第10讲:直线与圆锥曲线的位置关系

合集下载

直线和圆锥曲线的位置关系ppt

直线和圆锥曲线的位置关系ppt
1 36b 2 k 2 3b 2 3 4 2 2 2 2 3k 1 k 1 2 (3k 1) 1+b
AMN为等腰直角三角形 1 AP MN 2
1 3k 2 b , 化简得: k 2 1)k 2 (4 3k 2 ) 0 (3 2 k 0此时, 0
问题3:
能否找到一条斜率为k的直线l与此椭圆交于两个不同 的点M , N .使得 MA NA , 其中A(0,1) ? 若存在,试 求出k的范围;若不存在,请说明理由。
想一想:要求变量的范围,如何根据条件建立不等式呢?
让直线方程与椭圆方程联立,消y后得到关于x的二次方程, 令 0
体现:函数与方程的思想
斜率不为0 若存在一条斜率不为0的直线l,交椭圆于 M,N,使得三角形AMN为等腰三角形。
你能求出AM 的范围吗?
方法1 方法2
写出 AM 的关系式,然后试图求值域。
考虑以A(0,1)为圆心, 为半径的圆 AM
体现:转化思想
数形结合的思想
(0,-1)
拓展延伸:
x2 y 2 对于椭圆 2 2 1(a b 0)的下顶点为A(0, b), a b 是否存在以A为直角顶点的内接等腰直角三角形AMN? 若存在,这样的三角形可能有几个?叙述并证明你的 结论。
x0 2 x 得: y0 2 y 1
x2 y2 1 3
B(2x,2y+1)在椭圆上 ,代入椭圆方程得:
2 x
3
2
( 2 y 1)
2
1 化简得
x 3 4
2
(y
1 4
1 2 ) 2 1( y
1)
1 所以中点p的轨迹是以(0,- )为中心,3为长轴的椭圆, 2 除A(0,- )外 1

直线与圆锥曲线的位置关系

直线与圆锥曲线的位置关系

该 程{2 __ 圆方为世1 为 , 椭 上点 组6 21 的程孚 . 孚 以 圆 的和 【 . ,删椭 Ⅱ = 6 4
( ) ( ) 知点 A 的 坐 标为 ( 2 0 , 直 线 f 2 由 1可 一 ,) 且
的 斜 率 必 存 在 . 点 B 的 坐 标 为 ( , , 线 f 斜 设 Y) 直 的
( ) 否存 在 常 数 A, 得 l BI D JAIB I 3是 使 A C +I = A ・
l Dl 成 立 ? C 恒 若存 在 , 出 A的值 ; 不存 在 , 说 求 若 请
明理 由.
弦长 f = l - ・X- z. 圆锥 曲线 的弦 长的 思 ABlvT  ̄ JIX I 4 求

所 以 y: —x i 。 ±2  ̄ /
综 上可知 , + N 2  ̄ y: —v - : 2 / 0 ±2 T  ̄


例 1 已知椭圆 + = (>> ) 等 1abO的离心率e =

小 结 涉及 弦的 中点 的 问题 , 们 可 以利 用判 我
别 式 和 根 与 系数 的 关 系 加 以 解 决 , 可 以 利 用 “ 也 点
k】k2 . ・ =1
 ̄ l D IAI BI D I agl C C +I = A ・I
恒 成立 . 小 结 设 直 线 l 圆 锥 曲 线 C 相 交 于 A. 两 与 B 点 , A 的 坐 标 为 ( , , B 的 坐 标 为 ( , 2 , 点 Y) 点 Y) 则
垂 直 平 分 线 为 y轴 , 是 于 = 一 一o , ( 2,y ) = 2, (
直 线与圆 线的 锥曲

) ・ :, . 由 4 得 = 2 / ± 、 .

直线与圆锥曲线知识点与题型归纳总结

直线与圆锥曲线知识点与题型归纳总结

直线与圆锥曲线知识点与题型归纳总结知识点精讲一、直线l 与圆锥曲线C 的位置关系的判断判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By c ++= 代入圆锥曲线C 的方程(),0F x y = ,消去y (也可以消去x )得到关系一个变量的一元二次方程,,即()0,0Ax By c F x y ++=⎧⎪⎨=⎪⎩ ,消去y 后得20ax bx c ++=(1)当0a =时,即得到一个一元一次方程,则l 与C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线平行;若C 为抛物线,则直线l 与抛物线 的对称轴平行(2) 当0a ≠时,0∆> ,直线l 与曲线C 有两个不同的交点; 0∆=,直线l 与曲 线C 相切,即有唯一的公共点(切点); 0∆< ,直线l 与曲线C 二、圆锥曲线的弦连接圆锥曲线上两点的线段称为圆锥曲线的弦直线():,0l f x y = ,曲线():F ,0,A,B C x y =为l 与C 的两个不同的交点,坐标分别为()()1122,,,A x y B x y ,则()()1122,,,A x y B x y 是方程组()(),0,0f x y F x y =⎧⎪⎨=⎪⎩ 的两组解, 方程组消元后化为关于x 或y 的一元二次方程20Ax Bx c ++=(0A ≠) ,判别式24B AC ∆=- ,应有0∆> ,所以12,x x 是方程20Ax Bx c ++=的根,由根与系数关系(韦达定理)求出1212,B Cx x x x A A+=-= , 所以,A B 两点间的距离为12AB x =-==即弦长公式,弦长 公式也可以写成关于y 的形式)120AB y y k =-=≠三, 已知弦AB 的中点,研究AB 的斜率和方程(1) AB 是椭圆()22221.0x y a b a b+=>的一条弦,中点()00,M x y ,则AB 的斜率为2020b x a y - ,运用点差法求AB 的斜率;设()()()112212,,A x y B x y x x ≠ ,,A B 都在椭圆 上,所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩ ,两式相减得22221212220x x y y a b --+=所以()()()()12121212220x x x x y y y y a b +-+-+=即()()()()22121202212120y y b x x b x x x a y y a y -+=-=--+,故2020AB b x k a y =-(1) 运用类似的方法可以推出;若AB 是双曲线()22221.0x y a b a b-=>的弦,中点()00,M x y ,则2020ABb x k a y =;若曲线是抛物线()220y px p => ,则0AB p k y =题型归纳及思路提示题型1 直线与圆锥曲线的位置关系思路提示(1)直线与圆锥曲线有两个不同的公共点的判定:通常的方法是直线与圆锥曲线方程联立方程消元后得到一元二次方程,其中0∆> ;另一方面就是数形结合,如直线与双曲线有两个不同的公共点,可通过判定直线的斜率与双曲线渐近线的斜率的大小得到。

直线与圆锥曲线的位置关系详解

直线与圆锥曲线的位置关系详解

直线与圆锥曲线的位置关系●知识梳理本节主要内容是直线与圆锥曲线公共点问题、相交弦问题以及它们的综合应用.解决这些问题经常转化为它们所对应的方程构成的方程组是否有解或解的个数问题.对相交弦长问题及中点弦问题要正确运用“设而不求”.涉及焦点弦的问题还可以利用圆锥曲线的焦半径公式.●点击双基1.过点(2,4)作直线与抛物线y 2=8x 只有一个公共点,这样的直线有A.1条B.2条C.3条D.4条解析:数形结合法,同时注意点在曲线上的情况.答案:B2.已知双曲线C :x 2-42y =1,过点P (1,1)作直线l ,使l 与C 有且只有一个公共点,则满足上述条件的直线l 共有A.1条B.2条C.3条D.4条解析:数形结合法,与渐近线平行、相切.答案:D3.双曲线x 2-y 2=1的左焦点为F ,点P 为左支下半支上任意一点(异于顶点),则直线PF 的斜率的变化范围是A.(-∞,0)B.(1,+∞)C.(-∞,0)∪(1,+∞)D.(-∞,-1)∪(1,+∞)解析:数形结合法,与渐近线斜率比较.答案:C4.过抛物线y 2=4x 焦点的直线交抛物线于A 、B 两点,已知|AB |=8,O 为坐标原点,则 △OAB 的重心的横坐标为____________.解析:由题意知抛物线焦点F (1,0).设过焦点F (1,0)的直线为y =k (x -1)(k ≠0),A (x 1,y 1),B (x 2,y 2).代入抛物线方程消去y 得k 2x 2-2(k 2+2)x +k 2=0.∵k 2≠0,∴x 1+x 2=22)2(2k k +,x 1x 2=1. ∵|AB |=2212))(1(x x k -+ =]4))[(1(212212x x x x k -++ =]4)2(4)[1(4222-++k k k =8,∴k 2=1.∴△OAB 的重心的横坐标为x =3021x x ++=2. 答案:2 5.已知(4,2)是直线l 被椭圆362x +92y =1所截得的线段的中点,则l 的方程是____________.解析:设直线l 与椭圆交于P 1(x 1,y 1)、P 2(x 2,y 2),将P 1、P 2两点坐标代入椭圆方程相减得直线l 斜率k =2121x x y y --=-)(42121y y x x ++=-2422121y y x x +⋅+ =-244⨯=-21. 由点斜式可得l 的方程为x +2y -8=0.答案:x +2y -8=0●典例剖析【例1】 已知直线l :y =tan α(x +22)交椭圆x 2+9y 2=9于A 、B 两点,若α为l 的倾斜角,且|AB |的长不小于短轴的长,求α的取值范围.剖析:确定某一变量的取值范围,应设法建立关于这一变量的不等式,题设中已经明确给定弦长≥2b ,最后可归结为计算弦长求解不等式的问题.解:将l 方程与椭圆方程联立,消去y ,得(1+9tan 2α)x 2+362tan 2α·x +72tan 2α-9=0,∴|AB |=α2tan 1+|x 2-x 1| =α2tan 1+·)tan 91(2α+Δ =αα22tan 916tan 6++. 由|AB |≥2,得tan 2α≤31, ∴-33≤tan α≤33. ∴α的取值范围是[0,6π)∪[6π5,π). 评述:对于弦长公式一定要能熟练掌握、灵活运用.本题由于l 的方程由tan α给出,所以可以认定α≠2π,否则涉及弦长计算时,还应讨论α=2π时的情况. 【例2】 已知抛物线y 2=-x 与直线y =k (x +1)相交于A 、B 两点.(1)求证:OA ⊥OB ;(2)当△OAB 的面积等于10时,求k 的值.剖析:证明OA ⊥OB 可有两种思路(如下图):(1)证k OA ·k OB =-1;(2)取AB 中点M ,证|OM |=21|AB |. 求k 的值,关键是利用面积建立关于k 的方程,求△AOB 的面积也有两种思路:(1)利用S △OAB =21|AB |·h (h 为O 到AB 的距离); (2)设A (x 1,y 1)、B (x 2,y 2),直线和x 轴交点为N ,利用S △OAB =21|AB |·|y 1-y 2|. 请同学们各选一种思路给出解法.解方程组时,是消去x 还是消去y ,这要根据解题的思路去确定.当然,这里消去x 是最简捷的.(1)证明:如下图,由方程组y 2=-x , y =k (x +1)ky 2+y -k =0.设A (x 1,y 1)、B (x 2,y 2),由韦达定理y 1·y 2=-1.∵A 、B 在抛物线y 2=-x 上,∴y 12=-x 1,y 22=-x 2,y 12·y 22=x 1x 2.消去x 后,整理得∵k OA ·k OB =11x y ·22x y =2121x x y y =211y y =-1, ∴OA ⊥OB .(2)解:设直线与x 轴交于N ,又显然k ≠0,∴令y =0,则x =-1,即N (-1,0).∵S △OAB =S △OAN +S △OBN =21|ON ||y 1|+21|ON ||y 2| =21|ON |·|y 1-y 2|, ∴S △OAB =21·1·212214)(y y y y -+ =214)1(2+k. ∵S △OAB =10, ∴10=21412+k.解得k =±61. 评述:本题考查了两直线垂直的充要条件、三角形的面积公式、函数与方程的思想,以及分析问题、解决问题的能力.【例3】 在抛物线y 2=4x 上恒有两点关于直线y =kx +3对称,求k 的取值范围.剖析:设B 、C 两点关于直线y =kx +3对称,易得直线BC :x =-ky +m ,由B 、C 两点关于直线y =kx +3对称可得m 与k 的关系式,而直线BC 与抛物线有两交点,∴Δ>0,即可求得k 的范围.解:设B 、C 关于直线y =kx +3对称,直线BC 方程为x =-ky +m ,代入y 2=4x ,得y 2+4ky -4m =0,设B (x 1,y 1)、C (x 2,y 2),BC 中点M (x 0,y 0),则y 0=221y y +=-2k ,x 0=2k 2+m . ∵点M (x 0,y 0)在直线l 上,∴-2k =k (2k 2+m )+3.∴m =-kk k 3223++. 又∵BC 与抛物线交于不同两点,∴Δ=16k 2+16m >0.把m 代入化简得kk k 323++<0, 即kk k k )3)(1(2+-+<0,解得-1<k <0. 评述:对称问题是高考的热点之一,由对称易得两个关系式.本题运用了“设而不求”,解决本题的关键是由B 、C 两点在抛物线上得“Δ>0”.【例4】已知抛物线C :y 2=4(x -1),椭圆C 1的左焦点及左准线与抛物线C 的焦点F 和准线l 分别重合.(1)设B 是椭圆C 1短轴的一个端点,线段BF 的中点为P ,求点P 的轨迹C 2的方程;(2)如果直线x +y =m 与曲线C 2相交于不同两点M 、N ,求m 的取值范围.(1)解法一:由y 2=4(x -1)知抛物线C 的焦点F 坐标为(2,0).准线l 的方程为x =0.设动椭圆C 1的短轴的一个端点B 的坐标为(x 1,y 1)(x 1>2,y 1≠0),点P (x ,y ),x =221+x , x 1=2x -2, y =21y , y 1=2y . ∴B (2x -2,2y )(x >2,y ≠0).设点B 在准线x =0上的射影为点B ′,椭圆的中心为点O ′,则椭圆离心率e =||||BF O F ',由||||B B BF '=||||BF O F ',得22)2()222(22-+--x y x =22)2()222(222y x x +----, 整理,化简得y 2=x -2(y ≠0),这就是点P 的轨迹方程.则 ∴解法二:抛物线y 2=4(x -1)焦点为F (2,0),准线l :x =0.设P (x ,y ),∵P 为BF 中点,∴B (2x -2,2y )(x >2,y ≠0).设椭圆C 1的长半轴、短半轴、半焦距分别为a 、b 、c ,则c =(2x -2)-2=2x -4,b 2=(2y )2=4y 2,∵(-c )-(-ca 2)=2, ∴cc a 22-=2, 即b 2=2c .∴4y 2=2(2x -4),即y 2=x -2(y ≠0),此即C 2的轨迹方程.x +y =m , y 2=x -2m >47. 而当m =2时,直线x +y =2过点(2,0),这时它与曲线C 2只有一个交点,∴所求m 的取值范围是(47,2)∪(2,+∞). ●闯关训练1.若双曲线x 2-y 2=1的右支上一点P (a ,b )到直线y =x 的距离为2,则a +b 的值为A.-21B.21C.±21 D.±2 解析:P (a ,b )点在双曲线上,则有a 2-b 2=1,即(a +b )(a -b )=1.d =2||b a -=2,∴|a -b |=2.又P 点在右支上,则有a >b ,(2)解:由 (y ≠0),得y 2+y -m +2=0,令Δ=1-4(-m +2)>0,解得∴a -b =2.∴|a +b |×2=1,a +b =21. 答案:B2.已知对k ∈R ,直线y -kx -1=0与椭圆52x +my 2=1恒有公共点,则实数m 的取值范围是A.(0,1)B.(0,5)C.[1,5)∪(5,+∞)D.[1,5)解析:直线y -kx -1=0恒过点(0,1),仅当点(0,1)在椭圆上或椭圆内时,此直线才恒与椭圆有公共点.所以,m 1≤1且m >0,得m ≥1.故本题应选C. 答案:C3.已知双曲线x 2-32y =1,过P (2,1)点作一直线交双曲线于A 、B 两点,并使P 为AB 的中点,则直线AB 的斜率为____________.解析:设A (x 1,y 1)、B (x 2,y 2),代入双曲线方程3x 2-y 2=1相减得直线AB 的斜率k AB =2121x x y y --=2121)(3y y x x ++ =2232121y y x x ++⨯=123⨯=6. 答案:64.AB 为抛物线y 2=2px (p >0)的焦点弦,若|AB |=1,则AB 中点的横坐标为___________;若AB 的倾斜角为α,则|AB |=____________.解析:设过F (2p ,0)的直线为y =k (x -2p ),k ≠0,代入抛物线方程,由条件可得结果.答案:21p - α2sin 2p 5.求过点(0,2)的直线被椭圆x 2+2y 2=2所截弦的中点的轨迹方程.解:设直线方程为y =kx +2,把它代入x 2+2y 2=2,整理得(2k 2+1)x 2+8kx +6=0.要使直线和椭圆有两个不同交点,则Δ>0,即k <-26或k >26. 设直线与椭圆两个交点为A (x 1,y 1)、B (x 2,y 2),中点坐标为C (x ,y ),则x =221x x +=1242+-k k , y = 1242+-k k +2=1222+k . x =1242+-k k , y =1222+k 消去k 得x 2+2(y -1)2=2,且|x |<26=,0<y <21. 6.中心在坐标原点、焦点在x 轴上的椭圆,它的离心率为23,与直线x +y -1=0相交于M 、N 两点,若以MN 为直径的圆经过坐标原点,求椭圆方程.解:设椭圆方程22a x +22by =1(a >b >0), ∵e =23,∴a 2=4b 2,即a =2b . ∴椭圆方程为224b x +22by =1. 把直线方程代入化简得5x 2-8x +4-4b 2=0.设M (x 1,y 1)、N (x 2,y 2),则x 1+x 2=58,x 1x 2=51(4-4b 2). 从参数方程 (k <-26或k >26),∴y 1y 2=(1-x 1)(1-x 2)=1-(x 1+x 2)+x 1x 2=51(1-4b 2). 由于OM ⊥ON ,∴x 1x 2+y 1y 2=0.解得b 2=85,a 2=25. ∴椭圆方程为52x 2+58y 2=1. 7.已知直线y =(a +1)x -1与曲线y 2=ax 恰有一个公共点,求实数a 的值.y =(a +1)x -1, y 2=ax ,x =1,y =0.(2)当a ≠0时,方程组化为aa 1+y 2-y -1=0. x =-1, y =-1.若a a 1+≠0,即a ≠-1,令Δ=0,得1+4·aa 1+=0,解得a =-54,这时方程组恰有 x =-5,y =-2.综上所述,可知当a =0,-1,-54时,直线与曲线恰有一个公共点. ●思悟小结 1.解决直线和圆锥曲线的位置关系问题时,对于消元后的一元二次方程,必须讨论二次项的系数和判别式Δ,有时借助图形的几何性质更为方便.2.涉及弦的中点问题,除利用韦达定理外,也可以运用平方差法,但必须以直线与圆锥使其恰有一组解.(1)当a =0时,此方程组恰有一组解 若aa 1+=0,即a =-1,方程组恰有一解 解析:联立方程组 一解曲线相交为前提,否则不宜用此法.3.求圆锥曲线的弦长时,可利用弦长公式d =2212))(1(x x k -+=2212))(11(y y k -+. 再结合韦达定理解决.焦点弦的长也可以直接利用焦半径公式处理,可以使运算简化.直线与圆锥曲线的位置关系●知识梳理本节主要内容是直线与圆锥曲线公共点问题、相交弦问题以及它们的综合应用.解决这些问题经常转化为它们所对应的方程构成的方程组是否有解或解的个数问题.对相交弦长问题及中点弦问题要正确运用“设而不求”.涉及焦点弦的问题还可以利用圆锥曲线的焦半径公式.●点击双基1.过点(2,4)作直线与抛物线y 2=8x 只有一个公共点,这样的直线有( )A.1条B.2条C.3条D.4条2.已知双曲线C :x 2-42y =1,过点P (1,1)作直线l ,使l 与C 有且只有一个公共点,则满足上述条件的直线l 共有( )A.1条B.2条C.3条D.4条3.双曲线x 2-y 2=1的左焦点为F ,点P 为左支下半支上任意一点(异于顶点),则直线PF 的斜率的变化范围是( )A.(-∞,0)B.(1,+∞)C.(-∞,0)∪(1,+∞)D.(-∞,-1)∪(1,+∞)4.过抛物线y 2=4x 焦点的直线交抛物线于A 、B 两点,已知|AB |=8,O 为坐标原点,则 △OAB 的重心的横坐标为____________.5.已知(4,2)是直线l 被椭圆362x +92y =1所截得的线段的中点,则l 的方程是____________.●典例剖析【例1】 已知直线l :y =tan α(x +22)交椭圆x 2+9y 2=9于A 、B 两点,若α为l 的倾斜角,且|AB |的长不小于短轴的长,求α的取值范围.【例2】 已知抛物线y 2=-x 与直线y =k (x +1)相交于A 、B 两点.(1)求证:OA ⊥OB ;(2)当△OAB 的面积等于10时,求k 的值.【例3】 在抛物线y 2=4x 上恒有两点关于直线y =kx +3对称,求k 的取值范围.【例4】已知抛物线C :y 2=4(x -1),椭圆C 1的左焦点及左准线与抛物线C 的焦点F 和准线l 分别重合.(1)设B 是椭圆C 1短轴的一个端点,线段BF 的中点为P ,求点P 的轨迹C 2的方程;(2)如果直线x +y =m 与曲线C 2相交于不同两点M 、N ,求m 的取值范围.●闯关训练1.若双曲线x 2-y 2=1的右支上一点P (a ,b )到直线y =x 的距离为2,则a +b 的值为A.-21B.21C.±21 D.±2 2.已知对k ∈R ,直线y -kx -1=0与椭圆52x +my 2=1恒有公共点,则实数m 的取值范围是( )A.(0,1)B.(0,5)C.[1,5)∪(5,+∞)D.[1,5)3.已知双曲线x 2-32y =1,过P (2,1)点作一直线交双曲线于A 、B 两点,并使P 为AB 的中点,则直线AB 的斜率为____________.4.AB 为抛物线y 2=2px (p >0)的焦点弦,若|AB |=1,则AB 中点的横坐标为___________;若AB 的倾斜角为α,则|AB |=____________.5.求过点(0,2)的直线被椭圆x2+2y2=2所截弦的中点的轨迹方程.3,与直线x+y-1=0相交6.中心在坐标原点、焦点在x轴上的椭圆,它的离心率为2于M、N两点,若以MN为直径的圆经过坐标原点,求椭圆方程.7.已知直线y=(a+1)x-1与曲线y2=ax恰有一个公共点,求实数a的值.。

直线与圆锥曲线的位置关系

直线与圆锥曲线的位置关系

直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系(1)从几何角度看,可分为三类:无公共点,仅有一个公共点及有两个相异的公共点,具体如下:①直线与圆锥曲线的相离关系,常通过求二次曲线上的点到已知直线的距离的最大值或最小值来解决.②直线与圆锥曲线仅有一个公共点,对于圆或椭圆,表示直线与其相切;对于双曲线,表示与其相切或与双曲线的渐近线平行;对于抛物线,表示直线与其相切或直线与其对称轴平行.③直线与圆锥曲线有两个相异的公共点,表示直线与圆锥曲线相割,此时直线被圆锥曲线截得的线段称为圆锥曲线的弦.(2)从代数角度看,可通过将表示直线的方程,代入二次曲线的方程消元后所得的一元二次方程的解的情况来判断.直线l 方程为Ax +By +C =0,圆锥曲线方程为f (x ,y )=0.由⎩⎪⎨⎪⎧Ax +By +C =0,f (x ,y )=0消元(x 或y ), 如消去y 后得ax 2+bx +c =0.若f (x ,y )=0表示椭圆,上述方程中a ≠0,若f (x, y )=0表示双曲线或抛物线, 上述方程中a =0或a ≠0.①若a =0,当圆锥曲线是双曲线时,直线l 与双曲线的渐近线平行(或重合);当圆锥曲线是抛物线时,直线l 与抛物线的对称轴平行(或重合).②若a ≠0,设Δ=b 2-4ac .a .Δ>0时,直线和圆锥曲线相交于不同两点;b .Δ=0时,直线和圆锥曲线相切于一点;c .Δ<0时,直线和圆锥曲线没有公共点.直线与圆锥曲线的位置关系重点是相交:相交――→转化联立方程组有两组不等的实数解――→转化一元二次方程有两个不等实数解――→转化判别式大于零.2.弦长的求法求弦长――→转化求两点间的距离――→综合运用⎩⎪⎨⎪⎧消元,解方程组,一元二次方程根与系数的关系.(1)弦长:(直线与圆锥曲线相交于A (x 1,y 1),B (x 2,y 2)),直线斜率为k ,一般地,弦长公式|AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]=1+1k2|y 1-y 2|=⎝⎛⎭⎫1+1k 2[(y 1+y 2)2-4y 1y 2]. (2)若弦过焦点:可用焦半径公式来表示弦长,简化运算. 如x 2a 2+y2b 2=1(a >b >0), |AB |=2a -e(x 1+x 2) (过右焦点), |AB |=2a +e(x 1+x 2) (过左焦点).如抛物线y 2=2px (p >0), |AB |=x 1+x 2+p .3.中点弦问题设A (x 1,y 1),B (x 2,y 2)是椭圆x 2a 2+y 2b 2=1上不同的两点,且x 1≠x 2,x 1+x 2≠0,M (x 0,y 0)为AB 的中点,则⎩⎨⎧x 21a 2+y 21b21,x 22a 2+y22b 21.两式相减可得y 1-y 2x 1-x 2·y 1+y 2x 1+x 2=-b 2a 2,即k AB ·y 0x 0=-b 2a2.类似地,可得圆锥曲线为双曲线x 2a 2-y 2b 2=1时,有k AB ·y 0x 0=b 2a2.圆锥曲线为抛物线y 2=2px (p >0)时,有k AB =py 0.探究点1 直线与圆锥曲线的交点问题例1 已知双曲线C :2x 2-y 2=2与点P (1, 2),求过点P 的直线l 的斜率的取值范围,使l 与C 分别有一个公共点,两个公共点,没有公共点.例1 [解答] (1)当l 垂直x 轴时,此时直线与双曲线相切,有一个公共点.(2)当l 不与x 轴垂直时,设直线l 的方程为y -2=k(x -1)代入双曲线C 的方程中,整理得(2-k 2)x 2+2(k 2-2k)x -k 2+4k -6=0, (*) 当k 2=2,即k =±2时, (*)为一次方程,显然只有一解; 当k 2≠2时,Δ=4(k 2-2k)2-4(2-k 2)(-k 2+4k -6)=48-32k.令Δ=0,可解得k =32;令Δ>0,即48-32k >0,此时k <32;令Δ<0,即48-32k <0,此时k >32.∴当k =±2或k =32或k 不存在时,l 与C 只有一个公共点;当k <-2或-2<k <2或2<k <32时,l 与C 有两个公共点;当k >32时,l 与C 没有公共点.[点评] (1)为了设出直线方程,先讨论斜率是否存在.当斜率存在时,设出方程并与双曲线方程组成方程组,消去y 得到关于x 的方程.当二次项系数为零时,直线与渐近线平行与双曲线只有一个交点;当二次项系数不为零时,若Δ=0,则有一个切点;若Δ>0,则有两个交点;Δ<0,则没有交点.(2)有关直线和圆锥曲线的范围问题,常常使用Δ来体现范围.探究点2 中点弦问题例2 椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,2),离心率e =63.(1)求椭圆的方程;(2)直线l :y =kx -2(k ≠0)与椭圆相交于不同的两点M 、N ,且满足MP →=PN →,AP →·MN →=0,求直线l 的方程.[解答] (1)设c =a 2-b 2,依题意得⎩⎪⎨⎪⎧b =2,e =c a =a 2-b 2a =63,即⎩⎪⎨⎪⎧b =2,6a 2=9a 2-9b 2,∴a 2=3b 2=12,即椭圆方程为x 212+y 24=1.(2)∵MP →=PN →,AP →·MN →=0,∴AP ⊥MN ,且点P 是线段MN 的中点, 由⎩⎪⎨⎪⎧y =kx -2,x 212+y 241,消去y ,得x 2+3(kx -2)2=12, 即(1+3k 2)x 2-12kx =0,(*),由k ≠0,得方程(*)中Δ=(-12k)2=144k 2>0,显然方程(*)有两个不相等的实数根.设M(x 1,y 1)、N(x 2,y 2),线段MN 的中点P(x 0,y 0),则x 1+x 2=12k 1+3k 2∴x 0=x 1+x 22=6k1+3k 2, ∴y 0=kx 0-2=6k 2-2(1+3k 2)1+3k 2=-21+3k 2即P ⎝⎛⎫6k 1+3k 2,-21+3k 2.∵k ≠0,∴直线AP 的斜率为k 1=-21+3k 2-26k1+3k2=-2-2(1+3k 2)6k.由MN →⊥AP →,得-2-2(1+3k 2)6k ·k =-1,∴2+2+6k 2=6,解得k =±33,故直线方程为y =±33x -2.探究点3 相交弦长与面积问题例3 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,焦点到相应准线的距离为22.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 交于A 、B 两点,坐标原点到直线l 的距离为32,求△AOB 面积的最大值.例3 [解答] (1)∵e =c a =63,a 2c -c =22,解得a =3,c =2,∴b 2=3-2=1, 椭圆C 的方程为x 23+y 2=1.(2)当AB ⊥x 轴时,⎝⎛⎭⎫3223+y 2=1,得y 2=34,AB = 3. 当AB 不垂直x 轴时,设直线l 的方程为y =kx +m ,则|m|1+k2=32,得m 2=34k 2+34. 由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1,得(3k 2+1)x 2+6kmx +3m 2-3=0,∴x 1+x 2=-6km 3k 2+1,x 1x 2=3(m 2-1)3k 2+1, |AB|=1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·36k 2m 2(3k 2+1)2-12(m 2-1)3k 2+1=12(k 2+1)(3k 2+1-m 2)(3k 2+1)2=3(k 2+1)(9k 2+1)(3k 2+1)2=3+12k29k 4+6k 2+1 =3+129k 2+1k2+6≤3+122×3+6=2(k ≠0),当且仅当9k 2=1k 2,即k =±33时,|AB|max =2,当k =0时,AB =3,综上所述|AB|max =2.∴当|AB|最大时,△AOB 面积最大值S =12×32×2=32.变式题:从椭圆x 2a 2+y2b 2=1(a >b >0)上一点M 向x 轴作垂线,恰好通过椭圆的左焦点F 1,且它的长轴端点A 及短轴端点B 的连线AB 平行于OM .(1)求椭圆的离心率;(2)当QF 2⊥AB 时,延长QF 2与椭圆交于另一点P ,若△F 1PQ 的面积为203(Q是椭圆上的点),求此时椭圆的方程. [解答] (1)如图,由题意知x M =-c , 故y M =b 2a .又△F 1OM ∽△OAB ,c a =b 2a b ⇒b =c ⇒e =22. (2)设椭圆方程为x 2a 2+y2b 2=1(a>b>0),由(1)知a 2=2b 2,方程变为x 2+2y 2=2b 2.设直线PQ 方程为y -0=2(x -b),联立方程组,得5x 2-8bx +2b 2=0, x 1+x 2=8b 5,x 1x 2=2b 25.|PQ|=|x 1-x 2|=(x 1+x 2)2-4x 1x 2=26b5∵|y 2-y 1|=|2(x 2-x 1)|=2(x 1+x 2)2-4x 1x 2=43b5S △F 1PQ =12×||PQ ×||-22b 3=203⇒b 2=25,∴a 2=50,∴椭圆方程为x 250+y 225=1.探究点4 弦的定比分点问题例4 已知椭圆x 25+y 29=1,焦点F (0,2),又点A ,B 在椭圆上,而且AF →=2FB →,求直线AB 的斜率.例4 [解答] AF →=2FB →⇒A ,F ,B 三点共线. 设AB 方程为y =kx +2,与椭圆方程联立,得 (9+5k 2)x 2+20kx -25=0, x 1+x 2=-20k 9+5k 2,x 1x 2=-259+5k2.又AF →=2FB →⇒⎩⎪⎨⎪⎧x1=-2x 2,2-y 1=2y 2-4,所以-x 2=-20k 9+5k 2,-2x 22=-259+5k 2,消去x 2,解得k =±33. 探究点5 综合应用问题例5 已知双曲线C :x 21-λ-y 2λ=1(0<λ<1)的右焦点为B ,过点B 作直线交双曲线C的右支于M 、N 两点,试确定λ的范围,使OM →·ON →=0,其中点O 为坐标原点. [解答] 设M(x 1,y 1),N(x 2,y 2),由已知易求B(1,0). 当MN 垂直于x 轴时,MN 的方程为x =1.设M(1,y 0),N(1,-y 0)(y 0>0),由OM →·ON →=0,得y 0=1,∴M(1,1),N(1,-1). 又M(1,1),N(1,-1)在双曲线上, ∴11-λ-1λ=1⇒λ2+λ-1=0⇒λ=-1±52. ∵0<λ<1,∴λ=5-12. 当MN 不垂直于x 轴时,设MN 的方程为y =k(x -1).由⎩⎪⎨⎪⎧x 21-λ-y 2λ=1,y =k (x -1),得:[λ-(1-λ)k 2]x 2+2(1-λ)k 2x -(1-λ)(k 2+λ)=0. 由题意知λ-(1-λ)k 2≠0,∴x 1+x 2=-2k 2(1-λ)λ-(1-λ)k 2,x 1x 2=-(1-λ)(k 2+λ)λ-(1-λ)k 2,∴y 1y 2=k 2(x 1-1)(x 2-1)=k 2λ2λ-(1-λ)k 2,∵OM →·ON →=0,且M 、N 在双曲线右支上, ∴⎩⎪⎨⎪⎧x 1x 2+y 1y 2=0,x 1+x 2>0,x 1x 2>0⇒⎩⎨⎧k 2=λ(1-λ)λ2+λ-1,k 2>λ1-λ⇒⎩⎪⎨⎪⎧λ(1-λ)λ2+λ-1>λ1-λ,λ2+λ-1>0⇒5-12<λ<23.综上知5-12≤λ<23. 变式题:已知点P 1(x 0,y 0)为双曲线x 28b 2-y 2b 21(b 为正常数)上任一点,F 2为双曲线的右焦点,过P 1作右准线的垂线,垂足为A ,连结F 2A 并延长交y 轴于点P 2.(1)求线段P 1P 2的中点P 的轨迹E 的方程;(2)设轨迹E 与x 轴交于B 、D 两点,在E 上任取一点Q (x 1,y 1)(y 1≠0),直线QB 、QD 分别交y 轴于M 、N 两点.求证:以MN 为直径的圆过两定点.[解答] (1)由已知得F 2(3b,0),A ⎝⎛⎭⎫83b ,y 0,则直线F 2A 的方程为y =-3y0b (x -3b),令x=0,得y =9y 0,即P 2(0,9y 0).于是直线QB 的方程为:y =y 1x 1+2b(x +2b),直线QD 的方程为y =y 1x 1-2b(x -2b),可得M ⎝⎛⎭⎪⎫0,2by 1x 1+2b ,N ⎝ ⎛⎭⎪⎫0,-2by 1x 1-2b . 则以MN 为直径的圆的方程为: ⎩⎪⎨⎪⎧x 2+⎝ ⎛⎭⎪⎫y -2by 1x 1+2b ⎝ ⎛⎭⎪⎫y +2by 1x 1-2b =0.令y =0得x 2=2b 2y 21x 21-2b 2,而Q(x 1,y 1)在x 22b 2-y 225b 2=1上,则x 21-2b 2=225·y 21,于是x =±5b , 即以MN 为直径的圆过两定点(-5b,0),(5b,0).规律总结本节问题的研究集中体现了解析几何的基本思想和方法,要求有较强的分析问题和解决问题的能力,有些问题涉及代数、三角、几何等多方面的知识,因此在复习中要注意各部分之间的联系和综合利用知识解决问题的能力.1.直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程组是否有实数解或实数解的个数问题,通过消元最终归结为讨论一个一元二次方程Ax 2+Bx +C =0的实数解的个数问题.应特别注意要分A =0和A ≠0的两种情况讨论,只有A ≠0时,才可用判别式来确定解的个数. 当直线平行于抛物线的对称轴时,直线与抛物线只有一个公共点.这些情况在解题中往往容易疏忽,要特别注意,对于选择、填空题,用数形结合往往快速简捷.2.斜率为k 的直线被圆锥曲线截得弦AB ,若A 、B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2),则|AB |=|x 1-x 2|·1+k 2=|y 1-y 2|·1+1k 2(k ≠0),利用这个公式求弦长时,应注意应用韦达定理.3.与焦点弦长有关的问题,要注意应用圆锥曲线的定义.4.在给定的圆锥曲线f (x ,y )=0中,求中点为(m ,n )的弦AB 所在直线方程时,一般可设A (x 1,y 1)、B (x 2,y 2),利用A 、B 在曲线上,得f (x 1,y 1)=0,f (x 2,y 2)=0及x 1+x 2=2m ,y 1+y 2=2n ,故可求出斜率k AB =y 1-y 2x 1-x 2,最后由点斜式写出直线AB 的方程.5.求圆锥曲线的方程时,通常利用待定系数法.。

直线和圆锥曲线的位置关系

直线和圆锥曲线的位置关系

直线和圆锥曲线的位置关系知识点一:直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系有三种:相交、相切、相离.判断的方法均是把直线方程代入曲线方程中,判断方程解的个数,从而得到直线与曲线公共点的个数,最终得到直线与曲线的位置关系.一般利用二次方程判别式来判断有无解,有几个解.1.直线0=++C By Ax 椭圆)0(12222>>=+b a by a x 的位置关系: 将直线的方程与椭圆的方程联立成方程组,消元转化为关于x 或y 一元二次方程,其判别式为∆.(1)⇔>∆0直线和椭圆相交⇔直线和椭圆有两个交点(或两个公共点);(2)⇔=∆0直线和椭圆相切⇔直线和椭圆有一个切点(或一个公共点);(3)⇔<∆0直线和椭圆相离⇔直线和椭圆无公共点.2.直线0=++C By Ax 和双曲线)0,0(12222>>=-b a by a x 的位置关系: 将直线的方程与双曲线的方程联立成方程组,消元转化为关于x 或y 的方程.(一)若为一元一次方程,则直线和双曲线的渐近线平行,直线和双曲线只有一个交点,但不相切不是切点;(二)若为一元二次方程,则(1)若0>∆,则直线和双曲线相交,有两个交点(或两个公共点);(2)若0=∆,则直线和双曲线相切,有一个切点;(3)若0<∆,则直线和双曲线相离,无公共点.注意:(1)⇒>∆0直线与双曲线相交,但直线与双曲线相交不一定有0>∆,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0>∆是直线与双曲线相交的充分条件,但不是必要条件;(2)当直线与双曲线的渐近线不平行时,⇔=∆0直线与双曲线相切;(3)如说直线和双曲线有一个公共点,则要考虑两种情况:一个切点和一个交点;当直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;(4)过双曲线)0,0(12222>>=-b a by a x 外一点),(00y x P 的直线与双曲线只有一个公共点的情况如下:①P 点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;②P 点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;③P 在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;④P 为原点时不存在这样的直线;3.直线0=++C By Ax 和抛物线)0(22>=p px y 的位置关系:将直线的方程与抛物线的方程联立成方程组,消元转化为关于x 或y 方程.(一)若方程为一元一次方程,则直线和抛物线的对称轴平行,直线和抛物线有一个交点,但不相切不是切点;(二)若为一元二次方程,则(1)若0>∆,则直线和抛物线相交,有两个交点(或两个公共点);(2)若0=∆,则直线和抛物线相切,有一个切点;(3)若0<∆,则直线和抛物线相离,无公共点.注意:(1)⇒>∆0直线与抛物线相交,但直线与抛物线相交不一定有0>∆,当直线与抛物线的对称轴重合或平行时,直线与抛物线相交且只有一个交点,故0>∆也仅是直线与抛物线相交的充分条件,但不是必要条件.(2)当直线与抛物线的对称轴不重合或平行时,⇔=∆0直线与抛物线相切;(3)如说直线和抛物线有一个公共点,则要考虑两种情况:一个切点和一个交点;当直线与抛物线的轴平行时,直线与抛物线相交,也只有一个交点;(4)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线.知识点二:圆锥曲线的弦1.直线被圆锥曲线截得的线段称为圆锥曲线的弦.当直线的斜率k 存在时,直线b kx y +=与圆锥曲线相交于),(),,(2211y x B y x A ,两点,把直线方程代入曲线方程中,消元后所得一元二次方程为02=++c bx ax .则弦长公式:2121x x k AB -+=其中aa c ab x x x x x x ∆=--=-+=-4)(4)(22122121 当k 存在且不为零时, 弦长公式还可以写成:21211y y k AB -+=. 注意:当直线的斜率不存在时,不能用弦长公式解决问题,21y y AB -=.2.焦点弦:若弦过圆锥曲线的焦点叫焦点弦;抛物线)0(22>=p px y 的焦点弦公式α221sin 2p p x x AB =++=,其中α为过焦点的直线的倾斜角.3.通径:若焦点弦垂直于焦点所在的圆锥曲线的对称轴,此时焦点弦也叫通径.椭圆和双曲线的通径为ab AB 22=,抛物线的通径p AB 2=. 知识点三:圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解. ①在椭圆12222=+b y a x 中,以),(00y x P 为中点的弦所在直线的斜率0202y a x b k -=;②在双曲线12222=-b y a x 中,以),(00y x P 为中点的弦所在直线的斜率0202y a x b k =; ③在抛物线)0(22>=p px y 中,以),(00y x P 为中点的弦所在直线的斜率0y p k =. 注意:因为0>∆是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验0>∆!知识点四:求曲线的方程1. 定义:在直角坐标系中,用坐标表示点,把曲线看成满足某种条件的点的集合或轨迹,用曲线上点的坐标),(y x 所满足的方程0),(=y x f 表示曲线,通过研究方程的性质间接地来研究曲线的性质.这就是坐标法.2. 坐标法求曲线方程的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中涉及的几何因素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:把代数运算结果“翻译”成几何结论.通过坐标法,把点和坐标、曲线和方程联系起来,实现了形和数的统一.用坐标法解决几何问题时,先用坐标和方程表示相应的几何对象,然后对坐标和方程进行代数讨论;最后再把代数运算结果“翻译”成相应的几何结论.这就是用坐标法解决平面几何问题的“三步曲”. 3.求轨迹方程的常用方法:直接法、定义法、代入法、参数法等.规律方法指导1.直线与圆锥曲线的位置关系的研究方法可通过代数方法即解方程组的办法来研究.因为直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解或实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法.2.直线与圆锥曲线的位置关系,是高考考查的重中之重.主要涉及弦长、弦中点、对称、参量的取值范围、求曲线方程等问题.解题中要充分重视韦达定理和判别式的应用.3.当直线与圆锥曲线相交时涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来相互转化,同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”.4.解决直线与圆锥曲线的位置关系问题时,对消元后的一元二次方程,必须讨论二次项的系数和判别式,有时借助于图形的几何性质更为方便.。

直线与圆锥曲线的位置关系直线与圆锥曲线相交的弦长公式

直线与圆锥曲线的位置关系直线与圆锥曲线相交的弦长公式

直线与圆锥曲线的位置关系(1)从几何角度看:要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。

(2)从代数角度看:设直线L的方程与圆锥曲线的方程联立得到ax°+bx+c=0.①.若a=0,当圆锥曲线是双曲线时,直线L与双曲线的渐进线平行或重合;当圆锥曲线是抛物线时,直线L与抛物线的对称轴平行或重合。

1、圆锥曲线的范围问题有两种常用方法:(1)寻找合理的不等式,常见有△>0和弦的中点在曲线内部;(2)所求量可表示为另一变量的函数,求函数的值域。

2、圆锥曲线的最值、定值及过定点等难点问题。

直线与圆锥曲线的位置关系:(1)从几何角度来看,直线和圆锥曲线有三种位置关系:相离、相切和相交,相离是直线和圆锥曲线没有公共点,相切是直线和圆锥曲线有唯一公共点,相交是直线与圆锥曲线有两个不同的公共点,并特别注意直线与双曲线、抛物线有唯一公共点时,并不一定是相切,如直线与双曲线的渐近线平行时,与双曲线有唯一公共点,但这时直线与双曲线相交;直线平行(重合)于抛物线的对称轴时,与抛物线有唯一公共点,但这时直线与抛物线相交,故直线与双曲线、抛物线有唯一公共点时可能是相切,也可能是相交,直线与这两种曲线相交,可能有两个交点,也可能有一个交点,从而不要以公共点的个数来判断直线与曲线的位置关系,但由位置关系可以确定公共点的个数.(2)从代数角度来看,可以根据直线方程和圆锥曲线方程组成的方程组解的个数确定位置关系.设直线l的方程与圆锥曲线方程联立得到ax2+bx+c=0.①若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行或重合;当圆锥曲线是抛物线时,直线l与抛物线的对称轴平行或重合.②若当Δ>0时,直线和圆锥曲线相交于不同两点,相交.当Δ=0时,直线和圆锥曲线相切于一点,相切.当Δ<0时,直线和圆锥曲线没有公共点,相离.直线与圆锥曲线相交的弦长公式:若直线l与圆锥曲线F(x,y)=0相交于A,B两点,求弦AB的长可用下列两种方法:(1)求交点法:把直线的方程与圆锥曲线的方程联立,解得点A,B 的坐标,然后用两点间距离公式,便得到弦AB的长,一般来说,这种方法较为麻烦.(2)韦达定理法:不求交点坐标,可用韦达定理求解.若直线l的方程用y=kx+m或x=n表示.。

直线与圆锥曲线的位置关系

直线与圆锥曲线的位置关系

规律提示:通过直线的代数形式,可以看出直线的特点::101l y kx =+⇒过定点(,):(1)1l y k x =+⇒-过定点(,0):2(1)1l y k x -=+⇒-过定点(,2)证明直线过定点,也是将满足条件的直线整理成以上三种形式之一,再得出结论。

练习:1、过点P(3,2) 和抛物线232--=x x y 只有一个公共点的直线有( )条。

A .4B .3C .2D .1分析:作出抛物线232--=x x y ,判断点P(3,2)相对抛物线的位置。

解:抛物线232--=x x y 如图,点P (3,2)在抛物线的内部,根据过抛物线内一点和抛物线的对称轴平行或重合的直线和抛物线只有一个交点,可知过点P(3,2) 和抛物线232--=x x y 只有一个公共点的直线有一条。

故选择D规律提示:含焦点的区域为圆锥曲线的内部。

(这里可以用公司的设备画图)一、过一定点P 和抛物线只有一个公共点的直线的条数情况:(1)若定点P 在抛物线外,则过点P 和抛物线只有一个公共点的直线有3条:两条切线,一条和对称轴平行或重合的直线;(2)若定点P 在抛物线上,则过点P 和抛物线只有一个公共点的直线有2条:一条切线,一条和对称轴平行或重合的直线;(3)若定点P 在抛物线内,则过点P 和抛物线只有一个公共点的直线有1条:和抛物线的对称轴平行或重合的直线和抛物线只有一个交点。

二、过定点P 和双曲线只有一个公共点的直线的条数情况:(1)若定点P 在双曲线内,则过点P 和双曲线只有一个公共点的直线有2条:和双曲线的渐近线平行的直线和双曲线只有一个公共点;(2)若定点P 在双曲线上,则过点P 和双曲线只有一个公共点的直线有3条:一条切线,2条和渐近线平行的直线;(3)若定点P 在双曲线外且不在渐近线上,则过点P 和双曲线只有一个公共点的直线有4条:2条切线和2条和渐近线平行的直线;(4)若定点P 在双曲线外且在一条渐近线上,而不在另一条渐近线上,则过点P 和双曲线只有一个公共点的直线有2条:一条切线,一条和另一条渐近线平行的直线;(5)若定点P 在两条渐近线的交点上,即对称中心,过点P 和双曲线只有一个公共点的直线不存在。

直线与圆锥曲线的位置关系

直线与圆锥曲线的位置关系

直线与圆锥曲线的位置关系一、基本知识概要:1.直线与圆锥曲线的位置关系:相交、相切、相离。

从代数的角度看是直线方程和圆锥曲线的方程组成的方程组,无解时必相离;有两组解必相交;一组解时,若化为x 或y 的方程二次项系数非零,判别式⊿=0时必相切,若二次项系数为零,有一组解仍是相交。

2. 弦:直线被圆锥曲线截得的线段称为圆锥曲线的弦。

焦点弦:若弦过圆锥曲线的焦点叫焦点弦;通径:若焦点弦垂直于焦点所在的圆锥曲线的对称轴,此时焦点弦也叫通径。

3.①当直线的斜率存在时,弦长公式:2121x x k l -+==[]2122124)()1(x x x x k -+⋅+或当k 存在且不为零时21211y y kl -+=,(其中(11,y x ),(22,y x )是交点坐标)。

②抛物线px y 22=的焦点弦长公式|AB|=α221sin 2pp x x =++,其中α为过焦点的直线的倾斜角。

4.重点难点:直线与圆锥曲线相交、相切条件下某些关系的确立及其一些字母范围的确定。

5.思维方式: 方程思想、数形结合的思想、设而不求与整体代入的技巧。

6.特别注意:直线与圆锥曲线当只有一个交点时要除去两种情况,些直线才是曲线的切线。

一是直线与抛物线的对称轴平行;二是直线与双曲线的渐近线平行。

二、例题:【例1】直线y=x+3与曲线14||92=-x x y ( ) A 。

没有交点 B 。

只有一个交点 C 。

有两个交点 D 。

有三个交点〖解〗:当x>0时,双曲线14922=-x y 的渐近线为:x y 23±=,而直线y=x+3的斜率为1,1<3/2,因此直线与双曲线的下支有一交点,又y=x+3过椭圆14922=+x y 的顶点,k=1>0因此直线与椭圆左半部分有一交点,共计3个交点,选D [思维点拔]注意先确定曲线再判断。

【例2】已知直线)22tan(:+=x y l 交椭圆9922=+y x 于A 、B 两点,若α为l 的倾斜角,且AB 的长不小于短轴的长,求α的取值范围。

直线与圆锥曲线的位置关系教案

直线与圆锥曲线的位置关系教案

直线与圆锥曲线的位置关系教案一、教学目标1. 理解直线与圆锥曲线的位置关系,掌握相关概念和性质。

2. 能够运用直线与圆锥曲线的位置关系解决实际问题。

3. 培养学生的逻辑思维能力和数学解决问题的能力。

二、教学内容1. 直线与圆锥曲线的基本概念和性质。

2. 直线与圆锥曲线的相切、相离和相交情况。

3. 直线与圆锥曲线的交点个数与判别式。

4. 直线与圆锥曲线的应用问题。

三、教学方法1. 采用讲解、案例分析、练习相结合的教学方法。

2. 通过图形演示和实际例子,引导学生直观理解直线与圆锥曲线的位置关系。

3. 鼓励学生进行自主学习和合作学习,提高解决问题的能力。

四、教学准备1. 教学课件和教学素材。

2. 直尺、圆规等绘图工具。

3. 练习题和答案。

五、教学过程1. 引入:通过简单的例子,引导学生思考直线与圆锥曲线的位置关系。

2. 讲解:讲解直线与圆锥曲线的基本概念和性质,解释相切、相离和相交情况的定义。

3. 案例分析:分析具体的直线与圆锥曲线的位置关系案例,引导学生通过判别式判断交点个数。

4. 练习:让学生进行相关的练习题,巩固所学知识。

6. 作业布置:布置相关的练习题,巩固所学知识。

六、教学拓展1. 探讨直线与圆锥曲线的位置关系在实际问题中的应用,如光学、工程等领域。

2. 介绍直线与圆锥曲线位置关系在现代数学中的研究进展和应用。

七、课堂小结1. 回顾本节课所学内容,直线与圆锥曲线的位置关系及其应用。

2. 强调重点概念和性质,提醒学生注意在实际问题中的应用。

八、作业布置1. 完成课后练习题,巩固所学知识。

2. 选择一道与直线与圆锥曲线位置关系相关的综合应用题,进行练习。

九、课后反思1. 学生对本节课内容的掌握程度,哪些方面需要加强。

2. 教学方法的适用性,是否达到预期教学效果。

十、教学评价1. 学生作业、练习题和课堂表现的评价。

2. 对学生掌握直线与圆锥曲线位置关系知识的程度的评价。

3. 教学反馈,了解学生对教学内容的满意度和建议。

高考数学一轮复习直线与圆锥曲线的位置关系课件理

高考数学一轮复习直线与圆锥曲线的位置关系课件理

4.椭圆 ax2+by2=1 与直线 y=1-x 交于 A、B 两点,若
过原点与线段 AB 中点的直线的倾斜角为 30°,则ab的值为( )
3
3
A. 4 B. 3
3 C. 2 D. 3
解析:设 AB 的中点为 M(x0,y0),A(x1,y1),B(x2, y2),
由点差法得yx11- -yx22=-abxy00=-1,
解析:方法 1:设以 Q 为中点的弦 AB 端点坐标为 A(x1, y1),B(x2,y2),则有 y12=8x1,y22=8x2,
两式相减,得(y1-y2)(y1+y2)=8(x1-x2). 又 x1+x2=8,y1+y2=2, 则 k=xy22--xy11=y1+8 y2=4,
∴所求直线 AB 的方程为 y-1=4(x-4), 即 4x-y-15=0. 方法 2:设弦 AB 所在的直线方程为 y=k(x-4)+1,
由yy= 2=k8xx-4+1, 消去 x 整理,得 ky2-8y-32k+8=0. 设 A(x1,y1),B(x2,y2),
由韦达定理得 y1+y2=8k. 又∵Q 是 AB 中点,∴y1+2 y2=1,
∴8k=2,∴k=4. ∴弦 AB 所在直线方程为 4x-y-15=0.
点评:有关弦中点轨迹、中点弦所在直线的方程,中点坐 标的问题,有时采用“平方差”法,可优化解题方法,简化运 算.
=2 5m+20.
(3)设线段 AB 中点坐标为(x,y),则 x=x1+2 x2=-2, y=y1+2 y2=2x1+2 x2=-4. ∴AB 中点坐标为(-2,-4).
题型三 圆锥曲线的中点弦问题 例 3 过点 Q(4,1)作抛物线 y2=8x 的弦 AB,恰被 Q 所平分, 求 AB 所在直线的方程.

直线与圆锥曲线的位置关系的判断

直线与圆锥曲线的位置关系的判断

1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c =0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0⇔直线与圆锥曲线相交;②Δ=0⇔直线与圆锥曲线相切;③Δ<0⇔直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点,①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;②若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则|AB|=1+k2|x2-x1|=1+1k2|y2-y1|.【知识拓展】过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上一点总有三条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线;过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线l与抛物线y2=2px只有一个公共点,则l与抛物线相切.(×)(2)直线y=kx(k≠0)与双曲线x2-y2=1一定相交.(×)(3)与双曲线的渐近线平行的直线与双曲线有且只有一个交点.(√)(4)直线与椭圆只有一个交点⇔直线与椭圆相切.(√)。

直线与圆锥曲线的关系

直线与圆锥曲线的关系

直线与圆锥曲线的关系林秀雅一、定点问题1、直线l 交抛物线22(0)y px p =>于A 、B 两点,212y y p =- , 求证:直线l 过抛物线焦点F .1、已知直线l 与抛物线m :22y px =(p >0)交于A 、B 两点,若0OA OB =.求证:直线l 必过一定点.2、已知定点0,0()M x y 在抛物线m :22y px =(p >0)上,动点,A B m ∈且0MA MB =.求证:弦AB 必过一定点.3、如图,在双曲线2211213y x -=的上支上有三点()11,A x y ,()2,6B x ,()33,C x y ,它们与点()0,5F 的距离成等差数列.()1求13y y +的值;()2证明:线段AC 的垂直平分线经过某一定点,并求此点坐标.二、定值问题。

1、(2000年全国高考)过抛物线m :2y ax =(a >0)的焦点F 作直线l 交抛物线于,P Q 两点,若线段PF 与FQ 的长分别为,p q ,则11p q --+的值必等于( ) A .2a B .12a C .4a D .4a2、若双曲线方程为x a y b22221-=,AB 为不平行于对称轴且不过原点的弦,M 为AB 中点,设AB 、OM 的斜率分别为k k AB OM 、,则AB OM k k ⋅= 。

3、(2004年 北京)过抛物线22y px =(p >0)上一定点000(,)(P x y y >0),作两条直线分别交抛物线于11(,)A x y ,22(,)B x y ,求证:PA 与PB 的斜率存在且倾斜角互补时,直线AB 的斜率为非零常数.4、已知定点0,0()M x y 在抛物线m :22y px =(p >0)上,动点,A B m ∈且0MA MB =.求证:弦AB 必过一定点.三、对称问题1、求抛物线C :y2-2x -4y +6=0关于下列元素的对称曲线:⑴点(0,1);⑵直线x +y -1=0;2、抛物线y=x2+3x -1上存在两个不同点关于直线x +y=0对称,求这两个点的坐标.3、已知抛物线px y 22=()0>p 上存在关于直线1=+y x 对称的两点,求p 的取值范围4、如果抛物线12-=ax y 上总有关于直线0=+y x 对称的相异两点,求a 的取值范围四、存在性问题1.已知A 、B 为抛物线x 2=2py (p >0)上两点,直线AB 过焦点F ,A 、B 在准线上的射影分别为C 、D .(1)若6-=∙,求抛物线的方程。

直线与圆锥曲线的位置关系

直线与圆锥曲线的位置关系

基本计算
1. 如果直线的斜率为k,被圆锥曲线截得弦AB两 端点坐标分别为(x1,y1)、(x2 ,y2)则弦长公式为:
| AB | 1 k x1 x2
2
1 k ( x1 x2 ) 4 x1 x2
2 2
2.在与弦中点、弦的斜率有关的题型中,用韦达 定理是常见思路。
例1 已知抛物线的方程为 y 4 x ,直线 l 过定点P(-2,1),斜率为 k ,k 为值时,直线 l 与抛物线 y 2 4 x :只有一个公共点;有两个公 共点;没有公共点?
b|b 公共点,则b的取值范围为
2 若直线y=x+b与曲线
x 1y
2
恰好有一个
2或 - 1 b 1

3 在y轴上的截距为1的直线与焦点在x轴上的椭圆
x2 y2 1恒有公共,则m的取值范围是 [1,5)∪(5,+∞) 变2.是否存在实数m,使在y轴上的截距为1的直
基本方法
1 直线与圆锥曲线的位置关系可以通过对直线方 程与圆锥曲线方程组成的二元二次方程组的解的情 况的讨论来研究,即方程消元后得到一个一元二次 方程,利用判别式 来讨论。 2 直线与圆锥曲线的位置关系,还可以利用数形 结合、以形助数的方法来解决。 3 特殊情形: (1)在双曲线中,当直线平行于其渐近线时,直 线与双曲线有且仅有一个公共点。 (2)在抛物线中,平行于其对称轴的的直线和抛 物线有且仅有一个公共点。
2 x2 y2 y 2 1 2x 1 )恒有公共 线与椭圆 (或 5 m m
点。若存在,则求出m;若不存在,请说明理由。
y2 x2 变3.不论k为何值,直线y=kx+b 与椭圆 1 9 4 总有公共点,则b的取值范围为 -3≤b≤3

直线与圆锥曲线的位置关系教案

直线与圆锥曲线的位置关系教案

直线与圆锥曲线的位置关系教案一、教学目标1. 知识与技能:(1)理解直线与圆锥曲线的位置关系;(2)学会运用直线与圆锥曲线的性质解决相关问题。

2. 过程与方法:(1)通过观察、分析、推理等方法,探索直线与圆锥曲线的位置关系;(2)培养学生的逻辑思维能力和解决问题的能力。

3. 情感态度与价值观:(1)激发学生对数学的兴趣和好奇心;(2)培养学生的团队合作精神,提高学生的表达沟通能力。

二、教学重点与难点1. 教学重点:(1)直线与圆锥曲线的位置关系;(2)运用直线与圆锥曲线的性质解决相关问题。

2. 教学难点:(1)直线与圆锥曲线的位置关系的判断;(2)灵活运用直线与圆锥曲线的性质解决实际问题。

三、教学过程1. 导入:(1)复习相关知识点,如直线、圆锥曲线的定义及性质;(2)提出问题,引导学生思考直线与圆锥曲线的位置关系。

2. 探究:(1)分组讨论,让学生观察直线与圆锥曲线的位置关系,总结规律;(2)每组派代表分享探究成果,师生共同总结直线与圆锥曲线的位置关系。

3. 讲解:(1)讲解直线与圆锥曲线的位置关系的判断方法;(2)举例说明如何运用直线与圆锥曲线的性质解决实际问题。

4. 练习:(1)布置课堂练习题,让学生巩固所学知识;(2)挑选部分练习题进行讲解,解答学生疑问。

5. 总结:(1)回顾本节课所学内容,让学生梳理知识体系;(2)强调直线与圆锥曲线位置关系在实际问题中的应用。

四、课后作业1. 完成课堂练习题;2. 选取一个实际问题,运用直线与圆锥曲线的性质进行解答;3. 预习下一节课内容。

五、教学反思1. 反思教学效果:(1)学生对直线与圆锥曲线的位置关系的掌握程度;(2)学生运用直线与圆锥曲线的性质解决实际问题的能力。

2. 改进措施:(1)针对学生掌握不足的地方,进行有针对性的讲解和练习;(2)提供更多实际问题,让学生锻炼运用所学知识解决问题的能力。

六、教学评价1. 学生自评:(1)评价自己在课堂学习中的表现,如参与度、理解程度等;(2)反思自己在课后作业中的表现,如完成情况、解决问题能力等。

直线与椭圆的位置关系

直线与椭圆的位置关系

直线与椭圆的位置关系1. 求解直线与圆锥曲线的位置关系的基本方法是解方程组,转化为利用判别式判断一元二次方程是否有解,应特别注意数形结合思想的应用.2. 注意根与系数的关系的应用. (1)弦长公式:斜率为k 的直线被圆锥曲线截得弦AB ,若A 、B 两点的坐标分别是()11,A x y ,()22,B x y 则221212()()AB x x y y =-+-2121k x x =+-221212(1)[()4]k x x x x =++-21k a∆=+.3. 有关中点弦问题.(1)已知直线与圆锥曲线方程,求弦的中点及与中点有关的问题,常用根与系数的关系. (2)有关弦的中点轨迹,中点弦所在直线方程,中点坐标问题,有时采用“点差法”可简化运算.4. 圆锥曲线中的有关最值问题,常用代数法和几何法解决.(1)若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决.(2)若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数、三角函数、均值不等式等)求最值.二、题型梳理1.直线与椭圆位置关系的判断将直线的方程和椭圆的方程联立,通过讨论此方程组的实数解的组数来确定,即用消元后的关于x (或y )的一元二次方程的判断式Δ的符号来确定:当Δ>0时,直线和椭圆相交;当Δ=0时,直线和椭圆相切;当Δ<0时,直线和椭圆相离.2.直线和椭圆相交的弦长公式 |AB |=1+k 2[x 1+x 22-4x 1x 2] 或|AB |=⎝⎛⎭⎫1+1k 2[y 1+y 22-4y 1y 2]. 3.直线与椭圆相交时的常见处理方法当直线与椭圆相交时:涉及弦长问题,常用“根与系数的关系”,设而不求计算弦长;涉及到求平行弦中点的轨迹、求过定点的弦中点的轨迹和求被定点平分的弦所在的直线方程问题,常用“点差法”设而不求,将动点的坐标、弦所在直线的斜率、弦的中点坐标联系起来,相互转化.考点1点差法与中点弦例1 (1)椭圆221164x y+=的弦被点()2,1P所平分,求此弦所在直线的方程.(2)已知椭圆C:x2a2+y2b2=1(a>b>0)过点P(-1,-1),c为椭圆的半焦距,且c=2b.过点P作两条互相垂直的直线l1,l2与椭圆C分别交于另两点M,N.(1)求椭圆C的方程;(2)若直线l1的斜率为-1,求△PMN的面积;(3)若线段MN的中点在x轴上,求直线MN的方程.考点2直线与圆锥曲线的位置关系例2 在平面直角坐标系xOy中,经过点(0且斜率为k的直线l与椭圆221 2xy+=有两个不同的交点P和Q.求k的取值范围.规律方法(1)解决直线与圆锥曲线的交点问题的方法:一是判别式法;二是几何法;(2)直线与圆锥曲线有唯一交点,不等价于直线与圆锥曲线相切,还有一种情况是平行于对称轴(抛物线)或平行于渐近线(双曲线);(3)联立方程组、消元后得到一元二次方程,不但要对∆进行讨论,还要对二次项系数是否为0进行讨论.考点3 与弦长有关的问题例3 已知椭圆:1922=+y x ,过左焦点F 作倾斜角为π6的直线l 交椭圆于A 、B 两点,求弦AB 的长.考点4 例4 过点)0 ,3(-P 面积的最大值及此时直线倾斜角的正切值.例5 如图,在平面直角坐标系xOy 中,已知椭圆)0(12222>>=+b a by a x (a>b>0)的离心率为22,且右焦点F 到左准线l 的距离为3. (1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC=2AB ,求直线AB 的方程.yxOABP考点5 椭圆中的定点、定值问题例6 椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,过其右焦点F 与长轴垂直的弦长为1.(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A ,B ,点P 是直线x =1上的动点,直线P A 与椭圆的另一交点为M ,直线PB 与椭圆的另一交点为N .求证:直线MN 经过一定点.例7 如图,在平面直角坐标系xOy 中,已知A ,B ,C 是椭圆x 2a 2+y 2b 2=1(a >b >0)上不同的三点,A ⎝⎛⎭⎫32,322,B (-3,-3),C 在第三象限,线段BC 的中点在直线OA 上.(1)求椭圆的标准方程; (2)求点C 的坐标;(3)设动点P 在椭圆上(异于点A ,B ,C ),且直线PB ,PC 分别交直线OA 于M ,N 两点,证明:OM →·ON →为定值,并求出该定值.探究提高 (1)求定值问题常见的方法有两种:△从特殊入手,求出定值,再证明这个值与变量无关.△直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2)如果要解决的问题是一个定点问题,而题设条件又没有给出这个定点,那么,我们可以这样思考:由于这个定点对符合要求的一些特殊情况必然成立,那么我们根据特殊情况先找到这个定点,明确解决问题的目标,然后进行推理探究,这种先根据特殊情况确定定点,再进行一般性证明的方法就是由特殊到一般的方法.考点6 圆锥曲线中的最值、范围问题例8 已知圆为圆上一动点,点P 在AM 上,点N 在CM 上,且满足的轨迹为曲线E.(I )求曲线E 的方程;(II )若过定点F (0,2)的直线交曲线E 于不同的两点G 、H (点G 在点F 、H 之间),且满足,求的取值范围.M A y x C ),0,1(,8)1(:22定点=++N AM NP AP AM 点,0,2=⋅=λ=λ1.已知直线y =-x +1与椭圆22221(0)x y a b a b+=>>相交于A 、B 两点,且线段AB 的中点在直线l :x -2y =0上,求此椭圆的离心率.2.已知椭圆C 的方程x y 22431+=,试确定m 的取值范围,使得对于直线4y x m =+,椭圆C 上有不同两点关于该直线对称.3.已知椭圆C :)0(12222>>=+b a b y a x 的右焦点为F ,离心率22=e ,椭圆C 上的点到F的距离的最大值为12+,直线l 过点F 与椭圆C 交于不同的两点,.A B (1) 求椭圆C 的方程; (2) 若223||=AB ,求直线l 的方程.4.已知椭圆22221(0)x y a b a b+=>>,直线:l y kx m =+交椭圆于不同的两点A ,B .(Ⅰ)求椭圆的方程;(Ⅱ)若坐标原点O 到直线l 的距离为2,求AOB ∆面积的最大值.5.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (-1,-1),c 为椭圆的半焦距,且c =2b .过点P作两条互相垂直的直线l 1,l 2与椭圆C 分别交于另两点M ,N . (1)求椭圆C 的方程;(2)若直线l 1的斜率为-1,求△PMN 的面积; (3)若线段MN 的中点在x 轴上,求直线MN 的方程.6.已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(△)求椭圆C 的标准方程;(△)若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.7.已知,椭圆C 以过点A (1,),两个焦点为(-1,0)(1,0). (1) 求椭圆C 的方程;(2) E ,F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.32本次课课后练习1.椭圆221369x y +=的一条弦被()4,2A 平分,那么这条弦所在的直线方程是 .2.已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.3.已知椭圆C 1:x 24+y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.(1)求椭圆C 2的方程;(2)设O 为坐标原点,点A ,B 分别在椭圆C 1和C 2上,OB =2OA ,求直线AB 的方程.4.如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (1,0),离心率为22.分别过O ,F 的两条弦AB ,CD 相交于点E (异于A ,C 两点),且OE =EF . (1)求椭圆的方程;(2)求证:直线AC ,BD 的斜率之和为定值.5.已知,A B 是椭圆C :()222210x y a b a b+=>>的左,右顶点,B (2,0),过椭圆C 的右焦点F 的直线交于其于点M , N , 交直线4x =于点P ,且直线PA ,PF ,PB 的斜率成等差数列. (△)求椭圆C 的方程;(△)若记,AMB ANB ∆∆的面积分别为12,S S 求12S S 的取值范围.x6.已知椭圆的中点为坐标原点O,椭圆短轴长为2,动点M(2,t)(t>0)在椭圆的准线上.(1)求椭圆的标准方程.(2)求以OM为直径且被直线3x-4y-5=0截得的弦长为2的圆的方程;(3)设点F是椭圆的右焦点,过点F作OM的垂线FH,且与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值.。

直线与圆锥曲线的位置关系教案

直线与圆锥曲线的位置关系教案

课题:直线与圆锥曲线的位置关系授课者:滦县第十中学陈智勇高考要求1掌握直线与圆锥曲线公共点问题、相交弦问题以及它们的综合应用解决这些问题经常转化为它们所对应的方程构成的方程组是否有解或解的个数问题2会运用“设而不求”解决相交弦长问题及中点弦问题3会利用圆锥曲线的焦半径公式解决焦点弦的问题掌握求焦半径以及利用焦半径解题的方法4会用弦长公式|AB|=21k|x2-x1|求弦的长;5会利用“设点代点、设而不求”的方法求弦所在直线的方程(如中点弦、相交弦等)、弦的中点的轨迹等一、复习目标(一)知识目标1、掌握用坐标法判断直线与圆锥曲线的位置关系,进一步体会曲线方程的解与曲线上点的坐标之间的关系;2、领会中点坐标公式和弦长公式及韦达定理在解题中的灵活应用;3、理解“点差法”在解决直线与圆锥曲线位置关系中的解题技巧;(二)能力目标1、通过多媒体课件的演示,培养学生发现运动规律、认识规律的能力.2、培养学生运用方程思想、分类讨论、数形结合思想解决问题的能力.(三)情感目标1、通过课件的演示获得培养学生探索数学的兴趣.2、通过师生、生生的合作学习,树立竞争意识与合作精神,感受学习交流带来的成功感,激发提出问题和解决问题的勇气,树立自信心。

二、教学重点与难点重点:直线与圆锥曲线的位置关系的判定及方程思想、分类讨论思想、数形结合思想运用;难点:等价转换、“点差法”设而不求在解题中的灵活应用。

三、方法指导:1、在研究直线与圆锥曲线的交点个数问题时,不要仅由判别式进行判断,一定要注意二次项的系数对交点个数的影响。

2、涉及弦长问题时,利用弦长公式及韦达定理求解,涉及弦的中点及中点弦问题,利用点差法较为简便。

3、要注意判别式和韦达定理在解题中的作用。

应用判别式,可以确定直线和圆锥曲线的位置关系,确定曲线中的参数取值范围,求几何极值等。

应用韦达定理,可以解先相交时的弦长问题,弦的中点问题或最值问题。

4、 要重视方程思想、等价转换思想、分类讨论、数形结合等数学思想的运用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第10讲:直线与圆锥曲线的位置关系【知识整合】1. 直线与椭圆的关系(1)直线与椭圆的位置关系直线与椭圆有三种位置关系:相交、相切、相离 将直线方程与椭圆的方程联立消去一个未知数,可得到一个一元二次方程,若方程有两个不等的解(0>∆),则直线与椭圆相交;若方程有两个相等的解(0=∆),则直线与椭圆相切;若方程无解(0<∆),则直线与椭圆相离。

(2)椭圆的切线①椭圆)0(12222>>=+b a by a x 上一点),(00y x P 处的切线方程为12020=+b y y a x x 。

②直线0=++C By Ax 与椭圆12222=+by a x 相切的条件为22222C b B a A =+。

③过椭圆外一点),(00y x P 引椭圆的两条切线,切点分别为21,P P ,则直线21P P (切点弦所在的直线)的方程为12020=+byy a x x 。

(3)直线与椭圆相交形成的弦长问题设直线与椭圆交于),(),,(222111y x P y x P 两点,直线21P P 的斜率为k ,则22122121)()(||y y x x P P -+-=])(1[)(22121221x x y y x x --+-=)1()(2221k x x +-=即221211||||k x x P P +-=同理可得)0(11||||22121≠+-=k ky y P P (4)弦的中点问题把直线的方程与椭圆的方程联立起来消去y ,可导出一个一元二次方程02=++q px x ,用根与系数的关系可求出弦的中点的横坐标,再把它代入直线的方程,就可求出弦的中点的纵坐标。

设直线l 与椭圆)0(12222>>=+b a by a x 相交于A ,B 两点,坐标分别为),(),,(2211y x y x ,线段AB 的中点为),(00y x M ,则⎪⎪⎩⎪⎪⎨⎧=+=+②①11222222221221b y a x b y a x②①-,得2222122221a x x b y y --=-,02020022212122212122y a x b y x a b y y x x a b x x y y -=⋅-=++⋅-=--所以直线AB 的斜率为0202y a x b k -=。

2. 直线与抛物线的关系(1)直线与抛物线的位置关系直线与抛物线有三种位置关系:相交,相切,相离。

相交:直线与抛物线交于两个不同点或直线与抛物线的轴平行。

相切:直线与抛物线有且只有一个公共点,且直线与抛物线的对称轴不平行 相离:直线与抛物线无公共点。

(2)直线与抛物线的位置关系的判断把直线的方程和抛物线的方程联立起来得到一个方程组。

①方程组有一组解⇔直线与抛物线相交或相切(1个公共点); ②方程组有二组解⇔直线与抛物线相交(2个公共点); ③方程组无解⇔直线与抛物线相离。

(3)抛物线的切线①抛物线)0(22>=p px y 上一点),(00y x M 处的切线方程为)(00x x p y y +=②直线0=++C By Ax 与抛物线)0(22>=p px y 相切的条件是AC pB 22=。

③过抛物线)0(22>=p px y 外一点),(00y x M 引抛物线的两条切线,切点弦所在直线的方程为)(00x x p y y +=。

(4)直线与抛物线相交形成的弦的有关问题设线段AB 为抛物线)0(22>=p px y 的弦,A ,B 的坐标为),(),,(2211y x y x ,直线AB 的斜率为k ,弦AB 的中点为),(00y x M ,则①)0(11||1||||221221≠+-=+-=k k y y k x x AB②02121212y py y p x x y y k =+=--=3. 直线与双曲线的关系(1)直线与双曲线的位置关系直线与双曲线有三种位置关系:相交、相切,相离。

相交:直线与双曲线有两个公共点或有一个公共点(直线与渐近线平行)。

相切:直线与双曲线有且只有一个公共点,且直线不平行与双曲线的渐近线。

相离:直线与双曲线无公共点。

(2)把直线的方程和双曲线的方程联立起来得到一个方程组。

①方程组有一组解⇔直线与双曲线相交或相切(1个公共点);②方程组有二组解⇔直线与双曲线相交(2个公共点,交于一支或二支); ③方程组无解⇔直线与双曲线相离。

(3)双曲线的切线①双曲线)0,0(12222>>=-b a b y a x 上一点),(00y x P 处的切线的方程为12020=-byy a x x ; ②设直线0=++C By Ax 与双曲线12222=-b y a x 与12222=-bx a y 相切的条件分别是2222222222,C b A a B C b B a A =-=-;③过双曲线12222=-b y a x 外一点),(00y x P 引双曲线的两条切线,切点弦的方程为12020=-byy a x x 。

(4)直线与双曲线相交形成的弦长设直线b kx y +=与双曲线12222=-by a x 相交于),(),,(222111y x P y x P 两点,则22122121)()(||y y x x P P -+-=2211||k x x +-= )0(11||221≠+-=k ky y(5)与弦的中点有关的问题弦所在直线的斜率:设双曲线上两点A ,B 连线的中点为),(00y x P ,双曲线的方程为)0,0(12222>>=-b a b y a x ,则此弦所在直线的斜率为0202y a x b k =。

【典例精析】1. 若点M 在椭圆1204522=+y x 上,21,F F 是它的两个焦点,21MF MF ⊥,则点M 的坐标 。

2. 过抛物线x y 22=的焦点作直线l ,l 的倾斜角是12030或,l 与抛物线的交点的坐标是 。

3. 设A ,B 是双曲线122=-y x 上的两点,线段AB 的中点的坐标是)2,21(,则直线AB 的斜率是 。

4. 过点)2,0(P 作直线l 与椭圆14)1(:22=++y x C :(1)相切;(2)相交;(3)相离。

求l 的斜率k 的取值范围。

5. 已知椭圆12122=+y x 和椭圆外一点)2,0(,过这点任意引直线与椭圆交于A ,B 两点,求弦AB 的中点P 的轨迹方程。

6. 直线1+=kx y 和双曲线1322=-y x 相交,交点为A ,B ,当k 为何值时,以弦AB 为直径的圆经过坐标原点。

7. 抛物线y x =2的动弦AB 和圆122=+y x 相切,过A ,B 两点作抛物线的两条切线QA ,QB ,求直线QA ,QB 交点的轨迹方程(只要求求出方程)8. 顶点在原点,焦点在x 轴上的抛物线截直线12+=x y 所得的弦AB 的长为15,求抛物线的方程。

9. 直线l 被双曲线12322=-y x 截得的弦长为4,且l 的斜率为2,求直线l 的方程。

10. 已知直线032=-+y x 与双曲线122=-y x 交于A ,B 两点,O 是坐标原点,求OAB ∆的面积。

【重点题型强化】1. 椭圆的中心在原点,对称轴为x 轴,以椭圆的短轴的一个顶点B 与两个焦点21,F F 为顶点的三角形的周长是348+,且3021=∠F BF ,则椭圆的长轴长与短轴长的和是 。

2. 抛物线x y =2与圆222=+y x 交于A ,B 两点,F 是抛物线的焦点,FB FA ,的夹角的正切值是 。

3. 设直线x y =与双曲线)0(1222>=-k ky x 相交于A ,B 两点,且4||=AB ,则双曲线的方程为 。

4. 已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线1+=x y 与该椭圆相交于P 和Q两点,且OQ OP ⊥,210||=PQ ,求椭圆的方程。

5. 已知椭圆141622=+y x ,过点)1,2(P 引一弦,使弦在这点被平分,求此弦所在直线的方程。

6. 求渐近线为02=±y x 且与直线0865=--y x 相切的双曲线的方程。

7. 过点)0,2(-P 的直线l 交抛物线)0(42>=a ay x 于A ,B 两点,O 是原点,以OA 、OB 为邻边作平行四边形OAMB ,求顶点M 的轨迹方程。

8. 过抛物线的焦点的直线与抛物线相交于两点,求证:抛物线在这两点的切线互相垂直。

9. 已知抛物线)0(12≠-=a ax y 上总有关于直线0=+y x 对称的不同点,求a 的取值范围。

10. 已知双曲线的方程为12222=-by a x ,AB 为不平行于对称轴且不过原点的弦,M 为弦AB的中点,记AB ,OM 的斜率分别为OM AB k k ,,求证:22ab k k OMAB =⋅。

相关文档
最新文档