人教版2019年秋七年级数学上册专题训练9份含答案

合集下载

人教版七年级数学上册第3章《一元一次方程》选择题专练含答案)

人教版七年级数学上册第3章《一元一次方程》选择题专练含答案)

人教版七年级数学上册第3章《一元一次方程》选择题专练1.(2019秋•越秀区期末)某商店以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,那么商店卖出这两件衣服总的是( ) A .亏损10元 B .不赢不亏 C .亏损16元 D .盈利10元 2.(2019秋•福田区校级期末)一项工程,甲单独做5天完成,乙单独做8天完成.若甲先做1天,然后甲、乙合作完成此项工作的34.若设甲一共做了x 天,则所列方程为( ) A .x 5+x +18=34B .x 5+x −18=34C .x 5−x +18=34D .x 5−x −18=343.(2019秋•成华区期末)欣欣服装店某天用相同的价格a (a ≥0)卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是( ) A .亏损 B .盈利 C .不盈不亏 D .与进价有关 4.(2019秋•惠来县期末)若代数式5﹣4x 与2x −12的值互为相反数,则x 的值是( )A .32B .23C .1D .25.(2019秋•黄埔区期末)用10个大水杯的钱,可以买15个小水杯,大水杯比小水杯的单价多5元,若设大水杯的单价为x 元,下列所列的方程正确的是( ) A .10x =15(x +5) B .10x =15(x ﹣5) C .15x =10(x +5) D .15x =10(x ﹣5) 6.(2019秋•揭西县期末)某种商品原先的利润率为20%,为了促销,现降价10元销售,此时利润率下降为10%,那么这种商品的进价是( ) A .100 B .110 C .120 D .130 7.(2019秋•黄埔区期末)下列变形正确的是( ) A .若x ﹣3=6,则x =6﹣3 B .若﹣3x =﹣2,则x =23 C .若3x ﹣2=x +1,则3x ﹣x =1﹣2D .若13x =3,则x =18.(2019秋•封开县期末)解方程5x ﹣3=2x +2,移项正确的是( ) A .5x ﹣2x =3+2 B .5x +2x =3+2 C .5x ﹣2x =2﹣3 D .5x +2x =2﹣3 9.(2019秋•斗门区期末)解方程x +12−2x −13=1时,去分母得( ) A .2(x +1)﹣3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1C .3(x +1)﹣2(2x ﹣1)=6D .3(x +1)﹣2×2x ﹣1=610.(2019秋•白云区期末)已知关于x 的方程x2xx ﹣2=1的解为3,则下列判断中正确的是( )A .2a >bB .2a <bC .2a =bD .不能确定 11.(2019秋•白云区期末)下列关于x 的方程,解为x =0的是( ) A .3x +4=2x ﹣4B .2x =xC .x +4﹣7=3D .x +12=−1212.(2019秋•白云区期末)一件工程,甲单独做需12天完成,乙单独做需8天完成,现先由甲、乙合作2天后,乙有其他任务,剩下的工程由甲单独完成,则甲还需要( )天才能完成该工程. A .634B .713C .6D .713.(2019秋•南山区期末)已知关于x 的一元一次方程12020x +3=2x +b 的解为x =﹣3,那么关于y 的一元一次方程12020(y +1)+3=2(y +1)+b 的解为( )A .y =1B .y =﹣1C .y =﹣3D .y =﹣4 14.(2019秋•南山区期末)小明在某月的日历上圈出了三个数a ,b ,c ,并求出了它们的和为39,则这三个数在日历中的排位位置不可能的是( )A .B .C .D .15.(2019秋•五华县期末)下列变形中,不正确的是( ) A .若x =y ,则x +3=y +3 B .若﹣2x =﹣2y ,则x =yC .若x x=x x,则x =y D .若x =y ,则x x=x x16.(2019秋•潮阳区期末)某中学七年级(5)班共有学生47人,当该班少两名男生时,男生的人数恰好为女生人数的一半.设该班有男生x 人,则下列方程中正确的是( ) A .2 (x +2)+x =47 B .2 (x ﹣2)+x =47 C .x ﹣2+2x =47 D .x +2+2x =47 17.(2019秋•南沙区期末)小南在解关于x 的一元一次方程x 2−x =13时,由于粗心大意,去分母时出现漏乘错误,把原方程化为3x ﹣m =2,并计算得解为x =1.则原方程正确的解为( )A .x =83B .x =1C .x =16D .x =−4318.(2019秋•花都区期末)下列解方程过程中,变形正确的是( ) A .由2x ﹣1=3得2x =3﹣1B .由2x ﹣3(x +4)=5得2x ﹣3x ﹣4=5C .由3x =2得x =32D .由x 2+x −13=1得3x +2x ﹣2=619.(2019秋•顺德区期末)下列变形不正确的是( ) A .若x =y ,则x +3=y +3 B .若x =y ,则x ﹣3=y ﹣3 C .若x =y ,则﹣3x =﹣3y D .若x 2=y 2,则x =y 20.(2019秋•高明区期末)关于x 的方程3(x +1)﹣6m =0的解是﹣2,则m 的值是( ) A .−12B .12C .﹣2D .221.(2019秋•高明区期末)下列说法错误的是( ) A .若a =b ,则a ﹣2=b ﹣2 B .若ac =bc ,则a =b C .若a =b ,则﹣3a =﹣3bD .若x 2=x 2,则a =b22.(2019秋•东莞市期末)下列方程中是一元一次方程的是( ) A .x +3=0 B .x 2﹣3x =2 C .x +2y =7 D .x ﹣2 23.(2019秋•荔湾区期末)某商场周年庆期间,对销售的某种商品按成本价提高30%后标价,又以9折(即按标价的90%)优惠卖出,结果每件商品仍可获利85元,设这种商品每件的成本是x 元,根据题意,可得到的方程是( ) A .(1+30%)x •90%=x +85 B .(1+30%)x •90%=x ﹣85 C .(1+30%x )•90%=x ﹣85 D .(1+30%x )•90%=x +85 24.(2019秋•花都区期末)如图,学校实验室需要向某工厂定制一批三条腿的桌子,已知该工厂有24名工人,每人每天可以生产20块桌面或300条桌腿,1块桌面需要配3条桌腿,为使每天生产的桌面和桌腿刚好配套,设安排x 名工人生产桌面,则下面所列方程正确的是( )A .20x =3×300(24﹣x )B .300x =3×20(24﹣x )C .3×20x =300(24﹣x )D .20x =300(24﹣x ) 25.(2019秋•宝安区期末)“喜茶”店中的A 种奶茶比B 种奶茶每杯贵5元,小颖买了3杯A 种奶茶、5杯B 种奶茶,一共花了135元,问A 种奶茶、B 种奶茶每杯分别的多少元?若设A 种奶茶x 元,则下列方程中正确的是( ) A .5x +3(x ﹣5)=135 B .5(x ﹣5)+3x =135 C .5x +3(x +5)=135 D .5(x +5)+3x =135 26.(2019秋•大埔县期末)关于x 的方程x +1=2b 的解是5,则b =( ) A .2 B .﹣2 C .3 D .﹣3 27.(2019秋•南海区期末)某商场将一种商品以每件60元的价格售出,盈利20%,那么该商品的进货价是( ) A .36元 B .48元 C .50元 D .54元 28.(2019秋•龙华区期末)天虹商场将某品牌的羽绒服在进价的基础上提高60%定价销售,发现销量不好,于是在“元旦”期间将该品牌的羽绒服打六折出售,那么,在“元旦”期间天虹商场每售出一件这样的羽绒服,将会( ) A .不亏不赚 B .赚了4% C .亏了4% D .赚了36% 29.(2019秋•新会区期末)下列方程变形中,正确的是( ) A .方程3x ﹣2=2x +1,移项,得3x ﹣2x =﹣1+2 B .方程3﹣x =2﹣5(x ﹣1),去括号,得3﹣x =2﹣5x ﹣1 C .x +13=x 4−1,去分母,得4(x +1)=3x ﹣1D .方程−25x =4,未知数系数化为1,得x =﹣1030.(2019秋•罗湖区期末)某个体商贩在一次买卖中,同时卖出两件上衣,售价都是150元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他( ) A .不赚不亏 B .赚10元 C .赔20元 D .赚20元 31.(2019秋•宝安区期末)下面是一个被墨水污染过的方程:3x ﹣2=x ﹣,答案显示此方程的解是x =2,被墨水遮盖的是一个常数,则这个常数是( ) A .2B .﹣2C .−12D .1232.(2019秋•中山市期末)某电商销售某款羽绒服,标价为300元,若按标价的八折销售,仍可获利60元.设这款羽绒服的进价为x 元,根据题意可列方程为( ) A .300×0.8﹣x =60 B .300﹣0.8x =60 C .300×0.2﹣x =60 D .300﹣0.2x =60 33.(2019秋•中山市期末)若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( ) A .2 B .4 C .﹣2 D .﹣4 34.(2019秋•香洲区期末)下列各等式的变形中,等式的性质运用正确的是( ) A .由x 2=0,得x =2 B .由x ﹣1=4,得x =5 C .由2a =3,得a =23D .由a =b ,得x x=x x35.(2019秋•东莞市期末)某汽车队运送一批货物,若每辆汽车装4吨,则还剩下8吨装不下;若每辆汽车装4.5吨,则恰好装完.该车队运送货物的汽车共有多少辆?设该车队运送货物的汽车共有x 辆,则可列方程为( ) A .4x +8=4.5x B .4x ﹣8=4.5x C .4x =4.5x +8 D .4(x +8)=4.5x 36.(2019秋•中山市期末)下列方程的变形正确的有( ) A .2x =1,变形为x =2 B .x +5=3﹣3x ,变形为4x =2 C .23x ﹣1=2,变形为2x ﹣3=2D .3x ﹣6=0,变形为3x =6 37.(2019秋•南海区期末)根据等式的基本性质,下列结论正确的是( ) A .若x =y ,则x x=xxB .若2x =y ,则6x =yC .若ax =2,则x =x2D .若x =y ,则x ﹣z =y ﹣z38.(2019秋•罗湖区校级期末)下列方程:①y =x ﹣7;①2x 2﹣x =6;①23m ﹣5=m ;①2x −1=1;①x −32=1,其中是一元一次方程的有( ) A .2个 B .3个 C .4个 D .以上答案都不对 39.(2019秋•番禺区期末)如果x =y ,那么根据等式的性质下列变形不正确的是( ) A .x +2=y +2B .3x =3yC .5﹣x =y ﹣5D .−x 3=−x 340.(2019秋•东莞市期末)我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( ) A .x 3+3(100﹣x )=100B .x 3−3(100﹣x )=100C .3x −100−x3=100 D .3x +100−x3=100参考答案与试题解析一.选择题(共40小题) 1.【解答】解:设盈利的衣服的进价为x 元,亏损的衣服的进价为y 元, 依题意,得:120﹣x =20%x ,120﹣y =﹣20%y , 解得:x =100,y =150, ∴120﹣x +120﹣y =﹣10. 故选:A . 2.【解答】解:设甲一共做了x 天, 由题意得:x 5+x −18=34,故选:B . 3.【解答】解:设第一件衣服的进价为x 元,第二件衣服的进价为y 元,由题意得: (1+20%)x =a ,(1﹣20%)y =a ∴(1+20%)x =(1﹣20%)y 整理得:3x =2y ∴y =1.5x∴该服装店卖出这两件服装的盈利情况是: 20%x ﹣20%y =0.2x ﹣0.2y ×1.5=﹣0.1x <0 即赔了0.1x 元. 故选:A . 4.【解答】解:根据题意得:5﹣4x +2x −12=0, 去分母得:10﹣8x +2x ﹣1=0, 移项合并得:﹣6x =﹣9, 解得:x =32,故选:A . 5.【解答】解:设大水杯的单价为x 元,则小水杯的单价为(x ﹣5)元, 由题意得:10x =15(x ﹣5), 故选:B . 6.【解答】解:设这件产品的进价为x 元, x (1+20%)﹣10=x [1+(20%﹣10%)], 解得,x =100即这件商品的进价为100元, 故选:A . 7.【解答】解:A 、等式的两边都加上3,得x =6+3,原变形错误,故A 不符合题意; B 、等式两边同时除以﹣3,得x =23,原变形正确,故B 符合题意;C 、由3x ﹣2=x +1,得3x ﹣x =1+2,原变形错误,故C 不符合题意;D 、等式的两边同时乘以3,得x =9,原变形错误,故D 不符合题意; 故选:B . 8.【解答】解:移项得:5x ﹣2x =2+3, 故选:A . 9.【解答】解:方程两边同时乘以6,得:3(x +1)﹣2(2x ﹣1)=6, 故选:C . 10.【解答】解:把x =3代入方程得:3x 2x−2=1,去分母得:3b ﹣4a =2a ,即6a =3b ,整理得:2a =b , 故选:C . 11.【解答】解:∵x =0时,左边=3×0+4=4,右边=2×0﹣4=﹣4,4≠﹣4, ∴x =0不是3x +4=2x ﹣4的解.∵x =0时,左边=2×0=0,右边=0,左边=右边, ∴x =0是2x =x 的解.∵x =0时,左边=0+4﹣7=﹣3,右边=3,﹣3≠3, ∴x =0不是x +4﹣7=3的解.∵x =0时,左边=0+12=12,右边=−12,12≠−12,∴x =0不是x +12=−12的解.故选:B . 12.【解答】解:设甲还需要x 天才能完成该工程, (112+18)×2+112x =1 解得:x =7, 故选:D .13.【解答】解:∵关于x 的一元一次方程12020x +3=2x +b 的解为x =﹣3,∴关于y 的一元一次方程12020(y +1)+3=2(y +1)+b 的解为y +1=﹣3,解得:y =﹣4, 故选:D . 14.【解答】解:A 、设最小的数是x ,则x +(x +1)+(x +8)=39,解得x =10,故本选项不符合题意; B 、设最小的数是x ,则x +(x +8)+(x +14)=39,解得x =173,故本选项符合题意; C 、设最小的数是x ,则x +(x +8)+(x +16)=39,解得x =5,故本选项不符合题意; D 、设最小的数是x ,则x +(x +1)+(x +2)=39,解得:x =12,故本选项不符合题意. 故选:B . 15.【解答】解:(D )当m =0时,x x与xx无意义,故D 选项错误,故选:D . 16.【解答】解:设该班有男生x 人,则女生有2(x ﹣2)人, 依题意,得:2(x ﹣2)+x =47. 故选:B . 17.【解答】解:由题意可知:x =1是方程3x ﹣m =2的解, ∴3﹣m =2, ∴m =1, ∴原方程为x 2−1=13,∴x =83,故选:A . 18.【解答】解:2x ﹣1=3变形得2x =1+3; 2x ﹣3(x +4)=5变形得2x ﹣3x ﹣12=5;3x =2变形得x =23;故选:D . 19.【解答】解:A 、两边都加上3,等式仍成立,故本选项不符合题意. B 、两边都减去3,等式仍成立,故本选项不符合题意. C 、两边都乘以﹣3,等式仍成立,故本选项不符合题意. D 、两边开方,则x =y 或x =﹣y ,故本选项符合题意. 故选:D . 20.【解答】解:把x =﹣2代入方程3(x +1)﹣6m =0得:﹣3﹣6m =0,解得:m =−12,故选:A . 21.【解答】解:A .根据等式性质1,等式两边同时减去一个数,等式成立. 所以原说法正确,A 选项不符合题意;B .根据等式性质2,等式两边同时除以一个不为0的数,等式成立,这里c 可能为0,所以等式不成立. 所以原说法不正确,B 选项符合题意;C .根据等式性质2,等式两边同时乘以一个数或式,等式成立. 所以原说法正确,C 选项不符合题意;D .根据等式性质2,等式两边同时乘以一个数或式,等式成立. 所以原说法正确,D 选项不符合题意. 故选:B . 22.【解答】解:一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式. 故选:A . 23.【解答】解:设这种商品每件的成本是x 元, 根据题意,可得到的方程是:(1+30%)x •90%=x +85. 故选:A . 24.【解答】解:设安排x 名工人生产桌子面,则安排(24﹣x )名工人生产桌子腿, 依题意,得:3×20x =300(24﹣x ). 故选:C . 25.【解答】解:若设A 种奶茶x 元,则B 种奶茶(x ﹣5)元, 根据题意,得5(x ﹣5)+3x =135. 故选:B . 26.【解答】解:∵关于x 的方程x +1=2b 的解是5, ∴5+1=2b , ∴2b =6, 解得b =3. 故选:C . 27.【解答】解:设该商品的进货价是x 元, 依题意,得:60﹣x =20%x , 解得:x =50. 故选:C . 28.【解答】解:设一件羽绒服的进价为a 元,则在进价的基础上提高60%定价为:(1+60%)a =1.6a , 在“元旦”期间将该品牌的羽绒服打六折出售,售价为1.6a ×0.6=0.96a , 0.96a ﹣a =﹣0.04a ,∴在“元旦”期间天虹商场每售出一件这样的羽绒服,将会亏了4%; 故选:C . 29.【解答】解:A 、方程3x ﹣2=2x +1,移项,得3x ﹣2x =1+2,不符合题意; B 、方程3﹣x =2﹣5(x ﹣1),去括号,得3﹣x =2﹣5x +5,不符合题意; C 、x +13=x 4−1,去分母,得4(x +1)=3x ﹣12,不符合题意;D 、方程−25x =4,未知数系数化为1,得x =﹣10,符合题意,故选:D . 30.【解答】解:设在这次买卖中原价都是x 元, 则可列方程:(1+25%)x =150, 解得:x =120,比较可知,第一件赚了30元 第二件可列方程:(1﹣25%)x =150 解得:x =200,比较可知亏了50元,两件相比则一共亏了20元.31.【解答】解:设这个常数为a ,即3x ﹣2=x ﹣a , 把x =2代入方程得:2﹣a =4, 解得:a =﹣2, 故选:B . 32.【解答】解:设这款羽绒服的进价为x 元, 依题意,得:300×0.8﹣x =60. 故选:A . 33.【解答】解:根据题意得:3x ﹣9﹣3=0, 解得:x =4, 故选:B . 34.【解答】解:由x 2=0,得x =0,故选项A 错误;由x ﹣1=4,得x =5,故选项B 正确; 由2a =3,得a =32,故选项C 错误; 由a =b ,得x x=x x(c ≠0),故选项D 错误;故选:B . 35.【解答】解:设这个车队有x 辆车, 由题意得,4x +8=4.5x . 故选:A . 36.【解答】解:∵2x =1,变形为x =0.5, ∴选项A 不符合题意;∵x +5=3﹣3x ,变形为4x =﹣2, ∴选项B 不符合题意; ∵23x ﹣1=2,变形为2x ﹣3=6, ∴选项C 不符合题意;∵3x ﹣6=0,变形为3x =6, ∴选项D 符合题意. 故选:D .37.【解答】解:A 、当z =0时,等式x x=x x不成立,故本选项错误.B 、2x =y 的两边同时乘以3,等式才成立,即6x =3y ,故本选项错误.C 、ax =2的两边同时除以a ,等式仍成立,即x =2x ,故本选项错误.D 、x =y 的两边同时减去z ,等式仍成立,即x ﹣z =y ﹣z ,故本选项正确. 故选:D . 38.【解答】解:①不符合一元一次方程的定义,①不是一元一次方程,①属于一元二次方程,不符合一元一次方程的定义,①不是一元一次方程, ①符合一元一次方程的定义,①是一元一次方程,①属于分式方程,不符合一元一次方程的定义,①不是一元一次方程, ①符合一元一次方程的定义,①是一元一次方程, 即是一元一次方程的是①①,共2个, 故选:A . 39.【解答】解:A 、x +2=y +2,正确; B 、3x =3y ,正确;C 、5﹣x =5﹣y ,错误;D 、−x3=−x3,正确;40.【解答】解:设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+100−x3=100.故选:D.。

【新版人教版】七年级数学上册:专题训练(9个专题,Word文档,含答案)

【新版人教版】七年级数学上册:专题训练(9个专题,Word文档,含答案)

【新版人教版】2019年秋七年级数学上册:专题训练(9个专题)==本文档为word 格式,下载后可随意编辑修改!==专题训练(一) 绝对值的应用类型1 利用绝对值比较大小 1.比较下面各对数的大小:(1)-0.1与-0.2;(2)-45与-56.2.比较下面各对数的大小:(1)-821与-|-17|;(2)-2 0152 016与-2 0162 017.类型2 巧用绝对值的性质求字母的值3.已知|a|=3,|b|=13,且a <0<b ,则a ,b 的值分别为( )A .3,13B .-3,13C .-3,-13D .3,-134.已知|a|=2,|b|=3,且b<a ,试求a 、b 的值.5.已知|x -3|+|y -5|=0,求x +y 的值.6.已知|2-m|+|n -3|=0,试求m +2n 的值.7.已知|a -4|+|b -8|=0,求a +bab的值.类型3 绝对值在生活中的应用8.某汽车配件厂生产一批零件,从中随机抽取6件进行检验,比标准直径长的毫米数记为正数,比标准直径短的毫米数记为负数,检查记录如下表(单位:毫米):序号 1 2 3 4 5 6 误差/毫米+0.5-0.150.1-0.10.2(1)哪3件零件的质量相对来讲好一些?怎样用学过的绝对值知识来说明这些零件的质量好?(2)若规定与标准直径误差不超过0.1毫米的为优等品,在0.1毫米~0.3毫米(不含0.1毫米和0.3毫米)范围内的为合格品,不小于0.3毫米的为次品,则这6件产品中分别有几件优等品、合格品和次品?9.已知蜗牛从A 点出发,在一条数轴上来回爬行,规定:向正半轴运动记作“+”,向负半轴运动记作“-”,从开始到结束爬行的各段路程(单位:cm )依次为:+7,-5,-10,-8,+9,+12,+4,-6.若蜗牛的爬行速度为每秒12cm ,请问蜗牛一共爬行了多少秒?10.司机小李某天下午的营运全是在南北走向的鼓楼大街进行的.假定向南为正,向北为负,他这天下午行车里程如下(单位:km ):+15,-3,+14,-11,+10,+4,-26.(1)小李在送第几位乘客时行车里程最远?(2)若汽车耗油量为0.1 L /km ,这天下午汽车共耗油多少L?11.在活动课上,有6名学生用橡皮泥做了6个乒乓球,直径可以有0.02毫米的误差,超过规定直径的毫米数记作正数,不足的记作负数,检查结果如下表:做乒乓球 的同学 李明 张兵 王敏 余佳 赵平 蔡伟 检测 结果+0.031-0.017+0.023-0.021+0.022-0.011(1)请你指出哪些同学做的乒乓球是合乎要求的?(2)指出合乎要求的乒乓球中哪个同学做的质量最好,6名同学中,哪个同学做的质量较差? (3)请你对6名同学做的乒乓球质量按照最好到最差排名; (4)用学过的绝对值知识来说明以上问题.专题训练(二) 有理数的运算题组1 有理数的加、减、乘、除、乘方运算 1.计算:(1)(-3)+(-9); (2)-4.9+3.7;(3)(-13)+34; (4)0-9;(5)(-3)-(-5); (6)-712-914;(7)(-12.5)-(-7.5).2.计算:(1)(-3)×5; (2)(-34)×(-89);(3)(-37)×(-45)×(-712); (4)(-4)×(-10)×0.5×0×2 017;(5)(-36)÷9; (6)(-1225)÷(-35);(7)(-12557)÷(-5).3.计算:(1)(0.3)2; (2)(-10)3;(3)-(-2)4; (4)(112)3.题组2 有理数的混合运算 4.计算:(1)16+(-25)+24-35; (2)314+(-235)+534-825;(3)(12-58-14)×(-24); (4)719×(112-118+314)×(-214);(5)(-9)×(-11)÷3÷(-3); (6)(-48)÷8-(-5)×(-6);(7)2-(-4)+8÷(-2)+(-3).5.计算:(1)-12-(-12)3÷4; (2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);(3)-32×(-13)2-(-2)3÷(-12)2; (4)(-2)4÷(-8)-(-12)3×(-22);(5)(-58)×(-4)2-0.25×(-5)×(-4)3; (6)-14+(1-0.5)×13×[2-(-3)2].计算:(1)a 2b +3ab 2-a 2b ;(2)2(a -1)-(2a -3)+3;(3)2(2a 2+9b)+3(-5a 2-4b);(4)3(x 3+2x 2-1)-(3x 3+4x 2-2);(5)(2x 2-12+3x)-4(x -x 2+12);(6)3(x 2-x 2y -2x 2y 2)-2(-x 2+2x 2y -3);(7)-(2x 2+3xy -1)+(3x 2-3xy +x -3);(8)(4ab -b 2)-2(a 2+2ab -b 2);(9)-3(2x 2-xy)+4(x 2+xy -6);(10)(2a 2-[-5ab +(ab -a 2)]-2ab.类型1 化简后直接代入求值1.先化简,再求值:5x 2+4-3x 2-5x -2x 2-5+6x ,其中x =-3.2.先化简,再求值:(3a 2b -2ab 2)-2(ab 2-2a 2b),其中a =2,b =-1.3.先化简,再求值:2(x +x 2y)-23(3x 2y +32x)-y 2,其中x =1,y =-3.4.先化简,再求值:2x 2y -[2xy 2-2(-x 2y +4xy 2)],其中x =12,y =-2.5.先化简,再求值:2(x 2y +xy)-3(x 2y -xy)-4x 2y ,其中x ,y 满足|x +1|+(y -12)2=0.类型2 整体代入求值6.若a 2+2b 2=5,求多项式(3a 2-2ab +b 2)-(a 2-2ab -3b 2)的值.7.已知||m +n -2+(mn +3)2=0,求2(m +n)-2[mn +(m +n)]-3[2(m +n)-3mn]的值.专题训练(五) 图形的规律探索——教材P70T10的变式与应用教材母题:(教材P70T10)如图所示,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有n(n>1)个点,每个图形总的点数S是多少?当n=5,7,11时,S是多少?【思路点拨】观察图形,可得到点的总数S与n之间的关系,用含n的式子表示S,便可分别求出当n=5,7,11时,S的值.【方法归纳】解决图形规律探索问题,首先从简单的基本图形入手,随着“序号”或“编号”增加时,后一个图形与前一个图形相比,在数量上的变化情况或图形变化情况,找出变化规律,从而推出一般性结论.1.如图是用相同长度的小棒摆成的一组有规律的图案,其中图1需要4根小棒,图2需要10根小棒,…,按此规律摆下去,则第11个图案所需小棒的根数为()A.70 B.68 C.64 D.582.如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成下列图案.若第n个图案中有2 017个白色纸片,则n的值为()A.671 B.672 C.673 D.6743.小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是13枚.4.如图是用棋子摆成的图案:根据图中棋子的排列规律解决下列问题:(1)第4个图中有枚棋子,第5个图中有枚棋子;(2)写出你猜想的第n个图中棋子的枚数(用含n的式子表示)是n+2+n2.5.下面是用棋子摆成的“小房子”.摆第10个这样的“小房子”需要多少枚棋子?摆第n个这样的“小房子”呢?你是如何得到的?专题训练(六) 一元一次方程的解法1.解下列方程:(1)2x +5=5x -7; (2)12x +x +2x =140;(3)56-8x =11+x ; (4)43x +1=5+13x.2.解下列方程:(1)10(x -1)=5; (2)4x -3(20-2x)=10;(3)3(x -2)+1=x -(2x -1); (4)4(2x -3)-(5x -1)=7;(5)4y -3(20-y)=6y -7(9-y).3.解下列方程:(1)2x -13-2x -34=1; (2)16(3x -6)=25x -3;(3)2(x +3)5=32x -2(x -7)3; (4)2x -13-10x +16=2x +12-1;(5)x +45-(x -5)=x +33-x -22.4.解下列方程: (1)x -40.2-2.5=x -30.05;(2)0.5x +0.90.5+x -53=0.01+0.02x 0.03.5.解方程:3|x|-5=|x|-22+1.6.解下列方程:(1)119x +27=29x -57;(2)278(x -3)-463(6-2x)-888(7x -21)=0.专题训练(七) 一元一次方程的应用1.某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船3 h,已知船在静水中的速度是8 km/h,水流速度是2 km/h,若A、C两地距离为2 km(A、B、C三地在一条直线上),则A、B两地间的距离km.2.兄弟两人由家里去学校,弟每小时走6里,哥每小时走8里,哥晚出发10分钟,结果两人同时到校,学校离家有多远?3.用两台水泵从同一池塘中向外抽水,单开甲泵5小时可抽完,单开乙泵2.5小时便能抽完.(1)如果两台水泵同时抽水,多长时间能把水抽完?(2)如果甲泵先抽2小时,剩下的由乙泵来抽,乙泵用多少时间才能把水抽完?4.一辆卡车在公路上匀速行驶,起初看到的里程碑上是一个两位数,过了1小时,里程碑上的数恰好是原来的个位上的数与十位上的数交换位置后所得到的两位数,又过了1小时,里程碑上的数是一个三位数,这个三位数的百位上的数与个位上的数分别是起初看到的两位数的十位上的数与个位上的数,而十位上的数为0,且起初的两位数个位上的数比十位上的数的5倍多1,求卡车的速度.5.某会议厅主席台上方有一个长12.8 m的长条形(长方形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空∶字宽∶字距=9∶6∶2,如图所示:根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少.6.某次篮球联赛共有十支队伍参赛,部分积分表如下:队名比赛场次胜场负场积分A 16 12 4 28B 16 10 6 26C 16 8 8 24D 16 0 16 16其中一队的胜场总积分能否等于负场总积分?请说明理由.7.某商场在元旦期间搞促销活动,一次性购物不超过2 000元不优惠;超过2 000元,但不超过5 000元,按9折优惠;超过5 000元,超过部分按8折优惠,其中的5 000元仍按9折优惠.某人两次购物分别用了1 340元和4 660元.问:(1)此人的两次购物,若物品不打折,需多少元钱?(2)此人两次购物共节省多少元钱?(3)若将两次购物的钱合起来,一次购买相同的商品,是否更节省?请说明理由.8.一个车队共有n(n为正整数)辆小轿车,正以每小时36千米的速度在一条笔直的街道上匀速行驶,行驶时车与车的间隔均为5.4米,甲停在路边等人,他发现该车队从第一辆车的车头到最后一辆的车尾经过自己身边共用了20秒的时间,假设每辆车的车长均为4.87米.(1)求n的值;(2)若乙在街道一侧的人行道上与车队同向而行,速度为v米/秒,当车队的第一辆车的车头从他身边经过了15秒钟时,为了躲避一只小狗,他突然以3v米/秒的速度向前跑,这样从第一辆车的车头到最后一辆车的车尾经过他身边共用了35秒,求v的值.9.一辆汽车从A地驶往B地,前三分之一路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60 km/h,在高速公路上行驶的速度为100 km/h,汽车从A地到B地一共行驶了2.2 h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用一元一次方程解决的问题,并写出解答过程.专题训练(八) 线段的计算——教材P128练习T3的变式与应用教材母题:(教材P 128练习T 3)如图,点D 是线段AB 的中点,C 是线段AD 的中点,若AB =4 cm ,求线段CD 的长度.【方法归纳】 结合图形,将待求线段长转化为已知线段的和、差形式.若题目中出现线段的中点,常利用线段中点的性质,结合线段的和、差、倍、分关系求解.同时应注意题目中若没有图形,或点的位置关系不确定时,常需要分类讨论,确保答案的完整性.1.如图,线段AB =22 cm ,C 是线段AB 上一点,且AC =14 cm ,O 是AB 的中点,求线段OC 的长度.2.如图,已知C 是AB 的中点,D 是AC 的中点,E 是BC 的中点.(1)若DE =9 cm ,求AB 的长; (2)若CE =5 cm ,求DB 的长.3.如图,B ,C 两点把线段AD 分成2∶5∶3三部分,M 为AD 的中点,BM =6 cm ,求CM 和AD 的长.4.如图,线段AB =1 cm ,延长AB 到C ,使得BC =32AB ,反向延长AB 到D ,使得BD =2BC ,在线段CD 上有一点P ,且AP =2 cm .(1)请按题目要求画出线段CD ,并在图中标出点P 的位置; (2)求出线段CP 的长度.专题训练(九) 角的计算类型1利用角度的和、差关系找出待求的角与已知角的和、差关系,根据角度和、差来计算.1.如图,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD的度数.2.将一副三角板的两个顶点重叠放在一起.(两个三角板中的锐角分别为45°、45°和30°、60°)(1)如图1所示,在此种情形下,当∠DAC=4∠BAD时,求∠CAE的度数;(2)如图2所示,在此种情形下,当∠ACE=3∠BCD时,求∠ACD的度数.类型2利用角平分线的性质角的平分线将角分成两个相等的角,利用角平分线的这个性质,再结合角的和、差关系进行计算.3.如图,点A,O,E在同一直线上,∠AOB=40°,∠EOD=28°46′,OD平分∠COE,求∠COB的度数.4.已知∠AOB=40°,OD是∠BOC的平分线.(1)如图1,当∠AOB与∠BOC互补时,求∠COD的度数;(2)如图2,当∠AOB与∠BOC互余时,求∠COD的度数.类型3 利用方程思想求解在解决有关余角、补角,角的比例关系或倍分关系问题时,常利用方程思想来求解,即通过设未知数,建立方程,通过解方程使问题得以解决.5.一个角的余角比它的补角的23还少40°,求这个角的度数.6.如图,已知∠AOE 是平角,∠DOE =20°,OB 平分∠AOC,且∠COD∶∠B OC =2∶3,求∠BOC 的度数.7.如图,已知∠AOB=12∠BOC,∠COD =∠AOD=3∠AOB ,求∠AOB 和∠COD 的度数.类型4 利用分类讨论思想求解在角度计算中,如果题目中无图,或补全图形时,常需分类讨论,确保答案的完整性. 8.已知∠AOB=75°,∠AOC =23∠AOB,OD 平分∠AOC,求∠BOD 的大小.9.已知:如图,OC 是∠AOB 的平分线.(1)当∠AOB=60°时,求∠AOC 的度数;(2)在(1)的条件下,∠EOC =90°,请在图中补全图形,并求∠AOE 的度数;(3)当∠AOB=α时,∠EOC =90°,直接写出∠AOE 的度数.(用含α的代数式表示)【新版人教版】2019年秋七年级数学上册:专题训练(打包9套)参考答案专题训练(一) 绝对值的应用类型1 利用绝对值比较大小 1.比较下面各对数的大小:(1)-0.1与-0.2;解:因为|-0.1|=0.1,|-0.2|=0.2, 且0.1<0.2,所以-0.1>-0.2.(2)-45与-56.解:因为|-45|=45=2430,|-56|=56=2530,且2430<2530, 所以-45>-56.2.比较下面各对数的大小:(1)-821与-|-17|;解:-|-17|=-17.因为|-821|=821,|-17|=17=321,且821>17,所以-821<-|-17|.(2)-2 0152 016与-2 0162 017. 解:因为|-2 0152 016|=2 0152 016,|-2 0162 017|=2 0162 017,且2 0152 016<2 0162 017, 所以-2 0152 016>-2 0162 017.类型2 巧用绝对值的性质求字母的值3.已知|a|=3,|b|=13,且a <0<b ,则a ,b 的值分别为(B )A .3,13B .-3,13C .-3,-13D .3,-134.已知|a|=2,|b|=3,且b<a ,试求a 、b 的值.解:因为|a|=2,所以a =±2. 因为|b|=3,所以b =±3. 因为b<a ,所以a =2,b =-3或a =-2,b =-3.5.已知|x -3|+|y -5|=0,求x +y 的值.解:由|x -3|+|y -5|=0,得 x -3=0,y -5=0, 即x =3,y =5.所以x +y =3+5=8.6.已知|2-m|+|n -3|=0,试求m +2n 的值.解:因为|2-m|+|n -3|=0,且|2-m|≥0,|n -3|≥0, 所以|2-m|=0,|n -3|=0. 所以2-m =0,n -3=0. 所以m =2,n =3.所以m +2n =2+2×3=8.7.已知|a -4|+|b -8|=0,求a +bab的值.解:因为|a -4|+|b -8|=0, 所以|a -4|=0,|b -8|=0. 所以a =4,b =8. 所以a +b ab =1232=38.类型3 绝对值在生活中的应用8.某汽车配件厂生产一批零件,从中随机抽取6件进行检验,比标准直径长的毫米数记为正数,比标准直径短的毫米数记为负数,检查记录如下表(单位:毫米):序号 1 2 3 4 5 6 误差/毫米+0.5-0.150.1-0.10.2(1)哪3件零件的质量相对来讲好一些?怎样用学过的绝对值知识来说明这些零件的质量好?(2)若规定与标准直径误差不超过0.1毫米的为优等品,在0.1毫米~0.3毫米(不含0.1毫米和0.3毫米)范围内的为合格品,不小于0.3毫米的为次品,则这6件产品中分别有几件优等品、合格品和次品?解:(1)因为|+0.5|=0.5,|-0.15|=0.15,|0.1|=0.1,|0|=0,|-0.1|=0.1,|0.2|=0.2, 又因为0<0.1<0.15<0.2<0.5,所以第3件、第4件、第5件零件的质量相对来讲好一些. (2)由绝对值可得出:有3件优等品,2件合格品和1件次品.9.已知蜗牛从A 点出发,在一条数轴上来回爬行,规定:向正半轴运动记作“+”,向负半轴运动记作“-”,从开始到结束爬行的各段路程(单位:cm )依次为:+7,-5,-10,-8,+9,+12,+4,-6.若蜗牛的爬行速度为每秒12cm ,请问蜗牛一共爬行了多少秒?解:(|+7|+|-5|+|-10|+|-8|+|+9|+|+12|+|+4|+|-6|)÷12=122(秒).答:蜗牛一共爬行了122秒.10.司机小李某天下午的营运全是在南北走向的鼓楼大街进行的.假定向南为正,向北为负,他这天下午行车里程如下(单位:km ):+15,-3,+14,-11,+10,+4,-26.(1)小李在送第几位乘客时行车里程最远?(2)若汽车耗油量为0.1 L /km ,这天下午汽车共耗油多少L? 解:(1)小李在送最后一位乘客时行车里程最远,是26 km .(2)总耗油量为0.1×(|+15|+|-3|+|+14|+|-11|+|+10|+|+4|+|-26|)=8.3(L ).11.在活动课上,有6名学生用橡皮泥做了6个乒乓球,直径可以有0.02毫米的误差,超过规定直径的毫米数记作正数,不足的记作负数,检查结果如下表:做乒乓球 的同学 李明 张兵 王敏 余佳 赵平 蔡伟 检测 结果+0.031-0.017+0.023-0.021+0.022-0.011(1)请你指出哪些同学做的乒乓球是合乎要求的?(2)指出合乎要求的乒乓球中哪个同学做的质量最好,6名同学中,哪个同学做的质量较差? (3)请你对6名同学做的乒乓球质量按照最好到最差排名; (4)用学过的绝对值知识来说明以上问题. 解:(1)张兵、蔡伟.(2)蔡伟做的质量最好,李明做的质量较差. (3)蔡伟、张兵、余佳、赵平、王敏、李明.(4)这是绝对值在实际生活中的应用,对误差来说绝对值越小越好.专题训练(二) 有理数的运算题组1 有理数的加、减、乘、除、乘方运算 1.计算:(1)(-3)+(-9); 解:原式=-12. (2)-4.9+3.7; 解:原式=-1.2.(3)(-13)+34;解:原式=512.(4)0-9;解:原式=-9. (5)(-3)-(-5); 解:原式=2. (6)-712-914;解:原式=-1634.(7)(-12.5)-(-7.5). 解:原式=-5.2.计算:(1)(-3)×5; 解:原式=-15.(2)(-34)×(-89);解:原式=23.(3)(-37)×(-45)×(-712);解:原式=-15.(4)(-4)×(-10)×0.5×0×2 017; 解:原式=0.(5)(-36)÷9; 解:原式=-4. (6)(-1225)÷(-35);解:原式=45.(7)(-12557)÷(-5).解:原式=2517.3.计算:(1)(0.3)2;解:原式=0.09.(2)(-10)3;解:原式=-1 000.(3)-(-2)4;解:原式=-16.(4)(112)3.解:原式=278.题组2 有理数的混合运算 4.计算:(1)16+(-25)+24-35;解:原式=16+24+[(-25)+(-35)] =40+(-60) =-20.(2)314+(-235)+534-825;解:原式=314+534+[(-235)+(-825)]=9+(-11)=-2.(3)(12-58-14)×(-24);解:原式=12×(-24)-58×(-24)-14×(-24)=-12+15+6=9.(4)719×(112-118+314)×(-214);解:原式=649×(-94)×(32-98+134)=-16×(32-98+134)=-16×32+16×98-16×134=-24+18-52=-58.(5)(-9)×(-11)÷3÷(-3); 解:原式=-99÷3÷3=-11.(6)(-48)÷8-(-5)×(-6); 解:原式=-6-30=-36.(7)2-(-4)+8÷(-2)+(-3).解:原式=2+4+(-4)+(-3)=2+(-3)=-1.5.计算:(1)-12-(-12)3÷4;解:原式=-1-(-18)÷4=-1+18×14=-1+132=-3132.(2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2); 解:原式=(-8)+(-3)×(16+2)-9÷(-2) =(-8)+(-3)×18+4.5 =(-8)+(-54)+4.5 =-62+4.5 =-57.5.(3)-32×(-13)2-(-2)3÷(-12)2;解:原式=-9×19-(-8)÷14=-1+32=31.(4)(-2)4÷(-8)-(-12)3×(-22);解:原式=16÷(-8)-(-18)×(-4)=(-2)-12=-212.(5)(-58)×(-4)2-0.25×(-5)×(-4)3;解:原式=(-58)×16-0.25×(-5)×(-64)=-10-80 =-90.(6)-14+(1-0.5)×13×[2-(-3)2].解:原式=-1+0.5×13×(2-9)=-1+0.5×13×(-7)=-1-76=-136.专题训练(三) 整式的加减运算计算:(1)(钦南期末)a 2b +3ab 2-a 2b ;解:原式=3ab 2.(2)2(a -1)-(2a -3)+3; 解:原式=4.(3)2(2a 2+9b)+3(-5a 2-4b);解:原式=-11a 2+6b.(4)3(x 3+2x 2-1)-(3x 3+4x 2-2);解:原式=2x 2-1.(5)(钦南期末)(2x 2-12+3x)-4(x -x 2+12);解:原式=2x 2-12+3x -4x +4x 2-2=6x 2-x -52.(6)3(x 2-x 2y -2x 2y 2)-2(-x 2+2x 2y -3);解:原式=3x 2-3x 2y -6x 2y 2+2x 2-4x 2y +6=5x 2-7x 2y -6x 2y 2+6.(7)-(2x 2+3xy -1)+(3x 2-3xy +x -3);解:原式=-2x 2-3xy +1+3x 2-3xy +x -3 =x 2-6xy +x -2.(8)(4ab -b 2)-2(a 2+2ab -b 2);解:原式=4ab -b 2-2a 2-4ab +2b 2=-2a 2+b 2.(9)-3(2x 2-xy)+4(x 2+xy -6);解:原式=-6x 2+3xy +4x 2+4xy -24=-2x 2+7x(10)(钦州期中)2a 2-[-5ab +(ab -a 2)]-2ab.解:原式=2a 2+5ab -ab +a 2-2ab=3a 2+2ab.专题训练(四) 整式的化简求值类型1 化简后直接代入求值1.(柳州期中)先化简,再求值:5x 2+4-3x 2-5x -2x 2-5+6x ,其中x =-3.解:原式=(5-3-2)x 2+(-5+6)x +(4-5) =x -1.当x =-3时,原式=-3-1=-4.2.(北流期中)先化简,再求值:(3a 2b -2ab 2)-2(ab 2-2a 2b),其中a =2,b =-1.解:原式=3a 2b -2ab 2-2ab 2+4a 2b=7a 2b -4ab 2.当a =2,b =-1时,原式=-28-8=-36. 3.先化简,再求值:2(x +x 2y)-23(3x 2y +32x)-y 2,其中x =1,y =-3.解:原式=2x +2x 2y -2x 2y -x -y 2=x -y 2.当x =1,y =-3时,原式=1-9=-8.4.(钦南期末)先化简,再求值:2x 2y -[2xy 2-2(-x 2y +4xy 2)],其中x =12,y =-2.解:原式=2x 2y -2xy 2-2x 2y +8xy 2=6xy 2.当x =12,y =-2时,原式=6×12×4=12.5.(南宁四十七中月考)先化简,再求值:2(x 2y +xy)-3(x 2y -xy)-4x 2y ,其中x ,y 满足|x +1|+(y -12)2=0.解:原式=2x 2y +2xy -3x 2y +3xy -4x 2y=-5x 2y +5xy.因为|x +1|+(y -12)2=0,所以x =-1,y =12.故原式=-52-52=-5.类型2 整体代入求值6.若a 2+2b 2=5,求多项式(3a 2-2ab +b 2)-(a 2-2ab -3b 2)的值.解:原式=3a 2-2ab +b 2-a 2+2ab +3b 2=2a 2+4b 2.当a 2+2b 2=5时,原式=2(a 2+2b 2)=10.m+n-2+(mn+3)2=0,求2(m+n)-2[mn+(m+n)]-3[2(m+n)-3mn]的值.7.已知||解:由已知条件知m+n=2,mn=-3,所以原式=2(m+n)-2mn-2(m+n)-6(m+n)+9mn=-6(m+n)+7mn=-12-21=-33.专题训练(五) 图形的规律探索——教材P70T10的变式与应用教材母题:(教材P70T10)如图所示,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有n(n>1)个点,每个图形总的点数S是多少?当n=5,7,11时,S是多少?【思路点拨】观察图形,可得到点的总数S与n之间的关系,用含n的式子表示S,便可分别求出当n=5,7,11时,S的值.【解答】观察图形,当n=2时,有两排点,总的点数为1+2=3(个);当n=3时,有三排点,总的点数为1+2+3=6(个);当n=4时,有四排点,总的点数为1+2+2+4=9(个);当n=5时,有五排点,总的点数为1+2+2+2+5=12(个).根据此规律,可知点的总数S=1+2(n-2)+n=3n-3,当n=7时,S=3×7-3=18;当n=11时,S=3×11-3=30.故当n=5,7,11时,S的值分别是12,18,30.【方法归纳】解决图形规律探索问题,首先从简单的基本图形入手,随着“序号”或“编号”增加时,后一个图形与前一个图形相比,在数量上的变化情况或图形变化情况,找出变化规律,从而推出一般性结论.1.如图是用相同长度的小棒摆成的一组有规律的图案,其中图1需要4根小棒,图2需要10根小棒,…,按此规律摆下去,则第11个图案所需小棒的根数为(C)A.70 B.68 C.64 D.582.(荆州中考)如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成下列图案.若第n个图案中有2 017个白色纸片,则n的值为(B)A.671 B.672 C.673 D.6743.(益阳中考)小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是13枚.4.如图是用棋子摆成的图案:根据图中棋子的排列规律解决下列问题:(1)第4个图中有22枚棋子,第5个图中有32枚棋子;(2)写出你猜想的第n 个图中棋子的枚数(用含n 的式子表示)是n +2+n 2.5.下面是用棋子摆成的“小房子”.摆第10个这样的“小房子”需要多少枚棋子?摆第n 个这样的“小房子”呢?你是如何得到的?解:第1个“小房子”,下边正方形棋子4×2-4=4(枚),上边1枚,共4+1=5(枚); 第2个“小房子”,下边正方形棋子4×3-4=8(枚),上边3枚,共8+3=11(枚); 第3个“小房子”,下边正方形棋子4×4-4=12(枚),上边5枚,共12+5=17(枚); 第4个“小房子”,下边正方形棋子4×5-4=16(枚),上边7枚,共16+7=23(枚); …第n 个“小房子”,下边正方形棋子4×(n+1)-4=4n(枚),上边(2n -1)枚,共4n +2n -1=(6n -1)(枚).当n =10时,6n -1=6×10-1=59(枚).专题训练(六) 一元一次方程的解法1.解下列方程:(1)(南宁校级月考)2x +5=5x -7; 解:2x -5x =-7-5, -3x =-12, x =4.(2)12x +x +2x =140; 解:72x =140,x =40.(3)56-8x =11+x ; 解:-8x -x =11-56, -9x =-45, x =5.(4)43x +1=5+13x. 解:43x -13x =5-1,x =4.2.解下列方程:(1)(玉林期末)10(x -1)=5; 解:10x -10=5, 10x =5+10, 10x =15, x =32.(2)4x -3(20-2x)=10; 解:4x -60+6x =10, 4x +6x =60+10, 10x =70, x =7.(3)3(x -2)+1=x -(2x -1); 解:3x -6+1=x -2x +1, 4x =6, x =1.5.(4)4(2x -3)-(5x -1)=7; 解:8x -12-5x +1=7, 8x -5x =7+12-1, 3x =18, x =6.(5)4y -3(20-y)=6y -7(9-y). 解:4y -60+3y =6y -63+7y. 4y +3y -6y -7y =60-63, -6y =-3, y =12. 3.解下列方程:(1)2x -13-2x -34=1;解:4(2x -1)-3(2x -3)=12, 8x -4-6x +9=12, 8x -6x =4-9+12, 2x =7, x =72.(2)16(3x -6)=25x -3; 解:5(3x -6)=12x -90, 15x -30=12x -90, 15x -12x =-90+30, 3x =-60, x =-20.(3)2(x +3)5=32x -2(x -7)3;解:12(x +3)=45x -20(x -7),12x +36=45x -20x +140, 12x -45x +20x =-36+140, -13x =104, x =-8.(4)2x -13-10x +16=2x +12-1;解:2(2x -1)-(10x +1)=3(2x +1)-6, 4x -2-10x -1=6x +3-6, 4x -10x -6x =3-6+2+1, -12x =0, x =0.(5)x +45-(x -5)=x +33-x -22.解:6(x +4)-30(x -5)=10(x +3)-15(x -2), 6x +24-30x +150=10x +30-15x +30, 6x -30x -10x +15x =30+30-24-150, -19x =-114, x =6.4.解下列方程: (1)x -40.2-2.5=x -30.05;解:原方程整理,得5x -20-2.5=20x -60. 移项,得5x -20x =-60+20+2.5. 合并同类项,得-15x =-37.5. 系数化为1,得x =2.5.(2)0.5x +0.90.5+x -53=0.01+0.02x 0.03.解:原方程整理,得5x +95+x -53=1+2x 3.去分母,得15x +27+5x -25=5+10x.移项、合并同类项,得10x =3. 系数化为1,得x =0.3. 5.解方程:3|x|-5=|x|-22+1.解:6|x|-10=|x|-2+2, 5|x|=10, |x|=2, x =2或-2.6.解下列方程:(1)119x +27=29x -57;解:119x -29x =-57-27,x =-1.(2)278(x -3)-463(6-2x)-888(7x -21)=0.解:278(x -3)+463×2(x-3)-888×7(x-3)=0, (278+463×2-888×7)(x-3)=0, x =3.专题训练(七) 一元一次方程的应用1.某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船3 h ,已知船在静水中的速度是8 km /h ,水流速度是2 km /h ,若A 、C 两地距离为2 km (A 、B 、C 三地在一条直线上),则A 、B 两地间的距离是10或252k m . 2.兄弟两人由家里去学校,弟每小时走6里,哥每小时走8里,哥晚出发10分钟,结果两人同时到校,学校离家有多远?解:设学校离家有x 里.由题意,得x 6-1060=x8.解得x =4. 答:学校离家有4里.3.用两台水泵从同一池塘中向外抽水,单开甲泵5小时可抽完,单开乙泵2.5小时便能抽完.(1)如果两台水泵同时抽水,多长时间能把水抽完?(2)如果甲泵先抽2小时,剩下的由乙泵来抽,乙泵用多少时间才能把水抽完? 解:(1)设两台水泵同时抽水,x 小时能抽完.由题意,得x 5+x 2.5=1,解得x =53. 答:两台水泵同时抽水,53小时能把水抽完.(2)设乙泵用y 小时才能抽完,由题意,得 15×2+12.5y =1,解得y =1.5. 答:乙泵用1.5小时才能把水抽完.4.一辆卡车在公路上匀速行驶,起初看到的里程碑上是一个两位数,过了1小时,里程碑上的数恰好是原来的个位上的数与十位上的数交换位置后所得到的两位数,又过了1小时,里程碑上的数是一个三位数,这个三位数的百位上的数与个位上的数分别是起初看到的两位数的十位上的数与个位上的数,而十位上的数为0,且起初的两位数个位上的数比十位上的数的5倍多1,求卡车的速度.解:设起初看到的两位数十位上的数是x ,则个位上的数是5x +1.由题意,得 [10(5x +1)+x]-[10x +(5x +1)]=(100x +5x +1)-[10(5x +1)+x]. 解得x =1.则5x +1=6,61-16=45(千米). 答:卡车的速度是45千米/时.5.某会议厅主席台上方有一个长12.8 m 的长条形(长方形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空∶字宽∶字距=9∶6∶2,如图所示:根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少. 解:设边空、字宽、字距分别为9x cm 、6x cm 、2x cm .由题意,得 9x ×2+6x×18+2x(18-1)=1 280. 解得x =8.则9x =72,6x =48,2x =16.答:边空为72 cm ,字宽为48 cm ,字距为16 cm .6.某次篮球联赛共有十支队伍参赛,部分积分表如下:队名 比赛场次 胜场 负场 积分 A 16 12 4 28 B1610626C 16 8 8 24 D161616其中一队的胜场总积分能否等于负场总积分?请说明理由. 解:由D 队可知,负一场积分为:16÷16=1(分), 则由A 队可知,胜一场积分为:28-4×112=2(分).设其中一队的胜场为x 场,则负场为(16-x)场,则 2x =16-x ,解得x =163.因为场数必须是整数, 所以x =163不符合实际.所以没有一队的胜场总积分能等于负场总积分.7.某商场在元旦期间搞促销活动,一次性购物不超过2 000元不优惠;超过2 000元,但不超过5 000元,按9折优惠;超过5 000元,超过部分按8折优惠,其中的5 000元仍按9折优惠.某人两次购物分别用了1 340元和4 660元.问:(1)此人的两次购物,若物品不打折,需多少元钱? (2)此人两次购物共节省多少元钱?(3)若将两次购物的钱合起来,一次购买相同的商品,是否更节省?请说明理由. 解:(1)因为2 000×90%=1 800(元)>1 340元,所以购1 340元的商品未优惠. 又因为5 000×90%=4 500(元)<4 660元,所以购4 660元的商品有两个等级优惠. 设其售价为x 元,依题意,得5 000×90%+(x -5 000)×80%=4 660, 解得x =5 200.所以如果不打折,那么分别需1 340元和5 200元,共需6 540元. (2)共节省6 540-(1 340+4 660)=540(元).(3)6 540元的商品优惠价为5 000×90%+(6 540-5 000)×80%=5 732(元), 1 340+4 660=6 000(元), 因为5 732<6 000,所以若一次购买相同的商品,更节省.8.一个车队共有n(n 为正整数)辆小轿车,正以每小时36千米的速度在一条笔直的街道上匀速行驶,行驶时车与车的间隔均为5.4米,甲停在路边等人,他发现该车队从第一辆车的车头到最后一辆的车尾经过自己身边共用了20秒的时间,假设每辆车的车长均为4.87米.(1)求n 的值;(2)若乙在街道一侧的人行道上与车队同向而行,速度为v 米/秒,当车队的第一辆车的车头从他身边经过了15秒钟时,为了躲避一只小狗,他突然以3v 米/秒的速度向前跑,这样从第一辆车的车头到最后一辆车的车尾经过他身边共用了35秒,求v 的值.解:(1)36千米/时=10米/秒,则4.87n +5.4(n -1)=20×10,解得n =20.(2)车队总长度:20×4.87+5.4×19=200(米). 由题意,得(10-v)×15+(10-3v)×(35-15)=200,解得v =2.9.一辆汽车从A 地驶往B 地,前三分之一路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60 km /h ,在高速公路上行驶的速度为100 km /h ,汽车从A 地到B 地一共行驶了2.2 h .请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用一元一次方程解决的问题,并写出解答过程.解:答案不唯一,例如:①问题:普通公路和高速公路各为多少km? 解:设普通公路长为x km ,根据题意,得x 60+2x100=2.2.解得x =60. 则2x =120.答:普通公路和高速公路各为60 km 和120 km .②问题:汽车在普通公路和高速公路上各行驶了多少h? 解:设汽车在普通公路上行驶了x h ,根据题意,得 60x ×2=100(2.2-x).解得x =1. 则2.2-x =1.2.答:汽车在普通公路上和高速公路上分别行驶了 1 h 和1.2 h .专题训练(八) 线段的计算——教材P128练习T3的变式与应用教材母题:(教材P 128练习T 3)如图,点D 是线段AB 的中点,C 是线段AD 的中点,若AB =4 cm ,求线段CD 的长度.【解答】 因为点D 是线段AB 的中点,AB =4 cm , 所以AD =12AB =12×4=2(c m ).因为C 是线段AD 的中点, 所以CD =12AD =12×2=1(cm ).【方法归纳】 结合图形,将待求线段长转化为已知线段的和、差形式.若题目中出现线段的中点,常利用线段中点的性质,结合线段的和、差、倍、分关系求解.同时应注意题目中若没有图形,或点的位置关系不确定时,常需要分类讨论,确保答案的完整性.1.如图,线段AB =22 cm ,C 是线段AB 上一点,且AC =14 cm ,O 是AB 的中点,求线段OC 的长度.解:因为点O 是线段AB 的中点,AB =22 cm , 所以AO =12AB =11 cm .所以OC =AC -AO =14-11=3(cm ).2.如图,已知C 是AB 的中点,D 是AC 的中点,E 是BC 的中点.(1)若DE =9 cm ,求AB 的长; (2)若CE =5 cm ,求DB 的长.解:(1)因为D 是AC 的中点,E 是BC 的中点, 所以AC =2CD ,BC =2CE.所以AB =AC +BC =2DE =18 cm . (2)因为E 是BC 的中点, 所以BC =2CE =10 cm .因为C 是AB 的中点,D 是AC 的中点, 所以DC =12AC =12BC =5 cm .所以DB =DC +BC =5+10=15(cm ).3.如图,B ,C 两点把线段AD 分成2∶5∶3三部分,M 为AD 的中点,BM =6 cm ,求CM 和AD 的长.解:设AB =2x cm ,BC =5x cm ,CD =3x cm , 所以AD =AB +BC +CD =10x cm . 因为M 是AD 的中点, 所以AM =MD =12AD =5x cm .所以BM =AM -AB =5x -2x =3x(cm ). 因为BM =6 cm , 所以3x =6,x =2.故CM =MD -CD =5x -3x =2x =2×2=4(cm ), AD =10x =10×2=20(cm ).4.如图,线段AB =1 cm ,延长AB 到C ,使得BC =32AB ,反向延长AB 到D ,使得BD =2BC ,在线段CD 上有一点P ,且AP =2 cm .(1)请按题目要求画出线段CD ,并在图中标出点P 的位置; (2)求出线段CP 的长度.解:(1)线段CD 和点P 的位置如图1、2所示.(2)因为AB =1 cm , 所以BC =32AB =32 cm .所以BD =2BC =3 cm .当点P 在点A 的右边时,CP =AB +BC -AP =12cm ;当点P 在点A 的左边时,点P 与点D 重合,CP =BD +BC =92 cm .专题训练(九) 角的计算类型1 利用角度的和、差关系找出待求的角与已知角的和、差关系,根据角度和、差来计算. 1.如图,已知∠AOC=∠BOD=75°,∠BOC =30°,求∠AOD 的度数.解:因为∠AOC=75°,∠BOC =30°,所以∠AO B =∠AOC-∠BOC=75°-30°=45°. 又因为∠BOD=75°,所以∠AOD=∠AOB+∠BOD=45°+75°=120°.2.将一副三角板的两个顶点重叠放在一起.(两个三角板中的锐角分别为45°、45°和30°、60°)(1)如图1所示,在此种情形下,当∠DAC=4∠BAD 时,求∠CAE 的度数; (2)如图2所示,在此种情形下,当∠ACE=3∠BCD 时,求∠ACD 的度数.解:(1)因为∠BAD+∠DAC=90°,∠DAC =4∠B AD , 所以5∠BAD=90°,即∠BAD=18°. 所以∠DAC=4×18°=72°. 因为∠DAE =90°,所以∠CAE=∠DAE-∠DAC=18°.(2)因为∠BCE=∠DCE-∠BCD=60°-∠BCD,∠ACE =3∠BCD, 所以∠ACB=∠ACE+∠BCE=3∠BCD+60°-∠BCD=90°. 解得∠BCD=15°.所以∠ACD=∠ACB+∠BCD=90°+15°=105°.类型2 利用角平分线的性质角的平分线将角分成两个相等的角,利用角平分线的这个性质,再结合角的和、差关系进行计算. 3.如图,点A ,O ,E 在同一直线上,∠AOB =40°,∠EOD =28°46′,OD 平分∠COE,求∠COB 的度数.解:因为∠EOD=28°46′,OD 平分∠COE, 所以∠COE=2∠EOD=2×28°46′=57°32′.。

七年级上册数学练习册答案人教版(2019)

七年级上册数学练习册答案人教版(2019)

七年级上册数学练习册答案人教版(2019)第二十一章二次根式§21.1二次根式(一)一、1. C 2. D 3. D二、1. ,9 2. , 3. 4. 1三、1.50m 2.(1) (2) >-1 (3) (4) §21.1二次根式(二)一、1. C 2.B 3.D 4. D二、1. , 2.1 3. ; 三、1. 或-32.(1) ;(2)5; (3) ; (4) ; (5) ;(6) ;3. 原式= §21.2二次根式的乘除(一)一、1.C 2. D 3.B二、1.3 2. 3.(1) ; (2) ; 4. 6三、1.(1) (2) (3) 5 2.(1) (2) (3)3. ,所以是倍.§21.2二次根式的乘除(三)一、1.D 2.A 3.B二、1. 2. , , 3.1 4. 三、1.(1) (2)10 2. 3.( ,0) (0, );§21.3二次根式的加减(一)一、1.C 2.A 3.C二、1.(答案不,如:、 ) 2. 45所以王师傅的钢材不够用.§21.3二次根式的加减(三)一、1. C 2.B 3.D二、 1. ; 2. 0, 3. 1 (4) 三、 1.(1) (2)5 2.(1)(2) 3. 6第二十二章一元二次方程§22.1一元二次方程(一)一、1.C 2.D 3.D二、1. 2 2. 3 3. –1三、1.略 2. 一般形式:§22.1一元二次方程(二)一、1.C 2.D 3.C二、1. 1(答案不) 2. 3. 2三、1.(1) (2)(3) (4) 2.以1为根的方程为,以1和2为根的方程为 3.依题意得,∴ .∵ 不合题意,∴ .§22.2降次-解一元二次方程(一)一、1.C 2.C 3.D二、1. 2. 3. 1三、1.(1) (2) (3) (4) 2.解:设靠墙一边的长为米,则整理,得,解得∵墙长为25米,∴ 都符合题意. 答:略.§22.2降次-解一元二次方程(二)一、1.B 2.D 3. C二、1.(1)9,3 (2) 5 (3) , 2. 3. 1或三、1.(1) (2) (3) (4)2.证明:§22.2降次-解一元二次方程(三)一、1.C 2.A 3.D二、1. 2. 24 3. 0三、1.(1) (2)(3) (4) 2.(1)依题意,得∴ ,即当时,原方程有两个实数根.(2)由题意可知> ∴ > ,取,原方程为解这个方程,得 .§22.2降次-解一元二次方程(四)一、1.B 2.D 3.B二、1.-2, 2. 0或 3. 10三、1.(1) (2) (3)(4) (5) (6) , 2.把代入方程得,整理得∴§22.2降次-解一元二次方程(五)一、1.C 2.A 3.A二、1. ,,, . 2、6或—2 3、4三、1.(1) (2) (3) (4) 2.∵ ∴ 原方程为解得, 3.(1) >∴ ,∴方程有两个不相等的实数根.(2)∵ ,,又∴ ∴ §22.3实际问题与一元二次方程(一)一、1.B 2.D二、1. 2. 3. 三、1.解:设这辆轿车第二年、第三年平均每年的折旧率为,则,解得, (舍去). 答:略2.解:设年利率为,得,解得, (舍去).答:略§22.3实际问题与一元二次方程(二)一、1.C 2.B二、1. , 2. 3. 三、1.解:设这种运输箱底部宽为米,则长为米,得,解得 (舍去),这种运输箱底部长为米,宽为米.由长方体展开图知,要购买矩形铁皮面积为:,要做一个这样的运输箱要花 (元).2.解:设道路宽为米,得,解得 (舍去).答:略§22.3实际问题与一元二次方程(三)一、1.B 2.D二、1. 1或2 2. 24 3. 三、1.设这种台灯的售价为每盏元,得,解得当时, ;当时,答:略2.设从A处开始经过小时侦察船最早能侦察到军舰,得,解得, > ,最早2小时后,能侦察到军舰.。

人教版 七年级数学上册 第4章 几何图形初步 培优训练(含答案)

人教版 七年级数学上册 第4章 几何图形初步 培优训练(含答案)

人教版七年级数学第4章几何图形初步培优训练一、选择题1. 如图所示的几何体属于球的是()2. 下列各选项中,点A,B,C不在同一直线上的是 ()A.AB=5 cm,BC=15 cm,AC=20 cmB.AB=8 cm,BC=6 cm,AC=10 cmC.AB=11 cm,BC=21 cm,AC=10 cmD.AB=30 cm,BC=16 cm,AC=14 cm3. 图中的几何体的面数是()A.5B.6C.7D.84. 如图所示的几何体是由一些小正方体组成的,那么从左面看这个几何体得到的图形是()5. 分别从正面、左面、上面看如图所示的立体图形,得到的平面图形都一样的是()A.①②B.①③C.②③D.①④6. [2019·北京一模]下列几何体中,是圆锥的为()7. 如图所示,下列对图形描述不正确的是()A.直线ABB.直线BCC.射线ACD.射线AB8. 如图,点B,C,D依次在射线AP上,则下列结论中错误的是()A.AD=2aB.BC=a-bC.BD=a-bD.AC=2a-b9. 已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为()A.28°B.112°C.28°或112°D.68°10. 图(1)(2)中所有的正方形完全相同,将图(1)的正方形放在图(2)中①②③④的某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④二、填空题11. 如图是由若干个大小相同的小正方体堆砌而成的立体图形,那么从正面、左面及上面看所得到的平面图形中面积最小的是从________面看得到的平面图形.12. 如图,观察生活中的物体,根据它们所呈现的形状,填出与它们类似的立体图形的名称:(1)______;(2)______;(3)__________;(4)________.13. 苏轼的诗句“横看成岭侧成峰,远近高低各不同”说明的现象是.14. 如图,点B,O,D在同一条直线上,若∠1=15°,∠2=105°,则∠AOC=°.15. 图中可用字母表示出的射线有条.16. 如图4,O是直线AB上的一点,OC,OD,OE是从点O引出的三条射线,且∠1∶∠2∶∠3∶∠4=1∶2∶3∶4,则∠5=°.三、作图题17. 如图①②,画出绕虚线旋转一周得到的立体图形.18. 如图①,正方体的下半部分涂上了黑色油漆,在如图②所示的正方体的展开图中把刷油漆的部分涂黑(图②中涂黑部分是正方体的下底面).四、解答题19. 小明和小亮在讨论“射击时为什么枪管上要有准星?”这一问题.小明说:“过两点有且只有一条直线,所以枪管上要有准星.”小亮说:“若将人眼看成一点,准星看成一点,目标看成一点,这不就有三点了吗?不是三点确定一条直线吗?”你认为他们两个谁的说法正确?20. 如图,下列各几何体的表面中包含哪些平面图形?21. 计算:(1)40°26'+30°30'30″÷6;(2)13°53'×3-32°5'31″.22. 如图①是一张长为4 cm,宽为3 cm的长方形纸片,将该长方形纸片分别绕长、宽所在的直线旋转一周(如图②③),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大.23. 如图,已知∠AOD=150°.(1)如图(a),∠AOC=∠BOD=90°,则∠BOC的余角是°,∠BOC=°.(2)如图(b),已知∠AOB与∠BOC互为余角.①若OB平分∠AOD,求∠BOC的度数;②若∠COD是∠BOC的4倍,求∠BOC的度数.人教版七年级数学第4章几何图形初步培优训练-答案一、选择题1. 【答案】B2. 【答案】B[解析] 选项B中,因为AB=8 cm,BC=6 cm,AC=10 cm,所以AB+BC≠AC.所以选项B符合题意.3. 【答案】B[解析] 图中几何体是五棱锥,有5个侧面和1个底面,共有6个面.4. 【答案】A5. 【答案】A[解析] 分别从正面、左面、上面看球,得到的平面图形都是圆;分别从正面、左面、上面看正方体,得到的平面图形都是正方形.6. 【答案】D7. 【答案】B8. 【答案】C[解析] 由题图可知BD=a,所以选项C是错误的.9. 【答案】C[解析] 如图,若OC在∠AOB内部,则∠BOC1=∠AOB-∠AOC1=70°-42°=28°;若OC在∠AOB外部,则∠BOC2=∠AOB+∠AOC2=70°+42°=112°.10. 【答案】A二、填空题11. 【答案】左[解析] 该几何体从正面看是由5个小正方形组成的平面图形;从左面看是由3个小正方形组成的平面图形;从上面看是由5个小正方形组成的平面图形,故面积最小的是从左面看得到的平面图形.12. 【答案】(1)圆柱(2)圆锥(3)圆柱、圆锥的组合体(4)球[解析] 立体图形实际上是由物体抽象得来的.13. 【答案】观察同一个物体,由于方向和角度不同,看到的图形往往不同14. 【答案】90[解析] 因为∠2=105°,所以∠BOC=180°-∠2=75°,所以∠AOC=∠1+∠BOC=15°+75°=90°.15. 【答案】5[解析] 有OA,AB,BC,OP,PE,共5条射线.16. 【答案】60[解析] 设∠1=x°,则∠2=2x°,∠3=3x°.依题意,得x+2x+3x=180,解得x=30,所以∠4=4x°=120°,∠5=180°-120°=60°.三、作图题17. 【答案】解:如图所示:18. 【答案】解:如图所示.四、解答题19. 【答案】解:小明的说法正确,小亮的说法不正确.如果将人眼看成一点,准星看成一点,目标看成一点,那么要想射中目标,目标必须在人眼与准星确定的直线上,换句话说要想射中目标就必须使准星在人眼与目标所确定的直线上.20. 【答案】(1)长方形(2)圆(3)三角形、平行四边形21. 【答案】解:(1)40°26'+30°30'30″÷6=40°26'+5°5'5″=45°31'5″.(2)13°53'×3-32°5'31″=41°39'-32°5'31″=9°33'29″.22. 【答案】解:绕长方形的长所在的直线旋转一周得到的圆柱的底面半径为3 cm,高为4 cm,体积为π×32×4=36π(cm3).绕长方形的宽所在的直线旋转一周得到的圆柱的底面半径为4 cm,高为3 cm,体积为π×42×3=48π(cm3).因此绕长方形的宽所在的直线旋转一周得到的圆柱的体积大.23. 【答案】解:(1)因为∠AOC=∠BOD=90°,所以∠BOC+∠AOB=90°,∠BOC+∠COD=90°.所以∠BOC的余角是∠AOB和∠COD.因为∠AOD=150°,∠AOC=90°,所以∠COD=60°.因为∠BOD=90°,所以∠BOC=30°.故答案为60,30.(2)①因为∠AOB与∠BOC互为余角,所以∠AOC=∠AOB+∠BOC=90°.因为OB平分∠AOD,所以∠AOB=∠AOD=×150°=75°.所以∠BOC=∠AOC-∠AOB=90°-75°=15°.②由①知∠AOC=90°.因为∠COD=∠AOD-∠AOC=150°-90°=60°,且∠COD是∠BOC的4倍,所以∠BOC=15°.。

人教版初中七年级数学上册第一章《有理数》经典练习(含答案解析)(4)

人教版初中七年级数学上册第一章《有理数》经典练习(含答案解析)(4)

人教版初中七年级数学上册第一章《有理数》经典练习(含答案解析)(4)一、选择题1.(0分)如果a =14-,b =-2,c =324-,那么︱a ︱+︱b ︱-︱c ︱等于( ) A .-12 B .112C .12D .-112A 解析:A 【分析】逐一求出三个数的绝对值,代入原式即可求解. 【详解】1144a =-=,22b =-=,332244c =-= ∴原式=13122442+-=- 故答案为A . 【点睛】本题考查了求一个数的绝对值,有理数加减法混合运算,正数的绝对值为本身,0的绝对值为0,负数的绝对值是它的相反数.2.(0分)某测绘小组的技术员要测量A ,B 两处的高度差(A ,B 两处无法直接测量),他们首先选择了D ,E ,F ,G 四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A ,B 之间的高度关系为( ) A .B 处比A 处高 B .A 处比B 处高 C .A ,B 两处一样高 D .无法确定B解析:B 【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高. 【详解】 根据题意,得:()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+ =A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------= ∵1.5>0 ∴A B h h >【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.3.(0分)有理数a 、b 在数轴上,则下列结论正确的是( )A .a >0B .ab >0C .a <bD .b <0C解析:C 【分析】根据数轴的性质,得到b >0>a ,然后根据有理数乘法计算法则判断即可. 【详解】根据数轴上点的位置,得到b >0>a ,所以A 、D 错误,C 正确; 而a 和b 异号,因此乘积的符号为负号,即ab <0所以B 错误; 故选C . 【点睛】本题考查了数轴,以及有理数乘法,原点右侧的点表示的数大于原点左侧的点表示的数;异号两数相乘,符号为负号;本题关键是根据a 和b 的位置正确判断a 和b 的大小. 4.(0分)已知n 为正整数,则()()2200111n-+-=( )A .-2B .-1C .0D .2C解析:C 【解析】 【分析】根据-1的偶次幂等于1,奇次幂等于-1,即可求得答案. 【详解】 ∵n 为正整数, ∴2n 为偶数.∴(-1)2n +(-1)2001=1+(-1)=0 故选C. 【点睛】此题考查了有理数的乘方,关键点是正确的判定-1的偶次幂等于1,奇次幂等于-1. 5.(0分)若21(3)0a b -++=,则b a -=( ) A .-412B .-212C .-4D .1C解析:C 【解析】 【分析】根据非负数的性质可得a-1=0,b+3=0,求出a 、b 后代入式子进行计算即可得.由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.6.(0分)将(-3.4)3,(-3.4)4,(-3.4)5从小到大排列正确的是()A.(-3.4)3<(-3.4)4<(-3.4)5B.(-3.4)5<(-3.4)4<(-3.4)3C.(-3.4)5<(-3.4)3<(-3.4)4D.(-3.4)3<(-3.4)5<(-3.4)4C解析:C【解析】(-3.4)3、 (-3.4)5的积为负数,且(-3.4)3的绝对值小于 (-3.4)5的绝对值,所以(-3.4)3>(-3.4)5;(-3.4)4的积为正数,根据正数大于负数,即可得(-3.4)5<(-3.4)3<(-3.4)4,故选C.7.(0分)如果a,b,c为非零有理数且a + b + c = 0,那么a b c abca b c abc+++的所有可能的值为(A.0 B.1或- 1 C.2或- 2 D.0或- 2A解析:A【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(-1)+(-1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(-1)+(-1)+1=0,综上,a b c abca b c abc+++的值为0,故答案为:0.【点睛】此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键.8.(0分)若|a|=1,|b|=4,且ab<0,则a+b的值为()A.3±B.3-C.3 D.5± A解析:A【分析】通过ab<0可得a、b异号,再由|a|=1,|b|=4,可得a=1,b=﹣4或者a=﹣1,b=4;就可以得到a+b的值【详解】解:∵|a|=1,|b|=4,∴a=±1,b=±4,∵ab<0,∴a+b=1-4=-3或a+b=-1+4=3,故选A.【点睛】本题主要考查了绝对值的运算,先根据题意确定绝对值符号中数的正负再计算结果,比较简单.9.(0分)一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A.少5 B.少10 C.多5 D.多10D解析:D【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D.10.(0分)当A地高于海平面152米时,记作“海拔+152米”,那么B地低于海平面23米时,记作()A.海拔23米B.海拔﹣23米C.海拔175米D.海拔129米B解析:B【解析】由已知,当A地高于海平面152米时,记作“海拔+152米”,那么B地低于海平面23米时,则应该记作“海拔-23米”,故选B.二、填空题11.(0分)大肠杆菌每过20分钟便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成_____个.512【解析】分析:由于3小时有9个20分而大肠杆菌每过20分便由1个分裂成2个那么经过第一个20分钟变为2个经过第二个20分钟变为22个然后根据有理数的乘方定义可得结果详解:∵3小时有9个20分而解析:512【解析】分析:由于3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,然后根据有理数的乘方定义可得结果.详解:∵3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,⋯经过第九个20分钟变为29个,即:29=512个.所以,经过3小时后这种大肠杆菌由1个分裂成512个.故答案为512.点睛:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.12.(0分)小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a由题意得:-1<a<3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2【分析】根据题意可以确定被污染部分的取值范围,继而求出答案.【详解】设被污染的部分为a,由题意得:-1<a<3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2.故答案为0,1,2.【点睛】考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念.13.(0分)把35.89543精确到百分位所得到的近似数为________.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答解析:90【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【详解】解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90,故答案为:35.90.【点睛】本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.14.(0分)某商店营业员每月的基本工资为4000元,奖金制度是每月完成规定指标10000元营业额,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%.该商店的一名营业员九月份完成营业额13200元,则他九月份的收入为________元.4460【分析】工资应分两个部分:基本工资+奖金而奖金又分区间所以分段计算最后求和【详解】根据题意得他九月份工资为(元)故答案为:4460【点睛】主要考查了有理数的混合运算解题的关键是正确理解文字语解析:4460【分析】工资应分两个部分:基本工资+奖金,而奖金又分区间,所以分段计算,最后求和.【详解】++-⨯=(元).根据题意,得他九月份工资为4000300(1320010000)5%4460故答案为:4460.【点睛】主要考查了有理数的混合运算,解题的关键是正确理解文字语言中的关键词,找到其中的数量关系,列出式子计算即可.++-+++-++++-=_____.【分析】15.(0分)计算:(1)(2)(3)(4)(2019)(2020)第1个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两-解析:1010【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】=-+-++-=-----=-.原式(12)(34)(20192020)11111010-.故答案为:1010【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.16.(0分)分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运解析:0 【分析】根据图表运算程序,把输入的值-1,-2分别代入进行计算即可得解. 【详解】当输入1-时,输出的结果为14(3)514351-+---=-++-=; 当输入2-时,输出的结果为24(3)524350-+---=-++-=. 故答案为:①1;②0 【点睛】本题考查了有理数的加减混合运算,是基础题,读懂图表理解运算程序是解题的关键. 17.(0分)阅读理解:根据乘方的意义,可得:22×23=(2×2)×(2×2×2)=25.请你试一试,完成以下题目:(1)a 3•a 4=(a•a•a )•(a•a•a•a )=__; (2)归纳、概括:a m •a n =__;(3)如果x m =4,x n =9,运用以上的结论,计算:x m+n =__.a7am+n36【分析】(1)根据题意乘方的意义7个a 相乘可以写成a7即可解决;(2)根据题意总结规律可以知道是几个相同的数相乘指数相加即可解决;(3)运用以上的结论可以知道:xm+n =xm•xn 即解析:a 7 a m+n 36 【分析】(1)根据题意,乘方的意义,7个a 相乘可以写成a 7即可解决;(2)根据题意,总结规律,可以知道是几个相同的数相乘,指数相加即可解决; (3)运用以上的结论,可以知道:x m+n =x m •x n ,即可解决问题. 【详解】解:(1)根据材料规律可得a 3•a 4=(a•a•a )•(a•a•a•a )=a 7;(2)归纳、概括:a m •a n=mna a a a ⎛⎫⎛⎫⎪⎪⎪⎪⎝⎭⎝⎭=a m+n ; (3)如果x m =4,x n =9,运用以上的结论,计算:x m+n =x m •x n =4×9=36.故答案为:a 7,a m+n ,36. 【点睛】本题主要考查了有理数的乘方的认识,能够读懂乘方的意义并且能够仿照例题写出答案是解决本题的关键.18.(0分)气温由﹣20℃下降50℃后是__℃.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.19.(0分)截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为_____.051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10nn为整数位数减1【详解】解:1051万=10510000=1051×107故答案为:1051×107【点睛】本题考查了科学解析:051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.【详解】解:1051万=10510000=1.051×107.故答案为:1.051×107.【点睛】本题考查了科学记数法-表示较大的数,科学记数法中a的要求和10的指数n的表示规律为关键,20.(0分)在数轴上,与表示-2的点的距离是4个单位的点所对应的数是___________.2或-6【分析】分在-2的左边和右边两种情况讨论求解即可【详解】解:如图在-2的左边时-2-4=-6在-2右边时-2+4=2所以点对应的数是-6或2故答案为-6或2【点睛】本题考查了数轴难点在于分情解析:2或-6【分析】分在-2的左边和右边两种情况讨论求解即可.【详解】解:如图,在-2的左边时,-2-4=-6,在-2右边时,-2+4=2,所以,点对应的数是-6或2.故答案为-6或2.【点睛】本题考查了数轴,难点在于分情况讨论,作出图形更形象直观.三、解答题21.(0分)在数轴上,一只蚂蚁从原点O出发,它先向左爬了2个单位长度到达点A,再向右爬了3个单位长度到达点B,最后向左爬了9个单位长度到达点C.(1)写出A,B,C三点表示的数;(2)根据点C在数轴上的位置回答,蚂蚁实际上是从原点出发,向什么方向爬了几个单位长度?解析:(1)A,B,C三点表示的数分别是-2,1,-8;(2)向左爬了8个单位.【分析】(1)向左用减法,向右用加法,列式求解即可写出答案;(2)根据C点表示的数,向右为正,向左为负,继而得出答案.【详解】解:(1)A点表示的数是0-2=-2,B点表示的数是-2+3=1,C点表示的数是1-9=-8;(2)∵O点表示的数是0;C点表示的数是-8,∴蚂蚁实际上是从原点出发,向左爬了8个单位.【点睛】本题考查了数轴的知识及有理数的加减法的应用,属于基础题,比较简单,理解向左用减法,向右用加法,是关键.22.(0分)一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?解析:(1)回到了球门线的位置;(2)11米;(3)56米【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【详解】解:(1)(+5)+(﹣4)+(+10)+(﹣8)+(﹣6)+(+13)+(﹣10)=(5+10+13)-(4+8+6+10)=28-28=0.答:守门员最后回到了球门线的位置; (2)(3)|+5|+|﹣4|+|+10|+|﹣8|+|﹣6|+|+13|+|﹣10| =5+4+10+8+6+13+10 =56(米).答:守门员全部练习结束后,他共跑了56米. 【点睛】本题考查了正数和负数以及有理数加减运算的应用等知识点,解题的关键是理解“正”和“负”的相对性,确定具有相反意义的量.23.(0分)(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯-解析:(1)-29;(2)13. 【分析】(1)利用乘法分配律进行简便运算,即可得出结果; (2)先计算有理数的乘方与乘法,再进行加减运算即可. 【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭37(1242424)812=-⨯-⨯+⨯(24914)=--+29=-;(2)431(2)2(3)----⨯- 1(8)(6)=----- 186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键. 24.(0分)计算: (1)117483612⎛⎫-+-⨯ ⎪⎝⎭; (2)20213281(2)(3)3---÷⨯-.解析:(1)36-;(2)26. 【分析】(1)利用乘法分配律进行简便运算即可;(2)先算乘方,再算乘除,最后计算加减即可.【详解】解:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭ 1174848483612=-⨯+⨯-⨯ 16828=-+-36=-;(2)20213281(2)(3)3---÷⨯- 31(89)8=---⨯⨯ 127=-+26=.【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键.25.(0分)计算:(1)()21112424248⎛⎫-+--+⨯- ⎪⎝⎭(2)()()1178245122-÷-⨯--⨯+÷ 解析:(1)9;(2)34【分析】 (1)根据绝对值的性质、乘法分配律计算各项,即可求解;(2)先算乘除,再算加减,即可求解.【详解】解:(1)()21112424248⎛⎫-+--+⨯- ⎪⎝⎭ ()()()11144242424248=-+-⨯-+⨯--⨯- 01263=+-+9=;(2)()()1178245122-÷-⨯--⨯+÷ ()()1174204+=----34=. 【点睛】本题考查有理数的混合运算,掌握有理数的运算法则是解题的关键.26.(0分)计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】 (1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.27.(0分)计算:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦(2)121123436⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ 解析:(1)10;(2)3【分析】(1)先算乘方和小括号,再算中括号,后算加减即可;(2)把除法转化为乘法,再用乘法的分配率计算即可.【详解】解:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦ 1[4(1)5]=+--⨯1(45)10=++=;(2)1211121(36)23436234⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121(36)(36)(36)234=-⨯-+⨯--⨯- 182493=-+=.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.28.(0分)出租车司机张师傅11月1日这一天上午的营运全在一条东西向的街道上进行,如果规定向东为正,那么他这天上午载了五位乘客所行车的里程如下(单位:km ):8+,6-,3+,7-,1+.(1)将最后一名乘客送到目的地时,张师傅距出车地点的位置如何?(2)若汽车耗油为0.08L/km ,则这天上午汽车共耗油多少升?解析:(1)在出车地点西边1千米处;(2)2升【分析】(1)计算张师傅行驶的路程的和即可;(2)计算出每段路程的绝对值的和后乘以0.08,即为这天上午汽车共耗油数.【详解】解:(1)规定向东为正,则向西为负,(+8)+(-6)+(+3)+(-7)+(+1)=8-6+3-7+1=-1千米.答:将最后一名乘客送到目的地,张师傅在出车地点西边1千米处.(2)(8+6+3+7+1)×0.08=2升.答:这天午共耗油2升.【点睛】本题考查了有理数的混合运算,注意要针对不同情况用不同的计算方法.。

【2019】人教版数学七年级(上)第9章《几何图形初步》单元综合练习卷(含答案).doc

【2019】人教版数学七年级(上)第9章《几何图形初步》单元综合练习卷(含答案).doc

人教版七年级数学上册第四章几何图形初步单元测试A卷(1)一.选择题(共10小题)1.如图,下列水平放置的几何体中,左视图不是矩形的是()A.B.C.D.2.如图所示正三棱柱的主视图是()A.B.C.D.3.如图是一根空心方管,它的俯视图是()A.B.C.D.4.如图所示的几何体是由七个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.5.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A.3块B.4块C.6块D.9块6.某物体三视图如图,则该物体形状可能是()A.长方体B.圆锥体C.立方体D.圆柱体7.某同学画出了如图所示的几何体的三种视图,其中正确的是()A.①②B.①③C.②③D.②8.圆形的物体在太阳光的投影下是()A.圆形B.椭圆形C.线段D.以上都有可能9.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是()A.B.C.D.10.平行投影中的光线是()A.平行的B.聚成一点的C.不平行的D.向四面八方发散的二.填空题(共4小题)11.三视图都是同一平面图形的几何体有、.(写两种即可)12.一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,m+n=.13.一个几何体是由一些大小相同的小立方块摆成的,如下图是从正面、左面、上面看这个几何体得到的平面图形,那么组成这个几何体所用的小立方块的个数是.14.如图,是由一些大小相同的小正方体组合成的简单几何体(1)图中有块小正方体;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.三.解答题(共9小题)15.分别画出图中几何体的主视图、左视图、俯视图.16.画出如图所示的几何体的主视图、左视图、俯视图:17.如图是某工件的三视图,求此工件的全面积和体积.18.如图是由几个小正方体所搭成的几何体上面看到的图形,小正方形中的数字表示在该位置的小正方体的个数,请你画出从正面、左面可以看到的图形.19.一个几何体由几个大小相同的小立方块搭成,从上面看这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面,左侧面看到的几何体的形状图.20.如图是小强用八块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出你所看到的几何体的形状图(在答题卡上画完图后请用黑色签字笔描图)21.有两根木棒AB,CD在同一平面上直立着,其中AB这根木棒在太阳光下的影子BE如图所示,请你在图中画出这时木棒CD的影子.22.如图,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1m长的影子如图所示,已知窗框的影子DE到窗下墙脚的距离CE=3.9m,窗口底边离地面的距离BC=1.2m,试求窗口的高度.(即AB的值)23.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.2019年春人教版九年级下册数学《第29章投影与视图》单元测试题参考答案与试题解析一.选择题(共10小题)1.如图,下列水平放置的几何体中,左视图不是矩形的是()A.B.C.D.【分析】根据左视图是从左面看到的视图,对各选项分析判断后利用排除法求解.【解答】解:A、圆柱的左视图是矩形,故本选项错误;B、圆锥的左视图是等腰三角形,故本选项正确;C、三棱柱的左视图是矩形,故本选项错误;D、长方体的左视图是矩形,故本选项错误.故选:B.【点评】本题考查了简单几何体的三视图,熟练掌握常见几何体的三视图是解题的关键.2.如图所示正三棱柱的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可.【解答】解:如图所示正三棱柱的主视图是平行排列的两个矩形,故选B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.注意本题不要误选C.3.如图是一根空心方管,它的俯视图是()A.B.C.D.【分析】俯视图是从物体的上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.【解答】解:如图所示:俯视图应该是.故选:B.【点评】本题考查了作图﹣三视图,注意看到的用实线表示,看不到的用虚线表示.画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等4.如图所示的几何体是由七个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.【分析】根据俯视图的定义即可判断.【解答】解:如图所示的几何体的俯视图是D.故选:D.【点评】本题考查几何体的三视图,理解三视图的定义是正确解答的关键.5.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A.3块B.4块C.6块D.9块【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:从俯视图可得最底层有3个小正方体,由主视图可得有2层上面一层是1个小正方体,下面有2个小正方体,从左视图上看,后面一层是2个小正方体,前面有1个小正方体,所以此几何体共有四个正方体.故选:B.【点评】此题主要考查了由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.6.某物体三视图如图,则该物体形状可能是()A.长方体B.圆锥体C.立方体D.圆柱体【分析】由主视图和左视图确定是柱体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆形可判断出这个几何体应该是圆柱,故选:D.【点评】主视图和左视图的大致轮廓为长方形的几何体为柱体,俯视图为圆形就是圆柱.7.某同学画出了如图所示的几何体的三种视图,其中正确的是()A.①②B.①③C.②③D.②【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.依此即可解题.【解答】解:根据几何体的摆放位置,主视图和俯视图正确.左视图中间有一条横线,故左视图不正确.故选:B.【点评】本题考查了三种视图及它的画法,看得到的棱画实线,看不到的棱画虚线.8.圆形的物体在太阳光的投影下是()A.圆形B.椭圆形C.线段D.以上都有可能【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【解答】解:根据题意:同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变.故选:D.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.9.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是()A.B.C.D.【分析】平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.【解答】解:A、影子的方向不相同,错误;B、影子平行,且较高的树的影子长度大于较低的树的影子,正确;C、相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,错误;D、影子的方向不相同,错误;故选:B.【点评】本题考查了平行投影,灵活运用平行投影的性质是解题关键.10.平行投影中的光线是()A.平行的B.聚成一点的C.不平行的D.向四面八方发散的【分析】解答本题关键是要理解平行投影,平行投影中的光线是平行的,如阳光等.【解答】解:平行投影中的光线是平行的.故选:A.【点评】本题考查平行投影的定义,需注意与中心投影定义的区别.二.填空题(共4小题)11.三视图都是同一平面图形的几何体有正方体、球体.(写两种即可)【分析】三视图都相同的几何体是:正方体,三视图均为正方形;球体,三视图均为圆.【解答】解:依题意,主视图、左视图以及俯视图都相同的几何体是正方体或球体.故答案为:正方体、球体.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力和对立体图形的认识.12.一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,m+n=16.【分析】这种题需要空间想象能力,可以想象这样的小立方体搭了左中右三排,但最左排可以为4~6个小正方体,依此求出m、n的值,从而求得m+n的值.【解答】解:最少需要7块如图(1),最多需要9块如图(2)故m=9,n=7,则m+n=16.【点评】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力.13.一个几何体是由一些大小相同的小立方块摆成的,如下图是从正面、左面、上面看这个几何体得到的平面图形,那么组成这个几何体所用的小立方块的个数是8.【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从左视图可看出每一行小正方体的层数和个数,从而算出总的个数.【解答】解:由俯视图易得最底层小正方体的个数为6,由其他视图可知第二行第2列和第三列第二层各有一个正方体,那么共有6+2=8个正方体.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.14.如图,是由一些大小相同的小正方体组合成的简单几何体(1)图中有11块小正方体;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.【分析】(1)根据如图所示即可得出图中小正方体的个数;(2)读图可得,左视图有2列,每列小正方形数目分别为2,2;俯视图有4列,每行小正方形数目分别为2,2,1,1.【解答】解:(1)根据如图所示即可数出有11块小正方体;(2)如图所示;左视图,俯视图分别如下图:故答案为:(1)11.【点评】此题主要考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.三.解答题(共9小题)15.分别画出图中几何体的主视图、左视图、俯视图.【分析】从正面看从左往右4列正方形的个数依次为1,3,1,1;从左面看从左往右3列正方形的个数依次为3,1,1;从上面看从左往右4列正方形的个数依次为1,3,1,1.【解答】解:【点评】本题考查了三视图的画法;得到从各个方向看得到的每列正方形的个数是解决本题的关键.16.画出如图所示的几何体的主视图、左视图、俯视图:【分析】主视图有3列,每列小正方形数目分别为2,1,1;左视图有3列,每列小正方形数目分别为2,1,1;俯视图,3列,每列小正方形数目分别为3,1,1.【解答】解:作图如下:【点评】此题考查的知识点是简单组合体的三视图,关键明确主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.17.如图是某工件的三视图,求此工件的全面积和体积.【分析】由三视图可知,该工件为底面半径为10cm,高为30cm的圆锥体,然后由勾股定理得到该圆锥的母线长,再由圆锥的侧面积和圆锥的底面积相加为圆锥的全面积;根据圆锥的体积公式可求圆锥的体积.【解答】解:由三视图可知,该工件为底面半径为10cm,高为30cm的圆锥体,这圆锥的母线长为=10(cm),圆锥的侧面积为s=πrl=×20π×10=100π(cm2),圆锥的底面积为102π=100πcm2,圆锥的全面积为100π+100π=100(1+)π(cm2);圆锥的体积×π×(20÷2)2×30=1000π(cm3).故此工件的全面积是100(1+)πcm2,体积是1000πcm3.【点评】本题主要考查几何物体三视图及圆锥的面积和体积求法.三视图判断几何体的形状是难点,这就要求掌握几种常见几何体的三视图,并建立三视图与实物的对应关系.18.如图是由几个小正方体所搭成的几何体上面看到的图形,小正方形中的数字表示在该位置的小正方体的个数,请你画出从正面、左面可以看到的图形.【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为2,3,4;左视图有2列,每列小正方形数目分别为4,2.据此可画出图形.【解答】解:作图如下:【点评】考查画几何体的三视图,用到的知识点为:主视图,左视图分别是从物体的正面,左面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.19.一个几何体由几个大小相同的小立方块搭成,从上面看这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面,左侧面看到的几何体的形状图.【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为3,3,4;从左面看有3列,每列小正方形数目分别为1,4,3.据此可画出图形.【解答】解:如图所示:【点评】考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.20.如图是小强用八块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出你所看到的几何体的形状图(在答题卡上画完图后请用黑色签字笔描图)【分析】读图可得,从正面看有3列,每列小正方形数目分别为1,2,1;从左面看有3列,每列小正方形数目分别为2,1,2;从上面看有3列,每列小正方形数目分别为1,3,2,依此画出图形即可.【解答】解:三视图如下:【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.21.有两根木棒AB,CD在同一平面上直立着,其中AB这根木棒在太阳光下的影子BE如图所示,请你在图中画出这时木棒CD的影子.【分析】连接AE,过点C作AE的平行线,过点D作BE的平行线,相交于点F,DF即为所求.【解答】解:【点评】本题考查平行投影的作图,难度不大,体现了学数学要注重基础知识的新课标理念.会灵活运用性质作图.22.如图,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1m长的影子如图所示,已知窗框的影子DE到窗下墙脚的距离CE=3.9m,窗口底边离地面的距离BC=1.2m,试求窗口的高度.(即AB的值)【分析】根据阳光是平行光线,即AE∥BD,可得∠AEC=∠BDC;从而得到△AEC∽△BDC,根据比例关系,计算可得AB的数值,即窗口的高度.【解答】解:由于阳光是平行光线,即AE∥BD,所以∠AEC=∠BDC.又因为∠C是公共角,所以△AEC∽△BDC,从而有.又AC=AB+BC,DC=EC﹣ED,EC=3.9,ED=2.1,BC=1.2,于是有,解得AB=1.4(m).答:窗口的高度为1.4m.【点评】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.要求学生通过投影的知识结合图形相似的性质巧妙地求解或解直角三角形,是平行投影性质在实际生活中的应用.23.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD =2.1m,求灯泡的高.【分析】(1)连接CB延长CB交DE于O,点O即为所求.(2)连接OG,延长OG交DF于H.线段FH即为所求.(3)根据=,可得=,即可推出DE=4m.【解答】(1)解:如图,点O为灯泡所在的位置,线段FH为小亮在灯光下形成的影子.(2)解:由已知可得,=,∴=,∴OD=4m.∴灯泡的高为4m.【点评】本题考查中心投影、解题的关键是正确画出图形,记住物长与影长的比的定值,属于基础题,中考常考题型.人教版七年级上册第四章《几何图形初步》单元测试一、选择题1、如图所示几何体的左视图是()2、下列平面图形经过折叠不能围成正方体的是()3、图为某个几何体的三视图,则该几何体是()A. B. C. D.4、汽车车灯发出的光线可以看成是( )A.线段B.射线C.直线D.弧线5、如果A、B、C三点在同一直线上,且线段AB=6 cm,BC=4 cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为( )A.5 cm B.1 cm C.5或1 cm D.无法确定6、下列说法正确的有( )①两点确定一条直线;②两点之间线段最短;③∠α+∠β=90°,则∠α和∠β互余;④一条直线把一个角分成两个相等的角,这条直线叫做角的平分线.A.1个 B.2个 C.3个 D.4个7、如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是( )A.2(a﹣b) B.2a﹣b C.a+b D.a﹣b8、如果线段AB=13cm,MA+MB=17 cm,那么下面说法中正确的是 ( ).A.M点在线段AB上 B.M点在直线AB上C.M点在直线AB外 D.M点可能在直线AB上,也可能在直线AB外9、点C在线段AB上,不能判定点C是线段中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.AC=AB10、3点30分时,时钟的时针与分针所夹的锐角是( )A.70° B.75° C.80° D.90°11、已知:∠A=25°12′,∠B=25.12°,∠C=25.2°,下列结论正确的是( )A.∠A=∠B B.∠B=∠C C.∠A=∠C D.三个角互不相等12、如图,已知OC是∠AOB内部的一条射线,∠AOC=30°,OE是∠COB的平分线.当∠BOE=40°时,∠AOB的度数是A. 70°B. 80°C. 100°D. 110°13、如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°,则∠AOB等于()A.50° B.75° C.100° D.120°14、用一副三角板不能画出的角为( )A.15° B.85° C.120° D.135°15、如图所示的四条射线中,表示南偏西60°的是()A.射线OA B.射线OB C.射线OC D.射线OD二、填空题16、计算33°52′+21°54′= .17、将18.25°换算成度、分、秒的结果是__________.18、上午6点45分时,时针与分针的夹角是__________度.19、如图是由一些大小相同的小正方体搭成的几何体的主视图和俯视图,则搭成该几何体的小正方体最多是___个.20、A,B,C三点在同一条直线上,若BC=2AB且AB=m,则AC=__________.21、如图,若CB=3cm,DB=7cm,且D是AC的中点,则AC= cm.22、如图,点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,则线段MN= .23、已知线段AB=10cm,直线AB上有一点C,且BC=4cm,M是线段BC的中点,则AM的长是 cm.24、已知线段AB=4cm,延长线段AB至点C,使BC=2AB,若D点为线段AC的中点,则线段BD长为cm.25、已知 A、B、C 三点在同一条直线上,M、N 分别为线段 AB、BC 的中点,且 AB=60,BC=40,则 MN 的长为26、已知∠AOC=2∠BOC, 若∠BOC=30°,则∠AOB=27、如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有.三、简答题28、按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.29、如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB= cm.②求线段CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.30、已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.31、如图,已知数轴上的点A对应的数为6,B是数轴上的一点,且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿着数轴向左匀速运动,设运动时间为t秒(t>0).(1)数轴上点B对应的数是_______,点P对应的数是_______(用t的式子表示);(2)动点Q从点B与点P同时出发,以每秒4个单位长度的速度沿着数轴向左匀速运动,试问:运动多少时间点P可以追上点Q?(3)M是AP的中点,N是PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若有变化,说明理由;若没有变化,请你画出图形,并求出MN的长.32、(1)已知:如图,点C在线段AB上,线段AC=12,BC=4,点M、N分别是AC、BC的中点,求MN的长度.(2)根据(1)的计算过程与结果,设AC+BC=a,其它条件不变,你能猜出MN的长度吗?请用一句简洁的语言表达你发现的规律.33、如图,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,试求∠BOC的大小.34、如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)写出图中小于平角的角.(2)求出∠BOD的度数.(3)小明发现OE平分∠BOC,请你通过计算说明道理.35、如图,直线AB上有一点O,∠DOB=90°,另有一顶点在O点的直∠EOC.(1)如果∠DOE=50°,则∠AOC的度数为;(2)直接写出图中相等的锐角,如果∠DOC≠50°,它们还会相等吗?(3)若∠DOE变大,则∠AOC会如何变化?(不必说明理由)36、如图所示,OM平分∠BOC,ON平分∠AOC,(1)若∠AOB=90°,∠AOC=30°,求∠MON的度数;(2)若(1)中改成∠AOB=60°,其他条件不变,求∠MON的度数;(3)若(1)中改成∠AOC=60°,其他条件不变,求∠MON的度数;(4)从上面结果中看出有什么规律?参考答案一、选择题1、A.【解析】分析:找到从左面看所得到的图形即可.解答:解:从左面看可得到上下两个相邻的正方形,故选A2、D3、D【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:由主视图和左视图为矩形判断出是柱体,由俯视图是正方形可判断出这个几何体应该是长方体.故选D.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.4、B5、C6、C【考点】直线的性质:两点确定一条直线;线段的性质:两点之间线段最短;角平分线的定义;余角和补角.【分析】根据直线的性质可得①正确;根据线段的性质可得②正确;根据余角定义可得③正确;根据角平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线可得④错误.【解答】解:①两点确定一条直线,说法正确;②两点之间线段最短,说法正确;③∠α+∠β=90°,则∠α和∠β互余,说法正确;④一条直线把一个角分成两个相等的角,这条直线叫做角的平分线,说法错误;正确的共有3个,故选:C.【点评】此题主要考查了直线和线段的性质,以及余角和角平分线的定义,关键是熟练掌握课本基础知识.7、B【考点】比较线段的长短.【专题】计算题.【分析】由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.【解答】解:∵MN=MB+CN+BC=a,BC=b,∴MB+CN=a﹣b,∵M是AB的中点,N是CD中点∴AB+CD=2(MB+CN)=2(a﹣b),∴AD=2(a﹣b)+b=2a﹣b.故选B.【点评】本题考查了比较线段长短的知识,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.8、D9、C10、B11、C【考点】度分秒的换算.【分析】根据小单位华大单位除以进率,可得答案.【解答】解:∠A=35°12′=25.2°=∠C>∠B,故选:C.【点评】本题考查了度分秒的换算,小单位华大单位除以进率是解题关键.12、D13、C【考点】角的计算;角平分线的定义.。

【专题复习】2019年 七年级数学上册 线段的计算 专题练习20题(含答案)

【专题复习】2019年 七年级数学上册 线段的计算 专题练习20题(含答案)

2019年七年级数学上册线段的计算专题练习一、解答题:1、如图,己知线段AB=80,M为AB的中点,P在MB上,N为PB的中点,且NB=14,(1)求MB的长;(2)求PB的长;(3)求PM的长.2、如图,点C、D是线段AB上两点,点D是AC的中点,若BC=6cm,BD=10cm,求线段AB的长度.3、如图,已知点C是线段AB的中点,点D是线段AC的中点,点E是线段BC的中点.(1)若线段DE=9cm,求线段AB的长.(2)若线段CE=5cm,求线段DB的长.4、点A,B,C在同一直线上,AB=8,AC:BC=3:1,求线段BC的长度.5、如图所示,线段AB=8cm,E为线段AB的中点,点C为线段EB上一点,且EC=3cm,点D为线段AC的中点,求线段DE的长度.6、如图,已知线段AB=32,C为线段AB上一点,且3AC=BC,E为线段BC的中点,F为线段AB的中点,求线段EF的长.7、如图,M是线段AC中点,点B在线段AC上,且AB=4cm,BC=2AB,求线段MC和线段BM的长.8、如图,线段AC=8 cm,线段BC=18 cm,点M是AC的中点,在CB上取一点N,使得CN∶NB=1∶2.求MN的长.9、如图,已知BC=AB=CD,点E,F分别是AB,CD的中点,且EF=60厘米,求AB,CD的长.10、如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB= cm.②求线段CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.11、如图,点B、C在线段AD上,CD=2AB+3.(1)若点C是线段AD的中点,求BC-AB的值;(2)若4BC=AD,求BC-AB的值;(3)若线段AC上有一点P(不与点B重合),AP+AC=DP,求BP的长.12、A、B、C、D四个车站的位置如图所示,B、C两站之间的距离BC=2a+b,B、D两站之间的距离BD=4a +3b.求:⑴ C、D两站之间的距离CD;⑵若C站到A、D两站的距离相等,则A、B两站之间的距离AB是多少?13、如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,并说明理由.14、如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN 的长.15、如图,数轴上A,B两点对应的有理数分别为10和15,点P从点A出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)当0<t<5时,用含t的式子填空:BP= ,AQ= ;(2)当t=2时,求PQ的值;(3)当AB=2PQ时,求t的值.16、如图,已知点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=6 ,CB=4 ,求线段MN的长;(2)若点C为线段AB上任一点,其它条件不变,你能猜想线段MN与AB的数量关系吗?并说明你的理由;(3)若点C在线段AB的延长线上,其它条件不变,你上述猜想的结论是否仍然成立?请画出图形,写出你的结论,并说明你的理由;17、如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.18、已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数: ;用含t的代数式表示点P和点C的距离:PC=(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A.①点P、Q同时运动运动的过程中有处相遇,相遇时t= 秒.②在点Q开始运动后,请用t的代数式表示P、Q两点间的距离.19、如图,线段AB=12,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变,选择一个正确的结论,并求出其值.20、探索性问题:已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值.a= ,b= ,c= ;(2)数轴上a、b、c三个数所对应的点分别为A、B、C,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.①t秒钟过后,AC的长度为(用t的关系式表示);②请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案1、解:(1)∵M是AB的中点∴MB=40(2)∵N为PB的中点,且NB=14 ∴PB=2NB=2×14=28(3)∵MB=40,PB=28 ∴PM=MB﹣PB=40﹣28=122、解:已知BC=6cm,BD=10cm,∴DC=BD﹣BC=4cm,又点D是AC的中点,∴DA=DC=4cm,所以AB=BD+DA=10+4=14(cm).答:线段AB的长度为14cm.3、解:(1)∵DE=9cm,∴DC+CE=9cm.∵点D是线段AC的中点,点E是线段BC的中点,∴AC=2CD,BC=2CE.∵AB=AC+BC=2(CD+CE)=2DE=18cm;(2)点C是线段AB的中点,∴AB=ACB.∵点E是线段BC的中点,∴BC=2CE=10cm.∵点D是线段AC的中点,∴DC=AC=BC=5cm.∴DB=DC+CB=5+10=15cm.4、解:由于AC:BC=3:1,设BC=x,则AC=3x第一种情况:当点C在线段AB上时,AC+BC=AB.因为 AB=8,所以3x+x=8解得 x=2所以 BC=2第二种情况:当点C在AB的延长线上时,AC﹣BC=AB因为 AB=8,所以3x﹣x=8解得 x=4所以 BC=4综上,BC的长为2或4.5、解:∵线段AB=8cm,E为线段AB的中点,∴BE4cm,∴BC=BE﹣EC=4﹣3=1cm,∴AC=AB﹣BC=8﹣1=7cm,∵点D为线段AC的中点,∴CD=3.5cm,∴DE=CD﹣EC=3.5﹣3=0.5cm.6、解:∵F为线段AB的中点,∴BF=AB=16,∵AC=BC,∴BC=AB=24,∵E为线段BC的中点,∴BE=12,∴EF=BF﹣BE=16﹣12=4.7、解:∵AB=4cm,BC=2AB,∴BC=8cm,∴AC=AB+BC=4+8=12cm,∵M是线段AC中点,∴MC=AM=AC=6cm,∴BM=AM﹣AB=6﹣4=2cm.8、解:BC=18cm所以CN=18×1÷(1+2)=6mM是AC中点所以MC=AC/2=4cm所以MN=MC+CN=4+6=10cm9、解:设BC=x厘米,由题意得:AB=3x,CD=4x∵E,F分别是AB,CD的中点∴BE=AB=x,CF=CD=2x∴EF=BE+CF﹣BC=x+2x﹣x即x+2x﹣x=60,解得x=24∴AB=3x=72(厘米),CD=4x=96(厘米).答:线段AB长为72厘米,线段CD长为96厘米.10、解:(1)①∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当0≤t≤5时,AB=2t;当5<t≤10时,AB=10﹣(2t﹣10)=20﹣2t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=(AB+BD)=AD=×10=5cm.11、解:12、解:⑴ CD=(4a+3b)-(2a+b)=2a+2b 答:C、D两站之间的距离CD为(2a+2b)⑵ AB=AC-BC=CD-BC=(2a+2b)-(2a+b)=b 答:A、B两站之间的距离AB是b.13、解:(1)∵点M、N分别是AC、BC的中点,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7(cm);即线段MN的长是7cm.(2)能,理由如下:如图所示,∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=(AC﹣BC)=cm.14、解:∵M是AC的中点,AC=6,∴MC=3,又因为CN∶NB=1∶2,BC=15,∴CN=5,∴MN=MC+CN=3+5=8,∴MN的长为8 cm15、解:16、解:17、解:18、解:(1)P点对应的数为﹣26+t;PC=36﹣t;故答案为:﹣26+t;36﹣t;(2)①有2处相遇;分两种情况:Q返回前相遇:3(t﹣16)﹣16=t﹣16,解得:t=24,Q返回后相遇:3(t﹣16)+t=36×2.解得:t=30.综上所述,相遇时t=24秒或30秒.故答案为:24或30;②当16≤t≤24时 PQ=t﹣3(t﹣16)=﹣2t+48,当24<t≤28时 PQ=3(t﹣16)﹣t=2t﹣48,当28<t≤30时 PQ=72﹣3(t﹣16)﹣t=120﹣4t,当30<t≤36时 PQ=t﹣[72﹣3(t﹣16)]=4t﹣120,当36<t≤40时 PQ=3(t﹣16)﹣36=3t﹣84.19、解:20、解:。

【专题复习】2019年 七年级数学上册 线段的计算 专题练习20题(含答案)

【专题复习】2019年 七年级数学上册 线段的计算 专题练习20题(含答案)

2019年七年级数学上册线段的计算专题练习一、解答题:1、如图,己知线段AB=80,M为AB的中点,P在MB上,N为PB的中点,且NB=14,(1)求MB的长;(2)求PB的长;(3)求PM的长.2、如图,点C、D是线段AB上两点,点D是AC的中点,若BC=6cm,BD=10cm,求线段AB的长度.3、如图,已知点C是线段AB的中点,点D是线段AC的中点,点E是线段BC的中点.(1)若线段DE=9cm,求线段AB的长.(2)若线段CE=5cm,求线段DB的长.4、点A,B,C在同一直线上,AB=8,AC:BC=3:1,求线段BC的长度.5、如图所示,线段AB=8cm,E为线段AB的中点,点C为线段EB上一点,且EC=3cm,点D为线段AC的中点,求线段DE的长度.6、如图,已知线段AB=32,C为线段AB上一点,且3AC=BC,E为线段BC的中点,F为线段AB的中点,求线段EF的长.7、如图,M是线段AC中点,点B在线段AC上,且AB=4cm,BC=2AB,求线段MC和线段BM的长.8、如图,线段AC=8 cm,线段BC=18 cm,点M是AC的中点,在CB上取一点N,使得CN∶NB=1∶2.求MN的长.9、如图,已知BC=AB=CD,点E,F分别是AB,CD的中点,且EF=60厘米,求AB,CD的长.10、如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB= cm.②求线段CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.11、如图,点B、C在线段AD上,CD=2AB+3.(1)若点C是线段AD的中点,求BC-AB的值;(2)若4BC=AD,求BC-AB的值;(3)若线段AC上有一点P(不与点B重合),AP+AC=DP,求BP的长.12、A、B、C、D四个车站的位置如图所示,B、C两站之间的距离BC=2a+b,B、D两站之间的距离BD=4a +3b.求:⑴ C、D两站之间的距离CD;⑵若C站到A、D两站的距离相等,则A、B两站之间的距离AB是多少?13、如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,并说明理由.14、如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN 的长.15、如图,数轴上A,B两点对应的有理数分别为10和15,点P从点A出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)当0<t<5时,用含t的式子填空:BP= ,AQ= ;(2)当t=2时,求PQ的值;(3)当AB=2PQ时,求t的值.16、如图,已知点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=6 ,CB=4 ,求线段MN的长;(2)若点C为线段AB上任一点,其它条件不变,你能猜想线段MN与AB的数量关系吗?并说明你的理由;(3)若点C在线段AB的延长线上,其它条件不变,你上述猜想的结论是否仍然成立?请画出图形,写出你的结论,并说明你的理由;17、如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.18、已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数: ;用含t的代数式表示点P和点C的距离:PC=(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A.①点P、Q同时运动运动的过程中有处相遇,相遇时t= 秒.②在点Q开始运动后,请用t的代数式表示P、Q两点间的距离.19、如图,线段AB=12,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变,选择一个正确的结论,并求出其值.20、探索性问题:已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值.a= ,b= ,c= ;(2)数轴上a、b、c三个数所对应的点分别为A、B、C,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.①t秒钟过后,AC的长度为(用t的关系式表示);②请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案1、解:(1)∵M是AB的中点∴MB=40(2)∵N为PB的中点,且NB=14 ∴PB=2NB=2×14=28(3)∵MB=40,PB=28 ∴PM=MB﹣PB=40﹣28=122、解:已知BC=6cm,BD=10cm,∴DC=BD﹣BC=4cm,又点D是AC的中点,∴DA=DC=4cm,所以AB=BD+DA=10+4=14(cm).答:线段AB的长度为14cm.3、解:(1)∵DE=9cm,∴DC+CE=9cm.∵点D是线段AC的中点,点E是线段BC的中点,∴AC=2CD,BC=2CE.∵AB=AC+BC=2(CD+CE)=2DE=18cm;(2)点C是线段AB的中点,∴AB=ACB.∵点E是线段BC的中点,∴BC=2CE=10cm.∵点D是线段AC的中点,∴DC=AC=BC=5cm.∴DB=DC+CB=5+10=15cm.4、解:由于AC:BC=3:1,设BC=x,则AC=3x第一种情况:当点C在线段AB上时,AC+BC=AB.因为 AB=8,所以3x+x=8解得 x=2所以 BC=2第二种情况:当点C在AB的延长线上时,AC﹣BC=AB因为 AB=8,所以3x﹣x=8解得 x=4所以 BC=4综上,BC的长为2或4.5、解:∵线段AB=8cm,E为线段AB的中点,∴BE4cm,∴BC=BE﹣EC=4﹣3=1cm,∴AC=AB﹣BC=8﹣1=7cm,∵点D为线段AC的中点,∴CD=3.5cm,∴DE=CD﹣EC=3.5﹣3=0.5cm.6、解:∵F为线段AB的中点,∴BF=AB=16,∵AC=BC,∴BC=AB=24,∵E为线段BC的中点,∴BE=12,∴EF=BF﹣BE=16﹣12=4.7、解:∵AB=4cm,BC=2AB,∴BC=8cm,∴AC=AB+BC=4+8=12cm,∵M是线段AC中点,∴MC=AM=AC=6cm,∴BM=AM﹣AB=6﹣4=2cm.8、解:BC=18cm所以CN=18×1÷(1+2)=6mM是AC中点所以MC=AC/2=4cm所以MN=MC+CN=4+6=10cm9、解:设BC=x厘米,由题意得:AB=3x,CD=4x∵E,F分别是AB,CD的中点∴BE=AB=x,CF=CD=2x∴EF=BE+CF﹣BC=x+2x﹣x即x+2x﹣x=60,解得x=24∴AB=3x=72(厘米),CD=4x=96(厘米).答:线段AB长为72厘米,线段CD长为96厘米.10、解:(1)①∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当0≤t≤5时,AB=2t;当5<t≤10时,AB=10﹣(2t﹣10)=20﹣2t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=(AB+BD)=AD=×10=5cm.11、解:12、解:⑴ CD=(4a+3b)-(2a+b)=2a+2b 答:C、D两站之间的距离CD为(2a+2b)⑵ AB=AC-BC=CD-BC=(2a+2b)-(2a+b)=b 答:A、B两站之间的距离AB是b.13、解:(1)∵点M、N分别是AC、BC的中点,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7(cm);即线段MN的长是7cm.(2)能,理由如下:如图所示,∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=(AC﹣BC)=cm.14、解:∵M是AC的中点,AC=6,∴MC=3,又因为CN∶NB=1∶2,BC=15,∴CN=5,∴MN=MC+CN=3+5=8,∴MN的长为8 cm15、解:16、解:17、解:18、解:(1)P点对应的数为﹣26+t;PC=36﹣t;故答案为:﹣26+t;36﹣t;(2)①有2处相遇;分两种情况:Q返回前相遇:3(t﹣16)﹣16=t﹣16,解得:t=24,Q返回后相遇:3(t﹣16)+t=36×2.解得:t=30.综上所述,相遇时t=24秒或30秒.故答案为:24或30;②当16≤t≤24时 PQ=t﹣3(t﹣16)=﹣2t+48,当24<t≤28时 PQ=3(t﹣16)﹣t=2t﹣48,当28<t≤30时 PQ=72﹣3(t﹣16)﹣t=120﹣4t,当30<t≤36时 PQ=t﹣[72﹣3(t﹣16)]=4t﹣120,当36<t≤40时 PQ=3(t﹣16)﹣36=3t﹣84.19、解:20、解:。

人教版七年级数学上册《有理数的概念》专题训练-附带答案

人教版七年级数学上册《有理数的概念》专题训练-附带答案

人教版七年级数学上册《有理数的概念》专题训练-附带答案知识点一:有理数1.(2021秋•江阴市校级月考)把下列各数填在相应的大括号里:π2﹣2 −123.020020002 0227﹣(﹣3) 0.333整数集合:{ …}; 分数集合:{ …}; 有理数集合:{ …}; 无理数集合:{ …}.思路引领:根据实数的分类 即可解答. 解:整数集合:{﹣2 0 ﹣(﹣3)…}; 分数集合:{−122270.333…};有理数集合:{﹣2 −12227﹣(﹣3) 0.333…};无理数集合:{π23.020020002……}; 故答案为:﹣2 0 ﹣(﹣3); −122270.333;﹣2 −12227﹣(﹣3) 0.333;π23.020020002….解题秘籍:本题考查了实数 熟练掌握实数的分类是解题的关键. 2.(2019秋•天山区校级期中)下列说法中不正确的是( ) A .最小的自然数是1 B .最大的负整数是﹣1 C .没有最大的正整数D .没有最小的负整数思路引领:根据自然数、负整数、正整数的相关意义判断即可. 解:A 、最小的自然数是0 说法错误 故本选项符合题意; B 、最大的负整数是﹣1 说法正确 故本选项不符合题意; C 、没有最大的正整数 说法正确 故本选项不符合题意; D 、没有最小的负整数 说法正确 故本选项不符合题意. 故选:A .解题秘籍:本题主要考查自然数、负整数、正整数的定义 学生要做好这类题必须对其定义理解透彻.3.(2021秋•靖江市期中)下列说法中 正确的是( )A .正有理数和负有理数统称有理数B .正分数、零、负分数统称分数C .零不是自然数 但它是有理数D .一个有理数不是整数就是分数 思路引领:根据有理数分类判断即可.解:A .正有理数 零和负有理数统称有理数 故本选项不合题意; B .正分数和负分数统称分数 故本选项不合题意; C .零是自然数 也是有理数 故本选项不合题意;D .一个有理数不是整数就是分数 说法正确 故本选项符合题意. 故选:D .解题秘籍:本题考查了有理数 整数和分数统称有理数;有理数也可以分为正有理数、0和负有理数. 4.数0.3⋅21⋅−π3124﹣|﹣5| ﹣0.5中 分数有 个.思路引领:按照有理数的分类填写: 有理数{整数{正整数0负整数分数{正分数负分数 注意化简后加以判断.解:分数包括小数和无限循环小数 所以0.3⋅21⋅、﹣0.5是分数.答案:2.解题秘籍:注意先化简 再判断是整数还是分数.考查分数的定义和对分数的认识 注意分数与整数的区别.知识点二:数轴1.(2022•玉林模拟)如图所示的图形为四位同学画的数轴 其中正确的是( ) A .B .C .D .思路引领:根据数轴的概念判断所给出的四个数轴哪个正确. 解:A ﹣1、﹣2位置错误 故此选项错误 不符合题意; B 、单位长度不统一 没有正方向 故此选项错误 不符合题意; C 、没有正方向 数字顺序也有问题 故此选项错误; D 、符合数轴三要素 故此选项正确.故选:D.解题秘籍:本题主要考查了数轴的概念:规定了原点、正方向和单位长度的直线叫数轴.特别注意数轴的三要素缺一不可.2.(1)在数轴上到原点距离等于2的点所表示的数是;(2)在数轴上将点A向右移动5个单位长度再向左移动1个单位长度终点恰好是原点则点A表示的数是;(3)点A在数轴上距原点5个单位长度将A点先向左移动2个单位长度再向右移动6个单位长度此时A点所表示的数是.思路引领:(1)在数轴上到原点距离等于2的点有两个这两个点所表示的数互为相反数;(2)(3)根据数轴上的平移规律:左减右加进行计算即可.解:(1)在数轴上到原点距离等于2的点所表示的数是±2;故答案为:±2;(2)在数轴上将点A向右移动5个单位长度再向左移动1个单位长度终点恰好是原点则点A表示的数是0+1﹣5=﹣4;故答案为:﹣4;(3)当点A表示5时5﹣2+6=9当点A表示﹣5时﹣5﹣2+6=﹣1∴点A在数轴上距原点5个单位长度将A点先向左移动2个单位长度再向右移动6个单位长度此时A点所表示的数是﹣1或9.故答案为:﹣1或9.解题秘籍:本题考查了有理数的加减混合运算、数轴的定义掌握其运算法则是解决此题的关键.3.某数的绝对值小于2 在数轴上这个数表示的点到﹣0.6所表示的点的距离是1.5 则这个数是.思路引领:先求出到表示﹣0.6的点的距离是1.5的点表示的数再由绝对值小于2即可得到答案.解:在数轴上到表示﹣0.6的点的距离是1.5的点表示的数是:﹣0.6+1.5=0.9或﹣0.6﹣1.5=﹣2.1∵绝对值小于2∴符合条件的点表示的数是0.9故答案为:0.9.解题秘籍:本题考查数轴上的点表示的数掌握数轴上到表示﹣0.6的点的距离是1.5的点有两个是解题得关键.4.(2019秋•赵县期中)在数轴上表示下列各数并按从大到小的顺序用“>”号把这些数连接起来4 ﹣4 2.5 0 ﹣2 ﹣1.6 13−230.5.思路引领:有理数大小比较可以在数轴上找到各数从左到右依次增大进而得出答案.解:如图所示:故4>2.5>0.5>13>0>−23>−1.6>﹣2>﹣4.解题秘籍:此题主要考查了有理数大小比较的方法正确画出数轴是解题关键.5.(2021秋•泗水县校级月考)如图.A、B、C三点在数轴上A表示的数为﹣10 B表示的数为14 点C在点A与点B之间且AC=BC.(1)求A、B两点间的距离;(2)求C点对应的数;(3)甲、乙分别从A、B两点同时相向运动甲的速度是1个单位长度/s乙的速度是2个单位长度/s求相遇点D对应的数.思路引领:(1)用点B表示的数减去点A表示的数计算即可得解;(2)设点C对应的数是x然后列出方程求解即可;(3)设相遇的时间是t秒根据相遇问题列出方程求解得到x的值然后根据点A表示的数列式计算即可得解.解:(1)14﹣(﹣10)=14+10=24;(2)设点C对应的数是x则x﹣(﹣10)=14﹣x解得x=2;(3)设相遇的时间是t秒则t+2t=24解得t=8所以点D表示的数是﹣10+8=﹣2.解题秘籍:本题考查了数轴主要利用了数轴上两点间的距离的求法相遇问题的等量关系.知识点三:相反数1.(2021•元阳县模拟)若一个数的相反数是﹣7 则这个数为.思路引领:根据相反数的定义即可得出答案.解:﹣7的相反数是7故答案为:7.解题秘籍:本题考查了相反数的定义掌握只有符号不同的两个数互为相反数是解题的关键.2.(2021秋•邹城市校级月考)如果多项式2x﹣3与x+7互为相反数那么x的值是()A.−43B.43C.34D.0思路引领:根据相反数的性质列出方程求出方程的解即可得到x的值.解:根据题意得:2x﹣3+x+7=0移项合并得:3x=﹣4解得:x=−4 3.故选:A.解题秘籍:此题考查了解一元一次方程以及相反数熟练掌握相反数的性质及方程的解法是解本题的关键.3.在数轴上若点A和点B分别表示互为相反数的两个数并且这两点间的距离是12.8 则这两点所表示的数分别是.思路引领:直接利用相反数的定义进而得出答案.解:∵点A和点B分别表示互为相反数的两个数并且这两点间的距离是12.8∴这两点所表示的数分别是:﹣6.4 6.4.故答案为:﹣6.4 6.4.解题秘籍:此题主要考查了相反数的定义正确把握定义是解题关键.知识点四:绝对值1.(2022秋•射阳县月考)若|a﹣2020|+(﹣3)=10 则a=.思路引领:根据有理数的运算先求出|a﹣2020|的值再利用绝对值的意义求出a的值.解:∵|a﹣2020|+(﹣3)=10∴|a﹣2020|=13.∴a﹣2020=13或a﹣2020=﹣13.解得a=2033或2007.故答案为:2033或2007.解题秘籍:本题考查了绝对值的意义与有理数的运算正确理解绝对值的意义是解题的关键.2.(2022春•通川区期末)已知|a﹣1|+|b+2|=0 则(a+2b)(a﹣2b)=.思路引领:先根据非负数的性质求出a b的值再代入代数式进行计算即可.解:∵|a﹣1|+|b+2|=0∴a﹣1=0且b+2=0解得:a=1 b=﹣2∴(a+2b)(a﹣2b)=(1﹣4)(1+4)=﹣15.故答案为:﹣15.解题秘籍:本题考查的是非负数的性质熟知几个非负数的和为0时每一项必为0是解答此题的关键.3.(2022春•东台市期中)|x﹣2|+9有最小值为.思路引领:根据绝对值的非负性即可得出答案.解:∵|x﹣2|≥0∴|x﹣2|+9≥9∴|x﹣2|+9有最小值为9.故答案为:9.解题秘籍:本题考查了绝对值的非负性掌握|a|≥0是解题的关键.4.(2021秋•吉州区期末)|a﹣3|=5 且a在原点左侧则a=.思路引领:根据数轴上到3的距离等于5的数有两个并且在原点的左侧即可求得a.解:∵|a﹣3|=5∴a﹣3=5或﹣5∴a=8或﹣2∵a在原点左侧∴a<0∴a=﹣2.解题秘籍:本题考查了绝对值的几何意义掌握绝对值的性质是解题的关键难度不是很大.5.(2021秋•龙泉市期末)若实数a b满足|a|=2 |4﹣b|=1﹣a则a+b=.思路引领:根据绝对值的定义求出a、b的值再代入计算即可.解:∵|a|=2∴a=±2当a=2时|4﹣b|=1﹣2=﹣1 此时b不存在;当a=﹣2时|4﹣b|=3所以4﹣b=3或4﹣b=﹣3即b=1或b=7当a=﹣2 b=1时a+b=﹣1;当a=﹣2 b=7时a+b=5故答案为:﹣1或5.解题秘籍:本题考查绝对值理解绝对值的定义是正确解答的前提求出a、b的值是正确解答的关键.6.(2021秋•乳山市期末)若|a|=2 |b|=1 且a<b则a﹣3b=.思路引领:根据绝对值的意义求出a、b的值再代入计算即可.解:∵|a|=2∴a=±2∵|b|=1∴b=±1又∵a<b∴a=﹣2 b=1或a=﹣2 b=﹣1当a=﹣2 b=1时a﹣3b=﹣5;当a=﹣2 b=﹣1时a﹣3b=1故答案为:﹣5或1.解题秘籍:本题考查绝对值掌握“一个正数的绝对值等于它本身一个负数的绝对值等于它的相反数0的绝对值等于0”是正确计算的前提求出a、b的值是正确解答的关键.【课堂练习】1.(2022•睢阳区二模)若m与−(−13)互为相反数则m的值为()A.﹣3B.−13C.13D.3思路引领:先求出﹣(−13)的值再求它的相反数即可.解:﹣(−13)=13∵m与−(−13)互为相反数∴m=−1 3.故选:B.解题秘籍:本题考查了相反数掌握只有符号不同的两个数互为相反数是解题的关键.2.如果一个数的相反数是非负数那么这个数是()A.正数B.负数C.非正数D.非负数思路引领:根据只有符号不同的两个数叫做互为相反数解答. 解:∵一个数的相反数是非负数 ∴这个数是非正数. 故选:C .解题秘籍:本题考查了相反数的定义 熟记概念是解题的关键. 3.(2015秋•无锡校级月考)下列说法中正确的是( ) A .负有理数是负分数 B .﹣1是最大的负数C .正有理数和负有理数组成全体有理数D .零是整数思路引领:根据有理数和无理数的定义 以及有理数的分类进行判断. 解:A 、负有理数包括负分数和负整数 故本选项说法错误; B 、﹣1是最大的负整数 故本选项说法错误;C 、正有理数、负有理数和0组成全体有理数 故本选项说法错误;D 、正整数、负整数和零组成整数 所以零是整数 故本选项说法正确; 故选:D .解题秘籍:本题考查了有理数的分类:有理数{整数{正整数0负整数分数{正分数负分数. 4.(2014秋•资中县期中)如图 点O 、A 、B 在数轴上 分别表示数0、1.5、4.5 数轴上另有一点C 到点A 的距离为1 到点B 的距离小于3 则点C 位于( )A .点O 的左边B .点O 与点A 之间C .点B 的右边D .点A 与点B 之间思路引领:由数轴上点的位置 找出离A 距离为1的点 再由到B 的距离小于3判断即可确定出C 的位置.解:∵点O 、A 、B 在数轴上 分别表示数0、1.5、4.5 数轴上另有一点C 到点A 的距离为1 到点B 的距离小于3∴点C 表示的数为2.5 位于点A 与点B 之间 故选:D .解题秘籍:此题考查了数轴熟练掌握数轴上的点与实数之间的一一对应关系是解本题的关键.5.(2020秋•平山区校级期中)①﹣a 一定是负数;②若|a |=|b | 则a =b ;③一个有理数不是整数就是分数;④一个有理数不是正数就是负数.上述说法错误的有( ) A .1个B .2个C .3个D .4个思路引领:根据有理数的分类和有理数的有关定义解答即可. 解:①﹣a 不一定是负数 原说法错误; ②若|a |=|b | 则a =b 或a =﹣b 原说法错误; ③一个有理数不是整数就是分数 原说法正确;④一个有理数不是正数就是负数 也可能是0 原说法错误. 上述说法错误的有3个 故选:C .解题秘籍:此题考查有理数 解题的关键是根据有理数的分类和绝对值判断. 6.(2015秋•海陵区校级月考)|a |=a 则有理数a 为( ) A .正数B .负数C .正数和0D .负数和0思路引领:根据绝对值的性质可得. 解:∵|a |=a ∴a 为正数或0 故选:C .解题秘籍:本题主要考查绝对值的性质 熟练掌握绝对值性质是解题的关键. 7.(2021秋•启东市校级月考)已知a b c 为三个不等于0的数 且满足abc >0 a +b +c <0 则|a|a+|b|b+|c|c的值为 .思路引领:根据绝对值的定义解决此题. 解:∵abc >0 a +b +c <0∴a 、b 与c 中有两个负数 一个正数. 假设a <0 b <0 c >0 则|a|a+|b|b+|c|c=−a a+−b b+c c=−1+(−1)+1=−1.故答案为:﹣1.解题秘籍:本题主要考查绝对值 熟练掌握绝对值的定义是解决本题的关键.《有理数概念复习》配套作业1.下列几种说法中 正确的是( ) A .最小的自然数是1B .在一个数前面加上“﹣”号所得的数是负数C .任意有理数a 的倒数是1aD.任意有理数a的相反数是﹣a思路引领:根据自然数的定义求相反数的方法倒数的定义可得答案.解:A、最小的自然数是0 故A错误;B、在一个数前面加上“﹣”号所得的数是负数故B错误;C、0没有倒数故C错误;D、任意有理数a的相反数是﹣a故D正确;故选:D.解题秘籍:本题考查了有理数注意带符号的数不一定是负数小于零的数是负数.2.下列几种说法中不正确的()A.任意有理数a的相反数是﹣aB.在一个数前面加上“﹣”号所得的数是负数C.一个非0有理数a的倒数是1aD.最小的自然数是0思路引领:根据选项将不正确的选项举出反例即可解答本题.解:∵﹣(﹣1)=1∴在一个数前面加上“﹣”号所得的数是负数的说法是错误的;故选:B.解题秘籍:本题考查有理数解题的关键是明确负数的定义和有理数的相关知识.3.(2019秋•定襄县校级月考)一个数的绝对值等于它本身这个数是比其相反数小的数是一个数的倒数等于它本身这个数是.思路引领:根据绝对值的性质:当a是正有理数时a的绝对值是它本身a;当a是零时a的绝对值是零可得绝对值是它本身的数是非负数;根据相反数的概念可得比其相反数小的数是负数;根据倒数的概念可得一个数的倒数等于它本身这个数是±1.解:一个数的绝对值等于它本身这个数是非负数比其相反数小的数是负数一个数的倒数等于它本身这个数是±1.故答案为:非负数负数±1.解题秘籍:此题主要考查了倒数、相反数、绝对值关键是熟练掌握倒数、相反数、绝对值的概念和性质.4.在数轴上在原点左侧且离开原点5个单位长度的点表示的数是;离开原点4个单位长度的点表示的数是.思路引领:根据离开原点5个单位的点有两个再根据在原点左侧可得答案;根据离开原点4个单位长度的点有两个可得答案.解:在原点左侧且离开原点5个单位长度的点表示的数是﹣5;离开原点4个单位长度的点表示的数是±4故答案为:﹣5 ±4.解题秘籍:本题考查了数轴到原点距离相等的点有两个注意第一个点在原点的左侧只有一个数第二个点没限定位置有两个数.5.(2021•成都模拟)实数a、b、c、d在数轴上对应点的位置如图所示则这四个数中绝对值最大的数是()A.a B.b C.c D.d思路引领:根据绝对值的定义结合实数a、b、c、d在数轴上对应点的位置即可求出结果.解:由实数a、b、c、d在数轴上对应点的位置可知:4<|a|<5 1<|b|<2 0<|c|<1 |d|=4故选:A.解题秘籍:本题考查了实数大小的比较、绝对值、实数与数轴解题的关键是理解绝对值的定义利用数形结合的思想解答问题.6.(2020春•魏县期末)如果|x+1|=2 那么x=.思路引领:利用绝对值的定义求解即可.解:∵|x+1|=2∴x+1=2或x+1=﹣2 解得x=﹣3或1.故答案为:﹣3或1.解题秘籍:本题主要考查了绝对值解题的关键是熟记绝对值的定义.7.小明写作业时不慎将墨水滴在数轴上根据图中数值请你确定墨迹盖住部分的整数共有个.思路引领:根据数轴上已知整数求出墨迹盖住部分的整数个数.解:根据数轴得:墨迹盖住的整数共有0 1 2共3个.故答案为:3.解题秘籍:本题主要考查了数轴理解整数的概念能够首先结合数轴得到被覆盖的范围进一步根据整数这一条件是解题的关键.8.用长为4.5个单位长度的木条放在数轴上最多能覆盖()个整数点.A.3B.4C.5D.6思路引领:利用数轴即可作出判断.解:用长为4.5个单位长度的木条放在数轴上最多能覆盖5个整数点.故选:C.解题秘籍:本题考查了数轴数轴有直观、简捷举重若轻的优势.9.代数式|x﹣3|+|x﹣4|+|x﹣5|的最小值是.思路引领:可以用数形结合来解题:x为数轴上的一点|x﹣3|+|x﹣4|+|x﹣5|表示:点x 到数轴上的3个点(3、4、5)的距离之和进而分析得出最小值.解:当x=4时代数式|x﹣3|+|x﹣4|+|x﹣5|有最小值最小值=1+0+1=2.故代数式|x﹣3|+|x﹣4|+|x﹣5|的最小值是2.故答案为:2.解题秘籍:此题主要考查了绝对值的性质以及利用数形结合求最值问题利用已知得出当x=4时|x﹣3|+|x﹣4|+|x﹣5|能够取到最小值是解题关键.10.(2014秋•雨城区校级月考)当代数式|x﹣3|+|x+1|取最小值时相应的x的取值范围是.思路引领:|x+1|+|x﹣3|的最小值意思是x到﹣1的距离与到3的距离之和最小那么x 应在﹣1和3之间的线段上.解:由数形结合得若|x+1|+|x﹣3|取最小值那么表示x的点在﹣1和3之间的线段上所以﹣1≤x≤3.故答案为:﹣1≤x≤3.解题秘籍:本题主要考查了数轴和绝对值掌握数轴上两点间的距离=两个数之差的绝对值.11.(2012秋•滨湖区校级期中)如果把115分记作+15分那么96分的成绩记作分如此记分法甲生的成绩记作﹣9分那么他的实际成绩是分乙生的成绩记作6分那么他的实际成绩为分.思路引领:由题意可得100分为基准点从而可得出96的成绩应记为﹣4 也可得出甲生和乙生的实际成绩.解:∵把115分的成绩记为+15分∴100分为基准点故96的成绩记为﹣4分甲生的实际成绩为91分乙生的实际成绩为106分.故答案为:﹣4、91、106.解题秘籍:本题考查了正数与负数的知识解答本题的关键是找到基准点.12.(2021秋•滨州月考)绝对值不大于3.14的所有有理数之和等于;不小于﹣4而不大于3的所有整数之和等于.思路引领:根据绝对值不大于3.14的有理数互为相反数 根据互为相反数的和为零 可得答案;根据不小于﹣4而不大于3的所有整数 可得加数 根据有理数的加法 可得答案.解:绝对值不大于3.14的所有有理数之和等于0;不小于﹣4而不大于3的所有整数之和(﹣4)+(﹣3)+(﹣2)+(﹣1)+0+1+2+3=﹣4故答案为:0 ﹣4.解题秘籍:本题考查了有理数大小比较 利用不小于﹣5而不大于4的所有整数得出加数是解题关键 注意互为相反数的和为零.13.(2020秋•饶平县校级期末)已知:数轴上A 点表示+8 B 、C 两点表示的数为互为相反数 且C 到A 的距离为3 求点B 和点C 各对应什么数?思路引领:求出到A 点的距离是3的数 即求出C 点表示的数 即可得出答案. 解:∵当点C 在A 的左边时 +8﹣3=5当点C 在A 点的右边时 +8+3=11∴C 点表示的数是5或11∴当C 表示的数是5 B 点表示的数是﹣5 或 当C 表示的数是11 B 点表示的数是﹣11. 解题秘籍:本题考查了数轴 相反数的应用 关键是求出C 点表示的数.14. 如果a 、b 互为相反数 那么2016a +2016b ﹣100= .思路引领:根据互为相反数的和为0 得a +b =0 把所求的式子进行变形 再代入求得结论.解:因数a 、b 互为相反数所以a +b =0则2016a +2016b ﹣100=2016(a +b )﹣100=﹣100.故答案为:﹣100.解题秘籍:本题考查了相反数的概念 明确互为相反数的两个数相加为0 因此对所求式子进行变形是本题的关键.15.(2017秋•和平区校级月考)在下列各等式中 a 表示正数的有( )个式子. ①|a |=a ;②|a |=﹣a ;③|a |>﹣a ;④|a |≥﹣a ;⑤|a|a =1;⑥a <1a . A .4 B .3 C .2D .1 思路引领:根据绝对值的定义即可求解.解:①|a |=a 时 a 为非负数 即a 可以为0 不符合题意;②|a |=﹣a 时 a 为非正数 即a 可以为0 不符合题意;③|a |>﹣a 时 a 一定为正数 符合题意;④|a |≥﹣a 时 a 为非负数 即a 可以为0 不符合题意;⑤|a|a =1时 a 一定为正数 符合题意;⑥a <1a 时 0<a <1或a <﹣1 即a 可以为小于﹣1的负数 不符合题意.故选:C .解题秘籍:此题主要考查了绝对值 关键是熟悉如果用字母a 表示有理数 则数a 的绝对值要由字母a 本身的取值来确定:①当a 是正有理数时 a 的绝对值是它本身a ;②当a 是负有理数时 a 的绝对值是它的相反数﹣a ;③当a 是零时 a 的绝对值是零.16.(2021秋•姜堰区期中)在数轴上画出表示下列各数的点 并将这些数按照从小到大的顺序用“<”号连接起来:﹣(﹣2)、|﹣3|、0、+(﹣1)、﹣212思路引领:先根据相反数和绝对值进行计算 再在数轴上表示出各个数 再比较大小即可.解:+(﹣1)=﹣1 ﹣(﹣2)=2 |﹣3|=3−212<+(﹣1)<0<﹣(﹣2)<|﹣3|.解题秘籍:本题考查了数轴 有理数的大小比较 绝对值和相反数等知识点 能正确在数轴上表示出各个数|是解此题的关键 注意:在数轴上表示的数 右边的数总比左边的数大.17.已知a >0 b <0 且|a |<|b | 借助数轴 试把a ﹣a b ﹣b 四个数用“<”连接起来. 思路引领:根据|a |<|b | 可得b 距离原点比a 远 画出数轴后即可得出答案.解:如图所示:所以b <﹣a <a <﹣b .解题秘籍:本题考查了有理数的大小比较:在数轴上 右边的点所表示的数比左边的点表示的数要大;离原点越远 它表示的数的绝对值就越大.18.(2021秋•江都区校级月考)已知在纸面上有一数轴(如图) 折叠纸面:(1)若1表示的点与﹣1表示的点重合 则﹣2表示的点与数 表示的点重合;(2)若﹣1表示的点与5表示的点重合 回答以下问题:①6表示的点与数 表示的点重合;②若数轴上A、B两点之间的距离为11(A在B的左侧)且A、B两点经折叠后重合求A、B两点表示的数是多少?思路引领:(1)依题意可知两数关于原点对称所以可求出与﹣2重合的点;(2)①依题意若﹣1表示的点与5表示的点重合可知两数关于与2表示的点对称即可求出6表示的点的对称点;②由①条件可知A、B关于2表示的点对称即可求出答案.解:(1)∵1表示的点与﹣1表示的点重合∴﹣2表示的点与2表示的点重合.故答案为:2;(2)①∵﹣1表示的点与5表示的点重合∴6表示的点与﹣2表示的点重合.故答案为:﹣2;②∵A、B两点之间的距离为11经折叠后重合∴A、B距离对称点的距离为11÷2=5.5又∵且关于点2表示的点对称∴点A表示的数为2+5.5=7.5 点B表示的数为2﹣5.5=﹣3.5∴A应该为﹣3.5 B应该为7.5.解题秘籍:本题主要考查数轴上点的应用根据题意求出两个点的对称点是解决本题的关键.19.(2019秋•鼓楼区期中)已知数轴上两点A、B对应的数分别是6 ﹣8 M、N、P为数轴上三个动点点M从A点出发速度为每秒2个单位点N从点B出发速度为M 点的3倍点P从原点出发速度为每秒1个单位.(1)若点M向右运动同时点N向左运动求多长时间点M与点N相距54个单位?(2)若点M、N、P同时都向右运动求多长时间点P到点M N的距离相等?(3)当时间t满足t1<t≤t2时M、N两点之间N、P两点之间M、P两点之间分别有55个、44个、11个整数点请直接写出t1t2的值.思路引领:(1)由题意列出方程可求解;(2)分两种情况讨论列出方程可求解;(3)M、N、P三点之间整数点的多少可看作它们之间距离的大小M、N两点距离最大M、P两点距离最小可得出M、P两点向右运动N点向左运动结合数轴分类讨论分析即可.解:(1)设运动时间为t秒由题意可得:6+8+2t+6t=54∴t=5∴运动5秒点M 与点N 相距54个单位;(2)设运动时间为t 秒由题意可知:M 点运动到6+2t N 点运动到﹣8+6t P 点运动到t当t <1.6时 点N 在点P 左侧MP =NP∴t ﹣(﹣8+6t )=6+2t ﹣t∴6+t =8﹣5t∴t =13s ;当t >1.6时 点N 在点P 右侧MP =NP∴﹣8+6t ﹣t =6+2t ﹣t∴6+t =﹣8+5t∴t =72s∴运动13s 或72s 时点P 到点M N 的距离相等; (3)由题意可得:M 、N 、P 三点之间整数点的多少可看作它们之间距离的大小M 、N 两点距离最大 M 、P 两点距离最小 可得出M 、P 两点向右运动 N 点向左运动①如上图 当t 1=5s 时 P 在5 M 在16 N 在﹣38再往前一点 MP 之间的距离即包含11个整数点 NP 之间有44个整数点;②当N 继续以6个单位每秒的速度向左移动 P 点向右运动若N 点移动到﹣39时 此时N 、P 之间仍为44个整数点若N 点过了﹣39时 此时N 、P 之间为45 个整数点故t 2=16+5=316s ∴t 1=5s t 2=316s . 解题秘籍:本题考查了一元一次方程在数轴上的动点问题中的应用 理清题中的数量关系、数形结合 是解题的关键.。

人教版七年级上册数学:第2章《整式的加减》选择题专项训练

人教版七年级上册数学:第2章《整式的加减》选择题专项训练

第2章《整式的加减》选择题精选1.(2019秋•南海区期末)若代数式x﹣2y+8的值为18,则代数式3x﹣6y+4的值为()A.30B.﹣26C.﹣30D.342.(2019秋•肇庆期末)多项式x2y+3xy﹣1的次数与项数分别是()A.2,3B.3,3C.4,3D.5,33.(2019秋•黄埔区期末)下列式子中,与﹣3a2b是同类项的是()A.﹣3ab2B.﹣ba2C.2ab2D.2a3b4.(2019秋•封开县期末)计算正确的是()A.3ab﹣2ab=ab B.3ab﹣2ab=1C.3ab+2ab=5a2b2D.3ab+2ab=55.(2019秋•揭阳期末)裕丰商店一月份的利润为50万元,二、三月份的利润平均增长率为m,则下列各式中,能正确表示这个商店第一季度的总利润的是()A.50(1+m)万元B.50(1+m)2万元C.[50+50(1+m)]万元D.[50+50(1+m)+50(1+m)2]万元6.(2019秋•斗门区期末)已知单项式2x3y1+2m与3x n+1y3的和是单项式,则m﹣n的值是()A.3B.﹣3C.1D.﹣17.(2019秋•龙华区期末)若单项式3x m+3y3﹣axy n+1=4xy3,那么()A.a×m=2B.a×n=2C.m×n=2D.m n=﹣48.(2019秋•白云区期末)已知一个单项式的系数是3,次数是5,则这个单项式可能是()A.5x2y B.﹣3x5C.3x2y5D.3x2y39.(2019秋•白云区期末)若某矿山2018年采矿量为n吨,经过技术改良后,预计2019年采矿量将比2018年增产30%,则2019年该矿山的预计采矿量是()吨.A.(1﹣30%)n B.(1+30%)n C.n+30%D.30%•n10.(2019秋•揭阳期末)若﹣ab2m与2a n﹣1b6是同类项,则m+n=()A.3B.4C.5D.711.(2019秋•光明区期末)下列各式计算正确的是()A.32=6B.(−12)3=18C.3a+b=3ab D.4a3b﹣5ba3=﹣a3b12.(2019秋•番禺区期末)若x=2时,多项式mx3+nx的值为6,则当x=﹣2时,多项式mx3+nx的值为()A.﹣6B.6C.0D.2613.(2019秋•番禺区期末)下列说法中,正确的是()A.若x,y互为倒数,则(﹣xy)2020=﹣1B.如果|x|=2,那么x的值一定是2C.与原点的距离为4个单位的点所表示的有理数一定是4D.若﹣7x6y4和3x2m y n是同类项,则m+n的值是714.(2019秋•海珠区期末)已知5x1+m y4与x3y4是同类项,则m的值是()A.3B.2C.5D.415.(2019秋•禅城区期末)下列运算正确的是()A.2a2b﹣a2b=a2b B.2a﹣a=2C.3a2+2a2=5a4D.2a+b=2ab16.(2019秋•南沙区期末)下列计算正确的是()A.﹣2(a﹣b)=﹣2a+b B.2c2﹣c2=2C.x2y﹣4yx2=﹣3x2y D.z2+4z3=5z517.(2019秋•普宁市期末)下列各式一定成立的是()A.3(x+5)=3x+5B.6x+8=6(x+8)C.﹣(x﹣6)=﹣x+6D.﹣a+b=﹣(a+b)18.(2019秋•顺德区期末)某个数值转换器的原理如图所示:若开始输入x的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是()A.1010B.4C.2D.119.(2019秋•顺德区期末)如果a﹣3b=2,那么2a﹣6b的值是()A.4B.﹣4C.1D.﹣120.(2019秋•高明区期末)下列计算正确的是()A.﹣32=﹣6B.3a2﹣2a2=1C.﹣1﹣1=0D.2(2a﹣b)=4a﹣2b21.(2019秋•高明区期末)如果2a m b3与﹣5a4b n是同类项,则m﹣2n=()A.5B.﹣5C.2D.﹣222.(2019秋•东莞市期末)已知2x3y2和﹣2x m y2n是同类项,则式子m+n的值是()A.5B.﹣5C.4D.623.(2019秋•花都区期末)下列各题中,合并同类项结果正确的是()A.2a2+3a2=5a2B.3m+3n=6mnC.4xy﹣3xy=1D.2m2n﹣2mn2=024.(2019秋•花都区期末)如果单项式﹣2x a+2y3与3xy b﹣1是同类项,那么ab的值为()A.4B.﹣4C.8D.﹣825.(2019秋•荔湾区期末)单项式﹣9xy2z3的系数和次数分别是()A.﹣9,6B.9,6C.﹣1,6D.﹣9,326.(2019秋•花都区期末)已知x﹣2y=3,则代数式2x﹣4y﹣12的值为()A.6B.﹣6C.9D.﹣927.(2019秋•香洲区期末)把一个大正方形和四个相同的小正方形按图①、①两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .a +2bB .a +bC .3a +bD .a +3b28.(2019秋•普宁市期末)下列判断中正确的是( )A .2a 2bc 与﹣2bca 2不是同类项B .单项式﹣x 2的系数是﹣1C .5x 2﹣xy +xy 2是二次三项式D .m 23不是整式29.(2019秋•龙湖区期末)下列各式的计算,正确的是( )A .3a +2b =5abB .5y 2﹣3y 2=2C .4m 2n ﹣2mn 2=2mnD .﹣12x +7x =﹣5x30.(2019秋•龙湖区期末)下列添括号正确的是( )A .x +y =﹣(x ﹣y )B .x ﹣y =﹣(x +y )C .﹣x +y =﹣(x ﹣y )D .﹣x ﹣y =﹣(x ﹣y )31.(2019秋•揭西县期末)化简a ﹣(a +b )﹣2(a ﹣b )得( )A .0B .﹣2a ﹣3bC .﹣2a +bD .﹣2a ﹣2b32.(2019秋•龙岗区期末)下列说法正确的是( )A .3a ﹣5的项是3a ,5B .2x 2y +xy 2+z 2是二次三项式C .2x 2y 与﹣5yx 2是同类项式D .单项式﹣3πyx 2的系数是﹣333.(2019秋•龙岗区期末)2018年电影《我不是药神》反映了进口药用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行改革,看病贵将成为历史.某药厂对售价为m 元的药品进行了降价,现在有三种方案.三种方案哪种降价最多( )方案一:第一次降价10%,第二次降价30%;方案二:第一次降价20%,第二次降价15%;方案三:第一、二次降价均为20%.A .方案一B .方案二C .方案三D .不能确定 34.(2019秋•新会区期末)长方形的一边长为2a +3b ,另一边比它大a ﹣b ,那么这个长方形的周长是( )A .3a +2bB .5(a +b )C .8a +6bD .10(a +b )35.(2019秋•宝安区期末)下列各式计算不正确的是( )A .3m ﹣m =3B .﹣2a +3a =aC .﹣(2a ﹣3)=﹣2a +3D .(﹣2)3=﹣8 36.(2019秋•罗湖区期末)下列说法中:①3xy 5的系数是35;①﹣ab 2的次数是2;①多项式mn 2+2mn ﹣3n ﹣1的次数是3;①a ﹣b 和xy 6都是整式,正确的有( ) A .1个 B .2个 C .3个 D .4个37.(2019秋•罗湖区期末)下列计算正确的一个是( )A .﹣y 2﹣y 2=0B .x 2+x 3=x 6C .﹣(x ﹣6)=﹣x +6D .x 2y +xy 2=2x 3y 338.(2019秋•怀集县期末)﹣(a 2﹣b 3+c 4)去括号后为( )A .﹣a 2﹣b 3+c 4B .﹣a 2+b 3+c 4C .﹣a 2﹣b 3﹣c 4D .﹣a 2+b 3﹣c 439.(2019秋•宝安区期末)若2a ﹣3b =﹣1,则代数式1﹣4a +6b 的值为( )A .﹣1B .1C .2D .340.(2019秋•阳江期末)下列计算正确的是( )A .3x 2﹣x 2=3B .3x 2+2x 3=5x 5C .3+x =3xD .(﹣3)2=9 41.(2019秋•中山市期末)单项式﹣6ab 的系数与次数分别为( )A .6,1B .﹣6,1C .6,2D .﹣6,242.(2019秋•香洲区期末)下列去括号正确的是( )A .a ﹣(3b ﹣c )=a ﹣3b ﹣cB .a +3(2b ﹣3c )=a ﹣6b ﹣9cC .a +(b ﹣3c )=a ﹣b +3cD .a ﹣2(2b ﹣3c )=a ﹣4b +6c 43.(2019秋•福田区期末)下列每组单项式不是同类项的是( )A .﹣3x 与2xB .ab 与﹣2baC .xy 与xzD .xy 2与12xy 2 44.(2019秋•福田区期末)下列各式运算正确的是( )A .2x +3y =5xyB .2x +3x =5xC .x +x 2=2x 3D .x 2+x 2=2x 445.(2019秋•盐田区期末)若﹣a 3b 与2a 3b n 的和为单项式,则n 的值是( )A .﹣2B .﹣1C .1D .2参考答案与试题解析一.选择题(共45小题)1.【解答】解:①x ﹣2y +8=18,①x ﹣2y =10,①3x ﹣6y +4=3(x ﹣2y )+4=3×10+4=34故选:D .2.【解答】解:多项式x 2y +3xy ﹣1的次数与项数分别是:3,3.故选:B .3.【解答】解:与﹣3a 2b 是同类项的是﹣ba 2,故选:B .4.【解答】解:A .3ab ﹣2ab =ab ,正确;B .3ab ﹣2ab =ab ,故本选项不合题意;C .3ab +2ab =5ab ,故本选项不合题意;D .3ab +2ab =5ab ,故本选项不合题意.故选:A .5.【解答】解:①裕丰商店一月份的利润为50万元,二、三月份的利润平均增长率为m , ①二月份的利润为50(1+m )万元,三月份的利润为50(1+m )2,①这个商店第一季度的总利润是[50+50(1+m )+50(1+m )2]万元.故选:D .6.【解答】解:①单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,①2x 3y 1+2m 与3x n +1y 3是同类项,则{n +1=31+2m =3①{m =1n =2, ①m ﹣n =1﹣2=﹣1故选:D .7.【解答】解:①3x m +3y 3﹣axy n +1=4xy 3,①3﹣a =4,m +3=1,n +1=3,解得a =﹣1,m =﹣2,n =2,①a ×m =2,故选项A 符合题意;a ×n =﹣2,故选项B 不符合题意;m ×n =﹣4,故选项C 不符合题意;m n =4,故选项D 不符合题意.故选:A .8.【解答】解:A 、5x 2y ,单项式的系数是5,次数是3,故此选项不合题意;B 、﹣3x 5,单项式的系数是﹣3,次数是5,故此选项不合题意;C 、3x 2y 5,单项式的系数是3,次数是7,故此选项不合题意;D 、3x 2y 3,单项式的系数是3,次数是5,故此选项符合题意.故选:D.9.【解答】解:2019年该矿山的预计采矿量是(1+30%)n吨.故选:B.10.【解答】解:根据题意得:2m=6,n﹣1=1,解得m=3,n=2,①m+n=3+2=5.故选:C.11.【解答】解:A、32=9,原计算错误,故此选项不符合题意;B、(−12)3=−18,原计算错误,故此选项不符合题意;C、3a与b不是同类项,并能合并,原计算错误,故此选项不符合题意;D、4a3b﹣5ba3=﹣a3b,原计算正确,故此选项符合题意;故选:D.12.【解答】解:①x=2时,mx3+nx=6,①8m+2n=6,①当x=﹣2时,mx3+nx=﹣8m﹣2n=﹣(8m+2n)=﹣6.故选:A.13.【解答】解:A、若x,y互为倒数,则(﹣xy)2020=1,故A错误;B、若|x|=2,那么x是±2,故B错误;C、与原点的距离为4个单位的点所表示的有理数是4或﹣4,故C错误;D、若﹣7x6y4和3x2m y n是同类项,则2m=6,n=4,所以m+n的值是7,故D正确.故选:D.14.【解答】解:①5x1+m y4与x3y4是同类项,①1+m=3,解得m=2,故选:B.15.【解答】解:A、2a2b﹣a2b=a2b,故原题计算正确;B、2a﹣a=a,故原题计算错误;C、3a2+2a2=5a2,故原题计算错误;D、2a和b不能合并,故原题计算错误;故选:A.16.【解答】解:A、﹣2(a﹣b)=﹣2a+2b,故此选项错误;B、2c2﹣c2=c2,故此选项错误;C、x2y﹣4yx2=﹣3x2y,正确;D、z2+4z3,无法计算,故此选项错误;故选:C.17.【解答】解:A、原式=3x+15,故本选项错误.B、原式=6(x+43),故本选项错误.C、原式=﹣x+6,故本选项正确.D、原式=﹣(a﹣b),故本选项错误.故选:C.18.【解答】解:由题意可得,当x=1时,第1次输出的结果是4,第2次输出的结果是2,第3次输出的结果是1,第4次输出的结果是4,第5次输出的结果是2,第6次输出的结果是1,第7次输出的结果是4,第8次输出的结果是2,第9次输出的结果是1,第10次输出的结果是4,…,从第三次输出的结果开始,每次输出的结果分别是1、4、2、1、4、2、…,每三个数一个循环.所以(2020﹣2)÷3=672…2,所以2020次输出的结果是4.故选:B.19.【解答】解:当a﹣3b=2时,2a﹣6b=2(a﹣3b)=4,故选:A.20.【解答】解:A、﹣32=﹣9,故原题计算错误;B、3a2﹣2a2=a2,故原题计算错误;C、﹣1﹣1=﹣2,故原题计算错误;D、2(2a﹣b)=4a﹣2b,故原题计算正确;故选:D.21.【解答】解:根据题意得:m=4,n=3,则m﹣2n=4﹣6=﹣2.故选:D .22.【解答】解:①2x 3y 2和﹣2x m y 2n 是同类项,①m =3,2n =2,解得:n =1.故m +n =3+1=4.故选:C .23.【解答】解:A .2a 2+3a 2=5a 2,正确,故本选项符合题意;B .3m 与2n 不是同类项,所以不能合并,故本选项不合题意;C .4xy ﹣3xy =xy ,故本选项不合题意;D .2m 2n 与﹣2mn 2不是同类项,所以不能合并,故本选项不合题意. 故选:A .24.【解答】解:由题意得:a +2=1,b ﹣1=3,解得:a =﹣1,b =4,则ab =﹣4,故选:B .25.【解答】解:单项式﹣9xy 2z 3的系数和次数分别是:﹣9,6.故选:A .26.【解答】解:①x ﹣2y =3,①2x ﹣4y ﹣12=2(x ﹣2y )﹣12=2×3﹣12=6﹣12=﹣6故选:B .27.【解答】解:设小正方形的边长为x ,则a ﹣2x =b +2x ,则4x =a ﹣b ,所以大正方形的周长﹣小正方形的周长=4(a ﹣2x )﹣4x=4a ﹣12x=4a ﹣3a +3b=a +3b .故选:D .28.【解答】解:A .2a 2bc 与﹣2bca 2是同类项,故本选项不合题意;B .单项式﹣x 2的系数是﹣1,正确,故本选项符合题意;C .5x 2﹣xy +xy 2是三次三项式,故本选项不合题意;D .m 23是整式,故本选项不合题意.故选:B .29.【解答】解:A .3a 与2b 不是同类项,所以不能合并,故本选项不合题意;B .5y 2﹣3y 2=2y 2,所以不能合并,故本选项不合题意;C .4m 2n 与﹣2mn 2不是同类项,所以不能合并,故本选项不合题意;D .﹣12x +7x =﹣5x ,正确,故本选项符合题意.故选:D .30.【解答】解:A 、x +y =﹣(﹣x ﹣y ),故这个选项错误;B 、x ﹣y =﹣(﹣x +y ),故这个选项错误;C 、﹣x +y =﹣(x ﹣y ),故这个选项正确;D 、﹣x ﹣y =﹣(x +y ),故这个选项错误.故选:C .31.【解答】解:a ﹣(a +b )﹣2(a ﹣b )=a ﹣a ﹣b ﹣2a +2b=﹣2a +b .故选:C .32.【解答】解:A .3a ﹣5的项是3a ,﹣5,故本选项不合题意;B .2x 2y +xy 2+z 2是三次三项式,故本选项不合题意;C .2x 2y 与﹣5yx 2是同类项式,正确,故本选项符合题意;D .单项式﹣3πyx 2的系数是﹣3π,故本选项不合题意.故选:C .33.【解答】解:方案一:m ﹣(1﹣10%)(1﹣30%)m =m ﹣63%m =37%m , 方案二:m ﹣(1﹣20%)(1﹣15%)m =m ﹣68%m =32%m ,方案三:m ﹣(1﹣20%)(1﹣20%)m =m ﹣64%m =36%m ,①m >0,①37%m >36%m >32%m ,①方案一降价最多,故选:A .34.【解答】解:①长方形的一边长为2a +3b ,另一边比它大a ﹣b , ①另一边为:2a +3b +a ﹣b =3a +2b ,①这个正方形的周长是:2(3a +2b +2a +3b )=10(a +b ).故选:D .35.【解答】解:A 、3m ﹣m =2m ,计算错误,符合题意;B 、﹣2a +3a =a ,计算正确,不合题意;C 、﹣(2a ﹣3)=﹣2a +3,计算正确,不合题意;D 、(﹣2)3=﹣8,计算正确,不合题意,故选:A .36.【解答】解:①3xy 5的系数是35的说法正确; ①﹣ab 2的次数是3,原来的说法错误;①多项式mn 2+2mn ﹣3n ﹣1的次数是3的说法正确;①a ﹣b 和xy 6都是整式的说法正确.正确的有3个.故选:C .37.【解答】解:A 、﹣y 2﹣y 2=﹣2y 2,故此选项错误;B 、x 2+x 3,无法合并,故此选项错误;C 、﹣(x ﹣6)=﹣x +6,正确;D 、x 2y +xy 2,无法合并,故此选项错误,故选:C .38.【解答】解:原式=a 2+b 3﹣c 4,故选:D .39.【解答】解:①2a ﹣3b =﹣1,①原式=1﹣2(2a ﹣3b )=1+2=3,故选:D .40.【解答】解:(A )原式=2x 2,故A 错误,(B )3x 2与2x 3不是同类项,故B 错误,(C )3与x 不是同类项,故C 错误,故选:D .41.【解答】解:单项式﹣6ab 的系数与次数分别为﹣6,2. 故选:D .42.【解答】解:A 、原式=a ﹣3b +c ,故本选项不符合题意.B 、原式=a +6b ﹣9c ,故本选项不符合题意.C 、原式=a +b ﹣3c ,故本选项不符合题意.D 、原式=a ﹣4b +6c ,故本选项符合题意.故选:D .43.【解答】解:A 、﹣3x 与2x 是同类项,故此选项不合题意;B 、ab 与﹣2ba 是同类项,故此选项不合题意;C 、xy 与xz 不是同类项,故此选项符合题意;D 、xy 2与12xy 2是同类项,故此选项不合题意; 故选:C .44.【解答】解:A 、原式不能合并,不符合题意;B 、原式=5x ,符合题意;C 、原式不能合并,不符合题意;D 、原式=2x 2,不符合题意,故选:B .45.【解答】解:①﹣a 3b 与2a 3b n 的和为单项式,①n=1.故选:C.。

人教版七年级数学上册《有理数的加减混合运算》专题训练-附带答案

人教版七年级数学上册《有理数的加减混合运算》专题训练-附带答案

人教版七年级数学上册《有理数的加减混合运算》专题训练-附带答案一.选择题(共10小题 满分20分 每小题2分)1.(2分)(2022·台湾)算式91123722182218⎛⎫+-- ⎪⎝⎭之值为何?( ) A .411 B .910 C .19 D .54【答案】A【完整解答】解:91123722182218⎛⎫+-- ⎪⎝⎭ 91123722182218=+-+ 92311722221818⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭ 7111=-+ 411=. 故答案为:A.【思路引导】首先根据去括号法则“括号前面是负号 去掉括号和负号 括号内各项都要变号”先去括号 再利用加法的交换律和结合律 将分母相同的加数结合在一起 进而根据有理数的加法法则算出答案.2.(2分)(2021六下·哈尔滨期中)一天早晨的气温为-3℃ 中午上升了7°C 半夜又下降了8℃ 则半夜的气温是( )A .-5°CB .-4°C C .4°CD .-16°C 【答案】B【完整解答】根据题意可得:-3+7-8=-4故答案为:B【思路引导】根据题意可得算式:-3+7-8 计算即可。

3.(2分)(2022·雄县模拟)下面算式与11152234-+的值相等的是( ) A .111324234⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭ B .11133234⎛⎫--+ ⎪⎝⎭C.111227234⎛⎫+-+⎪⎝⎭D.11143234⎛⎫--+⎪⎝⎭【答案】C【完整解答】解:1111115 52527 23423412 -+=+-++=A1111111117 3243243241 23423423412⎛⎫⎛⎫--+-=++-=+++--=⎪ ⎪⎝⎭⎝⎭B 1111111111 3333337 23423423412⎛⎫--+=++=++++=⎪⎝⎭C1111115 2272277 23423412⎛⎫+-+=+--++=⎪⎝⎭D1111111 43438 23423412⎛⎫--+=++++=⎪⎝⎭故答案为:C【思路引导】利用有理数的加减法的运算方法求解即可。

人教版)七年级数学上册第4章《几何图形初步》选择题专项训练(含答案)

人教版)七年级数学上册第4章《几何图形初步》选择题专项训练(含答案)

第4章《几何图形初步》选择题专项训练1.(2019秋•南沙区期末)如图,某工厂有三个住宅区,A、B、C各区分别住有职工15人、20人、45人,且这三个区在一条大道上(A、B、C三点共线),已知AB=1500m,BC=1000m,为了方便职工上下班,该工厂打算从以下四处中选一处设置接送车停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.A住宅区B.B住宅区C.C住宅区D.B、C住宅区中间D处2.(2019秋•南山区期末)已知三条不同的射线OA、OB、OC,有下列条件,其中能确定OC平分∠AOB的有()∠∠AOC=∠BOC∠∠AOB=2∠AOC∠∠AOC+∠COB=∠AOB∠∠BOC=12∠AOBA.1个B.2个C.3个D.4个3.(2019秋•高明区期末)如图,已知∠AOB=90°,OC是∠AOB内任意一条射线,OB,OD分别平分∠COD,∠BOE,下列结论:∠∠COD=∠BOE;∠∠COE=3∠BOD;∠∠BOE=∠AOC;∠∠AOC+∠BOD=90°,其中正确的有()A.∠∠∠B.∠∠∠C.∠∠∠D.∠∠∠4.(2019秋•宝安区期末)利用一副三角尺不能画出的角的度数是()A.55°B.75°C.105°D.135°5.(2019秋•福田区期末)如图所示,下列说法正确的是()A.∠ADE就是∠DB.∠ABC可以用∠B表示C.∠ABC和∠ACB是同一个角D.∠BAC和∠DAE不是同一个角6.(2018秋•坪山区期末)如图,点D是线段AB的中点,点C在线段BD上,且BC=13AB,CD=1,则线段AB 的长为()A.4B.6C.9D.87.(2018秋•南海区期末)已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm或4cm C.2cm D.2cm或8cm8.(2019秋•越秀区期末)如图,从A地到B地有四条路线,由上到下依次记为路线∠、∠、∠、∠,则从A地到B 地的最短路线是路线()A .∠B .∠C .∠D .∠9.(2019秋•龙岗区校级期末)下列说法中,正确的个数有( )∠过两点有且只有一条直线;∠连接两点的线段叫做两点间的距离;∠两点之间,线段最短;∠若∠AOC =2∠BOC ,则OB 是∠AOC 的平分线.A .1个B .2个C .3个D .4个10.(2019秋•福田区校级期末)射线OC 在∠AOB 内部,下列条件不能说明OC 是∠AOB 的平分线的是( )A .∠AOC =12AOB B .∠BOC =12∠AOB C .∠AOC +∠BOC =∠AOBD .∠AOC =∠BOC11.(2019秋•沙坪坝区校级期末)用一个平面去截一个圆锥,截面的形状不可能是( )A .圆B .矩形C .椭圆D .三角形12.(2019秋•潮州期末)已知∠A =105°,则∠A 的补角等于( )A .105°B .75°C .115°D .95°13.(2019秋•黄埔区期末)已知点O 是直线AB 上一点,∠AOC =50°,OD 平分∠AOC ,∠BOE =90°,下列结果,不正确的是( )A .∠BOC =130°B .∠AOD =25°C .∠BOD =155°D .∠COE =45° 14.(2019秋•黄埔区期末)下列说法不正确的是( ) A .因为M 是线段AB 的中点,所以AM =MB =12ABB .在线段AM 延长线上取一点B ,如果AB =2AM ,那么点M 是线段AB 的中点C .因为A ,M ,B 在同一直线上,且AM =MB ,所以M 是线段AB 的中点D .因为AM =MB ,所以点M 是AB 的中点15.(2019秋•白云区期末)将左面的平面图形绕轴旋转一周,得到的立体图形是( )A .B .C .D . 16.(2019秋•潮阳区期末)下列说法:∠过两点有且只有一条直线;∠射线比直线少一半;∠单项式32πx 2y 的系数是32;∠绝对值不大于3的整数有7个;∠若a +b =1,且a ≠0,则x =1一定是方程ax +b =1的解.其中正确的个数为( )A .1B .2C .3D .417.(2019秋•五华县期末)如图,小刚将自己用的一副三角板摆成如图形状,如果∠AOC =∠BOD =90°,∠AOB =155°,那么∠COD 等于( )A .45°B .35°C .25°D .15°18.(2019秋•揭西县期末)把一副三角尺ABC 和BDE 按如图所示那样拼在一起,其中A 、D 、B 三点在同一直线上,BM 为∠ABC 的平分线,BN 为∠CBE 的平分线,则∠MBN 的度数为( )A .30°B .60°C .55°D .45°19.(2019秋•龙华区期末)用一个平面去截一个圆柱体,截面图形不可能是( )A .长方形B .梯形C .圆形D .椭圆形20.(2019秋•新会区期末)如图,点A 、B 、C 顺次在直线上,点M 是线段AC 的中点,点N 是线段BC 的中点,已知AB =16cm ,MN =( )A .6cmB .8cmC .9cmD .10cm 21.(2019秋•罗湖区期末)下列说法中,正确的是( )A .绝对值等于他本身的数必是正数B .若线段AC =BC ,则点C 是线段AB 的中点C .角的大小与角两边的长度有关,边越长,则角越大D .若单项式12x n y 与x 3y m﹣1是同类项,则这两个单项式次数均为422.(2019秋•罗湖区期末)1883年,康托尔构造的这个分形,称做康托尔集,从长度为1的线段开始,康托尔取走其中间三分之一而达到第一阶段;然后从每人个余下的三分之一线段中取走中间三分之一而达到第二阶段,无限地重复这一过程,余下的无穷点就称做康托尔集,下图是康托尔集的最初几个阶段,当达到第5个阶段时,取走的所有线段的长度之和为( )A .13B .242243C .211243D .3224323.(2019秋•宝安区期末)下列四个说法:∠角的两边越长,角就越大;∠两点之间的所有连线中,线段最短;∠如果AB =BC ,则点B 是线段AC 的中点;∠在平面内,经过两点有且只有一条直线.其中正确的是( )A .∠∠B .∠∠C .∠∠D .∠∠24.(2019秋•香洲区期末)如图,点A 在点O 的北偏西60°的方向上,点B 在点O 的南偏东20°的方向上,那么∠AOB 的大小为( )A .110°B .120°C .140°D .170°25.(2019秋•中山市期末)如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上的字是()A.设B.和C.中D.山26.(2019秋•中山市期末)如图,将长方形ABCD绕CD边旋转一周,得到的几何体是()A.棱柱B.圆锥C.圆柱D.棱锥27.(2019秋•香洲区期末)如图,某同学家在A处,现在该同学要去位于D处的同学家,请帮助他选择一条最近的路线是()A.A→B→M→D B.A→B→F→D C.A→B→E→F→D D.A→B→C→D28.(2019秋•福田区期末)如图,D是AB中点,C是AD中点,若AC=1.5cm,则线段AB=()cm A.6B.8C.7.5D.9.529.(2019秋•盐田区期末)凌晨3点整,钟表的时针与分针的夹角是()A.30°B.45°C.60°D.90°30.(2019秋•东莞市期末)如图,是小明同学在数学实践课上,所设计的正方体盒子的平面展开图,每个面上都有一个汉字,请你判断,正方体盒子上与“善”字相对的面上的字是()A.文B.明C.诚D.信31.(2019秋•龙岗区期末)下列各图中,经过折叠能围成一个正方体的是()A.B.C.D.32.(2019秋•沈河区期末)下列说法:∠经过一点有无数条直线;∠两点之间线段最短;∠经过两点,有且只有一条直线;∠若线段AM等于线段BM,则点M是线段AB的中点;∠连接两点的线段叫做这两点之间的距离.其中正确的个数为()A.1个B.2个C.3个D.4个33.(2019秋•封开县期末)如图,点C是线段AB上一点,D为BC的中点,且AB=12cm,BD=5cm.若点E在直线AB上,且AE=3cm,则DE的长为()A.4cm B.15cm C.3cm或15cm D.4cm或10cm34.(2019秋•福田区校级期末)下列叙述:∠最小的正整数是0;∠6πx3的系数是6π;∠用一个平面去截正方体,截面不可能是六边形;∠若AC=BC,则点C是线段AB的中点;∠三角形是多边形;∠绝对值等于本身的数是正数,其中正确的个数有()A.2B.3C.4D.535.(2019秋•江都区期末)现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因为()A.两点之间线段的长度,叫做这两点之间的距离B.过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短36.(2019秋•福田区校级期末)已知线段AB=10cm,在直线AB上取一点C,使AC=16cm,则线段AB的中点与AC的中点的距离为()A.13cm B.6cm C.6cm或26cm D.3cm或13cm37.(2019秋•龙湖区期末)如图,某同学家在A处,现在该同学要去位于B处的同学家去玩,请帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B38.(2019秋•云浮期末)已知∠A=60°,则∠A的补角是()A.30°B.60°C.120°D.180°39.(2018秋•金平区期末)中国讲究五谷丰登,六畜兴旺.如图是一个正方体展开图,图中的六个正方形店内分别标有六畜:“猪”、“牛”、“羊”、“马”、“鸡”、“狗”.将其围成一个正方体后,则与“牛”相对的是()A.猪B.马C.狗D.鸡40.(2018秋•福田区期末)已知射线OC是∠AOB的平分线,若∠AOC=30°,则∠AOB的度数为()A.15°B.30°C.45°D.60°41.(2018秋•罗湖区期末)如图,C、D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AB 的长等于()A.9cm B.10cm C.12cm D.14cm42.(2018秋•黄埔区期末)如图,点A在点O的北偏西60°的方向上,点B在点O的南偏东20°的方向上,那么∠AOB 的大小为()A.150°B.140°C.120°D.110°参考答案与试题解析一.选择题(共42小题)1.【解答】解:当停靠点在A区时,所有员工步行到停靠点路程和是:20×1500+45×2500=142500m;当停靠点在B区时,所有员工步行到停靠点路程和是:15×1500+45×1000=67500m;当停靠点在C区时,所有员工步行到停靠点路程和是:15×2500+20×1000=57500m;当停靠点在D区时,设距离B区x米,所有员工步行到停靠点路程和是:15×(1500+x)+20x+45(1000﹣x)=﹣10x+67500,由于k=﹣10,所以,x越大,路程之和越小,∠当停靠点在C区时,所有员工步行到停靠点路程和最小.故选:C.2.【解答】解:∠由∠AOC=∠BOC能确定OC平分∠AOB;∠如图1,∠AOB=2∠AOC所以不能确定OC平分∠AOB;∠∠AOC+∠COB=∠AOB不能确定OC平分∠AOB;∠如图2,∠BOC=12∠AOB,不能确定OC平分∠AOB;所以只有∠能确定OC平分∠AOB;故选:A.3.【解答】解:∠OB,OD分别平分∠COD,∠BOE,∠∠COB=∠BOD=∠DOE,∠∠COB+∠BOD=∠BOD+∠DOE,即:∠COD=∠BOE,因此∠正确;∠COE=∠COD+∠BOD+∠DOE=3∠BOD,因此∠正确;∠∠AOB=90°,∠∠AOC+∠BOC=90°=∠AOC+∠BOD,因此∠正确;∠∠AOC≠2∠BOC=∠BOE,因此∠不正确;故选:A.4.【解答】解:因为一副三角尺中角有:30°、45°、60°、90°,因此这些度数的和或差,均可以画出,如:75°=30°+45°,105°=60°+45°,135°=90°+45°,只有A不能写成上述角度的和或差,故选:A.5.【解答】解:A、错误.理由∠D在图中,不能明确表示哪一个角,必须由三个字母表示,本选项不符合题意.B、∠ABC可以用∠B表示,正确,本选项符合题意.C、∠ABC和∠ACB不是同一个角,本选项不符合题意.D、∠BAC和∠DAE是同一个角,本选项不符合题意,故选:B.6.【解答】解:设BC为x,那么AB为3x,∠D为AB中点,∠AD=BD=1.5x,CD=BD﹣BC=0.5x,又∠CD=0.5x=1,∠x=2,∠AB=3×2=6.故选:B.7.【解答】解:∠点A、B、C都是直线l上的点,∠有两种情况:∠当B在AC之间时,AC=AB+BC,而AB=5cm,BC=3cm,∠AC =AB +BC =8cm ;∠当C 在AB 之间时,此时AC =AB ﹣BC ,而AB =5cm ,BC =3cm ,∠AC =AB ﹣BC =2cm .点A 与点C 之间的距离是8或2cm .故选:D .8.【解答】解:根据两点之间线段最短可得,从A 地到B 地的最短路线是路线∠.故选:C .9.【解答】解:∠过两点有且只有一条直线,是直线的公理,故正确;∠连接两点的线段的长度叫两点的距离,故错误;∠两点之间,线段最短,是线段的性质,故正确;∠若OB 在∠AOC 内部,∠AOC =2∠BOC ,OB 是∠AOC 的平分线,若OB 在∠AOC 外部则不是,故错误. 故选:B .10.【解答】解:A 、射线OC 在∠AOB 内部,当∠AOC =12∠AOB 时,OC 是∠AOB 的平分线,故本选项不符合题意;B 、射线OC 在∠AOB 内部,当∠BOC =12∠AOB 时,OC 是∠AOB 的平分线,故本选项不符合题意;C 、如图所示,射线OC 在∠AOB 内部,∠AOC +∠BOC =∠AOB ,OC 不一定是∠AOB 的平分线,故本选项符合题意;D 、射线OC 在∠AOB 内部,当∠AOC =∠BOC 时,OC 是∠AOB 的平分线,故本选项不符合题意.故选:C .11.【解答】解:过圆锥的顶点的截面是三角形,平行于圆锥的底面的截面是圆,不平行于圆锥的底面的截面是椭圆,截面不可能是矩形,故B 符合题意;故选:B .12.【解答】解:∠A 的补角:180°﹣105°=75°,故选:B .13.【解答】解:∠∠AOC =50°,∠∠BOC =180°﹣∠AOC =130°,A 选项正确;∠OD 平分∠AOC ,∠∠AOD =12∠AOC =12×50°=25°,B 选项正确;∠∠BOD =180°﹣∠AOD =155°,C 选项正确;∠∠BOE =90°,∠AOC =50°,∠∠COE =180°﹣∠AOC ﹣∠BOE =40°,故D 选项错误;故选:D .14.【解答】解:A 、因为M 是线段AB 的中点,所以AM =MB =12AB ,故本选项正确;B 、如图,由AB =2AM ,得AM =MB ;故本选项正确;C 、根据线段中点的定义判断,故本选项正确;D 、如图,当点M 不在线段AB 时,因为AM =MB ,所以点M 不一定是AB 的中点,故本选项错误;故选:D .15.【解答】解:梯形绕上底边旋转是圆柱减圆锥,故C 正确;故选:C .16.【解答】解:∠过两点有且只有一条直线,正确;∠射线比直线少一半,两种图形都没有长度,故错误;∠单项式32πx 2y 的系数是32π,故此选项错误;∠绝对值不大于3的整数有7个,正确;∠若a +b =1,且a ≠0,则x =1一定是方程ax +b =1的解,正确.故选:C .17.【解答】解:∠∠BOD =90°,∠AOB =155°,∠∠AOD =∠AOB ﹣∠BOD =65°∠∠AOC =90°,∠∠COD =∠AOC ﹣∠AOD =25°那么∠COD 的度数为25°.故选:C .18.【解答】解:∠BM 为∠ABC 的平分线,∠∠CBM =12∠ABC =12×60°=30°, ∠BN 为∠CBE 的平分线, ∠∠CBN =12∠EBC =12×(60°+90°)=75°, ∠∠MBN =∠CBN ﹣∠CBM =75°﹣30°=45°.故选:D .19.【解答】解:用一个平面去截一个圆柱体,截面图形可能是:长方形、正方形,圆形,椭圆形,但不可能是梯形.故选:B .20.【解答】解:∠点M 是线段AC 的中点,点N 是线段BC 的中点,∠MN =MC ﹣NC =12AC −12BC =12(AC ﹣BC )=12AB ,∠AB =16cm ,∠MN =8cm .故选:B .21.【解答】解:A .绝对值等于他本身的数必是正数或0,故本选项错误;B .若线段AC =BC ,且点C 在线段AB 上,则点C 是线段AB 的中点,故本选项错误;C .角的大小与角两边的长度无关,故本选项错误;D .若单项式12x n y 与x 3y m﹣1是同类项,则这两个单项式次数均为1+3=4,故本选项正确;故选:D . 22.【解答】解:根据题意知:第一阶段时,余下的线段的长度之和为23,第二阶段时,余下的线段的长度之和为23×23=(23)2, 第三阶段时,余下的线段的长度之和为23×23×23=(23)3, …以此类推, 当达到第五个阶段时,余下的线段的长度之和为(23)5=32243,取走的线段的长度之和为1−32243=211243, 故选:C .23.【解答】解:∠角的大小与边的长短无关,故角的两边越长,角就越大是错误的;∠两点之间的所有连线中,线段最短,正确;∠若AB =BC ,点A 、B 、C 不一定在同一直线上,所以点B 不一定是线段AC 的中点,故错误.∠在平面内,经过两点有且只有一条直线,正确.故选:D .24.【解答】解:如图,∠点A 在点O 北偏西60°的方向上,∠OA 与西方的夹角为90°﹣60°=30°,又∠点B 在点O 的南偏东20°的方向上,∠∠AOB =30°+90°+20°=140°.故选:C .25.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“美”与“设”是相对面,“和”与“中”是相对面,“建”与“山”是相对面.故选:A.26.【解答】解:将长方形ABCD绕CD边旋转一周,得到的几何体是圆柱,故选:C.27.【解答】解:根据两点之间的线段最短,可得D、B两点之间的最短距离是线段DB的长度,所以想尽快赶到同学家玩,一条最近的路线是:A→B→F→D.故选:B.28.【解答】解:∠点C是线段AD的中点,∠AD=2AC=3cm.∠点D是线段AB的中点,∠AB=2AD=6cm,故选:A.29.【解答】解:如图:凌晨3点整,时针指向3,分针指向12,每相邻两个数字之间的夹角为30°,则其夹角为30°×3=90°.故选:D.30.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,在正方体盒子上与“善”字相对的面上的字是“文”.故选:A.31.【解答】解:A、是“田”字格,故不能折叠成一个正方体;B、是“凹”字格,故不能折叠成一个正方体;C、折叠后有两个面重合,缺少一个面,所以也不能折叠成一个正方体;D、可以折叠成一个正方体.故选:D.32.【解答】解:∠经过一点有无数条直线,这个说法正确;∠两点之间线段最短,这个说法正确;∠经过两点,有且只有一条直线,这个说法正确;∠若线段AM等于线段BM,则点M不一定是线段AB的中点,因为A、M、B三点不一定在一条直线上,所以这个说法错误;∠连接两点的线段的长度叫做这两点之间的距离,所以这个说法错误.所以正确的说法有三个.故选:C.33.【解答】解:∠D为BC的中点,BD=5cm,∠BC=10cm,CD=BD=5cm,∠AB=12cm,∠AC=2cm,如图1,∠AE=3cm,∠CE=1cm,∠DE=4cm,如图2,∠AE=3cm,∠DE=AE+AC+CD=3+2+5=10cm,故DE的长为4cm或10cm,故选:D.34.【解答】解:∠最小的正整数是1,此结论错误;∠6πx3的系数是6π,此结论正确;∠用一个平面去截正方体,截面与六个面均相交即可得六边形,此结论错误;∠若AC =BC ,且点C 在线段AB 上,则点C 是线段AB 的中点,此结论错误; ∠三角形是多边形,此结论正确;∠绝对值等于本身的数是正数和0,此结论错误;故选:A .35.【解答】解:现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”, 其原因是两点之间,线段最短,故选:D .36.【解答】解:∠如图,当C 在BA 延长线上时,∠AB =10cm ,AC =16cm ,D ,E 分别是AB ,AC 的中点,∠AD =12AB =5cm ,AE =12AC =8cm ,∠DE =AE +AD =8+5=13cm ;∠如图,当C 在AB 延长线上时,∠AB =10cm ,AC =16cm ,D ,E 分别是AB ,AC 的中点,∠AD =12AB =5cm ,AE =12AC =8cm ,∠DE =AE ﹣AD =8﹣5=3cm ;故选:D .37.【解答】解:根据两点之间的线段最短,可得C 、B 两点之间的最短距离是线段CB 的长度,所以想尽快赶到同学家玩,一条最近的路线是:A →C →F →B .故选:B .38.【解答】解:设∠A 的补角为∠β,则∠β=180°﹣∠A =120°.故选:C .39.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形, “猪”相对的字是“羊”;“马”相对的字是“狗”;“牛”相对的字是“鸡”.故选:D .40.【解答】解:∠射线OC 是∠AOB 的平分线,∠AOC =30°,∠∠AOB =60°.故选:D .41.【解答】解:∠BD =7cm ,BC =4cm ,∠CD =BD ﹣BC =3cm ,∠D 是AC 的中点,∠AC =2CD =6cm ,∠AB =AC +BC =10cm ,故选:B .42.【解答】解:如图,∠点A 在点O 北偏西60°的方向上,∠OA 与西方的夹角为90°﹣60°=30°,又∠点B 在点O 的南偏东20°的方向上,∠∠AOB =30°+90°+20°=140°.故选:B .。

人教版七年级上册第4章《几何图形初步》解答题专项训练(含答案)

人教版七年级上册第4章《几何图形初步》解答题专项训练(含答案)

第4章《几何图形初步》解答题专练1.(2019秋•西城区期末)对于平面内给定射线OA,射线OB及∠MON,给出如下定义:若由射线OA、OB组成的∠AOB的平分线OT落在∠MON的内部或边OM、ON上,则称射线OA与射线OB关于∠MON 内含对称.例如,图1中射线OA与射线OB关于∠MON内含对称.已知:如图2,在平面内,∠AOM=10°,∠MON=20°.(1)若有两条射线OB1,OB2的位置如图3所示,且∠B1OM=30°,∠B2OM=15°,则在这两条射线中,与射线OA关于∠MON内含对称的射线是;(2)射线OC是平面上绕点O旋转的一条动射线,若射线OA与射线OC关于∠MON内含对称,设∠COM =x°,求x的取值范围;(3)如图4,∠AOE=∠EOH=2∠FOH=20°,现将射线OH绕点O以每秒1°的速度顺时针旋转,同时将射线OE和OF绕点O都以每秒3°的速度顺时针旋转.设旋转的时间为t秒,且0<t<60.若∠FOE 的内部及两边至少存在一条以O为顶点的射线与射线OH关于∠MON内含对称,直接写出t的取值范围.2.(2020春•东城区校级期末)已知:如图,O是直线AB上的一点,∠COD=90°,OC平分∠AOE,∠BOD =30°,求∠DOE的度数.3.(2019秋•密云区期末)如图,点O在直线AB上,OC是∠AOD的平分线.(1)若∠BOD=50°,则∠AOC的度数为.(2)设∠BOD的大小为α,求∠AOC(用含α的代数式表示).(3)作OE⊥OC,直接写出∠EOD与∠EOB之间的数量关系.4.(2019秋•北京期末)如图,请度量出需要的数据,并计算阴影部分的面积.5.(2019秋•通州区期末)如图,以直线AB上一点O为端点作射线OC,使∠AOC=70°,在同一个平面内将一个直角三角板的直角顶点放在点O处.(注:∠DOE=90°)(1)如图1,如果直角三角板DOE的一边OD放在射线OA上,那么∠COE的度数为;(2)如图2,将直角三角板DOE绕点O按顺时针方向转动到某个位置,如果OC恰好平分∠AOE,求∠COD的度数;(3)如图3,将直角三角板DOE绕点O任意转动,如果OD始终在∠AOC的内部,请直接用等式表示∠AOD和∠COE之间的数量关系.6.(2019秋•海淀区期末)阅读下面材料:小聪遇到这样一个问题:如图1,∠AOB=α,请画一个∠AOC,使∠AOC与∠BOC互补.小聪是这样思考的:首先通过分析明确射线OC在∠AOB的外部,画出示意图,如图2所示:然后通过构造平角找到∠AOC的补角∠COD,如图3所示:进而分析要使∠AOC与∠BOC互补,则需∠BOC=∠COD.因此,小聪找到了解决问题的方法:反向延长射线OA得到射线OD,利用量角器画出∠BOD的平分线OC,这样就得到了∠BOC与∠AOC互补.(1)小聪根据自己的画法写出了已知和求证,请你完成证明:已知:如图3,点O在直线AD上,射线OC平分∠BOD.求证:∠AOC与∠BOC互补.(2)参考小聪的画法,请在图4中画出一个∠AOH,使∠AOH与∠BOH互余.(保留画图痕迹)(3)已知∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.若∠EPQ=β(0°<β<90°),直接写出锐角∠MPN的度数是.7.(2019秋•门头沟区期末)阅读材料,并回答问题:材料:数学课上,老师给出了如下问题.已知,点A、B、C均在直线l上,AB=8,BC=2,M是AC的中点,求AM的长.小明的解答过程如下:解:如图2,∵AB=8,BC=2,∴AC=AB﹣BC=8﹣2=6.∵M是AC的中点,∴AM=12AC=12×6=3(①).小芳说:“小明的解答不完整”.问题:(1)小明解答过程中的“①”为;(2)你同意小芳的说法吗?如果同意,请将小明的解答过程补充完整;如果不同意,请说明理由.8.(2019秋•平谷区期末)已知:如图,∠AOB=30°,∠COB=20°,OC平分∠AOD.求∠COD的度数.∵∠AOB=30°,∠COB=20°(已知),∴∠AOC=∠+∠=°.∵OC平分∠AOD,∴∠AOC=∠(角平分线定义).∴∠COD=°.9.(2019秋•怀柔区期末)(1)已知∠ABC=90°,∠CBD=30°,BP平分∠ABD,请补全图形,并求∠ABP 的度数.(2)在(1)的条件下,若∠ABC=a,∠CBD=β,直接写出∠ABP的度数.10.(2019秋•延庆区期末)补全解题过程.已知:如图,O是直线AB上的一点,∠COD=90°,OE平分∠BOC.若∠AOC=60°,求∠DOE数;解:∵O是直线AB上的一点,(已知)∴∠BOC=180°﹣∠AOC.()∵∠AOC=60°,(已知)∴∠BOC=120°.()∵OE平分∠BOC,(已知)∴∠COE=12∠BOC.()∴∠COE=°.∵∠DOE=∠COD﹣∠COE,且∠COD=90°,∴∠DOE=°.11.(2019秋•大兴区期末)已知,如图,点C是线段AB的中点,点D是线段AC的中点,BC=6cm,求线段BD的长.请将以下求解过程补充完整:因为点C是线段AB的中点,所以,因为BC=6cm,所以AC=cm,因为点D是线段AC的中点,所以DC=.所以DC=cm.所以BD==cm.12.(2019秋•石景山区期末)已知:射线OC在∠AOB的内部,∠AOC:∠BOC=8:1,∠COD=2∠COB,OE平分∠AOD.(1)如图,若点A,O,B在同一条直线上,OD是∠AOC内部的一条射线,请根据题意补全图形,并求∠COE的度数;(2)若∠BOC=α(0°<α<18),直接写出∠COE的度数(用含α的代数式表示).13.(2019秋•东城区期末)根据题意,补全解题过程:如图,∠AOB=90°,OE平分∠AOC,OF平分∠BOC.求∠EOF的度数.解:因为OE平分∠AOC,OF平分∠BOC所以∠EOC=12∠AOC,∠FOC=12.所以∠EOF=∠EOC﹣=12(∠AOC﹣)=12=°.14.(2019秋•昌平区期末)已知线段AB,点C在直线AB上,D为线段BC的中点.(1)若AB=8,AC=2,求线段CD的长.(2)若点E是线段AC的中点,直接写出线段DE和AB的数量关系是.15.(2019秋•西城区期末)24、已知:如图,O是直线AB上一点,OD是∠AOC的平分线,∠COD与∠COE 互余.求证:∠AOE与∠COE互补.请将下面的证明过程补充完整:证明:∵O是直线AB上一点∴∠AOB=180°∵∠COD与∠COE互余∴∠COD+∠COE=90°∴∠AOD+∠BOE=°∵OD是∠AOC的平分线∴∠AOD=∠(理由:)∴∠BOE=∠COE(理由:)∵∠AOE+∠BOE=180°∴∠AOE+∠COE=180°∴∠AOE与∠COE互补16.(2019秋•丰台区期末)如图,货轮O在航行过程中,发现灯塔A在它北偏东60°的方向上,同时,在它南偏西20°、西北(即北偏西45°)方向上又分别发现了客轮B和海岛C,仿照表示灯塔方位的方法,画出表示客轮B和海岛C方向的射线.17.(2019秋•丰城市期末)已知正方体的展开图如图所示,如果正方体的六个面分别用字母A,B,C,D,E,F表示,当各面上的数分别与它对面的数互为相反数,且满足B=1,C=﹣a2﹣2a+1,D=﹣1,E=3a+4,F=2﹣a时,求A面表示的数值.18.(2019秋•丰润区期末)如图①,O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=30°时,则∠DOE的度数为;(2)将图①中的∠COD绕顶点O顺时针旋转至图②的位置,其它条件不变,探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;(3)将图①中的∠COD绕顶点O顺时针旋转至图③的位置,其他条件不变.直接写出∠AOC和∠DOE 的度数之间的关系:.19.(2019秋•门头沟区期末)已知:如图,OC是∠AOB的平分线.(1)当∠AOB=60°时,求∠AOC的度数;(2)在(1)的条件下,过点O作OE⊥OC,请在图中补全图形,并求∠AOE的度数;(3)当∠AOB=α时,过点O作OE⊥OC,直接写出∠AOE的度数.(用含α的代数式表示)20.(2018秋•延庆区期末)如图,点O是直线AB上一点,∠BOC=120°,OD平分∠AOC.(1)求∠COD的度数.请你补全下列解题过程.∵点O为直线AB上一点,∴∠AOB=°.∵∠BOC=120°,∴∠AOC=°.∵OD平分∠AOC,∴∠COD=12∠AOC.∴∠COD=°.(2)若E是直线AB外一点,满足∠COE:∠BOE=4:1,直接写出∠BOE的度数.21.(2018秋•密云区期末)已知:如图,AC=2BC,D为AB中点,BC=3,求CD的长.请你补全下面的解题过程:解:∵AC=2BC,BC=3∴AC=.∴AB=AC+BC=.∵.∴BD=12=.∴CD=BD﹣BC=.22.(2018秋•石景山区期末)已知:如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8,CB=6,求线段MN的长;(2)若AC=a,MN=b,则线段BC的长用含a,b的代数式可以表示为_____.解:(1)∵AC=8,CB=6,∴AB=AC+CB=14.∵点M、N分别是AC、BC的中点,∴MC=AC,NC=BC,(填推理依据)∴MN==.(2)线段BC的长用含a,b的代数式可以表示为.23.(2018秋•丰台区期末)如图,∠CAB+∠ABC=90°,AD平分∠CAB,与BC边交于点D,BE平分∠ABC 与AC边交于点E.(1)依题意补全图形,并猜想∠DAB+∠EBA的度数等于;(2)证明以上结论.证明:∵AD平分∠CAB,BE平分∠ABC,∴∠DAB=12∠CAB,∠EBA=.(理由:)∵∠CAB+∠ABC=90°,∴∠DAB+∠EBA=×(∠+∠)=.24.(2018秋•昌平区期末)补全解题过程.已知:如图,∠AOB=40°,∠BOC=60°,OD平分∠AOC.求∠BOD的度数.解:∵∠AOC=∠AOB+∠,又∵∠AOB=40°,∠BOC=60°,∴∠AOC=°.∵OD平分∠AOC,∴∠AOD=∠AOC().∴∠AOD=50°.∴∠BOD=∠AOD﹣∠.∴∠BOD=°.25.(2018秋•平谷区期末)已知直线AB上一点O,以O为端点画射线OC,作∠AOC的角平分线OD,作∠BOC的角平分线OE;(1)按要求完成画图;(2)通过观察、测量你发现∠DOE=°;(3)补全以下证明过程:证明:∵OD平分∠AOC(已知)∴∠DOC=∠AOC.∵OE平分∠BOC(已知)∴∠EOC=∠BOC.∵∠AOC+∠BOC=°.∴∠DOE=∠DOC+∠EOC=(∠AOC+∠BOC)=°.26.(2018秋•房山区期末)填空,完成下列说理过程:O是直线AB上一点,∠COD=90°,OE平分∠BOC.(1)如图1,若∠AOC=50°,求∠DOE的度数;解:∵O是直线AB上一点,∴∠AOC+∠BOC=180.∵∠AOC=50°,∴∠BOC=130°.∵OE平分∠BOC(已知),∴∠COE=12∠BOC()∴∠COE=°.∵∠COD=90°,∠DOE=∠﹣∠.∴∠DOE=°.(2)将图1中∠COD按顺时针方向转至图2所示的位置,OE仍然平分∠BOC,试猜想∠AOC与∠DOE 的度数之间的关系为:.27.(2018秋•北京期末)分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:若|x|=3,|y|=2求x+y的值.情况若x=3,y=2时,x+y=5情况若x=3,y=﹣2时,x+y=1情况③若x=﹣3,y=2时,x+y=﹣1情况④若x=﹣3,y=﹣2时,x+y=﹣5所以,x+y的值为1,﹣1,5,﹣5.几何的学习过程中也有类似的情况:如图,点O是直线AB上的一点,将一直角三角板如图摆放,过点O作射线OE平分∠BOC.当直角三角板绕点O继续顺时针旋转一周回到图1的位置时,在旋转过程中你发现∠AOC与∠DOE (0°≤∠AOC≤180°,0°≤∠DOE≤180°)之间有怎样的数量关系?情况(1)如图1,当0°≤∠AOD≤90°时,若∠AOC=40°,则∠DOE度数是;情况(2)如图2,当∠AOC是钝角时,使得直角边OC在直线AB的上方,若∠AOC=160°,其他条件不变,则∠DOE的度数是;情况(3)若∠AOC=α,在旋转过程中你发现∠AOC与∠DOE之间有怎样的数量关系?请你直接用含α的代数式表示∠DOE的度数;28.(2018秋•通州区期末)如图是一个正方体的展开图,标注了字母A,C的面分别是正方体的正面和底面,其他面分别用字母B,D,E,F表示.已知A=kx+1,B=3x﹣2,C=1,D=x﹣1,E=2x﹣1,F=x.(1)如果正方体的左面与右面所标注字母代表的代数式的值相等,求出x的值;(2)如果正面字母A代表的代数式与对面字母代表的代数式的值相等,且x为整数,求整数k的值.29.(2018秋•北京期末)如图,点A,B,C是平面上三个点.(1)按下列要求画图:①画线段AB;②画射线CB;③反向延长线段AB;④连接AC(2)请你测量点B到直线AC的距离,大约是cm.(精确到0.1cm)30.(2018秋•顺义区期末)阅读材料并回答问题:阅读材料:数学课上,老师给出了如下问题:如图1,∠AOB=120°,OC平分∠AOB.若∠COD=20°,请你补全图形,并求∠BOD的度数.以下是小明的解答过程:解:如图2,∵∠AOB=120°,OC平分∠AOB.∴∠BOC=∠AOB=.∵∠COD=20°,∴∠BOD=.小敏说:“我觉得这个题有两种情况,小明考虑的是OD在∠BOC内部的情况,事实上OD还可能在∠AOC 的内部”.完成以下问题:(1)请你将小明的解答过程补充完整;(2)根据小敏的想法,请你在图1中画出另一种情况对应的图形,此时∠BOD的度数为.31.(2018秋•海淀区期末)已知点C在线段AB上,点M为AB的中点,AC=8,CB=2.(1)如图1,求CM的长;(2)如图2,点D在线段AB上,若AC=BD,判断点M是否为线段CD的中点,并说明理由.32.(2018秋•朝阳区期末)填空,完成下列说理过程如图,∠AOB=90°,∠COD=90°,OA平分∠DOE,若∠BOC=20°,求∠COE的度数解:因为∠AOB=90°.所以∠BOC+∠AOC=90°因为∠COD=90°所以∠AOD+∠AOC=90°.所以∠BOC=∠AOD.()因为∠BOC=20°.所以∠AOD=20°.因为OA平分∠DOE所以∠=2∠AOD=°.()所以∠COE=∠COD﹣∠DOE=°33.(2018秋•西城区期末)已知:如图,点A,点B,点D在射线OM上,点C在射线ON上,∠O+∠OCA =90°,∠O+∠OBC=90°,CA平分∠OCD.求证:∠ACD=∠OBC.请将下面的证明过程补充完整:证明:∠O+∠OCA=90°,∠O+∠OBC=90°,∴∠OCA=∠.(理由:)∵CA平分∠OCD∴∠ACD=.(理由:)∴∠ACD=∠OBC.(理由:).34.(2018秋•门头沟区期末)填空,完成下列说理过程如图,已知点A,O,B在同一条直线上,OE平分∠BOC,∠DOE=90°求证:OD是∠AOC的平分线;证明:如图,因为OE是∠BOC的平分线,所以∠BOE=∠COE.()因为∠DOE=90°所以∠DOC+∠=90°且∠DOA+∠BOE=180°﹣∠DOE=°.所以∠DOC+∠=∠DOA+∠BOE.所以∠=∠.所以OD是∠AOC的平分线.参考答案与试题解析一.解答题(共34小题)1.【解答】解:(1)∵∠AOB1在∠MON的外部,∴射线OA、OB1组成的∠AOB1的平分线在∠MON的外部,∴OB1不是与射线OA关于∠MON内含对称的射线,∵∠B2OM=15°,∠AOM=10°,∴∠AOB2=25°,∴射线OA、OB2组成的∠AOB2的平分线在∠MON的内部,∴OB2是与射线OA关于∠MON内含对称的射线,故答案为:OB2;(2)由(1)可知,当OC在直线OA的下方时,才有可能存在射线OA与射线OC关于∠MON内含对称,∵∠COM=x°,∠AOM=10°,∠MON=20°,∴∠AOC=(x+10)°,∠AON=30°,∵射线OA与射线OC关于∠MON内含对称,∴10°≤12(x+10)°≤30°,∴10≤x≤50;(3)∵∠AOE=∠EOH=2∠FOH=20°,∴∠HOM=50°,∠HON=70°,∠EOM=30°,∠FOM=40°,若射线OE与射线OH关于∠MON内含对称,∴50﹣t≤3t−30+50−t2≤70﹣t,∴20≤t≤30;若射线OF与射线OH关于∠MON内含对称,∴50﹣t≤50−t+3t−402≤70﹣t,∴22.5≤t≤32.5,综上所述:20≤t≤32.5.2.【解答】解:∵∠BOD=30°,∠COD=90°,∴∠AOC=90°﹣∠BOD=60°.∵OC平分∠AOE,∴∠COE=∠AOE=60°.∴∠DOE=∠COD﹣∠COE=30°.3.【解答】解:(1)∵点O在直线AB上,∴∠AOD+∠BOD=180°,∵∠BOD=50°,∴∠AOD=180°﹣∠BOD=180°﹣50°=130°,∵OC是∠AOD的平分线,∴∠AOC=12∠AOD=12×130°=65°,故答案为:65°;(2)∵点O在直线AB上,∴∠AOD+∠BOD=180°,∵∠BOD=α,∴∠AOD=180°﹣∠BOD=180°﹣α,∵OC是∠AOD的平分线,∴∠AOC=12∠AOD=12×(180°﹣α)=90°−12α;(3)①OE在AB的上面,如图,∵OC是∠AOD的平分线,∴∠DOC=∠AOC=12∠AOD,∵OC⊥OE,∴∠EOD=90°﹣∠COD=90°−12∠AOD,∵∠EOB=90°﹣∠AOC=90°−12∠AOD,∴∠EOD=∠EOB;OE在AB的下面,如图,同OE在AB上面的方法得,∠EOD=∠EOB.4.【解答】解:测量可得半圆半径为2cm,扇形半径为4cm.S半圆=3.14×22÷2=6.28(cm2),S扇形=3.14×42÷4=12.56(cm2),S阴影=12.56﹣6.28=6.28 (cm2).5.【解答】解:(1)∠COE=∠DOE﹣∠AOC=90°﹣70°=20°,故答案为:20°.(2)∵OC平分∠AOE,∠AOC=70°,∴∠COE=∠AOC=70°,∵∠DOE=90°,∴∠COD=∠DOE﹣∠COE=90°﹣70°=20°.(3)∠COE﹣∠AOD=20°或∠COE=20°+∠AOD.理由如下:当OD始终在∠AOC的内部时,有∠AOD+∠COD=70°,∠COE+∠COD=90°,∴∠COE﹣∠AOD=90°﹣70°=20°,∴∠COE﹣∠AOD=20°或∠COE=20°+∠AOD.6.【解答】解:(1)证明:∵点O在直线AD上,∴∠AOB+∠BOD=180°.即∠AOB+∠BOC+∠COD=180°.∴∠AOC+∠COD=180°.∵OC平分∠BOD,∴∠BOC=∠COD.∴∠AOC+∠BOC=180°∴∠AOC与∠BOC互补.(2)如图所示即为所求作的图形.(3)如图,∵∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.∴锐角∠MPN的度数是45°∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.若∠EPQ=β,PQ平分∠FPF′.则锐角∠MPN的度数是|β﹣45°|.故答案为:45°或|β﹣45°|.7.【解答】解:(1)小明解答过程中的“①”为线段中点的定义;故答案为:线段中点的定义;(2)我同意小芳的说法,将小明的解答补充如下:如图:∵AB=8,BC=2,∴AC=AB+BC=8+2=10.∵M是AC的中点,∴AM=12AC=12×10=5.8.【解答】证明:∵∠AOB=30°,∠COB=20°(已知),∴∠AOC=∠AOB+∠COB=50°∵OC平分∠AOD(已知),∴∠AOC=∠COD=50°(角平分线定义)故答案为:AOB;COB;50;COD;50.9.【解答】(1)解:符合题意的图形有两个,①如图,∵∠ABC =90°,∠CBD =30°,∴∠ABD =∠ABC ﹣∠CBD =60°.∵BP 平分∠ABD ,∴∠ABP =12∠ABD =30°.②如图,∵∠ABC =90°,∠CBD =30°,∴∠ABD =∠ABC +∠CBD =120°∵BP 平分∠ABD ,∴∠ABP =12∠ABD =60°.综上,∠ABP 的度数为30°或60°.(2)由(1)可知:∠ABC =a ,∠CBD =β,∠ABP =α+β2或α−β2. 10.【解答】解:∵O 是直线AB 上的一点,(已知)∴∠BOC =180°﹣∠AOC .(平角定义)∵∠AOC =60°,(已知)∴∠BOC =120°.(等量代换)∵OE 平分∠BOC ,(已知)∴∠COE =12∠BOC .(角平分线定义)∴∠COE =60°.∵∠DOE =∠COD ﹣∠COE ,且∠COD =90°,∴∠DOE =30°.故答案为:平角定义;等量代换;角平分线定义;60;30.11.【解答】解:因为点C 是线段AB 的中点,所以AC =BC ,因为BC =6cm ,所以AC =6cm ,因为点D 是线段AC 的中点,所以DC =12AC . 所以DC =3cm .所以BD =CD +BD =9cm ,故答案为:AC =BC ,6,12AC ,3,CD +BD ,9.12.【解答】解:(1)补全图形,如图所示:∵点A 、O 、B 在同一条直线上,∴∠AOC +∠BOC =180°(平角的定义).∵∠AOC :∠BOC =8:1,∴∠BOC =20°,∠AOC =160°.∵∠COD =2∠COB ,∴∠COD =40°.∴∠AOD =180°﹣∠COB ﹣∠COD =120°.∵OE 平分∠AOD ,∴∠EOD =12∠AOD =60°(角平分线的定义). ∴∠EOC =∠EOD +∠DOC =60°+40°=100°.(2)当射线OD 在∠AOC 的内部时,∠EOC =5α;当射线OD 在∠AOC 的外部时,∠EOC =3α.答:∠COE 的度数为:5α或3α.13.【解答】解:因为OE 平分∠AOC ,OF 平分∠BOC所以∠EOC =12∠AOC ,∠FOC =12=∠BOC . 所以∠EOF =∠EOC ﹣∠FOC=12(∠AOC ﹣∠BOC )=12∠AOB =45°.故答案为:∠BOC 、∠FOC 、∠BOC 、∠AOB 、45.14.【解答】解:(1)如图1,当C 在点A 右侧时,∵AB =8,AC =2,∴BC =AB ﹣AC =6,∵D 是线段BC 的中点,∴CD =12BC =3;如图2,当C 在点A 左侧时,∵AB =8,AC =2,∴BC =AB +AC =10,∵D 是线段BC 的中点,∴CD =12BC =5;综上所述,CD=3或5;(2)AB=2DE,理由是:如图3,当C在点A右侧时,∵E是AC的中点,D是BC的中点,∴AC=2EC,BC=2CD,∴AB=AC+BC=2EC+2CD=2ED;如图4,当C在点A左侧时,同理可得:AB=BC﹣AC=2CD﹣2CE=2(CD﹣CE)=2DE.15.【解答】证明:∵O是直线AB上一点∴∠AOB=180°∵∠COD与∠COE互余∴∠COD+∠COE=90°∴∠AOD+∠BOE=90°∵OD是∠AOC的平分线∴∠AOD=∠COD(理由:角平分线的定义)∴∠BOE=∠COE(理由:等式性质)∵∠AOE+∠BOE=180°∴∠AOE+∠COE=180°∴∠AOE与∠COE互补.故答案为:90;COD;角平分线的定义;等式性质.16.【解答】解:如图所示,17.【解答】解:根据题意∵E面和F面的数互为相反数,∴3a+4+2﹣a=0,∴a=﹣3,把a=﹣3代入C=﹣a2﹣2a+1,解得:C=﹣2,∵A面与C面表示的数互为相反数,∴A面表示的数值是2.18.【解答】解:(1)由已知得∠BOC=180°﹣∠AOC=150°,又∠COD是直角,OE平分∠BOC,∴∠DOE=∠COD−12∠BOC=90°−12×150°=15°;(2)∠AOC=2∠DOE;理由:∵∠COD是直角,OE平分∠BOC,∴∠COE=∠BOE=90°﹣∠DOE,则得∠AOC=180°﹣∠BOC=180°﹣2∠COE=180°﹣2(90°﹣∠DOE),所以得:∠AOC =2∠DOE ;(3)∠AOC =360°﹣2∠DOE ;理由:∵OE 平分∠BOC ,∴∠BOE =2∠COE ,则得∠AOC =180°﹣∠BOE =180°﹣2∠COE =180°﹣2(∠DOE ﹣90°), 所以得:∠AOC =360°﹣2∠DOE ;故答案为:(1)15°;(3)∠AOC =360°﹣2∠DOE .19.【解答】解:(1)∵OC 是∠AOB 的平分线(已知),∴∠AOC =12∠AOB ,∵∠AOB =60°,∴∠AOC =30°.(2)∵OE ⊥OC ,∴∠EOC =90°,如图1,∠AOE =∠COE +∠COA =90°+30°=120°.如图2,∠AOE =∠COE ﹣∠COA =90°﹣30°=60°.(3)∠AOE =90°+12α或∠AOE =90°−12α.20.【解答】解:(1)∵点O 为直线AB 上一点,∴∠AOB =180°.∵∠BOC =120°,∴∠AOC =60°.∵OD 平分∠AOC ,∴∠COD =12∠AOC .∴∠COD =30°.故答案为:180°;60°;30°;(2)分情况讨论:①当OE 在∠BOC 的内部时,∠COE +∠BOE =120°,∵∠COE :∠BOE =4:1,∴5∠BOE =120°,即∠BOE =24°;②OE 在∠BOC 的外部时,∠COE +∠BOE =360°﹣120°=240°, ∵∠COE :∠BOE =4:1,∴∠BOE =240°÷5=48°,∠COE =192°(不合题意,舍去);③OE 在∠BOC 外部时,∠BOE =120°÷3=40°.故∠BOE 的度数为24°或40°.21.【解答】解:∵AC =2BC ,BC =3∴AC =6,∴AB =AC +BC =9,又∵D 为AB 中点∴BD =12AB =4.5,∴CD =BD ﹣BC =1.5.故答案为6,9,D 为AB 中点,AB ,4.5,1.5.22.【解答】解:(1)∵AC =8,CB =6,∴AB =AC +CB =14.∵点M 、N 分别是AC 、BC 的中点,∴MC =12AC ,NC =12BC (线段中点的定义), ∴MN =12(AC +BC )=7; (2)理由如下:∵点M 、N 分别是AC 、BC 的中点,∴MC =12AC ,NC =12BC ,∴MN =MC +NC =12AC +12BC =b , ∵AC =a ,∴BC =2b ﹣a ,∴线段BC 的长用含a ,b 的代数式可以表示为2b ﹣a .故答案为:12,12,线段中点的定义,12(AC +BC ),7,2b ﹣a . 23.【解答】解:(1)补全图形,并猜想∠DAB +∠EBA 的度数等于45°;(2)证明:∵AD 平分∠CAB ,BE 平分∠ABC ,∴∠DAB =12∠CAB ,∠EBA =12∠CBA .(理由:角平分线的定义)∵∠CAB +∠ABC =90°,∴∠DAB +∠EBA =12×(∠CAB +∠ABC )=45°.故答案为:45°,12∠CAB ,角平分线的定义,12,∠CAB ,∠ABC ,45°. 24.【解答】解:∵∠AOC =∠AOB +∠BOC ,又∵∠AOB=40°,∠BOC=60°,∴∠AOC=100°.∵OD平分∠AOC,∴∠AOD=12∠AOC(角平分线定义).∴∠AOD=50°.∴∠BOD=∠AOD﹣∠AOB.∴∠BOD=10°.故答案为:BOC,100,角平分线定义,AOB,10.25.【解答】解:(1)如图所示,(2)通过观察、测量你发现∠DOE=90°;(3)∵OD平分∠AOC(已知),∴∠DOC=12∠AOC(角平分线定义),∵OE平分∠BOC(已知),∴∠EOC=12∠BOC(角平分线定义),∵∠AOC+∠BOC=180°,∴∠DOE=∠DOC+∠EOC=12(∠AOC+∠BOC)=90°.故答案为:90,角平分线定义,角平分线定义,180,90.26.【解答】解:(1)∵O是直线AB上一点,∴∠AOC+∠BOC=180°.∵∠AOC=50°,∴∠BOC=130°.∵OE平分∠BOC(已知),∴∠COE=12∠BOC(角平分线定义)∴∠COE=65°.∵∠COD=90°,∠DOE=∠COD﹣∠COE.∴∠DOE=25°,故答案为:角平分线定义,65,COD,COE,25;(2)∠DOE=12∠AOC,理由:∵O是直线AB上一点,∴∠AOC+∠BOC=180°.∴∠BOC=180°﹣∠AOC,∵OE平分∠BOC(已知),∴∠COE=12∠BOC(角平分线定义),∵∠COD=90°,∠DOE=∠COD﹣∠COE.∴∠DOE=90°−12(180°﹣∠AOC)=12∠AOC.故答案为:∠DOE=12∠AOC.27.【解答】解:(1)∵∠AOC+∠BOC=180°,∠AOC=40°,∴∠BOC=140°,∵OE平分∠BOC,∴∠COE=12∠BOC 70°,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=20°;故答案为:20°;(2)∵∠AOC+∠BOC=180°,∠AOC=160°,∴∠BOC=180°﹣160°=20°;∵OE平分∠BOC,∴∠COE=12∠BOC=10°,∵∠COD=90°,∴∠DOE=90°﹣10°=80°;故答案为:80°;(3)∠DOE=12∠AOC=α2(0°≤∠AOC≤180°),∠DOE=180°−12∠AOC=180°−α2(0°≤∠DOE≤180°).28.【解答】解:(1)∵正方体的左面B与右面D代表的代数式的值相等,∴x﹣1=3x﹣2,解得x=1 2;(2)∵正面字母A代表的代数式与对面F代表的代数式的值相等,∴kx+1=x,∴(k﹣1)x=﹣1,∵x为整数,∴x,k﹣1为﹣1的因数,∴k﹣1=±1,∴k=0或k=2,综上所述,整数k的值为0或2.29.【解答】解:(1)如图所示:(2)根据测量可得,点B到直线AC的距离,大约是1.5cm,故答案为:1.5.30.【解答】解:(1)如图2,∵∠AOB=120°,OC平分∠AOB.∴∠BOC =12∠AOB =60°.∵∠COD =20°,∴∠BOD =60°﹣20°=40°.故答案为:12;60°;40°;(2)如图1,∵∠AOB =120°,OC 平分∠AOB .∴∠BOC =12∠AOB =60°.∵∠COD =20°,∴∠BOD =60°+20°=80°.故答案为:80°.31.【解答】解:(1)方法一:∵AC =8,CB =2,∴AB =AC +CB =10,∵点M 为线段AB 的中点,∴αα=12αα=5,∴CM =BM ﹣CB =5﹣2=3.或方法二:∴CM =AC ﹣AM =8﹣5=3.(2)点M 是线段CD 的中点,理由如下:方法一:∵BD =AC =8,∴由(1)可知,DM =DB ﹣MB =8﹣5=3.∴DM =MC =3,∴由图可知,点M 是线段CD 的中点.方法二:∵AC =BD ,∴AC ﹣DC =BD ﹣DC ,∴AD =CB .∵点M 为线段AB 的中点,∴AM =MB ,∴AM ﹣AD =MB ﹣CB ,∴DM =MC∴由图可知,点M 是线段CD 的中点.32.【解答】解:因为∠AOB =90°.所以∠BOC +∠AOC =90°因为∠COD =90°所以∠AOD +∠AOC =90°.所以∠BOC =∠AOD . (同角的余角相等)因为∠BOC =20°.所以∠AOD =20°.因为OA 平分∠DOE所以∠DOE =2∠AOD =40°. (角平分线的定义)所以∠COE=∠COD﹣∠DOE=50°故答案为:同角的余角相等,DOE,40,角平分线的定义,50.33.【解答】证明:∠O+∠OCA=90°,∠O+∠OBC=90°,∠∠OCA=∠OBC.(理由:同角的余角相等)∠CA平分∠OCD∠∠ACD=∠OCA.(理由:角平分线的定义)∠∠ACD=∠OBC.(理由:等量代换).故答案为:OBC,同角的余角相等,∠OCA,角平分线的定义,等量代换.34.【解答】证明:如图,因为OE是∠BOC的平分线,所以∠BOE=∠COE(角平分线定义)因为∠DOE=90°,所以∠DOC+∠COE=90°,且∠DOA+∠BOE=180°﹣∠DOE=90°.所以∠DOC+∠COE=∠DOA+∠BOE.所以∠DOC=∠DOA.所以OD是∠AOC的平分线.故答案为:角平分线定义;COE;90;COE;DOC;DOA.。

人教版七年级 数学上册第1章《有理数》解答题专项训练

人教版七年级 数学上册第1章《有理数》解答题专项训练

人教版七年级数学上册第1章《有理数》解答题专项训练1.(2019秋•普宁市期末)已知:数轴上点A、C对应的数分别为a、c,且满足|a+7|+(c﹣1)2020=0,点B对应的数为﹣3.(1)请在如图所示的数轴上表示出点A、C对应的位置;(2)若动点P、Q分别从A、B同时出发向右运动,点P的速度为3个单位长度/秒;点Q的速度为1个单位长度/秒,点Q运动到点C立刻原速返回,到达点B后停止运动;点P运动至点C处又以原速返回,到达点A后又折返向C运动,当点Q停止运动时点P随之停止运动.请在备用图中画出整个运动过程两动点P、Q同时到达数轴上某点的大致示意图,并求出该点在数轴上表示的数.2.(2019秋•香洲区期末)的士司机李师傅从上午9:00~10:15在东西方向的九洲大道上营运,共连续运载八批乘客.若规定向东为正,向西为负,李师傅营运八批乘客里程如下:(单位:千米)+2,﹣3,+3,﹣4,+5,+4,﹣7,﹣2.(1)将最后一批乘客送到目的地时,李师傅位于第一批乘客出发地的东面还是西面?距离出发地多少千米?(2)若的士的收费标准为:起步价10元(不超过2.5千米),超过2.5千米,超过部分每千米2.6元.则李师傅在上午9:00~10:15一共收入多少元?(精确到1元)3.(2019秋•中山市期末)如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C 所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.4.(2019秋•垦利区期末)结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;数轴上表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如数轴上数x与5两点之间的距离等于|x﹣5|,(2)如果表示数a和﹣2的两点之间的距离是3,那么a=;若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;(3)当a取何值时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是多少?请说明理由.5.(2019秋•连州市期末)计算: (1)10﹣(﹣5)+(﹣9)+6 (2)﹣12018﹣6÷(﹣2)×|−13|6.(2019秋•云浮期末)计算:﹣22×(﹣9)+16÷(﹣2)3﹣|﹣4×5|7.(2019秋•宣城期末)计算:(−1)2017+|−22+4|−(12−14+18)×(−24). 8.(2019秋•揭西县期末)计算: (1)﹣13﹣(﹣22)+(﹣28) (2)﹣22﹣|﹣12|×(23−34)9.(2019秋•恩平市期末)计算:0.25×|﹣4|﹣4÷(﹣2)2+(﹣3)×56. 10.(2018秋•福田区校级期末)计算 (1)16﹣(﹣10+3)+(﹣2) (2)(﹣4)2×18−27÷(﹣3)3 (3)﹣12﹣(12)2×(−23−13)÷7811.(2018秋•惠阳区校级期末)计算:﹣22+(﹣1)2019+27÷(﹣3)2 12.(2018秋•黄埔区期末)计算:(1)(﹣10)+(+3)+(﹣5)﹣(﹣7) (2)(﹣2)2÷4+(﹣3) (3)(﹣2)3×(12−38)﹣|﹣2|13.(2018秋•潮南区期末)计算:﹣1﹣(1+0.5)×|−13|÷(﹣4) 14.(2018秋•潮安区期末)计算:﹣32÷(﹣1)2018+6×|−12| 15.(2018秋•揭西县期末)计算:﹣32﹣|﹣20|×(1−14).16.(2018秋•普宁市期末)计算:(﹣1)2019÷{[(﹣4)×(−58)÷(−13)+(﹣3)×(+12)]×(﹣2)2+(﹣6)} 17.(2018秋•普宁市期末)计算:(﹣3)2﹣112×29−6÷|−23|2﹣(﹣22).18.(2018秋•福田区期末)计算 (1)﹣12﹣(﹣9)﹣2 (2)(﹣2)3﹣(﹣3)2+1 (3)(﹣36)×(−23+34−512) 19.(2019秋•越秀区期末)计算(1)(﹣5)+(+7)﹣(﹣3)﹣(+20) (2)25÷56×(−25)+(﹣2)×(﹣1)2019 20.(2019秋•龙岗区校级期末)计算: (1)﹣10﹣8÷(﹣2)×(−12);(2)(−34+16−38)×12+(﹣1)2020. 21.(2019秋•潮州期末)计算题: (1)(﹣7)+(﹣4)﹣(﹣10); (2)(﹣113)÷(﹣214)×34;(3)(﹣7)×(﹣5)﹣90÷(﹣15)+3×(﹣1); (4)−14×(﹣2)2﹣(−12)×42.22.(2019秋•黄埔区期末)已知有理数a 、b 、c 在数轴上的位置如图所示:(1)判断正负,用“>”、“<”或“=”填空:a +b 0,a ﹣b 0,a +b +c 0; (2)化简:|a +c |﹣|a +b +c |+|a ﹣b |.23.(2019秋•江城区期末)计算:﹣0.52+14−|22﹣4|24.(2019秋•惠来县期末)计算:﹣12020+24÷(﹣4)+3×|−13|﹣(﹣6) 25.(2019秋•黄埔区期末)某市公共交通收费如下:公交票价里程(千米)票价(元)刷卡优惠后付款(元)0﹣10 2 1 10﹣15 3 1.5 15﹣20 4 2 20﹣25 5 2.5 25﹣30 6 3 以后每增加5千米增加1元增加0.5元地铁票价里程(千米)票价(元)0﹣6 3 6﹣12 4 12﹣22 5 22﹣32 6 32﹣52 7 52﹣72 8 以后每增加20千米增加1元(公交票价10千米(含)内2元,不足10千米按10千米计算,其他里程类同;地铁票价6千米(含)内3元,不足6千米按6千米计算,其他里程类同)(1)张阿姨周日去看望父母,可是张阿姨忘了带一卡通,请你帮助张阿姨思考两个问题: ①若到父母家无论乘公交车还是地铁距离都是24千米,选择哪种公交交通工具费用较少? ①若只用10元钱乘坐公交或地铁,选择哪种公共交通工具乘坐的里程更远?(2)张阿姨下周日计划使用一卡通刷卡乘公共交通到景点游玩,若里程小于120千米,公交、地铁均可直达.请问:选择公交还是选择地铁出行更省钱?为什么?26.(2019秋•黄埔区期末)(1)(﹣20)﹣(+3)﹣(﹣5)﹣(+7) (2)(﹣12)÷(﹣4)÷(﹣115)(3)2×(﹣3)2﹣4×(﹣32)﹣1527.(2019秋•白云区期末)点A 在数轴的﹣1处,点B 表示的有理数比点A 表示的有理数小1,将点A 向右移动8个单位得到点C ,点D 、点E 是线段BC 的两个三等分点.在所给的数轴(如图)上标出B 、C 、D 、E 各点,再写出它们各自对应的有理数.28.(2019秋•白云区期末)计算: (1)11+(﹣21)÷3+(﹣4)×(﹣2) (2)−124×(32−5)−14÷|−123|+|1−722| 29.(2019秋•揭阳期末)计算:(﹣2)3÷4﹣(﹣1)2019×|﹣3|. 30.(2019秋•光明区期末)计算 (1)﹣8+14﹣6+20 (2)(−12+34−56)×(−12)31.(2019秋•番禺区期末)计算下列各式的值: (1)(−23)+|0−516|+|−456|+(−913) (2)42×(−23)+(−34)÷(−0.25) 32.(2019秋•海珠区期末)计算: (1)﹣5﹣(﹣3)+(﹣2)+8 (2)(﹣1)2×2+(﹣2)3÷|﹣4| 33.(2019秋•五华县期末)计算: (1)﹣10﹣8÷(﹣2)×(−12)(2)﹣12﹣(1﹣0.5)×13×[19﹣(﹣5)2] 34.(2019秋•南沙区期末)计算: (1)20+(﹣7)﹣(﹣8) (2)(﹣1)2019×(13−1)÷2235.(2019秋•云浮期末)计算: (1)﹣7﹣2÷(−12)+3;(2)(﹣34)×49+(﹣16)36.(2019秋•东莞市期末)计算:(−1)3−(1−0.5)×13×(3−32)37.(2019秋•荔湾区期末)计算:(1)﹣2.4+(﹣3.7)﹣4.6+5.7(2)﹣3×56×145×(−0.25)38.(2019秋•荔湾区期末)计算:(1)﹣4﹣12×(13−14)(2)﹣24﹣(﹣1)5×2+(﹣2)4 39.(2019秋•龙华区期末)计算(1)48×(58−56)+|−6+3|(2)−12+23÷(−4)2+3×(−1)201940.(2019秋•新会区期末)把下面未化简的数先化简,然后在数轴上表示出来,再用“<”把它们连接起来:﹣3,4.5,0,|﹣1﹣(﹣3)|,−12的倒数第1章《有理数》解答题精选参考答案与试题解析一.解答题(共40小题)1.【解答】解:(1)①|a+7|+(c﹣1)2020=0,①a+7=0或c﹣1=0,①a=﹣7,c=1,即点A表示的数为﹣7,C点表示的数为1;如图,(2)设P、Q点运动的时间为t(s)时相遇,AB=﹣3﹣(﹣7)=4,CB=1﹣(﹣3)=4,AC=8,当P点从A点向C点运动,Q点从B点向C点运动时,如图1,3t﹣t=4,解得t=2,此时相遇点表示的数为﹣3+t=﹣3+2=﹣1;当P点从A点运动到C点,折返后再从C点向A点运动,Q点从B点向C点运动,如图2,3t﹣8+t=4,解得t=3,此时相遇点表示的数为﹣3+3t=﹣3+3=0;当P点从A点到达C点折返,再从C点运动到A点,接着折返向C点运动,Q点从B点运动到C点时,折返后向B点运动,如图3,3t﹣16+t﹣4=8,解得t=7,此时相遇点表示的数为﹣3+4﹣(t﹣4)=﹣2,综上所述,整个运动过程两动点P、Q同时到达数轴上某点表示的数为﹣2或0或﹣1.2.【解答】解:(1)(+2)+(﹣3)+(+3)+(﹣4)+(+5)+(+4)+(﹣7)+(﹣2)=﹣2答:李师傅距第一批乘客出发地的西面,距离出发地2千米.(2)(3﹣2.5)+(3﹣2.5)+(4﹣2.5)+(5﹣2.5)+(4﹣2.5)+(7﹣2.5)=11(千米)10+10+(10×6+11×2.6)=108.6≈109(元)答:李师傅上午9:00~10:15一共收入约109元.3.【解答】解:(1)①点C为原点,BC=1,①B所对应的数为﹣1,①AB=2BC,①AB=2,①点A所对应的数为﹣3,①m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)①点B为原点,AC=6,AB=2BC,①点A所对应的数为﹣4,点C所对应的数为2,①m=﹣4+2+0=﹣2;(3)①原点O到点C的距离为8,①点C所对应的数为±8,①OC=AB,①AB=8,当点C对应的数为8,①AB=8,AB=2BC,①BC=4,①点B所对应的数为4,点A所对应的数为﹣4,①m=4﹣4+8=8;当点C所对应的数为﹣8,①AB=8,AB=2BC,①BC=4,①点B所对应的数为﹣12,点A所对应的数为﹣20,①m=﹣20﹣12﹣8=﹣40综上所述m=8或﹣40.4.【解答】解:(1)观察数轴可得:数轴上表示4和1的两点之间的距离是3;数轴上表示﹣3和2两点之间的距离是5;故答案为:3;5;(2)如果表示数a和﹣2的两点之间的距离是3,那么|a﹣(﹣2)|=3①|a+2|=3①a+2=3或a+2=﹣3①a=1或a=﹣5;故答案为:1或﹣5;①|a+4|+|a﹣2|表示数a与﹣4的距离与a和2的距离之和;若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|的值等于2和﹣4之间的距离,等于6①|a+4|+|a﹣2|的值为6;(3)|a+5|+|a﹣1|+|a﹣4|表示一点到﹣5,1,4三点的距离的和①当a=1时,该式的值最小,最小值为6+0+3=9.①当a =1时,|a +5|+|a ﹣1|+|a ﹣4|的值最小,最小值是9. 5.【解答】解:(1)原式=10+5﹣9+6 =21﹣9 =12;(2)原式=﹣1+3×13=﹣1+1 =06.【解答】解:原式=﹣4×(﹣9)+16÷(﹣8)﹣|﹣20| =36﹣2﹣20 =14.7.【解答】解:原式=﹣1+0+12﹣6+3=8. 8.【解答】解:(1)﹣13﹣(﹣22)+(﹣28) =﹣13+22﹣28 =9﹣28 =﹣19(2)﹣22﹣|﹣12|×(23−34)=﹣4﹣12×(23−34)=﹣4﹣12×23+12×34=﹣4﹣8+9=﹣12+9 =﹣39.【解答】解:原式=0.25×4﹣4÷4﹣3×56=1﹣1−52=−52. 10.【解答】解:(1)原式=16﹣(﹣7)+(﹣2) =16+7﹣2 =21;(2)原式=16×18−27÷(﹣27) =2﹣(﹣1) =2+1 =3;(3)原式=﹣1−14×(﹣1)×87 =﹣1+27 =−57.11.【解答】解:﹣22+(﹣1)2019+27÷(﹣3)2 =﹣4+(﹣1)+27÷9 =﹣4+(﹣1)+3 =﹣2.12.【解答】解:(1)(﹣10)+(+3)+(﹣5)﹣(﹣7) =(﹣10)+3+(﹣5)+7 =﹣5;(2)(﹣2)2÷4+(﹣3) =4÷4+(﹣3) =1+(﹣3) =﹣2;(3)(﹣2)3×(12−38)﹣|﹣2|=(﹣8)×(12−38)﹣2=(﹣4)+3+(﹣2) =﹣3.13.【解答】解:﹣1﹣(1+0.5)×|−13|÷(﹣4) =﹣1−32×13×(−14) =﹣1+18 =−78.14.【解答】解:﹣32÷(﹣1)2018+6×|−12| =﹣9÷1+6×12 =﹣9+3 =﹣6.15.【解答】解:原式=﹣9﹣20×34 =﹣9﹣15 =﹣24.16.【解答】解:原式=﹣1÷[(−152−32)×4﹣6] =﹣1÷(﹣9×4﹣6) =﹣1÷(﹣36﹣6) =﹣1÷(﹣42) =142.17.【解答】解:原式=9−13−6÷49+4 =9−13−272+4=﹣456+4=−56.18.【解答】解:(1)原式=﹣12+9﹣2=﹣5;(2)原式=﹣8﹣9+1=﹣16;(3)原式=−23×(﹣36)+34×(﹣36)−512×(﹣36) =24﹣27+15 =12.19.【解答】解:(1)(﹣5)+(+7)﹣(﹣3)﹣(+20) =﹣5+7+3﹣20 =﹣25+10 =﹣15;(2)25÷56×(−25)+(﹣2)×(﹣1)2019 =25×65×(−25)+(﹣2)×(﹣1) =﹣12+2 =﹣10.20.【解答】解:(1)−10−8÷(−2)×(−12) =−10−8×12×12=﹣10﹣2 =﹣12;(2)(−34+16−38)×12+(−1)2020 =−34×12+16×12−38×12+1 =−9+2−92+1 =−212.21.【解答】解:(1)原式=﹣7﹣4+10=﹣1; (2)原式=43×49×34=49; (3)原式=35+6﹣3=38;(4)原式=−14×4+12×16=﹣1+8=7.22.【解答】解:(1)根据数轴可知:0<a <1,﹣1<b <0,c <﹣1,且|a |<|b |, 则a +b <0,a ﹣b >0,a +b +c <0; 故答案为:<,>,<.(2)|a +c |﹣|a +b +c |+|a ﹣b |=﹣a﹣c+a+b+c+a﹣b =a.23.【解答】解:﹣0.52+14−|22﹣4|=﹣0.25+14−|4﹣4|=﹣0.25+14−0=0.24.【解答】解:﹣12020+24÷(﹣4)+3×|−13|﹣(﹣6)=﹣1﹣6+3×13+6=﹣1﹣6+1+6=0.25.【解答】解:(1)①由表格中的数据可得,乘坐公交车行驶24千米,需要车票为5元,乘坐地铁需要6元,因此选择乘坐公交车费用较少;①乘坐公交车行驶路程为:(10﹣2)×5+10=50千米,乘坐地铁行驶的路程为:(10﹣6)×20+32=112千米,因此乘坐地铁行驶路程较远;(2)根据表格中数据变化可得,行驶路程x千米,x≤85时,公交省钱;当85<x≤90时,公交费(9元)=地铁费(9元),费用一样;当90<x≤92时,公交费(9.5元)<地铁费(9元),地铁省钱;当92<x≤95时,公交费(9.5元)<地铁费(10元),公交省钱;当95<x≤100时,公交费(10元)=地铁费(10元),费用一样;当100<x≤120时,地铁省钱.26.【解答】解:(1)原式=﹣20﹣3+5﹣7=﹣23﹣2=﹣25;(2)原式=﹣12×14×56=−52;(3)原式=2×9﹣4×(﹣9)﹣15=18+36﹣15=54﹣15=39.27.【解答】解:①点A在数轴的﹣1处,点B表示的有理数比点A表示的有理数小1,①点B所表示的数为﹣1﹣1=﹣2,将点A向右移动8个单位得到点C,因此点C所表示的数为﹣1+8=7,①点D、点E是线段BC的两个三等分点.BC=7﹣(﹣2)=9,①点D所表示的数为﹣2+13×9=1,点E所表示的数为﹣2+23×9=4,因此点B、C、D、E所表示的数分别为﹣2,7,1,4.28.【解答】解:(1)11+(﹣21)÷3+(﹣4)×(﹣2)=11+(﹣7)+8=12;(2)−124×(32−5)−14÷|−123|+|1−722|=−116×(9﹣5)−14×8+|1−74|=−116×4﹣2+34=−14−2+34=−32.29.【解答】解:(﹣2)3÷4﹣(﹣1)2019×|﹣3|=(﹣8)÷4﹣(﹣1)×3=(﹣2)+3=1.30.【解答】解:(1)﹣8+14﹣6+20=6﹣6+20=20(2)(−12+34−56)×(−12)=(−12)×(﹣12)+34×(﹣12)−56×(﹣12)=6﹣9+10=731.【解答】解:(1)(−23)+|0−516|+|−456|+(−913)=(−23)+516+456+(﹣913)=0;(2)42×(−23)+(−34)÷(−0.25)=﹣28+(−34)×(﹣4)=﹣28+3=﹣25.32.【解答】解:(1)﹣5﹣(﹣3)+(﹣2)+8=﹣2﹣2+8=4(2)(﹣1)2×2+(﹣2)3÷|﹣4|=1×2﹣8÷4=2﹣2=033.【解答】解:(1)原式=﹣10﹣2 =﹣10+(﹣2)=﹣12;(2)原式=﹣1﹣0.5×13×(19﹣25) =﹣1﹣0.5×13×(﹣6)=﹣1﹣(﹣1)=0.34.【解答】解:(1)20+(﹣7)﹣(﹣8) =20+(﹣7)+8=21;(2)(﹣1)2019×(13−1)÷22 =﹣1×(−23)÷4=﹣1×(−23)×14=16.35.【解答】解:(1)原式=﹣7+4+3=0;(2)原式=﹣81×49−16=﹣36﹣16=﹣52.36.【解答】解:原式=−1−12×13×(3−9) =−1−16×(−6)=﹣1+1=0.37.【解答】解:(1)﹣2.4+(﹣3.7)﹣4.6+5.7 =(﹣2.4﹣4.6)+(﹣3.7+5.7)=﹣7+2=﹣5;(2)﹣3×56×145×(−0.25)=﹣3×56×95×(−14)=98.38.【解答】解:(1)﹣4﹣12×(13−14)=﹣4﹣4+3=﹣5;(2)﹣24﹣(﹣1)5×2+(﹣2)4=﹣16+1×2+16=﹣16+2+16=2.39.【解答】解:(1)原式=30﹣40+3=﹣7;(2)原式=−12+8÷16﹣3=−12+12−3=﹣3.40.【解答】解:|﹣1﹣(﹣3)|=2,−12的倒数是﹣2,如图:﹣3<−12的倒数<0<|﹣1﹣(﹣3)|<4.5.。

七年级数学上册人教版整式的加减专题复习——规律探究(解析版)

七年级数学上册人教版整式的加减专题复习——规律探究(解析版)

整式的加减专题复习——规律探究(解析版)第一部分典例剖析+针对训练类型一数式规律典例1(2021秋•南岗区校级期中)有一列数,按一定规律排列而成:﹣1,3,﹣9,27,﹣81,243,…,其中某三个相邻数的和是1701,则这三个数中最小的数是.思路引领:设三个数中最前面的数为x,则另外两个数分别为﹣3x,9x,根据三个数之和为1701,即可得出关于x的一元一次方程,解之即可得出x的值,再将其代入﹣3x和9x 中,取其中最小值即可得出结论.解:设三个数中最前面的数为x,则另外两个数分别为﹣3x,9x,依题意,得:x﹣3x+9x=1701,解得:x=243,∴﹣3x=﹣729,9x=2187.∵﹣729<243<2187,故答案为:﹣729.总结升华:本题考查了一元一次方程的应用以及规律型:数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.典例2(2022秋•涟水县校级月考)观察下面三行数,并按规律填空:①﹣2,4,﹣8,16,﹣32,64,,,…;②0,6,﹣6,18,﹣30,66,,…;③﹣3,3,﹣9,15,﹣33,63,,….(1)按第①行数的规律,分别写出第7和第8个数;(2)请你分别写出第②③行的第7个数;(3)取每行数的第9个数,计算这三个数的和.思路引领:(1)根据已知数据都是前一个数乘2的到得,再利用第奇数个系数为负数即可得出答案;(2)根据3行数据关系分别分析得出即可;(3)根据(2)得出的规律分别求出每行第9个数,再把它们相加即可.解:(1)∵①﹣2,4,﹣8,16,﹣32,64,∴第7个数是﹣128,第八个数是256;(2)第②行数是第①行数加上2,第③行数正好比第①行数少1得到的,即第二行的第7个数是﹣128+2=﹣126,第三行的第7个数是﹣128﹣1=﹣129;(3)根据以上所求得出:第一行第9个数为﹣512,第二行第9个数为﹣512+2=﹣510,第三行第9个数为﹣512﹣1=﹣513,则这三个数的和是:﹣512﹣510﹣513=﹣1535.总结升华:此题主要考查了数字变化规律,根据已知数据得出得数字第②行数是第①行数加上2,第③行数正好比第①行数少1得到的是解题关键.针对训练11.(2021•武汉)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9B.10C.11D.12思路引领:观察得出第n个数为(﹣2)n,根据最后三个数的和为768,列出方程,求解即可.解:由题意,得第n个数为(﹣2)n,那么(﹣2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,当n为偶数:整理得出:3×2n﹣2=768,解得:n=10;当n为奇数:整理得出:﹣3×2n﹣2=768,则求不出整数.故选:B.总结升华:此题考查规律型:数字的变化类,找出数字的变化规律,得出第n个数为(﹣2)n是解决问题的关键.2.(2021秋•新洲区期中)有一串数:﹣2018,﹣2014,﹣2010,﹣2006,﹣2002…按一定的规律排列,那么这串数中前个数的和最小.思路引领:根据题目中数据的特点,可以写出第n个数,然后令第n个数等于0,即可得到相应的n的值,从而可以解答本题.解:∵有一串数:﹣2018,﹣2014,﹣2010,﹣2006,﹣2002…∴这串数的第n个数为﹣2018+4(n﹣1)=4n﹣2022,当4n﹣2022=0时,解得,n=505…2,∴那么这串数中前505个数的和最小,故答案为:505.总结升华:本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出第多少个数的值为0.类型二数阵、数表规律典例3(2020秋•江汉区月考)将全体正偶数排成一个三角形数阵:按照以上规律排列,第25行第20个数是.思路引领:观察数字的变化,第n行有n个偶数,求出第n行的第一个数,结论可得.解:观察数字的变化可知:第n行有n个偶数.∵第1行的第一个数是:2=1×0+2;第2行第一个数是:4=2×1+2;第3行第一个数是:8=3×2+2;第4行第一个数是:14=4×3+2;•∴第n行第一个数是:n(n﹣1)+2.∴第25行第一个数是:25×24+2=602.∴第25行第20个数是:602+2×19=640.故答案为:640.总结升华:本题主要考查了数字的变化的规律,有理数的混合运算.准确找出数字的变化规律是解题的关键.典例4(2019秋•江汉区期中)有这样一对数,如下表,第n+3个数比第n个数大2(其中n是正整数)第1个第2个第3个第4个第5个……a b c(1)第5个数表示为;第7个数表示为;(2)若第10个数是5,第11个数是8,第12个数为9,则a=,b=,c=;(3)第2019个数可表示为.思路引领:(1)根据第n+3个数比第n个数大2,即可求解;(2)根据第n+3个数比第n个数大2,分别求出第10、11、12个数即可求出结果;(3)根据数字的变化规律,解:(1)∵第n+3个数比第n个数大2,∴第5个数比第2个数大2,∴第5个数为b+2.∵第4个数比第1个数大2,∴第4个数为a+2,∴第7个数比第4个数大2,∴第7个数为a+4.故答案为b+2、a+4.(2)∵第10个数为a+6,第11个数为b+6,第12个数为c+6,∴a+6=5,b+6=8,c+6=9解得a=﹣1,b=2,c=3.故答案为﹣1、2、3.(3)第一组数是a、b、c第二组数是a+2、b+2、c+2第三组数是a+4、b+4、c+4第四组数是a+6、b+6、c+6…第n组数的第三个数是c+(2n﹣2)2019÷3=673,第2019个数是第673组的第三个数,∴第673组的第三个数是c+2×673﹣2=c+1344.故答案为c+1344.总结升华:本题考查了数字的变化类,解决本题的关键是寻找数字的变化规律.针对训练21.(2021秋•播州区期中)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n,则a6=,a2020=.思路引领:根据题目中的数据,可以写出前几项,从而可以数字的变化特点,然后即可得到a6和a2020的值.解:由题意可得,a1=1,a2=1+2=3,a3=1+2+3=6,a4=1+2+3+4=10,a5=1+2+3+4+5=15,…,∴a n=1+2+3+…+n=n(n+1)2,∴当n=6时,a6=6×72=21,当n=2020时,a2020=2020×20212=2041210,故答案为:21,2041210.总结升华:本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求项的值.2.(2018秋•江夏区期中)已知一列数:1、﹣2、3、﹣4、5、﹣6、……,将这列数排成下列形式:按照上述规律排列下去,第10行数的第1个数是()A.﹣46B.﹣36C.37D.45思路引领:观察排列规律得到第1行有1个数,第2行有2个数,第3行有1个数,…,第9行有9个数,则可计算出前9行的数的个数45,而数字的序号为偶数时,数字为负数,于是可判断第10行数的第1个数为﹣46.故选A.解:第1行有1个数,第2行有2个数,第3行有1个数,…,第9行有9个数,所以前9行的数的个数为1+2+3+…+9=45,而数字的序号为奇数时,数字为正数,数字的序号为偶数时,数字为负数,所以第10行数的第1个数为﹣46.故选:A.总结升华:本题考查了规律型:数字的变化类:认真观察、仔细思考,利用数字与序号数的关系解决这类问题.3.(2017秋•海淀区校级期中)如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.(1)可求得x=,第2017个格子中的数为.(2)判断:前m个格子中所填整数之和是否可能为2018?若能,求出m的值,若不能,请说明理由.(3)若取前3格子中的任意两个数记作a、b,且a≥b,那么所有的|a﹣b|的和可以通过计算|9﹣★|+|9﹣☆|+|★﹣☆|得到,其结果为;若a、b为前19格子中的任意两个数记作a、b,且a≥b,则所有的|a﹣b|的和为.思路引领:(1)根据三个相邻格子的整数的和相等列式求出x的值,再根据第9个数是2可得☆=2,然后找出格子中的数每3个为一个循环组依次循环,在用2014除以3,根据余数的情况确定与第几个数相同即可得解;(2)可先计算出这三个数的和,再照规律计算.(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.解:(1)∵任意三个相邻格子中所填整数之和都相等,∴9+★+☆=★+☆+x,解得:x=9,★+☆+x=☆+x﹣6,∴★=﹣6,所以,数据从左到右依次为9、﹣6、☆、9、﹣6、☆、…,第9个数与第三个数相同,即☆=2,所以,每3个数“9、﹣6、2”为一个循环组依次循环,∵2017÷3=672…1,∴第2017个格子中的整数与第1个格子中的数相同,为9.故答案为:9,9;(2)9﹣6+2=5,2018=2015+3=2015+9﹣6,2015÷5=403,403×3=1209,所以是第1209+1+1=1211个数,即m=1211,故前1211个数的和为2018;(3)∵取前3格子中的任意两个数,记作a、b,且a≥b,∴所有的|a﹣b|的和为:|9﹣(﹣6)|+|9﹣2|+|﹣6﹣2|=30.∵由于是三个数重复出现,那么前19个格子中,这三个数,9出现了7次,﹣6和2各出现了6次.∴代入式子可得:|9﹣(﹣6)|×7×6+|9﹣2|×7×6+|2﹣(﹣6)|×6×6=1212.故答案为:30,1212.总结升华:本题主要考查数字的变化规律,解答的关键是找出数字间的关系,得出规律.类型三图形的增长规律典例4(2021•汉川市模拟)古希腊著名的毕达哥拉斯学派把1、3、6、10、…,这样的数称为“三角形数”,而把1、4、9、16、…,这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.则第10个图形中右下方的“三角形数”中的所有点数是.思路引领:观察图象中点的个数的规律有第一个图形是4=1+3,第二个图形是9=3+6,第三个图形是16=6+10,…则按照此规律得到第10个图形的规律即可.解:∵第1个图形是4=1+(1+2),第2个图形是9=(1+2)+(1+2+3),第3个图形是16=(1+2+3)+(1+2+3+4),…∴第10个图形是112=(1+2+3+4+5+6+7+8+9+10)+(1+2+3+4+5+6+7+8+9+10+11)=55+66.故答案为:66.总结升华:此题考查图形的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.典例5(2020秋•江夏区期中)按照如图所示的方法排列黑色小正方形地砖,则第14个图案中黑色小正方形地砖的数量是()A.360B.363C.365D.369思路引领:观察图形可知,黑色与白色的地砖的个数的和是连续奇数的平方,而黑色地砖比白色地砖多1个,求出第n个图案中的黑色与白色地砖的和,然后求出黑色地砖的块数,再把n=14代入进行计算即可.解:第1个图案只有(2×1﹣1)2=12=1块黑色地砖,第2个图案有黑色与白色地砖共(2×2﹣1)2=32=9,其中黑色的有12(9+1)=5块,第3个图案有黑色与白色地砖共(2×3﹣1)2=52=25,其中黑色的有12(25+1)=13块,…第n 个图案有黑色与白色地砖共(2n ﹣1)2,其中黑色的有12[(2n ﹣1)2+1],当n =14时,黑色地砖的块数有12×[(2×14﹣1)2+1]=12×730=365.故选:C .总结升华:本题考查图形的变化规律,观察图形找出黑色与白色地砖的总块数与图案序号之间的关系是解题的关键. 针对训练31.(2021秋•中山市期中)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第10个图形共有 个〇.思路引领:观察图形的变化先得前几个图形中圆圈的个数,可以发现规律:第n 个图形共有(3n +1)个〇,进而可得结果. 解:观察图形的变化可知: 第1个图形共有1×3+1=4个〇; 第2个图形共有2×3+1=7个〇; 第3个图形共有3×3+1=10个〇; …所以第n 个图形共有(3n +1)个〇; 所以第10个图形共有10×3+1=31个〇; 故答案为:31.总结升华:本题考查了规律型:图形的变化类,解决本题的关键是根据图形的变化寻找规律.2.(2018秋•硚口区期中)对于大于或等于2的整数的平方进行如下“分裂”,如下分别将22、32、42分裂成从1开始的连续奇数的和,依此规律,则20182的分裂数中最大的奇数是 .思路引领:由题意可知:每个数中所分解的最大的奇数是前边底数的2倍减去1.由此得出答案即可.解:自然数n2的分裂数中最大的奇数是2n﹣1.20182分裂的数中最大的奇数是2×2018﹣1=4035,故答案为:4035.总结升华:此题考查数字的变化规律,注意根据具体的数值进行分析分解的最大的奇数和底数的规律,从而推广到一般.3.(2022•仙居县校级开学)如图,都是由棱长为1的正方体叠成的立体图形,例如第(1)个图形由1个正方体叠成,第(2)个图形由4个正方体叠成,第(3)个图形由10个正方体叠成,依次规律,第(10)个图形由()个正方体叠成.A.120B.165C.220D.286思路引领:根据图形的变换规律,可知第n个图形中的正方体的个数为1+3+6+⋯+ n(n+1)2,据此可得第(6)个图形中正方体的个数.解:由图可得:第(1)个图形中正方体的个数为1;第(2)个图形中正方体的个数为4=1+3;第(3)个图形中正方体的个数为10=1+3+6;第(4)个图形中正方体的个数为20=1+3+6+10;故第n个图形中的正方体的个数为1+3+6+⋯+n(n+1)2,∴第10个图形中正方体的个数为1+3+6+10+15+21+28+36+45+55=220.故选:C.总结升华:本题主要考查了图形变化类问题,解决问题的关键是依据图形得到变换规律.解题时注意:第n个图形中的正方体的个数为1+3+6+⋯+n(n+1)2.类型四乘方规律典例6(2022•内蒙古)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72022的结果的个位数字是( ) A .0B .1C .7D .8思路引领:由已知可得7n 的尾数1,7,9,3循环,则70+71+…+72022的结果的个位数字与70+71+72的个位数字相同,即可求解.解:∵70=1,71=7,72=49,73=343,74=2401,75=16807,… ∴7n 的尾数1,7,9,3循环, ∴70+71+72+73的个位数字是0, ∵2023÷4=505…3,∴70+71+…+72022的结果的个位数字与70+71+72的个位数字相同, ∴70+71+…+72022的结果的个位数字是7, 故选:C .总结升华:本题考查数的尾数特征,能够通过所给数的特点,确定尾数的循环规律是解题的关键.典例7(2022秋•东港区校级月考)求1+2+22+23+……+22007的值,可令S =1+2+22+23+……+22007,则2S =2+22+23+24+……+22008,因此2S ﹣S =22009﹣1,即S =22009﹣1,仿照以上推理,计算出1+3+32+33+……+32022值为32023−12.思路引领:令S =1+3+32+33+……+32022,则3S =3+32+33+……+32023,作差求出S 即可. 解:令S =1+3+32+33+……+32022, 则3S =3+32+33+……+32023, ∴3S ﹣S =32023﹣1, 则S =32023−12,即1+3+32+33+……+32022=32023−12.故答案为:32023−12.总结升华:本题考查数字的变化规律,通过观察所给的求和方法,灵活应用此方法求和是解题的关键. 针对训练41.(2021秋•罗湖区期中)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;……,已知按一定规律排列的一组数:2501,2502,2503,……,2999,21000.若2500=a ,用含a 的式子表示这组数之和是( ) A .2a 2﹣2aB .2a 10﹣2a 5﹣2C .2a 2﹣aD .2a 20﹣a思路引领:把所求的数列的各数提取2500,可得:2500×(2+22+23+…+2499+2500),利用所给的等式的规律求解即可.解:∵2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…, ∴2+22+23+…+2n =2n +1﹣2, ∴2501+2502+2503+…+2999+21000 =2500×(2+22+23+…+2499+2500) =2500×(2500+1﹣2) =2500×(2×2500﹣2), ∵2500=a , ∴原式=a (2a ﹣2) =2a 2﹣2a . 故选:A .总结升华:本题主要考查了规律型:数字的变化类,有理数的混合运算,解答的关键是由所给的等式总结出规律.2.(2019秋•汾阳市期末)任意大于1的正整数m 的三次幂均可“分裂”成m 个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m 3分裂后,其中有一个奇数是203,则m 的值是( ) A .13B .14C .15D .16思路引领:观察可知,分裂成的奇数的个数与底数相同,然后求出到m 3的所有奇数的个数的表达式,再求出奇数203的是从3开始的第101个数,然后确定出101所在的范围即可得解.解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m 3分裂成m 个奇数,所以,到m 3的奇数的个数为:2+3+4+…+m =(m+2)(m−1)2,∵2n +1=203,n =101,∴奇数203是从3开始的第101个奇数, ∵(13+2)(13−1)2=90,(14+2)(14−1)2=104,∴第101个奇数是底数为14的数的立方分裂的奇数的其中一个, 即m =14. 故选:B .总结升华:本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.3.在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图所示:则第4个方框中x+y的值是()A.11B.12C.13D.14思路引领:找出求解过程图中的规律,利用此规律求得m,n,x,y的值,将相应字母的值代入即可得出结论.解:求解过程图中的表格中的规律为:第一行前两个格为十位数字的平方,后两个格为个位数字的平方,平方后不是两位数,十位数字用0代替,第二行从第二个格开始表示的是两位数中个位数字与十位数字的乘积的2倍,第三行为从右开始将一二行数字相加的和,足10进1,∵62=36,∴m=3,n=6,∵6×7×2=84,∴x=8,y=4,∴x+y=12.故选:B.总结升华:本题主要考查了有理数的乘方,求代数式的值,找出求解过程图中的规律是解题的关键.类型五幻方规律典例8(2021秋•江阴市期中)小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将﹣1、2、﹣3、4、﹣5、6、﹣7、8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a+b的值为()A.﹣6或﹣3B.﹣8或1C.﹣1或﹣4D.1或﹣1思路引领:由于八个数的和是4,所以需满足两个圈的和是2,横、竖的和也是2.列等式可得结论.解:设小圈上的数为c,大圈上的数为d,﹣1+2﹣3+4﹣5+6﹣7+8=4,∵横、竖以及内外两圈上的4个数字之和都相等,∴两个圈的和是2,横、竖的和也是2,则﹣7+6+b+8=2,得b=﹣5,6+4+b+c=2,得c=﹣3,a+c+4+d=2,a+d=1,∵当a=﹣1时,d=2,则a+b=﹣1﹣5=﹣6,当a=2时,d=﹣1,则a+b=2﹣5=﹣3,故选:A.总结升华:本题考查了有理数的加法.解决本题的关键是知道横竖两个圈的和都是2.典例9(2020•冷水江市一模)我国的《洛书》中记载着世界上最古老的一个幻方:将1~9这九个数字填入3×3的方格内,使三行、三列、两对角线上的三个数之和都相等.如图的幻方中,m=.思路引领:根据“每行、每列、每条对角线上的三个数之和相等”解答即可.解:1+2+3+…+9=45,根据“每行、每列、每条对角线上的三个数之和相等”,可知三行、三列、两对角线上的三个数之和都等于15,∴第一列第三个数为:15﹣2﹣5=8,第三列第二个数为:15﹣3﹣5=7,第三个数为:15﹣2﹣7=6,如图所示:∴m=15﹣8﹣6=1.故答案为:1.总结升华:本题考查数的特点和有理数的加法,抓住每行、每列、每条对角线上的三个数之和相等,数的对称性是解题的关键.针对训练51.(2021秋•南安市期中)现有七个数﹣1,﹣2,﹣2,﹣4,﹣4,﹣8,﹣8将它们填入图1(3个圆两两相交分成7个部分)中,使得每个圆内部的4个数之积相等,设这个积为m,如图2给出了一种填法,此时m=64,在所有的填法中,m的最大值为256.思路引领:观察图象,可得这7个数,有的被乘了1次,2次,3次.要使得每个圆内部的4个数之积相等且最大所以﹣8,﹣8必须放在被乘两次的位置.与﹣8,﹣8同圆的只能为﹣1,﹣4,其中﹣4m=256解:观察图象,可得这7个数,有的被乘了1次,2次,3次.要使得每个圆内部的4个数之积相等且最大所以﹣8,﹣8必须放在被乘两次的位置.与﹣8,﹣8同圆的只能为﹣1,﹣4,其中﹣4放在中心位置,如图∴m=(﹣8)×(﹣8)×(﹣1)×(﹣4)=256总结升华:本题考查有理数的乘法,关键是找到两个(﹣8)的位置.2.将9个数填入幻方的九个方格中,使处于同一横行、同一竖列、同一斜对角线上的三个数的和相等,如表一:按此规律将满足条件的另外6个数填入表二,则表二中这9个数的和为(用含a的整式表示).表一492357816表二a+5a+1a﹣1思路引领:根据同一横行、同一竖列、同一斜对角线上的三个数的和相等作出图形,根据题意列出关于a与x的方程,可得x=a+2,进一步求出这9个数的和即可.解:如图所示:4+x+a﹣1+a+3=a﹣3+a+1+a+3,解得x=a﹣5,a+3+x+a+3=2a+6+a﹣5=3a+1,3(3a+1)=9a+3.故答案为:9a+3.总结升华:此题考查了列代数式,整式的加减,熟练掌握运算法则是解本题的关键.类型六其他规律典例10(2019秋•武昌区校级期中)某初中七(5)班学生军训排列成7×7=49人的方阵,做了一个游戏,起初全体学生站立,教官每次任意点4个不同学号的学生,被点到的学生,站立的蹲下,蹲下的站立,且学生都正确完成指令,同一名学生可以多次被点,则15次点名后蹲下的学生人数可能是()A.3B.27C.49D.以上都不可能思路引领:假设站立记为“+1”,则蹲下为“﹣1”.原来49个“+1”,乘积为“+1”,每次改变其中的4个数,即每次运算乘以4个“﹣1”,即乘以了“+1”,乘积为“+1”,即可得出结论.解:假设站立记为“+1”,则蹲下为“﹣1”.原来49个“+1”,乘积为“+1”,每次改变其中的4个数, 即每次运算乘以4个“﹣1”,即乘以了“+1”, 15次点名后,乘积仍然是“+1”, 所以,最后出现“﹣1”的个数为偶数, 即蹲下的学生人数为偶数, 选项A ,B ,C 都不符合题意, 故选:D .总结升华:此题主要考查了奇数与偶数,有理数乘法中积的符号的判断,解决本题的关键是利用有理数的乘法进行解决. 针对训练61.(2019秋•硚口区期中)把几个不同的数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2};{1,4,7};…我们称之为集合,其中的每一个数称为该集合的元素.规定:当整数x 是集合的一个元素时,100﹣x 也必是这个集合的元素,这样的集合又称为黄金集合,例如{﹣1,101}就是一个黄金集合.若一个黄金集合所有元素之和为整数m ,且1180<m <1260,则该黄金集的元素的个数是( ) A .23B .24C .24或25D .26思路引领:由黄金集合的定义,可知一个整数是x ,则必有另一个整数是100﹣x ,则这两个整数的和为x +100﹣x =100,只需判断1180<m <1260内100的个数即可求解. 解:在黄金集合中一个整数是x ,则必有另一个整数是100﹣x , ∴两个整数的和为x +100﹣x =100, 由题意可知,1180<m <1260时, 100×12=1200,100×13=1300, ∴这个黄金集合的个数是24或25个; 故选:C .总结升华:本题考查有理数,新定义;理解题意,通过两个对应元素和的特点,结合m 的取值范围,进而确定元素个数是解题关键.第二部分 专题提优训练1.观察下面一列数:1,12,2,13,1,3,14,23,32,4,15,12,1,2,5,16,…(已写出了第1至第16个数).(1)第7,第8,第9,第10个数的积是 ,前16个数的积是 ; (2)按此规律,第30个数是 ;(3)在上面这列数中,从左起第m 个数记为F (m ),当F (m )=92020时,求m 的值. 思路引领:(1)根据规律直接写出数计算即可;(2)根据题意将数字从左边开始分别以1个数,2个数,3个数,…,为一组,每组数据的积为1,且分子递增1,分母递减1,然后根据规律得出第30个数即可; (3)根据F (m )=92020判断出F (m )是第几组第几个数即可得出m 的值. 解:(1)根据题意知,第7,第8,第9,第10个数的积是14×23×32×4=1,前16个数的积是1×(12×2)×(13×1×3)×(14×23×32×4)×(15×24×1×42×5)×16=16,故答案为:1,16;(2)由(1)知,将数字从左边开始分别以1个数,2个数,3个数,…,为一组,每组数据的积为1,且分子递增1,分母递减1, ∵1+2+3+4+5+6+7=28,∴第30个数在第8组的第2个数,即1+18−1=27,故答案为:27;(3)∵F (m )=92020,2020+9=2029,∴F (m )是第2028组第9个数,前面有2027组数, ∴m =(1+2+3+4+…+2027)+9=1+20272×2027+9=2055387. 总结升华:本题主要考查数字的变化规律,根据数字的变化分组分析规律是解题的关键.2.(2021秋•丹江口市期中)观察一列数:1,﹣2,3,﹣4,5,﹣6,7,…,将这列数排成下列形式:(1)在表中,第12行第6个数是 ;(2)在表中,“2021”是其中的第 行,第 个数;(3)将表中第i 行的最后一个数记为a i ,如第1行的最后一个数记为a 1,即a 1=1,第2行的最后一个数记为a 2,即a 2=3,如此下去,a 3=﹣6,a 4=﹣10,…,第n 行的最后一个数记为a n ,则用含n 的式子表示|a n |为 ; (4)在(3)的条件下,计算1a 1+1a 2−1a 3−1a 4+1a 5+1a 6−1a 7−1a 8+1a 9+1a 10.思路引领:(1)先求出前11行一共有66,即可求解;(2)求出前n 行共有n(n+1)2个数,再求前63行共有2016个数,即可求2021的位置;(3)由题意可得,1+2+3+......+n =n(n+1)2,即可求解; (4)原式=2(1−12+12−13+13−14+......+19−110+110−111),再运算即可. 解:(1)由题可知,第一行1个数,第二行2个数,…,第n 行n 个数, ∴前11行一共有1+2+3+…+11=66, ∴第12行第一个数是67, ∴第12行第6个数是﹣72, 故答案为:﹣72;(2)由题意可得,前n 行共有n(n+1)2个数,∴当n =63时,前63行共有2016个数, ∴2021时第64行的第5个数, 故答案为:64,5;(3)由题意可得,1+2+3+......+n =n(n+1)2, ∴|a n |=n(n+1)2, 故答案为:n(n+1)2; (4)1a 1+1a 2−1a 3−1a 4+1a 5+1a 6−1a 7−1a 8+1a 9+1a 10=11+13+16+110+......+145=2(11×2+12×3+13×4+......+19×10+110×11) =2(1−12+12−13+13−14+......+19−110+110−111)=2(1−111) =2011.总结升华:本题考查数字的变化规律,根据题意探索数字的排列规律是解的关键. 3.(2022•东莞市校级一模)找出以下图形变化的规律,则第2022个图形中黑色正方形的数量是 3033 .思路引领:仔细观察图形并从中找到规律,然后利用找到的规律即可得到答案. 解:∵当n 为偶数时第n 个图形中黑色正方形的数量为n +12n 个;当n 为奇数时第n 个图形中黑色正方形的数量为n +12(n +1)个,∴当n =2022时,黑色正方形的个数为2022+1011=3033个. 故答案为:3033.总结升华:本题考查了图形的变化类问题,解题的关键是仔细的观察图形并正确的找到规律.4.(2020秋•西城区校级期中)古希腊毕达格拉斯学派的数学家常用小石子在沙滩上摆成各种形状来研究各种多边形数,比如:他们研究过图1中的1,3,6,10,….由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…,这样的数为正方形数.(1)请你写出一个既是三角形数又是正方形数的自然数 .(2)类似地,我们将k 边形数中第n 个数记为N (n ,k )(k ≥3).以下列出了部分k 边形数中第n 个数的表达式: 三角形数:N (n ,3)=12n 2+12n 正方形数:N (n ,4)=n 2 五边形数:N (n ,5)=32n 2−12n 六边形数:N (n ,6)=2n 2﹣n …根据以上信息,得出N (n ,k )= .(用含有n 和k 的代数式表示)思路引领:(1)由题意得第8个图的三角形数是36,所以既是三角形数又是正方形数,且大于1的最小正整数为36;(2)由已知等式进行变形进而可推出结果.解:(1)由题意第8个图的三角形数为12×8(8+1)=36,∴既是三角形数又是正方形数,且大于1的最小正整数为36, 故答案为36.(2)∵N (n ,3)=n 2+n 2=(3−2)n 2+(4−3)n2,N (n ,4)=n 2=2n 2+0×n 2=(4−2)n 2+(4−4)n2, N (n ,5)=32n 2−12n =(5−2)n 2+(4−5)n2,N (n ,6)=2n 2﹣n =4n 2−2n 2=(6−2)n 2+(4−6)n2, 由此推断出N (n ,k )=(k−2)n 2+(4−k)n2(k ≥3).故答案为:(k−2)n 2+(4−k)n2(k ≥3).总结升华:本题考查三角形数、正方形数的规律、完全平方数与归纳推理等知识,观察已知式子的规律并改写形式是解决问题的关键.5.(2020秋•江夏区校级月考)观察下列等式:12=1,22=4,32=9,42=16,52=25,…,若12+22+32+42+52+…+n 2的个位数字是1(0<n ≤2020,且n 为整数),下列选项中,n 的最大值是( ) A .2001B .2006C .2011D .2019思路引领:通过计算发现每10个数,末位数字循环一次,再结合选项进行判断即可求解. 解:∵12=1,22=4,32=9,42=16,52=25,62=36,72=49,82=64,92=81,102=100,112=121,122=144,132=169,…, ∴每10个数,末位数字循环一次, ∴1+4+9+6+5+6+9+4+1+0=45, ∵2001÷10=200……1, ∴200×45+1=9001; ∵2006÷10=200……6, ∴200×45+1+4+9+6+5+6=9031; ∵2011÷10=201……1, ∴201×45+1=9046; ∵2019÷10=201……9, ∴202×45=9090; ∵2006>2001, ∴n 的最大值为2006, 故选:B .总结升华:本题考查数字的变化规律,通过探索每个数的尾数的循环规律,并运用规律求解是解题的关键.6.(2021•碧江区 模拟)观察等式:2+22=23﹣2:2+22+23=24﹣2;2+22+23+24=25﹣2,…已知按一定规律排列的一组数:250、251、252、…、299、2100,若250=a,则用含a的式子表示这组数的和是.思路引领:由等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2,得出规律:2+22+23+…+2n=2n+1﹣2,那么250+251+252+…+299+2100=(2+22+23+…+2100)﹣(2+22+23+…+249),将规律代入计算即可.解:∵2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…∴2+22+23+…+2n=2n+1﹣2,∴250+251+252+…+299+2100=(2+22+23+...+2100)﹣(2+22+23+ (249)=(2101﹣2)﹣(250﹣2)=2101﹣250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2﹣a.故答案为:2a2﹣a.总结升华:本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1﹣2.7.(2019秋•武汉期中)如图,在边长为1厘米的正方形网格有12个格点,用这些格点做三角形顶点,一共可以连成面积为2平方厘米的三角形个数为()A.24B.32C.28D.12思路引领:根据面积等于底乘以高依次分情况分析既可以得到三角形个数.解:①如图以AB为底时,与对边CF的四个顶点都可以构成面积等于2平方厘米的三角形,类似这样的三角形共有16个,②如图以AC为底与线段BE上的三个点可以构成面积等于2平方厘米的三角形,类似这样的三角形共有12个,其中有四个直角三角形是重复的,故三角形总个数:16+12﹣4=24个,。

(2021年整理)2019七年级上册数学练习题

(2021年整理)2019七年级上册数学练习题

2019七年级上册数学练习题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019七年级上册数学练习题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019七年级上册数学练习题的全部内容。

2019年七年级上数学试题一、选择题1、2的相反数是( )A .-2B . 12C .21D .22、在-2,—1、0、1这四个数中,最大的数是( )A .-2B .-1C .0D .13、“一粥一饭,当思来之不易",当今国人舌尖上的浪费却让人触目惊心,据统计,中国每年浪费的食物总量折合粮食约500亿千克.这个数据用科学记数法表示为( ) A .5×1010千克 B .50×109千克 C .5×109千克 D .5×1011千克 4、下列物体的形状属于球体的是( )A .B .C .D .5、下列图形中,是正方体表面展开图的是( )A .B .C .D .6、某商品先按批发价a 元提高10%零售,后又按零售价降低10%出售,则它最后的单价是( )元.A .0.81aB .0.99aC .aD .1.21a 7、下列判断错误的是( )A .多项式5y 2-2y+1是二次三项式 B .单项式-a 2b 3c 的系数是-1,次数是6C .式子m+5,ab ,x 〉1,0,ts都是代数式D .当k=1时,关于x ,y 的代数式(-kxy+2y )+(xy-x+6)中不含二次项8、计算(—1)÷3×31的结果为( )A .1B .-1C . 91D .-919、已知x ﹣2y=1,则代数式1﹣2x+4y 的值为( )A .3B .0C .-1D .-310、已知非零有理数a ,b ,c ,满足1,cc b b a a =++则abc abc等于( ) A .-1 B .0 C .±1 D .111、下列各对数中,相等的是( )A 、23与32 B 、22-与22)(- C 、2-与-(-2 ) D 、232)(214与32212、已知代数式1322--x x 的值是8,则代数式918122+-x x 的值是( ) A 、63 B 、62 C 、61 D 、52 13、若∣3x -∣+5(2y +)2=0,则x y +的值是( ) A 、-1 B 、1 C 、0 D 、2 14、已知 8,5==b a ,且b a <,则b a +=( )A 、13或3B 、13-或3C 、13或3-D 、13-或3-15、有理数a 在数轴上对应的点如图所示,则a 、-a 、-1的大小关系是( ) A 、-a <a <-1 B 、-a <-1<aC 、a <-1<-aD 、a <-a <-116、下列各数中,最小的数是( )A .3210⨯B .2-C .2(3)-D .3-17、下面的计算正确的是( )A 。

七年级上册数学练习册参考答案2019

七年级上册数学练习册参考答案2019

七年级上册数学练习册参考答案2019第一章有理数第1节正数和负数1.C2.D3.C4.B()支出;()上升;()向南前进5.123负6.-5℃,7.9分一天内快慢不超过18.5s.涨0.跌0.9.从左向右依次看是:01元,05元,跌1.涨0.跌2.24元,15元,01元.)略;()()10.(120;3-1102211.D略12.右,左,右,正数大于一切负数6.2,3,7.27长度最小的零件是第二个,第三个零件与8.规定长度的误差最小.略9.()最小的是犃点表示的数;10.1()的是犃点表示的数;2()共有三种不同的方案.3略11.略12.练习二1.C2.C3.B4.D5.A6.C7.-犿第2节有理数练习一略5.1.D2.D3.C4.C8.-39.010.二,-2和-311.略12.犃=1,犅=-2,犆=013.犪=2,犫=-314.犮<犪<犫图答115.如图答1所示.第3节有理数的加减法练习一1.B2.D3.6+7=13(cm)4.1500+(-600)=900(元)5.06.-39,337.>8.569.(1)-5;(2)-7;(3)-4;(4)-1210.(1)17辆;(2)本周的总生产量是696辆,是减少了,减少了4辆.11.(1)1;(23;(3)-2.5;(4)2112.(1)是;(2)54粒;(3)12cm13.平均每盒99根,10盒990根.练习二1.62.23.-11.124.(1)130691232;(2)-773620.6325.下降6cm6.D7.B8.(1)-2;(2)3.69.-<-0.3<-(-0.3)10.25+(-3)+(-2)-(-5)=25+(-3)+(-2)+(+5)=25-3-2+511.42辆12.(1)纽约时间是19:30,东京时间是9:30;(2)巴黎时间是1:30,打电话不合适.13.略14.-2犫第4节有理数的乘除法练习一1.C2.C3.D4.D5.06.-2127.(-5)×48.(1)24;(2)210;(3)-25000;(4)-19.将各数分别减去170,得:1,-2,0,3,-5,8,-4,-9,6,2,-6,-5.这组数的平均数为(1-2+0+3-5+8-4-9+6+2-6-5)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版2019年秋七年级数学上册专题训练9份含答案专题训练(一) 绝对值的应用类型1 利用绝对值比较大小 1.比较下面各对数的大小:(1)-0.1与-0.2;解:因为|-0.1|=0.1,|-0.2|=0.2, 且0.1<0.2,所以-0.1>-0.2.(2)-45与-56.解:因为|-45|=45=2430,|-56|=56=2530,且2430<2530, 所以-45>-56.2.比较下面各对数的大小:(1)-821与-|-17|;解:-|-17|=-17.因为|-821|=821,|-17|=17=321,且821>17,所以-821<-|-17|.(2)-2 0152 016与-2 0162 017. 解:因为|-2 0152 016|=2 0152 016,|-2 0162 017|=2 0162 017,且2 0152 016<2 0162 017, 所以-2 0152 016>-2 0162 017.类型2 巧用绝对值的性质求字母的值3.已知|a|=3,|b|=13,且a <0<b ,则a ,b 的值分别为(B )A .3,13B .-3,13C .-3,-13D .3,-134.已知|a|=2,|b|=3,且b<a ,试求a 、b 的值.解:因为|a|=2,所以a =±2. 因为|b|=3,所以b =±3. 因为b<a ,所以a =2,b =-3或a =-2,b =-3.5.已知|x -3|+|y -5|=0,求x +y 的值.解:由|x -3|+|y -5|=0,得 x -3=0,y -5=0, 即x =3,y =5.所以x +y =3+5=8.6.已知|2-m|+|n -3|=0,试求m +2n 的值.解:因为|2-m|+|n -3|=0,且|2-m|≥0,|n -3|≥0, 所以|2-m|=0,|n -3|=0. 所以2-m =0,n -3=0. 所以m =2,n =3.所以m +2n =2+2×3=8. 7.已知|a -4|+|b -8|=0,求a +bab的值.解:因为|a -4|+|b -8|=0, 所以|a -4|=0,|b -8|=0. 所以a =4,b =8. 所以a +b ab =1232=38.类型3 绝对值在生活中的应用8.某汽车配件厂生产一批零件,从中随机抽取6件进行检验,比标准直径长的毫米数记为正数,比标准直径短的毫米数记为负数,检查记录如下表(单位:毫米):5 (1)哪3量好?(2)若规定与标准直径误差不超过0.1毫米的为优等品,在0.1毫米~0.3毫米(不含0.1毫米和0.3毫米)范围内的为合格品,不小于0.3毫米的为次品,则这6件产品中分别有几件优等品、合格品和次品?解:(1)因为|+0.5|=0.5,|-0.15|=0.15,|0.1|=0.1,|0|=0,|-0.1|=0.1,|0.2|=0.2,又因为0<0.1<0.15<0.2<0.5,所以第3件、第4件、第5件零件的质量相对来讲好一些. (2)由绝对值可得出:有3件优等品,2件合格品和1件次品.9.已知蜗牛从A 点出发,在一条数轴上来回爬行,规定:向正半轴运动记作“+”,向负半轴运动记作“-”,从开始到结束爬行的各段路程(单位:cm )依次为:+7,-5,-10,-8,+9,+12,+4,-6.若蜗牛的爬行速度为每秒12cm ,请问蜗牛一共爬行了多少秒?解:(|+7|+|-5|+|-10|+|-8|+|+9|+|+12|+|+4|+|-6|)÷12=122(秒).答:蜗牛一共爬行了122秒.10.司机小李某天下午的营运全是在南北走向的鼓楼大街进行的.假定向南为正,向北为负,他这天下午行车里程如下(单位:km ):+15,-3,+14,-11,+10,+4,-26.(1)小李在送第几位乘客时行车里程最远?(2)若汽车耗油量为0.1 L /km ,这天下午汽车共耗油多少L? 解:(1)小李在送最后一位乘客时行车里程最远,是26 km .(2)总耗油量为0.1×(|+15|+|-3|+|+14|+|-11|+|+10|+|+4|+|-26|)=8.3(L).11.在活动课上,有6名学生用橡皮泥做了6个乒乓球,直径可以有0.02毫米的误差,超过规定直径的毫米数记作正数,不足的记作负数,检查结果如下表:(1)请你指出哪些同学做的乒乓球是合乎要求的?(2)指出合乎要求的乒乓球中哪个同学做的质量最好,6名同学中,哪个同学做的质量较差?(3)请你对6名同学做的乒乓球质量按照最好到最差排名;(4)用学过的绝对值知识来说明以上问题.解:(1)张兵、蔡伟.(2)蔡伟做的质量最好,李明做的质量较差.(3)蔡伟、张兵、余佳、赵平、王敏、李明.(4)这是绝对值在实际生活中的应用,对误差来说绝对值越小越好.专题训练(二) 有理数的运算题组1有理数的加、减、乘、除、乘方运算1.计算:(1)(-3)+(-9);解:原式=-12.(2)-4.9+3.7; 解:原式=-1.2.(3)(-13)+34;解:原式=512.(4)0-9;解:原式=-9.(5)(-3)-(-5); 解:原式=2.(6)-712-914;解:原式=-1634.(7)(-12.5)-(-7.5). 解:原式=-5.2.计算:(1)(-3)×5; 解:原式=-15.(2)(-34)×(-89);解:原式=23.(3)(-37)×(-45)×(-712);解:原式=-15.(4)(-4)×(-10)×0.5×0×2 017; 解:原式=0.(5)(-36)÷9; 解:原式=-4.(6)(-1225)÷(-35);解:原式=45.(7)(-12557)÷(-5).解:原式=2517.3.计算:(1)(0.3)2;解:原式=0.09.(2)(-10)3;解:原式=-1 000.(3)-(-2)4; 解:原式=-16.(4)(112)3.解:原式=278.题组2 有理数的混合运算 4.计算:(1)16+(-25)+24-35;解:原式=16+24+[(-25)+(-35)] =40+(-60) =-20.(2)314+(-235)+534-825;解:原式=314+534+[(-235)+(-825)]=9+(-11)=-2.(3)(12-58-14)×(-24);解:原式=12×(-24)-58×(-24)-14×(-24)=-12+15+6=9.(4)719×(112-118+314)×(-214);解:原式=649×(-94)×(32-98+134)=-16×(32-98+134)=-16×32+16×98-16×134=-24+18-52=-58.(5)(-9)×(-11)÷3÷(-3); 解:原式=-99÷3÷3 =-11.(6)(-48)÷8-(-5)×(-6); 解:原式=-6-30 =-36.(7)2-(-4)+8÷(-2)+(-3). 解:原式=2+4+(-4)+(-3) =2+(-3) =-1.5.计算:(1)-12-(-12)3÷4;解:原式=-1-(-18)÷4=-1+18×14=-1+132=-3132.(2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2); 解:原式=(-8)+(-3)×(16+2)-9÷(-2) =(-8)+(-3)×18+4.5 =(-8)+(-54)+4.5 =-62+4.5 =-57.5.(3)-32×(-13)2-(-2)3÷(-12)2;解:原式=-9×19-(-8)÷14=-1+32=31.(4)(-2)4÷(-8)-(-12)3×(-22);解:原式=16÷(-8)-(-18)×(-4)=(-2)-12=-212.(5)(-58)×(-4)2-0.25×(-5)×(-4)3;解:原式=(-58)×16-0.25×(-5)×(-64)=-10-80 =-90.(6)-14+(1-0.5)×13×[2-(-3)2].解:原式=-1+0.5×13×(2-9)=-1+0.5×13×(-7)=-1-76=-136.专题训练(四) 整式的化简求值类型1 化简后直接代入求值1.(柳州期中)先化简,再求值:5x 2+4-3x 2-5x -2x 2-5+6x ,其中x =-3.解:原式=(5-3-2)x 2+(-5+6)x +(4-5) =x -1.当x =-3时,原式=-3-1=-4.2.(北流期中)先化简,再求值:(3a 2b -2ab 2)-2(ab 2-2a 2b),其中a =2,b =-1.解:原式=3a 2b -2ab 2-2ab 2+4a 2b=7a 2b -4ab 2.当a =2,b =-1时,原式=-28-8=-36. 3.先化简,再求值:2(x +x 2y)-23(3x 2y +32x)-y 2,其中x =1,y =-3.解:原式=2x +2x 2y -2x 2y -x -y 2=x -y 2.当x =1,y =-3时,原式=1-9=-8.4.(钦南期末)先化简,再求值:2x 2y -[2xy 2-2(-x 2y +4xy 2)],其中x =12,y =-2.解:原式=2x 2y -2xy 2-2x 2y +8xy 2=6xy 2.当x =12,y =-2时,原式=6×12×4=12.5.(南宁四十七中月考)先化简,再求值:2(x 2y +xy)-3(x 2y -xy)-4x 2y ,其中x ,y 满足|x +1|+(y -12)2=0.解:原式=2x 2y +2xy -3x 2y +3xy -4x 2y=-5x 2y +5xy.因为|x +1|+(y -12)2=0,所以x =-1,y =12.故原式=-52-52=-5.类型2 整体代入求值6.若a 2+2b 2=5,求多项式(3a 2-2ab +b 2)-(a 2-2ab -3b 2)的值.解:原式=3a 2-2ab +b 2-a 2+2ab +3b 2=2a 2+4b 2.当a 2+2b 2=5时,原式=2(a 2+2b 2)=10.7.已知||m +n -2+(mn +3)2=0,求2(m +n)-2[mn +(m +n)]-3[2(m +n)-3mn]的值.解:由已知条件知m +n =2,mn =-3,所以原式=2(m +n)-2mn -2(m +n)-6(m +n)+9mn =-6(m +n)+7mn =-12-21 =-33.专题训练(五) 图形的规律探索——教材P70T10的变式与应用 教材母题:(教材P 70T 10)如图所示,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有n(n>1)个点,每个图形总的点数S 是多少?当n =5,7,11时,S 是多少?【思路点拨】 观察图形,可得到点的总数S 与n 之间的关系,用含n 的式子表示S ,便可分别求出当n =5,7,11时,S 的值.【解答】 观察图形,当n =2时,有两排点,总的点数为1+2=3(个); 当n =3时,有三排点,总的点数为1+2+3=6(个);当n=4时,有四排点,总的点数为1+2+2+4=9(个);当n=5时,有五排点,总的点数为1+2+2+2+5=12(个).根据此规律,可知点的总数S=1+2(n-2)+n=3n-3,当n=7时,S=3×7-3=18;当n=11时,S=3×11-3=30.故当n=5,7,11时,S的值分别是12,18,30.【方法归纳】解决图形规律探索问题,首先从简单的基本图形入手,随着“序号”或“编号”增加时,后一个图形与前一个图形相比,在数量上的变化情况或图形变化情况,找出变化规律,从而推出一般性结论.1.如图是用相同长度的小棒摆成的一组有规律的图案,其中图1需要4根小棒,图2需要10根小棒,…,按此规律摆下去,则第11个图案所需小棒的根数为(C)A.70 B.68 C.64 D.582.(荆州中考)如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成下列图案.若第n个图案中有2 017个白色纸片,则n的值为(B)A.671 B.672 C.673 D.6743.(益阳中考)小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是13枚.4.如图是用棋子摆成的图案:根据图中棋子的排列规律解决下列问题:(1)第4个图中有22枚棋子,第5个图中有32枚棋子;(2)写出你猜想的第n个图中棋子的枚数(用含n的式子表示)是n+2+n2.5.下面是用棋子摆成的“小房子”.摆第10个这样的“小房子”需要多少枚棋子?摆第n 个这样的“小房子”呢?你是如何得到的?解:第1个“小房子”,下边正方形棋子4×2-4=4(枚),上边1枚,共4+1=5(枚);第2个“小房子”,下边正方形棋子4×3-4=8(枚),上边3枚,共8+3=11(枚); 第3个“小房子”,下边正方形棋子4×4-4=12(枚),上边5枚,共12+5=17(枚); 第4个“小房子”,下边正方形棋子4×5-4=16(枚),上边7枚,共16+7=23(枚); …第n 个“小房子”,下边正方形棋子4×(n+1)-4=4n(枚),上边(2n -1)枚,共4n +2n -1=(6n -1)(枚).当n =10时,6n -1=6×10-1=59(枚).专题训练(七) 一元一次方程的应用1.某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船3 h ,已知船在静水中的速度是8 km /h ,水流速度是2 km /h ,若A 、C 两地距离为2 km (A 、B 、C 三地在一条直线上),则A 、B 两地间的距离是10或252k m .2.兄弟两人由家里去学校,弟每小时走6里,哥每小时走8里,哥晚出发10分钟,结果两人同时到校,学校离家有多远?解:设学校离家有x 里.由题意,得x 6-1060=x8.解得x =4. 答:学校离家有4里.3.用两台水泵从同一池塘中向外抽水,单开甲泵5小时可抽完,单开乙泵2.5小时便能抽完.(1)如果两台水泵同时抽水,多长时间能把水抽完?(2)如果甲泵先抽2小时,剩下的由乙泵来抽,乙泵用多少时间才能把水抽完? 解:(1)设两台水泵同时抽水,x 小时能抽完.由题意,得x 5+x 2.5=1,解得x =53. 答:两台水泵同时抽水,53小时能把水抽完.(2)设乙泵用y 小时才能抽完,由题意,得 15×2+12.5y =1,解得y =1.5. 答:乙泵用1.5小时才能把水抽完.4.一辆卡车在公路上匀速行驶,起初看到的里程碑上是一个两位数,过了1小时,里程碑上的数恰好是原来的个位上的数与十位上的数交换位置后所得到的两位数,又过了1小时,里程碑上的数是一个三位数,这个三位数的百位上的数与个位上的数分别是起初看到的两位数的十位上的数与个位上的数,而十位上的数为0,且起初的两位数个位上的数比十位上的数的5倍多1,求卡车的速度.解:设起初看到的两位数十位上的数是x ,则个位上的数是5x +1.由题意,得 [10(5x +1)+x]-[10x +(5x +1)]=(100x +5x +1)-[10(5x +1)+x]. 解得x =1.则5x +1=6,61-16=45(千米). 答:卡车的速度是45千米/时.5.某会议厅主席台上方有一个长12.8 m 的长条形(长方形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空∶字宽∶字距=9∶6∶2,如图所示:根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少. 解:设边空、字宽、字距分别为9x cm 、6x cm 、2x cm .由题意,得 9x ×2+6x×18+2x(18-1)=1 280. 解得x =8.则9x =72,6x =48,2x =16.答:边空为72 cm ,字宽为48 cm ,字距为16 cm .6.某次篮球联赛共有十支队伍参赛,部分积分表如下:2 其中一队的胜场总积分能否等于负场总积分?请说明理由. 解:由D 队可知,负一场积分为:16÷16=1(分), 则由A 队可知,胜一场积分为:28-4×112=2(分).设其中一队的胜场为x 场,则负场为(16-x)场,则 2x =16-x ,解得x =163.因为场数必须是整数, 所以x =163不符合实际.所以没有一队的胜场总积分能等于负场总积分.7.某商场在元旦期间搞促销活动,一次性购物不超过2 000元不优惠;超过2 000元,但不超过5 000元,按9折优惠;超过5 000元,超过部分按8折优惠,其中的5 000元仍按9折优惠.某人两次购物分别用了1 340元和4 660元.问:(1)此人的两次购物,若物品不打折,需多少元钱? (2)此人两次购物共节省多少元钱?(3)若将两次购物的钱合起来,一次购买相同的商品,是否更节省?请说明理由. 解:(1)因为2 000×90%=1 800(元)>1 340元,所以购1 340元的商品未优惠. 又因为5 000×90%=4 500(元)<4 660元,所以购4 660元的商品有两个等级优惠. 设其售价为x 元,依题意,得5 000×90%+(x -5 000)×80%=4 660, 解得x =5 200.所以如果不打折,那么分别需1 340元和5 200元,共需6 540元. (2)共节省6 540-(1 340+4 660)=540(元).(3)6 540元的商品优惠价为5 000×90%+(6 540-5 000)×80%=5 732(元), 1 340+4 660=6 000(元), 因为5 732<6 000,所以若一次购买相同的商品,更节省.8.一个车队共有n(n 为正整数)辆小轿车,正以每小时36千米的速度在一条笔直的街道上匀速行驶,行驶时车与车的间隔均为5.4米,甲停在路边等人,他发现该车队从第一辆车的车头到最后一辆的车尾经过自己身边共用了20秒的时间,假设每辆车的车长均为4.87米.(1)求n 的值;(2)若乙在街道一侧的人行道上与车队同向而行,速度为v 米/秒,当车队的第一辆车的车头从他身边经过了15秒钟时,为了躲避一只小狗,他突然以3v 米/秒的速度向前跑,这样从第一辆车的车头到最后一辆车的车尾经过他身边共用了35秒,求v 的值.解:(1)36千米/时=10米/秒,则4.87n +5.4(n -1)=20×10,解得n =20.(2)车队总长度:20×4.87+5.4×19=200(米). 由题意,得(10-v)×15+(10-3v)×(35-15)=200, 解得v =2.9.一辆汽车从A 地驶往B 地,前三分之一路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60 km /h ,在高速公路上行驶的速度为100 km /h ,汽车从A 地到B 地一共行驶了2.2 h .请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用一元一次方程解决的问题,并写出解答过程.解:答案不唯一,例如:①问题:普通公路和高速公路各为多少km? 解:设普通公路长为x km ,根据题意,得x 60+2x100=2.2.解得x =60. 则2x =120.答:普通公路和高速公路各为60 km 和120 km .②问题:汽车在普通公路和高速公路上各行驶了多少h? 解:设汽车在普通公路上行驶了x h ,根据题意,得 60x ×2=100(2.2-x).解得x =1. 则2.2-x =1.2.答:汽车在普通公路上和高速公路上分别行驶了 1 h 和1.2 h .专题训练(八) 线段的计算——教材P128练习T3的变式与应用教材母题:(教材P 128练习T 3)如图,点D 是线段AB 的中点,C 是线段AD 的中点,若AB =4 cm ,求线段CD 的长度.【解答】 因为点D 是线段AB 的中点,AB =4 cm , 所以AD =12AB =12×4=2(cm ).因为C 是线段AD 的中点, 所以CD =12AD =12×2=1(cm ).【方法归纳】 结合图形,将待求线段长转化为已知线段的和、差形式.若题目中出现线段的中点,常利用线段中点的性质,结合线段的和、差、倍、分关系求解.同时应注意题目中若没有图形,或点的位置关系不确定时,常需要分类讨论,确保答案的完整性.1.如图,线段AB =22 cm ,C 是线段AB 上一点,且AC =14 cm ,O 是AB 的中点,求线段OC 的长度.解:因为点O 是线段AB 的中点,AB =22 cm , 所以AO =12AB =11 cm .所以OC =AC -AO =14-11=3(cm ).2.如图,已知C 是AB 的中点,D 是AC 的中点,E 是BC 的中点.(1)若DE =9 cm ,求AB 的长; (2)若CE =5 cm ,求DB 的长.解:(1)因为D 是AC 的中点,E 是BC 的中点, 所以AC =2CD ,BC =2CE.所以AB =AC +BC =2DE =18 cm . (2)因为E 是BC 的中点, 所以BC =2CE =10 cm .因为C 是AB 的中点,D 是AC 的中点, 所以DC =12AC =12BC =5 cm .所以DB =DC +BC =5+10=15(cm ).3.如图,B ,C 两点把线段AD 分成2∶5∶3三部分,M 为AD 的中点,BM =6 cm ,求CM 和AD 的长.解:设AB =2x cm ,BC =5x cm ,CD =3x cm , 所以AD =AB +BC +CD =10x cm . 因为M 是AD 的中点, 所以AM =MD =12AD =5x cm .所以BM =AM -AB =5x -2x =3x(cm ). 因为BM =6 cm , 所以3x =6,x =2.故CM =MD -CD =5x -3x =2x =2×2=4(cm ), AD =10x =10×2=20(cm ).4.如图,线段AB =1 cm ,延长AB 到C ,使得BC =32AB ,反向延长AB 到D ,使得BD =2BC ,在线段CD 上有一点P ,且AP =2 cm .(1)请按题目要求画出线段CD ,并在图中标出点P 的位置; (2)求出线段CP 的长度.解:(1)线段CD 和点P 的位置如图1、2所示.(2)因为AB =1 cm , 所以BC =32AB =32 cm .所以BD =2BC =3 cm .当点P 在点A 的右边时,CP =AB +BC -AP =12cm ;当点P 在点A 的左边时,点P 与点D 重合,CP =BD +BC =92cm .专题训练(九) 角的计算类型1 利用角度的和、差关系找出待求的角与已知角的和、差关系,根据角度和、差来计算. 1.如图,已知∠AOC=∠BOD=75°,∠BOC =30°,求∠AOD 的度数.解:因为∠AOC=75°,∠BOC =30°,所以∠AO B =∠AOC-∠BOC=75°-30°=45°. 又因为∠BOD=75°,所以∠AOD=∠AOB+∠BOD=45°+75°=120°. 2.将一副三角板的两个顶点重叠放在一起.(两个三角板中的锐角分别为45°、45°和30°、60°)(1)如图1所示,在此种情形下,当∠DAC=4∠BAD 时,求∠CAE 的度数; (2)如图2所示,在此种情形下,当∠ACE=3∠BCD 时,求∠ACD 的度数.解:(1)因为∠BAD+∠DAC=90°,∠DAC =4∠B AD , 所以5∠BAD=90°,即∠BAD=18°. 所以∠DAC=4×18°=72°. 因为∠DAE =90°,所以∠CAE=∠DAE-∠DAC=18°.(2)因为∠BCE=∠DCE-∠BCD=60°-∠BCD ,∠ACE =3∠BCD, 所以∠ACB=∠ACE+∠BCE=3∠BCD+60°-∠BCD=90°. 解得∠BCD=15°.所以∠ACD=∠ACB+∠BCD=90°+15°=105°.类型2 利用角平分线的性质角的平分线将角分成两个相等的角,利用角平分线的这个性质,再结合角的和、差关系进行计算.3.如图,点A ,O ,E 在同一直线上,∠AOB =40°,∠EOD =28°46′,OD 平分∠COE,求∠COB 的度数.解:因为∠EOD=28°46′,OD 平分∠COE, 所以∠COE=2∠EOD=2×28°46′=57°32′. 又因为∠AOB=40°,所以∠COB=180°-∠AOB-∠COE=180°-40°-57°32′=82°28′.4.已知∠AOB=40°,OD 是∠BOC 的平分线.(1)如图1,当∠AOB 与∠BOC 互补时,求∠COD 的度数; (2)如图2,当∠AOB 与∠BOC 互余时,求∠COD 的度数. 解:(1)因为∠AOB 与∠BOC 互补, 所以∠AOB+∠BOC =180°. 又因为∠AOB=40°,所以∠BOC=180°-40°=140°. 因为OD 是∠BOC 的平分线, 所以∠COD=12∠BOC=70°.(2)因为∠AOB 与∠BOC 互余, 所以∠AOB+∠BOC=90°. 又因为∠AOB=40°,所以∠BOC=90°-40°=50°. 因为OD 是∠BOC 的平分线, 所以∠COD=12∠BOC=25°.类型3 利用方程思想求解在解决有关余角、补角,角的比例关系或倍分关系问题时,常利用方程思想来求解,即通过设未知数,建立方程,通过解方程使问题得以解决.5.一个角的余角比它的补角的23还少40°,求这个角的度数.解:设这个角的度数为x °,根据题意,得 90-x =23(180-x)-40.解得x =30.所以这个角的度数是30°. 6.如图,已知∠AOE 是平角,∠DOE =20°,OB 平分∠AOC,且∠COD∶∠BOC=2∶3,求∠BOC 的度数.解:设∠COD=2x °,则∠BOC=3x °. 因为OB 平分∠AOC, 所以∠AOB=3x °.所以2x +3x +3x +20=180. 解得x =20.所以∠BOC=3×20°=60°.7.如图,已知∠AOB=12∠BOC,∠COD =∠AOD=3∠AOB ,求∠AOB 和∠COD 的度数.解:设∠AOB=x °,则∠COD=∠AOD=3∠AOB=3x °. 因为∠AOB=12∠BOC,所以∠BOC=2x °.所以3x +3x +2x +x =360. 解得x =40.所以∠AOB=40°,∠COD =120°.类型4 利用分类讨论思想求解在角度计算中,如果题目中无图,或补全图形时,常需分类讨论,确保答案的完整性. 8.已知∠AOB=75°,∠AOC =23∠AOB,OD 平分∠AOC,求∠BOD 的大小.解:因为∠AOB=75°,∠AOC =23∠AOB,所以∠AO C =23×75°=50°.因为O D 平分∠AOC,所以∠AOD=∠COD=25°.如图1,∠BOD =75°+25°=100°; 如图2,∠BOD =75°-25°=50°.9.已知:如图,OC 是∠AOB 的平分线.(1)当∠AOB=60°时,求∠AOC 的度数;(2)在(1)的条件下,∠EOC =90°,请在图中补全图形,并求∠AOE 的度数;(3)当∠AOB=α时,∠EOC =90°,直接写出∠AOE 的度数.(用含α的代数式表示)解:(1)因为OC 是∠AOB 的平分线, 所以∠AOC=12∠AOB.因为∠AOB=60°, 所以∠AOC=30°.(2)如图1,∠AOE =∠EOC+∠AOC=90°+30°=120°;如图2,∠AOE =∠EOC-∠AOC=90°-30°=60°.α2或90°-α2.(3)90°+。

相关文档
最新文档