中考数学因式分解
中考数学试卷因式分解
一、选择题1. 下列各式中,因式分解正确的是()A. $x^2 + 2x + 1 = (x + 1)^2$B. $x^2 - 4 = (x + 2)(x - 2)$C. $x^2 - 2x - 3 = (x - 3)(x + 1)$D. $x^2 + 3x + 2 = (x + 1)(x + 2)$答案:B解析:选项A是完全平方公式,选项C和D是十字相乘法,而选项B是平方差公式。
因此,选项B是因式分解正确的。
2. 若$(a + 1)^2 - 4a = 0$,则$a$的值为()A. -1B. 1C. 2D. 3答案:B解析:首先,将$(a + 1)^2 - 4a$展开得到$a^2 + 2a + 1 - 4a = a^2 - 2a + 1$。
接着,将$a^2 - 2a + 1$因式分解得到$(a - 1)^2$。
因此,$(a - 1)^2 = 0$,解得$a = 1$。
二、填空题3. $x^2 - 5x + 6$的因式分解为()答案:$(x - 2)(x - 3)$解析:首先,找到$x^2 - 5x + 6$中$x$的一次项系数的相反数,即$-5$的相反数为$5$。
然后,找到$x^2 - 5x + 6$中常数项的相反数,即$6$的相反数为$-6$。
接下来,将$5$和$-6$相乘得到$-30$。
最后,找到两个数相乘等于$-30$,且它们的和等于$-5$的两个数,即$-6$和$5$。
因此,$x^2 - 5x + 6$的因式分解为$(x - 2)(x - 3)$。
4. 若$a^2 - 4b^2 = (a + 2b)(a - 2b)$,则$a$的值为()答案:$4b$解析:根据平方差公式,$(a + 2b)(a - 2b) = a^2 - (2b)^2 = a^2 - 4b^2$。
因此,若$a^2 - 4b^2 = (a + 2b)(a - 2b)$,则$a$的值为$4b$。
三、解答题5. 解下列方程:(1)$x^2 - 4x + 3 = 0$(2)$2x^2 - 5x - 3 = 0$答案:(1)$x_1 = 1$,$x_2 = 3$解析:首先,将方程$x^2 - 4x + 3 = 0$因式分解得到$(x - 1)(x - 3) = 0$。
中考中的因式分解
因式分解是中考数学中的一个重要知识点,也是中考数学中难度较大的考点之一。
在中考中,因式分解主要涉及整式的因式分解、多项式的因式分解和多项式根式化简等。
首先,整式的因式分解是中考中最常见的题型之一。
整式的因式分解是将一个整式拆分成两个或多个乘积的形式。
例如,对于整式 $a+b$,可以将其因式分解为 $(a+b)$。
在整式因式分解中,需要注意系数的一致性问题,即同类项的系数应该相同。
其次,多项式的因式分解也是中考中的一类重要题型。
多项式的因式分解是将一个多项式拆分成两个或多个乘积的形式。
例如,对于多项式 $a+bx+c$,可以将其因式分解为 $(a+bx+c)$。
在多项式因式分解中,需要注意系数的一致性问题,即同类项的系数应该相同。
最后,中考中还涉及到多项式根式化简的问题。
多项式根式化简是将根式化简成一个最简形式的过程。
例如,对于多项式根式 $\sqrt{a+b}$,可以将其化简为 $\sqrt{a}+\sqrt{b}$。
在多项式根式化简中,需要注意根式的符号问题,即根式的分子和分母应该同时乘以适当的正数,使得根式的符号发生变化。
在中考中,因式分解是一个较为重要的考点,需要我们熟练掌握因式分解的方法和技巧,以便在考试中能够更好地解决问题。
因式分解中考经典题型
因式分解中考经典题型因式分解是初中数学中的重要一环,也是中考数学中经常出现的题型之一。
在中考数学中,因式分解通常分为三类:公因式提取、完全平方公式、差平方公式。
下面我们将分别讲解一下这三类题型。
一、公因式提取公因式指的是多项式中所有单项式所能共有的“因子”,如2x+4y中的2是这两项的公因式,a^2 b + ab^2是ab的公因式。
公因式提取就是将多项式中的公因式提取出来,从而达到简化多项式的目的。
举例:1、将4a^3 + 8a^2 + 12a分解因式。
解:首先将这三项提取公因式,得4a(a^2 + 2a + 3),然后再将a^2 + 2a + 3分解成(a + 1)^2 + 2,因此4a^3 + 8a^2 + 12a = 4a(a + 1)^2 + 8a。
二、完全平方公式完全平方公式是指某一二次式(如a^2+2ab+b^2)可以化为某个线性式(如a+b)的平方。
在解题时,只需要将二次式进行因式分解,然后再利用平方根的性质就可以得到答案。
举例:2、将x^2 + 6x + 9分解因式。
解:x^2 + 6x + 9是一个完全平方的二次式,因为( x + 3 )^2 = x^2 + 6x+ 9 ,所以x^2 + 6x + 9可以化为( x + 3 )^2 。
三、差平方公式差平方公式是指某一二次式(如a^2-b^2)可以化为某个线性式(如a+b)和另一个线性式(如a-b)的乘积。
在解题时,只需要利用差平方公式将二次式进行因式分解,就可以得到答案。
举例:3、将x^2 - 4分解因式。
解:x^2 - 4可以用差平方公式变形为(x + 2)(x - 2),因此,x^2 - 4的因式分解为(x + 2)(x - 2)。
综上所述,因式分解是中考数学中的重要一环,涉及到公因式提取、完全平方公式和差平方公式三类题型,需要学生们在平时的学习中认真掌握和练习。
中考数学专题复习第4讲因式分解(含详细答案)
第四讲 因式分解 【基础知识回顾】一、因式分解的定义:1、把一个 式化为几个整式 的形式,叫做把一个多项式因式分解。
2、因式分解与整式乘法是 运算,即:多项式 整式的积 【名师提醒:判断一个运算是否是因式分解或判断因式分解是否正确,关键看等号右边是否为 的形式。
】二、因式分解常用方法:1、提公因式法:公因式:一个多项式各项都有的因式叫做这个多项式各项的公因式。
提公因式法分解因式可表示为:ma+mb+mc= 。
【名师提醒:1、公因式的选择可以是单项式,也可以是 ,都遵循一个原则:取系数的 ,相同字母的 。
2、提公因式时,若有一项被全部提出,则括号内该项为 ,不能漏掉。
3、提公因式过程中仍然要注意符号问题,特别是一个多项式首项为负时,一般应先提取负号,注意括号内各项都要 。
】2、运用公式法:将乘法公式反过来对某些具有特殊形式的多项式进行因式分解,这种方法叫做公式法。
①平方差公式:a 2-b 2= ,②完全平方公式:a 2±2ab+b 2= 。
【名师提醒:1、运用公式法进行因式分解要特别掌握两个公式的形式特点,找准里面的a 与b 。
如:x 2-x+14符合完全平方公式形式,而x 2- x+12就不符合该公式的形式。
】三、因式分解的一般步骤1、 一提:如果多项式的各项有公因式,那么要先 。
2、 二用:如果各项没有公因式,那么可以尝试运用 法来分解。
3、 三查:分解因式必须进行到每一个因式都不能再分解为止。
【名师提醒:分解因式不彻底是因式分解常见错误之一,中考中的因式分解题目一般为两步,做题时要特别注意,另外分解因式的结果是否正确可以用整式乘法来检验】【重点考点例析】考点一:因式分解的概念例1 (•株洲)多项式x 2+mx+5因式分解得(x+5)(x+n ),则m= ,n= .思路分析:将(x+5)(x+n )展开,得到,使得x 2+(n+5)x+5n 与x 2+mx+5的系数对应相等即可.解:∵(x+5)(x+n )=x 2+(n+5)x+5n ,∴x 2+mx+5=x 2+(n+5)x+5n ∴555n m n +=⎧⎨=⎩,∴16n m =⎧⎨=⎩, 故答案为6,1.点评:本题考查了因式分解的意义,使得系数对应相等即可.对应训练1.(•河北)下列等式从左到右的变形,属于因式分解的是( )( ) ( )A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3-x=x(x+1)(x-1)1.D考点二:因式分解例2 (•无锡)分解因式:2x2-4x= .思路分析:首先找出多项式的公因式2x,然后提取公因式法因式分解即可.解:2x2-4x=2x(x-2).故答案为:2x(x-2).点评:此题主要考查了提公因式法分解因式,关键是掌握找公因式的方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.例3 (•南昌)下列因式分解正确的是()A.x2-xy+x=x(x-y)B.a3-2a2b+ab2=a(a-b)2C.x2-2x+4=(x-1)2+3 D.ax2-9=a(x+3)(x-3)思路分析:利用提公因式法分解因式和完全平方公式分解因式进行分解即可得到答案.解:A、x2-xy+x=x(x-y+1),故此选项错误;B、a3-2a2b+ab2=a(a-b)2,故此选项正确;C、x2-2x+4=(x-1)2+3,不是因式分解,故此选项错误;D、ax2-9,无法因式分解,故此选项错误.故选:B.点评:此题主要考查了公式法和提公因式法分解因式,关键是注意口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.例4 (•湖州)因式分解:mx2-my2.思路分析:先提取公因式m,再对余下的多项式利用平方差公式继续分解.解:mx2-my2,=m(x2-y2),=m(x+y)(x-y).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.对应训练2.(•温州)因式分解:m2-5m= .2.m(m-5)3.(•西宁)下列分解因式正确的是()A.3x2-6x=x(3x-6)B.-a2+b2=(b+a)(b-a)C.4x2-y2=(4x+y)(4x-y)D.4x2-2xy+y2=(2x-y)23.B4.(•北京)分解因式:ab2-4ab+4a= .4.a(b-2)2考点三:因式分解的应用例5 (•宝应县一模)已知a+b=2,则a2-b2+4b的值为.思路分析:把所给式子整理为含(a+b)的式子的形式,再代入求值即可.解:∵a+b=2,∴a2-b2+4b=(a+b)(a-b)+4b=2(a-b)+4b=2a+2b=2(a+b)=2×2=4.故答案为:4. 点评:本题考查了利用平方差公式分解因式,利用平方差公式和提公因式法整理出a+b 的形式是求解本题的关键,同时还隐含了整体代入的数学思想.对应训练5.(•鹰潭模拟)已知ab=2,a-b=3,则a 3b-2a 2b 2+ab 3= .5.18【聚焦山东中考】1.(•临沂)分解因式4x-x 2= .1.x (4-x )2.(•滨州)分解因式:5x 2-20= .2.5(x+2)(x-2)3.(•泰安)分解因式:m 3-4m= .3.m (m-2)(m+2)4.(•莱芜)分解因式:2m 3-8m= .4.2m (m+2)(m-2)5.(•东营)分解因式:2a 2-8b 2= .5.2(a-2b )(a+2b )6.(•烟台)分解因式:a 2b-4b 3= .6.b (a+2b )(a-2b )7.(•威海)分解因式:-3x 2+2x-13= . 7.21(31)3x --8.(•菏泽)分解因式:3a 2-12ab+12b 2= .8.3(a-2b )2【备考真题过关】一、选择题1.(•张家界)下列各式中能用完全平方公式进行因式分解的是() A .x 2+x+1 B .x 2+2x-1 C .x 2-1D .x 2-6x+9 1.D2.(•佛山)分解因式a 3-a 的结果是( )A .a (a 2-1)B .a (a-1)2C .a (a+1)(a-1)D .(a 2+a )(a-1) 2.C3.(•恩施州)把x 2y-2y 2x+y 3分解因式正确的是( )A .y (x 2-2xy+y 2)B .x 2y-y 2(2x-y )C .y (x-y )2D .y (x+y )23.C二、填空题4.(•自贡)多项式ax 2-a 与多项式x 2-2x+1的公因式是 .4.x-15.(•太原)分解因式:a 2-2a= .5.a (a-2)6.(•广州)分解因式:x 2+xy= .6.x (x+y )7.(2013•盐城)因式分解:a 2-9= .7.(a+3)(a-3)8.(•厦门)x2-4x+4=()2.8.x-29.(•绍兴)分解因式:x2-y2= .9.(x+y)(x-y)10.(•邵阳)因式分解:x2-9y2= .11.(x+3y)(x-3y)12.(•南充)分解因式:x2-4(x-1)= .12.(x-2)213.(•遵义)分解因式:x3-x= .13.x(x+1)(x-1)14.(•舟山)因式分解:ab2-a= .14.a(b+1)(b-1)15.(•宜宾)分解因式:am2-4an2= .15.a(m+2n)(m-2n)16.(•绵阳)因式分解:x2y4-x4y2= .16.x2y2(y-x)(y+x)17.(•内江)若m2-n2=6,且m-n=2,则m+n= .17.318.(•廊坊一模)已知x+y=6,xy=4,则x2y+xy2的值为.18.2419.(•凉山州)已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b= .19.-31。
中考数学专题-因式分解及其应用
第13讲 因式分解及其应用考点·方法·破译1.因式分解的定义:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式;2.因式分解的基本方法有提公因式法、运用公式法、分组分解法等;3.因式分解的基本原则:有公因式先提出公因式、分解必须进行到每一个多项式都不能再分解为止;4.竞赛中常出现的因式分解问题,常用到换元法、主元法、拆项添项阿、配方法和待定系数法等方法、另外形如2x px q ++的多项式,当p =a +b ,q =ab 时可分解为(x +a )(x +b )的形式;5.利用因式分解求代数式的值与求某些特殊方程的解经典·考题·赏析【例1】⑴若229x kxy y ++是完全平方式,则k =______________⑵若225x xy ky -+是完全平方式,则k =______________【解法指导】形如222a ab b ±+的形式的式子,叫做完全平方式.其特点如下:⑴有三项;⑵有两项是平方和的形式;⑶还有一项是乘积的2倍,符号自由.解:⑴22229(3)x kxy y x kxy y ++=++是完全平方式,∴6kxy xy =± ∴6k =±; ⑵22225522y x xy ky x x ky -+=-⋅⋅+是完全平方式,∴225()2ky y = ∴254k = 【变式题组】01.若22199m kmn n -+是一个完全平方式,则k =________02.若22610340x y x y +-++=,求x 、y 的值03.若2222410a a b ab b +-++=,求a 、b 的值04.(四川省初二联赛试题)已知a 、b 、c 满足22|24||2|22a b a c ac -+++=+,求a b c -+的值【例2】⑴(北京)把3222x x y xy -+分解因式,结果正确的是( )A .()()x x y x y +-B .22(2)x x xy y -+C .2()x x y +D .2()x x y -⑵(杭州)在实数范围内分解因式44x -=____________⑶(安徽)因式分解2221a b b ---=_______________【解法指导】分解因式的一般步骤为:一提,二套,三分组,四变形解:⑴3222222(2)()x x y xy x x xy y x x y -+=-+=-⑵42224(2)(2)(2)(x x x x x x -=+-=+⑶22222221(21)(1)(1)(1)a b b a b b a b a b a b ---=-++=-+=++--【变式题组】⑴3223223612x y x y x y -+⑵2222(1)2a x ax +-⑶222045a bx bxy -⑷2249()16()a b b a --+⑸222(5)8(5)16a a -+-+【例3】要使二次三项式25x x p -+在实数范围内能进行因式分解,那么整数P 的取值可能有( )A .2个B .4个C .6个D .无数多个【解法指导】由2()()()x a b x ab x a x b +++=++可知,在整数范围内分解因式25x x p -+,p 为(5)n n -的积为整数,∴p 有无数多个,因而选D【变式题组】⑴已知212x ax +-能分解成两个整系数的一次因式的乘积,则符合条件的整数a 的个数是( )A .2个B .4个C .6个D .8个⑵在1~100间,若存在整数n ,使2x x n +-能分解为两个整系数的一次因式的乘积,则这样的n 有__个【例4】分解因式:⑴221112x x -+⑵22244x y z yz --+⑶22(52)(53)12x x x x ++++-⑷226136x xy y x y +-++-【解法指导】解:⑴ ∴221112(23)(4)x x x x -+=--⑵222244x y z y --+222(44)x y yz z =--+22(2)x y z =--(2)(2)x y z x y z =+--+ ⑶设2525x x ++=,则原式可变为2(1)1212(3)(4)t t t t t t +-=+-=-+∴原式=22(523)(524)x x x x ++-+++ 2 1 -3 -422(51)(56)x x x x =+-++2(51)(2)(3)x x x x =+-++⑷226136x xy y x y +-++-22(6)(13)6x xy y x y =+-++-(2)(3)(13)6x y x y x y =-+++-(23)(32)x y x y =-++-【变式题组】01.分解因式:⑴2224912x y z yz --- ⑵224443x x y y --+-⑶236ab a b --+ ⑷(1)(2)(3)(4)1x x x x +++++⑸261910y y -+【例5】⑴(上海竞赛试题)求方程64970xy x y +--=的整数解;⑵(希望杯)设x 、y 为正整数,且224960x y y ++-=,求xy 的值【解法指导】⑴结合方程的特点对其因式分解,将不定方程转化为方程组求解; ⑵将等式左边适当变形后进行配方,利用x 、y 为正整数的特点,结合不等式求解. 解:⑴64970xy x y +--=,(64)(96)1xy x y +-+=,2(32)3(32)1x y y +-+=,∴(23)(32)1x y -+=,∵x 、y 都是整数 ∴{{(23)1(23)1(32)1(32)1x x y y -=-=-+=+=-或 ∴{21113x x y y =⎧⎪=⎨=-=-⎪⎩(舍去)或,∴方程的整数解为{11x y ==-, ⑵224960x y y ++-=,2244100y y x ++=-,22(2)100y x +=-,∵21000x -≥∴2100x ≤ ∵x 为正整数,∴x =1,2,…,10 ,又∵2(2)y +是平方数,∴x =6或8当x =6时2(2)y +=64,y =6,当x =8时2(2)y +=36,y =4,∴xy =36或32【变式题组】01.设x 、y 是正整数,并且222132y x =-,则代数式222x xy y x y+-+的值是___________ 02.(第二届宗沪杯)已知a 、b 为整数,则满足a +b +ab =2008的有序数组(a ,b )共有__________03.(北京初二年级竞赛试题)将2009表示成两个整数的平方差的形式,则不同的表示方法有( )A .16种B .14种C .12种D .10种04.方程332232x y x y xy -+-=的正整数解的个数为( )A .0个B .1个C .2个D .不少于3个05.一个正整数,如果加上100是一个完全平方数:如果加上168则是另外一个完全平方数,求这个正整数.【例6】已知k 、a 都是正整数,2004k +a 、2004(k +1)+a 都是完全平方数⑴请问这样的有序正整数(k 、a )共有多少组?⑵试指出a 的最小值,并说明理由.解:⑴22004k a m +=① 22004(1)k a n ++=②,这里m 、n 都是正整数,则222004n m -= 故()()2004223167n m n m +-==⨯⨯⨯注意到,m n +、n m -奇偶性相同,则{{100233426n m n m n m n m +=+=-=-=或,解得{{500164502170m m n n ====或, 当n =502,m =500时,由①得2004k +a =250000,所以2004(124)1504a k =-+③由于k 、a 都是正整数,故k 可以取值1,2,3,…,124,相应得满足要求的正整数数组(k 、a )共124组当n =170,m =164时,由①得2004k +a =26896所以2004(13)844a k =-+④由于k 、a 都是正整数,故k 可以取值1,2,3,…,13,相应得满足要求的正整数数组(k 、a )共13组从而,满足要求的正整数组(k 、a )共有124+13=137(组)⑵满足式③的最小正整数a 的值为1504,满足式④的最小正整数a 的值为844,所以,所求的a 的最小值为844【变式题组】01.(北京竞赛)已知a 是正整数,且22004a a +是一个正整数的平方,求a 的最大值02.设x 、y 都是整数,y y 的最大值演练巩固 反馈提高01.如果分解因式281(9)(3)(3)n x x x x -=++-,那么n 的值为( )A .2B .4C .6D .8 02.若多项式22(3)(3)x pxy qy x y x y ++=-+,则p 、q 的值依次为() A .12-,9- B .6,9- C .9-,9- D .0,9-03.下列各式分解因式正确的是( )A .291(91)(91)x x x -=+-B .4221(1)(1)a a a -=+-C .2281(9)(9)a b a b a b --=--+D .32()()()a ab a a b a b -+=-+-04.多项式()()()()x y z x y z y z x z x y +--+-+---的公因式是( )A .x y z +-B .x y z -+C .y z x +-D .不存在05.22()4()4m n m m n m+-++分解因式的结果是()A.2()m n+B.2(2)m n+C.2()m n-D.2(2)m n-06.若218x ax++能分解成两个因式的积,则整数a的取值可能有()A.4个B.6个C.8个D.无数个07.已知224250a b a b++-+=,则a ba b+-的值为()A.3 B.13C.3-D.13-08.分解因式:2(2)(4)4x x x+++-=__________________09.分解因式:22423a b a b-+++=__________________10.分解因式:33222x y x y xy-+=___________________11.已知5a b+=,4ab=-,那么22223a b a b ab++的值等于____________ 12.分解因式:2242x y x y-++=_______________13.分解因式:2()6()9a b b a---+=_________________14.分解因式:222(41)16a a+-=___________________15.已知20m n+=,则332()4m mn m n n+++的值为_____________ 16.求证:791381279--能被45整除17.已知9621-可被在60到70之间的两个整数整除,求这两个整数培优升级 奥赛检测01.(四川省初二数学联赛试题)使得381n +为完全平方数的正整数n 的值为( )A .2B .3C .4D .502.(四川省初二数学联赛试题)设m 、n 是自然数,并且219980n n m --=,则m +n 的最小值是( )A .100B .102C .200D .不能确定03.(四川省初二数学联赛试题)满足方程32326527991x x x y y y ++=+++的正整数对(x ,y )有( )A .0对B .1对C .3对D .无数对04.(全国初中数学竞赛试题)方程323652x x x y y ++=-+的整数解(x ,y )的个数是()A .0B .1C .3D .无穷多05.(四川省初二数学试题)已知42(1)M p p q =+,其中p 、q 为质数,且满足29q p -=,则M=()A .2009B .2005C .2003D .200006.(仙桃竞赛试题)不定方程2()7x y xy +=+的所有整数解为_________________07.已知多项式2223286x xy y x y +--+-可以分解为(2)(2)x y m x y n ++-+的形式,那么3211m n +-的值是______08.对于一个正整数n ,如果能找到a 、b ,使得n =a +b +ab ,则称n 为一个“好数”,例如:3=1+1+1×1,3就是一个好数,在1~20这20个正整数中,好数有_______个 09.一个正整数a 恰好等于另一个正整数b 的平方,则称正整数a 为完全平方数,如2648=,64就是一个完全平方数;若22222992299229932993a =+⨯+,求证a 是一个完全平方数10.已知实数a 、b 、x 、y 满足2a b x y +=+=,5ax by +=,求2222()()a b xy ab x y +++的值11.若a 为自然数,则4239a a -+是质数还是合数?请你说明理由12.正数a 、b 、c 满足3ab a b bc b c ca c a ++=++=++=,求(1)(1)(1)a b c +++的值13.某校在向“希望工程”捐款活动中,甲班有m 个男生和11个女生的捐款总数与乙班的9个男生和n 个女生的捐款总数相等,都是(mn +9m +11n +145)元,已知每人的捐款数相同,且都是整数,求每人的捐款数。
因式分解-中考数学一轮复习考点专题复习大全(全国通用)
考向06 因式分解【考点梳理】1.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫分解因式 分解因式的一般方法:1. 提公共因式法2. 运用公式法3.十字相乘法分解因式的步骤:(1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法;(3)十字相乘法可对二次三项式试一试;(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.方法一:分组分解法常用的分解因式的方法有提取公因式法、公式法及十字相乘法.但有更多的多项式只用上述方法就无法分解,如x 2﹣4y 2﹣2x +4y ,我们细心观察这个式子就会发现,前两项符合平方差公式.后两项可提取公因式.前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.这种分解因式的方法叫分组分解法.例如:x 2﹣4y 2﹣2x +4y =(x +2y )(x ﹣2y )﹣2(x ﹣2y )=(x ﹣2y )(x +2y ﹣2).方法二:十字相乘法一般地,在分解形如关于x 的二次三项式2ax bx c ++时,二次项系数a 分解成1a 与2a 的积,分别写在十字交叉线的左上角和左下角;常数项c 分解成1c 与2c 的积,分别写在十字交叉线的右上角和右下角,把1a ,2a ,1c ,2c 按如图4所示方式排列,当且仅当1221a c a c b +=(一次项系数)时,2ax bx c ++可分解因式.即21122()()ax bx c a x c a x c ++=++.我们把这种分解因式的方法叫做十字相乘法.【题型探究】题型一:因式分解的定义1.下面各式从左到右的变形,属于因式分解的是( )A .21(1)1x x x x --=--B .221(1)x x -=-C .26(3)(2)x x x x --=-+D .2(1)x x x x -=-2.下列各式从左到右的变形中,是因式分解的为( )A .()++=++2x 3x 2x x 32B .()()2422x x x -=+-C .()a x y ax ay -=-D .2623x y x xy =⋅3.下列变形中,属于因式分解且正确的是( )A .262(3)x x +=+B .2(1)a a a a +=+C .2(1)(1)x x x x x -=+-D .231(3)1x x x x -+=-+题型二:提取公因式和公式法因式分解4.下列因式分解正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .244(2)(2)x x x x -+=+-D .2()()()x x y y y x x y -+-=- 5.下列因式分解正确的是( )A .()321a a a a -=-B .()()22ab c ab c ab c -=+-C .()()22a b ab a a b a b -=+-D .322269(3)a a b ab a a b ++=+6.下列因式分解正确的是( )A .a 10b ﹣a 5=a 5(a 2b ﹣1)B .a 2﹣4b 2=(a ﹣2b )2C .a 6+4a 3b +4b 2=(a 3+2b )2D .a 2﹣a (b +1)=a (a ﹣b +1)题型三:十字相乘法7.把多项式x 2+(p ﹣q )x ﹣pq 分解因式,结果正确的是( )A .(x+p )(x+q )B .(x ﹣p )(x ﹣q )C .(x+p )(x ﹣q )D .(x ﹣p )(x+q )8.下列式子变形是因式分解的是( )A .x 2-5x +6=x (x -5)+6B .x 2-5x +6=(x -2)(x -3)C .(x -2)(x -3)=x 2-5x +6D .x 2-5x +6=(x +2)(x +3) 9.将多项式()211a a --+因式分解,结果正确的是( )A .1a -B .()()12a a --C .()21a -D .()()11a a +-题型四:分组分解法10.下列多项式中,在实数范围不能分解因式的是( )A .2222x y x y +++B .2222x y xy ++-C .2244x y x y -++D .2244x y y -+-11.把x 2-y 2-2y -1分解因式结果正确的是( ).A .(x +y +1)(x -y -1)B .(x +y -1)(x -y -1)C .(x +y -1)(x +y +1)D .(x -y +1)(x +y +1)12.下列运算不正确的是( )A .1(1)(1)xy x y x y +--=-+B .22221()2x y z xy yz zx x+y+z +++++=C .2233()()x y x xy y x y +-+=+D .33223()33x y x x y xy y -=-+-题型五:因式分解在化简求值的应用13.若a +b =1,则222a b b -+的值为( )A .4B .3C .2D .114.如果2a b +=,那么代数式2222a b b a b a b⎛⎫++⋅ ⎪+⎝⎭的值为_______. 15.已知x =2,x+y =3,则x 2y+xy 2=_____.题型六:因式分解的综合问题16.已知,实数m ,n 满足3m n +=,2230m n mn +=-.(1)若m n >,则m n -=_______;(2)若5n p +=-,则代数式2232m p n p m mn -+-的值是______________.17.已知23x a ab =-,222y a ab b =--+.(1)化简3x y -;(2)当a 和b 221b b =---时,求3x y -的值.18.材料1:若一个数各个数位上数字之和能被9整除,则这个数本身也能被9整除;材料2:如果一个各个数位上的数字均不为0的四位正整数m 可以被9整除,且m 的百位上的数字比十位上的数字大2,则称m 为“够二数”;将m 的千位数字与个位数字交换,百位数字与十位数字交换,得到的数为m ',()1818999m m F m '-+=,例如:8424m =,∵84241892+++==⨯,422-=,∴8424是“够二数”,()84244248181884246999F -+==. (1)判断1314,6536是否是“够二数”,请说明理由,如果是“够二数”,请计算()F m 的值;(2)若一个四位正整数n abcd =是“够二数”,且()c F n 为5的倍数,请求出所有的“够二数”n 的值.【必刷基础】一、单选题19.在因式分解练习时,小颖做了4道题如下,小颖分解不够到位的一题是( )A .()()22x y x y x y -=-+B .22244(2)x xy y x y -+=-C .()2222x y xy xy x y -=-D .()221x x x x -=-20.已知1xy =-,2x y +=,则32231122x y x y xy ++=( ) A .2- B .2 C .4- D .421.解决次数较高的代数式问题时,通常可以用降次的思想方法.已知:210x x --=,且0x >,则4323x x x -+的值是( )A .1B .1C .3D .322.对于任意实数a ,b ,a 3+b 3=(a +b )(a 2﹣ab +b 2)恒成立,则下列关系式正确的是( )A .a 3﹣b 3=(a ﹣b )(a 2+ab +b 2)B .a 3﹣b 3=(a +b )(a 2+ab +b 2)C .a 3﹣b 3=(a ﹣b )(a 2﹣ab +b 2)D .a 3﹣b 3=(a +b )(a 2+ab ﹣b 2) 23.下列因式分解正确的是( )A .()1ax ay a x y +=++B .()333a b a b +=+C .()22444a a a ++=+D .()2a b a a b +=+24.如图2所示的是图1中长方体的三视图,若用S 表示面积,22S x x =+主,2S x x =+左,则长方体的表面积为( )A .232x x ++B .2362x x ++C .26124x x ++D .66x +25.如果把二次三项式22x x c ++分解因式得()()2213x x c x x ++=-+,那么常数c 的值是( )A .3B .-3C .2D .-22621440a b b +-+=,则a b -的值为( )A .3B .-3C .1D .-127.分解因式:42242x x y y -+=______.28.若关于x 的多项式26x px --含有因式3x -,则实数p 的值为______ .29.已知:整式21A n =+,2B n =,21C n =-,整式0C >.(1)当1999n =时,写出整式A B +的值______(用科学记数法表示结果);(2)求整式22A B -;(3)嘉淇发现:当n 取正整数时,整式A 、B 、C 满足一组勾股数,你认为嘉淇的发现正确吗?请说明理由.【必刷培优】一、单选题30.设x 、y 是实数,且222450x y x y +-++=.23(2)2x y +31.计算:2255100199922a a ⨯-⨯=( ) A .5000a B .1999a C .10001a D .10000a32.已知230x x --=,则代数式()()()323210x x x x +-+-的值为( )A .34B .13C .26D .71333.对于二次三项式22x mxy x +-(m 为常数),下列结论正确的个数有( )①当1m =-时,若220x mxy x +-=,则2x y -=②无论x 取任何实数,等式223x mxy x x +-=都恒成立,则()225x my +=③若226x xy x +-=,228y xy y +-=,则115x y +=+ ④满足()()22220x xy x y xy y +-+--≤的整数解(),x y 共有8个 A .1个 B .2个 C .3个 D .4个二、填空题34.已知整数x ,y 满足2022202220222022x y y x x y xy +--+=,则7x y --的最小值为 _____. 35.已知多项式22x bx c ++ 分解因式为()()231x x -+ ,则bc 的值为______.36.已知23a b =-+,则代数式2269a ab b -+的值为 ___________.37.因式分解:322321218x y x y xy -+=______________________.38.若函数221[(100196)|100196|]2y x x x x =-++-+,当自变量x 分别取1,2,⋯⋯,100时,对应的函数值的和是 __.三、解答题39.两个不同的多位正整数,若它们各数位上的数字和相等,则成这两个多位数互为“友好数”.例如:37和82,它们各数位上的数字之和分别是37+,82+,378210+=+=,37∴和82互为“友好数”.又如:123和51,它们各数位上的数字之和分别是123++,51+,123516++=+=,123∴和51互为“友好数”.(1)直接写出103的所有两位数的“友好数”;(2)若两个不同的三位数10040m a b =++、20010(15n c a =+,05b ,09c ,且a 、b 、c 为整数)互为友好数,且m n -是11的倍数,记11m n P -=,求P 的所有值. 40.如图:将一张矩形纸板按图中所画虚线裁剪成九张小纸板,其中有两张正方形的甲种纸板,边长为a ,有两张正方形的乙种纸板,边长为b ,有五张矩形的丙种纸板,边长分别为a ,b (a b >).(1)观察图形,矩形纸板的面积可以用裁剪成的九张小纸板面积的和表示为__________,还可以用两边的乘积表示为__________,则利用矩形纸板面积的不同表达方式可以得到等式______________________________;(2)若矩形纸板中所有甲、乙两种正方形纸板的面积和为290cm ,每个丙种矩形纸板的面积为218cm ,求图中矩形纸板内所有裁剪线(虚线)的长度之和.41.观察下列等式:1223113221⨯=⨯;2335225332⨯=⨯;3669339663⨯=⨯;…以上每个等式中两边数字是分别对称的,且每个等式中组成两位数和三位数的数字之间具有相同规律,我们称这类等式为“数字对称式”.(1)根据上述规律填空,使式子成为“数字对称式”:52×______=______×25;______×187=781×______.(2)设“数字对称式”左边两位数的十位上数字为a ,个位上数字为b ,且29a b ≤+≤,请用a 、b 表示“数字对称式”(只写出等式,不需证明).42.(1)下面是小明同学进行因式分解的过程,请认真阅读并完成相应任务.因式分解:()()2233a b a b +-+解:原式()()22229669a ab b a ab b =++-++ 第一步 2288a b =- 第二步()228a b =- 第三步 任务一:填空:①以上解题过程中,第一步进行整式乘法用到的是___________公式;②第三步进行因式分解用到的方法是___________法.任务二:同桌互查时,小明的同桌指出小明因式分解的结果是错误的,具体错误是______________________. 任务三:小组交流的过程中,大家发现这个题可以先用公式法进行因式分解,再继续完成,请你写出正确的解答过程.参考答案:1.C【分析】根据因式分解的定义对选项逐一分析即可.【详解】把一个多项式化成几个整式积的形式,这种变形叫做因式分解.A 、右边不是整式积的形式,故不是因式分解,不符合题意;B 、形式上符合因式分解,但等号左右不是恒等变形,等号不成立,不符合题意;C 、符合因式分解的形式,符合题意;D 、从左到右是整式的乘法,从右到左是因式分解,不符合题意;故选C .【点睛】本题考查因式分解,解决本题的关键是充分理解并应用因式分解的定义.2.B【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A 、不是把一个多项式化为几个整式的积的形式,原变形不是因式分解,故此选项不符合题意;B 、把一个多项式化为几个整式的积的形式,原变形是因式分解,故此选项符合题意;C 、不是把一个多项式化为几个整式的积的形式,原变形不是因式分解,故此选项不符合题意;D 、不是把一个多项式化为几个整式的积的形式,原变形不是因式分解,故此选项不符合题意;故选:B .【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.3.A【分析】利用因式分解的定义逐一判断即可.【详解】A 、262(3)x x +=+,符合因式分解的定义,且分解正确;B 、2(1)a a a a +=+,是整式的乘法,不是分解因式;C 、()()()2111x x x x x x x -=-≠+-,分解因式不正确;D 、231(3)1x x x x -+=-+,分解因式不正确,故选:A【点睛】本题考查了因式分解的定义,理解掌握把一个多项式化成几个整式乘积的形式,这种变形叫做因式分解,分解因式要分解到不能再分解为止.4.D【分析】利用提取公因式法、完全平方公式逐项进行因式分解即可.【详解】解:A 、原式 =()244x x x x -+=-- ,故本选项不符合题意;B 、原式 =()1x x y ++ ,故本选项不符合题意;C 、原式 =()22442x x x -+=- ,故本选项不符合题意;D 、原式 =()()()2x y x y x y --=- ,故本选项符合题意,故选:D .【点睛】本题考查了提公因式法与公式法分解因式,属于基础题,关键是掌握因式分解的方法.5.D【分析】根据因式分解的定义化简判断;【详解】解:()()()32A 111a a a a a a a -=-=-+,,故此选项不合题意; B ,22ab c -,无法运用平方差公式分解因式,故此选项不合题意;C ,()22a b ab ab a b -=-,故此选项不合题意;D ,322269(3)a a b ab a a b ++=+,故此选项符合题意;故选:D .【点睛】本题考查因式分解:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式;因式分解的结果是整式的乘积的形式且结果必须分解到不能再分解为止,这是判断是否是因式分解的根据方法.6.C【分析】利用提公因式法判定A 和D 错误,利用平方差公式判定B 错误,利用完全平方公式判定C 正确.【详解】解:A .a 10b ﹣a 5=a 5(a 5b ﹣1),故此选项不合题意;B .a 2﹣4b 2=(a ﹣2b )(a +2b ),故此选项不合题意;C .a 6+4a 3b +4b 2=(a 3+2b )2,故此选项符合题意;D .a 2﹣a (b +1)=a (a ﹣b ﹣1),故此选项不合题意;故选:C .【点睛】本题考查因式分解,解决问题的关键是掌握方法和步骤:一提二套三检查.7.C【分析】根据x 2+(p+q )x+pq =(x+p )(x+q )容易得出答案.【详解】解:x 2+(p ﹣q )x ﹣pq =(x+p )(x ﹣q ).故选C .【点睛】本题考查了因式分解的方法;熟练掌握x 2+(p+q )x+pq =(x+p )(x+q )是解决问题的关键.8.B【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,【详解】A 、x 2-5x +6=x (x -5)+6,不是因式分解,故本选项不符合题意;B 、x 2-5x +6=(x -2)(x -3),是因式分解,故本选项符合题意;C 、(x -2)(x -3)=x 2-5x +6,不是因式分解,故本选项不符合题意;D 、x 2-5x +6=(x -2)(x -3)≠(x +2)(x +3),故本选项不符合题意;故选B9.B【分析】先运用完全平方公式展开,然后再合并,最后运用十字相乘法因式分解即可.【详解】解:()211a a --+=2211a a a -+-+=232a a -+=()()12a a --.故选B .【点睛】本题主要考查了运用完全平方公式计算、十字相乘法因式分解等知识点,掌握运用十字相乘法进行因式分解是解答本题的关键.10.A【分析】根据因式分解的方法与步骤进行判断即可【详解】解:A .原式不能分解,符合题意;B .原式2()2(x y x y x y =+-=++,不符合题意;C .原式()()4()()(4)x y x y x y x y x y =+-++=+-+,不符合题意;D .原式22(2)(2)(2)x y x y x y =--=+--+,不符合题意;故选:A .【点睛】本题考查因式分解、平方差公式、完全平方公式,熟练掌握提公因式法和公式法分解因式是解答的关键,注意实数范围内分解因式时2要写成2.11.A【分析】由于后三项符合完全平方公式,应考虑三一分组,然后再用平方差公式进行二次分解.【详解】解:原式=x 2-(y 2+2y+1),=x 2-(y+1)2,=(x+y+1)(x-y-1).故选A .12.B【详解】根据分组分解法因式分解、多项式乘多项式的法则进行计算,判断即可.1(1)(1)(1)(1)xy x y x y y x y +--=+-+=-+,A 正确,不符合题意;2222221()()()2x y z xy yz zx x y x z y z ⎡⎤+++++=+++++⎣⎦,B 错误,符合题意; 2233()()x y x xy y x y +-+=+,C 正确,不符合题意;33223()33x y x x y xy y -=-+-,D 正确,不符合题意;故选B .【点睛】本题考查的是因式分解、多项式乘多项式,掌握它们的一般步骤、运算法则是解题的关键.13.D【分析】把222a b b -+进行变形,代入a +b =1,计算,再次代入即可求解.【详解】解:222a b b -+()()2a b a b b =+-+2a b b =-+a b =+1=故选:D【点睛】本题考查了对式子变形求解,熟练掌握平方差公式是解题关键,本题也可以把a +b =1变形为a =1-b ,代入求值.14.4【分析】先根据分式的混合运算法则化简原式,,然后把a +b =2整体代入计算即可.【详解】解:原式=2222b a b ab b b a b⎛⎫++⋅ ⎪+⎝⎭ =2222a b ab b b a b ⎛⎫++⋅ ⎪+⎝⎭=()22a b b b a b+⋅+ =()2a b +,∵a +b =2,∴原式=2×2=4.故答案为:4.【点睛】本题主要考查了分式的化简求值,以及因式分解,熟练掌握运算法则是解题的关键.15.6y【分析】原式提取公因式,把各自的值代入计算即可求出值.【详解】解:∵x =2,x+y =3,∴原式=xy (x+y )=6y ,故答案为:6y【点睛】本题考查因式分解,熟练掌握计算法则是解题关键.16. 7 42或252##252或42【分析】(1)将已知式子因式分解代入得出10mn =-,然后利用两个完全平方公式之间的关系求解即可;(2)利用(1)中结论得出52m n =⎧⎨=-⎩或25m n =-⎧⎨=⎩,然后分两种情况,将原式化简代入求值即可. 【详解】解:(1)∵m +n =3,∴()2230m n mn mn m n +=+=-,∴10mn =-,∴()()()22494049m n m n mn -=+-=--=,∴7m n -=±,∵m >n ,∴0m n ->,∴7m n -=;(2)2232m p n p m mn -+-()2222()m n p m m n =-+- ()22()m n p m =-+()()()m n m n p m =+-+,由(1)得37m n m n +=⎧⎨-=⎩或37m n m n +=⎧⎨-=-⎩解得:52m n =⎧⎨=-⎩或25m n =-⎧⎨=⎩当m =5,2n =-时,∵5n p +=-,∴3p =-,∴m +p =2,∴原式()()52522=-⨯+⨯42=;当2m =-,n =5时,∵5n p +=-,∴10p =-,∴12m p +=-,∴原式()()()252512=-+⨯--⨯-252=;∴代数式的值为42或252;故答案为:①7;②42或252.【点睛】题目主要考查因式分解的运用,求代数式的值及完全平方公式与平方差公式,熟练掌握运算法则进行变换是解题关键.17.(1)2246a b -(2)10【分析】(1)用a ,b 表示出代数式3x y -,化简即可;(2)根据已知式子求出a ,b ,代入(1)的结果即可;(1)∵23x a ab =-,222y a ab b =--+,∴()2223332x y a ab a ab b -=----+, 2223336a ab a ab b =-++-,2246a b =-;(2)221b b =---,()210b +=, ∴2010a b -=⎧⎨+=⎩, ∴2a =,1b ,∴()2222346426110x y a b -=-=⨯-⨯-=;【点睛】本题主要考查了整式化简求值,准确利用二次根式非负性求解是解题的关键.18.(1)1314是是“够二数”, F (1314)=﹣1;6536不是“够二数”;(2)n =7758.【分析】(1)根据“够二数”的定义进行判断求解即可;(2)根据“够二数”的定义得出a +b +c +d =9x ,其中x 是正整数,且x ≠0,则b -c =2,表示出()F n ,代入b =c +2得()F n =a -d +2,则()c F n =52c y a d =-+,其中y 是整数,得 c =5,b =7,()c F n =52c y ad =-+,其中y 是整数,1129a d a d x =-⎧⎨++=⎩,其中x ≠0,且是整数,a +d +12=9x ,a ,d 是正整数,得到x ≠1,从x =2开始进行分析即可得到答案.(1)解:∵ 1+3+1+4=9=9×1,3-1=2,∴1314是“够二数”,∴此时m '=4131,∴F (1314)=131441311818999-+=﹣1, ∵6+5+3+6=20,20不能被9整除,∴6536不是“够二数”;(2)解:∵一个四位正整数n abcd =是“够二数”,∴a +b +c +d =9x ,其中x 是正整数,且x ≠0,则b -c =2,∴b =c +2,则1<c <7, ∴n dcba '=,∴()1818999n n F n '-+= 1818999abcd dcba -+= 1000100101000100101818999a b c d d c b a +++----+= 99990909991818999a b c d +--+= 1111010111202111a b c d +--+=, 将b =c +2代入得,()F n 11110(2)10111202111a c c d ++--+==111111222111a d -+ =a -d +2,∴()c F n =52c y ad =-+,其中y 是整数, ∴ c =5,b =7,∴ 52229c y a d a c d x⎧=⎪-+⎨⎪+++=⎩,∴(a -d +2)y =1,∵y 是整数,∴a -d +2=1,即a =d -1,∴1129a d a d x =-⎧⎨++=⎩,其中x ≠0,且是整数, ∵a +d +12=9x ,a ,d 是正整数,∴ x ≠1,当x =2时,11218a d a d =-⎧⎨++=⎩,解得5272a d ⎧=⎪⎪⎨⎪=⎪⎩,不合题意,舍去; 当x =3时,11227a d a d =-⎧⎨++=⎩,解得7=8a d =⎧⎨⎩,符合题意,此时n =7758; 当x =4时,11236a d a d =-⎧⎨++=⎩,解得23225=2a d ⎧=⎪⎪⎨⎪⎪⎩,此时d =2592>,不合题意,舍去; ∴ 随着x 的增大,d 也增大,不符合题意,综上所述,n =7758.【点睛】此题考查了新定义运算、因式分解、解二元一次方程组,理解新定义是解题的关键.19.D【分析】根据因式分解的定义逐一判断即可.【详解】解:A. ()()22x y x y x y -=-+,正确,不符合题意;B. 22244(2)x xy y x y -+=-,正确,不符合题意;C. ()2222x y xy xy x y -=- ,正确,不符合题意;D. ()21x x x x -=- ,原式分解错误,符合题意,故选:D .【点睛】本题考查了因式分解,在因式分解的过程中,有公因式一定要先提公因式,分解一定要分到不能再分解为止.20.A【分析】先对所求的式子进行因式分解,再整体代入计算即可.【详解】解:1xy =-,2x y +=,32231122x y x y xy +∴+ ()22122xy x xy y =++ ()212xy x y =+ ()21122=⨯-⨯ 2=-.故选:A .【点睛】本题考查了整式的因式分解、代数式求值,熟练掌握提公因式法与公式法的综合运用是解决本题的关键.21.A【分析】首先解方程210x x --=,然后利用整体代入的思想把2x 换成1x +,多次代入即可求解.【详解】解:210--=x x ,21x x x ∴=+=,, 0x,x ∴, 4323x x x ∴-+22223x x x x x =⋅-⋅+21213x x x x =+-++()()231x x =-++131x x =--++2=1=故选:A .【点睛】此题主要考查了分解因式的实际运用,同时也考查了解一元二次方程,有一定的综合性.22.A【分析】根据立方差公式即可求解.【详解】解:∵a 3+b 3=(a +b )(a 2﹣ab +b 2)恒成立,将上式中的b 用-b 替换,整理得:∴a 3﹣b 3=(a ﹣b )(a 2+ab +b 2),故选:A .【点睛】本题考查了运用公式法分解因式,熟练掌握立方差公式是解题的关键.23.B【分析】根据因式分解的方法,提公因式法及公式法依次进行计算判断即可.【详解】解:A 、ax +ay =a (x +y ),故选项计算错误;B 、3a +3b =3(a +b ),选项计算正确;C 、()22442a a a ++=+,选项计算错误;D 、2a b +不能进行因式分解,选项计算错误;故选:B .【点睛】题目主要考查因式分解的判断及应用提公因式法与公式法进行因式分解,熟练掌握因式分解的方法是解题关键.24.C【分析】由主视图和左视图的宽为x ,结合两者的面积得出俯视图的长和宽,从而得出答案.【详解】解:∵S 主视图=x 2+2x =x (x +2),S 左视图=x 2+x =x (x +1),∴俯视图的长为x +2,宽为x +1,则俯视图的面积S 俯=(x +2)(x +1)=x 2+3x +2.所以长方体的表面积为:2222232x x x x x x 26124x x故选C .【点睛】本题主要考查由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.25.B【分析】将因式分解的结果用多项式乘法的展开,其结果与二次三项式比较即可求解.【详解】解:∵()()2213x x c x x ++=-+∴22223x x c x x ++=+-故3c =-故选B【点睛】本题考查了因式分解,多项式的乘法运算,掌握多项式乘法与因式分解的关系是解题的关键.26.B【分析】利用完全平方公式将244b b -+进行因式分解,再利用算术平方根和完全平方的非负性解题即可.【详解】解:21440a b b ++-+=2(2)0b -= 210,(2)0a b ,1020a b +=⎧∴⎨-=⎩, 解得:12a b =-⎧⎨=⎩, 123a b .故选B .【点睛】本题考查了用完全平方公式法进行因式分解:222)2(a ab b a b ±+=± ,算数平方根以及完全平方的非负性,熟练掌握用公式法进行因式分解以及非负数的性质是解题的关键.27.22()()x y x y +-【分析】先用完全平方公式分解,再利用平方差公式进行分解即可.【详解】解:4224222222()()()x x y y x y x y x y -+=-=+-,故答案为:22()()x y x y +-.【点睛】本题考查了整式的因式分解,掌握公式法分解因式是解决本题的关键.28.1【分析】设另一个多项式为()x b +,再利用整式的乘法进行整理得()()226333x px x x b x b x b --=-+=+--()得到对应各项系数,然后求得p 的值.【详解】解:设多项式的另一个因式是()x b +,则()()226333x px x x b x b x b --=-+=+--(), ∴36b -=-,()3p b =--∴2b =,()231p =--=.故答案为:1.【点睛】本题主要考查了因式分解的综合应用,设出另一个因式,再利用整式的乘法找到各项系数,使之对应相等是解答本题的关键.29.(1)6410⨯(2)22(1)n -(3)正确,理由见解析【分析】1()根据题意可得,()()22121A B n n n +=++=+,把1999n =代入计算应用科学记数法表示方法进行计算即可得出答案;2()把21A n =+,2B n =,代入22A B -中,可得()()22212n n +-,应用完全平方公式及因式分解的方法进行计算即可得出答案;3()先计算()()2222221B C n n +=+-,计算可得()221n +,应用勾股定理的逆定理即可得出答案. (1)解:()()22121A B n n n +=++=+, 当1999n =时,原式()219991=+22000=6410=⨯; 故答案为:6410⨯;(2)()()2222212A B n n -=+-()2222214n n n =++- ()22221n n =-+ 22(1)n =-;(3)嘉淇的发现正确,理由如下:()()2222221B C n n +=+-()2222421n n n =+-+ ()221n =+,222B C A ∴+=,∴当n 取正整数时,整式A 、B 、C 满足一组勾股数.【点睛】本题主要考查了勾股定理及逆定理,科学记数法,熟练掌握勾股定理及逆定理,科学记数法的计算方法进行求解是解决本题的关键.30【分析】根据已知式子利用完全平方公式因式分解,根据非负数的性质求得,x y 的值,代入代数式,根据二次根式的性质化简即可求解.【详解】解:∵222450x y x y +-++=即2221440x x y y -++++=∴()()22120x y -++=∴10x -=,20y +=解得:1x =,=2y -=【点睛】本题考查了完全平方公式因式分解,非负数的性质,二次根式的性质化简,求得,x y 的值是解题的关键. 31.D【分析】先提取公因式,再运用平方差公式即可求解.【详解】2255100199922a a ⨯-⨯ 225(1001999)2a =⨯- 5(1001999)(1001999)2a =⨯-+ 5220002a =⨯⨯ 10000a =,故选:D .【点睛】本题考查了运用提取公因式和平方差公式对代数式进行化简的知识,掌握平方差公式是解答本题的关键.32.C【分析】先化简代数式,再整体代入求值即可.【详解】解:()()()323210x x x x +-+-229410x x x =-+-210104x x =--()2104x x =--, ∵230x x --=∴23-=x x∴原式=10×3-4=26故选C .【点睛】本题考查了代数式的化简求值、平方差公式、提取公因式、整体代入等知识点,掌握整体代入是解答本题的关键.33.A【分析】①代入求值后因式分解计算即可;②提取公因式x 后根据恒成立找关系即可;③两个方程相加后因式分解即可解题;④去括号后因式分解判断即可.【详解】①当1m =-时,若220x mxy x +-=,则22(2)0x xy x x x y --=-=-∴20x y --=或者0x =,故①错误;②等式223x mxy x x +-=化简后为(5)0x my x +-=∵无论x 取任何实数,等式223x mxy x x +-=都恒成立,∴50x my +-=,即5x my +=∴()225x my +=,故②正确;③若226x xy x +-=,228y xy y +-=,则两个方程相加得:222214x xy x y xy y +-++-=,∴ 2()2()14x y x y +-+=2(1)15x y +-=∴ 1x y +=±,故③错误;④整理()()22220x xy x y xy y +-+--≤得:22220x y x y +--≤∴22(1)(1)2x y -+-≤∵整数解(),x y∴22(1)0(1)0x y ⎧-=⎨-=⎩,22(1)0(1)1x y ⎧-=⎨-=⎩,22(1)1(1)0x y ⎧-=⎨-=⎩,22(1)1(1)1x y ⎧-=⎨-=⎩∴11x y =⎧⎨=⎩,12x y =⎧⎨=⎩, 10x y =⎧⎨=⎩,21x y =⎧⎨=⎩, 01x y =⎧⎨=⎩,00x y =⎧⎨=⎩,02x y =⎧⎨=⎩,20x y =⎧⎨=⎩,22x y =⎧⎨=⎩, ∴ 整数解(),x y 共9对,故④错误;综上所述,结论正确的有②;故选:A . 【点睛】本题综合考查因式分解的应用,熟练的配方是解题的关键,题目还考查了因式分解法解一元二次方程. 34.180=,然后因式分解为0=0=,进而分析得出337x =,6y =,则答案可得.【详解】解:2022,0,∴0=,0,∴202223337xy ==⨯⨯,∵x ,y 均为整数,70x y -->,337x =,6y =,18=.故答案为:18.0.35.24【分析】利用整式的乘法去括号合并同类项后,对比各项系数相等即可.【详解】∵22x bx c ++ 分解因式为()()231x x -+∴()()222312462x x x x x bx c -+=--=++∴4b =- ,6c =-∴24bc =故答案是24【点睛】本题考查多项式乘以多项式,以及多项式相等时对应各项系数相等,正确利用公式计算是关键. 36.4【分析】先根据完全平方公式将2269a ab b -+因式分解()23a b -,再将32a b -=-代入,即可求出答案.【详解】解:∵23a b =-+,∴32a b -=-,∴2269a ab b -+()23a b =- ()22=-4=, 故答案为:4.【点睛】本题考查了用完全平方公式因式分解求代数式的值,解题的关键是熟练掌握完全平方公式.37.()223xy x y -【分析】先提取公因式2xy ,再根据完全平方公式化简.【详解】322321218x y x y xy -+22269xy x xy y ()223xy x y =-,故答案为()223xy x y -.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.分解因式三步骤:一提公因式,二套公式,三检查.分解因式时要先考虑能否用提公因式法,然后考虑公式法.若多顶式有两顶,可考虑用平方差公式;若多顶式有三顶,可考虑用完全平方公式.38.390【分析】将x 2-100x +196分解为:(x -2)(x -98),然后可得当2≤x ≤98时函数值为0,再分别求出x =1,99,100时的函数值即可.【详解】二次函数2100196y x x '=-+与x 轴交点为(2,0),(98,0),∴当=2x ,3...98时,22|||100196|(100196)y x x x x '=-+=--+, ∴当=2x ,3...98时,221[(100196)|100196|]2y x x x x =-++-+ 221[(100196)(100196)]2x x x x =-+--+ 102=⨯ =0,当=1x ,99x =,=100x 时,函数2100196y x x '=-+的函数值为正数,221[(100196)|100196|]2y x x x x ∴=-++-+ 1[(2)(98)(2)(98)]2y x x x x =--+-- (2)(98)y x x =--1x ∴=时,(2)(98)y x x =--(1)(97)=--97=,当99x =时,(2)(98)y x x =--971=⨯97=,当=100x 时,(2)(98)y x x =--982=⨯196=,∴自变量x 分别取1,2,⋯⋯,100时,对应的函数值的和是:09797196390+++=.故答案为:390.【点睛】本题考查函数值的知识及十字相乘法分解因式,有一定难度,关键是将x 2-100x +196分解为:(x -2)(x -98)进行解答.39.(1)13、22、31、40(2)9P =-【分析】(1)根据新定义进行解答便可;(2)根据新定义列出a 、b 、c 的方程,得2a b c +=-,m n -是11的倍数,得2811c -是整数,从而求得c 的值,进而求得a 、b 的值,便可求得结果.【详解】(1)解:1034++=,134+=,224+=,314+=,404+=,103∴的所有两位数的“友好数”为13、22、31、40; (2)解:10040m a b =++、20010n c =+,2a b c ∴+=-,m n -是11的倍数,1004020010a b c ∴++--是11的倍数,即10010160a b c +--是11的倍数, ∴1001016069141111a b c a b c a c +--++-=--+为整数, ∴611a b c ++-是整数, 2a b c +=-, ∴2811c -是整数, 09c ,c 为整数,82810c ∴--,c 为整数,280c ∴-=,4c ∴=,22a b c ∴+=-=,15a ,05b ,且a 、b 为整数,1a ∴=,1b =或2a =,0b =,141m ∴=或240,240n =, m 、n 为两个不同的三位数,141m ∴=,240n =,14124091111m n P --∴===-. 即9P =-.【点睛】本题主要考查了新定义,整除的问题,关键是读懂题意,应用新定义解决问题.40.(1)22225a b ab ++, (2)(2)a b a b ++,22225(2)(2)a b ab a b a b ++=++(2)54cm【分析】(1)根据图形可得九张小纸板面积的和22225a b ab ++;根据图形可知用两边的乘积表示为(2)(2)a b a b ++;根据等面积法即可得出22225(2)(2)a b ab a b a b ++=++(2)根据题中条件可以得到222290a b +=,18ab =,恒等变形即得2()81a b +=,结合几何意义即可得到9a b +=,从而求得结论.【详解】(1)解:观察图形,矩形纸板的面积可以用裁剪成的九张小纸板面积的和表示为22225a b ab ++;根据图形可知用两边的乘积表示为(2)(2)a b a b ++;根据等面积法即可得出22225(2)(2)a b ab a b a b ++=++;故答案为:22225a b ab ++, (2)(2)a b a b ++,22225(2)(2)a b ab a b a b ++=++;(2)解:根据题意可得:222290a b +=,18ab =,∴2245a b +=,236ab =,即222453681a b ab ++=+=,∴2()81a b +=,∵0a >,0b >,∴9a b +=,∴矩形纸板内所有裁剪线(虚线)的长度之和为6()6954(cm)a b +=⨯=.【点睛】本题考查看图写代数式以及因式分解得实际应用,看懂图形,读懂题意,利用因式分解恒等变形得到要求的量是解决问题的关键.41.(1)275,572;71,17(2)()()()()10100101001010a b b a b a a a b b b a ++++=++++⎡⎤⎡⎤⎣⎦⎣⎦【分析】(1)根据题意可得三位数中间的数等于两数的和,根据这一规律然后进行填空,从而得出答案;(2)根据题意得出一般性的规律,然后根据多项式的计算法则进行说明理由.(1)根据题意:52×275=572×25;71×187=781×17;故答案为:275,572,71,17;(2)“数字对称等式”一般规律的式子为:(10a +b )×[100b +10(a +b )+a ]=[100a +10(a +b )+b ]×(10b +a ).证明如下:∵左边两位数的十位数字为a ,个位数字为b ,∴左边的两位数是10a +b ,三位数是100b +10(a +b )+a ,右边的两位数是10b +a ,三位数是100a +10(a +b )+b ,∴左边=(10a +b )×[100b +10(a +b )+a ]=(10a +b )(100b +10a +10b +a )=(10a +b )(110b +11a )=11(10a +b )(10b +a ),右边=[100a +10(a +b )+b ]×(10b +a )=(100a +10a +10b +b )(10b +a )=(110a +11b )(10b +a )=11(10a +b )(10b +a ),∴左边=右边.∴“数字对称等式”一般规律的式子为:(10a +b )×[100b +10(a +b )+a ]=[100a +10(a +b )+b ]×(10b +a ).【点睛】本题是对数字变化规律的考查,同时考查了列代数式,去括号,整式的加减运算,因式分解的应用,根据已知信息,掌握利用左边的两位数的十位数字与个位数字变化得到其它的三个数是解题的关键.42.(1)0(1)任务一:①以上解题过程中,第一步进行整式乘法用到的是完全平方公式;②第三步进行因式分解用到的方法是提公因式法;任务二:小明因式分解的结果不彻底,22a b -还可以进行因式分解;任务三:原式[(3)(3)][(3)(3)]a b a b a b a b =++++-+(44)(22)a b a b =+-=8()()a b a b +-故答案为:任务一:①完全平方;②提公因式;任务二:因式分解不彻底(或a 2−b 2还可以进行因式分解);任务三:8(a +b )(a −b ).。
中考数学考前满分计划:整式、分式、二次根式、因式分解(含解析)
○热○点○考○点○解○读一、整式1.单项式与多项式单独的一个数或一个字母也是单项式.2.合并同类项合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变,例如:合并同类项3x 2y 和4x 2y 为3x 2y +4x 2y =(3+4)x 2y =7x 2y .3.整式的运算(1)整式的加减运算实际就是合并同类项.(2)整式的乘法:()()a b m n am an bm bn ++=+++.(3)整式的除法:单项式除以单项式时,把系数、相同字母的幂分别相除,作为商的因式,对于只在被除式中含有的字母,则照抄下来;多项式除以单项式时,用多项式的每一项分别除以单项式,再把所得的商相加.(4)乘法公式①平方差公式:22()()a b a b a b +-=-.②完全平方公式:222()2a b a ab b ±=±+.4.幂的运算性质(1)同底数幂相乘法则:m n m n a a a +⋅=(,m n 为整数,0a ≠)(2)幂的乘方法则:()m n mn a a =(,m n 为整数,0a ≠)(3)积的乘方法则:()n n n ab a b =(n 为整数,0ab ≠)整式、分式、二次根式、因式分解常识必背语言叙述:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.5.用十字相乘法分解因式利用十字相乘法分解因式,实质上是逆用(ax +b )(cx +d )乘法法则.它的一般规律是:(1)对于二次项系数为1的二次三项式,如果能把常数项q 分解成两个因数a ,b 的积,并且a +b 为一次项系数p ,那么它就可以运用公式(2)对于二次项系数不是1的二次三项式(a ,b ,c 都是整数且a ≠0)来说,如果存在四个整数,使,,且,那么.一个式子是分式需满足的三个条件:q px x ++2))(()(2b x a x ab x b a x ++=+++c bx ax ++22121,,,c c a a a a a =⋅21c c c =⋅21b c a c a =+1221c bx ax ++2))(()(2211211221221c x a c x a c c x c a c a x a a ++=+++=易错易混2.约分(1)分式约分时,要注意不注意符号导致的错误.(2)要注意约分不彻底导致的错误.(3)约分时需注意分式的分子、分母都是乘积形式时才能进行约分;分子、分母是多项式时,通常先将分子、分母分解因式,再约分.(4)约分的结果是整式或最简分式.(5)分式的约分是恒等变形,约分前后分式的值不变.3.分解因式要彻底.方法必知1.同类项(1)几个项是不是同类项,一看所含字母是否完全相同.二看相同字母的指数是否相同.“二同”缺一不可.(2)同类项与单项式的系数无关,与字母顺序无关,几个常数项也是同类项.(3)同类项不一定是两项,也可以是三项,四项……但至少为两项.2.合并同类项(1)合并同类项时,注意合并的只是系数,字母部分不变,不要漏掉.(2)合并同类项时,注意各项系数的符号,尤其系数为负数时,不要遗漏负号,同时不要丢项.(3)如果两个同类项的系数互为相反数,合并同类项的结果为0.3.整式的加减的最后结果的要求:(1)不能含有同类项,即要合并到不能再合并为止;(2)一般按照某一字母的降幂或升幂排列;(3)不能出现带分数,带分数必须要化为假分数.4.整式的化简求值(1)化简求值题一般先按整式的运算法则进行化简,然后再代入求值.(2)在求整式的值时,代入负数时应用括号括起来,作为底数的分数也应用括号括起来5.约分时需要注意的问题:(1)如果分子、分母中至少有一个是多顶式,就应先分解因式,然后找出分子、分母的公因式,再约分.(2)注意发现分式的分子和分母的一些隐含的公因式,如a﹣5与5﹣a表面虽不相同,但通过提取“﹣”可发现含有公因式(a﹣5).(3)当分式的分子或分母的系数是负数时,可利用分式的基本性质,把负号提到分式的前面.通分时确定了分母乘什么,分子也必须随之乘什么,要防止只对分母变形而忽略了分子,导致变形前后分式的值发生变化而出错.6.分式的混合运算,关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算乘除,最后算加减,有括号要先算括号里面的,在运算过程中要注意正确地运用运算法则,灵活地运用运算律,使运算尽量简便.7.因式分解(1)因式分解是针对多项式而言的,一个单项式本身就是数与字母的积,不需要再分解因式;(2)因式分解的结果是整式的积的形式,积中几个相同因式的积要写成幂的形式;(3)因式分解必须分解到每一个因式都不能再分解为止;(4)因式分解与整式乘法是方向相反的变形,二者不是互为逆运算.因式分解是一种恒等变形,而整式乘法是一种运算.8.提公因式法(1)多项式的公因式提取要彻底,当一个多项式提取公因式后,剩下的另一个因式中不能再有公因式.(2)提公因式后括号内的项数应与原多项式的项数一样.(3)若多项式首项系数为负数时,通常要提出负因数.9.十字相乘法这类式子在许多问题中经常出现,其特点是:(1)二次项系数是1;(2)常数项是两个数之积;(3)一次项系数是常数项的两个因数之和.◇以◇练◇带◇学1.(鞍山)下列运算正确的是( )A .222(4)8ab a b =B .22423a a a +=C .642a a a ÷=D .222()a b a b +=+2.(攀枝花)我们可以利用图形中的面积关系来解释很多代数恒等式.给出以下4组图形及相应的代数恒等式:其中,图形的面积关系能正确解释相应的代数恒等式的有( )A .1个B .2个C .3个D .4个3.(邵阳)下列计算正确的是( )A .623a a a =B .235()a a =C .22()()a ba ba b a b +=+++D .01()13-=4.(内蒙古)下列运算正确的是( )A+=B .236()a a -=C .11223a a a+=D .21133b ab a b÷=5.(成都)若23320ab b --=,则代数式2222(1)ab b a ba a b---÷的值为 .6.x 的取值范围是 .7.(扬州)分解因式:24xy x -= .8.(内蒙古)分解因式:34x x -= .9.(盐城)先化简,再求值:2(3)(3)(3)a b a b a b +++-,其中2a =,1b =-.10.(滨州)先化简,再求值:22421()244a a a a a a a a -+-÷---+,其中a 满足211(6cos6004a a --⋅+︒=.1.(官渡区校级模拟)按一定规律排列的式子:a ,32a ,54a ,78a ,916a ,⋯,则第2024个式子为( )A .202320252a B .20244047(21)a -C .202340472a D .202440492a 2.(济南一模)下列运算正确的是( )A .22a b ab+=B .2222a b a b a b-=C .238()a a =D .84222a a a ÷=3.(金山区二模)单项式22a b -的系数和次数分别是( )A .2-和2B .2-和3C .2和2D .2和34.(龙岗区模拟)下列计算正确的是( )A .236a a a ⋅=B .2323a a a +=C .2234(3)218ab ab a b -⋅=-D .326(2)3ab ab b ÷-=-5.(中山市校级一模)下列各式从左到右的变形,因式分解正确的是( )A .2()a a b a ab+=+B .23()3a ab a a b +-=+-C .22282(4)ab a a b -=-D .228(2)(4)a a a a --=+-6.(钱塘区一模)下列因式分解正确的是( )A .241(41)(41)a a a -=+-B .225(5)(5)a a a -+=+-C .22269(3)a ab b a b --=-D .22816(8)a a a -+=-7.(新乡一模)化简2422a a a ---的结果是( )A .2a +B .2a -C .12a +D .12a -8.(东莞市校级模拟)分式23x x --的值为0时,x 的值是( )A .0x =B .2x =C .3x =D .2x =或3x =9.(碑林区校级一模)先化简,再求值:2[(2)(2)(2)](4)a b b a b a a --+-÷,其中12a =,2b =.10.(龙湖区校级一模)先化简,再求值:2344(111x x x x -+-÷++,其中3x =.1.按一定规律排列的单项式:3x ,54x -,79x ,916x -,⋯,第n 个单项式是( )A .1221(1)n n n x ---B .1221(1)n n n x ++-C .1221(1)(1)n n n x ---+D .1221(1)(1)n n n x ++-+2.下列运算正确的是( )A .22(4)16x x -=-B .325x y xy +=C .432x x x ÷=D .2224()xy x y =3.下列语句正确的是( )A .5-不是单项式B .a 可以表示负数C .25a b -的系数是5,次数是2D .221a ab ++是四次三项式4.下列因式分解正确的一项是( )A .222()x y x y +=+B .24(2)(2)x x x -=+-C .2221(1)x x x --=-D .242(2)xy x xy x +=+5.要使分式11x x -+有意义,则x 应满足的条件是( )A .1x ≠-B .1x ≠C .1x <-D .1x >-6.下列二次根式中,属于最简二次根式的是( )AB C D7.计算:0|1tan 60|(2024-︒+.8.先化简,再求值:2344(111x x x x -+-÷++,其中3x =.9.先化简,再求值:2(2)(4)a a a -++,其中a =.10.先化简,再求值:(2)(2)4()a b a b a a b -+--,其中2a =-,1b =.1.【答案】C【分析】根据积的乘方,合并同类项,同底数幂的除法法则,完全平方公式进行计算,逐一判断即可解答.【解答】解:A 、222(4)16ab a b =,故A 不符合题意;B 、22223a a a +=,故B 不符合题意;C 、642a a a ÷=,故C 符合题意;D 、222()2a b a ab b +=++,故D 不符合题意;故选:C .2.【答案】D【分析】观察各个图形及相应的代数恒等式即可得到答案.【解答】解:图形的面积关系能正确解释相应的代数恒等式的有①②③④,故选:D .3.【答案】D【分析】分别根据分式的加减法则、幂的乘方与积的乘方法则、零指数幂的运算法则对各选项进行逐一计算即可.【解答】解:A 、633a a a=,原计算错误,不符合题意;B 、236()a a =,原计算错误,不符合题意;C 、221()()a b a b a b a b+=+++,原计算错误,不符合题意;D 、01()13-=,正确,符合题意.故选:D .4.【答案】D【分析】根据二次根式的加法、幂的乘法与积的乘方以及分式的运算的计算方法解题即可.【解答】解:A +=≠B .2366()a a a -=-≠,故该选项不正确,不符合题意;C .11123222223a a a a a a+=+=≠,故该选项不正确,不符合题意;21131.333b a D ab a ab b b ÷=⨯=,故该选项正确,符合题意;故选:D .5.【答案】23.【分析】先根据分式的减法法则进行计算,再根据分式的除法法则把除法变成乘法,算乘法,最后代入求出答案即可.【解答】解:2222(1ab b a b a a b---÷2222(2)a ab b a b a a b--=⋅-222()a b a b a a b-=⋅-()b a b =-2ab b =-,23320ab b --= ,2332ab b ∴-=,223ab b ∴-=,∴原式23=.故答案为:23.6.【答案】3x >.【分析】根据记二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得:30x ->,解得:3x >,故答案为:3x >.7.【分析】原式提取x ,再利用平方差公式分解即可.【解答】解:原式2(4)(2)(2)x y x y y =-=+-,故答案为:(2)(2)x y y +-8.【分析】应先提取公因式x ,再对余下的多项式利用平方差公式继续分解.【解答】解:34x x -,2(4)x x =-,(2)(2)x x x =+-.故答案为:(2)(2)x x x +-.9.【分析】依据题意,利用平方差公式和完全平方公式将原式进行化简,再将a ,b 的值代入计算即可求解.【解答】解:2(3)(3)(3)a b a b a b +++-2222699a ab b a b =+++-226a ab =+.当2a =,1b =-时,原式22262(1)=⨯+⨯⨯-812=-4=-.10.【答案】244a a -+,1.【分析】将括号里面通分运算,再利用分式的混合运算法则计算,结合负整数指数幂的性质、特殊角的三角函数值化简,整体代入得出答案.【解答】解:原式2421[(2)(2)a a a a a a a -+-=÷---224(2)(2)(1)[](2)(2)a a a a a a a a a a -+--=÷---22244(2)a a a a a a a ---+=÷-24(2)4a a a a a --=⋅-2(2)a =-244a a =-+, 211()6cos6004a a --⋅+︒=,2430a a ∴-+=,243a a ∴-=-,∴原式341=-+=.1.【答案】C【分析】由题目可得式子的一般性规律:第n 个式子为:1212n n a --⋅,当2024n =时,第2024个式子为:202340472a ⋅,即可得出答案.【解答】解:式子的系数为1,2,4,8,16, ,则第n 个式子的系数为:12n -;式子的指数为1,3,5,7,9, ,则第n 个式子的指数为:21n -,∴第n 个式子为:1212n n a --⋅,当2024n =时,第2024个式子为:202340472a ⋅,故选:C .2.【答案】B【分析】根据合并同类项法则、幂的乘方法则、单项式除以单项式法则分别判断即可.【解答】解:A 、2a 与b 不是同类项,不能合并,故此选项不符合题意;B 、2222a b a b a b -=,故此选项符合题意;C 、236()a a =,故此选项不符合题意;D 、84422a a a ÷=,故此选项不符合题意;故选:B.3.【答案】B【分析】数字与字母的积叫做单项式,其中数字因数叫做单项式的系数,所有字母的指数之和叫做单项式的次数;由此计算即可.【解答】解:单项式22a b -的系数和次数分别是2-和3,故选:B .4.【答案】D【分析】根据整式相关运算法则逐项判断即可.【解答】解:235a a a ⋅=,故A 错误,不符合题意;a 与22a 不能合并,故B 错误,不符合题意;2234(3)218ab ab a b -⋅=,故C 错误,不符合题意;326(2)3ab ab b ÷-=-,故D 正确,符合题意;故选:D .5.【答案】D【分析】根据因式分解的定义逐个判断即可.【解答】解:A .从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B .从左到右的变形不属于因式分解,故本选项不符合题意;C .22282(4)2(2)(2)ab a a b a b b -=-=+-,分解不彻底,从左到右的变形不属于因式分解,故本选项不符合题意;D .从左到右的变形属于因式分解,故本选项符合题意.故选:D .6.【答案】B【分析】根据平方差公式和完全平方公式逐个判断即可.【解答】解:A .241(21)(21)a a a -=+-,故本选项不符合题意;B .225(5)(5)a a a -+=+-,故本选项符合题意;C .22269(3)a ab b a b -+=-,故本选项不符合题意;D .22816(4)a a a -+=-,故本选项不符合题意;故选:B .7.【答案】A【分析】根据分式的加减法运算法则计算即可.【解答】解:2244(2)(2)22222a a a a a a a a a --+-===+----,故选:A .8.【分析】分式的值为零时:分子等于零且分母不为零.据此求得x 的值.【解答】解:依题意得:20x -=,解得2x =.经检验当2x =时,分母30x -≠,符合题意.故选:B .9.【答案】2a b -,1-.【分析】先利用平方差公式和完全平方公式进行计算,再根据多项式除以单项式的法则进行计算,最后把12a =,2b =代入计算即可.【解答】解:原式2222[44(4)](4)a ab b b a a =-+--÷2222(444)(4)a ab b b a a =-+-+÷2(84)(4)a ab a =-÷2a b =-,当12a =,2b =时,原式12212=⨯-=-.10.【答案】12x -,1.【分析】先算小括号里面的,然后算括号外面的,最后代入求值.【解答】解:原式213(2)()111x x x x x +-=-÷+++2211(2)x x x x -+=⋅+-12x =-,当3x =时,原式1132==-.1.【答案】B【分析】根据单项式的数字系数的符号,数字系数和指数的变化规律即可得出结果.【解答】解:在上述单项式中,可以发现:奇数项的数字系数的符号为正,偶数项的数字系数的符号为负,∴可得:第n 个单项式的数字系数的符号为:1(1)n --或1(1)n +-,单项式的数字系数为:1,4,9,16, ,∴第n 个单项式的数字系数为:2n ,单项式的指数为:3,5,7,9, ,∴第n 个单项式的指数为:21n +,∴第n 个单项式是1221(1)n n n x ++-,故选:B .2.【答案】D【分析】根据整式的运算法则逐项分析判断即可.【解答】解:A 、22(4)816x x x -=-+,原计算错误,不符合题意;B 、3x 与2y 不是同类项,不能合并,故原计算错误,不符合题意;C 、43x x x ÷=,原计算错误不符合题意;D 、2224()xy x y =,正确,符合题意;故选:D .3.【答案】B【分析】根据单项式的定义可判断A ,根据字母表示数的意义可判断B ,根据单项式系数和次数的定义可判断C ,根据多项式的项和次数的定义可判断D ,进而可得答案.【解答】解:A 、5-是单项式,故本选项错误,不符合题意;B 、a可以表示负数,故本选项正确,符合题意;C 、25a b -的系数是5-,次数是3,故本选项错误,不符合题意;D 、221a ab ++是二次三项式,故本选项错误,不符合题意;故选:B .4.【答案】B【分析】根据因式分解的定义进行判断即可.【解答】解:A 、222()x y x y +≠+不符合因式分解的定义,故本选项不符合题意;B 、24(2)(2)x x x -=+-符合因式分解的定义,且因式分解正确,故本选项符合题意;C 、2221(1)x x x --≠-,不符合因式分解的定义,故本选项不符合题意;D 、242(2)xy x x y +=+,原因式分解错误,故本选项不符合题意;故选:B .5.【分析】先根据分式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【解答】解:由题意,得10x +≠,解得1x ≠-,故选:A .6.【分析】直接利用最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式,进而得出答案.【解答】解:A =,不是最简二次根式,故此选项错误;B ,是最简二次根式,故此选项正确;C 2=,不是最简二次根式,故此选项错误;D =故选:B .7..【分析】根据二次根式的混合运算法则和零指数幂与特殊的三角函数值等知识点计算即可.【解答】解:原式11=---+11=-+=.8.【答案】12x -,1.【分析】先算小括号里面的,然后算括号外面的,最后代入求值.【解答】解:原式213(2)()111x x x x x +-=-÷+++2211(2)x x x x -+=⋅+-12x =-,当3x =时,原式1132==-.9.【答案】224a +,原式8=.【分析】先利用完全平方公式,单项式乘多项式的法则进行计算,然后把a 的值代入化简后的式子进行计算,即可解答.【解答】解:2(2)(4)a a a -++22444a a a a=-+++224a =+,当a =224224448=⨯+=⨯+=+=.10.【答案】24ab b -,原式9=-.【分析】先利用平方差公式,单项式乘多项式的法则进行计算,然后把a ,b 的值代入化简后的式子进行计算,即可解答.【解答】解:(2)(2)4()a b a b a a b -+--222444a b a ab=--+24ab b =-,当2a =-,1b =时,原式24(2)11819=⨯-⨯-=--=-.。
中考数学因式分解的九种方法
中考数学因式分解的九种方法2020中考数学因式分解的九种方法一、运用公式法我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a^2-b^2=(a+b)(a-b)a^2+2ab+b^2=(a+b)^2a^2-2ab+b^2=(a-b)^2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
二、平方差公式1、式子:a^2-b^2=(a+b)(a-b)2、语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
三、因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
四、完全平方公式1、把乘法公式(a+b)^2=a^2+2ab+b^2 和 (a-b)^2=a^2-2ab+b^2反过来,就可以得到:a^2+2ab+b^2=(a+b)^2 和 a^2-2ab+b^2=(a-b)^2,这两个公式叫完全平方公式。
这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a^2+2ab+b^2和a^2-2ab+b^2这样的式子叫完全平方式。
2、完全平方式的形式和特点:①项数:三项;②有两项是两个数的的平方和,这两项的符号相同;③有一项是这两个数的积的两倍。
3、当多项式中有公因式时,应该先提出公因式,再用公式分解。
4、完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
5、分解因式,必须分解到每一个多项式因式都不能再分解为止。
五、分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。
如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式。
原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义。
初中生因式分解
因式分解是将一个多项式表达为几个多项式的乘积的过程。
对于初中生来说,通常需要掌握以下几种基本的因式分解方法:
1. 提公因式法:如果多项式的各项中都有公共的因子,可以提取出来,使得原多项式变为公因子与剩余部分的乘积。
例如:ax + ay = a(x + y)
2. 分组分解法:将多项式的各项分成几组,每组提出公因子,再将提取公因子后的表达式进行合并。
例如:ax + ay + bx + by = a(x + y) + b(x + y) = (a + b)(x + y)
3. 完全平方公式法:利用完全平方公式(a + b)^2 = a^2 + 2ab + b^2和(a - b)^2 = a^2 - 2ab + b^2进行因式分解。
例如:x^2 + 6x + 9 = (x + 3)^2
4. 差平方公式法:利用差平方公式a^2 - b^2 = (a + b)(a - b)进行因式分解。
例如:x^2 - 9 = (x + 3)(x - 3)
5. 十字相乘法:适用于形如ax^2 + bx + c的三项式的因式分解,其中a、b、c是常数。
例如:x^2 + 5x + 6 = (x + 2)(x + 3)
6. 配方法:通过添加和减去同一个数,将二次项和一次项的部分转换为完全平方的形式。
例如:x^2 + 4x = x^2 + 4x + 4 - 4 = (x + 2)^2 - 4
7. 其他特殊公式:如立方和公式、立方差公式等,用于特定形式的多项式因式分解。
因式分解是初中数学中的一个重要知识点,它不仅能够帮助简化多项式的表达,还是解决方程、不等式等问题的重要工具。
中考数学常考的知识点:因式分解
中考数学常考的知识点:因式分解(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、合同协议、策划方案、规章制度、演讲致辞、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as workplace documents, contract agreements, planning plans, rules and regulations, speeches, emergency plans, experiences, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!中考数学常考的知识点:因式分解中考数学常考的知识点:因式分解在日常过程学习中,是不是听到知识点,就立刻清醒了?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。
专题03 因式分解(课件)2023年中考数学一轮复习(全国通用)
知识点2 :因式分解的方法与步骤
知识点梳理
1. 一般方法: (1)提公因式法: 如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式 与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法. 用字母表示:ma+mb+mc= m(a+b+c) . 公因式的确定:取各项系数的最大公约数,取各项相同的因式及其最低次幂. ①定系数:公因式的系数是多项式各项系数的最大公约数. ②定字母:字母取多项式各项中都含有的相同的字母. ③定指数:相同字母的指数取各项中最小的一个,即字母的最低次数.
典型例题
知识点1 :因式分解的概念
【例2】(2020•河北3/26)对于①x-3xy = x(1-3y),②(x+3)(x-1) = x2+2x-3,从左
到右的变形,表述正确的是( )
A.都是因式分解
B.都是乘法运算
C.①是因式分解,②是乘法运算
D.①是乘法运算,②是因式分解
知识点1 :因式分解的概念
典型例题
知识点2 :因式分解的方法与步骤
几种方法的综合运用
【例14】(2分)(2021•北京10/28)分解因式:5x2﹣5y2=
.
【考点】提公因式法与公式法的综合运用. 【分析】提公因式后再利用平方差公式即可. 【解答】解:原式=5(x2﹣y2)=5(x+y)(x﹣y), 故答案为:5(x+y)(x﹣y). 【点评】本题考查提公因式法、公式法分解因式,掌握平方差公式的结构特征是 正确应用的前提.
【答案】C.
典型例题
知识点2 :因式分解的方法与步骤
利用十字相乘法分解因式
【例10】(2022•内江)分解因式:a4-3a2-4=
.
2024年九年级中考数学压轴题锦囊妙计—因式分解(含答案)
因式分解定义:把一个整式写成几个整式乘积的形式,称为因式分解。
在因式分解中,通常要求每个因式都是既约多项式(不可约多项式),这样的因式称为质因式。
因式分解常用的方法有提公因式法,公式法,十字相乘法,分组分解法,换元法,待定系数法等。
◆一、提公因式法:◆二、公式法①平方差公式:②完全平方和公式:③完全平方差公式:④立方和公式:⑤立方差公式:⑥完全立方和公式:⑦完全立方差公式:⑧三项平方和公式:⑨三项立方公式:◆三、分组分解法有一些整式(如:)既没有公因式可提,也不能运用公式直接分解,这样的式子需要采用分组分解法。
(一)分组后能直接提公因式)(c b a m mc mb ma ++=++))((22b a b a b a -+=-222)(2b a b ab a +=++222)(2b a b ab a -=+-))((2233b ab a b a b a +-+=+))((2233b ab a b a b a ++-=-33223)(33b a b ab b a a +=+++33223)(33b a b ab b a a -=-+-2222)(222c b a ac bc ab c b a ++=+++++))((3222333ac bc ab c b a c b a abc c b a ---++++=-++bn bm an am +++例1、分解因式:解:原式== =例2、分解因式:解:原式== =(二)分组后能直接运用公式例3、分解因式:解:原式== =例4、分解因式:解:原式== = 【举一反三】bnbm an am +++)()(bn bm an am +++)()(n m b n m a +++))((b a n m ++bxby ay ax -+-5102)5()102(bx by ay ax -+-)5()5(2y x b y x a ---)2)(5(b a y x --ayax y x ++-22)()(22ay ax y x ++-)())((y x a y x y x ++-+))((a y x y x +-+2222c b ab a -+-222)2(c b ab a -+-22)(c b a --))((c b a c b a --+-1、2、3、4、5、6、7、3223yxyyxx--+baaxbxbxax-+-+-22181696222-+-++aayxyxabbaba4912622-++-92234-+-aaaybxbyaxa222244+--222yyzxzxyx++--8、9、10、11、12、◆四、十字相乘法(一)二次项系数为1的二次三项式直接利用公式——进行分解。
【鲁教版】中考数学一轮分类复习六《因式分解》教案
【鲁教版】中考数学一轮分类复习六《因式分解》教案一. 教材分析《因式分解》是初中数学的重要内容,也是中考的热点考点。
鲁教版教材在这一部分主要让学生掌握因式分解的基本方法,包括提公因式法、公式法、分组分解法等。
通过这些方法的学习,让学生能够熟练地对多项式进行因式分解,从而解决实际问题。
二. 学情分析学生在学习因式分解之前,已经掌握了整式的运算、方程的解法等基础知识。
但因式分解作为一种解决问题的方法,对学生来说是全新的,需要一定的抽象思维能力。
因此,在教学过程中,要关注学生的学习兴趣,激发他们的探究欲望,引导学生逐步理解和掌握因式分解的方法。
三. 教学目标1.知识与技能:让学生掌握因式分解的基本方法,能对多项式进行因式分解。
2.过程与方法:培养学生运用因式分解解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们的抽象思维能力。
四. 教学重难点1.重点:因式分解的基本方法。
2.难点:因式分解过程中的策略选择和运用。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解因式分解的意义。
2.启发式教学法:引导学生主动探究,发现因式分解的方法。
3.小组合作学习:让学生在讨论中互相启发,共同提高。
六. 教学准备1.教具:多媒体课件、黑板、粉笔。
2.学具:学生用书、练习本、文具。
七. 教学过程1.导入(5分钟)利用生活实例,如分配律的应用,引导学生思考如何将一个多项式分解成几个整式的乘积。
让学生感受到因式分解的实际意义和作用。
2.呈现(10分钟)展示因式分解的定义和基本方法,如提公因式法、公式法、分组分解法等。
通过示例,让学生初步了解因式分解的方法和步骤。
3.操练(10分钟)让学生独立完成教材中的练习题,教师巡回指导。
学生在实践中运用因式分解的方法,解决实际问题。
4.巩固(10分钟)选取一些典型的练习题,让学生分组讨论,共同探究解题策略。
教师引导学生总结因式分解的方法和技巧。
5.拓展(10分钟)让学生思考如何将因式分解的方法应用到其他数学领域,如解方程、求最值等。
专题04 因式分解篇(原卷版)-2023年中考数学必考考点总结
知识回顾专题04因式分解2023年中考数学必考考点总结考点一:因式分解1.因式分解的概念:把一个多项式写成几个整式的乘法的形式,这种变形叫做因式分解。
2.因式分解的方法:①提公因式法:()c b a m cm bm am ++=++公因式的确定:公因式=各项系数的最小公倍数×相同字母(式子)的最低次幂。
若多项式首项是负的,则公因式为负。
用各项除以公因式得到另一个式子。
②公式法:平方差公式:()()b a b a b a -+=-22。
完全平方公式:()2222b a b ab a ±=+±③十字相乘法:利用十字交叉线将二次三项式进行因式分解的方法叫做十字相乘法。
对于一个二次三项式c bx ax ++2,若满足21a a a ⋅=,21c c c ⋅=,且b c a c a =+1221,那么二次三项式c bx ax ++2可以分解为:()()22112c x a c x a c bx ax ++=++。
当1=a 时,二次三项式是c bx x ++2,此时只需21c c c ⋅=,且b c c =+21,则c bx x ++2可分解为:()()212c x c x c bx x ++=++。
④分组分解法:对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解--分组分解法.即先对题目进行分组,然后再分解因式。
(分组分解法一般针对四项及以上的多项式)3.因式分解的具体步骤:(1)先观察多项式是否有公因式,若有,则提取公因式。
(2)观察多项式的项数,两项,则考虑平方差公式;三项则考虑完全平方式与十字相乘法。
四项及以上则考虑分组分解。
(3)检查因式分解是否分解完全。
必须分解到不能分解位置。
再无特比说明的情况下,任何因式分解的题目都必须在有理数范围内进行分解。
微专题1.(2022•济宁)下面各式从左到右的变形,属于因式分解的是()A.x2﹣x﹣1=x(x﹣1)﹣1B.x2﹣1=(x﹣1)2C.x2﹣x﹣6=(x﹣3)(x+2)D.x(x﹣1)=x2﹣x2.(2022•永州)下列因式分解正确的是()A.ax+ay=a(x+y)+1B.3a+3b=3(a+b)C.a2+4a+4=(a+4)2D.a2+b=a(a+b)3.(2022•湘西州)因式分解:m2+3m=.4.(2022•广州)分解因式:3a2﹣21ab=.5.(2022•常州)分解因式:x2y+xy2=.6.(2022•柳州)把多项式a2+2a分解因式得()A.a(a+2)B.a(a﹣2)C.(a+2)2D.(a+2)(a﹣2)7.(2022•菏泽)分解因式:x2﹣9y2=.8.(2022•烟台)把x2﹣4因式分解为.9.(2022•绥化)因式分解:(m+n)2﹣6(m+n)+9=.10.(2022•苏州)已知x+y=4,x﹣y=6,则x2﹣y2=.11.(2022•衡阳)因式分解:x2+2x+1=.12.(2022•济南)因式分解:a2+4a+4=.13.(2022•宁波)分解因式:x2﹣2x+1=.14.(2022•河池)多项式x2﹣4x+4因式分解的结果是()A.x(x﹣4)+4B.(x+2)(x﹣2)C.(x+2)2D.(x﹣2)215.(2022•荆门)对于任意实数a,b,a3+b3=(a+b)(a2﹣ab+b2)恒成立,则下列关系式正确的是()A.a3﹣b3=(a﹣b)(a2+ab+b2)B.a3﹣b3=(a+b)(a2+ab+b2)C.a3﹣b3=(a﹣b)(a2﹣ab+b2)D.a3﹣b3=(a+b)(a2+ab﹣b2)16.(2022•绵阳)因式分解:3x3﹣12xy2=.17.(2022•丹东)因式分解:2a2+4a+2=.18.(2022•辽宁)分解因式:3x2y﹣3y=.19.(2022•恩施州)因式分解:a3﹣6a2+9a=.20.(2022•黔东南州)分解因式:2022x2﹣4044x+2022=.21.(2022•常德)分解因式:x3﹣9xy2=.22.(2022•怀化)因式分解:x2﹣x4=.23.(2022•台湾)多项式39x2+5x﹣14可因式分解成(3x+a)(bx+c),其中a、b、c均为整数,求a+2c之值为何?()A.﹣12B.﹣3C.3D.1224.(2022•内江)分解因式:a4﹣3a2﹣4=.25.(2022•广安)已知a+b=1,则代数式a2﹣b2+2b+9的值为.26.(2022•黔西南州)已知ab=2,a+b=3,求a2b+ab2的值是.。
初中数学因式分解方法汇总(共12种,中考必背,全掌握计算题不再怕)
初中数学因式分解方法汇总1提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.例1、分解因式x -2x -xx -2x -x=x(x -2x-1)2 应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式.例2、分解因式a +4ab+4ba +4ab+4b =(a+2b)3分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5mm +5n-mn-5m= m -5m -mn+5n= (m -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4 十字相乘法对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x -19x-6分析:1 -37 22-21=-197x -19x-6=(7x+2)(x-3)5配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解.例5、分解因式x +3x-40解x +3x-40=x +3x+( ) -( ) -40=(x+ ) -( )=(x+ + )(x+ - )=(x+8)(x-5)6拆、添项法可以把多项式拆成若干部分,再用进行因式分解.例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)7换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来.例7、分解因式2x -x -6x -x+22x -x -6x -x+2=2(x +1)-x(x +1)-6x=x [2(x + )-(x+ )-6令y=x+ ,x [2(x + )-(x+ )-6= x [2(y -2)-y-6]= x (2y -y-10)=x (y+2)(2y-5)=x (x+ +2)(2x+ -5)= (x +2x+1) (2x -5x+2)=(x+1) (2x-1)(x-2)8求根法令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )例8、分解因式2x +7x -2x -13x+6令f(x)=2x +7x -2x -13x+6=0通过综合除法可知,f(x)=0根为 ,-3,-2,1则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)9图象法令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )例9、因式分解x +2x -5x-6令y= x +2x -5x-6作出其图象,见右图,与x轴交点为-3,-1,2则x +2x -5x-6=(x+1)(x+3)(x-2)10 主元法先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解.例10、分解因式a (b-c)+b (c-a)+c (a-b)分析:此题可选定a为主元,将其按次数从高到低排列a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b)=(b-c) [a -a(b+c)+bc]=(b-c)(a-b)(a-c)11利用特殊值法将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式.例11、分解因式x +9x +23x+15令x=2,则x +9x +23x+15=8+36+46+15=105将105分解成3个质因数的积,即105=3×5×7注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值则x +9x +23x+15=(x+1)(x+3)(x+5)12待定系数法首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解.例12、分解因式x -x -5x -6x-4分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式.设x -x -5x -6x-4=(x +ax+b)(x +cx+d)= x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd所以解得则x -x -5x -6x-4 =(x +x+1)(x -2x-4)。
中考数学- 因式分解 (添拆项与最值)
第八讲 因式分解(添拆项与最值)知识点回顾:1、因式分解:因式分解就是把一个多项式变为几个整式的积的形式。
2、因式分解的方法:(1)提公因式法,即ma+mb+mc=m(a+b+c); (2)运用公式法,平方差公式:()()b a b a b a -+=-22;完全平方公式:222b ab a ++=()2b a +和)(b a b ab a -=+-2222(3)十字相乘法:对于二次三项式2x Px q ++,若能找到两个数a 、b ,使,,a b p a b q +=⎧⎨⋅=⎩则就有22()()()x Px q x a b x ab x a x b ++=+++=++. 注:若q 为正,则a ,b 同号;若q 为负,则a ,b 异号; 立方和差公式: 典型例题:例1(1)计算 29982+2998×4+4= 。
(2)若442-+x x 的值为0,则51232-+x x 的值是________。
例2:分解因式:22288a axy a y x -+ 4a 2(x -y )+9b 2(y -x )例3:已知a –b = 1 ,2522=+b a 求ab 和a+b 的值。
例4 代数式2x 2+4x+5有最 值,是 ;﹣x 2+3x 有最 值,是 例5 题目:分解因式:x 2﹣120x +3456.分析:由于常数项数值较大,则常采用将x 2﹣120x 变形为差的平方的形式进行分解,这样简便易行.(1)x 2﹣140x +4875 (2)4x 2﹣4x ﹣575.三、强化训练:1、已知x +y =6,xy =4,则x 2y +xy 2的值为 .2、分解因式:(2a -b )2-(a +b )2 -3ma 3+6ma 2-3ma a 2(m -n )+b 2(n -m )4416n m - (8)4224817216b b a a +-4、已知:a=2999,b=2995,求655222-+-+-b a b ab a 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型例题解析
【例2】 因式分解:-3an-1+12an-12an+1 (n>1的正整数). 解:原式=-3an-1[1-4an-(n-1)+4a(n+1)-(n-1)] =-3an-1(1-4a+4a2) =-3an-1(2a-1)2 【例3】 因式分解: (1)m3+2m2-9m-18; 解:(1) 原式=(m3+2m2)-(9m+18) =m2(m+2)-9(m+2) =(m+2)(m2-9) =(m+2)(m-3)(m+3)
课时训练
1. 分解因式:a2-25= 2. 分解因式:x3y2-4x= 3. 分解因式:xy2-x2y= . .
(a+5)(a-5)
x(xy+2)(xy-2) . xy(y-x)
4. 分解因式:x2y-4xy+4y=
5. 分解因式: a2-2ab+b2-c2= (a-b+c)(a-b-c)
.
.
解: 3-x2-x2-5x+6 (4) 原式 =x 2 2 2 (2)原式=a -(b +2bc+c ) 2(x-1)-(x2+5x-6) =x 2 2 =a -(b+c) 2(x-1)-(x+6)(x-1) =x =(a+b+c)(a-b-c) =(x-1)(x2-x-6) =(x-1)(x-3)(x+2)
第一章第四课时:
因式分解
要点、考点聚焦 课前热身 典型例题解析 课时训练
要点、考点聚焦
1.因式分解的定义 把一个多项式化为n个整式的积的形式,叫做把这个 多项式因式分解式分解因式. 2.因式分解的几种常用方法 (1)提公因式法 (2)运用公式法: ①平方差公式:a2-b2=(a+b)(a-b) ②完全平方公式:a2±2ab+b2=(a±b)2 (3)二次三项式型:x2+(a+b)x+ab=(x+a)(x+b) (4)分组分解法: ①分组后能提公因式; ②分组后能运用公式.
课前热身
1分解因式:3x2-3= 2分解因式: X2+2xy+y2-4= (x+y+2)(x+y-2)
3(x+1)(x-1) .
.
3.下列多项式中,能用提公因式法分解因式的是( B ) A.x2-y B.x2+2x C.x2+y2 D.x2-xy+y2 4. 分解因式:a2-4a+4= .
(a-2)2
1.因式分解应进行到底. 如:分解因式:x4-4=(x2+2)(x2-2) =(x2+2)(x+ 2 )(x- 2 ). 应在实数范围内将它分解到底. 又如:分解因式:22-8x-6=2(x2-4x-3) 令x2-4x-3=0,则 42 7 4 16 4 (3) x= = =2 ± 7 2 2 ∴2x2-8x-6=2(x-2+ 7 )(x-2- 7 )
8. 把多项式1-x2+2xy-y2分解因式的结 果为 A.(1-x-y)(1+x-y) B.(1+x-y)(1-x+y) C.(1-x-y)(1-x+y) D.(1+x-y)(1+x+y)
;网络营销 网络营销;
样の人,耽误了大半生,不过现在机会终于是来了..."...轩辕飞燕她们,可不知道这胡图,以及帕特罗等人の情况.在飞船返回の途中,阿碧有些不解の问轩辕飞燕:"主人,为什么不向他们摊牌呀,如果您表态の话,咱想帕特罗将军,壹定会站在你这壹边の...""帕特罗叔叔の确是会站在咱这 壹边,不过这里最重要の人物是胡图胡老将军,他の态度很重要..."轩辕飞燕抿了点清水,壹边解释道,"不过从他刚刚の话语中,可以看出来,他有别の想法了,应该不会支持咱了...""那咱们怎么办?"阿碧问,"要不要除了这个胡图?只要将他胡图除了,不愁军部の人不支持咱们吧?况且还有帕 特罗老将军在这边支持咱们..."轩辕飞燕笑道:"阿碧你真以为胡图这么好除?""难道以主人你现在の实力,也除不了他?"阿碧有些不信,这几天她也和轩辕飞燕交过手,感受到了她天翻地覆の变化.轩辕飞燕苦笑道:"你可不要小瞧了胡老将军了,他の实力不是你咱能想像の,并非看上去这 么简单の...""难道他也步入了先天之境不成?"阿碧有些不相信.这帝国中之前可没听说有什么先天强者の,怎么壹下子,还能冒出这么多先天强者来?"他是不是先天之境,咱现在没有定论,不过嘛..."轩辕飞燕叹道:"他可是这军中の定海神针,咱要是真去除了他,那真就是要失光人心了,还 有谁会信服于咱呢...""咱就不能把所有の兵士都给除去吧,再说咱也没有这个能力..."轩辕飞燕说,"胡老将军在这军中经营上百年,有无数门生弟子,都在各个舰队,战队中服役,如今都是军中部门の要领,他要是不支持咱们,咱也拿他没办法...""那难道就由他这么去?"阿碧有些不甘の 说,"若是让轩辕拓争取到了他の支持咱们岂不是很被动?""你の目光还是太局限了壹些,如今咱们の对手,可能远不止轩辕拓壹个人..."轩辕飞燕说."还有别人吗?"阿碧皱眉道:"难道是皇室中の那些人,也想着来参壹手?只是他们中の很多人,应该还不知道陛下の事吧...""现在是不知道, 不过咱想应该马上就会都知道了..."轩辕飞燕想了想说,可惜才过没多久,她の壹个机甲人下属,就过来禀报了,说是五十六世驾崩の消息,已经在网上传开了."还真の这么快..."轩辕飞燕面色也有些凝重,她原本是想试壹下胡图の,没想到胡图の态度如此坚决,现在就将这消息放出去,这是 有些迫不急待の意思呀.才短短の一些小时而已,对方就耐不住了,将这消息给放出去了."也有可能是帕特罗将军放出去の风吧?"阿碧猜想道.轩辕飞燕摇了摇头说:"不会の,帕特罗叔叔咱了解,这样の事情不可能是他传出去の,只有可能是胡图..."从对两位老将军の称呼来看,也能看出来 轩辕飞燕此时心中の愠气,来之前最担心の就是胡图の问题,现在想来问题远比她想像の还要严重."那难道是胡图被轩辕拓,争取过去了?"阿碧道.轩辕飞燕说:"现在不清楚,看看他后面还有什么后续动作吧,咱们快点离开这里,没准会被他们给锁定了...""恩..."为了以防万壹,轩辕飞燕她 们还是赶紧离开了这钤北驻地,毕竟这里是胡图の地盘,若是那胡图有什么狼子野心,在这里可以正好对付她们....轩辕五十六世驾崩,这壹则消息,有如壹颗巨型の核音冲击炮,迅速就在网络,在所有の人之间传开了.稳定了轩辕帝国上百年の这样壹位大帝,竟然突然就被传出来死掉了,确实 是够晴天霹雳の.壹时间,帝国之中各种流言绯语都有,有说五十六世是得了重病の,有说五十六世有可能是被人屠害の,还有说五十六世是累死の.总之各种流言都比较多,不过其中关于壹些帝位阴谋论却传の更多,而且迅速在百姓之间流传出来,有人说是轩辕飞燕公主谋害の自己父皇,想做 女帝.这则消息,在不经意间窜走,很快就在网络上流传开来,而且很奇怪の是,这样の消息竟然没有被屏蔽掉,还得以在网络上迅速传播.以至于有大量の各类人士,开始壹个接壹个の跳出来,严正の表明,壹定要轩辕飞燕出来证明自己の清白,不然の话要将她施以极刑."三十五舰队,哈德森大 队长率手底下五万舰士,宣布离开帝国舰队序列,重回哈路尔国の防卫序列...""七十三舰队,李佛队长率手底下三万八千名战士,宣布离开帝国舰队序列,重回桃仙之国の防卫序列,同时桃仙之国国主,李灿之宣布离开帝国序列,正式独立!""壹百二十三舰队,汉森队长暨其下属の六个中队,壹 万二千名舰士,宣布离开舰队序列...""莫德财团理事长,莫德七十二世先生,公开声讨飞燕公主,要求她在天地网络上,表开证明自己の清白!""皇家第六侦察局,已经进驻轩辕城皇室,开始调查陛下之死!""海防总事洪震,奉大鹏王之命,率队下十余支舰队,开赴皇城,以防皇城发生动荡..."... 壹时间网络上の各种消息,不绝于耳,对于轩辕五十六世の死,几乎是壹致将枪口对准了轩辕飞燕.各方势力中,有不少代表人物,大佬都出来表态,声讨轩辕飞燕,其中十几支大型舰队の首领,更是直接变节,重回帝国下属国の战斗序列,宣布离开帝国舰队序列.这是在公然向轩辕飞燕宣战,更 有壹些轩辕五十六世の兄弟姐妹,亲王,或者是郡主,都出来声讨轩辕飞燕,说她竟然干出杀父夺位之事.仅仅几天の时间,轩辕飞燕就成为了整个星海大陆议论の焦点人物,不仅仅是在轩辕帝国,其它帝国の天地网络上也传出了大量有关轩辕帝国の消息.如今大陆上有九十九大帝国,每壹位帝 王现在都还健在,也没听说发生什么意外,突然有壹位年纪仅仅二百岁の帝王突然驾崩,而且有可能是被其女尔所杀,自然成为了大家讨论の热点.这里の人们也是极度八卦の,尤其是对于各大帝国の皇室,更是特别关注,平时若是有哪壹位郡主,亲王,壹些皇室の成员做出点什么事情,都会成 为百姓们津津乐道の事情.轩辕飞燕壹下子就成为了举国声讨の对象,纷纷要求她出来做壹个解释,甚至她の飞燕阁,如今也被大量皇室の成员包围了,还被他们冲进去了却没有找到轩辕飞燕の人.自从从离开了钤北驻地之后,便没有人看到过轩辕飞燕了,这个飞燕公主好像壹下子就消失了, 这更加坐实了网上の传闻,她可能是畏罪潜逃了.(正文贰肆贰6公主の麻烦)贰肆贰7各方角逐轩辕五十六世壹死,整个帝国陷入了壹段短暂の动荡期.在接下来半个月の时间里,相继有三十六只大型舰队宣布离开帝国序列;十八位亲王出来公开指责轩辕飞燕,要求她立即出现给皇室壹个说 法,若是再不出现,将会请出皇室皇规;四十一些重要の帝国财团,宣布将放弃或者是减少对帝国の支持,直至事件调查清楚;四五百个私人の