最新人教版整式的乘法与因式分解基础及练习

合集下载

人教版数学八年级上册 整式的乘法与因式分解专题练习(word版

人教版数学八年级上册 整式的乘法与因式分解专题练习(word版

人教版数学八年级上册 整式的乘法与因式分解专题练习(word 版 一、八年级数学整式的乘法与因式分解选择题压轴题(难) 1.将多项式24x +加上一个整式,使它成为完全平方式,则下列不满足条件的整式是( ) A .4-B .±4xC .4116xD .2116x 【答案】D【解析】【分析】分x 2是平方项与乘积二倍项,以及单项式的平方三种情况,根据完全平方公式讨论求解.【详解】解:①当x 2是平方项时,4士4x+x ²=(2士x )2,则可添加的项是4x 或一4x ; ②当x 2是乘积二倍项时,4+ x 2+4116x =(2+214x )2,则可添加的项是4116x ; ③若为单项式,则可加上-4.故选:D. 【点睛】本题考查了完全平方式,比较复杂,需要我们全面考虑问题,首先考虑三个项分别充当中间项的情况,就有三种情况,还有就是第四种情况加上一个数,得到一个单独的单项式,也是可以成为一个完全平方式,这种情况比较容易忽略,要注意.2.对二次三项式4x 2﹣6xy ﹣3y 2分解因式正确的是( )A .3213214()()x y x y +-++B .2132134()()x y x y +---C .(321)(321)x y y x y y ---+D .321213(2)(2)x y x y -+-- 【答案】D【解析】【分析】【详解】解:4x 2﹣6xy ﹣3y 2=4[x 2﹣32xy +(34y )2]﹣3y 2﹣94y 2 =4(x ﹣34y )2﹣214y 2 =(2x ﹣32y ﹣212y )(2x ﹣32y +212y )=(2x ﹣32+y )(2x ﹣32) 故选D . 【点睛】本题主要是用配方法来分解因式,但本题的计算,分数,根式多,所以学生还是很容易出错的,注意计算时要细心.3.(2017重庆市兼善中学八年级上学期联考)在日常生活中如取款、上网等都需要密码.有一种用“因式分解法”产生的密码方便记忆,如:对于多项式44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =, 9y =时,则各个因式的值为()0x y -=, ()18x y +=, ()22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取20x, 10y =时,用上述方法产生的密码不可能...是( ) A .201030B .201010C .301020D .203010【答案】B【解析】【分析】【详解】解:x 3-xy 2=x (x 2-y 2)=x (x+y )(x-y ),当x=20,y=10时,x=20,x+y=30,x-y=10,组成密码的数字应包括20,30,10,所以组成的密码不可能是201010.故选B .4.下列多项式中,能分解因式的是:A .224a b -+B .22a b --C .4244x x --D .22a ab b -+【答案】A【解析】根据因式分解的意义,可知A 、224a b -+能用平方差公式()()22a b a b a b -=+-分解,故正确;B 、22a b --=-(22a b +),不能进行因式分解,故不正确;C 、4244x x --不符合完全平方公式()2222a ab b a b ±+=±,故不正确;D 、22a ab b -+既没有公因式,也不符合公式,故不正确.故选:A.点睛:此题主要考查了因式分解,解题时利用因式分解的方法:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).5.已知x 2+4y 2=13,xy=3,求x+2y 的值,这个问题我们可以用边长分别为x 和y 的两种正方形组成一个图形来解决,其中x>y ,能较为简单地解决这个问题的图形是( )A .B .C .D .【答案】A【解析】 ∵222(2)44x y x y xy +=++,∴若用边长分别为x 和y 的两种正方形组成一个图形来解决(其中x y >), 则这个图形应选A ,其中图形A 中,中间的正方形的边长是x ,四个角上的小正方形边长是y ,四周带虚线的每个矩形的面积是xy .故选A.6.如果x m =4,x n =8(m 、n 为自然数),那么x 3m ﹣n 等于( )A .B .4C .8D .56【答案】C【解析】【分析】根据同底数幂的除法法则可知:指数相减可以化为同底数幂的除法,故x 3m ﹣n 可化为x 3m ÷x n ,再根据幂的乘方可知:指数相乘可化为幂的乘方,故x 3m =(x m )3,再代入x m =4,x n =8,即可得到结果.【详解】解:x 3m ﹣n =x 3m ÷x n =(x m )3÷x n =43÷8=64÷8=8, 故选:C .【点睛】此题主要考查了同底数幂的除法,幂的乘方,关键是熟练掌握同底数幂的除法与幂的乘方的计算法则,并能进行逆运用.7.有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示.右边场地为长方形,长为()2a b +,则宽为( )A .12B .1C .()12a b +D .+a b【答案】C【解析】【分析】用长方形的面积除以长可得.【详解】宽为:()()()()22222a ab ab b a b a b a b +++÷+=+÷+= ()12a b +故选:C【点睛】考核知识点:整式除法与面积.掌握整式除法法则是关键.8.观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x +a )(x +b )=x 2-7x +12,则a ,b 的值可能分别是() A .3-,4- B .3-,4 C .3,4- D .3,4【答案】A【解析】【分析】根据题意可得规律为712a b ab +=-⎧⎨=⎩,再逐一判断即可.【详解】根据题意得,a ,b 的值只要满足712a b ab +=-⎧⎨=⎩即可,A.-3+(-4)=-7,-3×(-4)=12,符合题意;B.-3+4=1,-3×4=-12,不符合题意;C.3+(-4)=-1,3×(-4)=-12,不符合题意;D.3+4=7,3×4=12,不符合题意.故答案选A.【点睛】本题考查了多项式乘多项式,解题的关键是根据题意找出规律.9.若6a b +=,7ab =,则-a b =( )A .±1B .2±C .2±D .22±【答案】D【解析】【分析】由关系式(a-b )2=(a+b )2-4ab 可求出a-b 的值【详解】∵a+b=6,ab=7, (a-b )2=(a+b )2-4ab∴(a-b )2=8,∴a-b=22±.故选:D .【点睛】考查了完全平方公式,解题关键是能灵活运用完全平方公式进行变形.10.已知a =96,b =314,c =275,则a 、b 、c 的大小关系是( )A .a >b >cB .a >c >bC .c >b >aD .b >c >a【答案】C【解析】【分析】根据幂的乘方可得:a =69=312,c =527=315,易得答案.【详解】因为a =69=312,b =143,c =527=315,所以,c>b>a故选C【点睛】本题考核知识点:幂的乘方. 解题关键点:熟记幂的乘方公式.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=______.【答案】()()2a b a b ++.【解析】【分析】根据图形中的正方形和长方形的面积,以及整体图形的面积进而得出恒等式.【详解】解:由面积可得:()()22a 3ab 2b a 2b a b ++=++. 故答案为:()()a 2b a b ++.【点睛】此题主要考查了十字相乘法分解因式,正确利用面积得出等式是解题关键.12.已知25,23a b==,求2a b +的值为________.【答案】15.【解析】【分析】逆用同底数幂的乘法运算法则将原式变形得出答案.【详解】解:∵2a =5,2b =3,∴2a+b =2a ×2b =5×3=15.故答案为:15.【点睛】此题主要考查了同底数幂的乘法运算,正确将原式变形是解题关键.13.把多项式(x -2)2-4x +8分解因式,哪一步开始出现了错误( )解:原式=(x -2)2-(4x -8)…A=(x -2)2-4(x -2)…B=(x -2)(x -2+4)…C=(x -2)(x +2)…D【答案】C【解析】根据题意,第一步应是添括号(注意符号变化),解法正确,第二步先对后面因式提公因式4,再提取公因式(x-2)这时出现符号错误,所以从C 步出现错误.故选C.14.若(x+p)与(x+5)的乘积中不含x 的一次项,则p =_____.【答案】-5【解析】【分析】根据多项式乘以多项式的法则,可表示为(a +b )(m +n )=am +an +bm +bn 计算,再根据乘积中不含x 的一次项,得出它的系数为0,即可求出p 的值.【详解】解:(x +p )(x +5)=x 2+5x +px +5p =x 2+(5+p )x +5p ,∵乘积中不含x 的一次项,∴5+p =0,解得p =﹣5,故答案为:﹣5.15.因式分解:mn (n ﹣m )﹣n (m ﹣n )=_____.【答案】()()1n n m m -+【解析】mn(n-m)-n(m-n)= mn(n-m)+n(n-m)=n(n-m)(m+1),故答案为n(n-m)(m+1).16.已知16x x +=,则221x x +=______ 【答案】34【解析】 ∵16x x +=,∴221x x +=22126236234x x ⎛⎫+-=-=-= ⎪⎝⎭, 故答案为34.17.已知:7a b +=,13ab =,那么 22a ab b -+= ________________.【答案】10【解析】∵(a+b ) 2 =7 2 =49,∴a 2 -ab+b 2 =(a+b ) 2 -3ab=49-39=10,故答案为10.18.若2x+5y ﹣3=0,则4x •32y 的值为________.【答案】8【解析】∵2x+5y ﹣3=0,∴2x+5y=3,∴4x •32y =(22)x ·(25)y =22x ·25y =22x+5y =23=8, 故答案为:8.【点睛】本题主要考查了幂的乘方的性质,同底数幂的乘法,转化为以2为底数的幂是解题的关键,整体思想的运用使求解更加简便.19.若21x x +=,则433331x x x +++的值为_____.【答案】4【解析】【分析】把所求多项式进行变形,代入已知条件,即可得出答案.【详解】∵21x x +=,∴()43222233313313313()1314x x x xx x x x x x x +++=+++=++=++=+=; 故答案为:4.【点睛】本题考查了因式分解的应用;把所求多项式进行灵活变形是解题的关键.20.已知8a b +=,224a b =,则222a b ab +-=_____________. 【答案】28或36.【解析】【分析】【详解】解:∵224a b =,∴ab=±2.①当a+b=8,ab=2时,222a b ab +-=2()22a b ab +-=642﹣2×2=28; ②当a+b=8,ab=﹣2时,222a b ab +-=2()22a b ab +-=642﹣2×(﹣2)=36; 故答案为28或36.【点睛】本题考查完全平方公式;分类讨论.。

整式的乘法与因式分解单元测试卷附答案

整式的乘法与因式分解单元测试卷附答案

整式的乘法与因式分解单元测试卷附答案一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.多项式x2﹣4xy﹣2y+x+4y2分解因式后有一个因式是x﹣2y,另一个因式是()A.x+2y+1 B.x+2y﹣1 C.x﹣2y+1 D.x﹣2y﹣1【答案】C【解析】【分析】首先将原式重新分组,进而利用完全平方公式以及提取公因式法分解因式得出答案.【详解】解:x2﹣4xy﹣2y+x+4y2=(x2﹣4xy+4y2)+(x﹣2y)=(x﹣2y)2+(x﹣2y)=(x﹣2y)(x﹣2y+1).故选:C.【点睛】此题考察多项式的因式分解,项数多需用分组分解法,在分组后得到两项中含有公因式(x-2y),将其当成整体提出,进而得到答案.2.有5张边长为2的正方形纸片,4张边长分别为2、3的矩形纸片,6张边长为3的正方形纸片,从其中取出若干张纸片,且每种纸片至少取一张,把取出的这些纸片拼成一个正方形(原纸张进行无空隙、无重叠拼接),则拼成正方形的边长最大为()A.6 B.7 C.8 D.9【答案】C【解析】【分析】设2为a,3为b,则根据5张边长为2的正方形纸片的面积是5a2,4张边长分别为2、3的矩形纸片的面积是4ab,6张边长为3的正方形纸片的面积是6a2,得出a2+4ab+4b2=(a+2b)2,再根据正方形的面积公式将a、b代入,即可得出答案.【详解】解:设2为a,3为b,则根据5张边长为2的正方形纸片的面积是5a2,4张边长分别为2、3的矩形纸片的面积是4ab,6张边长为3的正方形纸片的面积是6b2,∵a2+4ab+4b2=(a+2b)2,(b>a)∴拼成的正方形的边长最长可以为a+2b=2+6=8,故选C .【点睛】此题考查了完全平方公式的几何背景,关键是根据题意得出a 2+4ab+4b 2=(a+2b )2,用到的知识点是完全平方公式.3.已知n 16221++是一个有理数的平方,则n 不能取以下各数中的哪一个( ) A .30B .32C .18-D .9 【答案】B【解析】【分析】分多项式的三项分别是乘积二倍项时,利用完全平方公式分别求出n 的值,然后选择答案即可.【详解】2n 是乘积二倍项时,2n +216+1=216+2×28+1=(28+1)2,此时n=8+1=9,216是乘积二倍项时,2n +216+1=2n +2×215+1=(215+1)2,此时n=2×15=30,1是乘积二倍项时,2n +216+1=(28)2+2×28×2-9+(2-9)2=(28+2-9)2,此时n=-18,综上所述,n 可以取到的数是9、30、-18,不能取到的数是32.故选B .【点睛】本题考查了完全平方式,难点在于要分情况讨论,熟记完全平方公式结构是解题的关键.4.已知三角形三边长为a 、b 、c ,且满足247a b -=, 246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定【答案】A【解析】解:∵a 2﹣4b =7,b 2﹣4c =﹣6,c 2﹣6a =﹣18,∴a 2﹣4b +b 2﹣4c +c 2﹣6a =7﹣6﹣18,整理得:a 2﹣6a +9+b 2﹣4b +4+c 2﹣4c +4=0,即(a ﹣3)2+(b ﹣2)2+(c ﹣2)2=0,∴a =3,b =2,c =2,∴此三角形为等腰三角形.故选A .点睛:本题考查了因式分解的应用,解题的关键是正确的进行因式分解.5.下列运算正确的是A .532b b b ÷=B .527()b b =C .248·b b b =D .2·22a a b a ab -=+()【答案】A【解析】选项A , 532b b b ÷=,正确;选项B , ()25b =10b ,错误;选项C , 24·b b =6b ,错误;选项D , 2·22a a b a ab -=-,错误.故选A.6.下列多项式中,能运用公式法进行因式分解的是( )A .a 2+b 2B .x 2+9C .m 2﹣n 2D .x 2+2xy+4y 2【答案】C【解析】试题分析:直接利用公式法分解因式进而判断得出答案.解:A 、a 2+b 2,无法分解因式,故此选项错误;B 、x 2+9,无法分解因式,故此选项错误;C 、m 2﹣n 2=(m+n )(m ﹣n ),故此选项正确;D 、x 2+2xy+4y 2,无法分解因式,故此选项错误;故选C .7.如图所示的是用4个全等的小长方形与1个小正方形密铺而成的正方形图案,已知该图案的面积为144,小正方形的面积为4,若分别用x 、y (x y >)表示小长方形的长和宽,则下列关系式中错误的是( )A .22100x y +=B .2x y -=C .12x y +=D .35xy =【答案】A【解析】【分析】 由正方形的面积公式可求x +y =12,x ﹣y =2,可求x =7,y =5,即可求解.【详解】由题意可得:(x +y )2=144,(x ﹣y )2=4,∴x +y =12,x ﹣y =2,故B 、C 选项不符合题意;∴x =7,y =5,∴xy =35,故D 选项不符合题意;∴x 2+y 2=84≠100,故选项A 符合题意. 故选A .【点睛】本题考查了完全平方公式的几何背景,解答本题需结合图形,利用等式的变形来解决问题.8.如图,矩形的长、宽分别为a、b,周长为10,面积为6,则a2b+ab2的值为()A.60 B.30 C.15 D.16【答案】B【解析】【分析】直接利用矩形周长和面积公式得出a+b,ab,进而利用提取公因式法分解因式得出答案.【详解】∵边长分别为a、b的长方形的周长为10,面积6,∴2(a+b)=10,ab=6,则a+b=5,故ab2+a2b=ab(b+a)=6×5=30.故选:B.【点睛】此题主要考查了提取公因式法以及矩形的性质应用,正确分解因式是解题关键.9.如果是个完全平方式,那么的值是()A.8 B.-4 C.±8 D.8或-4【答案】D【解析】试题解析:∵x2+(m-2)x+9是一个完全平方式,∴(x±3)2=x2±2(m-2)x+9,∴2(m-2)=±12,∴m=8或-4.故选D.10.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是()A.30 B.20 C.60 D.40【答案】A【解析】设大正方形的边长为x ,小正方形的边长为y ,表示出阴影部分的面积,结合大正方形与小正方形的面积之差是60即可求解.【详解】设大正方形的边长为x ,小正方形的边长为y ,则2260x y -=,∵S 阴影=S △AEC +S △AED =11()()22x y x x y y -+- =1()()2x y x y -+ =221()2x y - =1602⨯ =30.故选A.【点睛】 此题主要考查了平方差公式的应用,读懂图形和熟练掌握平方差公式是解此题的关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.若a-b=1,则222a b b --的值为____________.【答案】1【解析】【分析】先局部因式分解,然后再将a-b=1代入,最后在进行计算即可.【详解】解:222a b b --=(a+b )(a-b )-2b =a+b-2b=a-b=1【点睛】本题考查了因式分解的应用,弄清题意、并根据灵活进行局部因式分解是解答本题的关键.12.已知212()02a b -++=,则20192020a b =__________.【答案】12【分析】先利用绝对值和平方的非负性求得a 、b 的值,然后将20192020a b 转化为20192019()ab b ⋅的形式可求得.【详解】 ∵212()02a b -++= ∴a -2=0,12b +=0 解得:a=2,12b =- 20192020a b =20192019()a b b ⋅=()2019112⎛⎫-⨯- ⎪⎝⎭=1 2故答案为:12【点睛】 本题考查绝对值和平方的非负性,解题关键是利用非负性,先得出a 、b 的值.13.在实数范围内因式分解:231x x +-=____________【答案】3322x x ⎛⎫⎛++ ⎪ ⎪⎝⎭⎝⎭【解析】【分析】利用一元二次方程的解法在实数范围内分解因式即可.【详解】令2310x x +-=∴1x =2x =∴231x x +-=x x ⎛+ ⎝⎭⎝⎭故答案为:3322x x ⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭【点睛】本题考查实数范围内的因式分解,利用一元二次方程的解法即可解答,熟练掌握相关知识点是解题关键.14.计算: =_____.【答案】1【解析】【分析】根据平方差公式可以使本题解答比较简便.【详解】解:====1.【点睛】本题应根据数字特点,灵活运用运算定律会或运算技巧,灵活简算.15.4x(m-n)+8y(n-m)2中各项的公因式是________.【答案】4(m-n)【解析】根据题意,先变形为4x(m-n)+8y(m-n)2,把m-n看做一个整体,即可找到公因式4(m-n).故答案为:4(m-n).点睛:此题主要考查了提公因式法因式分解,根据公因式的特点,利用整体法确定公因式即可,关键是要把n-m与m-n变形为统一的式子.16.已知(a﹣2016)2+(2018﹣a)2=20,则(a﹣2017)2的值是 .【答案】9【解析】(a﹣2016)2+(2018﹣a)2=20,(a﹣2016)2+(a-2018)2=20,令t=a-2017,∴(t+1)2+(t-1)2=20,2t2=18,t2=9,∴(a﹣2017)2=9.故答案为9.点睛:掌握用换元法解方程的方法.17.因式分解:x3﹣4x=_____.【答案】x(x+2)(x﹣2)【解析】试题分析:首先提取公因式x,进而利用平方差公式分解因式.即x3﹣4x=x(x2﹣4)=x(x+2)(x ﹣2).故答案为x (x+2)(x ﹣2).考点:提公因式法与公式法的综合运用.18.因式分解:mn (n ﹣m )﹣n (m ﹣n )=_____.【答案】()()1n n m m -+【解析】mn(n-m)-n(m-n)= mn(n-m)+n(n-m)=n(n-m)(m+1),故答案为n(n-m)(m+1).19.若21x x +=,则433331x x x +++的值为_____.【答案】4【解析】【分析】把所求多项式进行变形,代入已知条件,即可得出答案.【详解】∵21x x +=,∴()43222233313313313()1314x x x xx x x x x x x +++=+++=++=++=+=; 故答案为:4.【点睛】本题考查了因式分解的应用;把所求多项式进行灵活变形是解题的关键.20.分解因式:3x 2-6x+3=__.【答案】3(x-1)2【解析】【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【详解】 ()()22236332131x x x x x -+=-+=-.故答案是:3(x-1)2.【点睛】考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.。

整式的乘法与因式分解单元测试卷附答案

整式的乘法与因式分解单元测试卷附答案

整式的乘法与因式分解单元测试卷附答案一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.已知a=2012×+2011 , b=2O12x+2O12 f c=2012×+2013,那么a2+b2+c2-ab - be - ca 的值等于()A.0B. 1C. 2D. 3【答案】D【解析】【分析】首先把a2+b2+c2 - ab - be-ac两两结合为α2 - ab+b2 - bc+c2 - ac I利用提取公因式法因式分解,再把a、b、C代入求值即可•【详解】a z+b2+c z - ab - be - ac=a2 - ab+b2 - bc+c2 - ac= a(a-b)+b(b-c)+c(c-a)当a 二2012x+2011 , b = 2012x+2012 , C 二2012x+2013 时,a-b= -I I b-C=-I , c - a=2 ,式=(2012x+2011 ) X ( - 1 ) + ( 2012x+2012 ) X ( - 1 ) + ( 2012x+2013 ) ×2=-2012x - 2011 - 2012X - 2012+2012x×2+2013×2二3 .故选D .【点睛】本题利用因式分解求代数式求值,注意代数之中字母之间的联系,正确运用因式分解,巧妙解答题目•2.下列四个多项式,可能是2x2+mχ-3(m是整数)的因式的是A.x-2B. 2x+3C. x÷4D. 2×2-l【答案】B【解析】【分析】将原式利用十字相乘分解因式即可得到答案.【详解】因为m是整数,.∙.将2x2+mx-3分解因式:2x2÷mχ-3= (x-l) (2x+3)或2x2÷mx~3= (x+l) (2x-3),故选:B.【点睛】此题考查因式分解,根据二次项和常数项将多项式分解因式是解题的关键•3.己知m'-m-l=0,则计算:m4-m'-m + 2fr⅛结果为( )•A. 3B. -3C. 5D. -5【答案】A【解析】【分析】观察已知m2-m-l=0可转化为m2-m=l,再对m4-m3-m+2提取公因式因式分解的过程中将r∏2-m作为一个整体代入,逐次降低m的次数,使问题得以解决.【详解】,.*m2-m-l=0 ,.,.m2-m=l ,Λ m4-m3-m+2=m2 (m2-m)-m+2=m2-m+2=l+2=3 ,故选A.【点睛】本题考查了因式分解的应用,解决本题的关键是将∏Λm作为一个整体岀现,逐次降低m 的次数.4.化简(2x)2的结果是( )A. X4B. 2x2C. 4x2D. 4尤【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幕相乘即可.【详解】(2x)2=22∙ X2 =4x2,故选C.【点睛]本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.5.如图,矩形的长、宽分别为a、b,周长为10,而积为6,则a2b+ab2的值为()baA. 60 B・ 30 C. 15 D・ 16【答案】B【解析】【分析】直接利用矩形周长和而积公式得出a+b, ab,进而利用提取公因式法分解因式得出答案.【详解】J边长分别为a、b的长方形的周长为10,而积6,Λ2 (a+b) =10, ab=6,则a+b=5»故ab2+a2b=ab (b+a )=6×5=30.故选:B.【点睛】此题主要考査了提取公因式法以及矩形的性质应用,正确分解因式是解题关键.6.如果* + (m-2)x + 9是个完全平方式,那么m的值是()A. 8B. -4C. ±8D. 8 或-4【答案】D【解析】试题解析:Vx2+ (m-2 ) x+9是一个完全平方式,.,.(x±3 ) 2=×z±2(m-2)×+9 IΛ2(m-2)=±12 ,.°.m=8或-4 .故选D .7.若(.γ⅛∕σ)(旷8)中不含X的一次项,则也的值为( )A. 8B. -8C. 0D. 8 或-8【答案】B【解析】(jf-jiH-zz?) (x-8) =X3 -X2 + mx - 8.r2 +8x- Snl = X y- 9x2 + (m + 8)x 一8/7/由于不含一次项,m÷8=0,得m二-8.8.下列等式由左边向右边的变形中,属于因式分解的是()A、×2+5X— l=x(×+5) — 1 B. x?—4+3x=(x+2)(χ-2)+3xC. (x+2)(x-2)=×2-4D. ×2-9=(×+3)(x-3)【答案】D【解析】【分析】根据因式分解的左义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.【详解】解:A、右边不是积的形式,故A错误:B、右边不是积的形式,故B错误;C、是整式的乘法,故C错误;D、χ2-9=(x+3)(χ-3),属于因式分解.故选D.【点睹】此题主要考查因式分解的左义:把一个多项式化为几个整式的积的形式,这种变形叫做把 这个多项式因式分解・9. 有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的而积数拯如图 所示.右边场地为长方形,长为2(a+b)f 则宽为()【答案】C【解析】【分析】用长方形的面积除以长可得.【详解】 宽为:(/ + ab + ab + b 2^÷2(a + b) = (a + by ÷2(a + b)= 故选:C【点睛】考核知识点:整式除法与而积•掌握整式除法法则是关键・10・观察下列两个多项式相乘的运算过程:7 ...................... 、 7 ...................... 、τ - - * ----- :∙ i τ - - * --- ;• B(x∣⅛∣)(x ^]) = X 2∣⅛∣χ 呵 (X 囱)(X 固)二 X 2∣⅛]x 珂根据你发现的规律,若(x+α) (x+b) =X 2-7X +12,则α, b 的值可能分别是()A. -3, rB. -3,4C. 3, -4D. 3, 4【答案】A【解析】【分析】a +b = —7根据题意可得规律为< ,, ,再逐一判断即可.ab = ∖2【详解】a+b = —7根据题意得,a z b 的值只要满足< f , 即可,ab = ↑2A. -3+ ( -4 ) =-7 I -3× ( -4 ) =12» 符合题意;B. -3+4=l f -3 ×4-12.不符合题意:C. 3+ (-4 ) =-1,3× ( -4 ) =-12,不符合题意; 2(α∣Λ)B. 1 c ∙扣+ b) D ・ a+bAe 2D.3+4=7z3×4=12,不符合题意.故答案选A.【点睛]本题考查了多项式乘多项式,解题的关键是根据题意找岀规律・二.八年级数学整式的乘法与因式分解填空题压轴题(难)11・如图,有一张边长为X的正方形ABCD纸板,在它的一个角上切去一个边长为y的正方形AEFG,剩下图形的面积是32,过点F作FH丄DC,垂足为H.将长方形GFHD切下,与长方形EBCH重新拼成一个长方形,若拼成的长方形的较长的一边长为&则正方形ABCD 的面积是・A G【答案】36.【解析】【分析】根据题意列岀√-Γ =32,x + y = 8,求岀×-y=4,解方程组得到X的值即可得到答案.【详解】由题意得:x2-y2=32,x+y = 8,∙* √-y2=(χ+y)(χ-y).•∙X e y—4♦x = 6 y = 2'*・•.正方形ABCD而积为√ = 36,故填:36.【点睛】此题考查平方差公式的运用,根据题意求得x-y=4是解题的关键,由此解方程组即可.12.如果关于X的二次三项式χ2-4x + m在实数范用内不能因式分解,那么加的值可以是_________ •(填出符合条件的一个值)【答案】5【解析】【分析】根据前两项,此多项式如用十字相乘方法分解,m应是3或-5:若用完全平方公式分解,m 应是4,若用提公因式法分解,m的值应是0,排除3、-5、4、0的数即可.【详解】当m=5时,原式为X2-4Λ+5.不能因式分解,故答案为:5.【点睛】此题考查多项式的因式分解方法,熟记每种分解的因式的特点及所用因式分解的方法,掌握技巧才能熟练运用解题.13.如果9×2-axy+4y2是完全平方式,则a的值是 _______ .【答案】+12【解析】【分析】根据完全平方式得出-axy= ±2×3x2y,求出即可.【详解】解:9×2-axy+4y2= ( 3×±2y ) 2即-axy= + 2×3x2y所以a=±12【点睛】本题考查了完全平方式,能熟记完全平方公式的特点是解此题的关键,注意:完全平方式有两个a2-2ab+b2和a2+2ab+62是本题的易错点.14.已知x、y 为正偶数,且X2y +xy>2 =96,则x2 + y2= __________________ .【答案】40【解析】【分析】根据x2y + xy2 =96可知xy(x+y)=96,由x、y是正偶数可知xy24 , x+y24,进而可知96可分解成3种乘积的形式,分别计算即可得只有一种情况符合题意,即可求出x、y的值,根据x、y的值求得答案即可.【详解】,.* x2y + xy2 =96 ,.,.xy(×+y)=96 ,VX X y 为正偶数,xy≥4 , x+y>4 ,/. 96=2 ×2×2×2×2×3=6× 16=8 × 12=4 × 24当xy(×+y)=4×24 时,无解,当xy(×+y)=6×16 时,无解,当×y(×+y)=8 × 12 时,x+y=8 , ×y=12 f解得:x=2 f y=6,或x=6 , y=2 ,.,.x2+y2=22+62=40.故答案为:40【点睛】本题考查因式分解,把96分解成所有约数的积再分情况求解是解题关键.15.若a,b互为相反数,则a2 - b2= _________ .【答案】0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】Ta , b互为相反数,Λ a+b=O rΛa2 - b2= ( a÷b ) ( a - b ) =0 ,故答案为0 .【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.16.若(2χ-3) x+5=l,则X 的值为 _______________ .【答案】2或1或-5【解析】⑴当2×-3=l时,x=2,此时(4-3)2+5=l,等式成立;⑵当2×-3=-l时,x=l,此时(2-3)1's=l.等式成立:⑶当×+5=0时,x=-5,此时(-10-3)° =1,等式成立.综上所述,X的值为:2 , 1或-5.故答案为2 f 1或-5.17.因式分解:a3 - 2a2b+ab2= ______ ・【答案】a(a-b)2.【解析】【分析】先提公因式a,然后再利用完全平方公式进行分解即可.【详解】原式=a ( a2 - 2ab+b2)=a ( a - b ) 2 ,故答案为a(a-b)2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.因式分解:mn ( n - m ) - n ( m - n ) = ___________ .【答案】n(n-m)(m + ∖)【解析】mn(n-m)-n(m-n)= mn(n-m)+n(n-m)=n(n-m)(m+l),故答案为n(n-m)(m+l).19.分解因式:x2-l=—.【答案】(x+l) (X-I).【解析】试题解析:x2-l= (x+l) (X-I).考点:因式分解-运用公式法.2 . 220.已知"+b = 8, a1lr =4» 贝1J-_ -Clb= _______________ ・2【答案】28或36.【解析】【分析】【详解】解:T a2b2=4,∙∙∙ ab=±2.①、"∣a+b二8, ab=2 时,-_ - ab = +- 2ab = —- 2×2=28:2 2 2②、"∣ a+b=8> ab=・ 2 H寸, —————ab= --- 2ab = —- 2× ( - 2) =36:2 2 2故答案为28或36.【点睛】本题考查完全平方公式:分类讨论.。

第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册

第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册

第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.下列运算正确的是()A.x6•x2=x12B.(﹣3x)2=6x2C.x3+x3=x6D.(x5)2=x102.计算的结果为()A.B.﹣1C.﹣2D.23.下列由左到右的变形,属于因式分解的是()A.x2﹣4=(x+2)(x﹣2)B.x(x+1)=x2+xC.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2+4x﹣2=x(x+4)﹣24.多项式4x3yz2﹣8x2yz4+12x4y2z3的公因式是()A.4x3yz2B.﹣8x2yz4C.12x4y2z3D.4x2yz25.若2x+y﹣3=0,则52x•5y=()A.15B.75C.125D.1506.如果(2x﹣m)与(x+6)的乘积中不含x的一次项,那么m的值为()A.12B.﹣12C.0D.67.如果4a2﹣kab+b2是一个完全平方式,那么k的值是()A.4B.﹣4C.±2D.±48.从边长为a的大正方形纸板正中央挖去一个边长为b的小正方形后,将其裁成四个大小和形状完全相同的四边形(如图1),然后拼成一个平行四边形(如图2),那么通过计算两个图形阴影部分的面积,可以验证成立的等式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)9.如图所示,两个正方形的边长分别为a和b,如果a+b=12,ab=28,那么阴影部分的面积是()A.40B.44C.32D.5010.已知a,b,c是△ABC的三边长,且a2+2ab=c2+2bc,则△ABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形二、填空题(每小题3分,满分18分)11.已知x2﹣2x﹣1=0,代数式(x﹣1)2+2024=.12.若m﹣n=﹣2,且m+n=5,则m2﹣n2=.13.若ab=3,a+b=2,则ab2+a2b﹣3ab=.14.3m=4,3n=5,则33m﹣2n的值为.14.如果(x﹣1)x+4=1成立,那么满足它的所有整数x的值是.16.如图,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB =9,两正方形的面积和S1+S2=45,则图中阴影部分面积为.第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.分解因式:(1)3a2﹣6ab+3b2;(2)25(m+n)2﹣(m﹣n)2;18.已知:a﹣b=3,ab=1,试求:(1)a2+3ab+b2的值;(2)(a+b)2的值.19.若关于x的代数式(x2+mx+n)(2x﹣1)的化简结果中不含x2的项和x的项,求m+n的值.20.在计算(2x+a)(x+b)时,甲错把a看成了﹣a,得到结果是:2x2﹣10x+12;乙由于漏抄了第一个多项式中x的系数,得到结果:x2+x﹣12.(1)求出a,b的值;(2)在(1)的条件下,计算(2x+a)(x+b)的结果.21.已知5m=4,5n=6,25p=9.(1)求5m+n的值;(2)求5m﹣2p的值;(3)写出m,n,p之间的数量关系.22.将边长为x的小正方形ABCD和边长为y的大正方形CEFG按如图所示放置,其中点D在边CE上.(1)若x+y=10,y2﹣x2=20,求y﹣x的值;(2)连接AG,EG,若x+y=8,xy=14,求阴影部分的面积.23.对于任意实数m,n,我们规定:F(m,n)=m2+n2,H(m,n)=﹣mn,例如:F(1,2)=12+22=5,H(3,4)=﹣3×4=﹣12.(1)填空:①F(﹣1,3)=;②若H(2,x)=﹣6,则x=;③若F(a,b)=H(a,2b),则a+b0.(填“>”,“<”或“=”)(2)若x+2y=5,且F(2x+3y,2x﹣3y)+H(7,x2+2y2)=13,求xy与(x ﹣2y)2的值;(3)若正整数x,y满足F(x,y)=k2+17,H(x,y)=﹣3k+4,求k的值.24.我们定义:如果两个多项式M与N的和为常数,则称M与N互为“对消多项式”,这个常数称为它们的“对消值”.如MF=2x2﹣x+6与N=﹣2x2+x﹣1互为“对消多项式”,它们的“对消值”为5.(1)下列各组多项式互为“对消多项式”的是(填序号):①3x2+2x与3x2+2;②x﹣6与﹣x+2;③﹣5x2y3+2xy与5x2y3﹣2xy﹣1.(2)多项式A=(x﹣a)2与多项式B=﹣bx2﹣2x+b(a,b为常数)互为“对消多项式”,求它们的“对消值”;(3)关于x的多项式C=mx2+6x+4与D=﹣m(x+1)(x+n)互为“对消多项式”,“对消值”为t.若a﹣b=m,b﹣c=mn,求代数式a2+b2+c2﹣ab﹣bc﹣ac+2t的最小值.25.【阅读理解】对一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如,由图1可以得到完全平方公式:(x+y)2=x2+2xy+y2,这样的方法称为“面积法”.【解决问题】(1)如图2,利用上述“面积法”,可以得到数学等式:(a+b+c)2=.(2)利用(1)中所得到的等式,解决下面的问题:①已知a+b+c=8,ab+bc+ac=17.求a2+b2+c2的值.②若m、n满足如下条件:(n﹣2021)2+(2023﹣2n)2+(n+1)2=m2﹣2m﹣20,(n﹣2021)(2023﹣2n)+(n﹣2021)(n+1)+(2023﹣2n)(n+1)=2+m,求m的值.【应用迁移】如图3,△ABC中,AB=AC,点O为底边BC上任意一点,OM ⊥AB,ON⊥AC,CH⊥AB,垂足分别为M,N,H,连接AO.若OM=1.2,ON=2.5,利用上述“面积法”,求CH的长.。

整式的乘法与因式分解习题带答案精选全文完整版

整式的乘法与因式分解习题带答案精选全文完整版

可编辑修改精选全文完整版Array第十四章、整式乘除与因式分解14.1 整式的乘法(1)(-3x)2(x+1)(x+3)+4x(x-1)(x2+x+1),其中x=-1;解:原式=9x2(x2+3x+x+3)+4x(x3+x2+x-x2-x-1)=9x2(x2+4x+3)+4x(x3-1)=9x4+36x3+27x2+4x4-4x=13x4+36x3+27x2-4x当x=-1时原式=13×(-1)4+36×(-1)3+27×(-1)2-4×(-1)=13-36+27+4=8(2)y n(y n+3y-2)-3(3y n+1-4y n),其中y=-2,n=2.解:原式=y2n+3y n+1-2y n-9y n+1+12y n=y2n-6y n+1+10y n当y=-2,n=2时原式=(-2)2×2-6×(-2)2+1+10×(-2)2=16+48+40=10415、已知不论x、y为何值时(x+my)(x+ny)=x2+2xy-8y2恒成立.求(m+n)mn的值.解:x2+nxy+mxy+mny2=x2+2xy-8y2x2+(m+n)xy+mny2=x2+2xy-8y2∴m+n=2,mn=-8∴(m+n)mn=2×(-8)=-166、已知31=+a a,则221a a +=( B ) A .5 B .7 C .9 D .117、如果x 2+kx +81是一个完全平方式,则k 的值是( D )A .9B .-9C .±9D .±188、下列算式中不正确的有( C )①(3x 3-5)(3x 3+5)=9x 9-25②(a +b +c +d)(a +b -c -d)=(a +b)2-(c +d)2③22)31(5032493150-=⨯ ④2(2a -b)2·(4a +2b)2=(4a -2b)2(4a -2b)2=(16a 2-4b 2)2A .0个B .1个C .2个D .3个9、代数式2)(2y x +与代数式2)(2y x -的差是( A ) A .xy B .2xy C .2xy D .0 10、已知m 2+n 2-6m +10n +34=0,则m +n 的值是( A )A .-2B .2C .8D .-8二、解答题11、计算下列各题:(1)(2a +3b)(4a +5b)(2a -3b)(5b -4a)(2)(x +y)(x -y)+(y -z)(y +z)+(z -x)(z +x);(3)(3m 2+5)(-3m 2+5)-m 2(7m +8)(7m -8)-(8m)2(1) 解:原式=(2a +3b)(2a -3b)(4a +5b)(5b -4a)=(4a 2-9b 2)(25b 2-16a 2)=100a 2b 2-64a 4-225b 4+144a 2b 2=-64a 4+244a 2b 2-225b 4(2) 解:原式=x 2-y 2+y 2-z 2+z 2-x 2=0(3) 解:原式=25-9m 4-m 2(49m 2-64)-64m 2=-58m 4+2512、化简求值:(1)4x(x 2-2x -1)+x(2x +5)(5-2x),其中x =-1(2)(8x 2+4x +1)(8x 2+4x -1),其中x =21 (3)(3x +2y)(3x -2y)-(3x +2y)2+(3x -2y)2,其中x =31,y =-21 (1) 解:原式=4x 3-8x 2-4x +x(25-4x 2)=4x 3-8x 2-4x +25x -4x 3=-8x 2+21x当x =-1时原式=-8×(-1)2+21×(-1)=-8-21=-29(2) 解:原式=(8x 2+4x)2-1当x =时,原式=[8×()2+4×]2-1=(2+2)2-1=15(3) 解:原式=9x 2-4y 2-9x 2-12xy -4y 2+9x 2-12xy +4y 2=9x 2-24xy -4y 2当x =,y =-时原式=9×()2-24××(-)-4×(-)2=1+4-1=413、解下列方程:(1)(3x)2-(2x +1)2=5(x +2)(x -2)解:9x 2-4x 2-4x -1=5x 2-205x 2-4x -1=5x 2-204x =19∴x =419(2)6x +7(2x +3)(2x -3)-28(x -21)(x +21)=4解:6x +28x 2-63-28x 2+7=46x -56=46x =60∴x =1014、解不等式:(1-3x)2+(2x -1)2>13(x -1)(x +1)解:1-6x +9x 2+4x 2-4x +1>13x 2-1313x 2-10x +2>13x 2-13-10x>-15∴x<2315、若n 满足(n -2004)2+(2005-n)2=1,求(2005-n)(n -2004)的值.解:(n -2004)2+2·(n -2004)·(2005-n)+(2005-n)2=1+2(n -2004)(2005-n)(n -2004+2005-n)2=1+2(n -2004)(2005-n)1=1+2(2005-n)(n -2004)∴(2005-n)(n -2004)=014.3 因式分解一、选择题1、下列各式,从左到右的变形是因式分解的为( B )A .x 2-9+5x =(x +3)(x -3)+5xB .x 2-4x +4=(x -2)2C .(x -2)(x -3)=x 2-5x +6D .(x -5)(x +2)=(x +2)(x -5)2、把多项式x 2-mx -35分解因式为(x -5)(x +7),则m 的值是( B)A .2B .-2C .12D .-123、分解因式:x 2-2xy +y 2+x -y 的结果是( A )A .(x -y )(x -y +1)B .(x -y )(x -y -1)C .(x +y )(x -y +1)D .(x +y )(x -y -1)4、若9x 2-12xy +m 是一个完全平方公式,那么m 的值是( B )。

第十四章 整式的乘法与因式分解 练习2024-2025学年人教版数学八年级上册

第十四章   整式的乘法与因式分解 练习2024-2025学年人教版数学八年级上册

第十四章整式的乘法与因式分解练习一、选择题1.下列计算正确的是()A.2x2⋅3x3=6x6B.x3÷x3=0C.(2xy)3=6x3y3D.(x3)n÷x2n=x n2.下列各式变形中,是因式分解的是()A.a2−2ab+b2−1=(a−b)2−1B.x4−1=(x2+1)(x+1)(x−1)C.(x+2)(x−2)=x2−4D.2x2+2x=2x2(1+1x)3.化简(-x)3·(-x)2的结果正确的是()A.−x6B.x6C.x5D.−x5 4.已知x m=4,x n=6,则x2m−n的值为()A.9 B.34C.83D.435.如果x2−kxy+9y2是一个完全平方式,那么k的值是()A.3 B.±6 C.6 D.±36.若x+m与x+2的乘积化简后的结果中不含x的一次项,则m的值为()A.2 B.-2 C.4 D.-47.若x−y=−3,xy=5,则代数式2x3y−4x2y2+2xy3的值为()A.90 B.45 C.-15 D.-308.将图甲中阴影部分的小长方形变换到图乙位置,从图形的面积关系得到的数学公式是()A.(a+b)(a−b)=a2−b2B.(a+b)2=a2+2ab+b2C.(a−b)2=a2−2ab+b2D.a2−ab=a(a−b)二、填空题9.8x3y2和12x4y的公因式是.10.因式分解a2+a−6的结果是.11.已知a+b=4,ab=1,则a3b+2a2b2+ab3的值为.12.如图,有5个形状大小完全相同的小长方形构造成一个大长方形(各小长方形之间不重叠且不留空隙),图中阴影部分的面积为32,则每个小长方形的对角线为.13.关于x的多项式2x−m与3x+5的乘积,一次项系数是25,则m的值为.三、计算题14.计算:(1)(ab2)2⋅(−a3b)3÷(−5ab);(2)(3x−2y)2−(3x−y)(3x+y).15.先化简,再求值:(x−5)(x+2)−(x−3)(x+3),其中x=−1.216.分解因式:(1)x2−4(2)x2+4xy+4y2(3)(a−b)2+4ab(4)(a−b)(x−y)+(b−a)(x+y)四、解答题17.如图,有正方形卡片A类、B类和长方形卡片C类各若干张,如果用这三类卡片拼一个长为2a+b、宽为a+2b的大长方形,通过计算说明三类卡片各需多少张?18.下面是小华同学分解因式9a2(x−y)+4b2(y−x)的过程,请认真阅读,并回答下列问题.解:原式=9a2(x−y)+4b2(x−y)①=(x−y)(9a2+4b2)②=(x−y)(3a+2b)2③任务一:以上解答过程从第步开始出现错误.任务二:请你写出正确的解答过程.19.如图是某单位办公用房的平面结构示意图(长度单位:米),图形中的四边形均是长方形或正方形.(1)用含x、y的式子分别表示会客室和会议厅的占地面积.(2)如果x+y=5,xy=7,会议厅比会客室大多少平方米?20.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2-4y2-2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2-4y2-2x+4y=(x+2y)(x-2y)-2(x-2y)=(x-2y)(x+2y-2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2-2xy+y2-16;(2)△ABC三边a,b,c 满足a2-ab-ac+bc=0,判断△ABC的形状.。

整式乘法与因式分解100题+(基础篇答案)

整式乘法与因式分解100题+(基础篇答案)
16.解:A、应为 2x3•3x4=6x7,故本选项错误; B、应为 3x3•4x3=12x6,故本选项错误; C、应为 2a3+3a3=5a3,故本选项错误; D、4a3•2a2=4×2×a3•a2=8a5,正确. 故选 D.
17.解:A、(a5)2=a10,故正确; B、2a2•(-3a3)=2×(-3)a2•a3=-6a5,正确; C、b•b3=b4,故正确;
39.解:(-2a)3•b4÷12a3b2=-8a3b4÷12a3b2=- b2.
40.解:(9ab5)÷(3ab2)=3b3;(4a2b)÷(-12a3bc)=-3ac; (4x2y-8x3)÷4x2=y-2x.
整式乘法与因式分解 500 题--基础篇解析
41.解:(am+1bn+2)•(a2n-1b2m),
5.解:①根据零指数幂的性质,得(-3)0=1,故正确; ②根据同底数的幂运算法则,得 a3+a3=2a3,故错误; ③根据负指数幂的运算法则,得 4m-4= ,故错误;
④根据幂的乘方法则,得(xy2)3=x3y6,故正确. 故选 C.
6.解:A、应为 a2•a3=a2+3=a5,故 A 错误 B、应为(2a)•(3a)=6a2,故 B 错误
23.解:2x2•(-3x3)=2×(-3)•(x2•x3)=-6x5.
24.解:(-2x2)•3x4=-2×3x2•x4=-6x6.
整式乘法与因式分解 500 题--基础篇解析
25.解:(3x2y)(- x4y)=3×(- )x2+4y2=-4x6y2.
26.解:2a3•(3a)3=2a3•(27a3)=54a3+3=54a6. 27.解:(-3x2y)•( xy2)=(-3)× ×x2•x•y•y2=-x2+1•y1+2=-x3y3.

基础训练二:《整式乘法与因式分解》(30题)

基础训练二:《整式乘法与因式分解》(30题)

基础训练二:《整式乘法与因式分解》(30题)一.解答题(共30小题)1.已知有理数x 、y 满足:1x y -=,且(2)(2)1x y +-=-,求22x xy y ++的值. 2.已知:5x y +=,(2)(2)3x y --=-.求下列代数式的的值. (1)xy ;(2)224x xy y ++; (3)25x xy y ++. 3.计算:(1)011|2|(2)()3π----+-;(2)235823(2)a a a a a +-÷g ; (3)223(1)(1)(3)x x x x x x ---+-. 4.分解因式: (1)321025a a a ++; (2)(1)(2)6t t ++-.5.已知()(2)x a x +-的结果中不含关于字母x 的一次项.先化简,再求:2(1)(2)(2)a a a ++-+的值.6.先化简后求值:224(2)(2)(2)x x y x y y x --+---,其中1x =-,2y =-. 7.因式分解:(1)()3()a x y y x -+-; (2)222(4)16x x +-. 8.分解因式: (1)2161x -; (2)212123a b ab b -+; (3)22(2)(2)x a b y b a -+-.9.先化简,再求值:22(1)(21)(1)(3)(3)x x x x x -+-++-+,其中2x =.10.已知215(3)()x mx x x n +-=++,求m n 的值.11.先化简,再求值:2(4)(2)(2)(2)x x y x y x y x y -++---,其中x ,y 满足2|2|(1)0x y -++=.12.先化简,再求值:3211()2[3(1)]23a a a a -÷--,其中12a =.13.先化简,再求值2(2)2(2)(4)(3)(3)x x x x x -++---+;其中1x =. 14.先化简,再求值:2(1)(3)(2)(2)x x x x x ---++-,其中2x =-. 15.计算: (1)23()4a a -g(2)22(1)(1)x x x +++.16.如图,甲长方形的两边长分别为1m +,7m +;乙长方形的两边长分别为2m +,4m +.(其中m 为正整数) (1)图中的甲长方形的面积1S ,乙长方形的面积2S , 比较:1S 2S (填“<”、“ =”或“>” );(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S 与图中的甲长方形面积1S 的差(即1)S S -是一个常数,求出这个常数;(3)在(1)的条件下,若某个图形的面积介于1S 、2S 之间(不包括1S 、2)S 并且面积为整数,这样的整数值有且只有16个,求m 的值.17.甲、乙两个长方形的边长如图所示(m 为正整数),其面积分别为1S ,2S .(1)填空:12S S -= (用含m 的代数式表示);(2)若一个正方形的周长等于甲、乙两个长方形的周长之和. ①设该正方形的边长为x ,求x 的值(用含m 的代数式表示);②设该正方形的面积为3S ,试探究:3S 与122()S S +的差是否是常数?若是常数,求出这个常数,若不是常数,请说明理由,(3)若另一个正方形的边长为正整数n ,并且满足条件121n S S <-…的n 有且只有4个,求m 的值.18.分解因式: (1)228x -(2)32232x y x y xy ++19.若7a b +=,且(2)(2)2a b --=. (1)求ab 的值.(2)求223a ab b ++的值. 20.计算:(1)2(1)(1)x x x +-- (2)32532(2)3x x x x --÷g 21.把下列各式分解因式: (1)2312a -;(2)22(23)2(23)x y x x y x +-++. 22.将下列各式分解因式: (1)256x x --; (2)2882x x -+; (3)22()()a x y b y x -+-.23.先化简,再求值:22(1)3(3)(3)(5)(2)x x x x x +--+++-,其中:1x =-.24.如图1所示.用两块a b ⨯型长方形和a a ⨯型、b b ⨯型正方形硬纸片拼成一个新的正方形.(1)用两种不同的方法计算图1中正方形的面积;(2)如图2所示,用若干块a b ⨯型长方形和a a ⨯型、b b ⨯型正方形硬纸片拼成一个新的长方形.试由图形推出2223a ab b ++因式分解的结果.(3)请你用拼图等方法推出2243a ab b ++因式分解的结果,画出你的拼图.25.“已知2019x =,求代数式(23)(32)6(3)516x x x x x ++-+++的值”,马小虎把“2019”看成了“2091”,但他的计算结果却是正确的,这是为什么?请你说明理由. 26.计算:(1)32(1)201920172021---+-⨯(2)22223(3)xy x y x y xy xy ---+g(3)2(2)(2)(3)a b b a a b -+-- 27.分解因式: (1)269ax ax a -+ (2)(1)(9)8m m m +-+ (3)4234a a +-28.先化简,再求值:2(23)(23)(54)(1)x x x x x +--+--,其中220190x x +-=, 29.因式分解: (1)269x x -+; (2)2()4()a x y x y ---. 30.利用乘法公式计算:(1)2(23)2(3)(3)x y y x x y -++-; (2)22(2)(2)m n m n +-; (3)(23)(23)a b a b -+++.基础训练二:《整式乘法与因式分解》(30题)参考答案与试题解析一.解答题(共30小题)1.已知有理数x 、y 满足:1x y -=,且(2)(2)1x y +-=-,求22x xy y ++的值. 【分析】已知等式整理求出xy 的值,原式利用完全平方公式变形,将各自的值代入计算即可求出值.【解答】解:(2)(2)1x y +-=-, 2()41xy y x +--=-,即241xy --=-, 5xy ∴=,则原式2()311516x y xy =-+=+=.2.已知:5x y +=,(2)(2)3x y --=-.求下列代数式的的值. (1)xy ;(2)224x xy y ++; (3)25x xy y ++.【分析】(1)原式利用多项式乘以多项式法则计算,(2)(2)3x y --=-的左边,再将5x y +=的值代入计算即可求出xy 值;(2)原式利用完全平方公式变形,将各自的值代入计算即可求出值;(3)把25x xy y ++化成()5x y y ++,再两次代入5x y +=的值,便可得最后结果. 【解答】解:(1)2)(2)3x y --=-Q . 2()43xy x y ∴-++=- 5x y +=Q , 3xy ∴=;(2)5x y +=Q ,3xy =,∴原式2()225631x y xy =++=+=;(3)原式()5x x y y =++, 5x y +=Q ,∴原式555()5525x y x y =+=+=⨯=.3.计算:(1)011|2|(2)()3π----+-;(2)235823(2)a a a a a +-÷g ; (3)223(1)(1)(3)x x x x x x ---+-.【分析】(1)直接利用绝对值的性质以及负指数幂的性质、零指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则以及同底数幂的乘除运算法则分别化简得出答案; (3)直接利用单项式乘以多项式以及多项式乘以多项式运算法则计算得出答案. 【解答】解:(1)原式213=--2=-;(2)原式66638a a a =⨯+- 624a =;(3)原式32322333(33)x x x x x x x =----+- 323233332x x x x x x =----+ 252x x =--.4.分解因式: (1)321025a a a ++; (2)(1)(2)6t t ++-.【分析】(1)原式提取公因式,再利用完全平方公式分解即可; (2)原式整理后,利用十字相乘法分解即可. 【解答】解:(1)原式2(1025)a a a =++2(5)a a =+;(2)原式2326t t =++- 234t t =+- (1)(4)t t =-+.5.已知()(2)x a x +-的结果中不含关于字母x 的一次项.先化简,再求:2(1)(2)(2)a a a ++-+的值.【分析】首先利用多项式乘以多项式计算,然后可得可得a 的值,再利用完全平方和平方差进行计算,然后合并同类项,化简后,再代入a 的值即可. 【解答】解:22()(2)22(2)2x a x x x ax a x a x a +-=-+-=+--, Q 结果中不含关于字母x 的一次项,20a ∴-=,解得:2a =,2(1)(2)(2)a a a ++-+Q 22214a a a =+++- 25a =+,∴当2a =时,原式9=.6.先化简后求值:224(2)(2)(2)x x y x y y x --+---,其中1x =-,2y =-.【分析】首先利用完全平方和平方差进行计算,再合并同类项,化简后,再代入x 、y 的值求值即可.【解答】解:原式222224(44)4x x xy y y x =--++-222224444x x xy y y x =-+-+- 2243xy y x =+-, 当1x =-,2y =-时,原式4(1)(2)341812119=⨯-⨯-+⨯-=+-=. 7.因式分解:(1)()3()a x y y x -+-; (2)222(4)16x x +-.【分析】(1)原式变形后,提取公因式即可;(2)原式利用平方差公式,以及完全平方公式分解即可. 【解答】解:(1)原式()3()a x y x y =--- ()(3)x y a =--;(2)原式22(44)(44)x x x x =+++-22(2)(2)x x =+-. 8.分解因式: (1)2161x -; (2)212123a b ab b -+; (3)22(2)(2)x a b y b a -+-.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可; (3)原式变形后,提取公因式,再利用平方差公式分解即可. 【解答】解:(1)原式(41)(41)x x =+-; (2)原式23(441)b a a =-+23(21)b a =-;(3)原式22(2)(2)x a b y a b =---22(2)()a b x y =-- (2)()()a b x y x y =-+-.9.先化简,再求值:22(1)(21)(1)(3)(3)x x x x x -+-++-+,其中2x =.【分析】首先利用完全平方、平方差和多项式乘以多项式计算法则进行计算,再合并同类项,化简后,再代入x 的值即可.【解答】解:原式22(22)(21)(21)9x x x x x =-+-+++- 2224242219x x x x x x =+-----+- 24412x x =--,当2x =时,原式444212168124=⨯-⨯-=--=-. 10.已知215(3)()x mx x x n +-=++,求m n 的值.【分析】先所给的因式分解等式右边按照多项式乘法展开,再与等式左边的多项式比较系数,即可得出m 和n 的值,则问题可解. 【解答】解:(3)()x x n ++Q 233x nx x n =+++2(3)3x n x n =+++ 215x mx =+-, 315n ∴=-,3n m +=, 5n ∴=-,2m =-, 21(5)25m n -∴=-=. 11.先化简,再求值:2(4)(2)(2)(2)x x y x y x y x y -++---,其中x ,y 满足2|2|(1)0x y -++=.【分析】先根据整式的混合运算顺序和法则化简原式,再根据绝对值和平方的非负性计算x 和y 的值,并代入求值可得.【解答】解:原式2222244(44)x xy x y x xy y =-+---+,22225444x xy y x xy y =---+-, 222x y =-,2|2|(1)0x y -++=Q , 20x ∴-=,10y +=, 2x ∴=,1y =-,当2x =,1y =-时,原式2222(1)422=-⨯-=-=.12.先化简,再求值:3211()2[3(1)]23a a a a -÷--,其中12a =.【分析】原式利用幂的乘方与积的乘方运算法则,以及单项式乘除单项式法则计算得到最简结果,把a 的值代入计算即可求出值. 【解答】解:原式3212(3)2a a a a =-÷⨯-+2211(3)22a a a =-⨯-+432113422a a a =-+-,当12a =时,原式113216416864=-+-=-. 13.先化简,再求值2(2)2(2)(4)(3)(3)x x x x x -++---+;其中1x =. 【分析】先算乘法,再合并同类项,最后代入求出即可 【解答】解:原式222442(28)(9)x x x x x =-++---- 2224424169x x x x x =-++---+ 2283x x =--,当1x =时,原式2839=--=-.14.先化简,再求值:2(1)(3)(2)(2)x x x x x ---++-,其中2x =-. 【分析】先算乘法,再合并同类项,最后代入求出即可. 【解答】解:2(1)(3)(2)(2)x x x x x ---++- 2222134x x x x x =-+-++- 23x x =+-,当2x =-时,原式2(2)231=---=-. 15.计算: (1)23()4a a -g(2)22(1)(1)x x x +++.【分析】(1)根据幂的乘方、同底数幂的乘法进行计算即可; (2)根据单项式乘以多项式以及完全平方公式进行计算即可. 【解答】解:(1)原式64a a =-g 74a =-;(2)原式222221x x x x =++++ 2341x x =++.16.如图,甲长方形的两边长分别为1m +,7m +;乙长方形的两边长分别为2m +,4m +.(其中m 为正整数)(1)图中的甲长方形的面积1S ,乙长方形的面积2S , 比较:1S > 2S (填“<”、“ =”或“>” );(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S 与图中的甲长方形面积1S 的差(即1)S S -是一个常数,求出这个常数;(3)在(1)的条件下,若某个图形的面积介于1S 、2S 之间(不包括1S 、2)S 并且面积为整数,这样的整数值有且只有16个,求m 的值.【分析】(1)根据多项式乘多项式法则分别求出1S 、2S ,比较大小即可; (2)根据长方形周长公式、正方形的周长公式求出正方形的边长,计算即可; (3)根据题意列出不等式,解不等式得到答案. 【解答】解:(1)21(1)(7)87S m m m m =++=++,22(2)(4))68S m m m m =++=++,2212(87)(68)21S S m m m m m -=++-++=-,m Q 为正整数,210m ∴->, 12S S ∴>,故答案为:>;(2)图中的甲长方形周长为2(71)4416m m m +++=+,∴该正方形边长为4m +,221(4)(87)9S S m m m ∴-=+-++=,∴该正方形面积S 与图中的甲长方形面积1S 的差是一个常数9;(3)由(1)得,1221S S m -=-, 由题意得,162117m <-…,∴1792m <„, m Q 为正整数,9m ∴=.17.甲、乙两个长方形的边长如图所示(m 为正整数),其面积分别为1S ,2S .(1)填空:12S S -= 21m - (用含m 的代数式表示); (2)若一个正方形的周长等于甲、乙两个长方形的周长之和. ①设该正方形的边长为x ,求x 的值(用含m 的代数式表示);②设该正方形的面积为3S ,试探究:3S 与122()S S +的差是否是常数?若是常数,求出这个常数,若不是常数,请说明理由,(3)若另一个正方形的边长为正整数n ,并且满足条件121n S S <-„的n 有且只有4个,求m 的值.【分析】(1)根据矩形的面积公式计算即可; (2)①根据正方形和矩形的周长公式计算即可; ②根据正方形的面积计算即可;(3)根据不等式组的整数解即可得结论.【解答】解:(1)12(7)(1)(4)(2)S S m m m m -=++-++ 21m =-.故答案为21m -. (2)①根据题意,得42(71)2(42)x m m m m =+++++++解得27x m =+. 答;x 的值为27m +. ②21221415S S m m +=++Q ,223122()(27)2(21415)S S S m m m -+=+-++224284942830m m m m =++--- 19=.答:3S 与122()S S +的差是常数:19. (3)121n m <-Q „, 由题意,得4215m <-„,解得532m <„.m Q 是整数,3m ∴=.答:m 的值为3. 18.分解因式: (1)228x -(2)32232x y x y xy ++【分析】(1)原式提取公因式,再利用平方差公式分解即可; (2)原式提取公因式,再利用完全平方公式分解即可. 【解答】解:(1)原式22(4)2(2)(2)x x x =-=+-; (2)原式222(2)()xy x xy y xy x y =++=+. 19.若7a b +=,且(2)(2)2a b --=. (1)求ab 的值.(2)求223a ab b ++的值.【分析】(1)已知等式化简后,将7a b +=代入计算即可求出ab 的值; (2)原式利用完全平方公式变形,将各自的值代入计算即可求出值. 【解答】解:(1)7a b +=Q ,且(2)(2)2()42a b ab a b --=-++=, 1442ab ∴-+=,解得:12ab =;(2)7a b +=Q ,12ab =,∴原式2()491261a b ab =++=+=.20.计算:(1)2(1)(1)x x x +--(2)32532(2)3x x x x --÷g【分析】(1)直接利用完全平方公式以及单项式乘以多项式分别计算得出答案; (2)直接利用积的乘方运算法则以及同底数幂的乘除运算法则计算得出答案. 【解答】解:(1)原式2221x x x x =++-+ 31x =+;(2)原式6824x x x =-÷ 63x =.21.把下列各式分解因式: (1)2312a -;(2)22(23)2(23)x y x x y x +-++.【分析】(1)原式提取公因式,再利用平方差公式分解即可; (2)原式利用完全平方公式分解即可.【解答】解:(1)原式23(4)3(2)(2)a a a =-=+-;(2)原式22(23)(3)x y x x y =+-=+. 22.将下列各式分解因式: (1)256x x --; (2)2882x x -+; (3)22()()a x y b y x -+-.【分析】(1)原式利用十字相乘法分解即可;(2)原式提取公因式,再利用完全平方公式分解即可; (3)原式提取公因式,再利用平方差公式分解即可. 【解答】解:(1)原式(6)(1)x x =-+; (2)原式222(441)2(21)x x x =-+=-;(3)原式22()()()()()x y a b x y a b a b =--=-+-.23.先化简,再求值:22(1)3(3)(3)(5)(2)x x x x x +--+++-,其中:1x =-.【分析】根据整式的运算法则即可求出答案.【解答】解:原式2222(21)3(9)310x x x x x =++--++- 222242327310x x x x x =++-+++- 719x =+,当1x =-时, 原式71912=-+=.24.如图1所示.用两块a b ⨯型长方形和a a ⨯型、b b ⨯型正方形硬纸片拼成一个新的正方形.(1)用两种不同的方法计算图1中正方形的面积;(2)如图2所示,用若干块a b ⨯型长方形和a a ⨯型、b b ⨯型正方形硬纸片拼成一个新的长方形.试由图形推出2223a ab b ++因式分解的结果.(3)请你用拼图等方法推出2243a ab b ++因式分解的结果,画出你的拼图.【分析】(1)(2)通过计算每个的面积然后求和,另外直接计算整个面积,来进行推导; (3)根据公式画出相应的图.【解答】解:(1)正方形的面积:方法221:2a ab b ++;方法2222:()2a b a ab b +=++; (2)222222232()()()(2)a ab b a ab b a ab a b a a b a b a b ++=++++=+++=++; (3)22222243222()2()()(3)a ab b a ab b b ab a b b a b a b a b ++=++++=+++=++;25.“已知2019x =,求代数式(23)(32)6(3)516x x x x x ++-+++的值”,马小虎把“2019”看成了“2091”,但他的计算结果却是正确的,这是为什么?请你说明理由.【分析】原式化简合并得到最简结果,即可作出判断. 【解答】解:原式22649661851622x x x x x x =+++--++=,化简结果与x 的取值无关,故马小虎把“2019”看成了“2091”,但他的计算结果却是正确的. 26.计算:(1)32(1)201920172021---+-⨯(2)22223(3)xy x y x y xy xy ---+g(3)2(2)(2)(3)a b b a a b -+--【分析】(1)根据负整数指数幂的意义化简第一项,将20172021⨯利用平方差公式计算,再进行加减运算即可;(2)先算乘法,再合并同类项即可;(3)先算多项式乘法,完全平方公式,再去括号合并同类项即可求解. 【解答】解:(1)32(1)201920172021---+-⨯212019(20192)(20192)=+--⨯+ 221201920194=+-+ 5=;(2)22223(3)xy x y x y xy xy ---+g32323363x y x y x y =-+- 32333x y x y =--;(3)2(2)(2)(3)a b b a a b -+-- 222242269ab a b ab a ab b =+---+- 22911a ab b =+-.27.分解因式: (1)269ax ax a -+ (2)(1)(9)8m m m +-+ (3)4234a a +-【分析】(1)先提取公因式a ,再利用完全平方公式分解即可;(2)先利用多项式乘多项式的法则计算,进而利用平方差公式分解即可; (3)先利用十字相乘法分解因式,再利用平方差公式分解因式即可. 【解答】解:(1)269ax ax a -+2(69)a x x =-+ 2(3)a x =-;(2)(1)(9)8m m m +-+ 2898m m m =--+ 29m =-(3)(3)m m =+-;(3)4234a a +-22(1)(4)a a =-+ 2(1)(1)(4)a a a =-++.28.先化简,再求值:2(23)(23)(54)(1)x x x x x +--+--,其中220190x x +-=, 【分析】先算乘法,再合并同类项,最后代入求出即可. 【解答】解:2(23)(23)(54)(1)x x x x x +--+-- 222495421x x x x x =----+- 22210x x =---, 220190x x +-=Q , 22019x x +=,∴原式22019104048=-⨯-=-.29.因式分解: (1)269x x -+; (2)2()4()a x y x y ---.【分析】(1)根据完全平方公式因式分解;(2)此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方差公式继续分解.【解答】解:(1)2269(3)x x x -+=-; (2)2()4()a x y x y ---2()(4)x y a =-- ()(2)(2)x y a a =-+-.30.利用乘法公式计算:(1)2(23)2(3)(3)x y y x x y -++-; (2)22(2)(2)m n m n +-; (3)(23)(23)a b a b -+++.【分析】用完全平方公式和平方差公式结合合并同类项计算. 【解答】解:(1)原式2(23)2(3)(3)x y x y x y =-++-222(23)2(9)x y x y =-+-, 22224129182x xy y x y =-++-, 2222127x xy y =-+; (2)22(2)(2)m n m n +-2[(2)(2)]m n m n =+- 222[4]m n =- 4224816m m n n =-+;(3)(23)(23)a b a b -+++ (32)(32)a b a b =+-++22(3)(2)a b =+- 22694a a b =++-.。

人教版2022-2023学年八年级数学上册阶段性复习精选精练《整式的乘法与因式分解》基础卷含答案解析

人教版2022-2023学年八年级数学上册阶段性复习精选精练《整式的乘法与因式分解》基础卷含答案解析

第14章 整式的乘法与因式分解(基础篇)一、单选题(本大题共10小题,每小题3分,共30分)1.计算()32a 的结果是( )A .6a B .5a C .8a D .9a 2.下列计算正确是( )A .236()a a =B .224a a a +=C .()()326a a a ⋅=D .33a a -=3.对于①3(13)x xy x y -=-,②2(3)(1)23x x x x +-=+-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解4.长方形的面积是296a ab -,一边长是3a ,则它的另一边长是( )A .32a b +B .32a b -C .23a b -D .23a b+5.若(x +2)(x ﹣1)=x 2+mx +n ,则m +n =( )A .1B .-2C .-1D .26.设(5a +3b )2=(5a -3b )2+A ,则A 等于( )A .60abB .30abC .15abD .12ab7.已知x +1x=6,则x 2+21x =( )A .38B .36C .34D .328.已知a ,b ,c 是△ABC 的三边长,且满足a 2+2b 2+c 2-2b (a +c )=0,则此三角形是( )A .等腰三角形B .等边三角形C .直角三角形D .不能确定9.设M =(x ﹣3)(x ﹣7),N =(x ﹣2)(x ﹣8),则M 与N 的关系为( )A .M <NB .M >NC .M =ND .不能确定10.如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长 为3,则另一边长是( )A .m +3B .m +6C .2m +3D .2m +6二、填空题(本大题共8小题,每小题4分,共32分)11.分解因式:2ab a -=______.12.计算432x x ⋅的结果等于__________.13.已知代数式2x y -的值是1,则代数式241x y -+-的值是_______.14.若2(3)()x x m x x n ++=-+对x 恒成立,则n =______.15.若关于x 的二次三项式21x ax 4++是完全平方式,则a 的值是_______.16.已知(x+y )2=25,(x ﹣y )2=9,则xy=___.17.分解因式:2x 3﹣6x 2+4x =__________.18.2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1),且大正方形的面积是15,小正方形的面积是3,直角三角形的较短直角边为a ,较长直角边为b .如果将四个全等的直角三角形按如图2的形式摆放,那么图2中最大的正方形的面积为____.三、解答题(本大题共6小题,共58分)19.(8分)计算(1)9991000(0.125)8⨯; (2)2(4)(4)(1)a a a +---20.(8分)因式分解:(1) 228m -; (2) 3223242m n m n mn -+.21.(10分)求值:(1)已知40x y +-=,求22x y ⋅的值;(2)化简求值:()()()22121214x x x x ⎡⎤-++-÷⎣⎦,其中2x =-.22.(10分)已知(x 2+mx +1)(x 2﹣2x +n )的展开式中不含x 2和x 3项.(1) 分别求m ,n 的值;(2) 先化简再求值:2n 2+(2m +n )(m ﹣n )﹣(m ﹣n )223.(10分)回答下列问题:(1)方法学习:把二次三项式265x x ++因式分解,可按照如下方法:265x x ++2=694x x ++-2(3)4x =+-(32)(32)x x =+++-(5)(1)x x =+-应用上述方法,把二次三项式2412x x --的因式分解.(2)拓展应用:由上述因式分解过程可知,2265(3)4x x x ++=+-2(3)0x +≥ ∴当30x +=时即3x =-时265x x ++取最小值4-参照上述分析过程回答:对二次三项式226x x -+,当x 的值为 时,此二次三项式取最小值,这个最小值是 .24.(12分)如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出2()a b +、2()a b -、ab 之间的等量关系是________;(2)根据(1)中的结论,若95,4x y x y ⋅+==,则x y -=________;(3)拓展应用:若22(2019)(2020)7m m -+-=,求(2019)m -(2020)m -的值.参考答案1.A【分析】根据幂的乘方法则进行计算即可.解:()23236a a a ⨯==,故选:A .【点拨】本题考查幂的乘方,计算法则为:幂的乘方,底数不变,指数相乘.2.A【分析】根据幂的乘方,整式的加减法法则,单项式乘单项式的法则,逐一进行判断即可.解:A 、236()a a =,选项正确,符合题意;B 、2222a a a +=,选项错误,不符合题意;C 、()()2326a a a =,选项错误,不符合题意;D 、32a a a -=,选项错误,不符合题意;故选A .【点拨】本题考查幂的乘方,合并同类项以及单项式乘单项式.熟练掌握相关运算法则是解题的关键.3.C【分析】根据因式分解的定义进行判断即可;解:①左边多项式,右边整式乘积形式,属于因式分解;②左边整式乘积,右边多项式,属于整式乘法;故答案选C .【点拨】本题主要考查了因式分解的定义理解,准确理解因式分解的定义是解题的关键.4.B【分析】直接利用整式的除法运算法则计算得出答案.解:∵长方形的面积是296a ab -,一边长是3a ,∴它的另一边长是:2(96)3a ab a-÷29363a a ab a=÷-÷32a b =-.故选:B .【点拨】此题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.5.C【分析】依据多项式乘以多项式的法则,进行计算,再进行比较即可得到答案.解:(x +2)(x -1)=2x +x ﹣2 =2x +mx +n ,m =1,n =﹣2,所以m +n =1﹣2=﹣1.故选C6.A【分析】根据完全平方公式的展开法则,将等号两边去掉括号,即可得出A .解:∵(5a +3b )2=(5a -3b )2+A∴25a 2+30ab +9b 2=25a 2-30ab +9b 2+A∴A =60ab故选:A【点拨】本题考查了完全平方公式的应用,(a ±b )2=a 2±2ab +b 2,两数和(差)的平方,等于它们的平方和加上(减去)它们的的积的2倍.7.C【分析】把x +1x=6两边平方,利用完全平方公式化简,即可求出所求.解:把x +1x =6两边平方得:(x +1x)2=x 2+21x +2=36,则x 2+21x =34,故选C .【点拨】本题考查了分式的混合运算以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.8.B【分析】运用因式分解,首先将所给的代数式恒等变形;借助非负数的性质得到a =b =c ,即可解决问题.解:∵a 2+2b 2+c 2﹣2b (a +c )=0,∴(a ﹣b )2+(b ﹣c )2=0;∵(a ﹣b )2≥0,(b ﹣c )2≥0,∴a ﹣b =0,b ﹣c =0,∴a =b =c ,∴△ABC 为等边三角形.故选B .【点拨】本题考查了因式分解及其应用问题.解题的关键是牢固掌握因式分解的方法,灵活运用因式分解来分析、判断、推理活解答.9.B【分析】由于M =(x -3)(x -7)=x 2-10x +21,N =(x -2)(x -8)=x 2-10x +16,可以通过比较M 与N 的差得出结果.解:∵M =(x -3)(x -7)=x 2-10x +21,N =(x -2)(x -8)=x 2-10x +16,M -N =(x 2-10x +21)-(x 2-10x +16)=5,∴M >N .故选B .【点拨】本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项,掌握多项式乘以多项式的法则是解题的关键.10.C【分析】由于边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.解:设拼成的矩形一边长为x ,则依题意得:(m +3)2-m 2=3x ,解得,x =(6m +9)÷3=2m +3,故选:C .11.a (b +1)(b ﹣1)解:原式=2(1)a b =a (b +1)(b ﹣1),故答案为a (b +1)(b ﹣1).12.72x 解:分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x 4+3=2x 7.故答案为2x 7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.13.-3【分析】把(x-2y )看作一个整体并代入代数式进行计算即可得解.解:∵x-2y=1,∴-2x+4y-1=-2(x-2y )-1=-2×1-1=-3.故答案为-3..【点拨】本题考查了代数式求值,整体思想的利用是解题的关键.14.4.解:∵()()23x x m x x n ++=-+,∴()2233x x m x n x n ++=+-- ,故31n -=,解得:n=4.故答案为4.15.±1【分析】利用完全平方公式的结构特征判断即可求出a 的值.解:这里首末两项是x 和12这两个数的平方,那么中间一项为加上或减去x 和12积的2倍,故a =±1,故答案为:±1.16.4【分析】根据完全平方公式的运算即可.解:∵()225x y +=,()29x y -=∵()2x y ++()2x y -=4xy =16,∴xy =4.【点拨】此题主要考查完全平方公式的灵活运用,解题的关键是熟知完全平方公式的应用.17.2x (x ﹣1)(x ﹣2).解:分析:首先提取公因式2x ,再利用十字相乘法分解因式得出答案.详解:2x 3﹣6x 2+4x=2x (x 2﹣3x+2)=2x (x ﹣1)(x ﹣2).故答案为2x (x ﹣1)(x ﹣2).点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.18.27【分析】根据题意得出a 2+b 2=15,(b-a )2=3,图2中大正方形的面积为:(a+b )2,然后利用完全平方公式的变形求出(a+b )2即可.解:由题意可得在图1中:a 2+b 2=15,(b-a )2=3,图2中大正方形的面积为:(a+b )2,∵(b-a )2=3a 2-2ab+b 2=3,∴15-2ab=32ab=12,∴(a+b )2=a 2+2ab+b 2=15+12=27,故答案为:27.【点拨】本题考查了完全平方公式在几何图形中的应用,熟知完全平方式的形式是解题关键.19.(1)8(2)217a -.【分析】(1)利用积的乘方的逆运算可计算出结果.(2)运用平方差公式和平方差公式展开,然后再合并同类项.解:(1)()()9999999999919000(0=0.12588=0.12588=)8.1258⨯⨯⨯⨯⨯.(2)222(4)(4)(1)=1621217+----+---=a a a a a a a 【点拨】本题主要考查了整式乘法公式的应用,主要是对公式逆应用的考查.20.(1)()()222m m -+(2)()22mn m n -【分析】(1)先提公因式2,再利用平方差公式分解因式即可;(2)先提公因式2mn ,再利用完全平方公式分解因式即可.(1)解:228m -()224m =-()()222m m =-+;(2)解:3223242m n m n mn -+()2222mn m mn n =-+()22mn m n =-.【点拨】本题考查因式分解,熟记平方差公式和完全平方公式,掌握因式分解的方法步骤并正确求解是解答的关键.21.(1)16;(2)2x-1;-5.【分析】(1)根据等式的基本性质可得4x y +=,然后根据同底数幂的乘法法则变形,并利用整体代入法求值即可;(2)根据完全平方公式和平方差公式计算,然后利用多项式除以单项式法则计算,最后代入求值即可.解:(1)∵40x y +-=∴4x y +=∴22x y⋅=2x y+=42=16;(2)()()()22121214x x x x ⎡⎤-++-÷⎣⎦=22441414x x x x⎡⎤-++-÷⎣⎦=()2844x x x-÷=2x-1,将2x =-代入,原式=2×(-2)-1=-5.【点拨】此题考查的是整式的混合运算,掌握同底数幂的乘法法则、完全平方公式、平方差公式和多项式除以单项式法则是解题关键.22.(1)m =2,n =3;(2)m 2+mn , 10.【分析】(1)先根据多项式乘以多项式法则展开,再合并同类项,最后求出解(2)先算乘法,再合并同类项,最后代入求解解:(1)(x 2+mx +1)(x 2﹣2x +n )=x 4﹣2x 3+nx 2+mx 3﹣2mx 2+mnx +x 2﹣2x +n=x 4+(﹣2+m )x 3+(n ﹣2m +1)x 2+(mn ﹣2)x +n ,∵(x 2+mx +1)(x 2﹣2x +n )的展开式中不含x 2和x 3项,∴﹣2+m =0,n ﹣2m +1=0,解得:m =2,n =3;(2)2n 2+(2m +n )(m ﹣n )﹣(m ﹣n )2=2n 2+2m 2﹣2mn +mn ﹣n 2﹣m 2+2mn ﹣n 2=m 2+mn ,当m =2,n =3时,原式=4+6=10.【点拨】此题考查了合并同类项,多项式乘多项式,解题关键是合并同类项23.(1)(2)(6)x x +-;(2)1;5【分析】(1)根据题目所给方法进行因式分解即可;(2)先对二次三项式进行因式分解,然后利用题中所给方法进行求解即可.解:(1)2412x x --24416x x =-+-()2216x =--()()2424x x =---+()()62x x =-+;(2)由()222615x x x -+=-+可得:∵()210x-≥,∴当10x-=时,即x=1,226x x-+取最小值5;故答案为1,5.【点拨】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.24.(1)(a+b)2-(a-b)2=4ab;(2)±4;(3)-3【分析】(1)由图可知,图1的面积为4ab,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2,根据图1的面积和图2中白色部分的面积相等可得答案;(2)根据(1)中的结论,可知(x+y)2-(x-y)2=4xy,将x+y=5,x•y94=代入计算即可得出答案;(3)将等式(2019-m)+(m-2020)=-1两边平方,再根据已知条件及完全平方公式变形可得答案.解:(1)由图可知,图1的面积为4ab,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2,∵图1的面积和图2中白色部分的面积相等,∴(a+b)2-(a-b)2=4ab,故答案为:(a+b)2-(a-b)2=4ab;(2)根据(1)中的结论,可知(x+y)2-(x-y)2=4xy,∵x+y=5,x•y=94,∴52-(x-y)2=4×94,∴(x-y)2=16∴x-y=±4,故答案为:±4;(3)∵(2019-m)+(m-2020)=-1,∴[(2019-m)+(m-2020)]2=1,∴(2019-m)2+2(2019-m)(m-2020)+(m-2020)2=1,∵(2019-m)2+(m-2020)2=7,∴2(2019-m)(m-2020)=1-7=-6;∴(2019-m)(m-2020)=-3.【点拨】本题考查了完全平方公式的几何背景,熟练运用完全平方公式并数形结合是解题的关键。

人教版数学八年级上册 整式的乘法与因式分解单元练习(Word版 含答案)

人教版数学八年级上册 整式的乘法与因式分解单元练习(Word版 含答案)

人教版数学八年级上册 整式的乘法与因式分解单元练习(Word 版含答案)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.将多项式24x +加上一个整式,使它成为完全平方式,则下列不满足条件的整式是( ) A .4-B .±4xC .4116xD .2116x 【答案】D【解析】【分析】分x 2是平方项与乘积二倍项,以及单项式的平方三种情况,根据完全平方公式讨论求解.【详解】解:①当x 2是平方项时,4士4x+x ²=(2士x )2,则可添加的项是4x 或一4x ; ②当x 2是乘积二倍项时,4+ x 2+4116x =(2+214x )2,则可添加的项是4116x ; ③若为单项式,则可加上-4.故选:D.【点睛】本题考查了完全平方式,比较复杂,需要我们全面考虑问题,首先考虑三个项分别充当中间项的情况,就有三种情况,还有就是第四种情况加上一个数,得到一个单独的单项式,也是可以成为一个完全平方式,这种情况比较容易忽略,要注意.2.(2017重庆市兼善中学八年级上学期联考)在日常生活中如取款、上网等都需要密码.有一种用“因式分解法”产生的密码方便记忆,如:对于多项式44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =, 9y =时,则各个因式的值为()0x y -=, ()18x y +=, ()22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取20x, 10y =时,用上述方法产生的密码不可能...是( ) A .201030B .201010C .301020D .203010【答案】B【解析】【分析】【详解】解:x 3-xy 2=x (x 2-y 2)=x (x+y )(x-y ),当x=20,y=10时,x=20,x+y=30,x-y=10,组成密码的数字应包括20,30,10,所以组成的密码不可能是201010.故选B .3.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( ) A .a 2n -1与-b 2n -1 B .a 2n -1与b 2n -1 C .a 2n 与b 2n D .a n 与b n【答案】B【解析】已知a 与b 互为相反数且都不为零,可得a 、b 的同奇次幂互为相反数,同偶次幂相等,由此可得选项A 、C 相等,选项B 互为相反数,选项D 可能相等,也可能互为相反数,故选B.4.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-5【答案】A【解析】【分析】观察已知m 2-m-1=0可转化为m 2-m=1,再对m 4-m 3-m+2提取公因式因式分解的过程中将m 2-m 作为一个整体代入,逐次降低m 的次数,使问题得以解决.【详解】∵m 2-m-1=0,∴m 2-m=1,∴m 4-m 3-m+2=m 2 (m 2-m)-m+2=m 2-m+2=1+2=3,故选A .【点睛】本题考查了因式分解的应用,解决本题的关键是将m 2-m 作为一个整体出现,逐次降低m 的次数.5.()()()()242212121......21n ++++=( )A .421n -B .421n +C .441n -D .441n + 【答案】A【解析】【分析】 先乘以(2-1)值不变,再利用平方差公式进行化简即可.【详解】()()()()242n 212121......21++++=(2-1)()()()()242n 212121......21++++ =24n -1.故选A.【点睛】本题考查乘法公式的应用,熟练掌握并灵活运用平方差公式是解题关键.6.下列分解因式正确的是( )A .22a 9(a 3)-=-B .()24a a a 4a -+=-+C .22a 6a 9(a 3)++=+D .()2a 2a 1a a 21-+=-+ 【答案】C【解析】【分析】根据因式分解的方法(提公因式法,运用公式法),逐个进行分析即可.【详解】A. ()2a 9a 3a 3-=-+)(,分解因式不正确;B. ()24a a a 4a -+=--,分解因式不正确; C. 22a 6a 9(a 3)++=+ ,分解因式正确;D. ()2a 2a 1a 1-+=-2,分解因式不正确.故选:C【点睛】本题考核知识点:因式分解.解题关键点:掌握因式分解的方法.7.下列各式中,不能运用平方差公式进行计算的是( )A .(21)(12)x x --+B .(1)(1)ab ab -+C .(2)(2)x y x y ---D .(5)(5)a a -+--【答案】A【解析】【分析】运用平方差公式(a+b )(a-b )=a 2-b 2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.【详解】A. 中不存在互为相反数的项,B. C. D 中均存在相同和相反的项,故选A.【点睛】此题考查平方差公式,解题关键在于掌握平方差公式结构特征.8.下列各式不能用公式法分解因式的是( )A .92-xB .2269a ab b -+-C .22x y --D .21x -【答案】C【解析】【分析】根据公式法有平方差公式、完全平方公式,可得答案.【详解】A、x2-9,可用平方差公式,故A能用公式法分解因式;B、-a2+6ab-9 b2能用完全平方公式,故B能用公式法分解因式;C、-x2-y2不能用平方差公式分解因式,故C正确;D、x2-1可用平方差公式,故D能用公式法分解因式;故选C.【点睛】本题考查了因式分解,熟记平方差公式、完全平方公式是解题关键.9.如果x m=4,x n=8(m、n为自然数),那么x3m﹣n等于()A.B.4 C.8 D.56【答案】C【解析】【分析】根据同底数幂的除法法则可知:指数相减可以化为同底数幂的除法,故x3m﹣n可化为x3m÷x n,再根据幂的乘方可知:指数相乘可化为幂的乘方,故x3m=(x m)3,再代入x m=4,x n=8,即可得到结果.【详解】解:x3m﹣n=x3m÷x n=(x m)3÷x n=43÷8=64÷8=8,故选:C.【点睛】此题主要考查了同底数幂的除法,幂的乘方,关键是熟练掌握同底数幂的除法与幂的乘方的计算法则,并能进行逆运用.10.下列等式由左边向右边的变形中,属于因式分解的是 ( )A.x2+5x-1=x(x+5)-1 B.x2-4+3x=(x+2)(x-2)+3xC.(x+2)(x-2)=x2-4 D.x2-9=(x+3)(x-3)【答案】D【解析】【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.【详解】解:A、右边不是积的形式,故A错误;B、右边不是积的形式,故B错误;C 、是整式的乘法,故C 错误;D 、x 2-9=(x+3)(x -3),属于因式分解.故选D .【点睛】此题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.5(m -n)4-(n-m)5可以写成________与________的乘积.【答案】 (m-n)4, (5+m-n )【解析】把多项式5(m -n)4-(n-m)5运用提取公因式法因式分解即可得5(m -n)4-(n-m)5=(m -n)4(5+m-n ).故答案为:(m-n)4,(5+m-n ).12.分解因式212x 123y xy y -+-=___________【答案】()232x 1y --【解析】根据因式分解的方法,先提公因式-3y ,再根据完全平方公式分解因式为:()()22212x 12334x 41321y xy y y x y x -+-=--+=--. 故答案为()232x 1y --.13.设2m =5,82n =10,则62m n -=________. 【答案】12【解析】试题分析:将62m n - 变形为228m n ÷ ,然后结合同底数幂的除法的概念和运算法则进行求解即可. 本题解析: 6621222285102m n m n m n -=÷=÷=÷= 故答案为: 12. 点睛:本题主要考查了同底数幂的除法法则的逆用,同底数幂的除法法则:同底数幂相乘,底数不变,指数相减.即m n m n a a a +÷= (m,n 是正整数).14.因式分解:x 3﹣4x=_____.【答案】x (x+2)(x ﹣2)【解析】试题分析:首先提取公因式x ,进而利用平方差公式分解因式.即x 3﹣4x=x (x 2﹣4)=x (x+2)(x ﹣2).故答案为x (x+2)(x ﹣2).考点:提公因式法与公式法的综合运用.15.分解因式:4ax 2-ay 2=________________.【答案】a (2x+y )(2x-y )【解析】【分析】首先提取公因式a ,再利用平方差进行分解即可.【详解】原式=a (4x 2-y 2)=a (2x+y )(2x-y ),故答案为a (2x+y )(2x-y ).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.16.因式分解:223ax 12ay -=______.【答案】()()3a x 2y x 2y +-【解析】【分析】先提公因式3a ,然后再利用平方差公式进行分解即可得.【详解】原式()223a x 4y =-()()3a x 2y x 2y =+-,故答案为:()()3a x 2y x 2y +-.【点睛】本题考查了综合提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.17.分解因式:a 3-a =【答案】(1)(1)a a a -+【解析】a 3-a =a(a 2-1)=(1)(1)a a a -+18.若=2m x ,=3n x ,则2m n x +的值为_____.【答案】18【解析】【分析】先把x m+2n 变形为x m (x n )2,再把x m =2,x n =3代入计算即可.【详解】∵x m =2,x n =3,∴x m+2n =x m x 2n =x m (x n )2=2×32=2×9=18;故答案为18.【点睛】本题考查同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.19.分解因式:3x 2-6x+3=__.【答案】3(x-1)2【解析】【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【详解】()()22236332131x x x x x -+=-+=-.故答案是:3(x-1)2.【点睛】考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.20.已知(2x 21)(3x 7)(3x 7)(x 13)-----可分解因式为(3x a)(x b)++,其中a 、b 均为整数,则a 3b +=_____.【答案】31-.【解析】首先提取公因式3x ﹣7,再合并同类项即可根据代数式恒等的条件得到a 、b 的值,从而可算出a+3b 的值:∵()()()()(2x 21)(3x 7)(3x 7)(x 13)3x 72x 21x 133x 7x 8-----=---+=--, ∴a=-7,b=-8.∴a 3b 72431+=--=-.。

最新人教版整式的乘法与因式分解基础及练习

最新人教版整式的乘法与因式分解基础及练习

整式的乘法与因式分解一、 整式的乘法(一)幂的乘法运算1、同底数幂相乘:=∙n m a a推广:n n n n n n n n n n a a a a a +++=⋅⋅3213211(n n n n n ,,,,321 都是正整数)2、幂的乘方:()=n ma 推广:[]321321)(n n n n n n a a =(321,,n n n 都是正整数) 3、积的乘方:()=n ab推广:n m n n n n m a a a a a a a a 321321)(=⋅⋅例1、(同底数幂相乘)计算:(1)52x x ⋅ (2)389)2()2()2(-⨯-⨯-(3)m m a a+-⋅11 (4)523)()()(x y x y y x -⋅-⋅-1、a 16可以写成( )A .a 8+a 8B .a 8·a 2C .a 8·a 8D .a 4·a 42、已知,32=x 那么32+x 的值是 。

3、计算:(1) a • a 3•a 5 (2)52)(x x ⋅-(3)2233x x x x ⋅-⋅ (4)(x +y )n ·(x +y )m +1(5)(n -m )·(m -n )2·(n -m )4例2、(幂的乘方)计算:(1)(103)5 (2)23)(m a -(3)()[]522y x - (4) 532])][()[(m n n m --1、计算(-x 5)7+(-x 7)5的结果是( )A .-2x 12B .-2x 35C .-2x 70D .02、在下列各式的括号内,应填入b 4的是( )A .b 12=( )8B .b 12=( )6C .b 12=( )3D .b 12=( )23、计算:(1)43])[(m - (2)()()3224a a ⋅-(3)5342])[()(p p p -⋅-⋅- (4)(m 3)4+m 10m 2+m·m 3·m 8例3、(积的乘方)计算:(1)(ab )2 (2)(-3x )2 (3)332)3(c b a -(4)32])(3[y x + (5)20082009)3()31(-⨯1、如果(a m b n )3=a 9b 12,那么m ,n 的值等于( )A .m=9,n=4B .m=3,n=4C .m=4,n=3D .m=9,n=62、下列运算正确的是( )(A)22x x x =⋅ (B)22)(xy xy = (C)632)(x x = (D)422x x x =+ 3、已知x n =5,y n =3,则(xy )3n= 。

第14章-《整式的乘法与因式分解》知识点及考点典例精选全文完整版

第14章-《整式的乘法与因式分解》知识点及考点典例精选全文完整版

可编辑修改精选全文完整版第十四章 《整式的乘法与因式分解》知识点及考点典例重点知识回顾:一、整式的乘法:),(都是正整数n m a a a n m n m +=• ),(都是正整数)(n m a a mn n m =)()(都是正整数n b a ab n n n = 22))((b a b a b a -=-+2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-注意:(1)单项式乘单项式的结果仍然是单项式。

(2)单项式与多项式相乘,结果是一个_______,其项数与因式中多项式的项数______。

(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。

(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。

(5)公式中的字母可以表示数,也可以表示单项式或多项式。

二、整式的除法: nm n m a a a -=÷ ()0≠a 10=a()0≠a单项式÷单项式 多项式÷单项式三、因式分解 1、把一个多项式化成几个_________的形式,叫做把这个多项式因式分解。

2、因式分解的常用方法(1)提公因式法:)(c b a ac ab +=+(2)运用公式法:))((22b a b a b a -+=-222)(2b a b ab a +=++ 222)(2b a b ab a -=+-(3)分组分解法:))(()()(d c b a d c b d c a bd bc ad ac ++=+++=+++(4)十字相乘法:))(()(2q a p a pq a q p a ++=+++3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提取公因式。

(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:二项式可以尝试运用________公式分解因式;三项式可以尝试运用______________、__________分解因式;四项式及四项式以上的可以尝试______________分解因式(3)分解因式必须分解到每一个因式都不能再分解为止。

人教版八年级数学上册 整式的乘法与因式分解专题练习(word版

人教版八年级数学上册 整式的乘法与因式分解专题练习(word版

人教版八年级数学上册 整式的乘法与因式分解专题练习(word 版一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.将多项式24x +加上一个整式,使它成为完全平方式,则下列不满足条件的整式是( ) A .4-B .±4xC .4116xD .2116x 【答案】D【解析】【分析】分x 2是平方项与乘积二倍项,以及单项式的平方三种情况,根据完全平方公式讨论求解.【详解】解:①当x 2是平方项时,4士4x+x ²=(2士x )2,则可添加的项是4x 或一4x ;②当x 2是乘积二倍项时,4+ x 2+4116x =(2+214x )2,则可添加的项是4116x ; ③若为单项式,则可加上-4.故选:D.【点睛】本题考查了完全平方式,比较复杂,需要我们全面考虑问题,首先考虑三个项分别充当中间项的情况,就有三种情况,还有就是第四种情况加上一个数,得到一个单独的单项式,也是可以成为一个完全平方式,这种情况比较容易忽略,要注意.2.有5张边长为2的正方形纸片,4张边长分别为2、3的矩形纸片,6张边长为3的正方形纸片,从其中取出若干张纸片,且每种纸片至少取一张,把取出的这些纸片拼成一个正方形(原纸张进行无空隙、无重叠拼接),则拼成正方形的边长最大为 ( )A .6B .7C .8D .9【答案】C【解析】【分析】设2为a ,3为b ,则根据5张边长为2的正方形纸片的面积是5a 2,4张边长分别为2、3的矩形纸片的面积是4ab ,6张边长为3的正方形纸片的面积是6a 2,得出a 2+4ab+4b 2=(a+2b )2,再根据正方形的面积公式将a 、b 代入,即可得出答案.【详解】解:设2为a ,3为b ,则根据5张边长为2的正方形纸片的面积是5a 2,4张边长分别为2、3的矩形纸片的面积是4ab ,6张边长为3的正方形纸片的面积是6b 2,∵a 2+4ab+4b 2=(a+2b )2,(b >a )∴拼成的正方形的边长最长可以为a+2b=2+6=8,故选C .【点睛】此题考查了完全平方公式的几何背景,关键是根据题意得出a 2+4ab+4b 2=(a+2b )2,用到的知识点是完全平方公式.3.若999999a =,990119b =,则下列结论正确是( ) A .a <bB .a b =C .a >bD .1ab =【答案】B【解析】 ()9999999909990909119991111===99999a b +⨯⨯==⨯, 故选B.【点睛】本题考查了有关幂的运算、幂的大小比较的方法,一般说来,比较几个幂的大小,或者把它们的底数变得相同,或者把它们的指数变得相同,再分别比较它们的指数或底数.4.当3x =-时,多项式33ax bx x ++=.那么当3x =时,它的值是( )A .3-B .5-C .7D .17-【答案】A【解析】【分析】首先根据3x =-时,多项式33ax bx x ++=,找到a 、b 之间的关系,再代入3x =求值即可.【详解】当3x =-时,33ax bx x ++=327333ax bx x a b ++=---= 2736a b ∴+=-当3x =时,原式=2733633a b ++=-+=-故选A.【点睛】本题考查代数式求值问题,难度较大,解题关键是找到a 、b 之间的关系.5.已知a ,b ,c 是△ABC 的三边长,且满足a 2+2b 2+c 2-2b(a +c)=0,则此三角形是( ) A .等腰三角形 B .等边三角形C.直角三角形 D.不能确定【答案】B【解析】【分析】运用因式分解,首先将所给的代数式恒等变形;借助非负数的性质得到a=b=c,即可解决问题.【详解】∵a2+2b2+c2﹣2b(a+c)=0,∴(a﹣b)2+(b﹣c)2=0;∵(a﹣b)2≥0,(b﹣c)2≥0,∴a﹣b=0,b﹣c=0,∴a=b=c,∴△ABC为等边三角形.故选B.【点睛】本题考查了因式分解及其应用问题.解题的关键是牢固掌握因式分解的方法,灵活运用因式分解来分析、判断、推理活解答.6.边长为a,b的长方形周长为12,面积为10,则a2b+ab2的值为()A.120 B.60 C.80 D.40【答案】B【解析】【分析】直接利用提取公因式法分解因式,进而求出答案.【详解】解:∵边长为a,b的长方形周长为12,面积为10,∴a+b=6,ab=10,则a2b+ab2=ab(a+b)=10×6=60.故选:B.【点睛】本题考查了提取公因式法分解因式,正确找出公因式是解题关键.7.如图,矩形的长、宽分别为a、b,周长为10,面积为6,则a2b+ab2的值为()A.60 B.30 C.15 D.16【答案】B【解析】【分析】直接利用矩形周长和面积公式得出a+b,ab,进而利用提取公因式法分解因式得出答案.【详解】∵边长分别为a、b的长方形的周长为10,面积6,∴2(a+b )=10,ab=6,则a+b=5,故ab 2+a 2b=ab (b+a )=6×5=30.故选:B .【点睛】此题主要考查了提取公因式法以及矩形的性质应用,正确分解因式是解题关键.8.若(x 2-x +m )(x -8)中不含x 的一次项,则m 的值为( )A .8B .-8C .0D .8或-8【答案】B【解析】(x 2-x +m )(x -8)=322328889(8)8x x mx x x m x x m x m -+-+-=-++-由于不含一次项,m+8=0,得m=-8.9.若33×9m =311 ,则m 的值为 ( )A .2B .3C .4D .5【答案】C【解析】【分析】根据同底数幂的乘法的性质,幂的乘方的性质,可得关于m 的方程,解方程即可求得答案.【详解】∵33×9m =311 ,∴33×(32)m =311,∴33+2m =311,∴3+2m=11,∴2m=8,解得m=4,故选C .【点睛】本题考查了同底数幂的乘法,幂的乘方,理清指数的变化是解题的关键.10.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭ 【答案】B【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意; 故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.在边长为a 的正方形中剪掉一个边长为b 的小正方形()a b >,再沿虚线剪开,如图①,然后拼成一个梯形,如图②.根据这两个图形的面积关系,用等式表示是____________.【答案】a 2-b 2=(a+b)(a-b)【解析】【分析】根据正方形的面积公式和梯形的面积公式,即可求出答案.【详解】∵第一个图形的面积是a 2-b 2,第二个图形的面积是12(b +b +a +a )(a -b )=(a +b )(a -b ), ∴根据两个图形的阴影部分的面积相等得:a 2-b 2=(a+b)(a-b).故答案为a 2-b 2=(a+b)(a-b).【点睛】 本题考查了平方差公式得几何背景,熟练掌握平方差公式的定义是本题解题的关键.12.已知3x y +=,3336x y +=,则xy =______.【答案】-1【分析】将3336x y +=利用立方和公式以及完全平方公式进行变形后再计算即可得出答案.【详解】解:∵3x y +=∴33222()()3()33(93)279x y x y x xy y x y xy xy xy ⎡⎤+=+-+=⨯+-=-=-⎣⎦ ∵3336x y +=∴27936xy -=∴1xy =-故答案为:-1.【点睛】本题考查的知识点是立方和公式以及完全平方公式,解此题的关键是记住立方和公式.13.(1)已知32m a =,33n b =,则()()332243mn m n m a b a b a +-⋅⋅=______. (2)对于一切实数x ,等式()()212x px q x x -+=+-均成立,则24p q -的值为______.(3)已知多项式2223286x xy y x y +--+-可以分解为()()22x y m x y n ++-+的形式,则3211m n +-的值是______. (4)如果2310x x x +++=,则232016x x x x +++⋅⋅⋅+=______.【答案】(1)5-; (2)9; (3)78-; (4)0. 【解析】【分析】(1)根据积的乘方和幂的乘方,将32m a =整体代入即可;(2)将等式后面部分展开,即可求出p 、q 的值,代入即可;(3)根据多项式乘法法则求出()()22x y m x y n ++-+,即可得到关于m 、n 的方程组,解之即可求得m 、n 、的值,代入计算即可;(4)4个一组提取公因式,整体代入即可.【详解】(1)32m a =,33n a =,()()()()332222343333m n m n m m n m n a b a b a a b a b ∴+-⋅⋅=+-22232343125=+-⨯=+-=-(2)222x px q x x -+=--对一切实数x 均成立,1p ∴=,2q =-249p q ∴-=(3)()()222223286x y m x y n x xy y x y ++-+=+--+-,()()22222322223286x xy y m n x n m y mn x xy y x y ∴+-+++-+=+--+- 21,28,6,m n n m mn +=-⎧⎪∴-=⎨⎪=-⎩解得2,3.m n =-⎧⎨=⎩ 321718m n +∴=-- (4)2310x x x +++=,232016x x x x ∴+++⋅⋅⋅+()()2320132311x x x x x x x x =++++⋅⋅⋅++++000=+⋅⋅⋅+=故答案为: −5;9;78-;0. 【点睛】本题主要考察幂的运算及整式的乘法,掌握其运算法则是关键.14.5(m -n)4-(n-m)5可以写成________与________的乘积.【答案】 (m-n)4, (5+m-n )【解析】把多项式5(m -n)4-(n-m)5运用提取公因式法因式分解即可得5(m -n)4-(n-m)5=(m -n)4(5+m-n ).故答案为:(m-n)4,(5+m-n ).15.已知a m =3,a n =2,则a 2m ﹣n 的值为_____.【答案】4.5【解析】分析:首先根据幂的乘方的运算方法,求出a 2m 的值;然后根据同底数幂的除法的运算方法,求出a 2m-n 的值为多少即可.详解:∵a m =3,∴a 2m =32=9,∴a 2m-n =292m n a a ==4.5. 故答案为:4.5.点睛:此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.16.已知ab=a+b+1,则(a ﹣1)(b ﹣1)=_____.【答案】2【解析】【分析】将(a ﹣1)(b ﹣1)利用多项式乘多项式法则展开,然后将ab=a+b+1代入合并即可得.【详解】(a ﹣1)(b ﹣1)= ab ﹣a ﹣b+1,当ab=a+b+1时,原式=ab ﹣a ﹣b+1=a+b+1﹣a ﹣b+1=2,故答案为2.【点睛】本题考查了多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及整体代入思想的运用.17.因式分解:a 3﹣2a 2b+ab 2=_____.【答案】a (a ﹣b )2.【解析】【分析】先提公因式a ,然后再利用完全平方公式进行分解即可.【详解】原式=a (a 2﹣2ab+b 2)=a (a ﹣b )2,故答案为a (a ﹣b )2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.已知16x x +=,则221x x +=______ 【答案】34【解析】 ∵16x x +=,∴221x x +=22126236234x x ⎛⎫+-=-=-= ⎪⎝⎭, 故答案为34.19.若2x+5y ﹣3=0,则4x •32y 的值为________.【答案】8【解析】∵2x+5y ﹣3=0,∴2x+5y=3,∴4x •32y =(22)x ·(25)y =22x ·25y =22x+5y =23=8, 故答案为:8.【点睛】本题主要考查了幂的乘方的性质,同底数幂的乘法,转化为以2为底数的幂是解题的关键,整体思想的运用使求解更加简便.20.若=2m x ,=3n x ,则2m n x 的值为_____.【答案】18【解析】【分析】先把x m+2n 变形为x m (x n )2,再把x m =2,x n =3代入计算即可.【详解】∵x m =2,x n =3,∴x m+2n =x m x 2n =x m (x n )2=2×32=2×9=18;故答案为18.【点睛】本题考查同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.。

(完整版)整式的乘法与因式分解专题训练

(完整版)整式的乘法与因式分解专题训练

整式的乘法和因式分解一、整式的运算1、已知a m =2,a n =3,求a m +2n 的值;2、若32=n a,则n a 6= . 3、若125512=+x ,求x x +-2009)2(的值。

4、已知2x +1⋅3x -1=144,求x ;5.2005200440.25⨯= .6、( 23)2002×(1.5)2003÷(-1)2004=________。

7、如果(x +q )(3x -4)的结果中不含x 项(q 为常数),求结果中的常数项8、设m 2+m -1=0,求m 3+2m 2+2010的值二、乘法公式的变式运用1、位置变化,(x +y )(-y +x )2、符号变化,(-x +y )(-x -y )3、指数变化,(x 2+y 2)(x 2-y 2)44、系数变化,(2a +b )(2a -b )5、换式变化,[xy +(z +m )][xy -(z +m )]6、增项变化,(x -y +z )(x -y -z )7、连用公式变化,(x +y )(x -y )(x 2+y 2)8、逆用公式变化,(x -y +z )2-(x +y -z )2三、乘法公式基础训练:1、计算 (1)1032 (2)19822、计算 (1)(a -b +c )2 (2)(3x +y -z )23、计算 (1)(a +4b -3c )(a -4b -3c ) (2)(3x +y -2)(3x -y +2)4、计算 (1)19992-2000×1998 (2)22007200720082006-⨯.四、乘法公式常用技巧1、已知a 2+b 2=13,ab =6,求(a +b )2,(a -b )2的值。

变式练习:已知(a +b )2=7,(a -b )2=4,求a 2+b 2,ab 的值。

2、已知2=+b a ,1=ab ,求22b a +的值。

变式练习:已知8=+b a ,2=ab ,求2)(b a -的值。

人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》测试题(含答案解析)

人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》测试题(含答案解析)

一、选择题1.已知代数式2366x x -+的值为9,则代数式226x x -+的值为( ) A .18 B .12C .9D .72.多项式291x 加上一个单项式后﹐使它成为一个整式的完全平方,那么加上的单项式可以是( ) A .6x ±B .-1或4814x C .29x - D .6x ±或1-或29x -3.如表,已知表格中竖直、水平、对角线上的三个数的和都相等,则m +n =( )A .1B .2C .5D .7 4.如果x+y =6,x 2-y 2=24,那么y-x 的值为( ) A .﹣4B .4C .﹣6D .65.下列有四个结论,其中正确的是( ) ①若1(1)1x x +-=,则x 只能是2;②若()2(1)1x x ax -++的运算结果中不含2x 项,则1a = ③若10,16a b ab +==,则6a b -= ④若4,8x y a b ==,则232x y -可表示为a bA .①②③④B .②③④C .①③④D .②④ 6.若关于x 的方程250x a b ++=的解是3x =-,则代数式6210a b --的值为( ) A .6- B .0C .12D .18 7.下列计算正确的是( ) A .(a 2)3=a 5B .(2a 2)2=2a 4C .a 3•a 4=a 7D .a 4÷a =a 48.下列计算正确的是( ) A .()222x y x y +=+ B .()32626m m =C .()2224x x -=- D .()()2111x x x +-=-9.已知1x =,1y =,则代数式222x xy y ++的值为( ).A .20B .10C .D .10.计算()()202020213232-⨯的结果是( )A .32-B .23-C .23D .3211.若|m ﹣3n ﹣2019|=1,则(2020﹣m +3n )2的值为( ) A .1B .0C .1或2D .0或412.下列运算正确的是( ) A .428a a a ⋅= B .()23624a a =C .6233()()ab ab a b ÷=D .22()()a b a b a b +-=+二、填空题13.如图,是一个运算的流程图,输入正整数x 的值,按流程图进行操作并输出y 的值.例如,若输入x =10,则第一次输出y =5.若输入某数x 后,第二次输出y =3,则输入的x 的值为_________.14.历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式()35f x mx nx =++,当3x =时,多项式的值为()32735f m n =++,若()36f =,则()3f -的值为__________. 15.若3x y -=,2xy =,则22xy +=__________.16.若已知x +y =﹣3,xy =4,则3x +3y ﹣4xy 的值为_____.17.关于x 的一次二项式mx +n 的值随x 的变化而变化,分析下表列举的数据 x 011.52 mx +n-3 -1 01若mx +n =17,线段AB 的长为x ,点C 在直线AB 上,且BC =12AB ,则直线AB 上所有线段的和是_____________.18.若2a 与()23b +互为相反数,则2-=b a ______.19.若210a a +-=,则43222016a a a a +--+的值为______.20.若方程22(1)8m x mx x --+=是关于x 的一元一次方程,则代数式2008|1|m m --的值为________.三、解答题21.计算:4a 2·(-b )-8ab ·(b -12a ). 22.在日历上,我们可以发现其中某些数满足一定规律,如图是2020年12月份的日历,我们选择其中被框起的部分,将每个框中三个位置上的数作如下计算:281156415497-⨯=-== 2241731576527497-⨯=-==不难发现,结果都是7.(1)请你再在图中框出一个类似的部分并加以验证; (2)请你利用代数式的运算对以上规律加以证明.23.计算:(1)化简:()()()222a a b a b a b +-+-(2)因式分解:244x y xy y ++24.某园林公司现有A 、B 两个区,已知A 园区为长方形,长为()x y +米,宽为()x y -米;B 园区为正方形,边长为(3)x y +米.(1)请用代数式表示A 、B 两园区的面积之和并化简;(2)现根据实际需要对A 园区进行整改,长增加(11)x y -米,宽减少(2)x y -米,整改后A 区的长比宽多350米,且整改后两园区的周长之和为980米. ①求x ,y 的值;②若A 园区全部种植C 种花,B 园区全部种植D 种花,且C 、D 两种花投入的费用与收益如表:C D 投入(元/平方米) 12 16 收益(元/平方米)2226-投入) 25.观察下列各式:2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-;()324(1)11x x x x x -+++=-;请根据这一规律计算: (1)()12(1)1n n n x x xx x ---+++⋅⋅⋅++;(2)1514132222221+++⋅⋅⋅+++.26.阅读:已知二次三项式x 2﹣4x +m 有一个因式是x +3,求另一个因式及m 的值. 解:设另一个因式为x +n ,得x 2﹣4x +m =(x +3)(x +n )则x 2﹣4x +m =x 2+(n +3)x +3n ∴343n m n +=-⎧⎨=⎩,解得217m n =-⎧⎨=-⎩∴另一个因式为x ﹣7,m 的值为﹣21 问题:仿照上述方法解答下列问题:(1)已知二次三项式2x 2+3x ﹣k 有一个因式是2x ﹣5,求另一个因式及k 的值. (2)已知2x 2﹣13x +p 有一个因式x ﹣3,则P = .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】将x 2﹣2x 当成一个整体,在第一个代数式中可求得x 2﹣2x =1,将其代入后面的代数式即能求得结果. 【详解】解:∵3x 2﹣6x +6=9,即3(x 2﹣2x )=3, ∴x 2﹣2x =1, ∴x 2﹣2x +6=1+6=7. 故选:D . 【点睛】本题考查了代数式求值,解题的关键是将x 2﹣2x 当成一个整体来对待.2.D解析:D 【分析】根据完全平方公式计算解答. 【详解】解:添加的方法有4种,分别是: 添加6x ,得9x 2+1+6x=(3x+1)2; 添加﹣6x ,得9x 2+1﹣6x=(3x ﹣1)2;添加﹣9x2,得9x2+1﹣9x2=12;添加﹣1,得9x2+1﹣1=(3x)2,故选:D.【点睛】此题考查添加一个整式得到完全平方式,熟记完全平方式的特点是解题的关键.3.D解析:D【分析】由题意竖直、水平、对角线上的三个数的和都相等,则有m﹣3+4﹣(m+3)=﹣3+1+n﹣(4+1),即可解出n=5,从而求出m值即可.【详解】解:由题意得竖直、水平、对角线上的三个数的和都相等,则有m﹣3+4﹣(m+3)=﹣3+1+n﹣(4+1),整理得n=5,则有m﹣3+4=﹣3+1+5,解得m=2,∴m+n=5+2=7,故选:D.【点睛】此题主要考查列一元一次方程解决实际问题,理解题意,找出等量关系是解题关键.4.A解析:A【分析】先变形为x2-y2=(x+y)(x-y),代入数值即可求解.【详解】解:∵x2-y2=(x+y)(x-y)=24,∴6(x-y)=24,∴x-y=4,∴y-x=-4,故选:A.【点睛】本题考查了平方差公式的应用,掌握公式是解题关键.5.D解析:D【分析】根据零次幂、多项式乘多项式、完全平方公式及同底数幂的除法法则分别对每一项进行分析,即可得出答案.【详解】解:①若(x-1)x+1=1,则x=-1或x=2,故本选项错误;②(x-1)(x2+ax+1)的运算结果中x2项的系数为a-1,∵不含x2项,则a=1,故本选项正确;③∵(a-b )2=(a+b )2-4ab=102-4×16=36,∴6a b -=±,故本选项错误; ④∵4x =a ,∴22x =a ,∵8y =b ,∴23y =b , ∴22x-3y =22x ÷23y ab=;故本选项正确; 故选:D . 【点睛】本题考查了零次幂、多项式乘多项式、完全平方公式以及同底数幂的除法,熟练掌握运算法则是解题的关键.6.A解析:A 【分析】将方程的解代回方程得56a b +=,再整体代入代数式求值即可. 【详解】解:把3x =-代入原方程得650a b -++=,即56a b +=, 则()62106256126a b a b --=-+=-=-. 故选:A . 【点睛】本题考查代数式求值和方程解的定义,解题的关键是掌握方程解的定义,以及利用整体代入的思想求值.7.C解析:C 【分析】根据幂的乘方、积的乘方、同底数幂的乘除法逐项判断即可得. 【详解】A 、236()a a =,此项错误;B 、224(2)4a a =,此项错误;C 、347a a a ⋅=,此项正确;D 、34a a a ÷=,此项错误; 故选:C . 【点睛】本题考查了幂的乘方、积的乘方、同底数幂的乘除法,熟练掌握各运算法则是解题关键.8.D解析:D 【分析】根据完全平方公式,平方差公式和积的乘方公式分别判断即可. 【详解】A. ()2222x y x xy y +=++,故原选项错误; B.()32628m m =,故原选项错误;C.()22244x x x -=-+,故原选项错误; D. ()()2111x x x +-=-,故选项正确.故选:D . 【点睛】本题考查完全平方公式,平方差公式和积的乘方公式.熟记公式是解题关键.9.A解析:A 【分析】利用完全平方公式计算即可得到答案. 【详解】∵1x =,1y =,∴x+y= ∴222x xy y ++ =2()x y +=2 =20, 故选:A . 【点睛】此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.10.D解析:D 【分析】利用积的乘方的逆运算解答. 【详解】()()202020213232-⨯=20202020233322⎛⎫⎛⎫-⨯⨯ ⎪ ⎪⎝⎭⎝⎭=2020233322⎛⎫-⨯⨯ ⎪⎝⎭=32. 故选:D .【点睛】此题考查积的乘方的逆运算,掌握积的乘方的计算公式是解题的关键.11.D解析:D 【分析】依据绝对值的性质,即可得到m ﹣3n =2020或2018,进而得出m ﹣3n 的值,再根据平方运算,即可得到(2020﹣m +3n )2的值. 【详解】∵|m ﹣3n ﹣2019|=1, ∴m ﹣3n ﹣2019=±1, 即m ﹣3n =2020或2018,∴2020﹣m +3n =2020﹣(m ﹣3n )=0或2, ∴(2020﹣m +3n )2的值为0或4, 故选:D . 【点睛】本题考查绝对值的性质和代数式求值,利用整体思想求出m ﹣3n 的值且注意去绝对值时的两种情况.12.B解析:B 【分析】根据同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式依次计算判断. 【详解】A 、426a a a ⋅=,故该项错误;B 、()23624a a =,故该项正确;C 、4624()()ab ab a b ÷=,故该项错误;D 、22()()a b a b a b +-=-,故该项错误; 故选:B . 【点睛】此题考查整式的计算法则,正确掌握整式的同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式是解题的关键.二、填空题13.9或10或11或12【分析】由运算流程图先求出第一次输出的数分为偶数或者奇数;然后再分两种情况求出输入的x 的值即可【详解】解:根据题意∵第二次输出设第一次输出的数是奇数m 时则解得:;设第一次输出的数解析:9或10或11或12. 【分析】由运算流程图,先求出第一次输出的数,分为偶数或者奇数;然后再分两种情况求出输入的x 的值即可. 【详解】 解:根据题意, ∵第二次输出3y =,设第一次输出的数是奇数m 时,则132m +=,解得:5m =; 设第一次输出的数是偶数n 时,则 32n=,解得:6n =. 当第一次输出为5时,又可以分为两种情况: 当x 为奇数时,则152x +=,解得:9x =; 当x 为偶数时,则52=x,解得:10x =; 当第一次输出为6时,又可以分为两种情况: 当x 为奇数时,则162x +=,解得:11x =; 当x 为偶数时,则62x=,解得:12x =; 故答案为:9或10或11或12. 【点睛】本题考查有理数的运算,结合编程的流程图出题,题目新颖,并且运用到了分类讨论这一重要数学思想.熟练掌握有理数的运算法则是解题的关键.14.4【分析】由得到整体代入求出结果【详解】解:∵∴即∴故答案是:4【点睛】本题考查代数式求值解题的关键是掌握整体代入求值的思想解析:4 【分析】由()36f =得到2731m n +=,整体代入()32735f m n -=--+求出结果. 【详解】 解:∵()36f =,∴27356m n ++=,即2731m n +=,∴()()327352735154f m n m n -=--+=-++=-+=. 故答案是:4. 【点睛】本题考查代数式求值,解题的关键是掌握整体代入求值的思想.15.【分析】根据完全平方公式变形计算即可得解【详解】∵∴=9+4=13故答案为:13【点睛】此题考查完全平方公式变形计算熟记完全平方公式并正确理解所求与公式的关系是解题的关键 解析:13【分析】根据完全平方公式变形计算即可得解. 【详解】∵3x y -=,2xy =, ∴22x y +=2()2x y xy -+=9+4=13,故答案为:13. 【点睛】此题考查完全平方公式变形计算,熟记完全平方公式并正确理解所求与公式的关系是解题的关键.16.﹣25【分析】将3x+3y ﹣4xy 变形为3(x+y )﹣4xy 再整体代入求值即可【详解】解:∵x+y =﹣3xy =4∴3x+3y ﹣4xy =3(x+y )﹣4xy =3×(﹣3)﹣4×4=﹣9﹣16=﹣25故解析:﹣25 【分析】将3x +3y ﹣4xy 变形为3(x +y )﹣4xy ,再整体代入求值即可. 【详解】解:∵x +y =﹣3,xy =4,∴3x +3y ﹣4xy =3(x +y )﹣4xy =3×(﹣3)﹣4×4=﹣9﹣16=﹣25, 故答案为:﹣25. 【点睛】此题考查已知式子的值求代数式的值,将代数式变形为已知式子的形式是解题的关键.17.20或30【分析】把表格中的前两对值代入求出m 与n 的值即可求出x 的值然后把x 的值代入求解即可【详解】解:由表格得x =0时m 0+n =-3∴n=-3;x =1时m1+(-3)=-1∴m =2;∵mx +n解析:20或30 【分析】把表格中的前两对值代入求出m 与n 的值,即可求出x 的值,然后把x 的值代入求解即可. 【详解】解:由表格得x =0时,m ⋅0+n =-3, ∴n =-3;x =1时,m ⋅1+(-3)=-1, ∴m =2; ∵mx +n =17,∴2x -3=17,∴x =10,当点C 在线段AB 上时,∵BC =12AB , ∴BC =12×10=5, ∴AC +AB +BC =20;当点C 在点B 右侧时,∵BC =12AB , ∴BC =12×10=5, ∴AC +AB +BC =30.故答案为20或30.【点睛】此题考查了代数式求值和线段的和差计算,熟练掌握运算法则是解本题的关键. 18.-8【分析】根据题意得到+=0根据绝对值的非负性及偶次方的非负性求出a=2b=-3代入2b-a 计算即可【详解】由题意得:+=0∵00∴a-2=0b+3=0∴a=2b=-3∴2b-a=-6-2=8故答解析:-8【分析】 根据题意得到2a +2(3)b +=0,根据绝对值的非负性及偶次方的非负性求出a=2,b=-3,代入2b-a 计算即可.【详解】 由题意得:2a +2(3)b +=0 ∵2a ≥0,2(3)b +≥0,∴a-2=0,b+3=0,∴a=2,b=-3,∴2b-a=-6-2=8,故答案为:-8.【点睛】此题考查相反数的定义,绝对值的非负性及偶次方的非负性,求代数式的值,根据绝对值的非负性及偶次方的非负性求出a 和b 的值是解题的关键.19.【分析】原式变形为由已知得到整体代入即可求解【详解】已知得:故答案为:【点睛】本题考查了代数式求值熟练掌握整体代入法是解题的关键 解析:2015【分析】原式变形为()22222016aa a a a +--+,由已知得到21a a +=,整体代入即可求解. 【详解】 已知得:21a a +=,43222016a a a a +--+()22222016a a a a a =+--+2222016a a a =--+ ()22016a a =-++ 12016=-+2015=.故答案为:2015.【点睛】本题考查了代数式求值,熟练掌握整体代入法是解题的关键.20.1【分析】根据一元一次方程的定义可求出m 的值在将m 代入代数式计算即可【详解】原方程可整理为根据题意可知且所以所以故答案为:1【点睛】本题考查一元一次方程的定义以及代数式求值利用一元一次方程的定义求出 解析:1【分析】根据一元一次方程的定义,可求出m 的值.在将m 代入代数式计算即可.【详解】原方程可整理为22(1)(1)80m x m x --++=.根据题意可知210m -=且10m +≠,所以1m =. 所以2008200811111m m --=--=.故答案为:1.【点睛】本题考查一元一次方程的定义以及代数式求值.利用一元一次方程的定义求出m 的值是解答本题的关键.三、解答题21.28ab -【分析】整式的混合运算,先算乘除,然后再算加减,有小括号先算小括号里面的.【详解】解:4a 2·(-b )-8ab ·(b -12a ) =222484--+ab ab a b【点睛】本题考查整式的混合运算,掌握单项式乘单项式以及单项式乘多项式的计算法则正确计算是解题关键.22.(1)见解析;(2)见解析【分析】(1)答案不唯一,如选择6,13,20这三个数,按照已知等式方法计算即可; (2)设中间那个数为n ,列得2(7)(7)n n n --+,根据平方差公式及合并同类项法则计算即可.【详解】解:(1)答案不唯一,如:在图中框出如图,213620169120497-⨯=-==;(2)证明:设中间那个数为n ,则:2(7)(7)497n n n --+==∴2(7)(7)7n n n --+=..【点睛】此题考查数字计算规律探究,掌握有理数混合运算法则,整式的混合运算法则以及化简算术平方根是解题的关键.23.(1)224ab b +;(2)2(2)y x +.【分析】(1)先利用单项式乘多项式和平方差公式计算,再合并同类项即可;(2)先提取公因式,再利用完全平方公式因式分解.【详解】解:(1)原式=()22224a ab a b+--=22224a ab a b +-+=224ab b +;(2)原式=2(44)y x x ++ =2(2)y x +.本题考查整式的混合运算,因式分解.(1)中掌握单项式乘多项式法则和平方差公式是解题关键;(2)中因式分解时一般有公因式先提取公因式,再看能否运用公式法因式分解. 24.(1)(x+y )(x-y )+(x+3y )2;2x 2+6xy+8y 2;(2)①x=30,y=10;②相等【分析】(1)根据长方形的面积等于长乘以宽,正方形的面积等于边长的平方,最后再求和, (2)①根据整改后A 区的长比宽多350米,且整改后两园区的周长之和为980米.列方程组求解即可,②计算出A 园区的净收益和B 园区的净收益,再比较大小.【详解】解:(1)(x +y )(x -y )+(x +3y )2,=x 2-y 2+x 2+6xy +9y 2,=2x 2+6xy +8y 2;(2)①由题意得,()()()()()()()()()112350211243980x y x y x y x y x y x y x y x y x y ⎧⎡⎤⎡⎤++-----⎪⎣⎦⎣⎦⎨⎡⎤++-+---++⎪⎣⎦⎩==,整理得,12350270x y x y -=⎧⎨+=⎩, 解得:x =30,y =10,答:x =30,y =10.②A 园区整改后长为12x 米,宽为y 米,A 园区的净收益(22-12)×12xy =36000元,B 园区的净收益为(26-16)(x +3y )2=36000元,∴B 园区的净收益等于A 园区的净收益.【点睛】本题考查二元一次方程组、整式的加减、多项式乘以多项式的计算方法等知识,正确的列出多项式,并化简是解决问题的关键.25.(1)11n x +-;(2)1621-.【分析】(1)观察题中所给的三个等式,可知等式右边第一项的次数等于左边第二个括号内最高次项的次数加1,等式右边第二项均为1,据此可解;(2)根据(1)中所得的规律,可将原式左边乘以(2-1),再按照(1)中规律计算即可.【详解】(1)()12(1)1n n n x x x x x ---+++⋅⋅⋅++11n x +=-;(2)1514132222221+++⋅⋅⋅+++1514132(21)(222221)=-+++⋅⋅⋅+++1621=-.【点睛】本题考查了平方差公式和多项式乘法公式在计算中的应用,熟练掌握相关计算法则是解题的关键.26.(1)另一个因式为:4x +,20k =;(2)21.【分析】根据题意给出的方法即可求出答案.【详解】解:(1)设另外一个因式为:x n +,∴()()22325x x k x x n +-=-+, ∴2535n n k-=⎧⎨-=-⎩, ∴4n =,20k =;(2)设另一个因式为:2x n +,∴2x 2﹣13x +p =(2x +n )(x ﹣3)∴6133n n p -=-⎧⎨-=⎩∴解得:217p n =⎧⎨=-⎩故答案为:21.【点睛】本题考查因式分解的意义,解题的关键熟练运用因式分解法,本题属于基础题型.。

整式的乘法与因式分解单元测试卷含答案

整式的乘法与因式分解单元测试卷含答案

《整式的乘法与因式分解》单元测试卷一、选择题1.下列计算正确的是()A.(x3)3=x6B.a6•a4=a24C.(﹣mn)4÷(﹣mn)2=m2n2 D.3a+2a=5a2 2.计算(﹣2ab)(3a2b2)3的结果是()A.﹣6a3b3 B.54a7b7 C.﹣6a7b7 D.﹣54a7b7 3.下列计算中,正确的是()A.(x+2)(x﹣3)=x2﹣6 B.(﹣4x)(2x2+3x﹣1)=﹣8x3﹣12x2﹣4xC.(x﹣2y)2=x2﹣2xy+4y2D.(﹣4a﹣1)(4a﹣1)=1﹣16a24.下列各式中,计算正确的是()A.(a﹣b)2=a2﹣b2B.(2x﹣y)2=4x2﹣2xy+y2C.(﹣a﹣b)(a+b)=a2﹣b2D.﹣(x﹣y)2=2xy﹣x2﹣y25.下列因式分解中,正确的是()A.x2﹣4=(x+4)(x﹣4)B.2x2﹣8=2(x2﹣4)C.a2﹣3=(a+)(a﹣)D.4x2+16=(2x+4)(2x﹣4)6.下列从左到右边的变形,是因式分解的是()A.(3﹣x)(3+x)=9﹣x2B.(y+1)(y﹣3)=﹣(3﹣y)(y+1)C.4yz﹣2y2z+z=2y(2z﹣yz)+z D.﹣8x2+8x﹣2=﹣4(2x﹣1)27.若x2﹣2mx+1是完全平方式,则m的值为()A.2 B.1 C.±1 D.8.下列各式中,不能用完全平方公式分解的个数为()①x2﹣10x+25;②4a2+4a﹣1;③x2﹣2x﹣1;④;⑤.A.1个B.2个C.3个D.4个9.在单项式x2,﹣4xy,y2,2xy.4y2,4xy,﹣2xy,4x2中,可以组成不同完全平方式的个数是()A.4 B.5 C.6 D.710.(3分)如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.111.若x2﹣x﹣m=(x+n)(x+7),则m+n=()A.64 B.﹣64 C.48 D.﹣48 12.计算(18x4﹣48x3+6x)÷6x的结果为()A.3x3﹣13x2B.3x3﹣8x2C.3x3﹣8x2+6x D.3x3﹣8x2+113.已知长方形的面积为18x3y4+9xy2﹣27x2y2,长为9xy,则宽为()A.2x2y3+y+3xy B.2x2y2﹣2y+3xy C.2x2y3+2y﹣3xy D.2x2y3+y﹣3xy 14.下列变形正确的是()A.a+b﹣c=a﹣(b﹣c)B.a+b+c=a﹣(b+c)C.a﹣b+c﹣d=a﹣(b﹣c+d)D.a﹣b+c﹣d=(a﹣b)﹣(c﹣d)15.一个正方形的边长增加2cm,面积则增加32cm2,则这个正方形的边长为()A.6cm B.5cm C.8cm D.7cm16.初中毕业时,张老师买了一些纪念品准备分发给学生.若这些纪念品可以平均分给班级的(n+3)名学生,也可以平均分给班级的(n﹣2)名学生(n为大于3的正整数),则用代数式表示这些纪念品的数量不可能是()A.n2+n﹣6 B.2n2+2n﹣12 C.n2﹣n﹣6 D.n3+n2﹣6n17.如下图,将一边长为a的正方形(最中间的小正方形)与四块边长为b的正方形(其中b>a)拼接在一起,则四边形ABCD的面积为()A.b2+(b﹣a)2 B.b2+a2C.(b+a)2D.a2+2ab18.已知(a+b)2=7,(a﹣b)2=4,则ab的值为()A.B.C.D.19.若2m=3,2n=2,则2m+2n=()A.12 B.7 C.6 D.520.先观察下列各式:①32﹣12=4×2;②42﹣22=4×3;③52﹣32=4×4;④62﹣42=4×5;…下列选项成立的是()A.n2﹣(n﹣1)2=4n B.(n+1)2﹣n2=4(n+1)C.(n+2)2﹣n2=4(n+1)D.(n+2)2﹣n2=4(n﹣1)二、填空题:21.①(a﹣2b)3(2b﹣a)2=;②22014×(﹣2)2015=.22.①=;②(﹣a5)4•(﹣a2)3=﹣a15.23.①(﹣2ab2)3÷4a2b2=;②(27m2n3﹣9mn2)÷(﹣3mn)=.24.①=;②503×497=;③(﹣100.5)2=;④=;⑤20142﹣2013×2015=;⑥= ;⑦1002﹣992+982﹣972+…22﹣1=.25.因式分解:①4x2﹣9= ;②=.26.下列多项式:①a2﹣4b2;②a2+4ab+4b2;③a2b+2ab2;④a3+2a2b,它们的公因式是.27.若4a2﹣12a+m2是一个完全平方式,则m=.28.①若m x=4,m y=3,则m x+y=;②若,则9x﹣y=.29.已知,则(a+b)2﹣(a﹣b)2的值为.30.若(﹣7m+A)(4n+B)=16n2﹣49m2,则A=,B=.31.若|a+2|+a2﹣4ab+4b2=0,则a=,b=.32.已知=.33.若一个正方形的面积为,则此正方形的周长为.34.如上图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式.35.把一根20cm长的铁丝分成两段,将每一段围成一个正方形,若这两个正方形的面积之差是5cm,则两段铁丝的长分别为.36.①一个多项式除以2m得1﹣m+m2,这个多项式为.②÷(2x+3)=(3x﹣2).③小玉和小丽做游戏,两人各报一个整式,小玉报一个被除式,小丽报一个除式,要求商必须是3ab.若小玉报的是3a2b﹣ab2,则小丽报的是;若小丽报的是9a2b,则小玉报的整式是.④如图甲、乙两个农民共有4块地,今年他们决定共同投资搞饲养业,为此他们准备将这4块地换成宽为(a+b)cm的地,为了使所换到的面积与原来地的总面积相等,交换之后的地的长应为m.三、解答题:37.计算:①;②[(﹣y5)2]3÷[(﹣y)3]5•y2③;④(a﹣b)6•[﹣4(b﹣a)3]•(b﹣a)2÷(a﹣b)38.计算:①(2x﹣3y)2﹣8y2;②(m+3n)(m﹣3n)﹣(m﹣3n)2;③(a﹣b+c)(a﹣b﹣c);④(x+2y﹣3)(x﹣2y+3);⑤(a﹣2b+c)2;⑥[(x﹣2y)2+(x﹣2y)(2y﹣x)﹣2x(2x﹣y)]÷2x.⑦(m+2n)2(m﹣2n)2⑧.39.因式分解:①6ab3﹣24a3b;②﹣2a2+4a﹣2;③4n2(m﹣2)﹣6(2﹣m);④2x2y﹣8xy+8y;⑤a2(x﹣y)+4b2(y﹣x);⑥4m2n2﹣(m2+n2)2;⑦;⑧(a2+1)2﹣4a2;⑨3x n+1﹣6x n+3x n﹣1⑩x2﹣y2+2y﹣1;⑪4a2﹣b2﹣4a+1;⑫4(x﹣y)2﹣4x+4y+1;⑬3ax2﹣6ax﹣9a;⑭x4﹣6x2﹣27;⑮(a2﹣2a)2﹣2(a2﹣2a)﹣3.四、解答题:40.①若x+y=7,求的值.②若,求(x2a﹣b)2a+b的值.41.先化简,再求值:①已知,其中x=﹣2,y=﹣0.5.②已知x2﹣5x﹣14=0,求(x﹣1)(2x﹣1)﹣(x+1)2+1的值.42.解下列方程或不等式组:①(x+2)(x﹣3)﹣(x﹣6)(x﹣1)=0;②2(x﹣3)(x+5)﹣(2x﹣1)(x+7≤4.五、解答题:43.化简:(x+1)(x2+1)(x4+1)…(x2015+1)(x﹣1)44.若a2﹣4a+b2﹣10b+29=0,求a2b+ab2的值.45.证明两个连续奇数的平方差能被8整除.46.已知a、b、c分别是△ABC的三边的长,且满足a2+b2+c2﹣ab﹣ca﹣bc=0.求证:△ABC是等边三角形.(提示:通过代数式变形和配成完全平方后来证明)47.千年古镇赵化开发的鑫城小区的内坝是一块长为(3a+b)米,宽为(2a+b)米的长方形地,物业部门计划将内坝进行绿化(如图阴影部分),中间部分将修建一仿古小景点(如图中间的长方形),则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.六、探究、开放题:48.有下列三个多项式:A=2a2+3ab+b2;B=a2+ab;C=3a2+3ab.请你从中选两个多项式进行加减运算并对结果进行因式分解.49.阅读下面的解答过程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4≥4,∵(y+2)2≥0即(y+2)2的最小值为0,∴y2+4y+8的最小值为4.仿照上面的解答过程,求m2+m+4的最小值和4﹣x2+2x的最大值.50.观察下列各式:1×2×3×4+1=522×3×4×5+1=1123×4×5×6+1=1924×5×6×7+1=292(1)请写出一个规律性的结论,并说明理由.(2)根据(1)在的规律,计算的值.整式的乘法与因式分解测试卷参考答案一、选择题:1.(3分)下列计算正确的是()A.(x3)3=x6B.a6•a4=a24C.(﹣mn)4÷(﹣mn)2=m2n2 D.3a+2a=5a2解:A、(x3)3=x3×3=x9,故本选项错误;B、a6•a4=a6+4=a10,故本选项错误;C、(﹣mn)4÷(﹣mn)2=m2n2,故本选项正确;D、3a+2a=5a,故本选项错误.故选C.2.(3分)计算(﹣2ab)(3a2b2)3的结果是()A.﹣6a3b3B.54a7b7C.﹣6a7b7D.﹣54a7b7解:(﹣2ab)(3a2b2)3=﹣2ab•27a6b6=﹣54a7b7,故选:D.3.(3分)下列计算中,正确的是()A.(x+2)(x﹣3)=x2﹣6 B.(﹣4x)(2x2+3x﹣1)=﹣8x3﹣12x2﹣4x C.(x﹣2y)2=x2﹣2xy+4y2D.(﹣4a﹣1)(4a﹣1)=1﹣16a2解:A、(x+2)(x﹣3)=x2﹣x﹣6,本选项错误;B、(﹣4x)(2x2+3x﹣1)=﹣8x3﹣12x2+4x,本选项错误;C、(x﹣2y)2=x2﹣4xy+4y2,本选项错误;D、(﹣4a﹣1)(4a﹣1)=1﹣16a2,本选项正确.故选:D.4.(3分)下列各式中,计算正确的是()A.(a﹣b)2=a2﹣b2B.(2x﹣y)2=4x2﹣2xy+y2C.(﹣a﹣b)(a+b)=a2﹣b2D.﹣(x﹣y)2=2xy﹣x2﹣y2解:A、应为(a﹣b)2=a2﹣2ab+b2,故本选项错误;B、应为(2x﹣y)2=4x2﹣4xy+y2,故本选项错误;C、应为(﹣a﹣b)(a+b)=﹣a2﹣2ab﹣b2,故本选项错误;D、﹣(x﹣y)2=2xy﹣x2﹣y2,正确.故选:D.5.(3分)下列因式分解中,正确的是()A.x2﹣4=(x+4)(x﹣4)B.2x2﹣8=2(x2﹣4)C.a2﹣3=(a+)(a﹣)D.4x2+16=(2x+4)(2x﹣4)解:A、x2﹣4=(x+2)(x﹣2),故此选项错误;B、2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2),故此选项错误;C、a2﹣3=(a+)(a﹣),故此选项正确;D、4x2+16=4(x2+4),故此选项错误;故选:C.6.(3分)下列从左到右边的变形,是因式分解的是()A.(3﹣x)(3+x)=9﹣x2B.(y+1)(y﹣3)=﹣(3﹣y)(y+1)C.4yz﹣2y2z+z=2y(2z﹣yz)+z D.﹣8x2+8x﹣2=﹣4(2x﹣1)2解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、合因式分解的定义,故本选项正确;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、左边≠右边,不是因式分解,故本选项错误符.故选:B.7.(3分)若x2﹣2mx+1是完全平方式,则m的值为()A.2 B. 1 C.±1 D.解:∵x2﹣2mx+1=x2﹣2mx+12,∴﹣2mx=±2•x•1,解得m=±1.故选C.8.(3分)下列各式中,不能用完全平方公式分解的个数为()①x2﹣10x+25;②4a2+4a﹣1;③x2﹣2x﹣1;④;⑤.A.1个B.2个C.3个D.4个解:①x2﹣10x+25=(x﹣5)2,符合题意;②4a2+4a﹣1无法用完全平方公式因式分解;③x2﹣2x﹣1无法用完全平方公式因式分解;④=﹣(m2﹣m+)=﹣(m﹣)2,符合题意;⑤无法用完全平方公式因式分解.故选:B.9.(3分)在单项式x2,﹣4xy,y2,2xy.4y2,4xy,﹣2xy,4x2中,可以组成不同完全平方式的个数是()A.4 B.5 C.6 D.7解:x2+2xy+y2=(x+y)2,x2﹣2xy+y2=(x﹣y)2,4x2+4xy+y2=(2x+y)2,x2+4xy+4y2=(x+2y)2,4x2﹣4xy+y2=(2x﹣y)2,x2﹣4xy+4y2=(x﹣2y)2,所以,共可以组成6个不同的完全平方式.故选C.10.(3分)如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.1解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故选A.11.(3分)若x2﹣x﹣m=(x+n)(x+7),则m+n=()A.64 B.﹣64 C.48 D.﹣48 解答:解:∵x2﹣x﹣m=(x+n)(x+7)=x2+(n+7)x+7n,∴n+7=﹣1,﹣m=7n,解得:m=56,n=﹣8,则m+n=48.故选:C.12.(3分)计算(18x4﹣48x3+6x)÷6x的结果为()A.3x3﹣13x2B.3x3﹣8x2C.3x3﹣8x2+6x D.3x3﹣8x2+1解:(18x4﹣48x3+6x)÷6x=3x3﹣8x2+1.故选:D.13.(3分)已知长方形的面积为18x3y4+9xy2﹣27x2y2,长为9xy,则宽为()A.2x2y3+y+3xy B.2x2y2﹣2y+3xy C.2x2y3+2y﹣3xy D.2x2y3+y﹣3xy解:由题意得:长方形的宽=(18x3y4+9xy2﹣27x2y2)÷9xy=9xy(2x2y3+y﹣3xy)÷9xy =2x2y3+y﹣3xy.故选:D.14.(3分)下列变形正确的是()A.a+b﹣c=a﹣(b﹣c)B.a+b+c=a﹣(b+c)C.a﹣b+c﹣d=a﹣(b﹣c+d)D.a﹣b+c﹣d=(a﹣b)﹣(c﹣d)解:A、a+b﹣c=a+(b﹣c),故此选项错误;B、a+b+c=a+(b+c),故此选项错误;C、a﹣b+c﹣d=a﹣(b﹣c+d),此选项正确;D、a﹣b+c﹣d=(a﹣b)+(c﹣d),故此选项错误;故选:C.15.(3分)一个正方形的边长增加2cm,面积则增加32cm2,则这个正方形的边长为()A.6cm B.5cm C.8cm D.7cm解:设这个正方形的边长为x,正方形的边长如果增加2cm,则是x+2,根据题意列出方程得x2+32=(x+2)2解得x=7.则这个正方形的边长为7cm.故选D.16.(3分)初中毕业时,张老师买了一些纪念品准备分发给学生.若这些纪念品可以平均分给班级的(n+3)名学生,也可以平均分给班级的(n﹣2)名学生(n为大于3的正整数),则用代数式表示这些纪念品的数量不可能是()A.n2+n﹣6 B.2n2+2n﹣12 C.n2﹣n﹣6 D.n3+n2﹣6n解:A、(n2+n﹣6)÷[(n+3)(n﹣2)]=1,即n2+n﹣6能被n+3和n﹣2整除,即能平均分,故本选项错误;B、(2n2+2n﹣12)÷[(n+3)(n﹣2)]=2,即2n2+2n﹣12能被n+3和n﹣2整除,即能平均分,故本选项错误;C、n2﹣n﹣6不能被(n+3)和(n﹣2)整除,即不能平均分,故本选项正确;D、(n3+n2﹣6n)÷[(n+3)(n﹣2)]=n,即n3+n2﹣6n能被n+3和n﹣2整除,即能平均分,故本选项错误.故选:C.17.(3分)如图,将一边长为a的正方形(最中间的小正方形)与四块边长为b的正方形(其中b>a)拼接在一起,则四边形ABCD的面积为()A.b2+(b﹣a)2 B.b2+a2C.(b+a)2D.a2+2ab解:∵DE=b﹣a,AE=b,∴S四边形ABCD=4S△ADE+a2=4××(b﹣a)•b=b2+(b﹣a)2.故选:A.18.(3分)已知(a+b)2=7,(a﹣b)2=4,则ab的值为()A.B.C.D.解:(a+b)2﹣(a﹣b)2=a2+2ab+b2﹣a2+2ab﹣b2=4ab=7﹣4=3,ab=.故选:C.19.(3分)若2m=3,2n=2,则2m+2n=()A.12 B.7 C.6 D.5 解:∵2m=3,2n=2,∴2m+2n=2m•(2n)2=3×4=12.故选:A.20.(3分)先观察下列各式:①32﹣12=4×2;②42﹣22=4×3;③52﹣32=4×4;④62﹣42=4×5;…下列选项成立的是()A.n2﹣(n﹣1)2=4n B.(n+1)2﹣n2=4(n+1)C.(n+2)2﹣n2=4(n+1)D.(n+2)2﹣n2=4(n﹣1)解:∵①32﹣12=4×2;②42﹣22=4×3;③52﹣32=4×4;④62﹣42=4×5;…∴(n+2)2﹣n2=4(n﹣1).故选;D.二、填空题:21.(3分)①(a﹣2b)3(2b﹣a)2=(a﹣2b)5;②22014×(﹣2)2015=﹣24029.解:①(a﹣2b)3(2b﹣a)2=(a﹣2b)3(a﹣2b)2=(a﹣2b)5,②22014×(﹣2)2015=﹣24029.故答案为:(a﹣2b)5,﹣24029.22.(3分)①=﹣a3b6;②(﹣a5)4•(﹣a2)3=﹣a15.解:①=﹣a3b6;23.(3分)①(﹣2ab2)3÷4a2b2=﹣2ab4;②(27m2n3﹣9mn2)÷(﹣3mn)=﹣9mn2+3n.解:①(﹣2ab2)3÷4a2b2=﹣2ab4;②(27m2n3﹣9mn2)÷(﹣3mn)=﹣9mn2+3n.故答案为:﹣2ab4;﹣9mn2+3n.24.(3分)①=﹣1.5;②503×497=249991;③(﹣100.5)2=10099.75;④=15;⑤20142﹣2013×20151;⑥=;⑦1002﹣992+982﹣972+…22﹣1=5050.解:①原式=﹣(×1.5)2014×1.5=﹣1.5;②原式=(500+3)(500﹣3)=250000﹣9=249991;③原式=1002+2×100×0.5+0.52=10000+100+0.25=10099.75;④原式==15;⑤原式=20142﹣(2014﹣1)×(2014+1)=20142﹣20142+1=1;⑥原式==;⑦原式=(100﹣99)(100+99)+(98﹣97)(98+97)+…+(2﹣1)(2+1)=199+195+…+3=(199+3)×50÷2=202×50÷2=5050.故答案为:﹣1.5;249991;10099.75;15;1;;5050.25.(3分)因式分解:①4x2﹣9=(2x+3)(2x﹣3);②=x(+x﹣x2).解:①4x2﹣9=(2x+3)(2x﹣3);故答案为:(2x+3)(2x﹣3);②=x(+x﹣x2).故答案为:x(+x﹣x2).26.(3分)下列多项式:①a2﹣4b2;②a2+4ab+4b2;③a2b+2ab2;④a3+2a2b,它们的公因式是a+2b.解:①a2﹣4b2=(a+2b)(a﹣2b);②a2+4ab+4b2=(a+2b)2;③a2b+2ab2=ab(a+2b);④a3+2a2b=a2(a+2b),故多项式的公因式是a+2b.27.(3分)若4a2﹣12a+m2是一个完全平方式,则m=±3.解:∵4a2﹣12a+m2=(2a)2﹣2•2a•3+m2,∴m2=32=9,∴m=±3.故答案为:±3.28.(3分)①若m x=4,m y=3,则m x+y=12;②若,则9x﹣y=.解:①∵m x=4,m y=3,∴m x+y=m x•m y=4×3=12,②∵,∴9x﹣y=(3x)2÷(3y)2=÷=,故答案为:12,.29.(3分)已知,则(a+b)2﹣(a﹣b)2的值为1.解:∵(a+b)2﹣(a﹣b)2=(a2+2ab+b2)﹣(a2﹣2ab+b2)=4ab,∴将,代入上式可得:原式=4ab=4××=1.故答案为:1.30.(3分)若(﹣7m+A)(4n+B)=16n2﹣49m2,则A=4n,B=7m.解:∵(﹣7m+A)(4n+B)=16n2﹣49m2,∴16n2﹣49m2=(4n+7m)(4n﹣7m),∴A=4n,B=7m,故答案为:4n,7m.31.(3分)若|a+2|+a2﹣4ab+4b2=0,则a=﹣2,b=﹣1.解:∵|a+2|+a2﹣4ab+4b2=|a+2|+(a﹣2b)2=0,∴a+2=0,a﹣2b=0,解得:a=﹣2,b=﹣1,故答案为:﹣2;﹣132.(3分)已知=6.解:∵(a﹣)2=a2﹣2+=4,∴a2+=4+2=6.33.(3分)若一个正方形的面积为,则此正方形的周长为4a+2.解:∵正方形的面积为a2+a+=(a+)2,∴正方形的边长为a+,则正方形的周长为4a+2.故答案为:4a+234.如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式a2﹣b2=(a+b)(a﹣b.解:a2﹣b2=(a+b)(a﹣b).35.(3分)把一根20cm长的铁丝分成两段,将每一段围成一个正方形,若这两个正方形的面积之差是5cm,则两段铁丝的长分别为12cm和8cm.解:设其中较大的一段的长为xcm(x≥10),则另一段的长为(20﹣x)cm.则两个小正方形的边长分别为x cm和(20﹣x)cm∵两正方形面积之差为5cm2,∴(x)2﹣[(20﹣x)]2=5,解得x=12cm.则另一段长为20﹣12=8cm.∴两段铁丝的长分别为12cm和8cm.故答案是:12cm和8cm.36.(3分)①一个多项式除以2m得1﹣m+m2,这个多项式为2m﹣2m2+2m3.②6x2+5x﹣6÷(2x+3)=(3x﹣2).③小玉和小丽做游戏,两人各报一个整式,小玉报一个被除式,小丽报一个除式,要求商必须是3ab.若小玉报的是3a2b﹣ab2,则小丽报的是a﹣b;若小丽报的是9a2b,则小玉报的整式是27a3b2.④如图甲、乙两个农民共有4块地,今年他们决定共同投资搞饲养业,为此他们准备将这4块地换成宽为(a+b)cm的地,为了使所换到的面积与原来地的总面积相等,交换之后的地的长应为a+c m.解:①2m(1﹣m+m2)=2m﹣2m2+2m3;②(2x+3)(3x﹣2)=6x2+5x﹣6;③(3a2b﹣ab2)÷3ab=a﹣b,3ab•9a2b=27a3b2;④∵原来4块地的总面积=a2+bc+ac+ab,∴将这4块土地换成一块地后面积为(a2+bc+ac+ab)米,而此块地的宽为(a+b)米,∴此块地的长=(a2+bc+ac+ab)÷(a+b)=(a2+ac+bc+ab)÷(a+b)=[a(a+c)+b(a+c)÷(a+b)]=(a+b)(a+c)÷(a+b)=a+c.故答案为:2m﹣2m2+2m3;6x2+5x﹣6;a﹣b,27a3b2;a+c.三、解答题:37.计算:①;②[(﹣y5)2]3÷[(﹣y)3]5•y2③;④(a﹣b)6•[﹣4(b﹣a)3]•(b﹣a)2÷(a﹣b)解答:解:①原式=5a2b÷(﹣ab)•(4a2b4)=﹣60a3b4;②原式=y30÷(﹣y)15•y2=﹣y17;③原式=a2b﹣ab2﹣;④原式=4(a﹣b)10.38.计算:①(2x﹣3y)2﹣8y2;②(m+3n)(m﹣3n)﹣(m﹣3n)2;③(a﹣b+c)(a﹣b﹣c);④(x+2y﹣3)(x﹣2y+3);⑤(a﹣2b+c)2;⑥[(x﹣2y)2+(x﹣2y)(2y﹣x)﹣2x(2x﹣y)]÷2x.⑦(m+2n)2(m﹣2n)2⑧.解:①原式=4x2﹣12xy+9y2﹣8y2=4x2﹣12xy+y2;②原式=m2﹣9n2﹣m2+6mn﹣9n2=6mn﹣18n2;③原式=(a﹣b)2﹣c2=a2﹣2ab+b2﹣c2;④原式=x2﹣(2y﹣3)2=x2﹣4y2+12y﹣9;⑤原式=(a﹣2b)2+2c(a﹣2b)+c2=a2﹣4ab+4b2+2ac﹣4bc+c2;⑥原式=(x2﹣4xy+4y2﹣x2+4xy﹣4y2﹣4x2+2xy)÷2x=(﹣4x2+2xy)÷2x=﹣2x+y;⑦原式=[(m+2n)(m﹣2n)]2=(m2﹣4n2)2=m4﹣8m2n2+16n4;⑧原式=a(﹣a+b+c)=﹣a2+ab+ac.39.因式分解:①6ab3﹣24a3b;②﹣2a2+4a﹣2;③4n2(m﹣2)﹣6(2﹣m);④2x2y﹣8xy+8y;⑤a2(x﹣y)+4b2(y﹣x);⑥4m2n2﹣(m2+n2)2;⑦;⑧(a2+1)2﹣4a2;⑨3x n+1﹣6x n+3x n﹣1⑩x2﹣y2+2y﹣1;⑪4a2﹣b2﹣4a+1;⑫4(x﹣y)2﹣4x+4y+1;⑬3ax2﹣6ax﹣9a;⑭x4﹣6x2﹣27;⑮(a2﹣2a)2﹣2(a2﹣2a)﹣3.解:①6ab3﹣24a3b=6ab(b2﹣4a2)=6ab(b+2a)(b﹣2a);②﹣2a2+4a﹣2=﹣2(a2﹣2a+1)=﹣2(a﹣1)2;③4n2(m﹣2)﹣6(2﹣m)=2(m﹣2)(2n2+3);④2x2y﹣8xy+8y=2y(x2﹣4x+4)=2y(x﹣2)2;⑤a2(x﹣y)+4b2(y﹣x)=(x﹣y)(a2﹣4b2)=(x﹣y)(a+2b)(a﹣2b);⑥4m2n2﹣(m2+n2)2=(2mn+m2+n2)(2mn﹣m2﹣n2)=﹣(m+n)2(m﹣n)2;⑦=﹣(n2﹣4m2)=﹣(n+2m)(n﹣2m);⑧(a2+1)2﹣4a2=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2;⑨3x n+1﹣6x n+3x n﹣1=3x n﹣1(x2﹣2x+1)=3x n﹣1(x﹣1)2;⑩x2﹣y2+2y﹣1=x2﹣(y﹣1)2=(x+y﹣1)(x﹣y+1);⑪4a2﹣b2﹣4a+1=(4a2﹣4a+1)﹣b2=(2a﹣1)2﹣b2=(2a﹣1+b)(2a﹣1﹣b);⑫4(x﹣y)2﹣4x+4y+1=4(x﹣y)2﹣4(x﹣y)+1=[2(x﹣y)﹣1]2=(2x﹣2y﹣1)2;⑬3ax2﹣6ax﹣9a=3a(x2﹣2x﹣3)=3a(x﹣3)(x+1);⑭x4﹣6x2﹣27=(x2﹣9)(x2+3)=(x+3)(x﹣3)(x2+3);⑮(a2﹣2a)2﹣2(a2﹣2a)﹣3=(a2﹣2a﹣3)(a2﹣2a+1)=(a﹣3)(a+1)(a﹣1)2.四、解答题:40.①若x+y=7,求的值.②若,求(x2a﹣b)2a+b的值.解:①∵x+y=7,∴原式=(x2+y2+2xy)=(x+y)2=;②∵=2,=7,∴原式=()4÷=16÷7=.41.先化简,再求值:①已知,其中x=﹣2,y=﹣0.5.②已知x2﹣5x﹣14=0,求(x﹣1)(2x﹣1)﹣(x+1)2+1的值.解:①原式=(4x2y2﹣8xy+4﹣4+x2y2)÷xy=(5x2y2﹣8xy)÷xy=20xy﹣32.当x=﹣2,y=﹣0.5时,原式=20×2×0.5﹣32=20﹣32=﹣12;②(x﹣1)(2x﹣1)﹣(x+1)2+1=2x2﹣3x+1﹣x2﹣2x﹣1+1=x2﹣5x+1当x2﹣5x﹣14=0时,即x2﹣5x=14,则原式=14+1=15.42.解下列方程或不等式组:①(x+2)(x﹣3)﹣(x﹣6)(x﹣1)=0;②2(x﹣3)(x+5)﹣(2x﹣1)(x+7)≤4.解:①去括号得:x2﹣x﹣6﹣x2+7x﹣6=0,移项合并得:6x=12,解得:x=2;②去括号得:2x2+4x﹣30﹣2x2﹣13x+7≤4,移并得:﹣9x≤27,解得:x≥﹣3.五、解答题:43.化简:(x+1)(x2+1)(x4+1)…(x2015+1)(x﹣1)解:原式=(x2﹣1)(x2+1)(x4+1)…(x2015+1)=(x4﹣1)(x4+1)…(x2015+1)=(x2015﹣1)(x2015+1)=x4030﹣1.44.若a2﹣4a+b2﹣10b+29=0,求a2b+ab2的值.解:∵a2﹣4a+b2﹣10b+29=0,∴(a﹣2)2+(b﹣5)2=0,∴a﹣2=0,b﹣5﹣0,则a=2,b=5,∴a2b+ab2=ab(a+b)=2×5×(2+5)=70.45.证明两个连续奇数的平方差能被8整除.解:设两个连续奇数为2n﹣1,2n+1,则(2n+1)2﹣(2n﹣1)2=(2n+1+2n﹣1)(2n+1﹣2n+1)=8n,故能.46.已知a、b、c分别是△ABC的三边的长,且满足a2+b2+c2﹣ab﹣ca﹣bc=0.求证:△ABC是等边三角形.(提示:通过代数式变形和配成完全平方后来证明)证明:∵a2+b2+c2﹣ab﹣bc﹣ca=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ca)=[(a2﹣2ab+b2)+(b2﹣2bc+c2)+(c2﹣2ca+a2)]=[(a﹣b)2+(b﹣c)2+(c﹣a)2],又∵a2+b2+c2﹣ab﹣bc﹣ac=0,∴[(a﹣b)2+(b﹣c)2+(c﹣a)2]=0,根据非负数的性质得,(a﹣b)2=0,(b﹣c)2=0,(c﹣a)2=0,可知a=b=c,故这个三角形是等边三角形.47.千年古镇赵化开发的鑫城小区的内坝是一块长为(3a+b)米,宽为(2a+b)米的长方形地,物业部门计划将内坝进行绿化(如图阴影部分),中间部分将修建一仿古小景点(如图中间的长方形),则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.解:由题意,得(3a+b)(2a+b)﹣(a+b)2=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,当a=3,b=2时,5a2+3ab=5×32+3×3×2=63,答:绿化的面积是5a2+3ab平方米,当a=3,b=2时的绿化面积是63m2.六、探究、开放题:48.有下列三个多项式:A=2a2+3ab+b2;B=a2+ab;C=3a2+3ab.请你从中选两个多项式进行加减运算并对结果进行因式分解.解:∵A=2a2+3ab+b2,B=a2+ab,∴A﹣B=2a2+3ab+b2﹣a2﹣ab=a2+2ab+b2=(a+b)2.49.阅读下面的解答过程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4≥4,∵(y+2)2≥0即(y+2)2的最小值为0,∴y2+4y+8的最小值为4.仿照上面的解答过程,求m2+m+4的最小值和4﹣x2+2x的最大值.解:(1)m2+m+4=(m+)2+,∵(m+)2≥0,∴(m+)2+≥.则m2+m+4的最小值是;(2)4﹣x2+2x=﹣(x﹣1)2+5,∵﹣(x﹣1)2≤0,∴﹣(x﹣1)2+5≤5,则4﹣x2+2x的最大值为5.50.观察下列各式:1×2×3×4+1=522×3×4×5+1=1123×4×5×6+1=1924×5×6×7+1=292(1)请写出一个规律性的结论,并说明理由.(2)根据(1)在的规律,计算的值.解:(1)∵1×2×3×4+1=522×3×4×5+1=112 3×4×5×6+1=1924×5×6×7+1=292…∴n(n+1)(n+2)(n+3)+1=(n2+3n+1)2.(2)=1002+300+1=10301.。

人教版数学八年级上册:14 整式的乘法与因式分解 专题练习(附答案)

人教版数学八年级上册:14 整式的乘法与因式分解  专题练习(附答案)

第十四章《整式的乘法与因式分解》专题练习目录专题1幂的运算性质的应用 (1)专题2 整式的运算及化简求值 (2)专题3 完全平方公式的变形 (4)专题4 乘法公式的应用 (5)专题5 因式分解 (6)第十四章整式的乘法与因式分解专题练习专题1幂的运算性质的应用类型1直接利用幂的运算性质进行计算1.计算:(1)a·a4=;(2)(a5)2=;(3)(-a4)3=;(4)(2y2)3=;(5)(ab3)2=;(6)(-a2b3c)3=;(7)(a2)3·a4=;(8)(-3a)2·a3=;(9)(a n b m+4)3=;(10)(-a m)5·a n=.2.计算:(1)(-a2)3+(-a3)2-a2·a3;(2)a·a2·a3+(a3)2-(2a2)3;(3)-(-x2)3·(-x2)2-x·(-x3)3;(4)(-2x2)3+(-3x3)2+(x2)2·x2;(5)(-2x2y)3-(-2x3y)2+6x6y3+2x6y2.类型2逆用幂的运算性质3.已知a x=-2,a y=3.求:(1)a x+y的值;(2)a3x的值;(3)a3x+2y的值.4.计算:0.1252 019×(-82 020).5.已知2a=m,2b=n,3a=p(a,b都是正整数),用含m,n或p的式子表示下列各式:(1)4a+b;(2)6a.专题2整式的运算及化简求值类型1整式的化简1.计算:(1)(-2a2)·(3ab2-5ab3)+8a3b2;(2)(3x-1)(2x+1);(3)(2x+5y)(3x-2y)-2x(x-3y);(4)(x-1)(x2+x+1).2.计算:(1)21x2y4÷3x2y3;(2)(8x3y3z)÷(-2xy2);(3)a 2n +2b 3c÷2a n b 2; (4)-9x 6÷13x 2÷(-x 2).3.计算:(1)(-2a 2b 3)·(-ab)2÷4a 3b 5; (2)(-5a 2b 4c 2)2÷(-ab 2c)3.4.计算:(1)[x(x 2y 2-xy)-y(x 2-x 3y)]÷x 2y ; (2)(23a 4b 7-19a 2b 6)÷(-16ab 3)2. 5.计算:(1)(-76a 3b)·65abc ; (2)(-x)5÷(-x)-2÷(-x)3;(3)6mn 2·(2-13mn 4)+(-12mn 3)2; (4)5x(x 2+2x +1)-(2x +3)(x -5).类型2 直接代入进行化简求值 6.先化简,再求值:(1)(1+x)(1-x)+x(x +2)-1,其中x =12;(2)(a +b)(a -2b)-(a +2b)(a -b),其中a =-2,b =23;(3)(x +7)(x -6)-(x -2)(x +1),其中x =2 0180.(4)(2a +3b)(3a -2b)-5a(b +1)-6a 2,其中a =-12,b =2.类型3 利用整体带入进行化简求值7.先化简,再求值:(2+a)(2-a)+a(a -5b)+3a 5b 3÷(-a 2b)2,其中ab =-12.8.若x2+4x-4=0,求3(x-1)(x-3)-6(x+1)(x-1)的值.专题3 完全平方公式的变形教材母题:已知a +b =5,ab =3,求a 2+b 2的值.解:∵a +b =5,ab =3,∴(a +b)2=25,即a 2+2ab +b 2=25. ∴a 2+b 2=25-2ab =25-6=19.【变式1】若a +b =3,a 2+b 2=7,则ab =( )A .2B .1C .-2D .-1【变式2】已知实数a ,b 满足a +b =2,ab =34,则a -b =( )A .1B .-52C .±1D .±52【变式3】已知a 2+b 2=13,(a -b)2=1,则(a +b)2= .【变式4】阅读下列材料并解答后面的问题:利用完全平方公式(a±b)2=a 2±2ab +b 2,通过配方可对a 2+b 2进行适当的变形,如a 2+b 2=(a +b)2-2ab 或a 2+b 2=(a -b)2+2ab.(1)若|x -y -5|+(xy -6)2=0,则x 2+y 2的值为 ; (2)已知a -b =2,ab =3,求a 4+b 4的值. 解题技巧:(1)a 2+b 2的变形:(1)a 2+b 2=(a +b)2-2ab ;(2)a 2+b 2=(a -b)2+2ab ;(3)a 2+b 2=12[(a +b)2+(a -b)2].(2)ab 的变形:(1)ab =12[(a +b)2-(a 2+b 2)];(2)ab =12[(a 2+b 2)-(a -b)2];(3)ab =14[(a +b)2-(a -b)2].(3)(a±b)2的变形:(1)(a +b)2=(a -b)2+4ab ; (2)(a -b)2=(a +b)2-4ab.练习:1.已知a ,b 都是正数,a -b =1,ab =2,则a +b =( )A .-3B .3C .±3D .92.已知x 2+y 2=25,x +y =7.(1)求xy 的值; (2)若y >x ,求x -y 的值.3.已知(m -53)(m -47)=24,求(m -53)2+(m -47)2的值.4.(1)请同学们观察用硬纸片拼成的图形(如图),根据图形的面积关系,写出一个代数恒等式;(2)根据(1)题中的等量关系,解决如下问题: ①若m +n =8,mn =12,求m -n 的值;②已知(2m +n)2=13,(2m -n)2=5,请利用上述等式求mn.专题4乘法公式的应用类型1直接运用乘法公式计算求值1.计算:(1)(2x+5y)2;(2)(3m-n)(-3m-n);(3)(x+2y)(x2-4y2)(x-2y);(4)(3x-2y)2(3x+2y)2.2.先化简,再求值:(1)(3+x)(3-x)+(x+1)2,其中x=2;(2)(2m+1)(2m-1)-(m-1)2+(2m)3÷(-8m),其中m满足m2+m-2=0;(3)(x+2y)2-(x-2y)2-(x+2y)(x-2y)-4y2,其中x=-2,y=1 2.类型2 运用乘法公式进行简便计算 3.用简便方法计算:(1)2 0192-2 018×2 020; (2)50120×491920;(3)2012-401; (4)(2+1)(22+1)(24+1)+1.专题5 因式分解类型1 运用提公因式法因式分解 1.分解因式:(1)3ab 2+a 2b = ; (2)2a 2-4a = ;(3)m(5-m)+2(m -5)= ; (4)5x(x -2y)3-20y(2y -x)3= . 类型2 运用公式法因式分解 2.分解因式:(1)4x 2-25= ; (2)a 2+4a +4= . 3.因式分解:(1)(2x+3)2-(x-1)2;(2)(x-1)2-6(x-1)+9.类型3先提公因式后运用公式法因式分解4.分解因式:(1)x2y-9y=;(2)ax3-axy2=.5.因式分解:(1)-4x3+8x2-4x;(2)3m(2x-y)2-3mn2.类型5运用特殊方法因式分解方法1十字相乘法阅读理解:由多项式乘法:(x+p)(x+q)=x2+(p+q)x+pq,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(p+q)x+pq=(x+p)(x+q),示例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).问题解决:分解因式:(1)x2+5x+4=;(2)x2-6x+8=;(3)x2+2x-3=;(4)x2-6x-7=.拓展训练:分解因式:(1)2x2+3x+1=;(2)3x2-5x+2=.方法2分组分解法【阅读材料】分解因式:mx+nx+my+ny=(mx+nx)+(my+ny)=x(m+n)+y(m+n)=(m+n)(x+y).以上分解因式的方法称为分组分解法.对于四项多项式的分组,可以是“二、二分组(如此例)”,也可以是“三、一(或一、三)分组”.根据以上阅读材料解决问题:【跟着学】分解因式:a3-b3+a2b-ab2=(a3+)-(b3+)=a2( )-(a+b)=(a+b)=.【我也可以】分解因式:4x2-2x-y2-y.拓展训练:已知a,b,c为△ABC的三边,若a2+b2+2c2-2ac-2bc=0,试判断△ABC 的形状.参考答案:专题1幂的运算性质的应用1.(1)a5;(2)a10;(3)-a12;(4)8y6;(5)a2b6;(6)-a6b9c3;(7)a10;(8)9a5;(9)a3n b3m+12;(10)-a5m+n.2.(1)(-a2)3+(-a3)2-a2·a3;解:原式=-a6+a6-a5=-a5.(2)a·a2·a3+(a3)2-(2a2)3;解:原式=a6+a6-8a6=-6a6.(3)-(-x2)3·(-x2)2-x·(-x3)3;解:原式=x6·x4+x10=2x10.(4)(-2x2)3+(-3x3)2+(x2)2·x2;解:原式=-8x6+9x6+x6=2x6.(5)(-2x2y)3-(-2x3y)2+6x6y3+2x6y2.解:原式=-8x6y3-4x6y2+6x6y3+2x6y2=-2x6y3-2x6y2.3.解:(1)a x+y=a x·a y=-2×3=-6.(2)a3x=(a x)3=(-2)3=-8.(3)a3x+2y=(a3x)·(a2y)=(a x)3·(a y)2=(-2)3·32=-8×9=-72.4.解:原式=(18)2 019×(-82 019×8) =(18)2 019×(-82 019)×8 =-(18×8)2 019×8 =-1×8=-8.5.解:(1)4a +b =4a ·4b=(22)a ·(22)b=(2a )2·(2b )2=m 2n 2.(2)6a =(2×3)a=2a ×3a=mp.专题2 整式的运算及化简求值1.(1)(-2a 2)·(3ab 2-5ab 3)+8a 3b 2;解:原式=-6a 3b 2+10a 3b 3+8a 3b 2=2a 3b 2+10a 3b 3.(2)(3x -1)(2x +1);解:原式=6x 2+3x -2x -1=6x 2+x -1.(3)(2x +5y)(3x -2y)-2x(x -3y);解:原式=6x 2+11xy -10y 2-2x 2+6xy=4x 2+17xy -10y 2.(4)(x -1)(x 2+x +1).解:原式=x 3+x 2+x -x 2-x -1=x 3-1.2.(1)21x 2y 4÷3x 2y 3;解:原式=(21÷3)·x 2-2·y 4-3=7y.(2)(8x 3y 3z)÷(-2xy 2);解:原式=[8÷(-2)]·(x 3÷x)·(y 3÷y 2)·z=-4x 2yz.(3)a 2n +2b 3c÷2a n b 2;解:原式=(1÷2)·(a 2n +2÷a n )·(b 3÷b 2)·c=12a n +2bc. (4)-9x 6÷13x 2÷(-x 2). 解:原式=[-9÷13÷(-1)]·(x 6÷x 2÷x 2)=27x 2.3.(1)(-2a 2b 3)·(-ab)2÷4a 3b 5;解:原式=(-2a 2b 3)·a 2b 2÷4a 3b 5=(-2a 4b 5)÷4a 3b 5=-12a.(2)(-5a 2b 4c 2)2÷(-ab 2c)3.解:原式=25a 4b 8c 4÷(-a 3b 6c 3)=-25ab 2c.4.(1)[x(x 2y 2-xy)-y(x 2-x 3y)]÷x 2y ;解:原式=(x 3y 2-x 2y -x 2y +x 3y 2)÷x 2y=(2x 3y 2-2x 2y)÷x 2y=2xy -2.(2)(23a 4b 7-19a 2b 6)÷(-16ab 3)2.解:原式=(23a 4b 7-19a 2b 6)÷136a 2b 6=23a 4b 7÷136a 2b 6-19a 2b 6÷136a 2b 6=24a 2b -4.5.(1)(-76a 3b)·65abc ;解:原式=-75a 3+1b 1+1c=-75a 4b 2c.(2)(-x)5÷(-x)-2÷(-x)3;解:原式=(-x)5-(-2)-3=(-x)4=x 4.(3)6mn 2·(2-13mn 4)+(-12mn 3)2; 解:原式=12mn 2-2m 2n 6+14m 2n 6 =12mn 2-74m 2n 6. (4)5x(x 2+2x +1)-(2x +3)(x -5).解:原式=5x 3+10x 2+5x -(2x 2-7x -15)=5x 3+10x 2+5x -2x 2+7x +15=5x 3+8x 2+12x +15.6.(1)(1+x)(1-x)+x(x +2)-1,其中x =12; 解:原式=1-x +x -x 2+x 2+2x -1=2x.当x =12时,原式=2×12=1. (2)(a +b)(a -2b)-(a +2b)(a -b),其中a =-2,b =23; 解:原式=a 2-ab -2b 2-(a 2+ab -2b 2)=a 2-ab -2b 2-a 2-ab +2b 2=-2ab.当a =-2,b =23时,原式=(-2)×(-2)×23=83. (3)(x +7)(x -6)-(x -2)(x +1),其中x =2 0180.解:原式=x 2-6x +7x -42-x 2-x +2x +2=2x -40. 由题意知x =1.原式=2-40=-38.(4)(2a +3b)(3a -2b)-5a(b +1)-6a 2,其中a =-12,b =2. 解:原式=6a 2+5ab -6b 2-5ab -5a -6a 2=-6b 2-5a.当a =-12,b =2时, 原式=-6×22-5×(-12) =-24+52=-2112. 7.解:原式=4-2a +2a -a 2+a 2-5ab +3a 5b 3÷a 4b 2=4-2ab.当ab =-12时,原式=4-2×(-12)=5. 8.解:原式=3x 2-12x +9-6x 2+6=-3x 2-12x +15=-3(x 2+4x)+15.∵x 2+4x -4=0,∴x 2+4x =4.∴原式=-3×4+15=3.专题3完全平方公式的变形【变式1】B【变式2】C【变式3】25.【变式4】(1)37;(2)解:a2+b2=(a-b)2+2ab=4+6=10,a4+b4=(a2+b2)2-2a2b2=102-2×32=82. 1.B2.解:(1)xy=12[(x+y)2-(x2+y2)]=12×(72-25)=12.(2)(x-y)2=(x+y)2-4xy=72-4×12=1.∵y>x,∴x-y<0.∴x-y=-1.3.解:(m-53)2+(m-47)2=[(m-53)-(m-47)]2+2(m-53)(m-47)=(-6)2+48=84.4.解:(1)(a+b)2-(a-b)2=4ab.(2)①∵(m-n)2=(m+n)2-4mn=82-4×12=16,∴m-n=4或-4.②∵(2m+n)2-(2m-n)2=4×(2m·n)=8mn,∴8mn=13-5=8.∴mn=1.专题4乘法公式的应用1.(1)(2x+5y)2;解:原式=4x2+20xy+25y2.(2)(3m-n)(-3m-n);解:原式=n2-9m2.(3)(x+2y)(x2-4y2)(x-2y);解:原式=[(x+2y)(x-2y)](x2-4y2)=(x2-4y2)(x2-4y2)=x4-8x2y2+16y4.(4)(3x-2y)2(3x+2y)2.解:原式=[(3x-2y)(3x+2y)]2=(9x2-4y2)2=81x4-72x2y2+16y4.2.(1)(3+x)(3-x)+(x+1)2,其中x=2;解:原式=9-x2+x2+2x+1=2x+10.当x=2时,原式=2×2+10=14.(2)(2m+1)(2m-1)-(m-1)2+(2m)3÷(-8m),其中m满足m2+m-2=0;解:原式=4m2-1-(m2-2m+1)+8m3÷(-8m)=4m2-1-m2+2m-1-m2=2m2+2m-2=2(m2+m-1).∵m2+m-2=0,∴m2+m=2.∴原式=2×(2-1)=2.(3)(x+2y)2-(x-2y)2-(x+2y)(x-2y)-4y2,其中x=-2,y=1 2.解:原式=(x2+4xy+4y2)-(x2-4xy+4y2)-(x2-4y2)-4y2=x2+4xy+4y2-x2+4xy-4y2-x2+4y2-4y2=-x2+8xy.当x =-2,y =12时, 原式=-(-2)2+8×(-2)×12=-12. 3.(1)2 0192-2 018×2 020;解:原式=2 0192-(2 019-1)×(2 019+1) =2 0192-(2 0192-1)=1.(2)50120×491920; 解:原式=(50+120)×(50-120) =502-(120)2 =2 500-1400=2 499399400. (3)2012-401;解:原式=(200+1)2-401=2002+2×200×1+12-401=40 000.(4)(2+1)(22+1)(24+1)+1.解:原式=(2-1)(2+1)(22+1)(24+1)+1 =(22-1)(22+1)(24+1)+1=(24-1)(24+1)+1=28-1+1=256.专题5因式分解1.(1)ab(3b+a);(2)2a(a-2);(3)(m-2)(5-m);(4)5(x-2y)3(x+4y).2.分解因式:(1)4x2-25=(2x+5)(2x-5);(2)a2+4a+4=(a+2)2.3.(1)(2x+3)2-(x-1)2;解:原式=(2x+3+x-1)(2x+3-x+1)=(3x+2)(x+4).(2)(x-1)2-6(x-1)+9.解:原式=(x-4)2.4.(1)y(x+3)(x-3);(2)ax(x+y)(x-y).5.(1)-4x3+8x2-4x;解:原式=-4x(x2-2x+1)=-4x(x-1)2.(2)3m(2x-y)2-3mn2.解:原式=3m(2x-y+n)(2x-y-n).类型5方法1十字相乘法(1)(x+1)(x+4);(2)(x-2)(x-4);(3)(x+3)(x-1);(4)(x-7)(x+1).拓展训练:(1)(2x+1)(x+1);(2)(x-1)(3x-2).方法2分组分解法【跟着学】a3-b3+a2b-ab2=(a3+a2b)-(b3+ab2)=a2(a+b)-b2(a+b)=(a2-b2)(a+b)=(a-b)(a+b)2.【我也可以】解:原式=(4x2-y2)-(2x+y)=(2x-y)(2x+y)-(2x+y)=(2x+y)(2x-y-1).拓展训练:解:∵a2+b2+2c2-2ac-2bc=0,∴a2+c2-2ac+b2+c2-2bc=0,即(a-c)2+(b-c)2=0.∴a-c=0且b-c=0,即a=c且b=c.∴a=b=c.∴△ABC是等边三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘法与因式分解
一、 整式的乘法1、同底数幂相乘:=∙n m a a 2、幂的乘方:()
=n
m a 3、积的乘方:()=n
ab
例1、计算:(1)52x x ⋅ (2)389)2()2()2(-⨯-⨯-(3)m m a a +-⋅11
(4)523)()()(x y x y y x -⋅-⋅-
例2、计算:(1)(103
)5
(2)
2
3)(m a - (3)()[
]5
22y x - (4) 5
32
])][()[(m n n m --
例3、计算:(1)(ab )2 (2)(-3x )2
(3)332)3(c b a - (4)3
2])(3[y x + (5)20082009
)3()
3
1
(-⨯
1、单项式⨯单项式
2、单项式⨯多项式
3、多项式⨯多项式(注意法则要记清)
例1、计算:(1)abc b a ab 2)3
1(32
2
⋅-⋅ (2))3
4432()23(22y xy y x xy +-⋅-
(3)(x-3y)(x+7y) (4))1)(1)(1(2
++-x x x
2、先化简,后求值:(x -4)(x -2)-(x -1)(x +3),其中2
5-=x 。

、平方差公式: ()()=-+b a b a ; 变式:(1)=+-+))((a b b a ; (2)=++-))((b a b a ;
(3)))((b a b a --+-= ; (4)))((b a b a ---= 。

2、完全平方公式:2)(b a ±= 。

公式变形:(1)ab b a ab b a b a 2)(2)(2
222+-=-+=+ (2)ab b a b a 4)()(2
2
+-=+; (3)ab b a b a 4)()(2
2
-+=- (4)ab b a b a 4)()(2
2
=--+; (5))(2)()(2
2
2
2
b a b a b a +=-++
例2、计算:(1)(x +2)(x -2) (2)(5+a)(-5+a) (3))52)(52(y x y x +---
(4)(
)()2
2
2
233x
y
y
x ++- (5) 20021998⨯ (6)
()()()4222
+-+x x x
、直接写出结果:(1)(x -ab )(x +ab )= ; (2)(2x +5y )(2x -5y )= ; (3)(-x -y )(-x +y )= ;(4)(12+b 2
)(b 2
-12)=______ ; (5) (-2x+3)(3+2x)= ;(6)(a 5
-b 2
)(a 5
+b 2
)= 。

2、在括号中填上适当的整式: (1)(m -n )( )=n 2
-m 2

(2)(-1-3x )( )=1-9x 2
4、计算:(1)()()b a b a 5252--- (2)).2
3)(23(22
b a b a -+ (3)⋅⨯7
6
97110 (4)(-m 2n +2)(-m 2n -2)
(5)(
)()
22
2
25252b a
b a --+- (6)(a +b +
c )(a +b -c )
5、已知02,62
2
=-+=-y x y x ,求5--y x 的值。

例3、填空:(1)x 2-10x +______=( -5)2;(2)x 2+______+16=(______-4)2

(3)x 2
-x +______=(x -____ )2
; (4)4x 2
+______+9=(______+3)2

例4、计算:(1)
()2
2
2)2(y x y x -++ (2)(x+错误!未找到引用源。

)2 (3)22)12
1(-x (4)2
999
例5、已知x x +=13,求()1122x x
+;()()212x x -
例6、化简求值()()()()2
2
32323232b a b a b a b a ++-+--,其中:3
1
,2=
-=b a 。

、设p n m n m +-=+2
2
)23()23(,则P 的值是( ) A 、mn 12 B 、mn 24 C 、mn 6 D 、mn 48 2、若k x x +6-2
是完全平方式,则k= 3、若a+b=5,ab=3,则2
2b a += .
4、若2)1(2
=-x ,则代数式522
+-x x 的值为 。

5、利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:2
2
2
2)(b ab a b a ++=+,你根据图乙能得到的数学公式是 。

6、已知:________1
,5122=+=+
a
a a a . 7、计算:(1)(3a+
b )2
(2)(-3x 2+5y)
2
(3)(5x-3y)2
(4)(-4x 3
-7y 2)2
(5)(3mn -5ab )2 (6)
(a +b +c )2
(7) ()2
8.79- (8) 2
2)()(y x y x +-
8、化简求值:2
2
)2()2()2)(12(+---+-x x x x ,其中2
11-=x
9、已知49)(2=+y x ,1)(2=-y x ,求下列各式的值:(1)2
2y x +;(2)xy 。

1、定义:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解。

2、因式分解的方法:(1)提公因式法(2)公式法:平方差公式:22
()()a b a b a b -=+- 完全平方公式:2222)(b ab a b a +±=±(3)十字相乘法:pq x q p x +++)(2
= 。

1、分解因式:(1)x 2-2x 3
(2)3y 3-6y 2
+3y
(3))(3)(2b a y b a x --- (4)3x (m -n )+2(m -n )
1、分解因式:(1)12ab +6b (2)x 2
-x (3)5x 2
y +10xy 2
-15xy (4)2
236a
b ab + (5)y (x -y )2-(y -x )3 (6)23(3)(3)a a a ---
2、应用简便方法计算:
(1)2012
-201 (2)4.3×199.8+7.6×199.8-1.9×199.8
例2、分解因式:(1)4a 2
-9b 2
(2)2
69a a ++
(3)22)1(16)2(-++-x x (4)1)25(2)25(2
+---y x y x 变式练习:
分解因式:(1)162-x (2)25a 2
-4 (4) 2
24129x
xy y -+ (10) x (x +4)+4
(5) -a 2
-2ab -b 2
(6)
1+t+4
2t (7)(2x -1)2-(x +2)2
例3、分解因式:(1)a 3
-ab 2
(2)ab b a b a ++232(4)a a 5463- (5) m mx mx 2422
+-
(6)2a 2
– 4a + 2 (7) x x x -+-232 (8)2336x x +- (9) 3(x +y )2
-27。

相关文档
最新文档