The volume of the container is 22.4 liters. To find the number density, we divide the number of gasparticles (Avogadro’s number, approximately 6.022 x 10^23) by the volume:Number Density (n) = 6.022 x 10^23 particles / 22.4 L = 2.69 x 10^22 particles per liter2. Example 2: Crystal StructureIn a crystal lattice, the number density can be determined by dividing the number of atoms (or molecules) in the unit cell by the volume of the cell. For instance, if a cubic unit cell contains 8 atoms and has a volume of 2 nm^3, the number density would be:Number Density (n) = 8 atoms / 2 nm^3 = 4 atoms per nm^3Some Applications of Number DensityNumber density finds applications in numerous scientific studies and calculations. Some notable examples include:1.Population Density in Biology: Number density helps estimate theconcentration of individuals in a biological population. It aidsecologists in understanding species distribution and studyingpopulation dynamics.2.Semiconductor Physics: Number density is crucial in semiconductorphysics, where it helps analyze the behavior of charge carrierssuch as electrons and holes. It is significant in understandingphenomena like conductivity, resistivity, and doping effects.3.Nuclear Physics: Number density plays a role in nuclear physics,particularly in determining the density of nuclear matter. Itassists in studying nuclear reactions, cross-section calculations, and the behavior of particles within atomic nuclei.4.Plasma Physics: Number density is vital in plasma physics, whereit characterizes the concentration of charged particles in aplasma. It helps describe the behavior of plasma in fusionreactors, space plasmas, and other plasma-based devices.Factors Affecting Number DensitySeveral factors influence the number density in a given system. Some notable factors include:1.Temperature: Higher temperatures generally lead to an increase innumber density due to more energetic and rapid particle motion.2.Pressure: Increasing the pressure typically results in highernumber densities, as compressing a gas or material bringsparticles closer together.3.Phase Changes: Number density changes during phase transitions,such as from gas to liquid or liquid to solid, due to variationsin volume and particle arrangements.4.Molecular Weight: Varying the molecular weight of particles canimpact the number density, as heavier particles occupy a largervolume for the same number.Limitations of Number DensityWhile number density is a useful concept, it has certain limitations. Some limitations include:1.Assumptions: Calculations of number density often rely onassumptions, such as ideal gas behavior or perfect crystalstructures. Deviations from these assumptions may affect theaccuracy of the results.2.Particle Interactions: Number density calculations usually assumea non-interacting scenario between particles. In reality, particleinteractions can significantly influence the behavior ofsubstances, especially at high densities.3.Heterogeneous Systems: Number density may not adequately describeheterogeneously structured systems where particles are not evenly distributed throughout the volume.ConclusionNumber density is a fundamental concept in physics and chemistry, quantifying the concentration of particles or objects within a givenvolume. It plays a significant role in various scientific disciplines and finds applications in fields ranging from gas kinetics to solid-state physics and astrophysics. Understanding number density allows scientists to evaluate the behavior, structure, and evolution of systems at different scales. However, one must also consider the limitations and assumptions associated with number density calculations. Overall, number density provides valuable insights into the world of particles and their organization.。

绿色化学课件原子经济性

绿色化学课件原子经济性
01
方法一:消除危险品的使用
02
方法二:减少与危险品的接触(穿防护衣、戴防毒面罩、工程控制)
03
比如农药,有机氯类和有机磷类
(4)设计无危险的化学品(Design Safer Chemicals)。化学产品应该设计的使其有效地显示受期望的功能而毒性最小。
联苯胺是一种染料中间体,但有极强的致癌作用,对其分子结构进行改造,变为二乙基联苯胺,既保持了燃料的功能,又消除了致癌性。
废物或副产物
产物
废物 为零
(A + B) or (E + F)
C
原子利用率= —————————×100% 通过原子利用率可以衡量在一个化学反应中,生产一定量的目标产物到底会生成多少废物。
溴化甲基三苯基膦(357) 氧化三苯膦(278)
01
原子经济性或原子利用率= —————————×100%
02
全部反应物的分子质量
03
产物的原子质量
04
2.2 原子利用率
原子经济性(Atom Economy) A + B C + D E + F C +
5.2 环境商(EQ)
EQ= E x Q
E:环境因子 Q:根据废物在环境中的行为给出的废物对环境的不友好程度
举例说明原子经济反应是不产生污染的必要条件。 怎样在反应过程中使化学反应绿色化。 自选一条目前使用的有机化学合成路线, 用绿色化学原理对其进行评价并设计一 条更佳的新路线。 简述绿色化学12原则。
比如利用保护基团进行合成反应,或是立体化学中的手性、异构产物
A + B ==== C + D
E + F ==== C 催化作用(Catalysis)。具有高选择性的催化剂比化学计量学的试剂优越的多。

核能源 英语作文

核能源 英语作文

核能源英语作文Nuclear energy, also known as atomic energy, is the energy released from nuclear reactions. It is a highly efficient and powerful source of energy, capable of producing massive amounts of electricity.The use of nuclear energy has been a topic of debatefor many years. On one hand, it is a clean and reliable source of energy that does not produce greenhouse gases or contribute to air pollution. On the other hand, there are concerns about the safety and environmental impact of nuclear power plants, as well as the potential for nuclear weapons proliferation.Nuclear energy is harnessed through the process of nuclear fission, where the nucleus of an atom is split into two smaller nuclei, releasing a large amount of energy. This process is used in nuclear power plants to heat water and produce steam, which then drives turbines to generate electricity.One of the main advantages of nuclear energy is its high energy density, meaning that a small amount of nuclear fuel can produce a large amount of energy. This makes nuclear power plants very efficient and cost-effective in the long run.Despite its advantages, nuclear energy also has its drawbacks. The most significant concern is the potentialfor nuclear accidents, such as the Chernobyl disaster in 1986 and the Fukushima disaster in 2011. These accidents have raised serious questions about the safety of nuclear power plants and the long-term impact of radioactive contamination.In conclusion, nuclear energy is a complex and controversial topic that continues to be a source of debate and discussion. While it offers significant benefits in terms of energy efficiency and environmental impact, it also poses serious risks in terms of safety and security. As the world continues to seek sustainable and reliablesources of energy, the future of nuclear energy remains uncertain.。

带正电的单原子催化 -回复

带正电的单原子催化 -回复

带正电的单原子催化-回复带正电的单原子催化(Catalysis by Positive Single Atoms)引言:催化是一种关键的化学过程,通过降低活化能,促进反应速率。

传统催化剂通常是以多个原子组成的固体材料。

然而,近年来,带正电的单原子催化剂越来越引起研究人员的关注。

这些催化剂是单个原子或离子,其相对于多原子催化剂具有独特的特性和优势。

本文将深入探讨带正电的单原子催化剂的合成、表征和应用。

正文:一、合成带正电的单原子催化剂:合成带正电的单原子催化剂是一项挑战性的任务,通常涉及两个关键步骤:前体选择和探测技术。

前体选择是合成单原子催化剂的关键步骤之一。

通常,选择有稳定化学性质且易溶于溶剂的化合物作为前体。

常用的前体有金属含有特异性的有机配体的配合物和金属负载在合适的载体上的前体。

通过选择不同的前体,可以合成出不同类型的带正电的单原子催化剂。

探测技术是另一个重要的步骤。

合成出的单原子催化剂通常需要通过高分辨率透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)、高角度年积分散射(HAADF)等表征技术来确定其结构和组成。

这些表征技术能够提供单原子催化剂的原子尺度信息,从而帮助我们了解催化性能的来源。

二、带正电的单原子催化剂的性质和优势:带正电的单原子催化剂相对于多原子催化剂具有许多独特的性质和优势。

首先,单原子催化剂具有高稳定性和高活性,因此可以有效地减少反应的副产物。

其次,单原子催化剂具有可调控性,可以根据需要进行合适的设计和调整。

此外,由于其较小的粒径,单原子催化剂也能够提供更高的比表面积,从而增加活性位点的暴露程度。

带正电的单原子催化剂还具有更高的催化效率和选择性,这是由于其电子结构和电子填充有所不同。

例如,采用单原子催化剂可以调控由于金属间相互作用导致的催化活性与选择性之间的平衡。

这是因为单原子催化剂的活性位点更加分散,减少了相互作用的可能性,从而提高了选择性。

三、带正电的单原子催化剂的应用:带正电的单原子催化剂被广泛应用于各种领域。

纳米材料专业词汇要点

纳米材料专业词汇要点

第一章 晶体结构克罗各 - 明克符号 Kroger Vink notation 原子质量单位 Atomic mass unit (amu) 原子数 Atomic number 原子量 Atomic weight 波尔原子模型 Bohr atomic model键能 Bonding energy 库仑力 Coulombic force共价键 Covalent bond 分子的构型 molecular configuration电子构型 electronic configuration 负电的 Electronegative 正电的 Electropositive 基态 Ground state 氢键 Hydrogen bond 离子键 Ionic bond 同位素 Isotope 金属键 Metallic bond 摩尔 Mole 分子 Molecule 泡利不相容原理 Pauli exclusion principle 元素周期表 Periodic table原子 atom 分子 molecule 分子量 molecule weight 极性分子 Polar molecule 量子数 quantum number 价电子 valence electron 范德华键 van der waals bond 电子轨道 electron orbitals点群 point group 对称要素 symmetry elements各向异性 anisotropy 原子堆积因数 atomic packing factor(APF)体心立方结构 body-centered cubic (BCC) 面心立方结构 face-centered cubic (FCC)缺陷 defect, imperfection点缺陷 point defect 线缺陷 line defect, dislocation面缺陷 interface defect 体缺陷 volume defect 位错排列 dislocation arrangement 位错线 dislocation line 刃位错 edge dislocation 螺位错 screw dislocation 混合位错 mixed dislocation 晶界 grain boundaries 大角度晶界 high-angle grain boundaries 小角度晶界 tilt boundary, 孪晶界 twin boundaries 位错阵列 dislocation array 位错气团 dislocation atmosphere位错轴 dislocation axis 位错胞 dislocation cell位错爬移 dislocation climb 位错聚结 dislocation coalescence位错滑移 dislocation slip 位错裂纹 dislocation crack 位错核心能量 dislocation core energy位错阻尼 dislocation damping位错密度 dislocation density 原子错位 substitution of a wrong atom间隙原子 interstitial atom 晶格空位 vacant lattice sites间隙位置 interstitial sites 杂质 impurities弗伦克尔缺陷 Frenkel disorder 肖脱基缺陷 Schottky disorder主晶相 the host lattice 缔合中心 Associated Centers. 电子空穴 Electron Holes错位原子 misplaced atoms 自由电子 Free Electrons 伯格斯矢量 Burgers 中性原子 neutral atom布拉格定律 晶体结构 晶体的 中子衍射 晶界 bragg 's law crystal structure crystalline 衍射 neutron diffraction grain boundary 六方密堆积 鲍林规则 CsCl 型结构 纤锌矿型结构 萤石型结构 尖晶石型结构 岛状结构 Island structure 链状结构 层状结构 Layer structure 架状结构 滑石 talc 叶蜡石 pyrophyllite 高岭石 kaolinite 石英 长石 feldspar 美橄榄石 各向同性的 isotropic 晶格 lattice 晶格参数 密勒指数 miller indices 多晶的 单晶 电位 电子 金属键 极性分子 衍射角 粒度 , 晶粒大小 grain size 显微照相 photomicrograph 透射电子显微镜Transmission electron microscope (TEM) 重量百分数 weight percentPauling ' s rules NaCl 型结构 Caesium Chloride structure配位数 coordination number 晶系 crystal system diffraction 电子衍射 electron diffraction hexagonal close-packed (HCP) NaCl - type structure 闪锌矿型结构 Blende-type structure Wurtzite structure Fluorite structure Spinel-type structure Island structure polycrystalline single crystal electron states 共价键 metallic bonding polar molecules diffraction angle electrons 四方的 配位数 第二章 金红石型结构 Rutile structure 钙钛矿型结构 Perovskite-type structure 硅酸盐结构 Structure of silicates Chain structure Framework structure quartz forsterite 各向异性的 anisotropy lattice parameters 非结晶的 noncrystalline 多晶形 polymorphism 晶胞 unit cell ( 化合 ) 价 valence covalent bonding 离子键 Ionic bonding 原子面密度 atomic planar density 合金 alloy 显微结构 microstructure 扫描电子显微镜 scanning electron microscope (SEM)tetragonal 单斜的 monoclinic coordination number 晶体结构缺陷 - 固溶体 固溶度 间隙固溶体 金属间化合物 转熔型固溶体 无序固溶体 取代型固溶体 非化学计量化合物 solid solubility interstitial solid solution intermetallics peritectic solid solution disordered solid solution Substitutional solid solutions Nonstoichiometric compound 第三章 熔体结构熔体结构 structure of melt 过冷液体 supercooling melt 玻璃态 vitreous state 软化温度 softening temperature粘度 viscosity 表面张力 Surface tension介稳态过渡相 metastable phase 组织 constitution 淬火 quenching 退火的 softened 玻璃分相 phase separation in glasses 体积收缩 volume shrinkage第四章 固体的表面与界面 表面 surface 界面 interface同相界面 homophase boundary 异相界面 heterophase boundary重构 reconstuction 表面吸附 surface adsorption 表面能 surface energy 倾转晶界 titlt grain boundary扭转晶界 twist grain boundary 倒易密度 共格界面 coherent boundary 半共格界面 非共格界面 noncoherent boundary 界面能 晶体学取向关系 crystallographic orientation第五章 相图 相图 phase diagrams 相 phase组分 component 组元 compoonent 相律 Phase rule 投影图 Projection drawing 浓度三角形 Concentration triangle 冷却曲线 Cooling curve 成分 composition 自由度 freedom 相平衡 phase equilibrium 化学势 chemical potential 热力学 thermodynamics 相律 phase rule 吉布斯相律 Gibbs phase rule 自由能 free energy吉布斯自由能 Gibbs free energy 吉布斯混合能 Gibbs energy of mixing吉布斯熵 Gibbs entropy 吉布斯函数 Gibbs function热力学函数 thermodynamics function 热分析 thermal analysis 过冷 supercooling 过冷度 degree of supercooling 杠杆定律 lever rule 相界 phase boundary相界线 phase boundary line 相界交联 phase boundary crosslinking 共轭线 conjugate lines 相界有限交联 phase boundary crosslinking 相界反应 phase boundary reaction 相变 phase change 相组成 phase composition 共格相 phase-coherent 金相相组织 phase constentuent 相衬 phase contrast晶界 grain boundary 表面能小角度晶界 low angle grain boundary共格孪晶界 coherent twin boundary错配度 mismatch 驰豫 relaxationsurface energy 大角度晶界 high angle grain boundary 晶界迁移 grain boundary migration reciprocal density semi-coherent boundaryinterfacial free energy应变能 strain energy惯习面 habit plane相衬显微镜 phase contrast microscope 相衬显微术 phase contrast microscopy 渗碳剂 carburizing 浓度梯度 concentration gradient 浓度分布曲线 concentration profile 扩散流量 diffusion flux 驱动力 driving force 间隙扩散 interstitial diffusion 自扩散 self-diffusion 表面扩散 surface diffusion达肯方程 Dark equation 柯肯达尔效应 Kirkendall equation第七章 相变过冷 supercooling 过冷度 degree of supercooling晶核 nucleus 形核 nucleation 形核功 nucleation energy 晶体长大 crystal growth 均匀形核 homogeneous nucleation 非均匀形核 heterogeneous nucleation 形核率 nucleation rate 长大速率 growth rate热力学函数 thermodynamics function临界晶核 critical nucleus 临界晶核半径 critical nucleus radius 枝晶偏析 dendritic segregation 局部平衡 localized equilibrium平衡分配系数 equilibrium distributioncoefficient 有效分配系数 effective distribution coefficient成分过冷 constitutional supercooling 引领(领现相) leading phase 共晶组织 eutectic structure 层状共晶体 lamellar eutectic相分布 phase distribution 相平衡常数 phase equilibrium constant 相平衡图 phase equilibrium diagram 相变滞后 phase transition lag相分离 phase segregation 相稳定性 phase stability 相稳定区 phase stabile range相序 phase order 相态 phase state 相变温度 phase transition temperature 相 变 压 力 phase transition pressure 同 质 多 晶 转 变 polymorphic transformation同素异晶 转变 allotropic transformationconditions 相平 衡条件 phase equilibrium显微结构 microstructures不混溶性 immiscibility低共熔体 eutectoid 第六章 扩散下坡扩散 Downhill diffusion 互扩散系数 Mutual diffusion空位扩散 vacancy diffusion 扩散偶 diffusion couple 扩散方程 diffusion equation 扩散机理 diffusion mechanism 扩散特性 diffusion property无规行走 Random walk 本征热缺陷 Intrinsic thermal defect 本征扩散系数 Intrinsic diffusion coefficient 离子电导率 Ion-conductivity 空位机制 Vacancy concentration伪共晶 pseudoeutectic 离异共晶 表面等轴晶区 chill zone 柱状晶区 中心等轴晶区 equiaxed crystal zone 急冷技术 splatcooling 区域提纯 divorsed eutecticcolumnar zone定向凝固 unidirectional solidification zone refining单晶提拉法Czochralski method 晶界形核boundary nucleation位错形核dislocation nucleation 晶核长大nuclei growth斯宾那多分解spinodal decomposition 有序无序转变disordered-order transition马氏体相变martensite phase transformation 马氏体martensite第八、九章固相反应和烧结固相反应solid state reaction 烧结sintering烧成fire 合金alloy再结晶Recrystallization 二次再结晶Secondary recrystallization成核nucleation 结晶crystallization子晶,雏晶matted crystal 耔晶取向seed orientation异质核化heterogeneous nucleation 均匀化热处理homogenization heat treatment铁碳合金iron-carbon alloy 渗碳体cementite铁素体ferrite 奥氏体austenite共晶反应eutectic reaction 固溶处理solution heat treatment。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Journal of Alloys and Compounds 478(2009)321–324Contents lists available at ScienceDirectJournal of Alloys andCompoundsj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /j a l l c omAtomic packing efficiency and phase transition in a high entropy alloyF.J.Wang,Y.Zhang ∗,G.L.ChenState Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing,Beijing 100083,Chinaa r t i c l e i n f o Article history:Received 1August 2008Received in revised form 4November 2008Accepted 6November 2008Available online 21November 2008Keywords:High entropy alloyAtomic packing efficiency Strengtha b s t r a c tWith the increasing of Al content in a high entropy alloy of Ti 0.5CrFeCoNiAl x Cu 1−x ,the phase structure of face centered cubic (FCC)transits to body centered cubic (BCC),namely from a structure with high atomic packing efficiency (APE)to a lower one,and the compressive strength increases from 1650MPa to 2697MPa.The phase transition and the strength increases are explained by the lattice distortion.©2008Elsevier B.V.All rights reserved.1.IntroductionThe alloys with more than five principle components and near equi-atomic ratio can be defined as high entropy alloys (HEAs)[1–6].HEAs are generally located at the center of the phase dia-gram,it is anticipated to form many intermetallic compounds and complex phases.However,some HEAs form simple solid solution rather than many intermediate phases [1–5].It is reported that the Ti 0.5CrFeCoNiCu alloy exhibits high strength of up to 1650MPa,together with extensive work hard-ening and large ductility of 22%[6].However,Cu preferentially segregates to the interdendrite regions,and its effect on mechan-ical properties remains unknown.In this paper,more Al is added in the Ti 0.5CrFeCoNiAl x Cu 1−x alloy,and the phase transition and mechanical strength were investigated.2.ExperimentalsIngots with nominal compositions of Ti 0.5CrFeCoNiAl x Cu 1−x (x values in molar ratio,x =0,0.25,0.5,and 0.75,denoted by STC1,STC2,STC3,and STC4,respec-tively)were prepared by arc melting pure elements under argon atmosphere on a water-cooled Cu hearth.The alloys were remelted several times in order to improve homogeneity.Cylindrical rods with diameter of 5mm were prepared by suction casting.Microstructure investigations of the cylindrical alloys were carried out by X-ray diffraction (XRD)using a MXP21VAHF diffractometer with Cu K ␣radiation.The morphology and composition of as-cast specimens were examined with a LEO-1540scanning electron microscope (SEM)with energy dispersive spectrometry (EDS).Cylindrical samples of ␸5mm ×10mm were prepared for compressive tests and investigated with MTS 809materials testing machine at room temperature with a strain rate of 1×10−4s −1.A Cambridge S250MK2scanning electron microscope was used to study the fracture surface of the compressive test samples.∗Corresponding author.Tel.:+861062334927;fax:+861062333447.E-mail address:yongzhangustb@ (Y.Zhang). 3.Results and discussionThe XRD patterns of the as-cast alloys are presented in Fig.1.The alloys of STC1and STC2show only the presence of FCC reflections.As the Al ratio increases to 0.5,a small amount of BCC reflections besides main FCC ones in STC3alloy can be observed.When Al further increases to 0.75,two BCC reflections in STC4alloy can be observed,one is with larger lattice parameter,the another is with smaller one.Clearly,with the increase of Al content,the phase grad-ually transforms from FCC to BCC.Interestingly,all the alloys form solid solution rather than intermetallics.The Gibbs free energy (G )is defined as G =H −TS,(1)here H is the enthalpy,S is the entropy,T is absolute tempera-ture.According to thermodynamics,the phases with lower G will form preferentially.If the enthalpy is constant,the phases with higher entropy will have the lower Gibbs free energy.The alloys of Ti 0.5CrFeCoNiAl x Cu 1−x contain seven components,and the entropy of mixing of all the alloys are higher than 1.7R (by using the reg-ular solution approximation,and R is the gas constant),which is very high for the metallic alloys (because the entropy of melting of the metallic alloys is about 1R ).In addition,the entropy of the solid solution phase is much higher than that of the intermetallics,the former one is more random and the later one is more ordered.As a result,the Gibbs free energy of the solid solution phase is lower than that of the intermetallics,and so the solid solution phase pref-erentially forms,this entropy effect is largely enhanced for the high entropy alloys.The superiority of simple solid solutions over intermetallics in the alloys is mainly attributed to the effect of high entropy of mixing [1,2,7].By carefully studying the crystal peaks as shown in Fig.1(b),0925-8388/$–see front matter ©2008Elsevier B.V.All rights reserved.doi:10.1016/j.jallcom.2008.11.059322 F.J.Wang et al./Journal of Alloys and Compounds 478(2009)321–324Fig.1.XRD patterns of the Ti 0.5CrFeCoNiAl x Cu 1−x (x =0,0.25,0.5,and 0.75)rod samples with diameter of 5mm and (b)is the detailed scans for the peak of (111)of FCC and (110)of BCC.the peaks shift towards lower 2Âside with more Al additions for the STC1and STC2alloys.The left shifting of the reflections is attributed to the Al with larger atomic radius than any other atoms (except Ti),which will lead to large lattice distortion in the alloys.The lat-tice parameters of STC1and STC2are estimated to be 0.3612nm,0.3624nm calculated from the (111)peak,respectively.When the BCC forms in the STC3alloy as shown in Fig.1(b),the (111)peak for the FCC shifts back the larger 2Âside.This indicates that the formation of the structure of lower atomic packing efficiency will decrease the lattice distortion energy.Fig.2shows the SEM backscattered electron images of the alloys.All the alloys exhibit dendritic microstructure with different size and morphology.According to EDS results as listed in Table 1,the white phases segregating in the interdendritic regions in Fig.2(a),Table 1EDS results of the white zones in Fig.2(a),(b)and (c),respectively.Region Ti Cr Fe Co Ni Cu Al (a) 1.19 1.94 2.20 2.53 3.9388.210(b) 6.10 4.867.53 6.3910.2359.95 4.94(c)3.384.496.016.4112.3159.048.36(b),and (c),are identified as Cu-rich phase.The segregation is due to that Cu is more electronegative than other components and has an immiscible gap with Fe,Co,etc.,thus is rejected into the interden-driticregion when alloy solidified.In STC1alloy,both dendritic and interdendrtic phases gathered to clusters of about 2–3␮m.The EDS analysis reveals that Ni acts as the solvent and other atoms replaceFig.2.SEM back-scatter electron images of Ti 0.5CrFeCoNiAl x Cu 1−x alloys after polishing,x =0,0.25,0.5,and 0.75corresponding to (a),(b),(c)and (d),respectively.F.J.Wang et al./Journal of Alloys and Compounds 478(2009)321–324323Table 2Room temperature compression test results for the alloy series.Alloy E (GPa)εP (%) 0.2(MPa) max (MPa)STC192.7328.77001650STC2102.8538.57501970STC3160.5417.415802389STC4164.141219002697STC572.6824.220403135E ,Young’s modulus;εP ,plastic strain; 0.2,yield strength; max ,compressive strength;STC5,Ti 0.5CrFeCoNiAl [4].the Ni atoms in FCC lattice in STC1alloy;While for STC2and STC4alloys,Ti is solvent in the black phases.As shown in Fig.2(c),the overlapped lamellar structure indicates the mixture of FCC and BCC eutectic phases,which is consistent with the XRD patterns.Fig.3(a)shows the true stress–strain curves of room tem-perature compressive tests.STC1and STC2alloy exhibit similar high compressive strength and good plastic deformation.The fur-ther substitution of Cu by Al makes STC3alloy has dramatically enhanced strength,but lower ductility.With Al content increas-ing to x =0.75,the maximum compressive strength increases to 2697MPa,but the plastic deformation further decreases to 12%.The Young’s modulus (E ),plastic strain (εP ),yield strength ( 0.2),and compressive strength ( max )are listed in Table 2.Fig.3(b)shows the various tendencies of the compression test results for the alloys.Clearly,for Ti 0.5CrFeCoNiAl x Cu 1−x alloys,with the increase of Al content,the yield strength almost linearly increases,which can be ascribed to following:With the increasing of Al content,the lattice distortion energy will also be increased [8].The lattice distortion will also enhance the effect of solid solution strengthening in the alloys,thus the strength will be increased.Fig.4presents SEM morphologies of the fracture surfaces.For STC1alloy,clusters of dendrites along various directions can be observed in Fig.4(a),which might be attributed to its favorable duc-tility.High-density dimple-like fracture can be observed in Fig.4(b),indicating that STC2alloy has good plastic performance,which is in consistence with the compression test results.Fig.4(c)shows theFig.3.(a)Compressive true stress–true strain curves of Ti 0.5CrFeCoNiAl x Cu 1−x alloys (x =0,0.25,0.5,and 0.75)alloys.(b)Compressive test results for the alloy series.Fig.4.SEM secondary electron images of Ti 0.5CrFeCoNiAl x Cu 1−x alloys,x =0(a),x =0.25(b),x =0.5(c),and x =0.75(d).324 F.J.Wang et al./Journal of Alloys and Compounds478(2009)321–324cleavage fracture of STC3alloy.Corresponding to the FCC and BCC eutectic phases as shown in Fig.2(c),the structure in the fracture surface is also fairlyfine.On the surface of STC4alloy in Fig.4(d), cleavage steps and river-like patterns can be observed,which are of typical feature of cleavage fracture.4.ConclusionIn summary,FCC or BCC solid solutions form in Ti0.5CrFeCoNiAl x Cu1−x alloys.With the increase of Al addition,the FCC phase gradually transit to BCC,and the compressive strength of the alloys also greatly increased from1650MPa to2697MPa. The phase transition and the increase of strength related to the atomic packing efficiency and the lattice distortion energy.AcknowledgmentThis work was partially supported by the“973program under Contract No:2007CB613903”.References[1]B.Cantor,et al.,Mater.Sci.Eng.A375–377(2004)213.[2]C.J.Tong,et al.,Metall.Mater.Trans.A36A(2005)881.[3]Y.Zhang,et al.,Ann.Chim.Sci.Mat.31(6)(2006)699–709.[4]Y.J.Zhou,et al.,Appl.Phys.Lett.90(18)(2007)181904–181911.[5]Y.J.Zhou,et al.,Mater.Sci.Eng.A454–455(2007)260.[6]X.F.Wang,et al.,Intermetallics15(2007)357–362.[7]R.E.Reed-Hill,R.Abbaschian,Physical Metallurgy Principles,third ed.,PWS Pub-lishing Company,Boston,MA,1994,p.272.[8]Y.Zhang,et al.,Appl.Phys.Lett.89(2006)131904.。

相关文档
最新文档