(含答案)洛伦兹力的特点以及带电粒子在匀强磁场中的运动

合集下载

第一章 3 带电粒子在匀强磁场中的运动

第一章 3 带电粒子在匀强磁场中的运动

3 带电粒子在匀强磁场中的运动[学习目标] 1.理解带电粒子初速度方向和磁场方向垂直时,带电粒子在匀强磁场中做匀速圆周运动.2.会根据洛伦兹力提供向心力推导半径公式和周期公式.3.会分析带电粒子在匀强磁场中运动的基本问题.一、带电粒子在匀强磁场中的运动1.若v ∥B ,带电粒子以速度v 做匀速直线运动,其所受洛伦兹力F =0.所以粒子做匀速直线运动.2.若v ⊥B ,此时初速度方向、洛伦兹力的方向均与磁场方向垂直,粒子在垂直于磁场方向的平面内运动.(1)洛伦兹力与粒子的运动方向垂直,只改变粒子速度的方向,不改变粒子速度的大小. (2)带电粒子在垂直于磁场的平面内做匀速圆周运动,洛伦兹力提供向心力. 二、带电粒子在磁场中做圆周运动的半径和周期 1.半径一个电荷量为q 的粒子,在磁感应强度为B 的匀强磁场中以速度v 运动,那么带电粒子所受的洛伦兹力为F =q v B ,由洛伦兹力提供向心力得q v B =m v 2r ,由此可解得圆周运动的半径r=m vqB.从这个结果可以看出,粒子在匀强磁场中做匀速圆周运动的半径与它的质量、速度成正比,与电荷量、磁感应强度成反比. 2.周期由r =m v qB 和T =2πr v ,可得T =2πm qB .带电粒子在匀强磁场中做匀速圆周运动的周期与轨道半径和运动速度无关.1.判断下列说法的正误.(1)运动电荷进入磁场后(无其他场)可能做匀速圆周运动,不可能做类平抛运动.( √ ) (2)带电粒子在匀强磁场中做匀速圆周运动时,轨道半径跟粒子的速率成正比.( √ ) (3)带电粒子在匀强磁场中做匀速圆周运动的周期与轨道半径成正比.( × ) (4)带电粒子在匀强磁场中做圆周运动的周期随速度的增大而减小.( × )2.两个粒子带电荷量相等,在同一匀强磁场中只受到磁场力作用而做匀速圆周运动,则( ) A .若速率相等,则半径必相等 B .若质量相等,则周期必相等 C .若动能相等,则半径必相等 D .若动量相等,则周期必相等 答案 B一、带电粒子在匀强磁场中运动的基本问题 导学探究如图所示,可用洛伦兹力演示仪观察运动电子在匀强磁场中的偏转.(1)不加磁场时,电子束的运动轨迹如何? (2)加上磁场后,电子束的运动轨迹如何?(3)如果保持出射电子的速度不变,增大磁感应强度,轨迹圆半径如何变化? (4)如果保持磁感应强度不变,增大出射电子的速度,轨迹圆半径如何变化? 答案 (1)一条直线 (2)圆 (3)变小 (4)变大 知识深化1.分析带电粒子在匀强磁场中的匀速圆周运动,要紧抓洛伦兹力提供向心力,即q v B =m v 2r .2.同一粒子在同一匀强磁场中做匀速圆周运动,由r =m v qB 知,r 与v 成正比;由T =2πmqB知,T 与速度无关,与半径无关.例1 质子p(11H)和α粒子(42He)以相同的速率在同一匀强磁场中做匀速圆周运动,轨道半径分别为R p 和R α,周期分别为T p 和T α,则下列选项中正确的是( ) A .R p ∶R α=1∶2,T p ∶T α=1∶2 B .R p ∶R α=1∶1,T p ∶T α=1∶1 C .R p ∶R α=1∶1,T p ∶T α=1∶2 D .R p ∶R α=1∶2,T p ∶T α=1∶1 答案 A解析 质子p(11H)和α粒子(42He)的带电荷量之比为q p ∶q α=1∶2,质量之比m p ∶m α=1∶4.由带电粒子在匀强磁场中做匀速圆周运动的规律可知,轨道半径R =m v qB ,周期T =2πm qB ,因为两粒子速率相同,代入q 、m ,可得R p ∶R α=1∶2,T p ∶T α=1∶2,故选项A 正确,B 、C 、D 错误.针对训练1 薄铝板将同一匀强磁场分成 Ⅰ、Ⅱ 两个区域,高速带电粒子可穿过铝板一次,在两个区域内运动的轨迹如图所示,半径R 1>R 2.假定穿过铝板前后粒子带电荷量保持不变,则该粒子( )A .带正电B .在Ⅰ、Ⅱ区域的运动速度大小相同C .在Ⅰ、Ⅱ区域的运动时间相同D .从Ⅱ区域穿过铝板运动到Ⅰ区域 答案 C解析 粒子穿过铝板受到铝板的阻力,速度将减小.由r =m vBq 可得粒子在磁场中做匀速圆周运动的轨道半径将减小,故可得粒子由Ⅰ区域运动到Ⅱ区域,结合左手定则可知粒子带负电,选项A 、B 、D 错误;由T =2πmBq可知粒子运动的周期不变,粒子在Ⅰ区域和Ⅱ区域中运动的时间均为t =12T =πmBq ,选项C 正确.二、带电粒子在匀强磁场中的圆周运动 1.圆心位置确定的两种方法 (1)圆心一定在垂直于速度的直线上已知入射方向和出射方向时,可以过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图甲所示,P 为入射点,M 为出射点). (2)圆心一定在弦的垂直平分线上已知入射方向和出射点的位置时,可以过入射点作入射方向的垂线,连接入射点和出射点,作其垂直平分线,这两条垂线的交点就是圆弧轨道的圆心(如图乙所示,P 为入射点,M 为出射点).2.半径的确定半径的计算一般利用几何知识解直角三角形.做题时一定要作好辅助线,由圆的半径和其他几何边构成直角三角形.由直角三角形的边角关系或勾股定理求解.3.粒子在匀强磁场中运动时间的确定(1)粒子在匀强磁场中运动一周的时间为T ,当粒子运动轨迹的圆弧所对应的圆心角为α时,其运动时间t =α360°T (或t =α2πT ).确定圆心角时,利用好几个角的关系,即圆心角=偏向角=2倍弦切角. (2)当v 一定时,粒子在匀强磁场中运动的时间t =lv ,l 为带电粒子通过的弧长.例2 如图所示,a 和b 所带电荷量相同,以相同动能从A 点射入磁场,在匀强磁场中做圆周运动的半径r a =2r b ,则可知(重力不计)( )A .两粒子都带正电,质量比m am b =4B .两粒子都带负电,质量比m am b =4C .两粒子都带正电,质量比m a m b =14D .两粒子都带负电,质量比m a m b =14答案 B解析 由于q a =q b ,E k a =E k b ,由动能E k =12m v 2和粒子偏转半径r =m v qB ,可得m =r 2q 2B 22E k ,可见m 与半径r 的二次方成正比,故m a ∶m b =4∶1,再根据左手定则知粒子应带负电,故选B.例3 如图所示,一带电荷量为2.0×10-9 C 、质量为1.8×10-16kg 的粒子,从直线上一点O沿与PO 方向成30°角的方向进入磁感应强度为B 的匀强磁场中,经过1.5×10-6 s 后到达直线上的P 点,求:(1)粒子做圆周运动的周期; (2)磁感应强度B 的大小;(3)若O 、P 之间的距离为0.1 m ,则粒子的运动速度的大小. 答案 (1)1.8×10-6 s (2)0.314 T (3)3.49×105 m/s解析 (1)作出粒子的运动轨迹,如图所示,由图可知粒子由O 到P 的大圆弧所对的圆心角为300°,则t T =300°360°=56,周期T =65t =65×1.5×10-6 s =1.8×10-6 s (2)由q v B =m v 2r ,T =2πr v ,得T =2πm qB ,知B =2πm qT =2×3.14×1.8×10-162.0×10-9×1.8×10-6T =0.314 T.(3)由几何知识可知,半径r =OP =0.1 m 则q v B =m v 2r得,粒子的运动速度大小为v =Bqr m =0.314×2.0×10-9×0.11.8×10-16 m/s ≈3.49×105 m/s. 针对训练2 (多选)(2020·天津卷)如图所示,在Oxy 平面的第一象限内存在方向垂直纸面向里,磁感应强度大小为B 的匀强磁场.一带电粒子从y 轴上的M 点射入磁场,速度方向与y 轴正方向的夹角θ=45°.粒子经过磁场偏转后在N 点(图中未画出)垂直穿过x 轴.已知OM =a ,粒子电荷量为q ,质量为m ,重力不计.则( )A .粒子带负电荷B .粒子速度大小为qBa mC .粒子在磁场中运动的轨道半径为aD .N 与O 点相距(2+1)a 答案 AD解析 由题意可知,粒子在磁场中做顺时针圆周运动,根据左手定则可知粒子带负电荷,故A 正确;粒子的运动轨迹如图所示,O ′为粒子做匀速圆周运动的圆心,其轨道半径R =2a ,故C 错误;由洛伦兹力提供向心力可得q v B =m v 2R ,则v =2qBa m ,故B 错误;由图可知,ON =a +2a =(2+1)a ,故D 正确.考点一 周期公式与半径公式的基本应用1.(多选)两个粒子A 和B 带有等量的同种电荷,粒子A 和B 以垂直于磁场的方向射入同一匀强磁场,不计重力,则下列说法正确的是( ) A .如果两粒子的速度v A =v B ,则两粒子的半径R A =R B B .如果两粒子的动能E k A =E k B ,则两粒子的周期T A =T B C .如果两粒子的质量m A =m B ,则两粒子的周期T A =T B D .如果两粒子的动量大小相同,则两粒子的半径R A =R B 答案 CD解析 因为粒子在匀强磁场中做匀速圆周运动的半径r =m v qB ,周期T =2πmqB ,又粒子电荷量相等且在同一匀强磁场中,所以q 、B 相等,r 与m 、v 有关,T 只与m 有关,所以A 、B 错误,C 、D 正确.2.在匀强磁场中,一个带电粒子做匀速圆周运动,如果又顺利垂直进入另一磁感应强度是原来磁感应强度一半的匀强磁场,则( ) A .粒子的速率加倍,周期减半 B .粒子的速率不变,轨道半径减半 C .粒子的速率不变,周期变为原来的2倍D .粒子的速率减半,轨道半径变为原来的2倍 答案 C解析 因洛伦兹力对粒子不做功,故粒子的速率不变;当磁感应强度减半后,由r =m vBq 可知,轨道半径变为原来的2倍;由T =2πmBq 可知,粒子的周期变为原来的2倍,故C 正确,A 、B 、D 错误.3.一个带电粒子沿垂直于磁场的方向射入一匀强磁场.粒子的一段径迹如图所示.径迹上的每一小段都可近似看成圆弧.由于带电粒子能使沿途的空气电离,粒子的能量逐渐减小(电荷量不变).从图中情况可以确定( )A .粒子从a 到b ,带正电B .粒子从a 到b ,带负电C .粒子从b 到a ,带正电D .粒子从b 到a ,带负电 答案 C解析 由于带电粒子使沿途的空气电离,粒子的能量逐渐减小,可知速度逐渐减小;根据粒子在匀强磁场中做匀速圆周运动的半径公式r =m vqB 可知,粒子的运动半径逐渐减小,所以粒子的运动方向是从b 到a ;再根据左手定则可知粒子带正电,选项C 正确,A 、B 、D 错误. 4.质量和带电荷量都相等的带电粒子M 和N ,以不同的速率经小孔S 垂直进入匀强磁场并最终打在金属板上,运动的半圆轨迹如图中虚线所示,不计重力,下列表述正确的是( )A .M 带负电,N 带正电B .M 的速率小于N 的速率C .洛伦兹力对M 、N 做正功D .M 的运动时间大于N 的运动时间 答案 A解析 根据左手定则可知N 带正电,M 带负电,A 正确;因r =m vBq,而M 的轨迹半径大于N的轨迹半径,所以M 的速率大于N 的速率,B 错误;洛伦兹力不做功,C 错误;M 和N 的运动时间都为t =πmBq,D 错误.考点二 带电粒子做匀速圆周运动的分析5.如图,ABCD 是一个正方形的匀强磁场区域,两相同的粒子甲、乙分别以不同的速率从A 、D 两点沿图示方向射入磁场,均从C 点射出,则它们的速率之比v 甲∶v 乙和它们通过该磁场所用时间之比t 甲∶t 乙分别为( )A .1∶1,2∶1B .1∶2,2∶1C .2∶1,1∶2D .1∶2,1∶1答案 C解析 根据q v B =m v 2r ,得v =qBrm ,根据题图可知,甲、乙两粒子的轨迹半径之比为2∶1,又因为两粒子相同,故v 甲∶v 乙=r 甲∶r 乙=2∶1,粒子在磁场中的运动周期T =2πmqB ,两粒子相同,可知甲、乙两粒子的周期之比为1∶1,根据轨迹图可知,甲、乙两粒子转过的圆心角之比为1∶2,故两粒子在磁场中经历的时间之比t 甲∶t 乙=1∶2,选C.6.如图所示,MN 为铝质薄平板,铝板上方和下方分别有垂直于纸面的匀强磁场(未画出),一带电粒子从紧贴铝板上表面的P 点垂直于铝板向上射出,从Q 点穿越铝板后到达PQ 的中点O .已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变,不计重力.铝板上方和下方的磁感应强度大小之比为( )A .2∶1 B.2∶1 C .1∶1 D.2∶2 答案 D解析 根据几何关系可知,带电粒子在铝板上方做匀速圆周运动的轨迹半径r 1是其在铝板下方做匀速圆周运动的轨迹半径r 2的2倍,设粒子在P 点的速度大小为v 1,动能为E k ,根据牛顿第二定律可得q v 1B 1=m v 12r 1,则B 1=m v 1qr 1=2mE kqr 1;同理,B 2=m v 2qr 2=2m ·12E kqr 2=mE kqr 2,则B 1B 2=2r 2r 1=22,D 正确.7.(多选)如图所示,分界线MN 上、下两侧有垂直纸面的匀强磁场,磁感应强度分别为B 1和B 2,一质量为m 、电荷量为q 的带电粒子(不计重力)从O 点出发以一定的初速度v 0沿纸面垂直MN 向上射出,经时间t 又回到出发点O ,形成了图示心形轨迹,则( )A .粒子一定带正电荷B .MN 上、下两侧的磁场方向相同C .MN 上、下两侧的磁感应强度的大小之比B 1∶B 2=1∶2D .时间t =2πm qB 2答案 BD解析 题中未给出磁场的方向和粒子绕行的方向,所以不能判定粒子所带电荷的正负,选项A 错误;粒子越过磁场的分界线MN 时,洛伦兹力的方向没有变,根据左手定则可知MN 上、下两侧的磁场方向相同,选项B 正确;设MN 上方的轨迹半径是r 1,下方的轨迹半径是r 2,根据几何关系可知r 1∶r 2=1∶2;洛伦兹力充当粒子做圆周运动的向心力,由q v 0B =m v 02r ,解得B =m v 0qr ,所以B 1∶B 2=r 2∶r 1=2∶1,选项C 错误;由题图知,时间t =T 1+T 22=2πmqB 1+πm qB 2,由B 1∶B 2=2∶1得t =2πm qB 2,选项D 正确. 8.如图所示,两个速度大小不同的同种带电粒子1、2沿水平方向从同一点垂直射入匀强磁场中,磁场方向垂直纸面向里,当它们从磁场下边界飞出时相对入射方向的偏转角分别为90°、60°,则粒子1、2在磁场中运动的( )A .轨迹半径之比为2∶1B .速度之比为1∶2C .时间之比为2∶3D .周期之比为1∶2答案 B解析 带电粒子在匀强磁场中运动时,洛伦兹力提供向心力,由牛顿第二定律有q v B =m v 2r,可得r =m v qB ,又T =2πr v ,联立可得T =2πmqB ,故两粒子运动的周期相同,D 错误;速度的偏转角等于轨迹所对的圆心角,故粒子1的运动时间t 1=90°360°T =14T ,粒子2的运动时间t 2=60°360°T=16T ,则时间之比为3∶2,C 错误;粒子1和粒子2运动轨迹的圆心O 1和O 2如图所示,设粒子1的轨迹半径R 1=d ,对于粒子2,由几何关系可得R 2sin 30°+d =R 2,解得R 2=2d ,故轨迹半径之比为1∶2,A 错误;由r =m vqB可知,速度之比为1∶2,B 正确.9.如图所示,在x 轴上方存在垂直于纸面向里的匀强磁场,磁场的磁感应强度为B ,在xOy 平面内,从原点O 处与x 轴正方向成θ角(0<θ<π),以速率v 发射一个带正电的粒子(重力不计),则下列说法正确的是( )A .若v 一定,θ越大,则粒子离开磁场的位置距O 点越远B .若v 一定,θ越大,则粒子在磁场中运动的时间越短C .若θ一定,v 越大,则粒子在磁场中运动的角速度越大D .若θ一定,v 越大,则粒子在磁场中运动的时间越短 答案 B解析 画出粒子在磁场中运动的轨迹如图所示,由几何关系得,轨迹对应的圆心角α=2π-2θ,粒子在磁场中运动的时间t =α2πT =2π-2θ2π·2πm qB =(2π-2θ)m qB ,可得,若v 一定,θ越大,粒子在磁场中运动的时间t 越短,若θ一定,则粒子在磁场中的运动时间一定,故B 正确,D 错误;设粒子的轨迹半径为r ,则r =m v qB ,由图有,AO =2r sin θ=2m v sin θqB ,可得,若θ是锐角,θ越大,AO 越大,若θ是钝角,θ越大,AO 越小,故A 错误;粒子在磁场中运动的角速度ω=2πT ,又T =2πm qB ,则得ω=qBm,与速度v 无关,故C 错误.10.(2019·全国卷Ⅲ)如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场.一质量为m 、电荷量为q (q >0)的粒子垂直于x 轴射入第二象限,随后垂直于y 轴进入第一象限,最后经过x 轴离开第一象限.粒子在磁场中运动的时间为( )A.5πm 6qBB.7πm 6qBC.11πm 6qBD.13πm 6qB答案 B解析 设带电粒子进入第二象限的速度为v ,在第二象限和第一象限中运动的轨迹如图所示,对应的轨迹半径分别为R 1和R 2,由洛伦兹力提供向心力,有q v B =m v 2R、T =2πR v ,可得R 1=m v qB 、R 2=2m v qB 、T 1=2πm qB 、T 2=4πm qB ,带电粒子在第二象限中运动的时间为t 1=T 14,在第一象限中运动的时间为t 2=θ2πT 2,又由几何关系有cos θ=R 2-R 1R 2=12,可得t 2=T 26,则粒子在磁场中运动的时间为t =t 1+t 2,联立以上各式解得t =7πm 6qB,选项B 正确,A 、C 、D 错误.11.一带电粒子的质量m =1.7×10-27 kg ,电荷量q =+1.6×10-19 C ,该粒子以大小为v =3.2×106 m/s 的速度沿垂直于磁场同时又垂直于磁场边界的方向进入匀强磁场中,磁场的磁感应强度为B =0.17 T ,磁场的宽度L =10 cm ,如图所示.(粒子重力不计,g 取10 m/s 2,结果均保留两位有效数字)(1)带电粒子离开磁场时的速度多大?(2)带电粒子在磁场中运动多长时间?(3)带电粒子在离开磁场时偏离入射方向的距离d 为多大?答案 (1)3.2×106 m/s (2)3.3×10-8 s (3)2.7×10-2 m解析 (1)由于洛伦兹力不做功,所以带电粒子离开磁场时的速度大小仍为3.2×106 m/s.(2)由q v B =m v 2r 得, 轨迹半径r =m v qB =1.7×10-27×3.2×1061.6×10-19×0.17m =0.2 m. 由题图可知偏转角θ满足:sin θ=L r =0.1 m 0.2 m=0.5, 所以θ=30°=π6, 由q v B =m v 2r 及v =2πr T可得 带电粒子在磁场中运动的周期T =2πm qB, 所以带电粒子在磁场中运动的时间t =θ2π·T =112T , 所以t =πm 6qB = 3.14×1.7×10-276×1.6×10-19×0.17s ≈3.3×10-8 s. (3)带电粒子在离开磁场时偏离入射方向的距离d =r (1-cos θ)=0.2×(1-32) m ≈2.7×10-2 m.12.(2020·江苏卷改编)空间存在两个垂直于Oxy 平面的匀强磁场,y 轴为两磁场的边界,磁感应强度分别为2B 0、3B 0.质量为m 、带电荷量为q 的粒子从原点O 沿x 轴正向射入磁场,速度为v .粒子第1次、第2次经过y 轴的位置分别为P 、Q ,其轨迹如图所示.不考虑粒子重力影响.求:(1)Q 到O 的距离d ;(2)粒子两次经过P 点的时间间隔Δt .答案 (1)m v 3qB 0 (2)2πm qB 0解析 (1)粒子先后在两磁场中做匀速圆周运动,设半径分别为r 1、r 2由q v B =m v 2r 可知r =m v qB故r 1=m v 2qB 0,r 2=m v 3qB 0且d =2r 1-2r 2,解得d =m v 3qB 0(2)粒子先后在两磁场中做匀速圆周运动,设运动时间分别为t 1、t 2由T =2πr v =2πm qB 得t 1=πm 2qB 0,t 2=πm 3qB 0, 且Δt =2t 1+3t 2解得Δt =2πm qB 0.。

初中物理:带电粒子在匀强磁场中的运动

初中物理:带电粒子在匀强磁场中的运动

第6节 带电粒子在匀强磁场中的运动1.洛伦兹力方向总是垂直于速度方向,所以洛伦兹力不对带电粒子做功,它只改变带电粒子速度的方向,不改变带电粒子速度的大小.2.垂直射入匀强磁场的带电粒子,在匀强磁场中做匀速圆周运动.洛伦兹力充当向心力.即Bq v =m v 2r ,所以r =m v Bq ,由v =2πr T ,得知T =2πmBq3.质谱仪的原理和应用 (1)原理图:如图1所示.图1(2)加速:带电粒子进入质谱仪的加速电场,由动能定理得:qU =12m v 2①(3)偏转:带电粒子进入质谱仪的偏转磁场做匀速圆周运动,洛伦兹力提供向心力:q v B =m v 2r②(4)由①②两式可以求出粒子的质量、比荷、半径等,其中由r =1B 2mUq可知电荷量相同时,半径将随质量变化.(5)质谱仪的应用:可以测定带电粒子的质量和分析同位素 4.回旋加速器的原理及应用 (1)构造图:如图2所示.回旋加速器的核心部件是两个D 形盒.图2(2)原理回旋加速器有两个铜质的D 形盒D 1、D 2,其间留有一空隙,加以加速电压,离子源处在中心O 附近,匀强磁场垂直于D 形盒表面.粒子在两盒空间的匀强磁场中,做匀速圆周运动,在两盒间的空隙中,被电场加速.如果交变电场的周期与粒子在磁场中的运动周期相同,粒子在空隙中总被加速,半径r 逐渐增大,达到预定速率后,用静电偏转极将高能粒子引出D 形盒用于科学研究.(3)用途加速器是使带电粒子获得高能量的装置,是科学家探究原子核的有力工具,而且在工、农、医药等行业得到广泛应用.5.一个质量为m 、电荷量为q 的粒子,在磁感应强度为B 的匀强磁场中做匀速圆周运动,则下列说法中正确的是( )A .它所受的洛伦兹力是恒定不变的B .它的速度是恒定不变的C .它的速度与磁感应强度B 成正比D .它的运动周期与速度的大小无关 答案 D解析 粒子在匀强磁场中做匀速圆周运动时洛伦兹力提供向心力,沦伦兹力的大小不变,方向始终指向圆心,不断改变,所以A 错.速度的大小不变,方向不断改变,所以B 错.由于粒子进入磁场后洛伦兹力不做功,因此粒子的速度大小不改变,粒子速度大小始终等于其进入磁场时的值,与磁感应强度B 无关,所以C 错.由运动周期公式T =2πmBq ,可知T 与速度v 的大小无关.即D 正确.6.两个粒子,带电量相等,在同一匀强磁场中只受洛伦兹力而做匀速圆周运动( ) A .若速率相等,则半径必相等 B .若质量相等,则周期必相等 C .若动能相等,则周期必相等 D .若质量相等,则半径必相等 答案 B解析 根据粒子在磁场中的运动轨道半径r =m v qB 和周期T =2πmBq 公式可知,在q 、B 一定的情况下,轨道半径r 与v 和m 的大小有关,而周期T 只与m 有关.【概念规律练】知识点一 带电粒子在匀强磁场中的圆周运动1.在匀强磁场中,一个带电粒子做匀速圆周运动,如果又垂直进入另一磁感应强度是原来的磁感应强度2倍的匀强磁场,则( )A .粒子的速率加倍,周期减半B .粒子的速率不变,轨道半径减半C .粒子的速率减半,轨道半径为原来的四分之一D .粒子的速率不变,周期减半 答案 BD解析 洛伦兹力不改变带电粒子的速率,A 、C 错.由r =m v qB ,T =2πmqB 知:磁感应强度加倍时,轨道半径减半、周期减半,故B 、D 正确.2.质子(p)和α粒子以相同的速率在同一匀强磁场中做匀速圆周运动,轨道半径分别为R p 和R α,周期分别为T p 和T α,则下列选项正确的是( )A .R p ∶R α=1∶2 T p ∶T α=1∶2B .R p ∶R α=1∶1 T p ∶T α=1∶1C .R p ∶R α=1∶1 T p ∶T α=1∶2D .R p ∶R α=1∶2 T p ∶T α=1∶1 答案 A解析 质子(11H)和α粒子(42He)带电荷量之比q p ∶q α=1∶2,质量之比m p ∶m α=1∶4.由带电粒子在匀强磁场中做匀速圆周运动规律,R =m v qB ,T =2πmqB,粒子速率相同,代入q 、m 可得R p ∶R α=1∶2,T p ∶T α=1∶2,故选项A 正确.知识点二 带电粒子在有界磁场中的圆周运动3. 如图3所示,一束电子的电荷量为e ,以速度v 垂直射入磁感应强度为B 、宽度为d 的有界匀强磁场中,穿过磁场时的速度方向与原来电子的入射方向的夹角是30°,则电子的质量是多少?电子穿过磁场的时间又是多少?图3答案2deB v πd3v解析 电子在磁场中运动时,只受洛伦兹力作用,故其轨道是圆弧的一部分.又因洛伦兹力与速度v 垂直,故圆心应在电子穿入和穿出时洛伦兹力延长线的交点上.从图中可以看出,AB 弧所对的圆心角θ=30°=π6,OB 即为半径r ,由几何关系可得:r =d sin θ=2d.由半径公式 r =m v Bq 得:m =qBr v =2deB v. 带电粒子通过AB 弧所用的时间,即穿过磁场的时间为: t =θ2πT =112×T =112×2πm Be =πm 6Be =πd 3v. 点评 作出辅助线,构成直角三角形,利用几何知识求解半径.求时间有两种方法:一种是利用公式t =θ2πT ,另一种是利用公式t =Rθv求解.4. 一磁场宽度为L ,磁感应强度为B ,如图4所示,一电荷质量为m 、带电荷量为-q ,不计重力,以某一速度(方向如图)射入磁场.若不使其从右边界飞出,则电荷的速度应为多大?图4答案 v ≤BqLm (1+cos θ)解析 若要粒子不从右边界飞出,当达最大速度时运动轨迹如图,由几何知识可求得半径r ,即r +rcos θ=L ,r =L1+cos θ,又Bq v =m v 2r ,所以v =Bqr m =BqLm (1+cos θ).知识点三 质谱仪5. 质谱仪原理如图5所示,a 为粒子加速器,电压为U 1;b 为速度选择器,磁场与电场正交,磁感应强度为B 1,板间距离为d ;c 为偏转分离器,磁感应强度为B 2.今有一质量为m 、电荷量为e 的正粒子(不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动.求:图5(1)粒子的速度v 为多少?(2)速度选择器的电压U 2为多少?(3)粒子在B 2磁场中做匀速圆周运动的半径R 为多大?答案 (1) 2eU 1m (2)B 1d 2eU 1m (3)1B 2 2U 1me解析 根据动能定理可求出速度v ,据电场力和洛伦兹力相等可得到v 2,再据粒子在磁场中做匀速圆周运动的知识可求得半径.(1)在a 中,e 被加速电场U 1加速,由动能定理有eU 1=12m v 2得v = 2eU 1m.(2)在b 中,e 受的电场力和洛伦兹力大小相等,即e U 2d=e v B 1,代入v 值得U 2=B 1d2eU 1m. (3)在c 中,e 受洛伦兹力作用而做圆周运动,回转半径R =m v B 2e ,代入v 值解得R =1B 2 2U 1m e.点评 分析带电粒子在场中的受力,依据其运动特点,选择物理规律进行求解分析. 知识点四 回旋加速器 6.在回旋加速器中( )A .电场用来加速带电粒子,磁场则使带电粒子回旋B .电场和磁场同时用来加速带电粒子C .在交流电压一定的条件下,回旋加速器的半径越大,则带电粒子获得的动能越大D .同一带电粒子获得的最大动能只与交流电压的大小有关,而与交流电压的频率无关. 答案 AC解析 电场的作用是使粒子加速,磁场的作用是使粒子回旋,故A 选项正确;粒子获得的动能E k =(qBR )22m ,对同一粒子,回旋加速器的半径越大,粒子获得的动能越大,故C选项正确.7.有一回旋加速器,它的高频电源的频率为1.2×107 Hz ,D 形盒的半径为0.532 m ,求加速氘核时所需的磁感应强度为多大?氘核所能达到的最大动能为多少?(氘核的质量为3.3×10-27 kg ,氘核的电荷量为1.6×10-19C)答案 1.55 T 2.64×10-12 J解析 氘核在磁场中做圆周运动,由洛伦兹力提供向心力,据牛顿第二定律q v B =m v 2R,周期T =2πR v,解得圆周运动的周期T =2πmqB .要使氘核每次经过电场均被加速,则其在磁场中做圆周运动的周期等于交变电压的周期,即T =1f.所以B =2πfm q =2×3.14×1.2×107×3.3×10-271.6×10-19T=1.55 T.设氘核的最大速度为v ,对应的圆周运动的半径恰好等于D 形盒的半径,所以v =qBRm .故氘核所能达到的最大动能E max =12m v 2=12m·(qBR m )2=q 2B 2R 22m=(1.6×10-19)2×1.552×0.53222×3.3×10-27J =2.64×10-12 J.【方法技巧练】一、带电粒子在磁场中运动时间的确定方法8. 如图6所示,在第一象限内有垂直纸面向里的匀强磁场,一对正、负电子分别以相同速度沿与x 轴成60°角从原点射入磁场,则正、负电子在磁场中运动时间之比为( )图6A .1∶2B .2∶1C .1∶ 3D .1∶1 答案 B9. 如图7所示,半径为r 的圆形空间内,存在着垂直于纸面向外的匀强磁场,一个带电粒子(不计重力),从A 点沿半径方向以速度v 0垂直于磁场方向射入磁场中,并由B 点射出,且∠AOB =120°,则该粒子在磁场中运动的时间为( )图7A.2πr 3v 0B.23πr 3v 0C.πr 3v 0D.3πr 3v 0 答案 D 解析由图中的几何关系可知,圆弧AB 所对的轨迹圆心角为60°,O 、O ′的连线为该圆心角的角平分线,由此可得带电粒子圆轨迹半径为R =rcot 30°=3r.故带电粒子在磁场中运动的周期为 T =2πR v 0=23πr v 0.带电粒子在磁场区域中运动的时间t =60°360°T =16T =3πr 3v 0.方法总结 粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间可由下式表示:t =α360°T 或t =α2πT.1.运动电荷进入磁场后(无其他力作用)可能做( ) A .匀速圆周运动 B .匀速直线运动 C .匀加速直线运动 D .平抛运动 答案 AB解析 若运动电荷垂直于磁场方向进入匀强磁场,则做匀速圆周运动;若运动方向和匀强磁场方向平行,则做匀速直线运动,故A 、B 正确,由于洛伦兹力不做功,故电荷的动能和速度不变,C 错误.由于洛伦兹力是变力,故D 错误.2.有三束粒子,分别是质子(p)、氚核(31H)和α粒子(42He)束,如果它们以相同的速度沿垂直于磁场方向射入匀强磁场(磁场方向垂直纸面向里),在下面所示的四个图中,能正确表示出这三束粒子运动轨迹的是( )答案 C3.带电粒子进入云室会使云室中的气体电离,从而显示其运动轨迹.如图8所示是在有匀强磁场的云室中观察到的粒子的轨迹,a 和b 是轨迹上的两点,匀强磁场B 垂直于纸面向里.该粒子在运动时,其质量和电荷量不变,而动能逐渐减少,下列说法正确的是( )图8A .粒子先经过a 点,再经过b 点B .粒子先经过b 点,再经过a 点C .粒子带负电D .粒子带正电答案 AC解析 由于粒子的速度减小,所以轨道半径不断减小,所以A 对,B 错;由左手定则得粒子应带负电,C 对,D 错.4.质子(11H)和α粒子(42He)在同一匀强磁场中做半径相同的圆周运动.由此可知质子的动能E 1和α粒子的动能E 2之比E 1∶E 2等于( )A .4∶1B .1∶1C .1∶2D .2∶1 答案 B解析 由r =m v qB ,E =12m v 2得E =r 2B 2q 22m,所以E 1∶E 2=q 21m 1∶q 22m 2=1∶1. 5. 长为l 的水平极板间有垂直纸面向里的匀强磁场,磁感应强度为B ,板间距离也为l ,板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A .使粒子的速度v <Bql4mB .使粒子的速度v >5Bql4mC .使粒子的速度v >BqlmD .使粒子的速度Bql 4m <v <5Bql4m答案 AB 解析如右图所示,带电粒子刚好打在极板右边缘时,有r 21=(r 1-l 2)2+l 2又r 1=m v 1Bq ,所以v 1=5Bql4m粒子刚好打在极板左边缘时,有r 2=l 4=m v 2Bq,v 2=Bql 4m综合上述分析可知,选项A 、B 正确.6.如图9所示,在边界PQ 上方有垂直纸面向里的匀强磁场,一对正、负电子同时从边界上的O 点沿与PQ 成θ角的方向以相同的速度v 射入磁场中,则关于正、负电子,下列说法不正确的是( )图9A.在磁场中的运动时间相同B.在磁场中运动的轨道半径相同C.出边界时两者的速度相同D.出边界点到O点处的距离相等答案 A7. 如图10所示,ab是一弯管,其中心线是半径为R的一段圆弧,将它置于一给定的匀强磁场中,磁场方向垂直于圆弧所在平面,并且指向纸外.有一束粒子对准a端射入弯管,粒子有不同的质量、不同的速度,但都是一价正离子()图10A.只有速度v大小一定的粒子可以沿中心线通过弯管B.只有质量m大小一定的粒子可以沿中心线通过弯管C.只有m、v的乘积大小一定的粒子可以沿中心线通过弯管D.只有动能E k大小一定的粒子可以沿中心线通过弯管答案 C解析因为粒子能通过弯管要有一定的半径,其半径r=R.所以r=R=m vqB,由q和B相同,则只有当m v一定时,粒子才能通过弯管.8. 如图11所示,一带负电的质点在固定的正的点电荷作用下绕该正电荷做匀速圆周运动,周期为T0,轨道平面位于纸面内,质点的速度方向如图中箭头所示.现加一垂直于轨道平面的匀强磁场,已知轨道半径并不因此而改变,则()图11A.若磁场方向指向纸里,质点运动的周期将大于T0B.若磁场方向指向纸里,质点运动的周期将小于T0C.若磁场方向指向纸外,质点运动的周期将大于T0D.若磁场方向指向纸外,质点运动的周期将小于T0答案AD解析不加磁场时:F E=mR(2πT0)2,若磁场方向向里,则有F E-F B=mR(2πT1)2,若磁场方向向外,则有F E+F B=mR(2πT2)2,比较知:T1>T0,T2<T0,选项A、D正确.9.回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底面的匀强磁场中,如图12所示,要增大带电粒子射出时的动能,下列说法中正确的是()图12A.增大匀强电场间的加速电压B.增大磁场的磁感应强度C .减小狭缝间的距离D .增大D 形金属盒的半径 答案 BD解析 当带电粒子的速度最大时,其运动半径也最大,由牛顿第二定律q v B =m v 2r,得v =qBr m.若D 形盒的半径为R ,则r =R 时,带电粒子的最终动能E km =12m v 2=q 2B 2R 22m ,所以要提高加速粒子射出时的动能,应尽可能增大磁感应强度B 和加速器的半径R.10. 质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图13所示,离子源S 产生一个质量为m ,电荷量为q 的正离子,离子产生出来时的速度很小,可以看作是静止的,离子产生出来后经过电压U 加速,进入磁感应强度为B 的匀强磁场,沿着半圆运动而达到记录它的照相底片P 上,测得它在P 上的位置到入口处S 1的距离为x ,则下列说法正确的是( )图13A .若某离子经上述装置后,测得它在P 上的位置到入口处S 1的距离大于x ,则说明离子的质量一定变大B .若某离子经上述装置后,测得它在P 上的位置到入口处S 1的距离大于x ,则说明加速电压U 一定变大C .若某离子经上述装置后,测得它在P 上的位置到入口处S 1的距离大于x ,则说明磁感应强度B 一定变大D .若某离子经上述装置后,测得它在P 上的位置到入口处S 1的距离大于x ,则说明离子所带电荷量q 可能变小答案 D解析 由qU =12m v 2,得v =2qU m ,x =2R ,所以R =x 2=m vqB ,x =2m v qB =2m qB 2qU m=8mUqB 2,可以看出,x 变大,可能是因为m 变大,U 变大,q 变小,B 变小,故只有D 对.11.回旋加速器D 形盒中央为质子流,D 形盒的交流电压为U ,静止质子经电场加速后,进入D 形盒,其最大轨道半径为R ,磁场的磁感应强度为B ,质子质量为m.求:(1)质子最初进入D 形盒的动能多大;(2)质子经回旋加速器最后得到的动能多大; (3)交流电源的频率是多少.答案 (1)eU (2)e 2B 2R 22m (3)eB2πm解析 (1)粒子在电场中加速,由动能定理得: eU =E k -0,解得E k =eU.(2)粒子在回旋加速器的磁场中绕行的最大半径为R ,由牛顿第二定律得:e v B =m v 2R①质子的最大动能:E km =12m v 2②解①②式得:E km =e 2B 2R 22m(3)f =1T =eB 2πm12. 如图14所示,在x 轴上方有磁感应强度大小为B ,方向垂直纸面向里的匀强磁场.x 轴下方有磁感应强度大小为B/2,方向垂直纸面向外的匀强磁场.一质量为m 、电荷量为-q 的带电粒子(不计重力),从x 轴上O 点以速度v 0垂直x 轴向上射出.求:图14(1)射出之后经多长时间粒子第二次到达x 轴? (2)粒子第二次到达x 轴时离O 点的距离.答案 (1)3πmqB (2)6m v 0qB解析 粒子射出后受洛伦兹力做匀速圆周运动,运动半个圆周后第一次到达x 轴,以向下的速度v 0进入x 轴下方磁场,又运动半个圆周后第二次到达x 轴.如下图所示.(1)由牛顿第二定律q v 0B =m v 20r①T =2πr v 0②得T 1=2πm qB ,T 2=4πmqB ,粒子第二次到达x 轴需时间 t =12T 1+12T 2=3πm qB. (2)由①式可知r 1=m v 0qB ,r 2=2m v 0qB ,粒子第二次到达x 轴时离O 点的距离 x =2r 1+2r 2=6m v 0qB.。

(完整版)高考物理带电粒子在磁场中的运动解析归纳

(完整版)高考物理带电粒子在磁场中的运动解析归纳

难点之九:带电粒子在磁场中的运动一、难点突破策略(一)明确带电粒子在磁场中的受力特点1. 产生洛伦兹力的条件:①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用.②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力f=0;当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ;当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功.(二)明确带电粒子在匀强磁场中的运动规律带电粒子在只受洛伦兹力作用的条件下:1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动.2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动.①向心力由洛伦兹力提供:R v mqvB 2=②轨道半径公式:qBmvR =③周期:qB m 2v R 2T π=π=,可见T 只与q m有关,与v 、R 无关。

(三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。

1. “带电粒子在匀强磁场中的圆周运动”的基本型问题(1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。

确定半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t 和转过的圆心角α之间的关系(T 2t T 360t πα=α=或)作为辅助。

圆心的确定,通常有以下两种方法。

① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。

带电粒子在磁场中的运动,方法规律讲解

带电粒子在磁场中的运动,方法规律讲解

洛伦兹力 带电粒子在磁场中的运动教学目标:1.掌握洛仑兹力的概念;2.熟练解决带电粒子在匀强磁场中的匀速圆周运动问题 教学重点:带电粒子在匀强磁场中的匀速圆周运动 教学难点:带电粒子在匀强磁场中的匀速圆周运动 教学方法:讲练结合,计算机辅助教学 教学过程:一、洛伦兹力 1.洛伦兹力运动电荷在磁场中受到的磁场力叫洛伦兹力,它是安培力的微观表现。

计算公式的推导:如图所示,整个导线受到的磁场力(安培力)为F 安 =BIL ;其中I=nesv ;设导线中共有N 个自由电子N=nsL ;每个电子受的磁场力为F ,则F 安=NF 。

由以上四式可得F=qvB 。

条件是v 与B 垂直。

当v 与B 成θ角时,F=qvB sin θ。

2.洛伦兹力方向的判定在用左手定则时,四指必须指电流方向(不是速度方向),即正电荷定向移动的方向;对负电荷,四指应指负电荷定向移动方向的反方向。

【例1】磁流体发电机原理图如右。

等离子体高速从左向右喷射,两极板间有如图方向的匀强磁场。

该发电机哪个极板为正极?两板间最大电压为多少?在定性分析时特别需要注意的是:⑴正负离子速度方向相同时,在同一磁场中受洛伦兹力方向相反。

⑵外电路接通时,电路中有电流,洛伦兹力大于电场力,两板间电压将小于Bdv ,但电动势不变(和所有电源一样,电动势是电源本身的性质。

)⑶注意在带电粒子偏转聚集在极板上以后新产生的电场的分析。

在外电路断开时最终将达到平衡态。

【例2】 半导体靠自由电子(带负电)和空穴(相当于带正电)导电,分为p 型和n 型两种。

p 型中空穴为多数载流子;n 型中自由电子为多数载流子。

用以下实验可以判定一块半导体材料是p 型还是n 型:将材料放在匀强磁场中,通以图示方向的电流I ,用电压表判定上下两个表面的电势高低,若上极板电势高,就是p 型半导体;若下极板电势高,就是n 型半导体。

试分析原因。

注意:当电流方向相同时,正、负离子在同一个磁场中的所受的洛伦兹力方向相同,所以偏转方向相同。

高中人教物理选择性必修二第1章第2节 带电粒子在匀强磁场中的运动

高中人教物理选择性必修二第1章第2节 带电粒子在匀强磁场中的运动
分析
依据所给数据分别计算出带电粒子所受的重力和洛伦兹力,就可求出所受重力与洛 伦兹力之比。带电粒子在匀强磁场中受洛伦兹力并做匀速圆周运动,由此可以求出 粒子运动的轨道半径及周期
解: (1)粒子所受的重力 G =mg=1.67×10-27×9.8 N = 1.64×10-26N
所受的洛伦兹力
F= qvB = 1.6×10-19×5×105×0.2N = 1.6×10-14N
的变化。速度增大时,圆周运动的半径增大;反之半径减小。 • 保持出射电子的速度不变,改变磁感应强度,观察电子束径迹
的变化。B增大时,圆周运动的半径减小;反之半径增大。
带电粒子在匀强磁场中做匀速圆周运动时周期有何特征?
根据T 2r 结合r mv
v
qB
可知T 2m
qB
可见同一个粒子在匀强磁场中做匀速圆周运动的周期与速 度无关
A.粒子从a到b,带正电 B.粒子从a到b,带负电 C.粒子从b到a,带正电 D.粒子从b到a,带负电
大小,由公式可求出运动时间。
t
3600
T
( 的单位是:度)
或 t T ( 的单位是 : 弧度)

1. 轨道半径与磁感应强度、运动速度相联系,在磁场中运动的时间与周 期、偏转角相联系。
2. 粒子速度的偏向角 ( φ ) 等于圆心角 ( α ),并等于AB 弦与切线的夹角 ( 弦 切角 θ ) 的 2 倍 ( 如图 ),即
重力与洛伦兹力之比
G F
1.64 1026 1.6 1014
1.03 1012
可见,带电粒子在磁场中运动时,洛伦兹力远大于重力,重力作 用的影响可以忽略。
(2)带电粒子所受的洛伦兹力为
F = qvB 洛伦兹力提供向心力,故 qvB m v2

3.6带电粒子在匀强磁场中的运动

3.6带电粒子在匀强磁场中的运动
几何法求半径
T
t
2
2m qB
向心力公式求半径
注意:θ用弧度表示
T
m
qB
分析方法-圆心的确定 (1)已知入射方向和出射方向,可以 通过入射点和出射点分别作垂直与入 射方向和出射方向的直线,两条直线 的交点就是圆弧轨道的圆心
O V M P V0
(2)已知入射方向和出射点的位置时, 可以通过入射点作入射方向的垂线,连 接入射点和出射点,作其中垂线,这两条 垂线的交点就是圆弧轨道的圆心.
重力忽略不计,认为只受洛伦兹力作用.
2、沿着与磁场垂直的方向射入磁场的带电 粒子,在匀强磁场中做匀速圆周运动,洛伦兹 力提供做向心力,只改变速度的方向,不改变
速度的大小.
2、实验验证
(1)洛伦兹力演示仪
①电子枪:射出电子 ②加速电场:作用是改变电子束出 射的速度
③励磁线圈(亥姆霍兹线圈):作 用是能在两线圈之间产生平行于两 线圈中心的连线的匀强磁场

θ
θ B α θ‘ v
即θ+ θ’=180°
运动时间的确定 • 利用偏转角(即圆心角α)与弦切 角的关系,或者利用四边形的内角 和等与360°计算出圆心角α的大 小,由公式t=αT/ 360°可求出粒 子在磁场中运动的时间
注意圆周运动中的有关对称规律
如从同一边界射入的粒子,从 同一边界射出时,速度与边界 的夹角相等,在圆形磁场区域 内,沿径向射入的粒子,必沿 径向射出.
O
M
P
V
半径的确定和计算
• 利用平面几何的关系,求出该圆的可能半 径(或圆心角),并注意以下两个重要的 几何特点: 1.粒子速度的偏向角φ等与圆心角α, 并等于AB弦与切线的夹角θ(弦切角)的 O’ Φ(偏向角) 2倍.即φ=α=2θ=ωt

带电粒子在匀强磁场中的运动

带电粒子在匀强磁场中的运动

(3)运动时间的确定 粒子在磁场中运动一周的时间为 T,当粒子运动的圆 α 弧所对应的圆心角为 α 时, 其运动的时间可表示为: t= 360° α α T 或 t= T.当 α 为角度时用 t= T,当 α 为弧度时,用 2π 360° α t= T. 2π
4.带电粒子在有界磁场中运动的几个问题 (1)常见有界磁场边界的类型如下图所示.
别是周期公式、半径公式.
变式训练 1-1
(2015· 唐山一中模拟 ) 如图所
示,虚线为一匀强磁场的边界,磁场方向垂直于纸面向 里.在磁场中某点沿虚线方向发射两个带正电的粒子A和
B,其速度分别为vA、vB,两者的质量和电荷量均相同,
两个粒子分别经过tA、tB从PA、PB射出,则( A.vA>vB,tA>tB B.vA>vB,tA<tB C.vA<vB,tA>tB D.vA<vB,tA<tB )
mv (1)由公式r= qB 知,在匀强磁场中,做匀速圆周运动 的带电粒子,其轨道半径跟运动速率成正比. 2πm (2)由公式T= qB 知,在匀强磁场中,做匀速圆周运 动的带电粒子,周期跟轨道半径和运动速率均无关,而与 q 比荷m成反比.
3.带电粒子在磁场中做圆周运动时圆心、半径和运
动时间的确定方法
60° ,则粒子的速率为(不计重力)(
qBR A. 2m 3qBR C. 2m
qBR B. m 2qBR D. m
【解析】
根据题意,画出运动的轨
迹,如图所示: 根据几何关系可知,粒子 的偏转角θ=60° ,轨迹圆弧对应的圆心角θ =60° ,入射点、出射点、圆心构成等边三 角形,连接入射点,出射点,根据射入点与 R ab的距离为 ,可得连线过圆心,则粒子圆周运动的轨道 2 v2 半径r=2R;洛伦兹力提供向心力,qvB=m r ,联立解得 qBr 2qBR v= m = m ,故D选项正确,ABC选项错误. 【答案】 D

带电粒子在匀强磁场中的运动

带电粒子在匀强磁场中的运动

〔思考与讨论〕
◎带电教粒材子在资匀料强分磁场析中做匀速圆周运动的圆半径,与粒
子的速度、磁场的磁感应强度有什么关系? 点拨: 由演示实验知,粒子做圆周运动的半径与速度、
磁感应强度有关系,分析可知,因洛伦兹力提供向心力,即 qvB=mrv2,可得:r=mqBv.
可见,粒子圆周运动的半径与速度大小成正比,与磁感 应强度 B 成反比.
质谱仪可以求出该粒子的比荷(电荷量与质量之比)mq =B22Ur2.
(2)回旋加速器 ①工作原理 利用电场对带电粒子的加速作用和磁场对
运a.动磁电场的荷作的用 偏 转 作 用 来 获 得 高 能 粒 子 , 这 些带电过粒程子在以某回一旋速度加垂速直器磁场的方核向心进入部匀件强磁——场两后,个在D 洛伦形兹盒力作和用其下间做匀的速窄圆缝周运内动完,其成周.期与速率、半径均无
(1)M点与坐标原点O间的距离; (2)粒子从P点运动到M点所用的时间.
解析:(1)带电粒子在匀强电场中做类平抛 运 负OP方动=l向,=12上在at1做x2,正初O方Q速=向2度上3为l=做零v匀0t1的,速a匀=直加qmE线速运运动动,,在设y 加 用解得速 的v度时0=大间小为6qmt为E1l,a;进粒入子磁从场P时点速运度动方到向Q与点x所轴 正方向的夹角为θ,则
解析: 粒子在电场中加速时,只有静电力做功,由动
能定理得 qU=12mv2,故EEkk12=qq12UU=qq12=12,同时也能求得 v = 2mqU,因为粒子在磁场中运动的轨迹半径 r=mqBv=qmB
2mqU=B1
2mqU,所以有rr12=
m1 q1 = 1 ,粒子做圆周运 m2 2 q2
动的周期 T=2qπBm,故TT21=mm12//qq12=12.

【方向】带电粒子在磁场中的运动

【方向】带电粒子在磁场中的运动

【关键字】方向洛伦兹力,带电粒子在磁场中的运动一、洛伦兹力:磁场对运动电荷的作用力1.洛伦兹力的公式:F=qvb2.当带电粒子的运动方向与磁场方向互相平行时,F=03.当带电粒子的运动方向与磁场方向互相笔直时,F=qvb4.只有运动电荷在磁场中才有可能受到洛伦兹力作用,静止电荷磁场中受到的磁场对电荷的作用力一定为0.二、洛伦兹力的方向1.运动电荷在磁场中受力方向要用左手定则来判定.2.洛伦兹力F的方向既笔直磁场B的方向,又笔直运动电荷v的方向,即F总是笔直B和v的所在平面.3.使用左手定则判定洛伦兹力方向时,若粒子带正电时,四个手指的指向与正电荷的运动方向相同.若粒子带负电时,四个手指的指向与负电荷的运动方向相反.4.安培力的本质是磁场对运动电荷的作用力的宏观表现.三、洛伦兹力的特征洛伦兹力与电荷运动状态有关:当v=0时,F=0;v≠0,但v∥B时,F=0.洛伦兹力对运动电荷不做功.注意:由于洛伦兹力的方向总与带电粒子在磁场中的运动方向笔直,所以洛伦兹力对运动电荷不做功,不能改变运动电荷的速度大小和电荷的大小,但洛伦兹力可以改变运动电荷的速度方向和运动电荷的运动状态.四、带电粒子在匀强磁场中的运动1.不计重力的带电粒子在匀强磁场中的运动可分为三种情况:一是匀速直线运动;二是匀速圆周运动;三是螺旋运动.2.不计重力的带电粒子在匀强磁场中做匀速圆周运动的几个基本公式:(1)向心力公式_qvB=m(2)轨道半径公式R=;(3)周期、频率公式T==.3.不计重力的带电粒子笔直进入匀强电场和笔直进入匀强磁场时都做曲线运动,但有区别:带电粒子笔直进入匀强电场,在电场中做类平抛运动曲线运;笔直进入匀强磁场,则做匀速圆周运动曲线运动.一、在研究带电粒子在匀强磁场中做匀速圆周运动规律时,着重把握“一找圆心,二找半径,三找周期或时间”的分析方法.1.圆心的确定因为洛伦兹力F洛指向圆心,根据F洛⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点)的F洛的方向,沿两个洛伦兹力F洛画其延长线的交点即为圆心,另外,圆心位置必定在圆中一根弦的中垂线上(见图).2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点.(1)粒子速度的偏向角(φ)等于同心角(α),并等于AB弦与切线的夹角(弦切角θ)的2倍(如图所示),即φ=α=2θ=ωt.(2)相对的弦切角(θ)相等,与相邻的弦切角(θ′)互补,θ+θ′=180°.3.粒子在磁场中运动时间的确定t=T或t=式中θ为偏向角,T为周期,s为轨道的弧长,v为线速度.4.注意圆周运动中的对称规律,如从同一直线边界射入的粒子,再从这一边界射出时,速度与边界的夹角相等,在圆形磁场区域内,沿径向射入的粒子,必沿径向射出.二、带电粒子在有界磁场中运动的极值问题和对称性问题.1.刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨道与边界相切.2.当速度v一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.3.从同一边界射入的粒子,从同一边界射出时,速度与边界的夹角相等,在圆形磁场区域内,沿径向射入的粒子,必沿径向射出.4.如图,几种有界磁场中粒子的运动轨迹,在具体题目中会经常遇到.典例分析题型一:洛伦兹力的应用1.洛伦兹力的大小和方向(1)洛伦兹力的大小F=qvB适用条件:匀强磁场中,q、v、B中任意两者相互笔直.(2)洛伦兹力的方向.运动电荷在磁场中所受洛伦兹力应用左手定则判断.2.带电粒子在磁场中的运动(1)若v∥B,带电粒子做匀速直线运动,此时粒子受的洛伦兹力为0.(2)若v⊥B,带电粒子在笔直于磁场的平面内以v做匀速圆周运动.a.向心力由洛伦兹力提供:qvB=mb.轨道半径公式:R=c.周期公式:T==频率:f==d.动能公式:E k=12mv2=(BqR)22m例1 (11年山东模拟)如图所示,平面直角坐标系的第Ⅰ象限内存在磁感应强度为B的匀强磁场,方向垂直纸面向里.一质量为m,带电量大小为q的带电粒子以速度v从O点沿着与x轴成30°角的方向垂直进入磁场,运动到A点时的速度方向平行于y轴(粒子重力不计),则( )A.粒子带正电B.粒子带负电C.粒子由O到A所经历时间为πm 6qBD.粒子的动能没有变化例2如图所示,圆形区域内有垂直纸面的匀强磁场,三个质量和电荷量都相同的带电粒子a、b、c,以不同的速率对准圆心O沿着AO方向射入磁场,其运动轨迹如图.若带电粒子只受磁场力的作用,则下列说法正确的是( )A.a粒子动能最大B.c粒子速率最大C.c粒子在磁场中运动时间最长D.它们做圆周运动的周期T a<T b<T c题型二:带电粒子在磁场中运动的分析方法确定带电粒子在磁场中做匀速圆周运动的圆心、半径、运动时间的方法:(1)圆周轨迹上任意两点的洛伦兹力的方向线的交点就是圆心;(2)圆心确定下来后,经常根据平面几何知识去求解半径;(3)先求出运动轨迹所对应的圆心角θ,然后根据t=θT360°(T为运动周期),就可求得运动时间.例3 (10年重庆高考)如图所示,矩形MNPQ区域内有方向垂直于纸面的匀强磁场,有5个带电粒子从图中箭头所示位置垂直于磁场边界进入磁场,在纸面内做匀速圆周运动,运动轨迹为相应的圆弧,这些粒子的质量、电荷量以及速度大小如下表所示由以上信息可知,从图中a、b、c处进入的粒子对应表中的编号分别为( )A.3、5、4 B.4、2、5C.5、3、2 D.2、4、5例4 (11年广东模拟)在真空中,半径为R 的圆形区域内存在垂直纸面向外的匀强磁场,磁感应强度大小为B ,在此区域外围足够大空间有垂直纸面向里的大小也为B 的匀强磁场,一个带正电的粒子从边界上的P 点沿半径向外,以速度v 0进入外围磁场,已知带电粒子质量m =2×10-10kg ,带电量q =5×10-6C ,不计重力,磁感应强度B =1T ,粒子运动速度v 0=5×103m/s ,圆形区域半径R =0.2m ,试画出粒子运动轨迹并求出粒子第一次回到P 点所需时间(计算结果可以用π表示).题型三:带电粒子在磁场中的圆周运动分析带电粒子在磁场中做圆周运动的问题,重点是“确定圆心、确定半径,确定周期或时间”,尤其是圆周运动半径的确定,从物理规律上应满足R =mv Bq,从运动轨迹上应根据几何关系求解.例5 (10年全国高考)如图所示,在0≤x ≤a 、0≤y ≤a 2范围内有垂直于xy 平面向外的匀强磁场,磁感应强度大小为B.坐标原点O 处有一个粒子源,在某时刻发射大量质量为m 、电荷量为q 的带正电粒子,它们的速度大小相同,速度方向均在xy平面内,与y轴正方向的夹角分布在0~90°范围内.已知粒子在磁场中做圆周运动的半径介于a/2到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一.求最后离开磁场的粒子从粒子源射出时的(1)速度的大小;(2)速度方向与y轴正方向夹角的正弦.例6如图所示,在x轴上方有磁感强度大小为B、方向垂直纸面向里的匀强磁场.x轴下方有磁感强度大小为B2、方向垂直纸面向外的匀强磁场,一质量为m、电量为-q的带电粒子(不计重力),从x轴上O点以速度v0垂直x轴向上射出,求:(1)经多长时间粒子第三次到达x轴;(初位置点O为第一次)(2)粒子第三次到达x轴时离O点的距离.简单题1.如图中,电荷的速度方向、磁场方向和电荷的受力方向之间关系正确的是()A.B. C. D.2.如图所示,一电荷量为q的负电荷以速度v射入匀强磁场中,其中电荷不受洛伦兹力的是()A.B.C.D.3.如图所示,电子e向上射入匀强磁场中,此时该电子所受洛伦兹力的方向是()A.向左B.向右C.垂直于纸面向里 D.垂直于纸面向外4.下列各图中,运动电荷的速度方向、磁场方向和电荷的受力方向之间的关系正确的是()A. B. C. D.5.在如图所示的四幅图中,正确标明了带电粒子所受洛伦兹力f方向的是()A.B.C.D.6.如图所示,匀强磁场B的方向竖直向上,一电子沿纸面以水平向右的速度v 射入磁场时,它受到的洛仑兹力的方向是()A.竖直向上B.竖直向下C.垂直纸面向里D.垂直纸面向外7.关于电荷所受电场力和洛伦兹力,正确的说法是()A.电荷在磁场中一定受洛伦兹力作用B.电荷在电场中不一定受电场力作用C.正电荷所受电场力方向一定与该处电场方向一致D.电荷所受的洛伦兹力不一定与磁场方向垂直8.关于电荷所受电场力和洛伦兹力,正确的说法是()A.电荷运动方向与电场方向平行时,不受电场力作用B.电荷所受电场力方向一定与该处电场方向相同C.电荷在磁场中一定受洛伦兹力作用D.电荷所受的洛伦兹力方向一定与磁场方向垂直中档题1.一正电荷垂直射入匀强磁场中,其速度v的方向和受到的洛伦兹力F 的方向如图所示.下列关于磁场方向的说法中正确的是()A.与F 方向相反B.垂直纸面向里C.垂直纸面向外D.与F方向相同2.带电粒子以一定速度在磁场中运动时(不计重力),带电粒子()A.一定受洛伦兹力B.一定不受洛伦兹力C.可能受洛伦兹力D.若受洛伦兹力,其方向就是粒子的运动方向3.如图所示,乙是一个带正电的小物块,甲是一个不带电的绝缘物块,甲、乙叠放在一起静置于粗糙的水平地板上,地板上方空间有水平方向的匀强磁场.现用水平恒力拉甲物块,使甲、乙无相对滑动地一起水平向左加速运动,在加速运动阶段()A.甲、乙两物块一起匀加速运动B.甲、乙两物块间的摩擦力不断增大C.甲、乙两物块间的摩擦力大小不变D.甲、乙两物块间的摩擦力不断减小4.关于电荷所受电场力和洛伦兹力,正确的说法是()A.电荷在磁场中一定受洛伦兹力作用B.电荷在电场中一定受电场力作用C.电荷所受电场力一定与该处电场方向一致D.电荷所受的洛伦兹力不一定与磁场方向垂直5.如图所示,直导线中通有方向向右的电流,在该导线正下方有一个电子正以速度v向右运动.重力忽略不计,则电子的运动情况将是()A.电子向上偏转,速率不变B.电子向下偏转,速率改变C.电子向下偏转,速率不变D.电子向上偏转,速率改变6.对以下物理量方向的判断正确是()A.运动的正电荷在电场中受到的电场力一定与运动方向一致B.运动的正电荷在磁场中受到的洛伦兹力一定与运动方向一致C.通电导体在磁场中的安培力方向可能与电流方向一致D.感应电流的方向与感应电动势方向一致7.空间中存在着竖直向下的匀强磁场,如图所示,一带正电粒子(不计重力)垂直于磁场方向以初速度v射入磁场后,运动轨迹将()A.向上偏转B.向下偏转C.向纸面内偏转D.向纸面外偏转8.如图所示的四个图中,标出了匀强磁场的磁感应强度B的方向、带正电的粒子在磁场中速度v的方向和其所受洛伦兹力f的方向,其中正确表示这三个方向关系的图是()A.B.C.D.9.如图所示,关于对带电粒子在匀强磁场中运动的方向描述正确的是()A.B.C.D.二.多选题(共1小题)10.某空间存在着如图(甲)所示的足够大的,沿水平方向的匀强磁场.在磁场中A,B两个物块叠放在一起,置于光滑绝缘水平地面上,物块A带正电,物块B不带电且表面绝缘.在t1=0时刻,水平恒力F作用在物块B上,使A,B 由静止开始做加速度相同的运动.在A、B一起向左运动的过程中,以下说法中正确的是()A.图(乙)可以反映A所受洛伦兹力大小随时间t变化的关系,图中y表示洛伦兹力大小B.图(乙)可以反映A对B的摩擦力大小随时间t变化的关系,图中y表示摩擦力大小C.图(乙)可以反映A对B的压力大小随时间t变化的关系,图中y表示压力大小D.图(乙)可以反映B对地面的压力大小随时间t变化的关系,图中y表示压力大小难题1.带电粒子垂直匀强磁场方向运动时,会受到洛伦兹力的作用.下列表述正确的是( )A.洛伦兹力对带电粒子做功B.洛伦兹力不改变带电粒子的动能C.洛伦兹力的大小与速度无关D.洛伦兹力不改变带电粒子的速度方向2.每时每刻都有大量带电的宇宙射线向地球射来,地球磁场可以有效地改变这些宇宙射线中大多数带电粒子的运动方向,使它们不能到达地面,这对地球上的生命有十分重要的意义,假设有一个带正电的宇宙射线粒子正垂直于地面向赤道射来(如图,地球由西向东转,虚线表示地球自转轴,上方为地理北极),在地球磁场的作用下,它将( )A.向东偏转B.向南偏转C.向西偏转D.向北偏转3,(10年北京调研)如图所示,一带电粒子垂直射入一垂直纸面向里自左向右逐渐增强的磁场中,由于周围气体的阻尼作用,其运动轨迹为一段圆弧线,则从图中可以判断(不计重力)( )A.粒子从A点射入,速率逐渐减小B.粒子从A点射入,速率逐渐增大C.粒子带负电,从B点射入磁场D.粒子带正电,从A点射入磁场4.(10年江苏模拟)如图所示,空间有一垂直纸面的磁感应强度为0.5 T的匀强磁场,一质量为0.2 kg且足够长的绝缘木板静止在光滑水平面上,在木板左端无初速放置一质量为0.1 kg、电荷量q=+0.2 C的滑块,滑块与绝缘木板之间动摩擦因数为0.5,滑块受到的最大静摩擦力可认为等于滑动摩擦力.现对木板施加方向水平向左,大小为0.6 N的恒力,g取10 m/s2.则( )A.木板和滑块一直做加速度为2 m/s2的匀加速运动B.最终木板做加速度为3 m/s2的匀加速运动C.滑块最终做速度为10 m/s的匀速运动D.滑块一直受到滑动摩擦力的作用5.如图所示,带正电的物块A放在不带电的小车B上,开始时都静止,处于垂直纸面向里的匀强磁场中.t=0时加一个水平恒力F向右拉小车B,t=t1时A相对于B开始滑动.已知地面是光滑的.AB间粗糙,A带电量保持不变,小车足够长.从t=0开始A、B的速度﹣时间图象,下面哪个可能正确()A.B.C.D.6.如图所示,下端封闭、上端开口、内壁光滑的细玻璃管竖直放置,管底有一带电的小球,整个装置以水平向右的速度v匀速运动,沿垂直于磁场的方向进入方向水平的匀强磁场,由于水平拉力F的作用,玻璃管在磁场中的速度保持不变,最终小球从上端开口飞出,小球的电荷量始终保持不变,则从玻璃管进入磁场到小球运动到上端开口的过程中,关于小球运动的加速度a、沿竖直方向的速度vy、拉力F以及管壁对小球的弹力做功的功率P随时间t变化的图象分别如下图所示,其中正确的是()A.B.C.D.7.如图所示为某磁谱仪部分构件的示意图,图中,永磁铁提供匀强磁场,硅微条径迹探测器可以探测粒子在其中运动的轨迹,宇宙射线中有大量的电子、正电子和质子.当这些粒子从上部垂直进入磁场时,下列说法正确的是()A.电子与正电子的偏转方向一定不同B.电子与正电子在磁场中运动轨迹的半径一定相同C.仅依据粒子运动轨迹无法判断该粒子是质子还是正电子D.粒子的动能越大,它在磁场中的运动轨迹的半径越小8.(11年广东模拟)如图所示,在磁感应强度为B的水平匀强磁场中,有一足够长的绝缘细棒OO′在竖直面内垂直于磁场方向放置,细棒与水平面夹角为α.一质量为m、带电荷量为+q的圆环A套在OO′棒上,圆环与棒间的动摩擦因数为μ,且μ<tanα.现让圆环A由静止开始下滑,试问圆环在下滑过程中:(1)圆环A的最大加速度为多大?获得最大加速度时的速度为多大?(2)圆环A能够达到的最大速度为多大?9 如图所示,矩形区域I和II内分别存在方向垂直于纸面向外和向里的匀强磁场(AA′、BB′、CC′、DD′为磁场边界,四者相互平行),磁感应强度大小均为B,矩形区域的长度足够长,两磁场宽度及BB′与CC′之间的距离均相同.某种带正电的粒子从AA′上O1处以大小不同的速度沿与O1A成α=30°角进入磁场(如图所示,不计粒子所受重力),当粒子的速度小于某一值时,粒子在区域I内的运动时间均为t0.当速度为v0时,粒子在区域I内的运动时间为.求:(1)粒子的比荷;(2)磁场区域I和II的宽度d;(3)速度为v0的粒子从Ol到DD′所用的时间.此文档是由网络收集并进行重新排版整理.word可编辑版本!。

带电粒子在匀强磁场中的圆周运动

带电粒子在匀强磁场中的圆周运动

带电粒子在匀强磁场中的运动一、带电粒子在匀强磁场中的匀速圆周运动1.洛伦兹力的作用效果洛伦兹力只改变带电粒子速度的方向,不改变带电粒子速度的大小,或者说洛伦兹力不对带电粒子做功,不改变粒子的能量。

2.带电粒子的运动规律沿着与磁场垂直的方向射入磁场的带电粒子,在匀强磁场中做匀速圆周运动。

洛伦兹力总与速度方向垂直,正好起到了向心力的作用。

公式:q v B =m v 2rr =m vqBT =2πm qB3.圆心、半径、运动时间的分析思路(1)圆心的确定:带电粒子垂直进入磁场后,一定做圆周运动,其速度方向一定沿圆周的切线方向,因此圆心的位置必是两速度方向垂线的交点,如图(a)所示,或某一速度方向的垂线与圆周上两点连线中垂线的交点,如图(b)所示.(2)运动半径大小的确定:一般先作入射点、出射点对应的半径,并作出相应的辅助三角形,然后利用三角函数求解出半径的大小.(3)运动时间的确定:首先利用周期公式T =2πm qB ,求出运动周期T ,然后求出粒子运动的圆弧所对应的圆心角α,其运动时间t =α2πT .(4)圆心角的确定:①带电粒子射出磁场的速度方向与射入磁场的速度方向间的夹角φ叫偏向角.偏向角等于圆心角即φ=α,如图所示.②某段圆弧所对应的圆心角是这段圆弧弦切角的二倍,即α=2θ.[特别提醒]带电粒子(不计重力)以一定的速度v 进入磁感应强度为B 的匀强磁场时的运动轨迹:(1)当v ∥B 时,带电粒子将做匀速直线运动.(2)当v ⊥B 时,带电粒子将做匀速圆周运动.(3)当带电粒子斜射入磁场时,带电粒子将沿螺旋线运动.4、带电粒子在三类有界磁场中的运动轨迹特点(1)直线边界:进出磁场具有对称性。

(2)平行边界:存在临界条件。

(3)圆形边界:沿径向射入必沿径向射出。

【例题1】如图所示,一束电荷量为e 的电子以垂直于磁场方向(磁感应强度为B )并垂直于磁场边界的速度v 射入宽度为d 的磁场中,穿出磁场时速度方向和原来射入方向的夹角为θ=60°.求电子的质量和穿越磁场的时间.答案:23dBe 3v 23πd 9v解析:过M 、N 作入射方向和出射方向的垂线,两垂线交于O 点,O 点即电子在磁场中做匀速圆周运动的圆心,过N 作OM 的垂线,垂足为P ,如图所示.由直角三角形OPN 知,电子的轨迹半径r =d sin 60°=233d ①由圆周运动知e v B =m v 2r②解①②得m =23dBe 3v.电子在无界磁场中运动周期为T =2πeB ·23dBe 3v =43πd 3v.电子在磁场中的轨迹对应的圆心角为θ=60°,故电子在磁场中的运动时间为t =16T =16×43πd 3v =23πd 9v.带电粒子在磁场中的圆周运动问题处理方法(1)定圆心:圆心一定在与速度方向垂直的直线上,也在弦的中垂线上,也是圆的两个半径的交点.(2)求半径的两种方法:一是利用几何关系求半径,二是利用r =m v Bq 求半径.(3)求时间:可以利用T =2πr v 和t =Δl v 求时间,也可以利用t =θ2πT 求时间.【例题2】如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v从A 点沿直径AOB 方向射入磁场,经过t 时间从C 点射出磁场,OC 与OB 成60°角。

带电粒子在匀强磁场中的运动(知识小结)

带电粒子在匀强磁场中的运动(知识小结)

带电粒子在匀强磁场中的运动(知识小结)一.带电粒子在磁场中的运动(1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即 ① 为静止状态。

② 则粒子做匀速直线运动。

(2)若速度方向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。

(3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。

二、带电粒子在匀强磁场中的圆周运动1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动.(4)运动时间: (Θ 用弧度作单位 )1.只有垂直于磁感应强度方向进入匀强磁场的带电粒子,才能在磁场中做匀速圆周运动.2.带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速率的大小有关,而周期与速率、半径都无关.三、带电粒子在有界匀强磁场中的匀速圆周运动(往往有临界和极值问题)(一)边界举例:1、直线边界(进出磁场有对称性)规律:如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等。

速度与边界的夹角等于圆弧所对圆心角的一半,并且如果把两个速度移到共点时,关于直线轴对称。

2、平行边界(往往有临界和极值问题)(在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界)3、矩形边界磁场区域为正方形,从a 点沿ab 方向垂直射入匀强磁场:若从c 点射出,则圆心在d 处若从d 点射出,则圆心在ad 连线中点处4.圆形边界(从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。

)特殊情形:在圆形磁场内,沿径向射入时,必沿径向射出一般情形:磁场圆心O 和运动轨迹圆心O ′都在入射点和出射点连线AB 的中垂线上。

或者说两圆心连线OO ′与两个交点的连线AB 垂直。

(二)求解步骤:(1)定圆心、(2)连半径、(3)画轨迹、(4)作三角形.(5)据半径公式求半径,2.其特征方程为:F 洛=F 向. 3.三个基本公式: (1)向心力公式:qvB =m v 2R ; (2)半径公式:R =mv qB ; (3)周期和频率公式:T =2πm qB =1f ; 222m t qB m qB T θππθπθ==⨯=⨯v L =t再解三角形求其它量;或据三角形求半径,再据半径公式求其它量(6)求时间1、确定圆心的常用方法:(1)已知入射方向和出射方向(两点两方向)时,可以作通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图3-6-6甲所示,P 为入射点,M 为出射点,O 为轨道圆心.(2)已知入射方向和出射点的位置时(两点一方向),可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心,如图3-6-6乙所示,P 为入射点,M 为出射点,O 为轨道圆心.(3)两条弦的中垂线(三点):如图3-6-7所示,带电粒子在匀强磁场中分别经过O 、A 、B 三点时,其圆心O ′在OA 、OB 的中垂线的交点上.(4)已知入射点、入射方向和圆周的一条切线:如图3-6-8所示,过入射点A 做v 垂线AO , 延长v 线与切线CD 交于C 点,做∠ACD 的角平分线交AO 于O 点,O 点即为圆心,求解临界问题常用到此法.(5)已知入射点,入射速度方向和半径大小2.求半径的常用方法 :由于已知条件的不同,求半径有两种方法:一是:利用向心力公式求半径;二是:利用平面几何知识求半径。

高中物理选修三3.6带电粒子在匀强磁场中的运动

高中物理选修三3.6带电粒子在匀强磁场中的运动

知识点一 带电粒子在匀强磁场中的运动:
1.运动轨迹: 带电粒子(不计重力)以一定的速度 v 进入磁感应强度为 B 的匀 强磁场时:
(1)当 v∥B 时,带电粒子将做_匀__速__直__线_运动. (2)当 v⊥B 时,带电粒子将做_匀__速__圆__周_运动.
2.圆周运动轨道半径和周期:
(1)由
提示:(1)带电粒子以某一速度垂直磁场方向进入匀强磁场后, 在洛伦兹力作用下做匀速圆周运动,其运动周期与速率、半径均无
关(T=2qπBm),带电粒子每次进入 D 形盒都运动相等的时间(半个周 期)后平行电场方向进入电场中加速.
(2)回旋加速器两个 D 形盒之间的窄缝区域存在周期性变化的 并垂直于两个 D 形盒正对截面的匀强电场,带电粒子经过该区域时 被加速.
(2)圆弧 PM 所对应圆心角 α 等于弦 PM 与切线的夹角(弦切角)θ 的 2 倍,即 α=2θ,如图所示.
拓展 (1)关于半径的计算,还有直接观察法(不借助数学方法而直接 观察得到半径)、三角函数法、勾股定理法、正弦定理法、余弦定 理法等,但经常用到的是利用三角函数和勾股定理求解.实际应用 中要根据题目中提供的有关条件,构建三角形后灵活选择合适的方 法求出半径,进而求得相关物理量. (2)直线边界:进出磁场具有对称性,如图所示.
(3)为了保证带电粒子每次经过盒缝时均被加速,使其能量不断
提高,交变电压的周期必须等于带电粒子在回旋加速器中做匀速圆
周运动的周期,即 T=2Bπqm.因此,交变电压的周期由带电粒子的质 量 m、带电量 q 和加速器中磁场的磁感应强度 B 决定.
(4)带电粒子在磁场中做圆周运动,洛伦兹力充当向心力,qvB =mvR2,Ek=12mv2,因此,带电粒子经过回旋加速器加速后,获得 的动能 Ek=q22Bm2R2.

带电粒子在匀强磁场中的运动(含各种情况)

带电粒子在匀强磁场中的运动(含各种情况)

回旋加速器
回旋加速器是一种利用磁场和电场控制带电粒子运动轨迹的装置,常用于高能物理 实验和核物理研究。
在回旋加速器中,带电粒子在磁场中做匀速圆周运动,通过改变电场强度使粒子不 断加速,最终获得高能粒子束。
回旋加速器在高能物理实验中用于研究基本粒子的性质和相互作用,对于深入理解 物质的基本结构和性质具有重要意义。
带电粒子在磁场中的偏转角度和偏转量
总结词
带电粒子在匀强磁场中的偏转角度和偏 转量取决于粒子的速度、质量和磁感应 强度。
VS
详细描述
带电粒子在匀强磁场中的偏转角度和偏转 量可以通过洛伦兹力公式和牛顿第二定律 计算得出。具体计算需要考虑粒子的速度 、质量和磁感应强度等因素。
04 带电粒子在匀强磁场中的 能量问题
1 2 3
匀速圆周运动
当带电粒子以一定的速度进入匀强磁场时,会受 到洛伦兹力的作用,使粒子做匀速圆周运动。
螺旋线运动
当带电粒子的速度方向与磁感应强度平行时,不 受洛伦兹力作用,粒子将沿磁感应强度方向做等 距螺旋线运动。
匀速直线运动
当带电粒子的速度方向与磁感应强度平行且大小 相等时,不受洛伦兹力作用,粒子将沿磁感应强 度方向做匀速直线运动。
详细描述
带电粒子在匀强磁场中做匀速圆周运动的周期T和频率f由公式T=2πm/qB和f=qB/2πm决定,其中m为粒 子的质量,q为粒子的电荷量,B为磁感应强度。这两个公式描述了粒子运动的周期和频率与各个物理量 之间的关系。
03 带电粒子在匀强磁场中的 偏转问题
垂直射入情况
总结词
当带电粒子以垂直方向射入匀强磁场 时,将做匀速圆周运动。
THANKS FOR WATCHING
感谢您的观看
线运动,从而实现带电粒子的加速。

含答案洛伦兹力的特点以及带电粒子在匀强磁场中的运动

含答案洛伦兹力的特点以及带电粒子在匀强磁场中的运动

洛伦兹力的特点以及带电粒子在匀强磁场中的运动一、根底知识〔一〕洛伦兹力1、洛伦兹力:磁场对运动电荷的作用力叫洛伦兹力.2、洛伦兹力的方向 (1)判定方法 左手定那么:掌心——磁感线垂直穿入掌心;四指——指向正电荷运动的方向或负电荷运动的反方向;拇指——指向洛伦兹力的方向.(2)方向特点:F ⊥B ,F ⊥v ,即F 垂直于B 和v 决定的平面(注意:洛伦兹力不做功).3、洛伦兹力的大小(1)v ∥B 时,洛伦兹力F =0.(θ=0°或180°)(2)v ⊥B 时,洛伦兹力F =q v B .(θ=90°)(3)v =0时,洛伦兹力F =0.〔二〕带电粒子在匀强磁场中的运动1、假设v ∥B ,带电粒子不受洛伦兹力,在匀强磁场中做匀速直线运动.2、假设v ⊥B ,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v 做匀速圆周运动.3、圆心确实定(1)入射点、出射点、入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图甲所示,图中P 为入射点,M 为出射点).(2)入射方向、入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心(如图乙所示,P 为入射点,M 为出射点).4、半径确实定可利用物理学公式或几何知识(勾股定理、三角函数等)求出半径大小.5、运动时间确实定粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为θ时,其运动时间表示为:t =θ2πT (或t =θR v ).说明:洛伦兹力和电场力的比拟1、洛伦兹力方向的特点(1)洛伦兹力的方向与电荷运动的方向和磁场方向都垂直,即洛伦兹力的方向总是垂直于运动电荷的速度方向和磁场方向共同确定的平面.(2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化.2深化拓展①洛伦兹力对电荷不做功;安培力对通电导线可做正功,可做负功,也可不做功.②只有运动电荷才会受到洛伦兹力,静止电荷在磁场中所受洛伦兹力一定为零.二、练习1、带电粒子垂直匀强磁场方向运动时,会受到洛伦兹力的作用.以下表述正确的选项是()A.洛伦兹力对带电粒子做功B.洛伦兹力不改变带电粒子的动能C.洛伦兹力的大小与速度无关D.洛伦兹力不改变带电粒子的速度方向答案 B解析洛伦兹力的方向与运动方向垂直,所以洛伦兹力永远不做功,即不改变粒子的动能,A错误,B正确;洛伦兹力F=Bq v,C错误;洛伦兹力不改变速度的大小,但改变速度的方向,D错误.2、带电荷量为+q的粒子在匀强磁场中运动,以下说法中正确的选项是()A.只要速度大小一样,所受洛伦兹力就一样B.如果把+q改为-q,且速度反向,大小不变,那么洛伦兹力的大小、方向均不变C.洛伦兹力方向一定与电荷速度方向垂直,磁场方向一定与电荷运动方向垂直D.粒子在只受到洛伦兹力作用下运动的动能、速度均不变答案 B解析因为洛伦兹力的大小不但与粒子速度大小有关,而且与粒子速度的方向有关,如当粒子速度与磁场垂直时F=q v B,当粒子速度与磁场平行时F=0.又由于洛伦兹力的方向永远与粒子的速度方向垂直,因而速度方向不同时,洛伦兹力的方向也不同,所以A 选项错.因为+q改为-q且速度反向,由左手定那么可知洛伦兹力方向不变,再由F =q v B知大小也不变,所以B选项正确.因为电荷进入磁场时的速度方向可以与磁场方向成任意夹角,所以C选项错.因为洛伦兹力总与速度方向垂直,因此,洛伦兹力不做功,粒子动能不变,但洛伦兹力可改变粒子的运动方向,使粒子速度的方向不断改变,所以D选项错.3、如下图,匀强磁场的磁感应强度均为B,带电粒子的速率均为v,带电荷量均为q.试求出图中带电粒子所受洛伦兹力的大小,并指出洛伦兹力的方向.答案甲:因v⊥B,所以F=q v B,方向与v垂直斜向上乙:v与B的夹角为30°,F=q v B sin 30°=12q v B,方向垂直纸面向里丙:由于v与B平行,所以电荷不受洛伦兹力,F=0 丁:v与B垂直,F=q v B,方向与v垂直斜向上4、试画出以下图中几种情况下带电粒子的运动轨迹.答案5、带电质点在匀强磁场中运动,某时刻速度方向如下图,所受的重力和洛伦兹力的合力恰好与速度方向相反,不计阻力,那么在此后的一小段时间内,带电质点将 ( )A .可能做直线运动B .可能做匀减速运动C .一定做曲线运动D .可能做匀速圆周运动答案 C解析 带电质点在运动过程中,重力做功,速度大小和方向发生变化,洛伦兹力的大小和方向也随之发生变化,故带电质点不可能做直线运动,也不可能做匀减速运动和匀速圆周运动,C 正确.6、如下图,ABC 为竖直平面内的光滑绝缘轨道,其中AB 为倾斜直轨道,BC 为与AB 相切的圆形轨道,并且圆形轨道处在匀强磁场中,磁场方向垂直纸面向里.质量一样的甲、乙、丙三个小球中,甲球带正电、乙球带负电、丙球不带电.现将三个小球在轨道AB 上分别从不同高度处由静止释放,都恰好通过圆形轨道的最高点,那么( )A .经过最高点时,三个小球的速度相等B .经过最高点时,甲球的速度最小C .甲球的释放位置比乙球的高D .运动过程中三个小球的机械能均保持不变答案 CD解析 设磁感应强度为B ,圆形轨道半径为r ,三个小球质量均为m ,它们恰好通过最高点时的速度分别为v 甲、v 乙和v 丙,那么mg +B v q 甲=m v 2甲r ,mg -B v q 乙=m v 2乙r,mg =m v 2丙r,显然,v 甲>v 丙>v 乙,选项A 、B 错误;三个小球在运动过程中,只有重力做功,即它们的机械能守恒,选项D 正确;甲球在最高点处的动能最大,因为势能相等,所以甲球的机械能最大,甲球的释放位置最高,选项C 正确.7、如下图,一个质量为m 、电荷量为+q 的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处在磁感应强度为B 的匀强磁场中(不计空气阻力).现给圆环向右的初速度v 0,在以后的运动过程中,圆环运动的速度图象可能是图中的 ( )答案 ACD解析 由左手定那么判定圆环受到的洛伦兹力向上,假设q v B =mg ,那么弹力为零,摩擦力为零,圆环做匀速直线运动,选项A 正确;假设q v B >mg ,那么杆对圆环有弹力,摩擦力不为零,圆环做减速运动,当速度减小到使洛伦兹力与重力平衡时,将做匀速直线运动,选项D 正确;假设q v B <mg ,那么杆对圆环有弹力,摩擦力不为零,圆环做减速运动,最终速度变为零,选项C 正确.无论哪种情况,圆环都不可能做匀减速运动,选项B 错误.8、在如下图宽度范围内,用场强为E 的匀强电场可使初速度是v 0的某种正粒子偏转θ角.在同样宽度范围内,假设改用方向垂直于纸面向外的匀强磁场(图中未画出),使该粒子穿过该区域,并使偏转角也为θ(不计粒子的重力),问:(1)匀强磁场的磁感应强度是多大?(2)粒子穿过电场和磁场的时间之比是多大?解析 (1)设宽度为L .当只有电场存在时,带电粒子做类平抛运动水平方向上:L =v 0t ,竖直方向上:v y =at =EqL m v 0tan θ=v y v 0=EqL m v 20当只有磁场存在时,带电粒子做匀速圆周运动,半径为R ,如下图,由几何关系可知sin θ=L R ,R =m v 0qB联立解得B =E cos θv 0. (2)粒子在电场中运动时间t 1=L v 0=R sin θv 0在磁场中运动时间t 2=θ2π·T =θ2π·2πm qB =θm qB所以t 1t 2=RqB m v 0·sin θθ=sin θθ. 答案 (1)E cos θv 0 (2)sin θθ技巧点拨电荷在匀强电场和匀强磁场中的运动规律不同.运动电荷穿出有界电场的时间与其入射速度的方向和大小有关,而穿出有界磁场的时间那么与电荷在磁场中的运动周期有关.在解题过程中灵活运用运动的合成与分解和几何关系是解题关键.9、在如下图的空间中,存在电场强度为E的匀强电场,同时存在沿x轴负方向、磁感应强度为B的匀强磁场(图中均未画出).一质子(电荷量为e)在该空间恰沿y轴正方向以速度v匀速运动.据此可以判断出()A.质子所受电场力大小等于eE,运动中电势能减小;沿z轴正方向电势升高B.质子所受电场力大小等于eE,运动中电势能增大;沿z轴正方向电势降低C.质子所受电场力大小等于e v B,运动中电势能不变;沿z轴正方向电势升高D.质子所受电场力大小等于e v B,运动中电势能不变;沿z轴正方向电势降低答案 C解析解答此题时利用左手定那么判断洛伦兹力的方向,根据平衡条件判断电场力方向及电场方向,注意运用电场力做功与电势能变化的关系,及沿电场线方向电势降低.匀强磁场的磁感应强度B的方向沿x轴负方向,质子沿y轴正方向运动,由左手定那么可确定洛伦兹力沿z轴正方向;由于质子受电场力和洛伦兹力作用沿y轴正方向做匀速直线运动,故电场力eE等于洛伦兹力e v B,方向沿z轴负方向,即电场方向沿z轴负方向,质子在运动过程中电场力不做功,电势能不变,沿z轴正方向即电场反方向电势升高,故C正确,A、B、D错误.10、如下图,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为+q,质量为m(不计重力),从点P经电场加速后,从小孔Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为θ=45°,孔Q到板的下端C的距离为L,当M、N两板间电压取最大值时,粒子恰垂直打在CD板上,求:(1)两板间电压的最大值U m;(2)CD板上可能被粒子打中的区域的长度s;(3)粒子在磁场中运动的最长时间t m.解析(1)M、N两板间电压取最大值时,粒子恰垂直打在CD板上,所以圆心在C点,如下图,CH=QC=L故半径r1=L又因为q v1B=m v21r1且qU m =12m v 21所以U m =qB 2L 22m. (2)设粒子在磁场中运动的轨迹与CD 板相切于K 点,此轨迹的半径为r 2,设圆心为A ,在△AKC 中:sin 45°=r 2L -r 2解得r 2=(2-1)L即KC =r 2=(2-1)L所以CD 板上可能被粒子打中的区域的长度s =HK ,即s =r 1-r 2=(2-2)L .(3)打在QE 间的粒子在磁场中运动的时间最长,均为半个周期,所以t m =T 2=πm Bq. 答案 (1)qB 2L 22m (2)(2-2)L (3)πm Bq规律总结1.带电体在磁场中的临界问题的处理方法带电体进入有界磁场区域,一般存在临界问题,处理的方法是寻找临界状态,画出临界轨迹:(1)带电体在磁场中,离开一个面的临界状态是对这个面的压力为零.(2)射出或不射出磁场的临界状态是带电体运动的轨迹与磁场边界相切.2.带电粒子在匀强磁场中做匀速圆周运动的程序解题法——三步法(1)画轨迹:即画出运动轨迹,并确定圆心,用几何方法求半径.(2)找联系:轨道半径与磁感应强度、运动速度相联系,偏转角度与圆心角、运动时间相联系,在磁场中运动的时间与周期相联系.(3)用规律:即牛顿第二定律和圆周运动的规律,特别是周期公式、半径公式.。

专题57 带电粒子在磁场中的运动(解析版)

专题57 带电粒子在磁场中的运动(解析版)

2023届高三物理一轮复习多维度导学与分层专练专题57 带电粒子在磁场中的运动导练目标 导练内容目标1 洛伦兹力的大小方向 目标2 带电粒子在有界磁场中的运动 目标3带电粒子在磁场中运动的多解问题一、洛伦兹力的大小方向 1.洛伦兹力的大小和周期(1)大小:qvB F =(v B ⊥);(2)向心力公式:rmv qvB 2=;(3)周期:22r m T v qB ππ== 2.洛伦兹力的特点(1)利用左手定则判断洛伦兹力的方向,注意区分正、负电荷。

(2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化。

(3)运动电荷在磁场中不一定受洛伦兹力作用。

(4)洛伦兹力永不做功。

3.洛伦兹力的方向 (1)判断方法:左手定则(2)方向特点:洛伦兹力的方向一定与粒子速度方向和磁感应强度方向所决定的平面垂直(B 与v 可以有任意夹角)。

注意:由左手定则判断洛伦兹力方向时,四指指向正电荷运动的方向或负电荷运动的反方向。

【例1】如图所示,光滑的水平桌面处于匀强磁场中,磁场方向竖直向下,磁感应强度大小为B ;在桌面上放有内壁光滑、长为L 的试管,底部有质量为m 、带电量为q 的小球,试管在水平向右的拉力作用下以速度v 向右做匀速直线运动(拉力与试管壁始终垂直),带电小球能从试管口处飞出,关于带电小球及其在离开试管前的运动,下列说法中正确的是( )A .小球带负电,且轨迹为抛物线B .小球运动到试管中点时,水平拉力的大小应增大至qvBLqBmC .洛伦兹力对小球做正功D .对小球在管中运动全过程,拉力对试管做正功,大小为qvBL 【答案】BD【详解】A .小球能从试管口处飞出,说明小球受到指向试管口的洛伦兹力,根据左手定则判断,小球带正电;小球沿试管方向受到洛伦兹力的分力y F qvB =恒定,小球运动的轨迹是一条抛物线,故A 错误;B .由于小球相对试管做匀加速直线运动,会受到与试管垂直且向左的洛,则拉力应增大伦兹力的分力x y F qv B =小球运动到中点时沿管速度为22y qvB L v m =⨯qvBL F m=持匀速运动,故B 正确;C .沿管与垂直于管洛伦兹力的分力合成得到的实际洛伦兹力总是与速度方向垂直,不做功,故C 错误;D .对试管、小球组成的系统,拉力做功的效果就是增加小球的动能,由功能关系F k W E qvBL =∆=故D 正确;故选BD 。

带电粒子在匀强磁场中的运动(含各种情况)

带电粒子在匀强磁场中的运动(含各种情况)

例3、一带电粒子在磁感强度为B的匀强磁场中做匀速 圆周运动,如它又顺利进入另一磁感强度为2B的匀强磁场
中仍做匀速圆周运动,则 A、粒子的速率加倍,周期减半 B、粒子的速率不变,轨道半径减半 C、粒子的速率减半,轨道半径变为原来的 1/4 D、粒子速率不变,周期减半
洛伦兹力演示仪
励磁线圈
玻璃泡 电子枪
r
qB
T 2r
v
T 2m
qB
说明:
1、轨道半径和粒子的运动速率成正比。
2、带电粒子在磁场中做匀速圆周运动的周期和 运动速率无关。
运动规律:洛伦兹力提供向心力---匀速圆周运动
1)圆半径r
mv
qvB

m
v2 r
r qB
半径r跟速率v成正比.
× V ×+ × × ×qvB ×
2)周期T
T
• 1.下图是洛伦兹力演示仪,由图(a)、(b)可知:
无磁场
有磁场
实验现象:在暗室中可以清楚地看到,在没有磁场作用 时,电子的轨迹是直线;在管外加上垂直初速度方向的匀强
磁场,电子的轨迹变弯曲成圆形。
实验现象:在暗室中可以清楚地看到,在没有 磁场作用时,电子的径迹是直线;在管外加上
匀强磁场,电子的径迹变弯曲成圆形。
-
v
B
匀速直线运动
× × ×B× ×
××××× ×××××
× × +× × v×
×××××
(1)v⊥B时 ,洛伦兹力的方向与速度方向
的—关—系垂直
(2)带电粒子仅在洛伦兹力的作用下,粒 子的速率变化吗?能量呢?
(3)洛伦兹力的方向如何变化?
(4)从上面的分析,你认为垂直于匀强磁 场方向射入的带电粒子,在匀强磁场中的

洛伦兹力带电粒子在磁场中受力

洛伦兹力带电粒子在磁场中受力

洛伦兹力带电粒子在磁场中受力洛伦兹力是指带电粒子在电场和磁场中所受到的力。

在磁场中,带电粒子受到的洛伦兹力是垂直于粒子运动方向和磁场方向的一个力。

洛伦兹力的大小和方向由粒子的电荷、速度以及磁场的强度和方向决定。

1. 洛伦兹力的表达式洛伦兹力的表达式为F = q(v × B),其中F表示洛伦兹力,q表示电荷,v表示粒子的速度,B表示磁场的强度。

x表示矢量叉乘,在数学上表示为叉乘运算。

2. 洛伦兹力对带电粒子的影响洛伦兹力对带电粒子的影响可以分为两个方面:对粒子的运动轨迹和对粒子的速度大小的影响。

第一,洛伦兹力对粒子的运动轨迹有影响。

当带电粒子进入磁场后,洛伦兹力的作用会使得粒子发生弯曲运动。

如果粒子的速度和磁场的方向垂直,那么洛伦兹力会使得粒子做圆周运动;如果粒子的速度与磁场的方向不垂直,那么洛伦兹力会使得粒子做螺旋线运动。

第二,洛伦兹力对粒子的速度大小有影响。

洛伦兹力的方向垂直于速度,因此不会对速度有直接影响。

但是洛伦兹力对速度方向的改变会使得粒子的速度矢量发生偏转,从而导致速度的大小发生变化。

3. 洛伦兹力的应用洛伦兹力在物理学的研究和应用中具有广泛的用途。

以下是几个常见的应用领域:第一,粒子加速器。

洛伦兹力在粒子加速器中扮演着重要的角色。

通过在强磁场中让带电粒子受到洛伦兹力的作用,可以使得粒子加速并达到很高的能量。

第二,磁共振成像。

洛伦兹力在核磁共振成像(MRI)中起着至关重要的作用,通过在强磁场中对带电粒子施加洛伦兹力,可以获取生物组织的详细信息。

第三,磁力传感器。

洛伦兹力的作用可以应用于磁力传感器,通过测量洛伦兹力的大小和方向,可以获得与磁场相关的信息。

4. 洛伦兹力的实验观测洛伦兹力的存在可以通过实验进行观测。

一种常见的实验是将带电粒子放置在磁场中,并测量粒子的运动轨迹和速度的变化。

通过实验数据的分析,可以验证洛伦兹力的存在并且定量地测量洛伦兹力的大小和方向。

总结:洛伦兹力是带电粒子在电场和磁场中所受到的力,它对粒子的运动轨迹和速度大小都有影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

洛伦兹力的特点以及带电粒子在匀强磁场中的运动一、基础知识(一)洛伦兹力1、洛伦兹力:磁场对运动电荷的作用力叫洛伦兹力.2、洛伦兹力的方向 (1)判定方法 左手定则:掌心——磁感线垂直穿入掌心;四指——指向正电荷运动的方向或负电荷运动的反方向;拇指——指向洛伦兹力的方向.(2)方向特点:F ⊥B ,F ⊥v ,即F 垂直于B 和v 决定的平面(注意:洛伦兹力不做功).3、洛伦兹力的大小(1)v ∥B 时,洛伦兹力F =0.(θ=0°或180°)(2)v ⊥B 时,洛伦兹力F =q v B .(θ=90°)(3)v =0时,洛伦兹力F =0.(二)带电粒子在匀强磁场中的运动1、若v ∥B ,带电粒子不受洛伦兹力,在匀强磁场中做匀速直线运动.2、若v ⊥B ,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v 做匀速圆周运动.3、圆心的确定(1)已知入射点、出射点、入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图甲所示,图中P 为入射点,M 为出射点).(2)已知入射方向、入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心(如图乙所示,P 为入射点,M 为出射点).4、半径的确定可利用物理学公式或几何知识(勾股定理、三角函数等)求出半径大小.5、运动时间的确定粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为θ时,其运动时间表示为:t =θ2πT (或t =θR v ).说明:洛伦兹力和电场力的比较1、洛伦兹力方向的特点(1)洛伦兹力的方向与电荷运动的方向和磁场方向都垂直,即洛伦兹力的方向总是垂直于运动电荷的速度方向和磁场方向共同确定的平面.(2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化.2深化拓展①洛伦兹力对电荷不做功;安培力对通电导线可做正功,可做负功,也可不做功.②只有运动电荷才会受到洛伦兹力,静止电荷在磁场中所受洛伦兹力一定为零.二、练习1、带电粒子垂直匀强磁场方向运动时,会受到洛伦兹力的作用.下列表述正确的是()A.洛伦兹力对带电粒子做功B.洛伦兹力不改变带电粒子的动能C.洛伦兹力的大小与速度无关D.洛伦兹力不改变带电粒子的速度方向答案 B解析洛伦兹力的方向与运动方向垂直,所以洛伦兹力永远不做功,即不改变粒子的动能,A错误,B正确;洛伦兹力F=Bq v,C错误;洛伦兹力不改变速度的大小,但改变速度的方向,D错误.2、带电荷量为+q 的粒子在匀强磁场中运动,下列说法中正确的是( )A .只要速度大小相同,所受洛伦兹力就相同B .如果把+q 改为-q ,且速度反向,大小不变,则洛伦兹力的大小、方向均不变C .洛伦兹力方向一定与电荷速度方向垂直,磁场方向一定与电荷运动方向垂直D .粒子在只受到洛伦兹力作用下运动的动能、速度均不变答案 B解析 因为洛伦兹力的大小不但与粒子速度大小有关,而且与粒子速度的方向有关,如当粒子速度与磁场垂直时F =q v B ,当粒子速度与磁场平行时F =0.又由于洛伦兹力的方向永远与粒子的速度方向垂直,因而速度方向不同时,洛伦兹力的方向也不同,所以A 选项错.因为+q 改为-q 且速度反向,由左手定则可知洛伦兹力方向不变,再由F =q v B 知大小也不变,所以B 选项正确.因为电荷进入磁场时的速度方向可以与磁场方向成任意夹角,所以C 选项错.因为洛伦兹力总与速度方向垂直,因此,洛伦兹力不做功,粒子动能不变,但洛伦兹力可改变粒子的运动方向,使粒子速度的方向不断改变,所以D 选项错.3、如图所示,匀强磁场的磁感应强度均为B ,带电粒子的速率均为v ,带电荷量均为q .试求出图中带电粒子所受洛伦兹力的大小,并指出洛伦兹力的方向.答案 甲:因v ⊥B ,所以F =q v B ,方向与v 垂直斜向上乙:v 与B 的夹角为30°,F =q v B sin 30°=12q v B ,方向垂直纸面向里 丙:由于v 与B 平行,所以电荷不受洛伦兹力,F =0丁:v 与B 垂直,F =q v B ,方向与v 垂直斜向上4、试画出下图中几种情况下带电粒子的运动轨迹.答案5、带电质点在匀强磁场中运动,某时刻速度方向如图所示,所受的重力和洛伦兹力的合力恰好与速度方向相反,不计阻力,则在此后的一小段时间内,带电质点将 ( )A .可能做直线运动B .可能做匀减速运动C .一定做曲线运动D .可能做匀速圆周运动答案 C解析 带电质点在运动过程中,重力做功,速度大小和方向发生变化,洛伦兹力的大小和方向也随之发生变化,故带电质点不可能做直线运动,也不可能做匀减速运动和匀速圆周运动,C 正确.6、如图所示,ABC 为竖直平面内的光滑绝缘轨道,其中AB 为倾斜直轨道,BC 为与AB 相切的圆形轨道,并且圆形轨道处在匀强磁场中,磁场方向垂直纸面向里.质量相同的甲、乙、丙三个小球中,甲球带正电、乙球带负电、丙球不带电.现将三个小球在轨道AB 上分别从不同高度处由静止释放,都恰好通过圆形轨道的最高点,则 ( )A .经过最高点时,三个小球的速度相等B .经过最高点时,甲球的速度最小C .甲球的释放位置比乙球的高D .运动过程中三个小球的机械能均保持不变答案 CD解析 设磁感应强度为B ,圆形轨道半径为r ,三个小球质量均为m ,它们恰好通过最高点时的速度分别为v 甲、v 乙和v 丙,则mg +B v q 甲=m v 2甲r ,mg -B v q 乙=m v 2乙r ,mg =m v 2丙r,显然,v 甲>v 丙>v 乙,选项A 、B 错误;三个小球在运动过程中,只有重力做功,即它们的机械能守恒,选项D 正确;甲球在最高点处的动能最大,因为势能相等,所以甲球的机械能最大,甲球的释放位置最高,选项C 正确.7、如图所示,一个质量为m 、电荷量为+q 的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处在磁感应强度为B 的匀强磁场中(不计空气阻力).现给圆环向右的初速度v 0,在以后的运动过程中,圆环运动的速度图象可能是图中的( )答案 ACD解析 由左手定则判定圆环受到的洛伦兹力向上,若q v B =mg ,则弹力为零,摩擦力为零,圆环做匀速直线运动,选项A 正确;若q v B >mg ,则杆对圆环有弹力,摩擦力不为零,圆环做减速运动,当速度减小到使洛伦兹力与重力平衡时,将做匀速直线运动,选项D 正确;若q v B <mg ,则杆对圆环有弹力,摩擦力不为零,圆环做减速运动,最终速度变为零,选项C 正确.无论哪种情况,圆环都不可能做匀减速运动,选项B 错误.8、在如图所示宽度范围内,用场强为E 的匀强电场可使初速度是v 0的某种正粒子偏转θ角.在同样宽度范围内,若改用方向垂直于纸面向外的匀强磁场(图中未画出),使该粒子穿过该区域,并使偏转角也为θ(不计粒子的重力),问:(1)匀强磁场的磁感应强度是多大?(2)粒子穿过电场和磁场的时间之比是多大?解析 (1)设宽度为L .当只有电场存在时,带电粒子做类平抛运动水平方向上:L =v 0t ,竖直方向上:v y =at =EqL m v 0tan θ=v y v 0=EqL m v 20当只有磁场存在时,带电粒子做匀速圆周运动,半径为R ,如图所示,由几何关系可知sin θ=L R ,R =m v 0qB联立解得B =E cos θv 0. (2)粒子在电场中运动时间t 1=L v 0=R sin θv 0在磁场中运动时间t 2=θ2π·T =θ2π·2πm qB =θm qB所以t 1t 2=RqB m v 0·sin θθ=sin θθ. 答案 (1)E cos θv 0 (2)sin θθ技巧点拨电荷在匀强电场和匀强磁场中的运动规律不同.运动电荷穿出有界电场的时间与其入射速度的方向和大小有关,而穿出有界磁场的时间则与电荷在磁场中的运动周期有关.在解题过程中灵活运用运动的合成与分解和几何关系是解题关键.9、在如图所示的空间中,存在电场强度为E 的匀强电场,同时存在沿x 轴负方向、磁感应强度为B 的匀强磁场(图中均未画出).一质子(电荷量为e )在该空间恰沿y 轴正方向以速度v 匀速运动.据此可以判断出 ( )A .质子所受电场力大小等于eE ,运动中电势能减小;沿z 轴正方向电势升高B .质子所受电场力大小等于eE ,运动中电势能增大;沿z 轴正方向电势降低C .质子所受电场力大小等于e v B ,运动中电势能不变;沿z 轴正方向电势升高D .质子所受电场力大小等于e v B ,运动中电势能不变;沿z 轴正方向电势降低 答案 C解析 解答本题时利用左手定则判断洛伦兹力的方向,根据平衡条件判断电场力方向及电场方向,注意运用电场力做功与电势能变化的关系,及沿电场线方向电势降低.匀强磁场的磁感应强度B 的方向沿x 轴负方向,质子沿y 轴正方向运动,由左手定则可确定洛伦兹力沿z 轴正方向;由于质子受电场力和洛伦兹力作用沿y 轴正方向做匀速直线运动,故电场力eE 等于洛伦兹力e v B ,方向沿z 轴负方向,即电场方向沿z 轴负方向,质子在运动过程中电场力不做功,电势能不变,沿z 轴正方向即电场反方向电势升高,故C 正确,A 、B 、D 错误.10、如图所示,M 、N 为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为+q ,质量为m (不计重力),从点P 经电场加速后,从小孔Q 进入N 板右侧的匀强磁场区域,磁感应强度大小为B ,方向垂直于纸面向外,CD 为磁场边界上的一绝缘板,它与N 板的夹角为θ=45°,孔Q 到板的下端C 的距离为L ,当M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,求:(1)两板间电压的最大值U m ;(2)CD 板上可能被粒子打中的区域的长度s ;(3)粒子在磁场中运动的最长时间t m .解析 (1)M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,所以圆心在C 点,如图所示,CH =QC =L故半径r 1=L又因为q v 1B =m v 21r 1且qU m =12m v 21所以U m =qB 2L 22m. (2)设粒子在磁场中运动的轨迹与CD 板相切于K 点,此轨迹的半径为r 2,设圆心为A ,在△AKC 中:sin 45°=r 2L -r 2解得r 2=(2-1)L即KC =r 2=(2-1)L所以CD 板上可能被粒子打中的区域的长度s =HK ,即s =r 1-r 2=(2-2)L .(3)打在QE 间的粒子在磁场中运动的时间最长,均为半个周期,所以t m =T 2=πm Bq . 答案 (1)qB 2L 22m (2)(2-2)L (3)πm Bq规律总结1.带电体在磁场中的临界问题的处理方法带电体进入有界磁场区域,一般存在临界问题,处理的方法是寻找临界状态,画出临界轨迹:(1)带电体在磁场中,离开一个面的临界状态是对这个面的压力为零.(2)射出或不射出磁场的临界状态是带电体运动的轨迹与磁场边界相切.2.带电粒子在匀强磁场中做匀速圆周运动的程序解题法——三步法(1)画轨迹:即画出运动轨迹,并确定圆心,用几何方法求半径.(2)找联系:轨道半径与磁感应强度、运动速度相联系,偏转角度与圆心角、运动时间相联系,在磁场中运动的时间与周期相联系.(3)用规律:即牛顿第二定律和圆周运动的规律,特别是周期公式、半径公式.。

相关文档
最新文档