苏教版高中数学必修五1.2余弦定理(一)

合集下载

高中数学必修5之解三角形(教师版)

高中数学必修5之解三角形(教师版)

高中数学必修5第一单元 解三角形【第一部分】基础知识提要1.1 正弦定理和余弦定理1.1.1 正弦定理1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin sin a b cA B C==.正弦定理推论:①2sin sin sin a b cR A B C===(R 为三角形外接圆的半径)②2sin ,2sin ,2sin a R A b R B c R C === ③sin sin sin ,,sin sin sin a A b B a Ab Bc C c C===④::sin :sin :sin a b c A B C = ⑤sin sin sin sin sin sin a b c a b cA B C A B C++===++2、解三角形的概念:一般地,我们把三角形的各个角即他们所对的边叫做三角形的元素。

任何一个三角形都有六个元素:三条边),,(c b a 和三个内角),,(C B A .在三角形中,已知三角形的几个元素求其他元素的过程叫做解三角形。

3、正弦定理确定三角形解的情况 A为 锐4、任意三角形面积公式为:2111sin sin sin 2224()()()()2sin sin sin 2ABC abcS bc A ac B ab C Rrp p a p b p c a b c R A B C =====---=++= 1.1.2 余弦定理 5、余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍,即2222cos a b c bc A =+-,2222cos b a c ca B =+-,2222cos c a b ab C =+-.余弦定理推论:222cos 2b c a A bc +-=,222cos 2a c b B ac +-=,222cos 2a b c C ab+-=6、不常用的三角函数值αcos426+ 426- 426+- 426+-αtan32- 32+ 32-- 32+-1.2 应用举例(浏览即可)1、方位角:如图1,从正北方向顺时针转到目标方向线的水平角。

高中数学必修五同步教师用书:必修5 第1章 1.1.2 余弦定理

高中数学必修五同步教师用书:必修5 第1章 1.1.2 余弦定理

1.1.2余弦定理[基础·初探]教材整理1余弦定理及其变形阅读教材P5~P6完成下列问题.1.三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a2=b2+c2-2bc cos_A,b2=a2+c2-2ac cos_B,c2=a2+b2-2ab cos_C.2.余弦定理的变形cos A=b2+c2-a22bc;cos B=a2+c2-b22ac;cos C=a2+b2-c22ab.1.在△ABC中,已知a=4,b=6,C=120°,则边c=________.【解析】根据余弦定理c2=a2+b2-2ab cos C=16+36-2×4×6cos 120°=76,c=219.【答案】2192.在△ABC中,a=1,b=3,c=2,则B=________.【解析】cos B=c2+a2-b22ac=4+1-34=12,B=60°.【答案】60°教材整理2余弦定理及其变形的应用阅读教材P6~P7,完成下列问题.1.利用余弦定理的变形判定角在△ABC中,c2=a2+b2⇔C为直角;c2>a2+b2⇔C为钝角;c2<a2+b2⇔C 为锐角.2.应用余弦定理我们可以解决两类解三角形问题.(1)已知三边,求三角.(2)已知两边和它们的夹角,求第三边和其他两个角.1.在△ABC中,若a2=b2+bc+c2,则A=________.【解析】∵a2=b2+bc+c2,∴b2+c2-a2=-bc,∴cos A=b2+c2-a22bc=-bc2bc=-12,又∵A为△ABC的内角,∴A=120°.【答案】120°2.以下说法正确的是________(填序号).①在三角形中,已知两边及一边的对角,可用正弦定理解三角形,但不能用余弦定理去解;②余弦定理揭示了任意三角形边角之间的关系,因此,它适应于任何三角形;③利用余弦定理,可解决已知三角形三边求角问题;④在三角形中,勾股定理是余弦定理的一个特例.【解析】①错误.由正、余弦定理的特征可知在三角形中,已知两边及一边的对角,既可以用正弦定理,也可以用余弦定理求解.②正确.余弦定理反映了任意三角形的边角关系,它适合于任何三角形.③正确.结合余弦定理公式及三角函数知识可知正确.④正确.余弦定理可以看作勾股定理的推广.【答案】②③④[小组合作型]已知两边及一角解三角形在△ABC 中,已知b =3,c =33,B =30°,求角A ,角C 和边a . 【精彩点拨】 解答本题可先由正弦定理求出角C ,然后再求其他的边和角.也可以由余弦定理列出关于边长a 的方程,首先求出边长a ,再由正弦定理求角A ,角C .【自主解答】 法一:由余弦定理b 2=a 2+c 2-2ac cos B , 得32=a 2+(33)2-2a ×33×cos 30°, ∴a 2-9a +18=0,得a =3或6. 当a =3时,A =30°,∴C =120°.当a =6时,由正弦定理sin A =a sin Bb =6×123=1.∴A =90°,∴C =60°.法二:由b <c ,B =30°,b >c sin 30°=33×12=332知本题有两解. 由正弦定理sin C =c sin B b =33×123=32,∴C =60°或120°,当C =60°时,A =90°, 由勾股定理a =b 2+c 2=32+(33)2=6, 当C =120°时,A =30°,△ABC 为等腰三角形, ∴a =3.已知三角形的两边与一角解三角形,必须先判断该角是给出两边中一边的对角,还是给出两边的夹角.若是给出两边的夹角,可以由余弦定理求第三边;若是给出两边中一边的对角,可以应用余弦定理建立一元二次方程,解方程求出第三边(也可以两次应用正弦定理求出第三边.)[再练一题]1.在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,求边c .【解】 由题意:a +b =5,ab =2. 由余弦定理得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab =52-3×2=19, ∴c =19.已知三边解三角形在△ABC 中,已知a =7,b =3,c =5,求最大角和sin C . 【精彩点拨】 (1)如何判断哪个角是最大角? (2)求sin C 能否应用余弦定理?【自主解答】 ∵a >c >b ,∴A 为最大角, 由余弦定理的推论,得:cos A =b 2+c 2-a 22bc =32+52-722×3×5=-12,∴A =120°,∴sin A =sin 120°=32. 由正弦定理a sin A =csin C ,得: sin C =c sin A a =5×327=5314, ∴最大角A 为120°,sin C =5314.1.本题已知的是三条边,根据大边对大角,找到最大角是解题的关键. 2.已知三边解三角形的方法:先用余弦定理求出一个角,再用正弦定理或余弦定理求出另一角,最后用三角形的内角和定理求第三角.[再练一题]2.在△ABC 中,a 2-c 2+b 2=ab ,求角C . 【解】 ∵c 2=a 2+b 2-2ab cos C , ∴a 2-c 2+b 2=2ab cos C . ∴ab =2ab cos C . ∴cos C =12. ∴C =60°.[探究共研型]正、余弦定理的综合应用探究1 a 2=b 2+c 2,则sin 2A =sin 2B +sin 2C 成立吗?反之说法正确吗?为什么?【提示】 设△ABC 的外接圆半径为R .由正弦定理的变形,将a =2R sin A ,b =2R sin B ,c =2R sin C ,代入a 2=b 2+c 2可得sin 2A =sin 2B +sin 2C .反之将sin A =a 2R ,sin B =b 2R ,sin C =c2R 代入sin 2A=sin 2B +sin 2C 可得a 2=b 2+c 2.因此,这两种说法均正确.探究2 在△ABC 中,若c 2=a 2+b 2,则C =π2成立吗?反之若C =π2,则c 2=a 2+b 2成立吗?为什么?【提示】 因为c 2=a 2+b 2,所以a 2+b 2-c 2=0,由余弦定理的变形cos C =a 2+b 2-c 22ab =0,即cos C =0,所以C =π2,反之若C =π2,则cos C =0,即a 2+b 2-c 22ab =0,所以a 2+b 2-c 2=0,即c 2=a 2+b 2.在△ABC 中,若(a -c ·cos B )·sin B =(b -c ·cos A )·sin A ,判断△ABC的形状.【精彩点拨】【自主解答】 法一:∵(a -c ·cos B )·sin B =(b -c ·cos A )·sin A , ∴由正、余弦定理可得:⎝ ⎛⎭⎪⎫a -c ·a 2+c 2-b 22ac ·b =⎝ ⎛⎭⎪⎫b -c ·b 2+c 2-a 22bc ·a ,整理得:(a 2+b 2-c 2)b 2=(a 2+b 2-c 2)a 2, 即(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2+b 2-c 2=0或a 2=b 2. ∴a 2+b 2=c 2或a =b .故△ABC 为直角三角形或等腰三角形. 法二:根据正弦定理,原等式可化为:(sin A -sin C cos B )sin B =(sin B -sin C cos A )sin A , 即sin C cos B sin B =sin C cos A sin A . ∵sin C ≠0,∴sin B cos B =sin A cos A . ∴sin 2B =sin 2A .∴2B =2A 或2B +2A =π, 即A =B 或A +B =π2.∴△ABC 是等腰三角形或直角三角形.1.判断三角形的形状应围绕三角形的边角关系进行思考,可用正、余弦定理将已知条件转化为边边关系,通过因式分解、配方等方式得出边的相应关系,从而判断三角形的形状,也可利用正、余弦定理将已知条件转化为角与角之间的关系,通过三角变换,得出三角形各内角之间的关系,从而判断三角形形状.2.在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用正弦定理,出现边的二次式一般采用余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,应注意角的限制范围.[再练一题]3.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos Ccos B =2c -a b .(1)求sin Csin A 的值;(2)若cos B =14,△ABC 的周长为5,求b 的长.【解】 (1)由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C ,(其中R 为△ABC 外接圆半径)所以cos A -2cos C cos B =2c -a b =2sin C -sin A sin B,所以sin B cos A -2sin B cos C =2sin C cos B -sin A cos B , sin A cos B +sin B cos A =2sin B cos C +2sin C cos B , 所以sin(A +B )=2sin(B +C ). 又A +B +C =π, 所以sin C =2sin A , 所以sin Csin A =2.(2)由(1)知sin C sin A =2,由正弦定理得c a =sin Csin A =2, 即c =2a .又因为△ABC 的周长为5, 所以b =5-3a .由余弦定理得b 2=a 2+c 2-2ac cos B , 即(5-3a )2=a 2+(2a )2-4a 2×14, 解得a =1或a =5(舍去),所以b =5-3×1=2.1.已知a ,b ,c 是△ABC 的三边长,若满足等式(a +b -c )·(a +b +c )=ab ,则角C 的大小为( )A .60°B .90°C .120°D .150°【解析】 由(a +b -c )(a +b +c )=ab ,得(a +b )2-c 2=ab , ∴c 2=a 2+b 2+ab =a 2+b 2-2ab cos C , ∴cos C =-12,∴C =120°. 【答案】 C2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B .π6 C.π4 D .π12【解析】 由三角形边角关系可知,角C 为△ABC 的最小角,则cos C =a 2+b 2-c 22ab =72+(43)2-(13)22×7×43=32,所以C =π6,故选B. 【答案】 B3.在△ABC 中,若a =2b cos C ,则△ABC 的形状为________.【解析】 法一:∵a =2b cos C =2b ·a 2+b 2-c 22ab =a 2+b 2-c 2a ,∴a 2=a 2+b 2-c 2,即b 2=c 2,b =c , ∴△ABC 为等腰三角形.法二:∵a =2b cos C ,∴sin A =2sin B cos C , 而sin A =sin(B +C ) =sin B cos C +cos B sin C , ∴cos B sin C =sin B cos C ,即sin B cos C -cos B sin C =0, ∴sin(B -C )=0. 又-180°<B -C <180°, ∴B -C =0,即B =C . ∴△ABC 为等腰三角形. 【答案】 等腰三角形4.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知B =C,2b =3a ,则cos A =________.【解析】 由B =C,2b =3a , 可得b =c =32a , 所以cos A =b 2+c 2-a 22bc =34a 2+34a 2-a 22×32a ×32a =13.【答案】 135.在△ABC 中,已知a =5,b =3,角C 的余弦值是方程5x 2+7x -6=0的根,求第三边c 的长.【解】 5x 2+7x -6=0可化为(5x -3)·(x +2)=0, ∴x 1=35,x 2=-2(舍去), ∴cos C =35. 根据余弦定理, c 2=a 2+b 2-2ab cos C =52+32-2×5×3×35=16, ∴c =4,即第三边长为4.。

高中数学 1.2 余弦定理(2)教案 苏教版必修5

高中数学 1.2 余弦定理(2)教案 苏教版必修5
江苏省赣榆县智贤中学2014高中数学 1.2 余弦定理(2)教案 苏教版必修5
课题
余弦定理(2)
学习
目标
1. 掌握余弦定理.
2. 进一步体会余弦定理在解三角形、几何问题、实际问题中的运用,体会数学中的转化思想.
重点
余弦定理的应用.
难点
运用余弦定理解决判断三角形形状的问题.
教学
方法
发现教学法
教学
课时
2
2. 练习.
(1)在 中,如果 ,那么 等于( )
A. B. C. D.
(2)在 中,已知 ,试判断此三角形的形状.
(3)在 中,设 =a, =b,且|a|=2,|b|= ,a·b=- ,求 的长(精确到0.01).
四、要点归纳与方法小结
教后反思
所以 ,
整理,得
因为 ,所以 .因此, 为等腰三角形.
例4 在 中,已知 ,试判断 的形状.
解 由 及余弦定理,得

整理,得 ,
即 或 ,
所以 或 ,
所以 为直角三角形.
例5 如图, 是 中 边上的中线,求证:

证明:设 则 ,
在 ,由余弦定理,得

在 中,由余弦定理,得
因为 , ,
所以 ,
因此, .
解 如图,船按 方向开出, 方向为水流方向,以 为一边、 为对角线作平行四边形 ,其中

在 中,由余弦定理,得
所以 .
因此,船的航行速度为 .
在 中,由正弦定理,得

所以
所以 .
答:渡船应按北偏西 的方向,并以 的速度航行.
例3 在 中,已知 ,试判断该三角形的形状.
解 由正弦定理及余弦定理,得

高中数学 第一章 解三角形课时训练 苏教版必修5

高中数学 第一章 解三角形课时训练 苏教版必修5

第一章 解三角形§1.1 正弦定理和余弦定理1.1.1 正弦定理(一)课时目标1.熟记正弦定理的内容;2.能够初步运用正弦定理解斜三角形.1.在△ABC 中,A +B +C =π,A 2+B 2+C 2=π2.2.在Rt △ABC 中,C =π2,则a c =sin_A ,bc=sin_B .3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =bsin B =csin C,这个比值是三角形外接圆的直径2R .一、选择题1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ∶B ∶C =1∶2∶3,则 a ∶b ∶c 等于( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .1∶3∶2 答案 D2.若△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 3 答案 C 解析 由正弦定理a sin A =bsin B, 得4sin 45°=bsin 60°,∴b =2 6.3.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A .直角三角形 B .等腰直角三角形 C .等边三角形D .等腰三角形 答案 A解析 sin 2A =sin 2B +sin 2C ⇔(2R )2sin 2A =(2R )2sin 2B +(2R )2sin 2C ,即a 2=b 2+c 2,由勾股定理的逆定理得△ABC 为直角三角形.4.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( ) A .A >B B .A <BC .A ≥BD .A ,B 的大小关系不能确定 答案 A解析 由sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B .5.在△ABC 中,A =60°,a =3,b =2,则B 等于( ) A .45°或135° B .60° C .45° D .135°答案 C 解析 由a sin A =bsin B得sin B =b sin Aa=2sin 60°3=22. ∵a >b ,∴A >B ,B <60° ∴B =45°.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75° 答案 A解析 ∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C )=3sin(30°+C )=3⎝ ⎛⎭⎪⎫32sin C +12cos C ,即sin C =-3cos C .∴tan C =- 3.又C ∈(0°,180°),∴C =120°. 二、填空题7.在△ABC 中,AC =6,BC =2,B =60°,则C =_________. 答案 75°解析 由正弦定理得2sin A =6sin 60°,∴sin A =22.∵BC =2<AC =6,∴A 为锐角.∴A =45°.∴C =75°.8.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________.答案102解析 ∵tan A =13,A ∈(0°,180°),∴sin A =1010.由正弦定理知BC sin A =ABsin C , ∴AB =BC sin C sin A =1³sin 150°1010=102. 9.在△ABC 中,b =1,c =3,C =2π3,则a =________.答案 1解析 由正弦定理,得3sin2π3=1sin B , ∴sin B =12.∵C 为钝角,∴B 必为锐角,∴B =π6,∴A =π6.∴a =b =1.10.在△ABC 中,已知a ,b ,c 分别为内角A ,B ,C 的对边,若b =2a ,B =A +60°,则A =______.答案 30°解析 ∵b =2a ∴sin B =2sin A ,又∵B =A +60°, ∴sin(A +60°)=2sin A即sin A cos 60°+cos A sin 60°=2sin A ,化简得:sin A =33cos A ,∴tan A =33,∴A =30°.三、解答题11.在△ABC 中,已知a =22,A =30°,B =45°,解三角形.解 ∵a sin A =b sin B =csin C, ∴b =a sin B sin A =22sin 45°sin 30°=22³2212=4.∵C =180°-(A +B )=180°-(30°+45°)=105°,∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=2+2 3.12.在△ABC 中,已知a =23,b =6,A =30°,解三角形. 解 a =23,b =6,a <b ,A =30°<90°. 又因为b sin A =6sin 30°=3,a >b sin A , 所以本题有两解,由正弦定理得:sin B =b sin A a =6sin 30°23=32,故B =60°或120°.当B =60°时,C =90°,c =a 2+b 2=43;当B =120°时,C =30°,c =a =2 3.所以B =60°,C =90°,c =43或B =120°,C =30°,c =2 3. 能力提升13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 若a =2,b =2,sin B +cos B =2,则角A 的大小为________.答案 π6解析 ∵sin B +cos B =2sin(π4+B )= 2.∴sin(π4+B )=1.又0<B <π,∴B =π4.由正弦定理,得sin A =a sin Bb=2³222=12.又a <b ,∴A <B ,∴A =π6.14.在锐角三角形ABC 中,A =2B ,a ,b ,c 所对的角分别为A ,B ,C ,求ab的取值范围. 解 在锐角三角形ABC 中,A ,B ,C <90°,即⎩⎪⎨⎪⎧B <90°,2B <90°,180°-3B <90°,∴30°<B <45°.由正弦定理知:a b =sin A sin B =sin 2B sin B=2cos B ∈(2,3),故a b的取值范围是(2,3).1.利用正弦定理可以解决两类有关三角形的问题:1.1.1 正弦定理(二)课时目标1.熟记正弦定理的有关变形公式;2.能够运用正弦定理进行简单的推理与证明.1.正弦定理:a sin A =b sin B =csin C=2R 的常见变形:(1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)a sin A =b sin B =c sin C =a +b +c sin A +sin B +sin C =2R ; (3)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(4)sin A =a 2R ,sin B =b 2R ,sin C =c2R.2.三角形面积公式:S =12ab sin C =12bc sin A =12ca sin B .一、选择题1.在△ABC 中,sin A =sin B ,则△ABC 是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形 答案 D2.在△ABC 中,若a cos A =b cos B =ccos C,则△ABC 是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形 答案 B解析 由正弦定理知:sin A cos A =sin B cos B =sin Ccos C,∴tan A =tan B =tan C ,∴A =B =C .3.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝ ⎛⎭⎪⎫152,+∞ B .(10,+∞) C .(0,10) D.⎝⎛⎦⎥⎤0,403答案 D解析 ∵c sin C =a sin A =403,∴c =403sin C .∴0<c ≤403.4.在△ABC 中,a =2b cos C ,则这个三角形一定是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰或直角三角形 答案 A解析 由a =2b cos C 得,sin A =2sin B cos C , ∴sin(B +C )=2sin B cos C ,∴sin B cos C +cos B sin C =2sin B cos C , ∴sin(B -C )=0,∴B =C .5.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .6∶5∶4B .7∶5∶3C .3∶5∶7D .4∶5∶6 答案 B解析 ∵(b +c )∶(c +a )∶(a +b )=4∶5∶6, ∴b +c 4=c +a 5=a +b 6.令b +c 4=c +a 5=a +b 6=k (k >0),则⎩⎪⎨⎪⎧b +c =4kc +a =5k a +b =6k,解得⎩⎪⎨⎪⎧a =72kb =52kc =32k.∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.6.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为( )A .1B .2 C.12D .4 答案 A解析 设三角形外接圆半径为R ,则由πR 2=π,得R =1,由S △=12ab sin C =abc 4R =abc 4=14,∴abc =1.二、填空题7.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.答案 2 3解析 ∵cos C =13,∴sin C =223,∴12ab sin C =43,∴b =2 3. 8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =60°,a =3,b =1,则c =________.答案 2解析 由正弦定理a sin A =b sin B ,得3sin 60°=1sin B,∴sin B =12,故B =30°或150°.由a >b ,得A >B ,∴B =30°,故C =90°, 由勾股定理得c =2.9.在单位圆上有三点A ,B ,C ,设△ABC 三边长分别为a ,b ,c ,则a sin A +b 2sin B +2csin C=________.答案 7解析 ∵△ABC 的外接圆直径为2R =2,∴a sin A =b sin B =csin C =2R =2, ∴a sin A +b 2sin B +2c sin C =2+1+4=7. 10.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________.答案 12 6解析 a +b +c sin A +sin B +sin C =a sin A =6332=12.∵S △ABC =12ab sin C =12³63³12sin C =183,∴sin C =12,∴c sin C =asin A=12,∴c =6.三、解答题11.在△ABC 中,求证:a -c cos B b -c cos A =sin Bsin A.证明 因为在△ABC 中,a sin A =b sin B =csin C=2R ,所以左边=2R sin A -2R sin C cos B2R sin B -2R sin C cos A=sin B +C -sin C cos B sin A +C -sin C cos A =sin B cos C sin A cos C =sin B sin A=右边. 所以等式成立,即a -c cos B b -c cos A =sin Bsin A.12.在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状.解 设三角形外接圆半径为R ,则a 2tan B =b 2tan A ⇔a 2sin B cos B =b 2sin A cos A ⇔4R 2sin 2 A sin B cos B =4R 2sin 2B sin A cos A⇔sin A cos A =sin B cos B ⇔sin 2A =sin 2B⇔2A =2B 或2A +2B =π⇔A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形. 能力提升13.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为( ) A .45° B .60° C .75° D .90° 答案 C解析 设C 为最大角,则A 为最小角,则A +C =120°, ∴sin C sin A =sin ()120°-A sin A=sin 120° cos A -cos 120°sin A sin A=32tan A +12=3+12=32+12, ∴tan A =1,A =45°,C =75°. 14.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .解 cos B =2cos 2 B 2-1=35, 故B 为锐角,sin B =45.所以sin A =sin(π-B -C )=sin ⎝ ⎛⎭⎪⎫3π4-B =7210.由正弦定理得c =a sin C sin A =107, 所以S △ABC =12ac sin B =12³2³107³45=87.1.在△ABC 中,有以下结论:(1)A +B +C =π;1.1.2 余弦定理(一)课时目标1.熟记余弦定理及其推论;2.能够初步运用余弦定理解斜三角形.1.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=b 2+c 2-2bc cos_A ,b 2=c 2+a 2-2ca cos_B ,c 2=a 2+b 2-2ab cos_C .2.余弦定理的推论cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 22ab.3.在△ABC 中:(1)若a 2+b 2-c 2=0,则C =90°;(2)若c 2=a 2+b 2-ab ,则C =60°;(3)若c 2=a 2+b 2+2ab ,则C =135°.一、选择题1.在△ABC 中,已知a =1,b =2,C =60°,则c 等于( ) A. 3 B .3 C. 5 D .5 答案 A2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4 D.π12 答案 B解析 ∵a >b >c ,∴C 为最小角,由余弦定理cos C =a 2+b 2-c 22ab=72+432-1322³7³43=32.∴C =π6. 3.在△ABC 中,已知a =2,则b cos C +c cos B 等于( )A .1 B. 2 C .2 D .4 答案 C解析 b cos C +c cos B =b ²a 2+b 2-c 22ab +c ²c 2+a 2-b 22ac =2a 22a=a =2.4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.23 答案 B解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2,b =2a ,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ²2a =34.5.在△ABC 中,sin 2A 2=c -b 2c(a ,b ,c 分别为角A ,B ,C 的对应边),则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形 答案 B解析 ∵sin 2A 2=1-cos A 2=c -b 2c , ∴cos A =b c =b 2+c 2-a 22bc⇒a 2+b 2=c 2,符合勾股定理.故△ABC 为直角三角形.6.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的度数为( )A .135°B .45°C .60°D .120° 答案 B解析 ∵S =14(a 2+b 2-c 2)=12ab sin C ,∴a 2+b 2-c 2=2ab sin C ,∴c 2=a 2+b 2-2ab sin C .由余弦定理得:c 2=a 2+b 2-2ab cos C , ∴sin C =cos C , ∴C =45° . 二、填空题7.在△ABC 中,若a 2-b 2-c 2=bc ,则A =________. 答案 120°8.△ABC 中,已知a =2,b =4,C =60°,则A =________. 答案 30°解析 c 2=a 2+b 2-2ab cos C =22+42-2³2³4³cos 60° =12∴c =2 3.由正弦定理:a sin A =c sin C 得sin A =12.∵a <c ,∴A <60°,A =30°.9.三角形三边长为a ,b ,a 2+ab +b 2(a >0,b >0),则最大角为________. 答案 120°解析 易知:a 2+ab +b 2>a ,a 2+ab +b 2>b ,设最大角为θ,则cos θ=a 2+b 2-a 2+ab +b 222ab =-12,∴θ=120°.10.在△ABC 中,BC =1,B =π3,当△ABC 的面积等于3时,tan C =________.答案 -2 3解析 S △ABC =12ac sin B =3,∴c =4.由余弦定理得,b 2=a 2+c 2-2ac cos B =13,∴cos C =a 2+b 2-c 22ab =-113,sin C =1213,∴tan C =-12=-2 3.三、解答题11.在△ABC 中,已知CB =7,AC =8,AB =9,试求AC 边上的中线长.解 由条件知:cos A =AB 2+AC 2-BC 22²AB ²AC =92+82-722³9³8=23,设中线长为x ,由余弦定理知:x 2=⎝ ⎛⎭⎪⎫AC 22+AB 2-2²AC 2²AB cos A =42+92-2³4³9³23=49 ⇒x =7.所以,所求中线长为7.12.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1.(1)求角C 的度数; (2)求AB 的长;(3)求△ABC 的面积.解 (1)cos C =cos[π-(A +B )]=-cos(A +B )=-12,又∵C ∈(0°,180°),∴C =120°.(2)∵a ,b 是方程x 2-23x +2=0的两根,∴⎩⎨⎧a +b =23,ab =2.∴AB 2=b 2+a 2-2ab cos 120°=(a +b )2-ab =10, ∴AB =10.(3)S △ABC =12ab sin C =32.能力提升13.(2010²潍坊一模)在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.答案 3解析 ∵cos C =BC 2+AC 2-AB 22³BC ³AC =22,∴sin C =22. ∴AD =AC ²sin C = 3.14.在△ABC 中,a cos A +b cos B =c cos C ,试判断三角形的形状. 解 由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac,cos C =a 2+b 2-c 22ab,代入已知条件得 a ²b 2+c 2-a 22bc +b ²a 2+c 2-b 22ac +c ²c 2-a 2-b 22ab =0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0,展开整理得(a 2-b 2)2=c 4. ∴a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.1.利用余弦定理可以解决两类有关三角形的问题: (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角. 2.余弦定理与勾股定理余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.1.1.2 余弦定理(二)课时目标1.熟练掌握正弦定理、余弦定理;2.会用正、余弦定理解三角形的有关问题.1.正弦定理及其变形(1)a sin A =b sin B =csin C=2R . (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C .(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R.(4)sin A ∶sin B ∶sin C =a ∶b ∶c . 2.余弦定理及其推论(1)a 2=b 2+c 2-2bc cos_A .(2)cos A =b 2+c 2-a 22bc .(3)在△ABC 中,c 2=a 2+b 2⇔C 为直角;c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角. 3.在△ABC 中,边a 、b 、c 所对的角分别为A 、B 、C ,则有:(1)A +B +C =π,A +B 2=π2-C2.(2)sin(A +B )=sin_C ,cos(A +B )=-cos_C ,tan(A +B )=-tan_C .(3)sin A +B 2=cos C 2,cos A +B 2=sin C2.一、选择题1.已知a 、b 、c 为△ABC 的三边长,若满足(a +b -c )(a +b +c )=ab ,则∠C 的大小为( )A .60°B .90°C .120°D .150° 答案 C解析 ∵(a +b -c )(a +b +c )=ab , ∴a 2+b 2-c 2=-ab , 即a 2+b 2-c 22ab =-12,∴cos C =-12,∴∠C =120°.2.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形 答案 C解析 ∵2cos B sin A =sin C =sin(A +B ), ∴sin A cos B -cos A sin B =0, 即sin(A -B )=0,∴A =B .3.在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则这个三角形的最小外角为 ( )A .30°B .60°C .90°D .120° 答案 B解析 ∵a ∶b ∶c =sin A ∶sin B ∶sin C =3∶5∶7, 不妨设a =3,b =5,c =7,C 为最大内角,则cos C =32+52-722³3³5=-12.∴C =120°.∴最小外角为60°.4.△ABC 的三边分别为a ,b ,c 且满足b 2=ac,2b =a +c ,则此三角形是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等边三角形 答案 D解析 ∵2b =a +c ,∴4b 2=(a +c )2,即(a -c )2=0. ∴a =c .∴2b =a +c =2a .∴b =a ,即a =b =c .5.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若C =120°, c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定 答案 A解析 在△ABC 中,由余弦定理得, c 2=a 2+b 2-2ab cos 120° =a 2+b 2+ab .∵c =2a ,∴2a 2=a 2+b 2+ab . ∴a 2-b 2=ab >0,∴a 2>b 2,∴a >b .6.如果将直角三角形的三边增加同样的长度,则新三角形的形状是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .由增加的长度确定 答案 A解析 设直角三角形三边长为a ,b ,c ,且a 2+b 2=c 2,则(a +x )2+(b +x )2-(c +x )2=a 2+b 2+2x 2+2(a +b )x -c 2-2cx -x 2=2(a +b -c )x +x 2>0,∴c +x 所对的最大角变为锐角. 二、填空题 7.在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,则边c =________. 答案 19解析 由题意:a +b =5,ab =2.由余弦定理得:c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab =52-3³2=19, ∴c =19.8.设2a +1,a,2a -1为钝角三角形的三边,那么a 的取值范围是________. 答案 2<a <8解析 ∵2a -1>0,∴a >12,最大边为2a +1.∵三角形为钝角三角形,∴a 2+(2a -1)2<(2a +1)2, 化简得:0<a <8.又∵a +2a -1>2a +1, ∴a >2,∴2<a <8.9.已知△ABC 的面积为23,BC =5,A =60°,则△ABC 的周长是________. 答案 12解析 S △ABC =12AB ²AC ²sin A=12AB ²AC ²sin 60°=23, ∴AB ²AC =8,BC 2=AB 2+AC 2-2AB ²AC ²cos A=AB 2+AC 2-AB ²AC =(AB +AC )2-3AB ²AC ,∴(AB +AC )2=BC 2+3AB ²AC =49, ∴AB +AC =7,∴△ABC 的周长为12.10.在△ABC 中,A =60°,b =1,S △ABC =3,则△ABC 外接圆的面积是________.答案 13π3解析 S △ABC =12bc sin A =34c =3,∴c =4,由余弦定理:a 2=b 2+c 2-2bc cos A =12+42-2³1³4cos 60°=13, ∴a =13.∴2R =a sin A =1332=2393,∴R =393.∴S 外接圆=πR 2=13π3. 三、解答题11.在△ABC 中,求证:a 2-b 2c 2=sin A -B sin C.证明 右边=sin A cos B -cos A sin B sin C =sin A sin C ²cos B -sin Bsin C²cos A=a c ²a 2+c 2-b 22ac -b c ²b 2+c 2-a 22bc =a 2+c 2-b 22c 2-b 2+c 2-a 22c 2=a 2-b 2c 2=左边. 所以a 2-b 2c 2=sin A -B sin C .12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边的长,cosB =53, 且²=-21. (1)求△ABC 的面积; (2)若a =7,求角C .解 (1)∵ ²=-21,∴ ²=21. ∴² = ||²||²cosB = accosB = 21.∴ac=35,∵cosB =53,∴ sinB = 54. ∴S △ABC = 21acsinB = 21³35³54= 14.(2)ac =35,a =7,∴c =5.由余弦定理得,b 2=a 2+c 2-2ac cos B =32, ∴b =4 2.由正弦定理:c sin C =bsin B.∴sin C =c b sin B =542³45=22.∵c <b 且B 为锐角,∴C 一定是锐角. ∴C =45°. 能力提升13.已知△ABC 中,AB =1,BC =2,则角C 的取值范围是( )A .0<C ≤π6B .0<C <π2C.π6<C <π2D.π6<C ≤π3 答案 A解析 方法一 (应用正弦定理)∵AB sin C =BC sin A ,∴1sin C =2sin A∴sin C =12sin A ,∵0<sin A ≤1,∴0<sin C ≤12.∵AB <BC ,∴C <A ,∴C 为锐角,∴0<C ≤π6.方法二 (应用数形结合)如图所示,以B 为圆心,以1为半径画圆, 则圆上除了直线BC 上的点外,都可作为A 点.从点C 向圆B 作切线,设切点为A 1和A 2,当A 与A 1、A 2重合时,角C 最大,易知此时:BC =2,AB =1,AC ⊥AB ,∴C =π6,∴0<C ≤π6.14.△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C 的值;(2)设² =23,求a+c 的值. 解 (1)由cos B =34,得sin B =1-⎝ ⎛⎭⎪⎫342=74.由b 2=ac 及正弦定理得sin 2B =sin A sinC .于是1tan A +1tan C =cos A sin A +cos C sin C=sin C cos A +cos C sin A sin A sin C =sin A +C sin 2B =sin B sin 2B =1sin B =477. (2)由BA ² =23得ca ²cosB = 23由cos B =34,可得ca =2,即b 2=2.由余弦定理:b 2=a 2+c 2-2ac ²cos B ,得a 2+c 2=b 2+2ac ²cos B =5,∴(a +c )2=a 2+c 2+2ac=5+4=9,∴a +c =3.§1.2 应用举例(一)课时目标1.了解数学建模的思想;2.利用正、余弦定理解决生产实践中的有关距离的问题.1.基线的定义:在测量上,我们根据测量需要适当确定的线段叫做基线.一般来说,基线越长,测量的精确度越高.2.方位角:指从正北方向线按顺时针方向旋转到目标方向线所成的水平角.如图中的A 点的方位角为α.3.计算不可直接测量的两点间的距离是正弦定理和余弦定理的重要应用之一.一、选择题1.若点P 在点Q 的北偏西45°10′方向上,则点Q 在点P 的( ) A .南偏西45°10′ B .南偏西44°50′ C .南偏东45°10′ D .南偏东44°50′ 答案 C2.已知两灯塔A 和B 与海洋观测站C 的距离都等于a km ,灯塔A 在观测站C 的北偏东20°方向上,灯塔B 在观测站C 的南偏东40°方向上,则灯塔A 与灯塔B 的距离为( )A .a km B.3a km C.2a km D .2a km 答案 B解析 ∠ACB =120°,AC =BC =a , ∴由余弦定理得AB =3a .3.海上有A 、B 两个小岛相距10 n mile ,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是( )A .10 3 n mile B.1063n mileC .5 2 n mileD .5 6 n mile 答案 D解析 在△ABC 中,∠C =180°-60°-75°=45°. 由正弦定理得:BC sin A =ABsin B∴BC sin 60°=10sin 45°解得BC =5 6.4.如图所示,设A 、B 两点在河的两岸,一测量者在A 的同侧,在A 所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算A 、B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 m D.2522m答案 A解析 由题意知∠ABC =30°,由正弦定理AC sin ∠ABC =ABsin ∠ACB,∴AB =AC ²sin∠ACBsin ∠ABC =50³2212=50 2 (m).5.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°,与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后到达N 处,又测得灯塔在货轮的东北方向,则货轮的速度为( )A .20(6+2) 海里/小时B .20(6-2) 海里/小时C .20(6+3) 海里/小时D .20(6-3) 海里/小时 答案 B解析 由题意,∠SMN =45°,∠SNM =105°,∠NSM =30°. 由正弦定理得MN sin 30°=MSsin 105°.∴MN =MS sin 30°sin 105°=106+24=10(6-2).则v 货=20(6-2) 海里/小时.6.甲船在岛B 的正南A 处,AB =10千米,甲船以每小时4千米的速度向正北航行,同时,乙船自B 出发以每小时6千米的速度向北偏东60°的方向驶去.当甲、乙两船相距最近时,它们所航行的时间是( )A.1507 分钟B.157小时 C .21.5 分钟 D .2.15 分钟 答案 A解析 设行驶x 小时后甲到点C ,乙到点D ,两船相距y km , 则∠DBC =180°-60°=120°. ∴y 2=(10-4x )2+(6x )2-2(10-4x )²6x cos 120°=28x 2-20x +100=28(x 2-57x )+100=28⎝ ⎛⎭⎪⎫x -5142-257+100∴当x =514(小时)=1507(分钟)时,y 2有最小值.∴y 最小. 二、填空题7.如图,A 、B 两点间的距离为________.答案 32- 28.如图,A 、N 两点之间的距离为________.答案 40 39.如图所示,为了测定河的宽度,在一岸边选定两点A 、B ,望对岸标记物C ,测得 ∠CAB =30°,∠CBA =75°,AB =120 m ,则河的宽度为______.答案 60 m解析 在△ABC 中,∠CAB =30°,∠CBA =75°, ∴∠ACB =75°.∠ACB =∠ABC .∴AC =AB =120 m. 作CD ⊥AB ,垂足为D ,则CD 即为河的宽度.由正弦定理得AC sin ∠ADC =CDsin ∠CAD,∴120sin 90°=CD sin 30°, ∴CD =60(m)∴河的宽度为60 m.10.太湖中有一小岛,沿太湖有一条正南方向的公路,一辆汽车测得小岛在公路的南偏西15°的方向上,汽车行驶1 km 后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________ km.答案 36解析如图,∠CAB =15°,∠CBA =180°-75°=105°, ∠ACB =180°-105°-15°=60°,AB =1 km. 由正弦定理得BCsin ∠CAB=ABsin ∠ACB∴BC =1sin 60°²sin 15°=6-223 (km).设C 到直线AB 的距离为d ,则d =BC ²sin 75°=6-223²6+24=36 (km).三、解答题11.如图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 n mile,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 n mile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°方向上,求:(1)A 处与D 处的距离; (2)灯塔C 与D 处的距离.解 (1)在△ABD 中,∠ADB =60°,∠B =45°,由正弦定理得AD =AB sin Bsin ∠ADB=126³2232=24(n mile). (2)在△ADC 中,由余弦定理得CD 2=AD 2+AC 2-2AD ²AC ²cos 30°, 解得CD =83≈14(n mile).即A 处与D 处的距离为24 n mile , 灯塔C 与D 处的距离约为14 n mile.12.如图,为测量河对岸A 、B 两点的距离,在河的这边测出CD的长为32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,求A 、B 两点间的距离.解 在△BDC 中,∠CBD =180°-30°-105°=45°, 由正弦定理得BC sin 30°=CDsin 45°,则BC =CD sin 30°sin 45°=64(km).在△ACD 中,∠CAD =180°-60°-60°=60°,∴△ACD 为正三角形.∴AC =CD =32(km).在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ²BC ²cos 45°=34+616-2³32³64³22=38, ∴AB =64(km). 答 河对岸A 、B 两点间距离为64km. 能力提升 13.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的持续时间为( )A .0.5小时B .1小时C .1.5小时D .2小时 答案 B解析 设t 小时时,B 市恰好处于危险区,则由余弦定理得:(20t )2+402-2³20t ³40²cos 45°=302.化简得:4t 2-82t +7=0,∴t 1+t 2=22,t 1²t 2=74.从而|t 1-t 2|=t 1+t 22-4t 1t 2=1.14.如图所示,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问乙船每小时航行多少海里?解 如图所示,连结A 1B 2, 由已知A 2B 2=102,A 1A 2=302³2060=102,∴A 1A 2=A 2B 2,又∠A 1A 2B 2=180°-120°=60°, ∴△A 1A 2B 2是等边三角形, ∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20,∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理,B 1B 22=A 1B 21+A 1B 22-2A 1B 1²A 1B 2²cos 45°=202+(102)2-2³20³102³22=200.∴B 1B 2=10 2.因此,乙船速度的大小为 10220³60=302(海里/小时). 答 乙船每小时航行302海里.1.解三角形应用问题的基本思路是:实际问题――→画图数学问题――→解三角形数学问题的解――→检验实际问题的解. 2.测量距离问题:这类问题的情境一般属于“测量有障碍物相隔的两点间的距离”.在测量过程中,要根据实际需要选取合适的基线长度,测量工具要有较高的精确度.§1.2 应用举例(二)课时目标1.利用正、余弦定理解决生产实践中的有关高度的问题.2.利用正、余弦定理及三角形面积公式解决三角形中的几何度量问题.1.仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线上方时叫仰角,目标视线在水平线下方时叫俯角.(如图所示)2.已知△ABC 的两边a 、b 及其夹角C ,则△ABC 的面积为12ab sin C .一、选择题1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α与β的关系为( ) A .α>β B .α=βC .α<βD .α+β=90° 答案 B2.设甲、乙两楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是( )A .20 3 m ,4033 mB .10 3 m,20 3 mC .10(3-2) m,20 3 m D.152 3 m ,2033 m解析 h 甲=20tan 60°=203(m).h 乙=20tan 60°-20tan 30°=4033(m).3.如图,为测一树的高度,在地面上选取A 、B 两点,从A 、B 两点分别测得望树尖的仰角为30°,45°,且A 、B 两点之间的距离为60 m ,则树的高度为( )A .30+30 3 mB .30+153mC .15+303mD .15+33m 答案 A解析 在△PAB 中,由正弦定理可得60sin 45°-30°=PBsin 30°,PB =60³12sin 15°=30sin 15°,h =PB sin 45°=(30+303)m.4.从高出海平面h 米的小岛看正东方向有一只船俯角为30°,看正南方向一只船俯角为45°,则此时两船间的距离为( )A .2h 米 B.2h 米 C.3h 米 D .22h 米答案 A解析 如图所示, BC =3h ,AC =h ,∴AB =3h 2+h 2=2h .5.在某个位置测得某山峰仰角为θ,对着山峰在平行地面上前进600 m 后测仰角为原来的2倍,继续在平行地面上前进200 3 m 后,测得山峰的仰角为原来的4倍,则该山峰的高度是( )A .200 mB .300 mC .400 mD .100 3 m 答案 B解析 如图所示,600²sin 2θ=2003²sin 4θ,∴cos 2θ=32,∴θ=15°, ∴h =2003²sin 4θ=300 (m).6.平行四边形中,AC =65,BD =17,周长为18,则平行四边形面积是( ) A .16 B .17.5 C .18 D .18.53解析 设两邻边AD =b ,AB =a ,∠BAD =α,则a +b =9,a 2+b 2-2ab cos α=17, a 2+b 2-2ab cos(180°-α)=65.解得:a =5,b =4,cos α=35或a =4,b =5,cos α=35,∴S ▱ABCD =ab sin α=16. 二、填空题7.甲船在A 处观察乙船,乙船在它的北偏东60°的方向,两船相距a 海里,乙船正向北行驶,若甲船是乙船速度的3倍,则甲船应取方向__________才能追上乙船;追上时甲船行驶了________海里.答案 北偏东30° 3a 解析如图所示,设到C 点甲船追上乙船, 乙到C 地用的时间为t ,乙船速度为v , 则BC =tv ,AC =3tv ,B =120°, 由正弦定理知BC sin ∠CAB =ACsin B,∴1sin ∠CAB =3sin 120°,∴sin ∠CAB =12,∴∠CAB =30°,∴∠ACB =30°,∴BC =AB =a ,∴AC 2=AB 2+BC 2-2AB ²BC cos 120°=a 2+a 2-2a 2²⎝ ⎛⎭⎪⎫-12=3a 2,∴AC =3a .8.△ABC 中,已知A =60°,AB ∶AC =8∶5,面积为103,则其周长为________. 答案 20解析 设AB =8k ,AC =5k ,k >0,则 S =12AB ²AC ²sin A =103k 2=10 3. ∴k =1,AB =8,AC =5,由余弦定理: BC 2=AB 2+AC 2-2AB ²AC ²cos A=82+52-2³8³5³12=49.∴BC =7,∴周长为:AB +BC +CA =20.9.已知等腰三角形的底边长为6,一腰长为12,则它的内切圆面积为________.答案 27π5解析 不妨设三角形三边为a ,b ,c 且a =6,b =c =12, 由余弦定理得:cos A =b 2+c 2-a 22bc =122+122-622³12³12=78,∴sin A =1-⎝ ⎛⎭⎪⎫782=158.由12(a +b +c )²r =12bc sin A 得r =3155. ∴S 内切圆=πr 2=27π5.10.某舰艇在A 处测得遇险渔船在北偏东45°,距离为10 n mile 的C 处,此时得知,该渔船沿北偏东105°方向,以每小时9 n mile 的速度向一小岛靠近,舰艇时速21 n mile ,则舰艇到达渔船的最短时间是______小时.答案 23解析 设舰艇和渔船在B 处相遇,则在△ABC 中,由已知可得:∠ACB =120°,设舰艇到达渔船的最短时间为t ,则AB =21t ,BC =9t ,AC =10,则(21t )2=(9t )2+100-2³10³9t cos 120°,解得t =23或t =-512(舍).三、解答题11.如图所示,在山顶铁塔上B 处测得地面上一点A 的俯角为α,在塔底C 处测得A 处的俯角为β.已知铁塔BC 部分的高为h ,求山高CD .解 在△ABC 中,∠BCA =90°+β, ∠ABC =90°-α,∠BAC =α-β,∠CAD =β.根据正弦定理得:AC sin ∠ABC =BCsin ∠BAC,即AC sin 90°-α=BCsin α-β,∴AC =BC cos αsin α-β=h cos αsin α-β. 在Rt △ACD 中,CD =AC sin ∠CAD =AC sin β =h cos αsin βsin α-β. 即山高CD 为h cos αsin βsin α-β.12.已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求圆内接四边形ABCD 的面积.解连接BD ,则四边形面积S =S △ABD +S △CBD =12AB ²AD ²sin A +12BC ²CD ²sin C .∵A +C =180°,∴sin A =sin C .∴S =12(AB ²AD +BC ²CD )²sin A =16sin A .由余弦定理:在△ABD 中,BD 2=22+42-2³2³4cos A =20-16cos A ,在△CDB 中,BD 2=42+62-2³4³6cos C =52-48cos C , ∴20-16cos A =52-48cos C .又cos C =-cos A ,∴cos A =-12.∴A =120°.∴四边形ABCD 的面积S =16sin A =8 3. 能力提升13.如图所示,为了解某海域海底构造,在海平面内一条直线上的A 、B 、C 三点进行测量.已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.解 作DM ∥AC 交BE 于N ,交CF 于M .DF =MF 2+DM 2=302+1702=10298(m), DE =DN 2+EN 2=502+1202=130(m),EF =BE -FC 2+BC 2=902+1202=150(m). 在△DEF 中,由余弦定理的变形公式,得cos ∠DEF =DE 2+EF 2-DF 22DE ²EF=1302+1502-102³2982³130³150=1665.即∠DEF 的余弦值为1665.14.江岸边有一炮台高30 m ,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连成30°角,求两条船之间的距离.解 如图所示:∠CBD =30°,∠ADB =30°,∠ACB =45° ∵AB =30, ∴BC =30,BD =30tan 30°=30 3. 在△BCD 中,CD 2=BC 2+BD 2-2BC ²BD ²cos 30°=900, ∴CD =30,即两船相距30 m.1.测量底部不可到达的建筑物的高度问题.由于底部不可到达,这类问题不能直接用解直角三角形的方法解决,但常用正弦定理和余弦定理,计算出建筑物顶部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.2.测量角度就是在三角形内利用正弦定理和余弦定理求角的正弦值或余弦值,再根据需要求出所求的角.第一章 解三角形 复习课课时目标1.掌握正弦定理、余弦定理的内容,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.一、选择题1.在△ABC 中,A =60°,a =43,b =42,则B 等于( ) A .45°或135° B .135°C .45°D .以上答案都不对 答案 C解析 sin B =b ²sin A a =22,且b <a ,∴B =45°.2.在△ABC 中,已知cos A cos B >sin A sin B ,则△ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 答案 C解析 cos A cos B >sin A sin B ⇔cos(A +B )>0, ∴A +B <90°,∴C >90°,C 为钝角.3.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k ,则k 的取值范围是( ) A .(2,+∞) B .(-∞,0) C.⎝ ⎛⎭⎪⎫-12,0 D.⎝ ⎛⎭⎪⎫12,+∞ 答案 D解析 由正弦定理得:a =mk ,b =m (k +1), c =2mk (m >0), ∵⎩⎪⎨⎪⎧ a +b >c a +c >b 即⎩⎪⎨⎪⎧m 2k +1>2mk 3mk >m k +1,∴k >12.4.如图所示,D 、C 、B 三点在地面同一直线上,DC =a ,从C 、D 两点测得A 点的仰角分别是β、α(β<α).则A 点离地面的高AB 等于( )A.a sin αsin βsin α-β B.a sin αsin βcos α-β C.a sin αcos βsin α-β D.a cos αcos βcos α-β 答案 A解析 设AB =h ,则AD =hsin α,在△ACD 中,∵∠CAD =α-β,∴CD sin α-β=ADsin β.∴a sin α-β=h sin αsin β,∴h =a sin αsin βsin α-β. 5.在△ABC 中,A =60°,AC =16,面积为2203,那么BC 的长度为( ) A .25 B .51 C .49 3 D .49 答案 D解析 S △ABC =12AC ²AB ²sin 60°=12³16³AB ³32=2203,∴AB =55.∴BC 2=AB 2+AC 2-2AB ²AC cos 60°=552+162-2³16³55³12=2 401.∴BC =49.6.(2010²天津)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2=3bc ,sin C =23sin B ,则A 等于( )A .30°B .60°C .120°D .150° 答案 A解析 由sin C =23sin B ,根据正弦定理,得 c =23b ,把它代入a 2-b 2=3bc 得 a 2-b =6b 2,即a 2=7b 2.由余弦定理,得cos A =b 2+c 2-a 22bc =b 2+12b 2-7b 22b ²23b=6b243b2=32. 又∵0°<A <180°,∴A =30°. 二、填空题7.三角形两条边长分别为3 cm,5 cm ,其夹角的余弦值是方程5x 2-7x -6=0的根,则此三角形的面积是________cm 2.答案 6解析 由5x 2-7x -6=0,解得x 1=-35,x 2=2.∵x 2=2>1,不合题意.∴设夹角为θ,则cos θ=-35,得sin θ=45,∴S =12³3³5³45=6 (cm 2).8.在△ABC 中,A =60°,b =1,S △ABC =3,则asin A =____________.答案2393 解析 由S =12bc sin A =12³1³c ³32=3,∴c =4.∴a =b 2+c 2-2bc cos A =12+42-2³1³4cos 60°=13.∴a sin A =13sin 60°=2393. 9.在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是 ______________. 答案 2<x <2 2解析 因为三角形有两解,所以a sin B <b <a ,即22x <2<x ,∴2<x <2 2. 10.一艘船以20 km/h 的速度向正北航行,船在A 处看见灯塔B 在船的东北方向,1 h 后船在C 处看见灯塔B 在船的北偏东75°的方向上,这时船与灯塔的距离BC 等于________km.答案 20 2。

苏教版学高中数学必修五解三角形余弦定理讲义

苏教版学高中数学必修五解三角形余弦定理讲义

学习目标核心素养1.掌握余弦定理及其推论.(重点)2.掌握正、余弦定理的综合应用.(重点)3.能应用余弦定理判断三角形的形状.(易错点)1.借助余弦定理的推导过程,提升学生的逻辑推理素养.2.通过余弦定理的应用,提升学生的数学运算素养.1.余弦定理三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.即a2=b2+c2—2bc cos_A,b2=c2+a2—2ca cos_B,c2=a2+b2—2ab cos_C.思考1:根据勾股定理,若△ABC中,C=90°,则c2=a2+b2=a2+b2—2ab cos C.1试验证1式对等边三角形还成立吗?你有什么猜想?[提示] 当a=b=c时,C=60°,a2+b2—2ab cos C=c2+c2—2c·c cos 60°=c2,即1式仍成立,据此猜想,对一般△ABC,都有c2=a2+b2—2ab cos C.思考2:在c2=a2+b2—2ab cos C中,ab cos C能解释为哪两个向量的数量积?你能由此证明思考1的猜想吗?[提示] ab cos C=|错误!|·|错误!|cos〈错误!,错误!〉=错误!·错误!.∴a2+b2—2ab cos C=错误!+错误!—2错误!·错误!=(错误!—错误!)2=错误!=c2.猜想得证.2.余弦定理的变形(1)余弦定理的变形cos A=错误!,cos B=错误!,cos C=错误!.(2)余弦定理与勾股定理的关系在△ABC中,c2=a2+b2⇔C为直角;c2>a2+b2⇔C为钝角;c2<a2+b2⇔C为锐角.思考3:勾股定理和余弦定理有何联系与区别?[提示] 二者都反映了三角形三边之间的平方关系;其中余弦定理反映了任意三角形中三边平方间的关系,勾股定理反映了直角三角形中三边平方间的关系,是余弦定理的特例.1.在△ABC中,若b=1,c=错误!,A=错误!,则a=________.1[a=错误!=1.]2.在△ABC中,若a=5,c=4,cos A=错误!,则b=________.6[由余弦定理可知25=b2+16—2×4b cos A,即b2—错误!b—9=0,解得b=6.]3.在△ABC中,a=3,b=错误!,c=2,则B=________.60°[cos B=错误!=错误!=错误!,∴B=60°.]4.在△ABC中,若b2+c2—a2<0,则△ABC必为________三角形.钝角[∵cos A=错误!<0,∴A∈(90°,180°).∴△ABC必为钝角三角形.]已知两边与一角解三角形【例1】在△a.[解] 法一:由余弦定理b2=a2+c2—2ac cos B,得32=a2+(3错误!)2—2a×3错误!×cos 30°,∴a2—9a+18=0,解得a=3或6.当a=3时,A=30°,∴C=120°.当a=6时,由正弦定理sin A=错误!=错误!=1.∴A=90°,∴C=60°.法二:由b<c,B=30°,b>c sin 30°=3错误!×错误!=错误!知本题有两解.由正弦定理sin C=错误!=错误!=错误!,∴C=60°或120°,当C=60°时,A=90°,由勾股定理a=错误!=错误!=6,当C=120°时,A=30°,△ABC为等腰三角形,∴a=3.已知三角形的两边及一角解三角形的方法,先利用余弦定理求出第三边,其余角的求解有两种思路:一是利用余弦定理的推论求出其余角;二是利用正弦定理已知两边和一边的对角求解.若用正弦定理求解,需对角的取值进行取舍,而用余弦定理就不存在这些问题在0,π上,余弦值所对角的值是唯一的,故用余弦定理求解较好.1.在△ABC中,a=2错误!,c=错误!+错误!,B=45°,解这个三角形.[解] 根据余弦定理得,b2=a2+c2—2ac cos B=(2错误!)2+(错误!+错误!)2—2×2错误!×(错误!+错误!)×cos 45°=8,∴b=2错误!.又∵cos A=错误!=错误!=错误!,∴A=60°,C=180°—(A+B)=75°.已知三边解三角形【例2】已知△ABC中,a∶b∶c=2∶错误!∶(错误!+1),求△ABC的各角的大小.思路探究:已知三角形三边的比,可设出三边的长,从而问题转化为已知三边求三角,可利用余弦定理求解.[解] 设a=2k,b=错误!k,c=(错误!+1)k(k>0),利用余弦定理,有cos A=错误!=错误!=错误!,∴A=45°.同理可得cos B=错误!,B=60°.∴C=180°—A—B=75°.1.已知三边求角的基本思路是:利用余弦定理的推论求出相应角的余弦值,值为正,角为锐角;值为负,角为钝角,其思路清晰,结果唯一.2.若已知三角形的三边的关系或比例关系,常根据边的关系直接代入化简或利用比例性质,转化为已知三边求解.2.在△ABC中,已知a=7,b=3,c=5,求最大角和sin C.[解] ∵a>c>b,∴A为最大角,由余弦定理的推论,得:cos A=错误!=错误!=—错误!,∴A=120°,∴sin A=sin 120°=错误!.由正弦定理错误!=错误!,得:sin C=错误!=错误!=错误!,∴最大角A为120°,sin C=错误!.正、余弦定理的综合应用[探究问题]1.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+c2,则sin2A=sin2B+sin2C 成立吗?反之说法正确吗?为什么?[提示] 设△ABC的外接圆半径为R.由正弦定理的变形,将a=2R sin A,b=2R sin B,c=2R sin C,代入a2=b2+c2可得sin2A=sin2B+sin2C.反之将sin A=错误!,sin B=错误!,sin C=错误!代入sin2A=sin2B+sin2C可得a2=b2+c2.因此,这两种说法均正确.2.在△ABC中,若c2=a2+b2,则C=错误!成立吗?反之若C=错误!,则c2=a2+b2成立吗?为什么?[提示] 因为c2=a2+b2,所以a2+b2—c2=0,由余弦定理的变形cos C=错误!=0,即cos C =0,所以C=错误!,反之若C=错误!,则cos C=0,即错误!=0,所以a2+b2—c2=0,即c2=a 2+b2.【例3】在△ABC中,若(a—c·cos B)·sin B=(b—c·cos A)·sin A,判断△ABC的形状.思路探究:[解] 法一:(角化边)∵(a—c·cos B)·sin B=(b—c·cos A)·sin A,∴由正、余弦定理可得:错误!·b=错误!·a,整理得:(a2+b2—c2)b2=(a2+b2—c2)a2,即(a2—b2)(a2+b2—c2)=0,∴a2+b2—c2=0或a2=b2.∴a2+b2=c2或a=b.故△ABC为直角三角形或等腰三角形.法二:(边化角)根据正弦定理,原等式可化为:(sin A—sin C cos B)sin B=(sin B—sin C cos A)sin A,即sin C cos B sin B=sin C cos A sin A.∵sin C≠0,∴sin B cos B=sin A cos A.∴sin 2B=sin 2A.∴2B=2A或2B+2A=π,即A=B或A+B=错误!.∴△ABC是等腰三角形或直角三角形.1.(变条件)将例题中的条件“(a—c cos B)·sin B=(b—c cos A)·sin A”换为“a cos A+b cos B=c cos C”其它条件不变,试判断三角形的形状.[解] 由余弦定理知cos A=错误!,cos B=错误!,cos C=错误!,代入已知条件得a·错误!+b·错误!+c·错误!=0,通分得a2(b2+c2—a2)+b2(a2+c2—b2)+c2(c2—a2—b2)=0,展开整理得(a2—b2)2=c4.∴a2—b2=±c2,即a2=b2+c2或b2=a2+c2.根据勾股定理知△ABC是直角三角形.2.(变条件)将例题中的条件“(a—c cos B)·sin B=(b—c cos A)·sin A”换为“lg a—lg c=lg sin B=—lg 错误!且B为锐角”,判断△ABC的形状.[解] 由lg sin B=—lg 错误!=lg 错误!,可得sin B=错误!,又B为锐角,∴B=45°.由lg a—lg c=—lg 错误!,得错误!=错误!,∴c=错误!a.又∵b2=a2+c2—2ac cos B,∴b2=a2+2a2—2错误!a2×错误!=a2,∴a=b,即A=B.又B=45°,∴△ABC为等腰直角三角形.判断三角形的形状应围绕三角形的边角关系进行思考,可用正、余弦定理将已知条件转化为边边关系,通过因式分解、配方等方式得出边的相应关系,从而判断三角形的形状,也可利用正、余弦定理将已知条件转化为角与角之间的关系,通过三角变换,得出三角形各内角之间的关系,从而判断三角形形状.1.本节课要掌握的解题方法(1)已知三角形的两边与一角,解三角形.(2)已知三边解三角形.(3)利用余弦定理判断三角形的形状.2.本节课的易错点有两处(1)正弦定理和余弦定理的选择已知两边及其中一边的对角,解三角形,一般情况下,利用正弦定理求出另一边所对的角,再求其他的边或角,要注意进行讨论.如果采用余弦定理来解,只需解一个一元二次方程,即可求出边来,比较两种方法,采用余弦定理较简单.(2)利用余弦定理求三角形的边长时容易出现增解,原因是余弦定理中涉及的是边长的平方,通常转化为一元二次方程求正实数.因此解题时需特别注意三角形三边长度所应满足的基本条件.1.判断正误(1)余弦定理揭示了任意三角形边角之间的关系,因此,它适应于任何三角形.()(2)在△ABC中,若a2>b2+c2,则△ABC一定为钝角三角形.()(3)在△ABC中,已知两边和其夹角时,△ABC不唯一.()[答案] (1)√(2)√(3)×[提示] 由余弦定理可知,已知△ABC的两边和其夹角时,第三边是唯一确定的,所以△ABC是唯一的,(3)错误.2.在△ABC中,a=7,b=4错误!,c=错误!,则△ABC的最小角为()A.错误!B.错误!C.错误!D.错误!B[由三角形边角关系可知,角C为△ABC的最小角,则cos C=错误!=错误!=错误!,所以C=错误!,故选B.]3.(2019·全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知a sin A—b sin B=4c sin C,cos A=—错误!,则错误!=()A.6 B.5C.4D.3A[∵△ABC的内角A,B,C的对边分别为a,b,c,a sin A—b sin B=4c sin C,cos A=—错误!,∴错误!解得3c2=错误!bc,∴错误!=6.故选A.]4.在△ABC中,内角A,B,C的对边分别为a,b,c,已知B=C,2b=错误!a,则cos A=________.错误![由B=C,2b=错误!a,可得b=c=错误!a,所以cos A=错误!=错误!=错误!.]5.在△ABC中,A+C=2B,a+c=8,ac=15,求b.[解] 在△ABC中,∵A+C=2B,A+B+C=180°,∴B=60°.由余弦定理,得b2=a2+c2—2ac cos B=(a+c)2—2ac—2ac cos B=82—2×15—2×15×错误!=19.∴b=错误!.。

高中数学余弦定理教案(优秀5篇)

高中数学余弦定理教案(优秀5篇)

高中数学余弦定理教案(优秀5篇)高中数学余弦定理教案篇一一、说教材(一)教材地位与作用《余弦定理》是必修5第一章《解三角形》的第一节内容,前面已经学习了正弦定理以及必修4中的任意角、诱导公式以及恒等变换,为后面学习三角函数奠定了基础,因此本节课有承上启下的作用。

本节课是解决有关斜三角形问题以及应用问题的一个重要定理,它将三角形的边和角有机地联系起来,实现了边与角的互化,从而使三角与几何产生联系,为求与三角形有关的量提供了理论依据,同时也为判断三角形形状,证明三角形中的有关等式提供了重要依据。

(二)教学目标根据上述教材内容分析以及新课程标准,考虑到学生已有的认知结构,心理特征及原有知识水平,我将本课的教学目标定为:⒈知识与技能:掌握余弦定理的内容及公式;能初步运用余弦定理解决一些斜三角形⒈过程与方法:在探究学习的过程中,认识到余弦定理可以解决某些与测量和几何计算有关的实际问题,帮助学生提高运用有关知识解决实际问题的能力。

⒈情感、态度与价值观:培养学生的探索精神和创新意识;在运用余弦定理的过程中,让学生逐步养成实事求是,扎实严谨的科学态度,学习用数学的思维方式解决问题,认识世界;通过本节的运用实践,体会数学的科学价值,应用价值;(三)本节课的重难点教学重点是:运用余弦定理探求任意三角形的边角关系,解决与之有关的计算问题,运用余弦定理解决一些与测量以及几何计算有关的实际问题。

教学难点是:灵活运用余弦定理解决相关的实际问题。

教学关键是:熟练掌握并灵活应用余弦定理解决相关的实际问题。

下面为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:二、说学情从知识层面上看,高中学生通过前一节课的学习已经掌握了余弦定理及其推导过程;从能力层面上看,学生初步掌握运用余弦定理解决一些简单的斜三角形问题的技能;从情感层面上看,学生对教学新内容的学习有相当的兴趣和积极性,但在探究问题的能力以及合作交流等方面的发展不够均衡。

高中数学必修五-正弦定理与余弦定理

高中数学必修五-正弦定理与余弦定理

正弦定理与余弦定理知识集结知识元正弦定理公式知识讲解1.正弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC中,已知a,b和角A时,解的情况A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b一解两解一解一解解的个数由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.2、三角形常用面积公式1.S=a•h a(h a表示边a上的高);2.S=ab sin C=ac sin B=bc sin A.3.S=r(a+b+c)(r为内切圆半径).【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识(1)测距离问题:测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决.解题关键在于明确:①测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决;②测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题.(2)测量高度问题:解题思路:①测量底部不可到达的建筑物的高度问题,由于底部不可到达,因此不能直接用解直角三角形的方法解决,但常用正弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.②对于顶部不可到达的建筑物高度的测量问题,我们可选择另一建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、俯角等构成三角形,在此三角形中利用正弦定理或余弦定理求解即可.点拨:在测量高度时,要理解仰角、俯角的概念.仰角和俯角都是在同一铅锤面内,视线与水平线的夹角.当视线在水平线之上时,成为仰角;当视线在水平线之下时,称为俯角.例题精讲正弦定理公式例1.已知△ABC中,角A,B,C所对的边分别是a,b,c.若A=45°,B=30°,a=,则b=()A.B.1 C.2 D.例2.在△ABC中,角A,B,C的对边分别为a,b,c,若,则B=()A.B.C.D.或例3.在△ABC中,已知三个内角为A,B,C满足sin A:sin B:sin C=3:5:7,则C=()A.90°B.120°C.135°D.150°利用正弦定理解三角形知识讲解【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识例题精讲利用正弦定理解三角形例1.在△ABC中,a,b,c是内角A,B,C所对的边.若a>b,则下列结论不一定成立的()A.A>B B.sin A>sin BC.cos A<cos B D.sin2A>sin2B例2.在△ABC中,角A,B,C的对边分别是a,b,c,且,则角A的大小为()A.B.C.D.例3.在△ABC中,三内角A,B,C的对边分别为a,b,c,若sin B =b sin A,则a=()A .B .C.1 D.三角形面积公式的简单应用知识讲解1.余弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b 解的个数一解两解一解一解由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.例题精讲三角形面积公式的简单应用例1.已知△ABC的内角A,B,C的对边分别为a,b,c,且(a+b)2=c2+ab,B=30°,a=4,则△ABC的面积为()A.4 B.3C.4D.6例2.设△ABC的三个内角A,B,C成等差数列,其外接圆半径为2,且有,则三角形的面积为()A.B.C.或D.或例3.在△ABC中角ABC的对边分别为a、b、c,cos C=,且a cos B+b cos A=2,则△ABC面积的最大值为()A.B.C.D.利用余弦定理解三角形当堂练习填空题练习1.如图,O在△ABC的内部,且++3=,则△ABC的面积与△AOC的面积的比值为_____.练习2.锐角△ABC的内角A,B,C的对边分别为a,b,c,已知c2-8=(a-b)2,a=2c sin A,则△ABC的面积为____.练习3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,则的最大值是____.解答题练习1.'在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(1)求角B的大小;(2)若D为AC的中点,且BD=1,求S△ABC的最大值.'练习2.'在△ABC中,角A、B、C的对边分别是a、b、c,若(a+c)sin B-b sin C=b cos A.(1)求角A;(2)若△ABC的面积为4,a=6,求△ABC的周长.'练习3.'△ABC内角A,B,C所对的边分别为a,b,c.若。

江苏高中数学教材顺序

江苏高中数学教材顺序

江苏高中数学教材顺序篇一:江苏高中数学目录告诉我每个学期学什么??按课标要求,每学期两个模块,即:高一上:必修一、二高一下:必修三、四高二上:必修五、选修1-1(文)、选修2-1(理)高二下:文选修1-2,理选修2-2、2-3然后各学校根据自己的情况安排高三一轮复习,考选修三四系列的还要再多学一点,具体内容看省里的要求。

高一数学上数学1第1章集合1.1集合的含义及其表示1.2子集、全集、补集1.3交集、并集第2章函数概念与基本初等函数Ⅰ2.1函数的概念和图象函数的概念和图象函数的表示方法函数的简单性质映射的概念2.2指数函数分数指数幂指数函数2.3对数函数对数对数函数2.4幂函数2.5函数与方程二次函数与一元二次方程用二分法求方程的近似解2.6函数模型及其应用数学2第3章立体几何初步3.1空间几何体棱柱、棱锥和棱台圆柱、圆锥、圆台和球中心投影和平行投影直观图画法空间图形的展开图柱、锥、台、球的体积3.2点、线、面之间的位置关系平面的基本性质空间两条直线的位置关系直线与平面的位置关系平面与平面的位置关系第4章平面解析几何初步4.1直线与方程直线的斜率直线的方程两条直线的平行与垂直两条直线的交点平面上两点间的距离点到直线的距离4.2圆与方程圆的方程直线与圆的位置关系圆与圆的位置关系4.3空间直角坐标系空间直角坐标系空间两点间的距离高一数学下数学3第5章算法初步5.1算法的意义5.2流程图5.3基本算法语句5.4算法案例第6章统计6.1抽样方法6.2总体分布的估计6.3总体特征数的估计6.4线性回归方程第7章概率7.1随机事件及其概率7.2古典概型7.3几何概型7.4互斥事件及其发生的概率数学4第8章三角函数8.1任意角、弧度8.2任意角的三角函数8.3三角函数的图象和性质第9章平面向量9.1向量的概念及表示9.2向量的线性运算9.3向量的坐标表示9.4向量的数量积9.5向量的应用第10章三角恒等变换10.1两角和与差的三角函数10.2二倍角的三角函数10.3几个三角恒等式高二数学上数学5第11章解三角形11.1正弦定理11.2余弦定理11.3正弦定理、余弦定理的应用第12章数列12.1等差数列12.2等比数列12.3数列的进一步认识第13章不等式13.1不等关系13.2一元二次不等式13.3二元一次不等式组与简单的线性规划问题13.4基本不等式文科数学选修系列11-1(上)第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑联结词1.3全称量词与存在量词第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2.3双曲线2.4抛物线2.5圆锥曲线与方程第3章导数及其应用3.1导数的概念3.2导数的运算3.3导数在研究函数中的应用3.4导数在实际生活中的应用1-2(下)第1章统计案例1.1假设检验1.2独立性检验1.3线性回归分析1.4聚类分析第2章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3公理化思想第3章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义第4章框图4.1流程图5.2结构图理科数学选修系列22-1(上)第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑连接词1.3全称量词与存在量词第2章圆锥曲线与方程第3章空间向量与立体几何2-2(上)第1章导数及其应用第2章推理与证明第3章数系的扩充与复数的引入2-3(下)第1章计数原理第2章概率第3章统计案例篇二:高中数学苏教版教材目录(必修+选修)苏教版-----------------------------------必修1-----------------------------------第1章集合1.1集合的含义及其表示 1.2子集、全集、补集 1.3交集、并集第2章函数2.1函数的概念2.1.1函数的概念和图象2.1.2函数的表示方法 2.2函数的简单性质2.2.1函数的单调性2.2.2函数的奇偶性 2.3映射的概念第3章指数函数、对数函数和幂函数3.1指数函数3.1.1分数指数幂3.1.2指数函数 3.2对数函数3.2.1对数3.2.2对数函数 3.3幂函数3.4函数的应用3.4.1函数与方程3.4.2函数模型及其应用-----------------------------------必修2-----------------------------------第1章立体几何初步1.1空间几何体1.1.1棱柱、棱锥和棱台1.1.2圆柱、圆锥、圆台和球1.1.3中心投影和平行投影1.1.4直观图画法1.2点、线、面之间的位置关系1.2.1平面的基本性质1.2.2空间两条直线的位置关系 1.平行直线2.异面直线1.2.3直线与平面的位置关系1.直线与平面平行2.直线与平面垂直 1.2.4平面与平面的位置关系1.两平面平行2.平面垂直1.3空间几何体的表面积和体积1.3.1空间几何体的表面积1.3.2空间几何体的体积第2章平面解析几何初步2.1直线与方程2.1.1直线的斜率2.1.2直线的方程1.点斜式2.两点式3.一般式2.1.3两条直线的平行与垂直2.1.4两条直线的交点2.1.5平面上两点间的距离 2.1.6点到直线的距离2.2圆与方程2.2.1圆的方程2.2.2直线与圆的位置关系2.2.3圆与圆的位置关系 2.3空间直角坐标系2.3.1空间直角坐标系2.3.2空间两点间的距离-----------------------------------必修3-----------------------------------第1章算法初步 1.1算法的意义1.2流程图1.2.1顺序结构1.2.2选择结构1.2.3循环结构1.3基本算法语句1.3.1赋值语句1.3.2输入、输出语句1.3.3条件语句1.3.4循环语句 1.4算法案例第2章统计2.1抽样方法2.1.1简单随机抽样1.抽签法2.随机数表法2.1.2系统抽样2.1.3分层抽样2.2总体分布的估计2.2.1频率分布表2.2.2频率分布直方图与折线图2.2.3茎叶图 2.3总体特征数的估计2.3.1平均数及其估计2.3.2方差与标准差 2.4线性回归方程第3章概率3.1随机事件及其概率3.1.1随机现象3.1.2随机事件的概率3.2古典概型 3.3几何概型 3.4互斥事件-----------------------------------必修4-----------------------------------第1章三角函数1.1任意角、弧度1.1.1任意角1.1.2弧度制1.2任意角的三角函数1.2.1任意角的三角函数1.2.2同角三角函数关系1.2.3三角函数的诱导公式1.3三角函数的图象和性质1.3.1三角函数的周期性1.3.2三角函数的图象与性质1.3.3函数y=Asin(ωx+ψ)的图象1.3.4三角函数的应用第2章平面向量2.1向量的概念及表示2.2向量的线性运算2.2.1向量的加法2.2.2向量的减法2.2.3向量的数乘 2.3向量的坐标表示2.3.1平面向量基本定理2.3.2平面向量的坐标运算 2.4向量的数量积 2.5向量的应用第3章三角恒等变换 3.1两角和与差的三角函数 3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切 3.2二倍角的三角函数 3.3几个三角恒等式-----------------------------------必修5-----------------------------------第1章解三角形 1.1正弦定理 1.2余弦定理1.3正弦定理、余弦定理的应用第2章数列 2.1数列2.2等差数列2.2.1等差数列的概念2.2.2等差数列的通项公式2.2.3等差数列的前n项和2.3等比数列2.3.1等比数列的概念2.3.2等比数列的通项公式2.3.3等比数列的前n项和第3章不等式3.1不等关系3.2一元二次不等式3.3二元一次不等式组与简单的线性规划问题3.3.1二元一次不等式表示的平面区域3.3.2二元一次不等式组表示的平面区域 3.3.3简单的线性规划问题3.4基本不等式ab?a?b(a?0,b?0)3.4.1基本不等式的证明23.4.2基本不等式的应用-----------------------------------选修1-1-----------------------------------第1章常用逻辑用语1.1命题及其关系1.1.1四种命题1.1.2充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词1.3.1量词1.3.2含有一个量词的命题的否定第2章圆锥曲线与方程 2.1圆锥曲线2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质 2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质 2.5圆锥曲线的共同性质第3章导数及其应用3.1导数的概念3.1.1平均变化率3.1.2瞬时变化率——导数3.2导数的运算3.2.1常见函数的导数3.2.2函数的和、差、积、商的导数 3.3导数在研究函数中的应用3.3.1单调性3.3.2极大值和极小值3.3.3最大值和最小值3.4导数在实际生活中的应用-----------------------------------选修1-2-----------------------------------第1章统计案例 1.1独立性检验 1.2回归分析第2章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏 2.2直接证明与间接证明2.2.1直接证明2.2.2间接证明第3章数系的扩充与复数的引入 3.1数系的扩充 3.2复数的四则运算 3.3复数的几何意义第4章框图 4.1流程图 4.2结构图-----------------------------------选修2-1-----------------------------------第1章常用逻辑用语1.1命题及其关系1.1.1四种命题1.1.2充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词1.3.1量词1.3.2含有一个量词的命题的否定第2章圆锥曲线与方程 2.1圆锥曲线2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质 2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质 2.5圆锥曲线的统一定义2.6曲线与方程2.6.1曲线与方程2.6.2求曲线的方程2.6.3曲线的交点第3章空间向量与立体几何3.1空间向量及其运算3.1.1空间向量及其线性运算3.1.2共面向量定理3.1.3空间向量基本定理3.1.4空间向量的坐标表示3.1.5空间向量的数量积 3.2空间向量的应用3.2.1直线的方向向量与平面的法向量3.2.2空间线面关系的判定3.2.3空间的角的计算-----------------------------------选修2-2-----------------------------------第一章导数及其应用1.1导数的概念1.1.1平均变化率1.1.2瞬时变化率——导数1.2导数的运算1.2.1常见函数的导数1.2.2函数的和、差、积、商的导数1.2.3简单复合函数的导数1.3导数在研究函数中的应用1.3.1单调性1.3.2极大值和极小值1.3.3最大值和最小值 1.4导数在实际生活中的应用1.5定积分1.5.1曲边梯形的面积1.5.2定积分1.5.3微积分基本定理第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏 2.2直接证明与间接证明2.2.1直接证明2.2.2间接证明 2.3数学归纳法第三章数系的扩充与复数的引入 3.1数系的扩充 3.2复数的四则运算 3.3复数的几何意义-----------------------------------选修2-3-----------------------------------第一章计数原理 1.1两个基本原理 1.2排列 1.3组合1.4计数应用题1.5二项式定理1.5.1二项式定理1.5.2二项式系数的性质及用第二章概率2.1随机变量及其概率分布 2.2超几何分布2.3独立性2.3.1条件概率2.3.2事件的独立性 2.4二项分布2.5随机变量的均值与方差2.5.1离散型随机变量的均值2.5.2离散型随机变量的方差与标准差 2.6正态分布第三章统计案例 3.1独立性检验 3.2回归分析-----------------------------------选修4-1-----------------------------------1.1 相似三角形的进一步认识1.1.1平行线分线段成比例定理 1.1.2相似三角形 1.2 圆的进一步认识1.2.1圆周角定理 1.2.2圆的切线 1.2.3圆中比例线段1.2.4圆内接四边形 1.3 圆锥截线1.3.1球的性质 1.3.2圆柱的截线 1.3.3圆锥的截线学习总结报告-----------------------------------选修4-2-----------------------------------2.1 二阶矩阵与平面向量2.1.1矩阵的概念2.1.2二阶矩阵与平面列向量的乘法 2.2 几种常见的平面变换2.2.1恒等变换 2.2.2伸压变换 2.2.3反射变换 2.2.4旋转变换 2.2.5投影变换 2.2.6切变变换2.3 变换的复合与矩阵的乘法2.3.1矩阵乘法的概念 2.3.2矩阵乘法的简单性质2.4 逆变换与逆矩阵2.4.1逆矩阵的概念2.4.2二阶矩阵与二元一次方程组 2.5 特征值与特征向量2.6 矩阵的简单应用学习总结报告-----------------------------------选修4-4-----------------------------------4.1 直角坐标系4.1.1直角坐标系 4.1.2极坐标系4.1.3球坐标系与柱坐标系 4.2 曲线的极坐标方程4.2.1曲线的极坐标方程的意义 4.2.2常见曲线的极坐标方程4.3 平面坐标系中几种常见变换4.3.1平面直角坐标系中的平移变换 4.3.2平面直角坐标系中的伸缩变换 4.4 参数方程4.4.1参数方程的意义4.4.2参数方程与普通方程的互化 4.4.3参数方程的应用4.4.4平摆线与圆的渐开线学习总结报告-----------------------------------选修4-5-----------------------------------5.1 不等式的基本性质 5.2 含有绝对值的不等式5.2.1含有绝对值的不等式的解法 5.2.2含有绝对值的不等式的证明 5.3 不等式的证明5.3.1比较法5.3.2综合法和分析法 5.3.3反证法 5.3.4放缩法5.4 几个著名的不等式5.4.1柯西不等式 5.4.2排序不等式5.4.3算术-几何平均值不等式 5.5 运用不等式求最大(小)值5.5.1运用算术-几何平均值不等式求最大(小)值 5.5.2运用柯西不等式求最大(小)值5.6 运用数学归纳法证明不等式学习总结报告篇三:高中新课标教材版本各省详表高中课标教材本(各省市)详表1、海南高中课标教材本(04秋高一起用):2、广东高中课标教材本(04秋高一起用):3、山东高中课标教材本(04秋高一起用):4、宁夏高中课标教材本(04秋高一起用):5、江苏高中课标教材本(05秋高一起用):6、福建高中课标教材本(06秋高一起用):7、辽宁高中课标教材本(06秋高一起用):8、安徽高中课标教材本(06秋高一起用):9、浙江高中课标教材本(06秋高一起用):10、天津高中课标教材本(06秋高一起用):11、湖南高中课标教材本(07秋高一起用):12、陕西高中课标教材本(07秋高一起用):13、吉林高中课标教材本(07秋高一起用):14、黑龙江高中课标教材。

苏教版高中数学必修5同步讲义 1.2余弦定理

苏教版高中数学必修5同步讲义  1.2余弦定理

§1.2 余弦定理情景引入我们在社会生活中经常会遇到一些工人在开山、凿路、铺桥等,由于某些实际情况不好去直接测量,如开隧道,想知道隧道的长度;如铺桥,河很宽又要知道桥的长度,等等.就象隧道工程设计,经常要测算山脚的长度,工程技术人员先在地面上选一适当的位置A ,量出A 到山脚B 、C 两点间的距离,再利用经纬仪测出A 对山脚BC (即线段BC )的张角,最后通过计算求出山脚的长度BC .知识技能详解知识点1 余弦定理三角形中任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.即2222cos a b c bc A =+-,2222cos b a c ac B =+-,2222cos c a b ab C =+- 余弦定理的推论:222os 2b c a c A bc +-=,222cos 2c a b B ac+-=,222cos 2a b c C ab +-= 利用推论可以由三角形的三边求出三角形的三个内角. 温馨提示:(1)余弦定理揭示了任意三角形边角之间的客观规律,是解三角形的重要工具.(2)余弦定理是勾股定理的推广,勾股定理是余弦定理的特例. 知识点2 余弦定理的证明教材中给出了用向量证明余弦定理的方法,体现了向量在解决三角形度量问题中的作用,另外,还可以用解析法、三角法等证明余弦定理.证明1:如图1-2-1,以A 点为原点,以△ABC 的边AB 所在直线为x 轴,以过A 与AB 垂直的直线为y 轴,建立直角坐标系,则(0,0)A ,(cos ,sin )C b A b A ,(,0)B c ,由两点间的距离公式得222(cos )(sin 0)BC b A c b A =-+-,222222cos 2cos sin a b A bc A c b A =-++即2222cos a b c bc A =+-同理可证2222cos b a c ac B =+-,2222cos c a b ab C =+- 证明2:如图1-2-2,当△ABC 为锐角三角形时,过C 作CD AB ⊥于D ,则sin CD b A =,cos BD AB AD c b A =-=- 在Rt △BCD 中,由勾股定理得222BC CD BD =+即2222sin (cos )a b A c b A =+-整理得2222cos a b c bc A =+- 同理可证2222cos b ac ac B =+-,2222cos c a b ab C =+- A BD C b a c 1-2-1当△ABC 为钝角三角形时,如图1-2-3,sin CD b A =,cos BD b A c =-在Rt △BCD 中,由勾股定理得222BC CD BD =+ 2222(cos )a b sin A b A c =+-,即2222cos a b c bc A =+- 同理可证2222cos b a c ac B =+-,2222cos c a b ab C =+-证明3:由正弦定理,得2sin 2sin()a R A R B C ==+,∴2224sin ()a R B C =+224(sin R B =2cos C 22cos sin 2sin sin cos cos )B C B C B C ++24R =2222sin (1sin )(1sin )sin 2sin sin cos cos B C B C B C B C ⎡⎤-+-+⎣⎦2224sin sin 2sin sin cos()R B C B C B C ⎡⎤=+++⎣⎦ 22224sin 4sin R B R C =+2(2sin )(2sin )cos R B R C A -222cos b c bc A =+-,同理可证:2222cos ,b a c ac B =+-2222cos c b a ba C =+-方法点拨:对于余弦定理的证明方法可以由正弦定理的证明来类比,由正弦定理的证明思路(通过向量)来推导出余弦定理的证明,其中关键是如何将向量等式BC BA AC =+ 转化为数量关系,实际上除了向量方法以外,我们还有好多种方法,如以上的几种方法,所以在解决问题的时候要多注意方法和思路的总结. 知识点3 利用余弦定理解三角形利用余弦定理可以解决以下两类解三角形的问题:(1)已知三边,求三个角;(2)已知两边和它们的夹角,可以求第三边,进而求出其他角.例如:在ABC ∆中,已知():():()4:5:6b c a c b a +++=,求ABC ∆的最大内角.解:设4b c k +=,5a c k +=,6b a k +=(0)k >,则7.5a b c k ++=,解的 3.5a k =,2.5b k =, 1.5c k =所以a 是最大的边,即角A 是ABC ∆的最大角.由余弦定理得2221cos 22b c a A bc +-==- ,000180A << ,0120A ∴=即最大角为0120. 温馨提示:(1)在余弦定理中,每一个等式均含有四个量,利用方程的观点,可以知三求一.(2)运用余弦定理时,因为已知三边求角,或已知两边及夹角求另一边,由三角形全等的判定定理知,三角形是确定的,所以解也是唯一的. 知识点4 利用余弦定理判断三角形的形状.利用余弦定理可以确定三角形每个内角的范围,因此很快就能判断三角形是锐角三角形或是直角三角形或是钝角三角形.在判断的过程中我们一般先找到最大角,(即最大边所对应的角),再判断这个最大角AB DC b ac 1-2-3是锐角,直角还是钝角.例如:在ABC ∆中,已知7a =,10b =,6c =,判断ABC ∆的形状.解:因为ABC ∆中最大边为b ,所以我们先确定角B 的范围,由余弦定理2225cos 228a cb B ac +-==-可知:在ABC ∆中,000180B <<;0090180B <<,所以ABC ∆为钝角三角形. 规律总结:(1)由余弦定理还可以推得:若222a b c +>,C 为锐角,若222a b c +<,C 为锐角.这是判断三角形形状的方法之一.(2)在2222cos c a b ab C =+-中,若090C =,则222c a b =+,所以勾股定理可以看成是余弦定理的特例,而余弦定理是勾股定理的推广. 知识点5 三角形中最值的求法解决三角形中的有关最值问题的关键在于:利用正弦定理或余弦定理,三角恒等变换思想将有关问题转化为某一个角的三角函数,或某一边的函数,进而求出其最值.例如:已知圆O 的半径为R ,它的内接△ABC 满足222(sin sin )R A C -)sin b B =-,求△ABC 面积的最大值.分析:先可将已知等式转化为边的关系式,再由边的关系式的结构特征联想到正余弦定理可求角C ,最后利用三角函数的有界性确定面积的最大值.解:利用正弦定理可将已知等式变为22)a c b b -=-即222a b c +-=∴222cos 2a b c C ab +-== ∴4C π=∴1sin 2S ab C = 12sin 2sin 2R A R B =⋅⋅2sin sin A B =2[cos()]22R A B =----∴当A =B 时,S 有最大值212R +. 警示区:在运用正、余弦定理求解最值问题时,有时要注意三角函数的有界性,否则会导致范围的变化;有时还要用到函数的单调性、不等式的基本性质等. 知识点6 余弦定理的综合应用把余弦定理与正弦定理、三角形的面积相结合可解决三角形、四边形中的证明和计算问题.技能应用导引题型一:余弦定理的简单应用1.解三角形例1 在△ABC 中,已知2,22,15a b C ===︒,求角A 、B 和边c 的值. 【分析】:由条件角C 为边a ,b 的夹角,故应由余弦定理来求c 的值.【解】62cos15cos(4530)4+︒=︒-︒=由余弦定理知,2222cos c a b ab C =+-4822(62)=+-⨯+843=-∴2843(62)62c =-=-=- 由正弦定理得sin sin a c A C= sin sin a C A c =sin15a c ︒=62214262-⨯==- ∵b a > ∴A 为锐角 ∴30A =︒ ∴180135B A C =︒--=︒【评注】利用余弦定理可以解决两类解斜三角形的问题:⑴已知三边,求三个角;⑵已知两边和它们的夹角,求第三边和其他两个角. 变式练习1. 在△ABC 中,已知20,10,45a b C ===︒,解三角形(边长精确到1,角度精确到1︒).变式练习2.在ABC ∆中,已知4a =,5b =,6=c ,求A (精确到00.1).例2、在四边形ABCD 中,,2BC a DC a ==,四个角A 、B 、C 、D 的度数的比为3:7:4:10,求AB 的长.【分析】如图1-2-4,要求AB 的长,需把AB 放到三角形中处理,为此连结BD ,由题设可求出角A 、B 、C 、D 的值,在△BCD 中,由余弦定理可求出BD ,进而解△BCD ,求AB .【解】设四个角A 、B 、C 、D 的度数分别为3,7,4,10(0)x x x x x >,则由四边形的内角和定理,有37410360x x x x +++=︒,解得15x =︒.∴45A =︒,105ABC ∠=︒,60C =︒,150ADC ∠=︒ 连结BD ,在△BCD 中,由余弦定理,得 2222cos BD BC CD BC CD C =+-⋅⋅222142232a a a a a =+-⋅⋅= ∴3BD a = 此时,222BC BD CD +=,∴△CBD 为直角三角形,90CBD ∠=︒,30BDC ∠=︒在△ABD 中,45A =︒,120ADB ∠=︒由正弦定理知sin sin AB BD ADB A =∠,sin 32sin 2BD ADB AB a A ∠== ∴AB 322a ABCD 1-2-4【反思】本题要求在四边形ABCD 中求边AB 的长,需构建三角形,通过解三角形解决,本题中求ADB ∠的度数是关键,要善于挖掘隐含条件222BC BD CD +=,如果不能发现这一条件,也可通过余弦定理求出BDC ∠的度数. 变式练习3.在四边形ABDC 中,3CD =,75ACB ∠=︒,45BCD ∠=︒,30ADC ∠=︒,45ADB ∠=︒,求AB 的长.变式练习4.在△ABC 中,已知b =43,c =23,∠A =120°,求a.例3.在△ABC 中,A 最大,C 最小,且2A C =,2a c b +=,求此三角形三边之比.【分析】要求三边之比,已知角A 与角C 的关系,可由正弦定理求cos 2a C c=,再由余弦定理得出a 、b 、c 的关系,结合2a c b +=的条件,使问题解决.【解】在△ABC 中,由正弦定理得sin sin a c A C =,sin 2cos sin a A C c C ==,即cos 2a C c= 由余弦定理得222cos 2a b c C ab+-= ∵2b a c =+ ∴2221()4222a c a c a a c c a -++=+⋅ 整理得,222530a ac c -+=,解得a c =或32a c = ∵A C > ∴a c >,∴a c =不合题意.当32a c =时,15()24b ac c =+= ∴35::::6:5:424a b c c c c == 故此三角形的三边之比为6:5:4 【评注】在应用正、余弦定理解三角形时,常用到三角函数的有关公式,体现了它们之间的联系,本题中通过解方程求a 、c 的关系,体现了余弦定理与方程的联系.变式练习5.已知三角形的三边长为三个连续自然数,且最大角为钝角,求三边的长.变式练习6.已知a 、b 、c 为△ABC 的三边,且a 2-a -2b -2c =0,a +2b -2c +3=0,求这个三角形的最大内角.2.判断三角形的形状例4 在△ABC 中,已知7,10,6a b c ===,判断ABC 的形状.【分析】△ABC 的最大边由b 和角B 的范围决定,故问题转化为求角B 的范围.【解】由余弦定理知222cos 2c a b B ac+-=2227610276+-=⨯⨯528=-在△ABC 中,0180B ︒<<︒∴90180B ︒<<︒ ∴△ABC 为钝角三角形. 【评注】对于判断三角形的形状,一般从两个方面:一是角化边,通过余弦定理来判断;二是边化角,结合三角形的内角和定理,判断其中的最大角。

高中数学必修五公式方法总结

高中数学必修五公式方法总结

高中数学必修五公式方法总结第一章 解三角形一、正弦定理:2(sin sin sin a b cR R A B C===为三角形外接圆半径)变形:2sin (sin )22sin (sin )22sin (sin )2a a R A A R b b R B B R c c R C C R ⎧==⎪⎪⎪==⎨⎪⎪==⎪⎩推论:::sin :sin :sin a b c A B C = 二、余弦定理:变形:三、三角形面积公式:111sin sin sin .222===ABC S bc A ac B ab C △ 第二章 数列一、等差数列: 1.定义:a n+1-a n =d (常数)2.通项公式:()n1n 1d a a =+-或()nmn m d a a =+-3.求和公式:()()1n n 1n n n 1n d22a a S a +-==+4.重要性质(1)a a a a qpnmq p n m +=+⇒+=+(2) m,2m,32m m m S S S S S --仍成等差数列二、等比数列:1.定义:)0(1≠=+q q a a nn 2.通项公式:q a a n n11-∙=或q a a mn mn-∙=3.求和公式:1n n 11n na ,q 1S a (1q )a a q ,q 11q 1q =⎧⎪=--⎨=≠⎪--⎩2222222222cos 2cos 2cos a b c bc Ab ac ac B c a b ab C =+-=+-=+-222222222cos 2cos 2cos 2b c a A bc a c b B aca b c C ab +-=+-=+-=4.重要性质(1)a a a a q p n m q p n m =⇒+=+(2)m,2m,32--m m m S S S S S 仍成等比数列三、数列求和方法总结:1.等差等比数列求和可采用求和公式(公式法).2.非等差等比数列可考虑分组求和法、错位相减法等转化为等差或等比数列再求和, 常见的拆项公式: 111(1)n(n 1)n n 1=-++第三章:不等式一、解一元二次不等式三步骤: 222(1)ax bx c 0ax bx c 0(a 0).(2)ax bx c 0.(3).⎧++>++<>⎪++=⎨⎪⎩化不等式为标准式或计算的值,确定方程的根根据图象写出不等式的解集∆ 特别地:若二次项系数a 为正且有两根时写解集用口诀:不等号大于0取两边,小于0取中间二、分式不等式的求解通法:(1)标准化:①右边化零,②系数化正.(2)转 换:化为一元二次不等式(依据:两数的商与积同号)三、二元一次不等式Ax+By+C >0(A ,B 不同时为0),确定其所表示的平面区域用口诀:同上异下(A与不等式的符号)(注意:包含边界直线用实线,否则用虚线)四、线性规划问题求解步骤:画(可行域),移(平行线),求(交点坐标,最优解,最值),答. 五、基本不等式:0,0)2a ba b +≥≥≥(当且仅当a=b 时,等号成立).1111(2)()n(n k)k nn k=-++1111(3)()(2n 1)(2n 1)22n 12n 1=--+-+1111(4[]n(n 1)(n 2)2n(n 1)(n 1)(n 2)=-+++++)=()10()()0()()(2)0()()0()0()()()30()()>⇔>≥⇔≥≠≥⇔-≥f x f x g x g x f x f x g x g x g x f x f x a a g x g x 常用的解分式不等式的同解变形法则为()且(),再通分2a b (1)a b (2)ab ().2++≥≤变形;变形(和定积最大) 利用基本不等式求最值应用条件:一正数 ; 二定值 ; 三相等。

高中数学三维设计苏教版必修5讲义:第一章+1.2 余弦定理

高中数学三维设计苏教版必修5讲义:第一章+1.2 余弦定理

余弦定理第一课时余弦定理[新知初探]1.余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们的夹角的余弦的积的两倍.即a2=b2+c2-2bc cos A,b2=a2+c2-2ac cos_B,c2=a2+b2-2ab cos_C.[点睛]注意公式中边角的对应,注意公式中加减号.2.余弦定理的变形:cos A=b2+c2-a22bc,cos B=c2+a2-b22ac,cos C=a2+b2-c22ab.[小试身手]1.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,c=3,B=60°.则b=________.解析:由余弦定理可得b2=a2+c2-2ac cos B=4+9-2×2×3×12=7,所以b=7.答案:72.在△ABC中,若a=b=1,c=3,则角C=________.解析:由cos C=a2+b2-c22ab得cos C=-12,所以C=2π3.答案:2π33.在△ABC中,已知23ab sin C=a2+b2-c2,则C=________.解析:由23ab sin C=a2+b2-c2得23sin C=a2+b2-c2ab,由余弦定理cos C=a2+b2-c22ab,所以3sin C=cos C,即tan C=33,在△ABC中,0<C<π,所以C=π6.答案:π64.在△ABC中,内角A,B,C的对边分别为a,b,c,若c=2a,b=4,cos B=1 4.则边c的长度为________.解析:由余弦定理b2=a2+c2-2ac cos B得16=a2+4a2-4a2×14,所以a=2,c=4.答案:4[典例]在△ABC中,角A,B,C所对的边分别为a,b,c,且a=7,b=5,c=3,求△ABC的内角中最大的角.[解]∵a>b>c,∴A最大.cos A=b2+c2-a22bc=52+32-722×5×3=-12.又∵0°<A<180°,∴A=120°.[活学活用]1.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,b=7,c=3,则B=________.解析:由余弦定理得cos B=a2+c2-b22ac=1+3-72×1×3=-32.又∵0°<B<180°,∴B=150°.答案:150°2.在△ABC中,已知a∶b∶c=2∶6∶(3+1),则A=________. 解析:∵a∶b∶c=2∶6∶(3+1),令a=2k,b=6k,c=(3+1)k(k>0).由余弦定理的变形得,cos A=b2+c2-a22bc=6k2+(3+1)2k2-4k22×6k×(3+1)k=22.∴A=45°.答案:45°[典例][解]法一:由余弦定理知b2=a2+c2-2ac cos B.∴2=3+c2-23·22c. 即c2-6c+1=0.解得c=6+22或c=6-22,当c=6+22时,由余弦定理得cos A=b2+c2-a22bc=2+⎝⎛⎭⎪⎫6+222-32×2×6+22=12.∵0°<A<180°,∴A=60°,∴C=75°.当c=6-22时,由余弦定理得cos A=b2+c2-a22bc=2+⎝⎛⎭⎪⎫6-222-32×2×6-22=-12.∵0°<A <180°,∴A =120°,C =15°. 故c =6+22,A =60°,C =75° 或c =6-22,A =120°,C =15°. 法二:由正弦定理a sin A =b sin B得, sin A =a sin B b =3·sin 45°2=32.又∵a >b ,∴A >B ,∴A =60°或120°. 当A =60°时,得C =75°. 由余弦定理得c 2=a 2+b 2-2ab cos C =3+2-2×6×6-24=2+3, ∴c =2+3=6+22. 或用正弦定理求边c ,由c sin C =bsin B 得c =b sin C sin B =2·sin 75°sin 45°=2×6+2422=6+22.当A =120°时,得C =15°,同理可求c =6-22, 故A =60°,C =75°,c =6+22, 或A =120°,C =15°,c =6-22.[活学活用]1.在△ABC 中,已知a =8,b =7,B =60°,则c =________. 解析:由余弦定理,有b 2=a 2+c 2-2ac cos B , 即72=82+c 2-16c cos 60°.即c 2-8c +15=0. 解得c =3或c =5. 答案:3或52.在△ABC 中,B =π4,AB =2,BC =3,则sin A =________.解析:由余弦定理可得AC 2=9+2-2×3×2×22=5,所以AC = 5.再由正弦定理得AC sin B =BC sin A, 所以sin A =BC ·sin B AC =3×225=31010.答案:31010题点一:利用余弦定理实现角化边1.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知b cos C +c cos B =2b ,则ab=________. 解析:由余弦定理得b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a =2b ,即ab=2. 答案:2题点二:利用余弦定理实现边化角2.在△ABC 中,若lg(a +c )+lg(a -c )=lg b -lg 1b +c ,则A =________.解析:由题意可知lg(a +c )(a -c )=lg b (b +c ), 所以(a +c )(a -c )=b (b +c ).即b 2+c 2-a 2=-bc . 所以cos A =b 2+c 2-a 22bc =-12.又0°<A <180°,所以A =120°. 答案:120°层级一 学业水平达标1.在△ABC 中,若a 2-c 2+b 2=3ab ,则C =________.解析:由a 2-c 2+b 2=3ab ,得cos C =a 2+b 2-c 22ab =3ab 2ab =32,所以C =30°.答案:30°2.在△ABC 中,若b =1,c =3,C =2π3,则a =________. 解析:由余弦定理 c 2=a 2+b 2-2ab cos C 得, 3=a 2+1-2a ×1×cos 2π3, 即a 2+a -2=0.解得a =1或a =-2(舍去). ∴a =1. 答案:13.在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.解析:在△ABC 中,由b 2=a 2+c 2-2ac cos B 及b +c =7知,b 2=4+(7-b )2-2×2×(7-b )×⎝⎛⎭⎫-14,整理得15b -60=0,所以b =4. 答案:44.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角的大小为________. 解析:∵a >b >c ,∴C 为最小角,由余弦定理得cos C =a 2+b 2-c 22ab =72+(43)2-(13)22×7×43=32,∴C =π6. 答案:π65.已知在△ABC 中,b 2=ac 且c =2a ,则cos B =________.解析:∵b 2=ac ,c =2a ,∴b 2=2a 2,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 24a 2=34.答案:346.若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC 的形状是________.解析:在△ABC 中,sin A ∶sin B ∶sin C =5∶11∶13, ∴a ∶b ∶c =5∶11∶13,故令a =5k ,b =11k ,c =13k (k >0),由余弦定理可得cos C =a 2+b 2-c 22ab =25k 2+121k 2-169k 22×5×11k 2=-23110<0,又因为C ∈(0,π),所以,C ∈⎝⎛⎭⎫π2,π,所以△ABC 为钝角三角形.答案:钝角三角形7.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若(3b -c )cos A =a cos C ,则cos A =________.解析:由已知得3b cos A =a cos C +c cos A =a ·a 2+b 2-c 22ab +c ·b 2+c 2-a 22bc =b .∴cos A =b 3b =33. 答案:338.在△ABC 中,下列结论:①若a 2>b 2+c 2,则△ABC 为钝角三角形; ②若a 2=b 2+c 2+bc ,则A 为120°; ③若a 2+b 2>c 2,则△ABC 为锐角三角形. 其中正确的为________(填序号).解析:①中,a 2>b 2+c 2可推出cos A =b 2+c 2-a 22bc<0,即A 为钝角,所以△ABC 为钝角三角形;②中,由a 2=b 2+c 2+bc 知,cos A =-bc 2bc =-12,∴A 为120°;③中a 2+b 2>c 2可推出C 为锐角,但△ABC 不一定为锐角三角形;所以①②正确,③错误.答案:①②9.在△ABC 中,a ,b ,c 分别为A ,B ,C 的对边,B =2π3,b =13,a +c =4,求边 长a .解:由余弦定理得,b 2=a 2+c 2-2ac cos B =a 2+c 2-2ac cos 2π3=a 2+c 2+ac =(a +c )2-ac .又因为a +c =4,b =13,所以ac =3,联立⎩⎪⎨⎪⎧a +c =4,ac =3,解得a =1,c =3,或a =3,c =1.所以a 等于1或3.10.在△ABC 中,已知a =5,b =3,角C 的余弦值是方程5x 2+7x -6=0的根,求第三边长c .解:5x 2+7x -6=0可化为(5x -3)(x +2)=0. ∴x 1=35,x 2=-2(舍去).∴cos C =35.根据余弦定理,c 2=a 2+b 2-2ab cos C =52+32-2×5×3×35=16.∴c =4,即第三边长为4.层级二 应试能力达标1.已知a ,b ,c 为△ABC 的三边长,若满足(a +b -c )(a +b +c )=3ab ,则角C 的大小为________.解析:∵(a +b -c )(a +b +c )=3ab ,∴a 2+b 2-c 2=ab ,即a 2+b 2-c 22ab =12,∴cos C =12,∴C =60°.答案:60°2.在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,则边c 的长为________.解析:由题意,得a +b =5,ab =2.由余弦定理,得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab =52-3×2=19,∴c =19.答案:193.边长为5,7,8的三角形的最大角与最小角的和是________.解析:设边长为7的边所对角为θ,根据大边对大角,可得cos θ=52+82-722×5×8=12,θ=60°,∴180°-60°=120°, ∴最大角与最小角之和为120°. 答案:120°4.在△ABC 中,AB =3,BC =13,AC =4,则AC 边上的高为________. 解析:由余弦定理,可得cos A =AC 2+AB 2-BC 22AC ·AB =42+32-(13)22×3×4=12,所以sin A =32.则AC 边上的高h =AB sin A =3×32=332. 答案:3325.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为________.解析:依题意得⎩⎪⎨⎪⎧(a +b )2-c 2=4,a 2+b 2-c 2=2ab cos 60°=ab ,两式相减得ab =43. 答案:436.设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sin B ,则角C =________.解析:由3sin A =5sin B 可得3a =5b ,又b +c =2a ,所以可令a =5t (t >0),则b =3t ,c =7t ,可得cos C =a 2+b 2-c 22ab =(5t )2+(3t )2-(7t )22×5t ×3t=-12,故C =2π3.答案:2π37.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知c =2,a cos B -b cos A =72.(1)求b cos A 的值;(2)若a =4,求△ABC 的面积.解:(1)∵a cos B -b cos A =72,根据余弦定理得,a ·a 2+c 2-b 22ac -b ·b 2+c 2-a 22bc =72,∴2a 2-2b 2=7c ,又∵c =2,∴a 2-b 2=7, ∴b cos A =b 2+c 2-a 22c =-34.(2)由a cos B -b cos A =72及b cos A =-34,得a cos B =114.又∵a =4,∴cos B =1116,∴sin B =1-cos 2B =31516, ∴S △ABC =12ac sin B =3154.8.在△ABC 中,BC =5,AC =3,sin C =2sin A . (1)求边AB 的长; (2)求sin ⎝⎛⎭⎫2A -π4的值. 解:(1)在△ABC 中,根据正弦定理,得AB sin C =BCsin A, 即AB =sin C ·BCsin A =2BC =2 5.(2)在△ABC 中,根据余弦定理,得 cos A =AB 2+AC 2-BC 22AB ·AC =255.于是sin A =1-cos 2A =55. 从而sin 2A =2sin A cos A =45,cos 2A =cos 2A -sin 2A =35.故sin ⎝⎛⎭⎫2A -π4=sin 2A cos π4-cos 2A sin π4=210.第二课时 余弦定理的应用(习题课)[典例] 地平面上有一旗杆OP ,为了测量它的高度,在地平面上取一基线AB =40 m ,在A 处测得P 点的仰角∠OAP =30°,在B 处测得P 点的仰角∠OBP =45°,又测得∠AOB =60°,求旗杆的高度(精确到0.1 m)[解] 如图所示,设OP =x m ,在△AOP 中,∵∠POA =90°,∠OAP =30°,∴AO =3x . 在△BOP 中,∵∠POB =90°,∠OBP =45°,∴BO =x . 在△AOB 中,∠AOB =60°,AB =40, ∴AB 2=AO 2+BO 2-2AO ·BO cos ∠AOB , 即1 600=3x 2+x 2-23x ×x ×12,∴x 2=1 6004-3,∴x =40 4+313≈26.6(m).因此旗杆高约为26.6 m.[活学活用]1.海上一观测站测得方位角240°的方向上有一艘停止待修的商船,在商船的正东方有一艘海盗船正向它靠近,速度为每小时90海里.此时海盗船距观测站107海里,20分钟后测得海盗船距观测站20海里,再过________分钟,海盗船到达商船.解析:如图,设开始时观测站、商船、海盗船分别位于A ,B ,C 处,20分钟后,海盗船到达D 处,在△ADC 中,AC =107,AD =20,CD =30,由余弦定理得cos ∠ADC =AD 2+CD 2-AC 22AD ·CD =400+900-7002×20×30=12.∴∠ADC =60°.在△ABD 中,由已知得∠ABD =30°, ∠BAD =60°-30°=30°, ∴BD =AD =20,2090×60=403(分钟). 答案:4032.如图所示,位于东海某岛的雷达观测站A ,发现其北偏东45°,与观测站A 距离202海里的B 处有一货船正匀速直线行驶,半小时后,又测得该货船位于观测站A 东偏北θ(0°<θ<45°)的C 处,且cos θ=45.已知A ,C 两处的距离为10海里,则该货船的船速为________海里/小时.解析:因为 cos θ=45,0°<θ<45°,所以sin θ=35,cos(45°-θ)=22×45+22×35=7210,在△ABC 中,BC 2=800+100-2×202×10×7210=340,所以BC =285,该货船的船速为485海里/小时.答案:485[典例] 在△ABC 中,BC =5,AC =4,cos ∠CAD =3132,且AD =BD ,求△ABC 的面积.[解] 设CD =x , 则AD =BD =5-x ,在△CAD 中,由余弦定理,得 cos ∠CAD =(5-x )2+42-x 22×4×(5-x )=3132.解得x =1.在△CAD 中,由正弦定理,得AD sin C =CDsin ∠CAD ,∴sin C =ADCD·1-cos 2∠CAD =41-⎝⎛⎭⎫31322=378,∴S △CAB =12AC ·BC ·sin C=12×4×5×378=1574. 故三角形ABC 的面积为1574.已知梯形ABCD 的上底AD 长为1 cm ,下底BC 长为4 cm ,对角线AC 长为4 cm ,BD 长为3 cm ,求cos ∠DBC 及梯形ABCD 的面积.解:过D 作DE ∥AC 交BC 的延长线于E ,则在△DBE 中,DE =AC=4,BE =5,所以,由余弦定理得 cos ∠DBC =32+52-422×3×5=35.因为0°<∠DBC <180°,所以sin ∠DBC =45,sin ∠ADB =45,S 梯形ABCD =S △ABD +S △DBC =12AD ·BD ·sin ∠ADB +12DB ·BC ·sin ∠DBC =6.[典例] 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若sin 2(B +C )>sin 2B +sin 2C ,则△ABC 的形状为________.[解析] 由题意得sin 2A >sin 2B +sin 2C ,再由正弦定理得a 2>b 2+c 2,即b 2+c 2-a 2<0. ∴cos A =b 2+c 2-a 22bc <0,∴A 为钝角,即三角形为钝角三角形.[答案] 钝角三角形[一题多变]1.[变条件]本例的条件变为:若2sin A cos B =sin C ,则△ABC 的形状为________. 解析:法一:由已知得2sin A cos B =sin C =sin (A +B )=sin A cos B +cos A sin B ,即sin (A -B )=0,因为-π<A -B <π,所以A =B ,即△ABC 是等腰三角形.法二:由正弦定理得2a cos B =c ,再由余弦定理得 2a ·a 2+c 2-b 22ac =c ⇒a 2=b 2⇒a =b .即△ABC 是等腰三角形.答案:等腰三角形2.[变条件]本例的条件变为:若2a sin A =(2b +c )sin B +(2c +b )sin C .且sin B +sin C =1,试判断△ABC 的形状.解:由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc ,所以cos A =-12,sin A =32,则sin 2A =sin 2B +sin 2C +sin B sin C . 又sin B +sin C =1,所以sin B sin C =14,所以sin B =sin C =12.因为0<B <π2,0<C <π2,故B =C =π6,所以△ABC 是等腰钝角三角形.层级一 学业水平达标1.在三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且a >b >c ,a 2<b 2+c 2,则角A 的取值范围是________.解析:因为a 2<b 2+c 2,所以cos A =b 2+c 2-a 22bc>0,所以A 为锐角,又因为a >b >c ,所以A 为最大角,所以角A 的取值范围是⎝⎛⎭⎫π3,π2.答案:⎝⎛⎭⎫π3,π2 2.在△ABC 中,abc a 2+b 2+c 2⎝⎛⎭⎫cos A a+cos B b +cos C c =________. 解析:原式=abca 2+b 2+c 2·bc cos A +ac cos B +ab cos C abc =bc ×b 2+c 2-a 22bc +ac ×a 2+c 2-b 22ac +ab ×a 2+b 2-c 22ab a 2+b 2+c 2=12. 答案:123.已知A ,B 两地的距离为10 km ,B ,C 两地的距离为20 km ,经测量,∠ABC =120°,则A ,C 两地的距离为______ km.解析:AC 2=102+202-2×10×20×cos 120°, ∴AC =107. 答案:1074.在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是________. 解析:由题意,根据正弦定理,得a 2≤b 2+c 2-bc ⇒b 2+c 2-a 2≥bc ⇒b 2+c 2-a 2bc≥1⇒cosA ≥12⇒0<A ≤π3.答案:⎝⎛⎦⎤0,π3 5.在△ABC 中,D 为BC 边上一点,BC =3BD ,AD =2,∠ADB =135°,若AC =2AB ,则BD =________.解析:用余弦定理求得:AB 2= BD 2+AD 2-2AD ·BD cos 135°, AC 2=CD 2+AD 2-2AD ·CD cos 45°,即AB 2=BD 2+2+2BD , ① AC 2=CD 2+2-2CD , ②又BC =3BD ,∴CD =2BD . ∴AC 2=4BD 2+2-4BD .③又AC =2AB ,∴由③得2AB 2=4BD 2+2-4BD . ④④-2×①得,BD 2-4BD -1=0. ∴BD =2+ 5. 答案:2+ 56.如图,一条河的两岸平行,河的宽度d =0.6 km ,一艘客船从码头A 出发匀速驶往河对岸的码头B .已知AB =1 km ,水的流速为2 km/h ,若客船从码头A 驶到码头B 所用的最短时间为6 min ,则客船在静水中的速度为________ km/h.解析:设AB 与河岸线所成的角为θ,客船在静水中的速度为v km/h ,由题意知,sin θ=0.61=35,从而cos θ=45,所以由余弦定理得⎝⎛⎭⎫110v 2=⎝⎛⎭⎫110×22+12-2×110×2×1×45,解得v =6 2.答案:6 27.在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.解析:∵cos B =AB 2+BC 2-AC 22AB ·BC =12,∴B =60°.∴AD =AB sin B = 3. 答案: 38.甲船在岛A 的正南B 处,以每小时4千米的速度向正北航行,AB =10千米,同时乙船自岛A 出发以每小时6千米的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们所航行的时间为________小时.解析:如图,设t 小时后甲行驶到D 处,则AD =10-4t ,乙行驶到C 处,则AC =6t .∵∠BAC =120°,∴DC 2=AD 2+AC 2-2AD ·AC ·cos 120°=(10-4t )2+(6t )2-2×(10-4t )×6t ×cos 120°=28t 2-20t +100.当t =514时,DC 2最小,DC 最小,此时它们所航行的时间为514小时. 答案:5149.要测量电视塔AB 的高度,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40 m ,求电视塔的高度.解:如图,设电视塔AB 高为x m ,则在Rt △ABC 中,由∠ACB =45°得在Rt △ADB 中,∠ADB =30°, 则BD =3x .在△BDC 中,由余弦定理得, BD 2=BC 2+CD 2-2BC ·CD ·cos 120°, 即(3x )2=x 2+402-2·x ·40·cos 120°, 解得x =40,所以电视塔高为40米.10.在△ABC 中,已知cos 2A 2=b +c 2c (a ,b ,c 分别为角A ,B ,C 的对边),判断△ABC的形状.解:在△ABC 中,由已知cos 2A 2=b +c 2c 得1+cos A 2=b +c2c ,∴cos A =bc .根据余弦定理得b 2+c 2-a 22bc =bc ,∴b 2+c 2-a 2=2b 2,即a 2+b 2=c 2. ∴△ABC 是直角三角形.层级二 应试能力达标1.在△ABC 中,若CB =7,AC =8,AB =9,则AB 边的中线长________. 解析:如图所示,在△ABC 中,cos A =AB 2+AC 2-BC 22×AB ×AC=81+64-492×9×8=23, ∴CD 2=AD 2+AC 2-2×AD ×AC cos A =⎝⎛⎭⎫922+82-2×92×8×23=1454. ∴中线CD 的长为1452. 答案:14522.在△ABC 中,AD 为BC 边上的中线,且AC =2AB =2AD =4,则BD =________. 解析:如图所示,设BD =DC =x ,因为∠ADB +∠ADC =180°,所以cos ∠ADB =-cos ∠ADC ,又AC =2AD =2AB =4,由余弦定理得x 2+4-42×2x =-4+x 2-162×2x,解得x =6(x =-6舍去).即BD = 6.3.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.解析:如图,OM =AO tan 45°=30(m),ON =AO tan 30°=33×30=103(m),在△MON 中,由余弦定理得,MN =900+300-2×30×103×32=300=103(m). 答案:10 34.在△ABC 中,若B =60°,b 2=ac ,则△ABC 的形状是________.解析:∵b 2=ac ,B =60°,由余弦定理b 2=a 2+c 2-2ac cos B ,得a 2+c 2-ac =ac ,即(a -c )2=0,∴a =c ,又B =60°,∴△ABC 为等边三角形.答案:等边三角形5.如果将直角三角形的三边增加同样的长度,则新三角形的形状是________. 解析:a 2+b 2=c 2,三边都增加x ,则(a +x )2+(b +x )2-(c +x )2=a 2+b 2+2x 2+2(a +b )x -c 2-2cx -x 2=2(a +b -c )x +x 2>0,所以新三角形中最大边所对的角是锐角,所以新三角形是锐角三角形.答案:锐角三角形6.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是________.解析:由c 2=(a -b )2+6可得a 2+b 2-c 2=2ab -6. ① 由余弦定理及C =π3可得a 2+b 2-c 2=ab .②所以由①②得2ab -6=ab ,即ab =6. 所以S △ABC =12ab sin π3=12×6×32=332.答案:3327.如图所示,在△ABC 中,已知BC =15,AB ∶AC =7∶8,sin B =437,求BC 边上的高AD 的长.解:在△ABC 中,由已知设AB =7x ,AC =8x , 由正弦定理,得7x sin C =8xsin B,∴sin C =7x sin B 8x =78×437=32. ∴C =60°(C =120°舍去,由8x >7x ,知B 也为钝角,不符合要求). 由余弦定理得(7x )2=(8x )2+152-2×8x ×15cos 60°, ∴x 2-8x +15=0.∴x =3或x =5,∴AB =21或AB =35. 在△ABD 中,AD =AB sin B =437AB , ∴AD =123或AD =20 3.8.已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积S .解:如图,连结BD ,则S =S △ABD +S △CBD =12AB ·AD sin A +12BC ·CD sin C .∵A +C =180°,∴sin A =sin C , ∴S =12sin A (AB ·AD +BC ·CD )=16sin A .在△ABD 中,由余弦定理,得BD 2=AB 2+AD 2-2AB ·AD cos A =20-16cos A , 在△CDB 中,由余弦定理,得BD 2=CD 2+BC 2-2CD ·BC cos C =52-48cos C , ∴20-16cos A =52-48cos C .又cos C =-cos A ,∴cos A =-12,∴A =120°,∴S =16sin A =8 3.精美句子1、善思则能“从无字句处读书”。

高中数学必修五 第一章余弦定理

高中数学必修五 第一章余弦定理

【例】在△ABC中,a、b、c分别为内角A、B、C的对边,
求证:a2 b2
c2
sin A B
. sin C
【规范解答】由余弦定理得a2=b2+c2-2bccosA,
b2=a2+c2-2accosB,
∴a2-b2=b2-a2-2bccosA+2accosB.
整理得:a2 b2
c2
a cos B bcos A, c
【解析】∵c4-2(a2+b2)c2+a4+a2b2+b4=0,
∴[c2-(a2+b2)]2-a2b2=0,∴c2-(a2+b2)=±ab,
cos C a2 b2 ∴cC2=1210°或60°.
2ab
2
角形中最大内角,
由余弦定理
∴C=120°. cos C a2 b2 c2 1,
2ab
2
正、余弦定理的综合应用 【名师指津】正、余弦定理的综合应用
正弦定理和余弦定理揭示的都是三角形的边角关系,要解 三角形,必须已知三角形的一边的长,对于两个定理,根据实 际情况可以选择性地运用,也可以综合运用,要注意以下关系 式的运用:
【例3】在△ABC中,若sinA-2sinBcosC=0,试判断△ABC的 形状.
【规范解答】方法一:∵sinA-2sinBcosC=0,∴由正弦定
理知a=2bcosC,再由余弦定理得 a a2 b2 c2 ,
2b
2ab
∴b2=c2,b=c,.故△ABC为等腰三角形.
方法二:由sinA=sin(B+C),∴有sinBcosC+cosBsinC2sinBcosC=0,即sinCcosB-cosCsinB=0,sin(CB)=0,∴C-B=0,即C=B.故△ABC为等腰三角形.

高中数学必修五第一章《正弦定理和余弦定理》1.1.2 第1课时余弦定理及其直接应用

高中数学必修五第一章《正弦定理和余弦定理》1.1.2 第1课时余弦定理及其直接应用

1.1.2 余弦定理第1课时 余弦定理及其直接应用学习目标 1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法.2.会运用余弦定理解决两类基本的解三角形问题.知识点一 余弦定理思考1 根据勾股定理,在△ABC 中,C =90°,则c 2=a 2+b 2=a 2+b 2-2ab cos C .① 试验证①式对等边三角形还成立吗?你有什么猜想? 答案 当a =b =c 时,C =60°,a 2+b 2-2ab cos C =c 2+c 2-2c ·c cos 60°=c 2,即①式仍成立,据此猜想,对一般△ABC ,都有c 2=a 2+b 2-2ab cos C .思考2 在c 2=a 2+b 2-2ab cos C 中,ab cos C 能解释为哪两个向量的数量积?你能由此证明思考1的猜想吗? 答案 ab cos C =|CB →||CA→CB →,CA →=CB →·CA →.∴a 2+b 2-2ab cos C =CB →2+CA →2-2CB →·CA →=(CB →-CA →)2=AB →2=c 2. 猜想得证.梳理 余弦定理的公式表达及语言叙述特别提醒:余弦定理的特点(1)适用范围:余弦定理对任意的三角形都成立.(2)揭示的规律:余弦定理指的是三角形中的三条边与其中一个角的余弦之间的关系,它含有四个不同的量,知道其中的三个量,就可求得第四个量. 知识点二 适宜用余弦定理解决的两类基本的解三角形问题思考1 观察知识点一梳理表格第一行中的公式结构,其中等号右边涉及几个量?你认为可用来解哪类三角形?答案 每个公式右边都涉及三个量,两边及其夹角.故如果已知三角形的两边及其夹角,可用余弦定理解三角形.思考2 观察知识点一梳理表格第三行中的公式结构,其中等号右边涉及几个量?你认为可用来解哪类三角形?答案 每个公式右边都涉及三个量,即三角形的三条边,故如果已知三角形的三边,也可用余弦定理解三角形.梳理 余弦定理适合解决的问题:(1)已知两边及其夹角,解三角形;(2)已知三边,解三角形.1.勾股定理是余弦定理的特例.(√)2.余弦定理每个公式中均涉及三角形的四个元素.(√)3.在△ABC 中,已知两边及夹角时,△ABC 不一定唯一.(×)类型一 余弦定理的证明例1 已知△ABC ,BC =a ,AC =b 和角C ,求c 的值. 考点 余弦定理及其变形应用 题点 余弦定理的理解解 如图,设CB →=a ,CA →=b ,AB →=c ,由AB →=CB →-CA →,知c =a -b , 则|c |2=c ·c =(a -b )·(a -b ) =a ·a +b ·b -2a ·b =a 2+b 2-2|a ||b |cos C . 所以c 2=a 2+b 2-2ab cos C , 即c =a 2+b 2-2ab cos C .反思与感悟 所谓证明,就是在新旧知识间架起一座桥梁.桥梁架在哪儿,要勘探地形,证明一个公式,要观察公式两边的结构特征,联系已经学过的知识,看有没有相似的地方. 跟踪训练1 例1涉及线段长度,能不能用解析几何的两点间距离公式来研究这个问题? 考点 余弦定理及其变形应用 题点 余弦定理的理解解 如图,以A 为原点,边AB 所在直线为x 轴建立直角坐标系,则A (0,0),B (c ,0), C (b cos A ,b sin A ),∴BC 2=b 2cos 2A -2bc cos A +c 2+b 2sin 2A , 即a 2=b 2+c 2-2bc cos A . 同理可证b 2=c 2+a 2-2ca cos B , c 2=a 2+b 2-2ab cos C . 类型二 用余弦定理解三角形 命题角度1 已知两边及其夹角例2 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =2,cos(A +B )=13,则c 等于( ) A.4 B.15 C.3D.17考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 D解析 由三角形内角和定理可知 cos C =-cos(A +B )=-13,又由余弦定理得c 2=a 2+b 2-2ab cos C =9+4-2×3×2×⎝⎛⎭⎫-13=17, 所以c =17.反思与感悟 已知三角形两边及其夹角时,应先从余弦定理入手求出第三边,再利用正弦定理求其余的角.跟踪训练2 在△ABC 中,已知a =2,b =22,C =15°,求A . 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形解 由余弦定理,得c 2=a 2+b 2-2ab cos C =8-43, 所以c =6- 2.由正弦定理,得sin A =a sin C c =12,因为b >a ,所以B >A , 所以A 为锐角,所以A =30°. 命题角度2 已知三边例3 在△ABC 中,已知a =26,b =6+23,c =43,求A ,B ,C . 考点 用余弦定理解三角形 题点 已知三边解三解形解 根据余弦定理,cos A =b 2+c 2-a 22bc=(6+23)2+(43)2-(26)22×(6+23)×(43)=32. ∵A ∈(0,π),∴A =π6,cos C =a 2+b 2-c 22ab=(26)2+(6+23)2-(43)22×26×(6+23)=22, ∵C ∈(0,π),∴C =π4.∴B =π-A -C =π-π6-π4=7π12,∴A =π6,B =7π12,C =π4.反思与感悟 已知三边求三角,可利用余弦定理的变形cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =b 2+a 2-c 22ba 先求一个角,求其余角时,可用余弦定理也可用正弦定理.跟踪训练3 在△ABC 中,sin A ∶sin B ∶sin C =2∶4∶5,判断三角形的形状. 考点 用余弦定理解三角形 题点 已知三边解三角形解 因为a ∶b ∶c =sin A ∶sin B ∶sin C =2∶4∶5, 所以可令a =2k ,b =4k ,c =5k (k >0). c 最大,cos C =(2k )2+(4k )2-(5k )22×2k ×4k <0,所以C 为钝角,从而三角形为钝角三角形.1.一个三角形的两边长分别为5和3,它们夹角的余弦值是-35,则三角形的第三边长为( )A.52B.213C.16D.4 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 B解析 设第三边长为x ,则x 2=52+32-2×5×3×⎝⎛⎭⎫-35=52,∴x =213. 2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4 D.π12考点 用余弦定理解三角形 题点 已知三边解三角形 答案 B解析 ∵a >b >c ,∴C 为最小角且C 为锐角, 由余弦定理,得cos C =a 2+b 2-c 22ab=72+(43)2-(13)22×7×43=32. 又∵C 为锐角,∴C =π6.3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( ) A.518 B.34 C.32 D.78 考点 用余弦定理解三角形 题点 已知三边解三角形 答案 D解析 设顶角为C ,周长为l ,因为l =5c ,所以a =b =2c , 由余弦定理,得cos C =a 2+b 2-c 22ab =4c 2+4c 2-c 22×2c ×2c =78.4.在△ABC 中,a =32,b =23,cos C =13,则c 2= .考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 30-4 6解析 c 2=a 2+b 2-2ab cos C =(32)2+(23)2-2×32×23×13=30-4 6.5.在△ABC 中,若b =1,c =3,C =2π3,则a = .考点 余弦定理及其变形应用 题点 用余弦定理求边或角的取值范围 答案 1解析 ∵c 2=a 2+b 2-2ab cos C , ∴(3)2=a 2+12-2a ×1×cos 2π3,∴a 2+a -2=0,即(a +2)(a -1)=0.∴a =1或a =-2(舍去).∴a =1.1.利用余弦定理可以解决两类有关三角形的问题 (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角.2.余弦定理与勾股定理的关系:余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.(1)如果一个三角形两边的平方和大于第三边的平方,那么第三边所对的角是锐角. (2)如果一个三角形两边的平方和小于第三边的平方,那么第三边所对的角是钝角. (3)如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角.一、选择题1.在△ABC 中,已知a =2,则b cos C +c cos B 等于( ) A.1 B. 2 C.2 D.4 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 C解析 b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·c 2+a 2-b 22ca =2a 22a =a =2.2.在△ABC 中,已知B =120°,a =3,c =5,则b 等于( ) A.4 3 B.7 C.7 D.5 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 C解析 ∵b 2=a 2+c 2-2ac cos B =32+52-2×3×5×cos 120°=49,∴b =7. 3.边长为5,7,8的三角形的最大角与最小角的和是( ) A.90° B.120° C.135° D.150° 考点 用余弦定理解三角形 题点 已知三边解三角形答案 B解析 设中间角为θ,则θ为锐角,cos θ=52+82-722×5×8=12,θ=60°,180°-60°=120°为所求.4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.23 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 B解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2, ∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ×2a=34.5.若△ABC 的三边长分别为AB =7,BC =5,CA =6,则AB →·BC →的值为( ) A.19 B.14 C.-18 D.-19 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 D解析 设三角形的三边分别为a ,b ,c , 依题意得,a =5,b =6,c =7.∴AB →·BC →=|AB →|·|BC →|·cos(π-B )=-ac ·cos B . 由余弦定理得b 2=a 2+c 2-2ac ·cos B ,∴-ac ·cos B =12(b 2-a 2-c 2)=12(62-52-72)=-19,∴AB →·BC →=-19.6.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若a =4,b =5,c =6,则sin 2A sin C 等于( )A.1B.2C.12D.34考点 用余弦定理解三角形 题点 已知三边解三角形 答案 A解析 由余弦定理得cos A =b 2+c 2-a 22bc =25+36-162×5×6=34,所以sin 2A sin C =2sin A cos A sin C =2a cos Ac=4cos A3=1.7.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,小区里有一条平行于AO 的小路CD .已知某人从点O 沿OD 走到点D 用了2 min ,从点D 沿DC 走到点C 用了3 min.若此人步行的速度为50 m/min ,则该扇形的半径为( ) A.50 m B.45 m C.507 m D.47 m 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 C解析 依题意得OD =100 m , CD =150 m , 连接OC ,易知∠ODC =180°-∠AOB =60°, 因此由余弦定理,得OC 2=OD 2+CD 2-2OD ×CD ×cos ∠ODC , 即OC 2=1002+1502-2×100×150×12,解得OC =507(m).8.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43B.8-4 3C.1D.23 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 A解析 (a +b )2-c 2=a 2+b 2-c 2+2ab =4, 又c 2=a 2+b 2-2ab cos C =a 2+b 2-ab ∴a 2+b 2-c 2=ab ,∴3ab =4,∴ab =43.二、填空题9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若a 2+b 2<c 2,且sin C =32,则C = .考点 余弦定理及其变形应用 题点 用余弦定理求边或角的取值范围 答案2π3解析 因为a 2+b 2<c 2,所以cos C =a 2+b 2-c 22ab <0,所以三角形是钝角三角形,且C >π2.又因为sin C =32,所以C =2π3. 10.在△ABC 中,A =60°,最大边长与最小边长是方程x 2-9x +8=0的两个实根,则边BC 的长为 .考点 余弦定理及其变形应用题点 余弦定理与一元二次方程结合问题 答案57解析 设内角B ,C 所对的边分别为b ,c .∵A =60°,∴可设最大边与最小边分别为b ,c .由条件可知b +c =9,bc =8,∴BC 2=b 2+c 2-2bc cos A =(b +c )2-2bc -2bc cos A =92-2×8-2×8×cos 60°=57,∴BC =57.11.在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是 . 考点 余弦定理解三解形 题点 已知三边解三角形 答案3解析 ∵cos C =BC 2+AC 2-AB 22×BC ×AC=22,∵C ∈⎝⎛⎭⎫0,π2,∴sin C =22.∴AD =AC ·sin C =3. 三、解答题12.在△ABC 中,已知A =120°,a =7,b +c =8,求b ,c . 考点 余弦定理及其变形应用 题点 余弦定理的变形应用解 由余弦定理,得a 2=b 2+c 2-2bc cos A =(b +c )2-2bc (1+cos A ),所以49=64-2bc ⎝⎛⎭⎫1-12,即bc =15, 由⎩⎪⎨⎪⎧ b +c =8,bc =15,解得⎩⎪⎨⎪⎧ b =3,c =5或⎩⎪⎨⎪⎧ b =5,c =3. 13.在△ABC 中,a 2+c 2=b 2+2ac .(1)求B 的大小;(2)求2cos A +cos C 的最大值.考点 用余弦定理解三角形题点 余弦定理解三角形综合问题解 (1)由a 2+c 2=b 2+2ac 得a 2+c 2-b 2=2ac ,由余弦定理得cos B =a 2+c 2-b 22ac =2ac 2ac =22. 又0<B <π,所以B =π4. (2)A +C =π-B =π-π4=3π4,所以C =3π4-A,0<A <3π4. 所以2cos A +cos C =2cos A +cos ⎝⎛⎭⎫3π4-A=2cos A +cos3π4cos A +sin 3π4sin A =2cos A -22cos A +22sin A =22sin A +22cos A =sin ⎝⎛⎭⎫A +π4. ∵0<A <3π4,∴π4<A +π4<π, 故当A +π4=π2, 即A =π4时,2cos A +cos C 取得最大值1. 四、探究与拓展14.已知a ,b ,c 是△ABC 的三边长,若直线ax +by +c =0与圆x 2+y 2=1无公共点,则△ABC 的形状是( )A.锐角三角形B.钝角三角形C.直角三角形D.不能确定考点 判断三角形形状 题点 利用余弦定理判断三角形形状答案 B解析 ∵直线ax +by +c =0与圆x 2+y 2=1无公共点,∴圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b2>1,即a 2+b 2-c 2<0,∴cos C =a 2+b 2-c 22ab <0, 又C ∈(0,π),∴C 为钝角.故△ABC 为钝角三角形.15.在△ABC 中,已知BC =7,AC =8,AB =9,则AC 边上的中线长为 . 考点 用余弦定理解三角形题点 已知三边解三角形答案 7解析 由条件知cos A =AB 2+AC 2-BC 22×AB ×AC =92+82-722×9×8=23, 设中线长为x ,由余弦定理,知x 2=⎝⎛⎭⎫AC 22+AB 2-2×AC 2×AB cos A =42+92-2×4×9×23=49, 所以x =7.所以AC 边上的中线长为7.。

高中数学新苏教版精品教案《苏教版高中数学必修5 1.2 余弦定理》

高中数学新苏教版精品教案《苏教版高中数学必修5 1.2 余弦定理》

第29课余弦定理与解三角形1教学目标: 1能运用正,余弦定理解三角形重点:正,余弦定理的应用难点:在解决实际问题时,两种定理的灵活选取是难点教学过程一:激活思维1在△ABC中,若a∶b∶c=2∶3∶4,则co C=2在△ABC中,若a=2,b=2,c=2,则角A=3在△ABC中,已知abcbc-a=3bc,那么角A=4在△ABC中,已知c=2a co B,那么△ABC的形状为三角形5在△ABC中,若a=4,b=5,c=6,则△ABC的面积为二.分类解析结合余弦定理判断三角形的形状例1在△ABC中,已知ab co B-c co C=b2-c2co A,试判断它的形状【思维引导】已知条件等式中既有边又有角,因此考虑将边与角的混合关系转化为只含有边或者只含有角的关系,再作判断本题向边转化较容易变式在△ABC中,已知a co Ab co B=c co C,试判断△ABC的形状结合余弦定理解三角形例22021·宿迁一模已知△ABC的内角A,B,C所对的边分别为a,b,c,B=1若a=2,b=2,求c的值;2若tan A=2,求tan C的值【思维引导】1有关三边一角问题,首先考虑到余弦定理,求出边c;2利用两角和的正切公式求tan C变式在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a>c若·=2,co B=,b=3 1求a和c的值;2求co B-C的值结合正、余弦定理解三角形的面积问题例32021·陕西卷已知△ABC的内角A,B,C所对的边分别为a,b,c,向量m=a,b与n=co A,in B平行1求角A的大小;2若a=,b=2,求△ABC的面积变式2021·安徽卷设△ABC的内角A,B,C所对的边分别为a,b,c,且b=3,c=1,△ABC的面积为,求co A和a的值三.课堂作业1 2021·福建卷在△ABC中,若A=60°,AC=2,BC=,则AB=2 2021·苏北四市期末在△ABC中,已知AB=3,A=12021且△ABC的面积为,那么BC边的长为3 在△ABC中,内角A,B,C所对的边分别为a,b,=a,2in B=3in C,则co A=4 2021·广东卷设△ABC的内角A,B,C的对边分别为a,b,=2,c=2,co A=,且b<c,则b=5 在△ABC中,内角A,B,C所对的边分别为a,b,c,且abc=81若a=2,b=,求co C的值;2若in A co2in B co2=2in C,且△ABC的面积S=in C,求a和b的值四:小结高考中经常将三角变换与解三角形知识综合起来命题,其中关键是三角变换,而三角变换中主要是“变角、变函数名和变运算形式”,核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式五.作业课堂作业第5题六.板书设计七.教后感。

苏教版高中数学必修五第一学生教案第课时余弦定理

苏教版高中数学必修五第一学生教案第课时余弦定理

听课随笔1.2 余弦定理 第1课时知识网络三角形中的向量关系→余弦定理学习要求1. 掌握余弦定理及其证明; 2. 体会向量的工具性;3. 能初步运用余弦定理解斜三角形.【课堂互动】自学评价1.余弦定理:(1)A cos bc 2c b a 222⋅-+=,______________________,______________________.(2) 变形:bc2a c b A cos 222-+=,___________________,___________________ .2.利用余弦定理,可以解决以下两类解斜三角形的问题: (1)_______________________________; (2)_______________________________.【精典范例】【例1】在ABC ∆中,(1)已知3b =,1c =,060A =,求a ; (2)已知4a =,5b =,6=c ,求A (精确到00.1).【解】点评: 利用余弦定理,可以解决以下两类解斜三角形的问题:(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角.【例2】,A B 两地之间隔着一个水塘,现选择另一点C ,测182,CA m =126,CB m = 063ACB ∠=,求,A B 两地之间的距离(精确到1m ). 【解】【例3】用余弦定理证明:在ABC ∆中,当C 为锐角时,222a b c +>;当C 为钝角时,222a b c +<.【证】点评:余弦定理可以看做是勾股定理的推广.追踪训练一1.在△ABC中,(1)已知A=60°,b=4,c=7, 求a ;(2)已知a =7,b=5,c=3,求A.2.若三条线段的长为5,6,7,则用这三条线段( ) A.能组成直角三角形 B.能组成锐角三角形 C.能组成钝角三角形听课随笔D.不能组成三角形3.在△ABC中,已知222c ab b a =++,试求∠C的大小.4.两游艇自某地同时出发,一艇以10km/h的速度向正北行驶,另一艇以7km/h的速度向北偏东45°的方向行驶,问:经过40min,两艇相距多远?【选修延伸】【例4】在△ABC 中,BC =a ,AC =b ,且a ,b 是方程02322=+-x x 的两根,()1cos 2=+B A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学学习材料
金戈铁骑整理制作
§1.2 余弦定理(一) 课时目标 1.熟记余弦定理及其推论;2.能够初步运用余弦定理解斜三角形.
1.余弦定理
三角形任何一边的______等于其他两边的________的和减去这两边与它们的______的余弦的积的______.即a 2=________________,b 2=________________,c 2=________________.
2.余弦定理的推论
cos A =______________;cos B =______________;cos C =______________.
3.在△ABC 中:
(1)若a 2+b 2-c 2=0,则C =________;
(2)若c 2=a 2+b 2-ab ,则C =________;
(3)若c 2=a 2+b 2+2ab ,则C =________.
一、填空题
1.在△ABC 中,若a 2-b 2-c 2=bc ,则A =________.
2.在△ABC 中,已知a =1,b =2,C =60°,则c =______________.
3.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为________.
4.在△ABC 中,已知a =2,则b cos C +c cos B =____________.
5.△ABC 中,已知a =2,b =4,C =60°,则A =________.
6.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于________.
7.在△ABC 中,sin 2A 2=c -b 2c
(a ,b ,c 分别为角A ,B ,C 的对应边),则△ABC 的形状为________.
8.三角形三边长为a ,b ,a 2+ab +b 2 (a >0,b >0),则最大角为________.
9.在△ABC 中,已知面积S =14
(a 2+b 2-c 2),则角C 的度数为________. 10.在△ABC 中,BC =1,B =π3
,当△ABC 的面积等于3时,tan C =________.
二、解答题
11.在△ABC 中,已知CB =7,AC =8,AB =9,试求AC 边上的中线长.
12.在△ABC中,BC=a,AC=b,且a,b是方程x2-23x+2=0的两根,2cos(A+
B)=1.
(1)求角C的度数;
(2)求AB的长;
(3)求△ABC的面积.
能力提升
13.在△ABC中,AB=2,AC=6,BC=1+3,AD为边BC上的高,则AD的长是____________.
14.在△ABC中,a cos A+b cos B=c cos C,试判断三角形的形状.
1.利用余弦定理可以解决两类有关三角形的问题:
(1)已知两边和夹角,解三角形.
(2)已知三边求三角形的任意一角.
2.余弦定理与勾股定理
余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.
§1.2 余弦定理(一)
答案
知识梳理
1.平方 平方 夹角 两倍 b 2+c 2-2bc cos A c 2+a 2-2ca cos B a 2+b 2-2ab cos C 2.b 2+c 2-a 22bc c 2+a 2-b 22ca a 2+b 2-c 22ab
3.(1)90° (2)60° (3)135°
作业设计
1.120° 2. 3 3.π6
解析 ∵a>b>c ,∴C 为最小角,
由余弦定理cos C =a 2+b 2-c 22ab =72+(43)2-(13)22×7×43
=32.∴C =π6. 4.2
解析 b cos C +c cos B =b·a 2+b 2-c 22ab +c·c 2+a 2-b 22ac =2a 2
2a
=a =2. 5.30°
解析 c 2=a 2+b 2-2ab cos C =22+42-2×2×4×cos 60°=12,
∴c =2 3.
由正弦定理:a sin A =c sin C 得sin A =12
. ∵a<c ,∴A<60°,A =30°.
6.34
解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2,b =2a ,
∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a·2a =34
. 7.直角三角形
解析 ∵sin 2A 2=1-cos A 2=c -b 2c
, ∴cos A =b c =b 2+c 2-a 22bc
⇒a 2+b 2=c 2,符合勾股定理. 故△ABC 为直角三角形.
8.120° 解析 易知:a 2+ab +b 2>a ,a 2+ab +b 2>b ,设最大角为θ,则cos θ=a 2+b 2-(a 2+ab +b 2)22ab =-12
,∴θ=120°. 9.45°
解析 ∵S =14(a 2+b 2-c 2)=12
ab sin C , ∴a 2+b 2-c 2=2ab sin C ,∴c 2=a 2+b 2-2ab sin C.
由余弦定理得:c 2=a 2+b 2-2ab cos C ,∴sin C =cos C ,
∴C =45° .
10.-2 3
解析 S △ABC =12
ac sin B =3,∴c =4.由余弦定理得,b 2=a 2+c 2-2ac cos B =13, ∴cos C =a 2+b 2-c 22ab =-113,sin C =1213
,∴tan C =-12=-2 3. 11.解 由条件知:cos A =AB 2+AC 2-BC 22·AB·AC =92+82-722×9×8
=23,设中线长为x ,由余弦定理知:x 2=⎝⎛⎭⎫AC 22+AB 2-2·AC 2·AB cos A =42+92-2×4×9×23
=49⇒x =7. 所以,所求中线长为7.
12.解 (1)cos C =cos [π-(A +B)]=-cos (A +B)=-12
,又∵C ∈(0°,180°),∴C =120°. (2)∵a ,b 是方程x 2-23x +2=0的两根,
∴⎩⎨⎧ a +b =23,
ab =2.
∴AB 2=b 2+a 2-2ab cos 120°=(a +b)2-ab =10,
∴AB =10.
(3)S △ABC =1
2ab sin C =32.
13. 3
解析 ∵cos C =BC 2+AC 2
-AB 22×BC ×AC =22,∴sin C =2
2.
∴AD =AC·sin C = 3.
14.解 由余弦定理知
cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-
c 2
2ab ,
代入已知条件得
a·b 2+c 2-a 22bc +b·a 2+c 2-b 22ac +c·c 2-a 2-b 2
2ab =0,
通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0,
展开整理得(a 2-b 2)2=c 4.∴a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2.
根据勾股定理知△ABC 是直角三角形.。

相关文档
最新文档