Transcription factors in plants and ABA dependent and independent abiotic stress signalling

合集下载

番茄MYB_转录因子研究进展

番茄MYB_转录因子研究进展

中国瓜菜2023,36(3):9-14收稿日期:2022-11-18;修回日期:2023-01-16基金项目:国家现代农业产业技术体系(CARS-23-G11);烟台市科技计划项目(2022XCZX091);重庆市巫山县科技项目(wskjdx-bxm2022003)作者简介:石雪燕,女,在读硕士研究生,研究方向:植物分子生物学。

E-mail :*****************通信作者:王虹云,女,高级农艺师,研究方向:蔬菜育种及分子生物学。

E-mail :************************转录因子(transcription factor ,TF )是能够特异性地结合基因5’端上游特定核苷酸序列的蛋白,能够调控基因表达功能,加强或抑制基因的转录,也可称作反式作用因子[1]。

转录因子作用过程是在植物根据不同的发育阶段以及面对外部环境的变化时,与相应的顺式元件特异性地结合,激活特定基因转录表达,做出一系列应答反应[2]。

不仅如此,当DNA 转录成RNA 时,在转录起始过程中转录因子起着辅助RNA 聚合酶的作用,是此过程必不可少的一部分[3]。

现在已经发现数百种基因编码植物转录因子,按照DNA 结构域可以分为MYB 、SBP 、HB 、DREB 、NAC 、bZIP 、WRKY 和AP2/EREBP 等家族[4]。

转录因子参与植物许多生理过程,在植物面对外界刺激变化时诱导相关基因表达,开启植物的防御机制,在植物抗逆性方面起着重要作用[5]。

MYB 转录因子家族在植物中数量较多、功能多样,大多数与植物生长发育及逆境胁迫有关,备受学者关番茄MYB 转录因子研究进展石雪燕1,2,李涛1,2,王虹云2,张瑞清2,曹守军2,张丽莉2,姚建刚2,刘佳凤1,2(1.烟台大学生命科学学院山东烟台264005;2.山东烟台市农业科学研究院山东烟台264421)摘要:MYB 转录因子是植物中最大的转录因子家族之一,能够结合基因5’端上游特定核苷酸序列,协助RNA 聚合酶催化DNA 模板链转录成RNA ,起到调控目的基因表达的作用。

植物逆境相关RING finger蛋白的研究进展

植物逆境相关RING finger蛋白的研究进展

植物逆境相关RING finger蛋白的研究进展作者:田丽包满珠张蔚来源:《湖北农业科学》2018年第06期摘要:锌指蛋白是植物转录因子中的一个大家族,RING finger蛋白属于其中一个分支,具有环状结构域的典型特征结构,在植物生长发育以及响应逆境胁迫等方面起着重要作用。

主要综述了RING finger蛋白的结构特点、分类和亚细胞定位,重点概括了RING finger蛋白在参与非生物与生物胁迫耐受性等方面的研究成果,并对其进一步的深入研究进行了展望,为将来利用植物RING finger蛋白基因创造抗逆新种质提供参考。

关键词:RING finger蛋白;锌指;非生物逆境;生物逆境中图分类号:Q943.2 文献标识码:A 文章编号:0439-8114(2018)06-0005-07DOI:10.14088/ki.issn0439-8114.2018.06.001Abstract: Zinc finger proteins form a relatively large family of transcription factors in plants. The RING finger proteins represent a subgroup of Zinc finger proteins that contain specialized structures of ring finger domain. Proteins containing RING finger domain(s) were found to play important roles in plant growth and development, as well as responses to stress. Here the structural characteristics, classification and subcellular localization of RING finger proteins were introduced,the recent functional characterization studies of RING finger proteins in response to abiotic and biotic stresses were mainly highlighted, and a prospect for further in-depth research was made, with the hope that a relatively comprehensive reference for the creation of new germplasm with stress resistance using plant RING finger proteins could be provided.Key words: RING finger proteins; zinc finger; abiotic stress; biotic stress锌指蛋白最早在1985年由Miller等[1]在非洲爪蟾卵母细胞转录因子TFⅢA中发现,之后根据锌指蛋白基序和结构的不同将其分为9大类:C2H2型、C4型、C6型、C8型、CCCH 型、C2HC型、C2HC5型、C3HC4型和C4HC3型(H和C分别代表组氨酸和半胱氨酸)[2](图1)。

WRKY 转录因子在植物生长发育中的调控作用

WRKY 转录因子在植物生长发育中的调控作用

WRKY 转录因子在植物生长发育中的调控作用张婷婷;田云;卢向阳【摘要】In the process of plant growth and development,a series of transcription factor playing an impor-tant regulation role are formed.The WRKY family as the unique transcription factor in plants has been widely studied in recent years.WRKY Transcription factor has an important regulation role in the process of breeding and seed germination,plant morphological construction,reproduction,and aging.In this paper,the structures of WRKY transcription factors and their regulation role in the process of plant growth and development are re-viewed.%植物在生长发育过程中,形成了一系列具有调控作用的转录因子。

其中,WRKY 家族是近年来研究较为广泛的植物所特有的转录因子。

WRKY 转录因子具有多种生理功能,在植物种子萌发、形态建设、繁殖和衰老等过程中具有重要调控作用。

对 WRKY 转录因子的结构及其在植物生长发育过程中的调控作用进行了综述。

【期刊名称】《化学与生物工程》【年(卷),期】2014(000)008【总页数】5页(P1-5)【关键词】转录因子;WRKY;植物生长发育;调控作用【作者】张婷婷;田云;卢向阳【作者单位】湖南农业大学生物科学技术学院,湖南长沙 410128; 湖南省农业生物工程研究所,湖南长沙 410128;湖南农业大学生物科学技术学院,湖南长沙410128; 湖南省农业生物工程研究所,湖南长沙 410128;湖南农业大学生物科学技术学院,湖南长沙 410128; 湖南省农业生物工程研究所,湖南长沙 410128【正文语种】中文【中图分类】Q78;Q945.8WRKY转录因子是近年来在植物中发现的新的转录调控因子,因其N端含有由WRKYGQK组成的保守氨基酸序列而得名。

植物NAC转录因子的研究进展

植物NAC转录因子的研究进展

Bulletin
2009年第10期
等植物中分离鉴定了许多与抗逆相关的NAC转录 因子。 Tran等心纠采用酵母单杂技术从拟南芥中分 离到3个不同的NAC基因(ANAC019、ANAC055、 ANAC072),它们的表达受干旱、高盐和ABA的诱导, 超量表达能显著增强转基因植株的耐旱能力,而且 3个转录因子能与含有CATGTG的启动子结合。Bu 等Ⅲ’进一步研究了拟南芥的转录因子ANAC019、 ANAC055,过量表达ANAC019、ANAC055基因可增强 JA诱导的植物储藏蛋白1(VSPl)和脂肪氧化酶2 (LOX2)基因的表达,而双突变体anac019
as
the recent,research
progress.
Key words:
NAC transcription factors
Structure
Biological function
Mechanism of expression and regulation
植物转录因子的研究是功能基因组学研究的一 个重要内容。近年来,相继从高等植物中分离出一 系列调控干旱、高盐、低温、激素、病原反应及发育相 关的转录因子。植物在生长发育过程中经常受到如 干旱、高盐、低温、病原菌等各种生物和非生物胁迫, 通过一系列的信号传递,激发转录因子的产生;转录 因子与相应的顺式作用元件结合,激活下游逆境相 关基因的表达。植物中存在着大量的转录因子,拟 南芥中仅含有27 000个基因,其中就有5.9%的基 因是编码转录因子,而在植物特异蛋白中,转录因子 占到13%…。根据DNA结构域的不同,植物中转 录因子主要分为MYB、bZIP、WRKY、DREB、NAC 等。其中,NAC转录因子是近年来新发现的具有多 种生物功能的植物特异转录因子。

Myb转录因子

Myb转录因子

• Trees, including conifers, divert large quantities of carbon into the biosynthesis of phenylpropanoids, particularly to generate lignin, an important constituent of wood.(Wagner et al., 2012). • Lignin biosynthesis is one of the most energy demanding biosynthetic pathways in plants(Amthor,2003). • Although lignin and other phenolic compounds do not contain nitrogen, phenylalanine metabolism is required to channel photosynthesis-derived carbon to phenylpropanoid biosynthesis.
• Role of the conserved AC-II element in the PAL, GS1b and PAT promoters
Thank you for your attantion!
பைடு நூலகம்
• Isolation of maritime pine GS1b, PAL and PAT promoters.In silico analysis of putative cis elements
• R2R3Myb proteins bind to the PAL, PpGS1b and PAT AC-II boxes • An in vitro analysis of protein–DNA interactions using an electrophoretic mobility shift assay (EMSA).

植物NAC转录因子的种类_特征及功能

植物NAC转录因子的种类_特征及功能

2011-08-25DOI: 10.3724/SP.J.1145.2011.00596应用与环境生物学报 2011,17 ( 4 ): 596~606转录因子研究是后基因组学研究的一个重要内容. 作为一种反式作用因子,转录因子存在于众多不同的信号转导途径中,特异地与顺式作用元件结合,激活下游目标基因的表达. 植物中存在着大量的转录因子,拟南芥(Arabidopsis thaliana )中仅含有27 000个基因,其中就有5.9%的基因编码转录因子[1],而在植物特异蛋白中,转录因子占到13% [2]. 根据DNA 结合域的不同,植物中转录因子主要分为几大类,如MYB (v-myb avian myeloblastosis viral oncogene homolog )、Bzip (Basic region/leucine zipper )、DREB (dehydration responsive element binding protein )、NAC (NAM ,ATAF1/2,CUC1/2)等. 其中,NAC 转录因子是近年来新发现的具有多种生物功能的植物特异转录因子. 目前已在拟南芥、水稻(Oryza sativa )、小麦(Triticum aestivum )、大麦(Hordeum vulgare )、玉米(Zea mays )、土豆(Solanum tuberosum )、油菜(Brassica campestris )、南瓜(Cucurbita moschata )、大豆、(Glycine max )、甘蔗(Saccharum officinarum )、金鱼草(Antirrhinum majus )、蚕豆(Vicia faba )、甜橙(Citrus sinensis )、花生(Arachis hypogaea )、西红柿(Solanum lycopersicum )、红辣椒(Capsicum annuum )、柑橘(Citrus reticulata )、海茄冬(Avicennia marina )、鹰嘴豆(Cicer arietinum )等约20种植物中发现了NAC 基因. 本文就NAC 转录因子的发现及其家族成员、结构特点、生物学功能等方面作了综合阐述,并对该领域未来的研究方向进行了分析.1 NAC 转录因子的发现及其家族成员NAC基因最初被发现广泛参与植物顶端分生组织的形Characteristics and Functions of NAC Transcription Factors in Plants *LI Wei, HAN Lei **, QIAN Yongqiang & SUN Zhenyuan(Research Institute of Forestry, Chinese Academy of Forestry Sciences ; Key Laboratory of Forest Cultivation, State Forestry Administration , Beijing 100091, China)Abstract The members, structure characteristics and biotic functions of NAC transcription factors were introduced and analyzed. NAC proteins, which distribute widely in many land plant species, constitute one of the largest families of plant-speci fi c transcription factors. The NAC family members have a conservative NAC domain in N-terminal ends with about 150 amino acids including fi ve subdomains of A, B, C, D and E and a highly various transcriptional activation domain in C-terminal ends. The structure of NAC proteins is related to speci fi c biotic functions, and the NAC transcription factors are involved in various aspects, such as plant secondary growth, cell division and plant senesce, hormones regulation and signal transduction, mineral element nutrition and improvement of crop quality. Meanwhile, NACs participate in plant defense responses during biotic and abiotic stress process. The studies have been focused on the model plants Arabidopisis thaliana and Oryza sativa , and little is known about regulation route and composition of NACs factors. Therefore it is necessary to have an in-depth study to understand the gene functions of NACs. Nevertheless, they have been used in plant molecular breeding by genetic engineering for crop genetic improvement. Fig 2, Tab 2, Ref 87Keywords transcription factor; NAC; structure domain; biotic function; expression regulation CLC Q943.2摘 要 综述了NAC 转录因子的发现及其家族成员、结构特点和生物学功能. NAC 类蛋白是近年来发现的一类植物特有、数量众多的转录因子家族,其成员广泛分布于陆生植物中. NAC 家族成员的N 端具有一个保守的约150个氨基酸组成的NAC 结构域,含有A 、B 、C 、D 、E 5个亚结构域,C 端具有一个高度变异的转录激活区. 分析表明,NAC 蛋白结构与其功能密切相关. NAC 转录因子具有诸多方面的功能,如参与植物次生生长,在细胞分裂和植株衰老中发挥作用,参与激素调控和信号转导,参与矿质元素营养和农作物品质改良等. 同时,NACs 还参与生物胁迫中植物的防御反应以及在非生物逆境中发挥作用. 目前对NAC 基因的研究主要集中于模式植物拟南芥和水稻,对于NAC 蛋白涉及的调控途径及其组成因子知之甚少,因此NAC 基因的功能还有待深入研究;同时,利用基因工程手段导入或改良关键的NAC 转录因子,使作物综合品质的提高已成为可能. 图2 表2 参87关键词 转录因子;NAC ;结构域;生物学功能;表达调控CLC Q943.2597 4 期李 伟等:植物NAC转录因子的种类、特征及功能成和器官边界的建立. 1996年,Souer等从矮牵牛中克隆到第一个NAC基因NAM(no apical meristem),其nam突变体的幼胚缺失根尖分生组织、幼苗缺失根和叶[3]. 随后,Aida 等在拟南芥中发现了具有类似功能的CUC2(cup2 shaped cotyledon),cuc2突变体不能形成正常的顶端分生组织,突变体子叶融合呈杯状,萼片与雄蕊融合[4]. NAM和CUC2都属于NAM亚族,同属于该亚家族的,还有水稻的ONAC300、金鱼草的CUP和南瓜的CmNACP [5]. Vroemen等从拟南芥中分离到与CUC1和CUC2同源的CUC3. 通过对CUC3的亚等位基因和cuc3缺失突变体分析显示,CUC1和CUC2在子叶边缘和茎顶端分生组织的形态建成中发挥功能,而此时CUC3存在功能性冗余[6]. 这些结果都表明CUC诱导器官边界的建成,同时促进茎尖分生组织的分化.Duval等从发育中的拟南芥种子cDNA文库中分离到一个NAC基因AtNAM. AtNAM主要在胚胎顶端分生组织以及中轴线与子叶之间表达,而含有顶端分生组织的胚胎AtNAM的表达受到抑制,暗示AtNAM参与分生组织的形成和器官边界的建立[7].2003年,Ooka等首次对水稻和拟南芥NAC家族蛋白进行了全面分析,根据水稻数据库和拟南芥基因组分别预测了75个和105个NAC蛋白,并根据预测和已知的NAC 结构域的序列相似性将其分为2个大组和18个亚组. 组Ⅰ包含TERN、ONAC022、SENU5、NAP、AtNAC3、ATAF、OsNAC3、NAC2、ANAC011、TIP、OsNAC8、OsNAC7、NAC1和NAM等14个成员;组Ⅱ包含4个成员ANAC001、ONAC003、ONAC001和ANAC063. 其中,ANAC011、AtNAC3、ANAC063和ANAC001这4个亚组完全由拟南芥NAC转录因子组成,而OsNAC3和ONAC001亚组则由单子叶植物水稻和小麦的NAC 转录因子组成[8]. 随后,对NAC亚家族成员的研究基本上都是以Ooka的分类为依据展开的.2NAC转录因子具有显著的结构特点,即蛋白的N端含有高度保守的约150个氨基酸组成的NAC结构域. NAC结构域不包含任何已知的蛋白结构域,而是以几个螺旋元件包围着一个扭曲的β–折叠片结构代替了典型的螺旋–转角–螺旋结构[9]. 例如拟南芥的ABA响应元件ANAC,其NAC结构域具有β–桶或β–三明治结构[10]. 同时,NAC结构域包含5个保守的亚结构域A、B、C、D、E,其中亚域C可能与结合DNA 有关,亚域E可能参与发育时期调控和(或)组织特异性,并协同亚域D与DNA发生相互作用[9, 11]. NAC蛋白C–端高度多样化,是转录激活区,该区域具有共同的特点,即频繁出现简单氨基酸的重复序列,如丝氨酸、苏氨酸、脯氨酸和谷氨酸,或酸性残基,这是植物转录激活区域的共同特征. 对拟南芥基因组分析发现,至少13个拟南芥NAC蛋白具有跨膜功能,在他们C-端包含α-螺旋跨膜序列(TMs). 并且很多假定的NAC-MTFs基因在胁迫下上调,表明他们可能参与胁迫响应[12]. 尽管如此,Ooka等仍从预测的NAC蛋白的C-端发现了13个共同序列,这些序列分别存在于12个NAC亚组[8].大多数的NAC蛋白都能形成同源或异源二聚体,这可能是它们结合DNA的基本形式[13]. 此外,NAC蛋白还会与其它蛋白发生互作,ANAC019、ANAC055以及ANAC072能在体外或者体内特异地与CATGTG序列结合,并激活报告基因GUS 的转录. 同时,ANAC019、ANAC055以及ANAC072等都能与ZFHD1(the stress-inducible zinc fi nger homeodomain)蛋白直接结合,这种结合是激活下游基因转录所必需的[14].3我们利用DNAMAN软件,对19个NAC转录因子(本文所引文章中出现的)进行系统发生树的构建(图1). 图1显示,19个NAC转录因子聚为三类:第一类包括8个与植物次生生长相关的NAC转录因子(SND1、NST1/2和VND2/3/4/5/7);第二类包括除ANAC092以外的5个与顶端分生组织形成和器官边界建立相关的NAC转录因子(CUC2、NAM、CmNACP、CUC3和ONAC300);第三类包括除XND1和AtNAM以外的3个与植株衰老相关的NAC转录因子(AtNAP、CitNAC和OsNAC5). 由此可以推测,同一类NAC蛋白,其NAC结构域具有相似性,且与其生物学功能是密切相关的,进而进化出转录因子的各个亚家族成员.本文对19个NAC转录因子氨基酸序列进行了比对分析(图2),对NAC转录因子保守结构域从N端到C端进行划分,结果显示依次有A、B、C、D、E 5个氨基酸相对保守区(分别为亚域A、B、C、D、E),共同组成了NAC结构域,该亚域划分结果与Ooka等的研究结果[8]相近. 尽管同一亚域均图1 19个NAC类转录因子的系统发生树Fig. 1 Phylogenetic tree of 19 NAC transcription factors59817 卷应 用 与 环 境 生 物 学 报Chin J Appl Environ Biol图2 3种功能的NAC 类转录因子保守亚结构域的氨基酸序列Fig. 2 Amino acid array of conservative subdomain of NAC transcriptionfactors with three different functions各亚域氨基酸序列中英文字母代表该位点所含的氨基酸. 保守位点进行了颜色标注,黑色区域表示序列一致,红色区域保守性稍弱,蓝色区域保守性较差Letters in amino acid array represent amino acid of this site. The conservative sites are colored. Black region represents the same amino acid in array, the conservative of red region is slightly weaker, and blue region is worse5994 期李 伟等:植物NAC 转录因子的种类、特征及功能具有相同特征的氨基酸序列,但是不同功能的NAC 类基因保守结构域的氨基酸序列及长度均存在差异,功能相近的NAC 基因,保守结构域同源性高(图2、表2).然而,事实也不尽如此,如其中XND1与次生生长相关,AtNAM 与顶端分生组织形成相关,但两者氨基酸序列比对以及系统发生树的聚类结果,与其他具有同类功能的NAC 转录因子相差较大,两者与其他具同类功能的NAC 转录因子发生偏离. 这点从XND1和AtNAM 的功能特异性方面也可以看出来,不同于其他次生生长相关的NAC 转录因子(SND1、NST1/2和VND2/3/4/5/7)促进细胞次生壁的形成,XND1对细胞次生壁的形成起到抑制作用[15];AtNAM 在包含顶端分生组织的整个胚胎区域表达,而NAM 、CUC1/2只在顶端分生组织边缘有所表达[7]. 有研究表明,基因在进化过程中可以发生倍增、重组或突变,从而导致基因的水平转移,这可能是NAC 转录因子聚类与其功能存在不一致的一个重要原因[16].对保守结构亚域的氨基酸序列模式进行了统计(表1),各保守亚域的保守性由强到弱排列为:A>C>D>B>E. 其中亚域A 中的PPGFRRHPT 序列和亚域C 中的WKATG 序列同时在三类NAC 转录因子中出现,保守性极高,推测具有较为稳定的生物学功能.4 NAC 转录因子是植物中最大的转录因子家族之一,广泛分布于苔鲜植物到高等双子叶植物. 研究表明,NAC 转录因子具有诸多方面的功能(表2),如参与植物次生生长,在细胞分裂和植株衰老中发挥作用,参与激素调控和信号转导,参与矿质元素营养和农作物品质改良,参与生物胁迫中植物的防御反应以及在非生物逆境中发挥作用. 有大量的证据表明,在病原体侵染等生物损伤及高盐、干旱、低温、ABA 和机械损伤等非生物胁迫应答过程中,NAC 转录因子也起着激活或抑制目标基因表达的功能.4.1 植物次生生长植物的次生生长是一项重要的生命活动,特别是次生包括维管组织形成、次生细胞壁形成、木质化、细胞程序化死亡以及心材形成等过程. 近年,研究发现多个NAC 基因对细胞次生壁的形成起着正调控作用. 例如拟南芥SND1(Secondary wall-associated NAC domain 1),NST1/2/3(NAC secondary wall thicken promoting factor 1/2/3)和VND6/7(Vascular-related NAC domain 6/7). 拟南芥次生壁正常形成需要SND2/3、MYB103/85/52/54/69/42/43/20和KNAT7等11个SND1转录因子. 抑制SND2/3、MYB103/85/52/54和KNAT7的表达,能显著减少纤维细胞次生壁增厚;而SND2/3和MYB103的过量表达,则促进纤维中次生壁的增厚. SND1在茎的维管束间纤维和木质部纤维中特异表达,过表达SND1促进非厚壁细胞中次生壁的沉积,而抑制SND1的表达,纤维中缺失次生壁. 研究还发现SND1和NST1冗余地调控纤维中次生壁的合成[17, 19~20],只有同时敲除SND1和NST1或RNAi 干扰SND1和NST1的表达,才能抑制拟南芥茎纤维细胞次生壁的增厚. Mitsuda 等在拟南芥nst-1 nst-3双敲除植株中叶发现,除维管导管以外,维管束间纤维与木质部次生壁的加厚被完全抑制[23]. 杨树NAC 蛋白PtrWNDs 能弥补拟南芥snd1 nst1双突变体的纤维缺乏木质素. 其中,PtrWND2B 和PtrWND6B 的过量表达促进拟南芥纤维中纤维素,木聚糖和木质素的沉积[29]. 此外,杨树PopNAC105/154/156/157也显著促进次生壁的合成,它们都是SND2/3的同源物[30].NST 类基因与拟南芥花药次生壁的发育也密切相关. NST1 NST2表达受抑的拟南芥,以及nst1 nst2双T-DNA 标签株系都表现出花药内皮层缺乏次生壁,花药异常开裂,表明NST1和NST2以冗余方式调控花药次生壁的增厚[24]. 苜蓿NAC 家族蛋白的唯一成员MtNST1(Medicago truncatula NAC secondary wall thickending promoting factors 1, MtNST1)是拟南芥NST1/2/3的同源蛋白. MtNST1的Tnt1逆转座子插入突变体出现花粉囊无法裂开[31].Yamaguchi 等发现VND7在调控拟南芥根原生木质部导管的分化中起着关键作用. VND7蛋白C-端的缺失,导致拟60017 卷应 用 与 环 境 生 物 学 报 Chin J Appl Environ Biol制[26]. 并且VND7能形成同源二聚体或者和VND2/3/4/5形成异源二聚体. 这表明VND7可能协同VND2/3/4/5和其他调节蛋白,调控根和茎中所有类型导管的分化. 与此同时,VND7还能激活下游转录因子基因及一些参与次生壁形成、细胞壁化学修饰和细胞凋亡等非转录因子基因的表达[18].此外,也有一些NAC基因抑制细胞次生壁的形成,如拟南芥ANAC012和XND1(xylem NAC domain 1),其中XND1在拟南芥木质部中高度表达. 敲除XND1的拟南芥,植株矮化,导管的长度缩短;而XND1过表达株系,下胚轴原生木质部区域的薄壁细胞缺乏次生壁增厚,植株矮化,这可能与木质部导管的缺失有关,但韧皮部仍然能形成韧皮部细胞. 由此表明,XND1通过调控次生壁的合成和细胞凋亡专一调控着木质部导管元件的生长[15]. ANAC012在开花茎和根的形成层区特异表达. 过表达ANAC012显著抑制拟南芥木纤维中次生壁形成,但轻微地增加了木质部导管的细胞壁厚度[17].4.2 细胞分裂和植株衰老NAC基因能够通过调控细胞的分裂影响植物的生命周期. 膜蛋白水解和细胞分裂素信号能激活拟南芥NTM1(NAC with transmembrane motif 1)的表达,在其突变体中,一系列CDK(cyclin-dependent kinases)抑制子基因被诱导表达,这些基因抑制组蛋白H4的合成,从而抑制了细胞分裂,导致生长延迟[32].拟南芥中近1/5(20/107)的NAC基因与叶片衰老相关[2]. 拟南芥ANAC092(AtNAC2或ORE1)过量表达系中,170个基因表达上调,其中46%与衰老相关[36]. NAP(NAC-like,activated by APETALA 3/PISTILLATA)起初被定义为APETALA3/ PISTILLATA的同源基因,后者是花瓣和雄蕊的形成的关键基因[52]. AtNAP的两个T-DNA插入系,叶片的衰老被显著延迟,AtNAP的过量表达则导致拟南芥叶片早衰,但敲除AtNAP的植株表型正常. 在水稻和蚕豆中,AtNAP的同源物在叶片衰老过程中也发生表达上调. 由此可见,AtNAP的表达与拟南芥莲座叶的衰老密切相关[38].NAC转录因子ORE1(oxygen responsive elements 1)积极调控了拟南芥叶片细胞程序化死亡. 在EIN2(ethylene insensitive 2)诱导叶片衰老的过程中,miR164的表达逐渐降低,而ORE1在miR164的负调控下发生上调. 但是,当ORE1缺失时,EIN2仍有助于衰老诱导细胞的死亡. 由此可见,ORE1、miR164和EIN2等3条前馈途径调控了拟南芥叶片细胞程序化死亡[53]. CitNAC和参与植物的器官衰老的AtNAC和PeNAP的功能密切相关,Liu等从成熟期和衰老期的甜橙果实中检测到CitNAC的表达[39]. 水稻OsNAC5参与调控叶片的衰老. 在自然老化和逆境胁迫(黑暗、ABA处理、高盐、寒冷和缺铁)诱导的衰老过程中,OsNAC5表达上调,但在黑暗条件下并有6-BA存在时,OsNAC5的表达却不受影响[40].4.3 激素调控和信号转导赤霉素GA(Gibberellin acid)通过协调生长素和其他外源信号物质在种子萌发过程中发挥重要作用. 膜结合的NAC 转录因子NTL8(NTM 1-like 8)经不依赖ABA的GA途径介导了拟南芥种子萌发过程中盐的调节. NTL8的表达受高盐和多效唑诱导,但受GA抑制. 高盐显著抑制GA3氧化酶-1基因的表达,说明GA的生物合成抑制了种子的萌发. 相应地,拟南芥T-DNA插入突变体,ntl-8-1种子的萌发对高盐和多效唑具有抵抗力. 以上结果表明,在拟南芥种子萌发中,盐信号传导在GA途经中通过诱导NTL8的表达调控了种子萌发[12]. Kunieda等发现NARS1和NARS2(NAC regulated seed morphology,NAC2和NAM)在调节珠被的发育方面存在功能重叠,进而影响拟南芥种子的形态发生,nars1 nars2双突变体产生畸形种子,而NARS1或NARS2的单突变体的种子正常. 同时,nars1 nars2双突变体的珠被退化显著延迟,而野生型植株在鱼雷型胚胎时期便发生珠被的退化. 用nars1 nars2双突变体的花粉给野生型雌蕊授粉,结出正常种子,反交则产生畸形种子[33].生长素调节植物侧根的形成,但该过程的信号途径目前仍不清楚. 拟南芥AtNAC2的过表达促进侧根发育. 乙烯前体ACC(l-aminocyclopropane-l-carboxylic acid)能够诱导AtNAC2的表达,且其mRNA水平在乙烯过量产生系eto1-1中有所增加. AtNAC2还促进或抑制下游基因的表达. 这表明AtNAC2可能在植物侧根形成过程中同时感受外界环境和内部信号刺激[34]. NAC1在TIR1(Transport inhibitor responsive protein 1)下游为侧根的发育转导生长素信号. 果蝇的指环蛋白SINA的拟南芥同源物SINAT5,具有泛素蛋白连接酶活性,能够泛素化NAC1. 过表达SINAT5的拟南芥形成较少的侧根[54~55].4.4 矿质元素营养和作物品质改良对NAC蛋白参与植物矿质元素营养的报道鲜见,有研究表明,NAC转录因子可能参与调节植物体铁元素的平衡. Ogo 等从水稻和大麦中分离到一个铁缺乏响应元件IDE-2(Iron defi ciency responsive cisacting element 2). IDEF-2属于NAC转录因子家族未定义的一个分支,能与IDE-2特异结合. 研究发现,IDEF-2的功能受抑将导致水稻中的铁含量异常. IDEF-2 RNAi水稻中有很多基因的表达受到抑制,其启动子上都有IDEF-2的核心结合位点,并且侧翼序列与IDE2高度同源. 铁缺乏能导致Fe(Ⅱ)-烟酰胺运输基因OsYSL2等基因表达上调,而IDEF-2 RNAi植株受铁缺乏的影响较小,推测IDEF-2参与铁代谢相关基因的调节[42].Ua u y等在小麦中克隆了一个典型的N AC转录因子NAM-B1. 野生型中NAM-B1不但能够加速植株衰老,而且促进叶片中的营养物质向发育中的籽粒转运,突变体的NAM-B1基因仅由于插入一个碱基就丧失了该项功能,导致籽粒蛋白含量下降超过30%,锌和铁的含量分别下降了36%和38%,营养成分大为降低. 小麦基因组拥有近16 000 Mb碱基,仅1个碱基插入NAM-B1基因,就能导致植株表型发生如此剧烈的改变确实令人震惊,进而也引发了研究者对小麦等农作物品质改良的思考[41].4.5 生物胁迫中植物的防御反应NAC家族中的一些成员在植物病原胁迫应答中也发挥着重要作用. 如拟南芥ATAF1广泛参与了生物和非生物胁迫响应,在感染灰霉病菌、假单胞菌后,或用水杨酸、茉莉酸、1-氨基环丙烷-1-羧酸处理后,ATAF1的表达受到抑制. ATAF1过表达植株(ATAF1-OE)对丁香假单胞杆菌番茄致病变种DC3000(Pseudomonas syringae pv. tomato DC3000)敏感性601 4 期李 伟等:植物NAC转录因子的种类、特征及功能增强,ATAF1嵌合抑制子(ATAF1-SRDX)诱导了防御相关基因PR-1、PR-5和PDF1.2的表达,对DC3000的抵抗力增强,而这些基因在ATAF1-OE植株中受到抑制[35]. NTL6(NTM1-like6)能诱导病原相关蛋白PR1/2/5的产生,NTL6的过量表达增强拟南芥植株的抗病性,而NTL6 RNAi植株在低温下则表现出对病菌的敏感性[45]. 大麦HvNAC6是拟南芥ATAF1的同源基因,HvNAC6的过表达增强了耐渗透细胞对白粉病菌的抵抗力[11]. 表明HvNAC6和ATAF1分别在单子叶植物和双子叶植物中调节渗透势. 拟南芥ATAF2是一个病原相关蛋白抑制子,对茉莉酸甲酯和水杨酸植物激素敏感,但ABA对其没有影响,过量表达ATAF2的植株,许多病原相关蛋白的合成受到抑制,并表现出对尖孢镰刀霉(Fusarium oxysporum)高度敏感,而在2个ATAF2敲除系中有4个病原相关蛋白的含量都增加[43]. 研究还发现,ATAF类基因不仅在结构上相似,而且在胁迫响应上也具有保守性. 与拟南芥中的ATAF1和ATAF2类似,土豆StNAC也受到损伤的诱导[46]. Lin等发现水稻OsNAC19参与水稻对稻瘟病菌的响应,同时茉莉酸甲酯和ABA能诱导其合成,表明OsNAC19可能在茉莉酸甲酯信号途径中发挥作用[47].有些NAC基因还介导植物与病毒间的相互作用. 拟南芥TIP蛋白(TCV interacting protein)能特异地与芜菁萎缩病毒TCV(Turnip crinkle virus)的衣壳蛋白(Capsid protein,CP)相互作用,诱导植物产生TCV抗性[44]. 双粒病毒组复制增强子(Replication enhancer,REn)能促进病毒DNA的积累,感染西红柿皱叶病毒(Tomato leaf curl virus,TLCV)的细胞中SINAC1的特异表达需要REn [50]. SINAC1和REn共定位于细胞核,过量表达SINAC1能诱导病毒DNA增加,表明SINAC1在REn促进TLCV的DNA复制的过程中起着重要的作用. 感染RDV(Rice dwarf virus)的水稻植株发生矮化,而RDV倍增型RIM1(Rice dwarf virus multiplication 1)能够编码一个新的NAC蛋白,它与拟南芥ANAC028、ANAC 045和ANAC086密切相关. 水稻突变体rim1-1对RDV不敏感,rim1-1在感染RDV 后,RDV衣壳蛋白含量显著下降,植株未有明显的疾病症状. 正常状况下,rim1突变体中LOX(脂加氧酶),AOS2(丙二烯氧化合酶基因)和OPR7(OPDA 还原酶)的表达水平上调,受伤后rim1中内源茉莉酸显著积累,表明RIM是茉莉酸信号途径的重要调节子[48~49]. Oh等在研究红辣椒与细菌或病毒相互作用时,分离得到一个基因CaNAC1. CaNAC1受到外源水杨酸和乙烯利,茉莉酸甲酯等的诱导,表明CaNAC1可能参与植物防御响应[51].4.6 NAC转录因子在非生物逆境中的作用干旱、高盐、低温等非生物环境因子,影响植物的生长发育,甚至会造成植物死亡,严重影响农业生产和生态环境. 研究表明,一系列来自不同家族的转录因子能够提高植物对胁迫的耐受力,如DREB [37, 56~57]、MYB [58]、bZIP [59]和锌指蛋白. 近年来,诸多研究也表明NAC类转录因子参与了非生物胁迫应答并发挥着重要的作用.NAC转录因子ATAF亚家族拥有众多非生物逆境应答蛋白,如ATAF1 [60]、CsNAC [61]、RD26 [62]、AhNAC1 [63]等. 拟南芥ATAF1在干旱和ABA处理下表达增强,但受到水淹的抑制. 在干旱响应测试中,ATAF1的T-DNA插入系ataf1-1和ataf1-2的恢复率较野生型高7倍多,而且胁迫响应性基因COR47、ERD10、KIN1、RD22和RD29A的表达增强[60]. 甜橙CsNAC受到损伤、缺氧、低温和乙烯的诱导,但高温(40 ℃)则抑制CsNAC的表达. 干旱、盐和ABA能诱导拟南芥RD26的表达,且过表达RD26植株对ABA极度敏感,而RD26受抑植株对ABA不敏感,基因芯片对此作出解释:RD26的过量表达,使得ABA诱导型基因和胁迫诱导型基因表达上调,而在RD26受到抑制的植株中这些基因同样受到抑制. 表明RD26在防御响应和ABA介导的信号途径中起着关键作用[62]. 与此同时RD26还对茉莉酸甲酯、H2O2和玫瑰红产生响应[64~65]. 油菜BnNAC14受到机械损伤,甲虫啃噬和低温的诱导,过表达BnNAC14的转基因拟南芥表现出叶片增大,茎干变粗和侧根繁茂等特征[66]. 水稻OsNAC6与ATAF亚家族蛋白具有高度相似性. OsNAC6受到寒冷、盐、干旱、ABA、机械损伤、茉莉酸和突发性疾病的诱导. 研究发现,OsNAC6除了在植物适应非生物胁迫中起作用外,还能够整合生物胁迫的信号[51, 67]. OsNAC6的过量表达诱导了很多生物和非生物胁迫诱导基因的表达,其中包括一个过氧化氢酶基因和一个DUF26-like 蛋白,转基因植株对脱水、高盐和突发性疾病的耐受性有所提高,但伴随生长延迟和结实率降低[68]. 甘蔗SsNAC23与ATAF1和OsNAC6极其相似. SsNAC23在4 ℃低温下表达,却不受12 ℃的影响,水分胁迫和动物啃食同样能诱导SsNAC23的合成[69].NAM亚家族也包含很多响应非生物胁迫的NAC基因,如OsNAC1、OsNAC2 [70]、AtNAC2 [34]. 其中拟南芥AtNAC2受高盐和ABA的诱导,且这种诱导在不同类型植株中表现出不同表达模式,在产乙烯过量突变体eto1-1中被加强;在过表达NTHK1的拟南芥中呈级数下降;在乙烯不敏感突变体etr1-1、ein2-1和生长素敏感突变体tir1-1中受到抑制,而在ABA-敏感突变体abi2-1、abi3-1和abi4-1中,这种作用没有显著变化. 这些结果表明,AtNAC2的盐胁迫响应参与了乙烯和生长素信号途径而非ABA信号途径.MYC-like序列CATGTG在拟南芥ERD1(Early responsive to dehydration stress)的干旱诱导表达中起着重要的作用. Tran等发现拟南芥ANAC019/055/072能与ERD1的启动子区域(包含CATGTG序列)结合. 过表达ANAC019、ANAC055或ANAC072促使几个压力诱导型基因表达上调,进而提高植株的耐旱能力[14]. anac019 anac055双突变体抑制VSP1(Legetative storage protein)和LOX2(Lipoxygenase)的表达,而过表达ANAC019或ANAC055则表现出相反的效应. 与此同时,两个NAC蛋白共同作用于下游的AtMYC2,调控着茉莉酸信号防御反应[71].Christianson等在0.1%低氧处理30 min的拟南芥中分离得到ANAC102. 通常认为ANAC102不稳定,其半衰期少于60 min. ANAC102表达的减少显著降低了种子的萌发率,而ANAC102表达的增加对其没有影响. ANAC102过表达导致植株叶片轻微变黄,并改变了211个基因的表达,其中大部分(96.5%)含有一致的DNA结合位点,表明这些基因可能是ANAC102的结合目标[72]. 同时ANAC102的过表达株系中,2/360217 卷应 用 与 环 境 生 物 学 报 Chin J Appl Environ Biol被诱导或抑制的基因中曾被认为是低氧敏感的,包括ADH1(Arabidopsis alcohol dehydrogenase gene)和SUS1(sucrose synthase gene)[73~74]. 在低氧状况下,另有23个NAC基因的表达发生改变,而且部分与ANAC102具有较高的序列相似性,如ANAC002(ATAF1)和ANAC032 [51].干旱胁迫下,水稻SNAC1在气孔保卫细胞特异表达,并促进气孔关闭,但不影响光合速率,因而植株抗旱性大为提高,过表达SNAC1亦能显著改善植株耐旱能力,且没有表型的改变和产量的下降[75]. 此后,Hu等在水稻中又鉴定了SNAC2. SNAC2受干旱、盐、冷、机械损伤和ABA处理的诱导. 在日本晴粳稻中花-11中,所有野生型植株在低温(4~8 ℃下维持5 d)条件下死亡时,SNAC2超表达植株存活率达50%以上. 转基因植株在低温下细胞膜稳定性高,在高盐下具有较高的萌发率和生长率. 并且,超表达SNAC2的植株对PEG耐受力提高,很多胁迫响应基因表达上调,如过氧化氢酶、鸟氨酸转移酶、重金属结合蛋白、Na/H泵、热激蛋白、GDSL-like 脂肪酶和苯丙氨酸裂解酶,表明这些基因中有一些可能受到SNAC2的直接调控[76]. SNAC1和SNAC2密切相关,两基因都受干旱、盐、寒冷和ABA的诱导[51]. 但它们的表达由于SNAC1和SNAC2激活的目标基因不同而存在着差异,SNAC2受到损伤的强烈诱导,但SNAC1不受伤害的诱导[75]. 过表达SNAC2能改进植株耐寒能力,SNAC1虽受到寒冷的诱导,但过表达SNAC1并未显著改进植株耐寒性[76].Yokotani等在表达水稻全长cDNA的转基因拟南芥耐热系R08946中分离到ONAC063 [28]. Nakashima等发现水稻ONAC063不受高温的影响,而在根部受到高盐、高渗透压和高水平活性氧的诱导时表达[23]. 表达ONAC063的转基因拟南芥种子表现出对高盐和渗透压耐受性,以及较高的萌发率,过量表达ONAC063促进一些盐诱导基因的表达,其中包括淀粉酶基因AMY1(Amylase),进而提高了植株对高温、高盐和高渗透压的耐受性. 由此推测ONAC063可能在诱导高盐反应方面起着重要作用[28].来自于水稻的ONAC045受到干旱、高盐、低温、ABA的诱导表达. 过表达ONAC045的水稻表现出抗旱和耐盐能力提高. 转基因水稻中胁迫响应基因OsLEA3-1和OsPM1表达上调[49],其中OsLEA3-1属于LEA家族(Late embryogenesis abundant protein). OsLEA3-1和OsPM1受ABA、干旱和高盐诱导表达. 结果表明ONAC045可能参与ABA信号途径[27, 49]. 水稻的OsNAC5能与OsLEA3的启动子区结合,诱导其表达上调,OsNAC5过表达植株抗旱性提高[77].其他非模式植物中也发现NAC基因在参与非生物胁迫应答方面起着重要作用. Meng等首次从棉花中分离出6个GhNAC,属于ATAF、AtNAC3、NAP和NAC等4个NAC蛋白亚家族[25],其中ATAF、AtNAC3和NAP亚家族在其他植物中包含很多压力响应性NAC基因,如BnNAC、AtNAC072(RD26)、AtNAC019/055/047 [14, 62, 78]. 胁迫诱导的基因调控包含ABA依赖和ABA独立的途径[79],GhNACs则可能参与两种途径[39]. Tran等从大豆中鉴定并克隆了31个GmNAC蛋白[80]. Pinheiro等研究发现,GmNAC2/3/4受渗透压的强烈诱导,且GmNAC3/4也受到脱落酸、茉莉酸和盐的诱导[81]. 但GmNAC20没有转录激活能力,因为在其DNA结合域的亚结构域有35个氨基酸组成的NARD(NAC Repression Domain). 当NAR D结合到转录因子的N端或C端时,便能抑制它们的转录活性,而且在其他NAC家族成员中也发现了NARD 类序列[78]. 刘旭等从花生中克隆了2个NAC基因,AhNAC2和AhNAC3,它们受ABA、GA3、低温的诱导表达,且与拟南芥RD26同源性较高,推测可能与响应干旱和ABA信号有关[82]. 海茄冬NAC蛋白AmNAC1与西红柿和土豆受生物压力诱导后产生的NAC蛋白高度同源. AmNAC1受到高盐和ABA的诱导,暗示AmNAC1参与早期的盐胁迫响应和对盐胁迫的长期调节[83]. 柳展基等首次从玉米中克隆了一个NAC类基因,命名为ZmNAC1,ZmNAC1可以被低温、PEG、高盐和ABA诱导[84]. Peng等从鹰嘴豆叶片中鉴定了NAP亚家族成员CarNAC3 [85]. CarNAC3受干旱、ABA、IAA和乙烯(衰老促进因子)的强烈诱导,但6-BA抑制其表达,推测CarNAC3可能通过ABA信号途径参与干旱响应[81]. CarNAC3还可能参与不同的发育进程,因为CarNAC3主要在花中表达,这与GmNAC1和NAP相似[22, 52].5NAC转录因子作为一种重要的调控因子,参与植物的生长发育和响应环境胁迫等,同时其自身也处于复杂的调控网络当中.miRNAs是约21个核苷酸的RNA [23]. miRNA通过裂解mRNA或抑制其转录在植物和动物中起着重要的作用,可能影响很多蛋白编码基因的输出[86]. 已有研究表明,15个已知miRNA基因家族中至少有4个参与生物调控,分别为miR172、miR159、miR165和miR168. 在拟南芥中,一些NAC基因受到miR164的调控,包括CUC1、CUC2、NAC1、At5g07680和At5g6143 [50]. miR164能够导致内源的或者转基因NAC1 mRNA 的裂解,产生特异的3’-片段. 同时,真核生物可以将转录因子由细胞质运输到细胞核,直接控制基因的表达. 而细胞质中处于休眠状态的膜锚定转录因子则可通过膜结合蛋白酶催化的膜内蛋白裂解或者泛素/蛋白酶体途径调控,进入细胞核发挥作用[87].6NAC转录因子是成员最多的植物特异转录因子之一,迄今,已在几十种植物中相继发现NAC转录因子,对其结构特点、表达特性和功能的研究也取得了一定的进展,但由于NAC转录因子种类和功能的多样性,目前有关NAC转录因子的研究依旧很薄弱,主要体现在以下几个方面:1)目前对NAC转录因子的研究主要集中于模式植物拟南芥和水稻,而且在数量众多的NAC蛋白中,功能明确的只占很少一部分,大部分NAC转录因子的研究尚处于基因克隆、结构鉴定和表达分析等层面上,广泛地从不同植物中分离和鉴定NAC基因尤为必要;2)通过以往的研究发现,尽管NAC基因广泛参与生长发育、生物和非生物胁迫,但对NAC蛋白复杂的调控网络的研究仍处于起步阶段,对于NAC蛋白涉及的调控途径,组成因子以及NAC基因的上下游调控基因也知之甚少,研究单一的植物发育或胁迫响应过程,已无法全面阐述NAC基因的表。

高等植物的转录因子Transcription Factors in Higher Plant

高等植物的转录因子Transcription Factors in Higher Plant

# $ ! 9 1 ) 0 $ & ) F 0 7 9 J D 0 8 1 8 / 9? 7 D 1 / 0 J. : 7 8 = / 0 1 7 9 1 0 / : 2 J 8 91 A 2 0 2 : 7 1 8 / 9/ ?. : 7 9 1 0 / M 1 A7 9 33 2 C 2 : / = 2 9 1 7 JM 2 : : 7 J 8 1 J . 5 . < < . $ 0 2 J / 9 J 2 1 /2 9 C 8 0 / 9 = 2 9 1 L *1 8 D 7 : A 8 A 2 0. : 7 9 1 1 0 7 9 J D 0 8 1 8 / 9 ? 7 D 1 / 0J 7 : : / 9 1 7 8 9 J 7O 6* H 4 8 9 3 8 9 / = 7 8 9 7 1 0 7 9 H . 5 . < . 5D <3 $ J D 0 8 1 8 / 90 2 : 7 1 8 / 93 / = 7 8 9 7/ : 8 / = 2 0 8 I 7 1 8 / 9J 8 1 27 9 379 D : 2 7 0: / D 7 : 8 I 7 1 8 / 93 / = 7 8 9 LF 0 7 9 J D 0 8 1 8 / 9? 7 D 1 / 0 J8 9 1 2 0 7 D 1 . < < . M 8 1 A8 + = H 2 : 2 = 2 9 1 J7 9 30 2 : 7 1 2 1 A 22 K 0 2 J J 8 / 9/ ? 1 7 0 2 1 2 9 2 J 1 A 0 / A1 A 2 J 23 / = 7 8 9 J L S 2 D 2 9 1 J 1 3 8 2 J J A / M1 A 7 1 1 0 7 9 H < . < < < J D 0 8 1 8 / 9? 7 D 1 / 0 J7 0 22 ? ? 8 D 8 2 9 19 2 M= / : 2 D : 7 0 1 / / : J ? / 0 1 A 2= 7 9 8 : 7 1 8 / 9/ ?. : 7 9 1< 0 / M 1 A7 9 33 2 C 2 : / = 2 9 1 L X 91 A 8 J0 2 H . . . $ C 8 2 M$M 2J == 7 0 8 I 2 31 A 2D 0 0 2 9 1Z 9 / M : 2 3 2 8 91 A 2J 1 3 ?A 8 A 2 0. : 7 9 1 1 0 7 9 J D 0 8 1 8 / 9? 7 D 1 / 0 M 8 1 A2 = A 7 J 8 J/ 91 A 2 < 5/ < . . $ 0 2 : 7 1 8 / 9/ ? 1 0 7 9 J D 0 8 1 8 / 9? 7 D 1 / 0/ 9A 8 A 2 0. : 7 9 1 3 2 C 2 : / = 2 9 1 7 9 3= / 0 A / 2 9 2 J 8 J 7 JM 2 : : 7 J 1 A 27 : 8 D 7 1 8 / 9/ ? 1 0 7 9 H < . < . . < . . J D 0 8 1 8 / 9? 7 D 1 / 0 8 9. : 7 9 1 8 = 0 / C 2 = 2 9 1 L . . # * * * : 7 9 1 8 = 0 / C 2 = 2 9 1 : ’ ( 0 " 1 A 8 A 2 0. : 7 9 1 1 0 7 9 J D 0 8 1 8 / 9? 7 D 1 / 0 1 0 7 9 J D 0 8 1 8 / 9 7 : D / 9 1 0 / : . . < . . -; $ 也 称 反 式 作 用 因 子$ 1 0 7 9 J D 0 8 1 8 / 9? 7 D 1 / 0 F [" !! 转录因子 ! . 是指那些具有同真核生物启动子特定 O 6* 序列结合活 性 的 蛋白质分子 $ 或者是 具 有 已 知 O 6* 结 合 域 结 构 特 征 的 蛋 白 质分子 $ 其 主 要 功 能 是 激 活 或 抑 制 基 因 的 转 录 效 应) 自 从 ) + & E年 ; 7 I H * 0 2 J首次 报 道 玉 米 转 录 因 子 基 因 的 克 隆 以 来 $ 相继 从 高 等 植 物 中 分 离 出 的 调 控 干 旱 + 高 盐+ 低 温+ 激 素+ 病 原反应及 生 长 发 育 等 相 关 基 因 表 达 的 转 录 因 子 已 达 数 百

植物Dof转录因子,,

植物Dof转录因子,,
植物生理学通讯 第46卷 第3期, 2010年3月
301
植物 Dof 转录因子
杨静1,2, 沈世华1,*
1中国科学院植物研究所, 北京100093; 2华南农业大学生命科学学院, 广州510642
The Family of Dof Transcription Factors in Plants
YANG Jing1,2, SHEN Shi-Hua1,* 1Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; 2College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
图 2 几个 Dof 转录因子在大麦种子萌发早期响应 ABA/GA3 调控的示意图(Moreno-Risueno 等 2007a) a: 萌发 1 8 h ; b : 萌发 18 h 后。锯齿状的图形分别表示 H v D O F 1 7 、H v D O F 1 9 、BPBF、G A M Y B 和 S A D ; 转录因子的结合序 列用小框表示。
(Umemura 等 2004)。目前为止, 发现除了南瓜 Dof 蛋白AOBP (ascorbate oxidase gene binding protein) 的 Dof 结构域识别 AGTA 序列(Kisu 等 1998)以外, 其他的 Dof 蛋白都识别一段 AAAG 或它的互补序列 CTTT (Yanagisawa和Schmidt 1999; Mena等2002; Yanagisawa 2002; 郭晓芳和严海燕2005; Rubio- Somoza 等 2006; Moreno-Risueno 等 2007a)。Dof 结构域能介导蛋白与蛋白之间的相互作用, 而这种 相互作用也会影响与 DNA 的结合(Yanagisawa 1997)。Zhang 等(1995)最先报道的 Dof 蛋白与其 它蛋白之间的相互作用, 拟南芥的 Dof 蛋白 OBP1 (OBF binding protein)就是通过以OBF4 (Ocs element bind域可以促进 OBF4 与病原菌特异元 件OCS (octopine synthase)的结合; 另外也发现玉 米的一种胚乳特异性 Dof 蛋白 PBF (prolamin-box binding factor)与一种参与胚乳特异性基因表达的 bZIP 蛋白 O2 (Opaque 2)之间的相互作用是通过 Dof结构域介导的(Vicente-Carbajosa等1997)。与 保守的 Dof 结构域不同, C 末端变化多样, 它很可 能受不同途径的信号调控, 通过与不同类型调控蛋 白或物质的反应而激活或抑制基因的转录, 是Dof 转录因子功能多样性的基础(Yanagisawa 2002) (图

人民大2023农林国际学术交流英语 PPTUnit 1 Gene Editing

人民大2023农林国际学术交流英语 PPTUnit 1 Gene Editing
abbreviated as A, C, G and U), a ribose sugar, and a phosphate.
G__M5O__
It is a plant, animal, microorganism or other organisms whose genetic makeup has been modified in a laboratory using genetic engineering or transgenic technology.
2. Can you arrange them in chronological order?
B-C-A
Part I History of Gene Editing
Timeline Method and Technique selective breeding discovery of DNA
Detailed Information It can strengthen ____u_s_e__f1u_l_t_r_a_i_t_s___ in plants and animals, but never truly understand ___h_o2w___i_t. worked
Part II The Working Principles of CRISPR-Cas9
Can you retell the working principles of CRISPR after watching the video clip?
Part II The Working Principles of CRISPR-Cas9
This creates combinations of plant, animal, bacterial and virus genes that do not occur in nature or through traditional crossbreeding methods.

西瓜bHLH 转录因子家族基因的鉴定及其在非生物胁迫下的表达分析

西瓜bHLH 转录因子家族基因的鉴定及其在非生物胁迫下的表达分析

园艺学报,2016,43 (2):281–294.Acta Horticulturae Sinicadoi:10.16420/j.issn.0513-353x.2015-0886;http://www. ahs. ac. cn 281西瓜bHLH转录因子家族基因的鉴定及其在非生物胁迫下的表达分析何洁,顾秀容,魏春华,杨小振,李好,马建祥,张勇,杨建强,张显*(西北农林科技大学园艺学院,陕西杨凌 712100)摘 要:利用生物信息学方法,在西瓜测序基因组97103中共鉴定出96个bHLH家族成员,其中有94个可以被定位到西瓜的11条染色体上。

通过基因结构和结构域序列保守性的预测,发现这些基因的序列长度和内含子数量变化很大,但bHLH结构域序列比较保守。

用拟南芥中39条已知的bHLH蛋白序列和西瓜的96条bHLH蛋白序列构建系统发育树,结果显示西瓜的bHLH家族可以进一步被分为11个亚族。

运用荧光定量实时PCR技术,分析了该家族中21个基因在西瓜响应非生物胁迫时的表达水平,结果表明,8个基因受低温胁迫诱导表达,13个基因受ABA胁迫诱导表达,14个基因受盐胁迫诱导表达。

ClabHLH41在3种胁迫下表达量均显著增加,说明其在低温、ABA和盐胁迫应答中可能发挥着重要作用。

关键词:西瓜;bHLH;全基因组鉴定;胁迫响应;基因表达中图分类号:S 651 文献标志码:A 文章编号:0513-353X(2016)02-0281-14 Identification and Expression Analysis Under Abiotic Stresses of the bHLH Transcription Factor Gene Family in WatermelonHE Jie,GU Xiu-rong,WEI Chun-hua,YANG Xiao-zhen,LI Hao,MA Jian-xiang,ZHANG Yong,YANG Jian-qiang,and ZHANG Xian*(College of Horticulture,Northwest A & F University,Yangling,Shaanxi 712100,China)Abstract:The bHLH family is a large superfamily of transcription factors(TFs)in plants,which play critical roles in plant development and response to diverse environmental stimuli. The analysis of evolution and structure of bHLH genes and their expression under abiotic stresses in watermelon conduced to a deep understanding of them and their application. Based on bioinformatics methods,a total of 96 bHLH genes were identified and 94 of them were mapped onto 11 chromosomes. Sequence analysis showed that bHLH genes were diverse both in length and numbers of intron,but were conserved in bHLH domain region. The phylogenetic tree,which was constructed with amino acid sequences of bHLH domain of 96 and 39 bHLHs from watermelon and Arabidopsis,indicated that bHLH family of watermelon could be further divided into 11 subfamilies. Using quantitative real-time PCR,expression levels of 21 bHLH genes were analyzed under three different abiotic treatments. Results showed that 8,13 and 14 genes could be induced收稿日期:2015–12–08;修回日期:2016–02–18基金项目:国家现代农业产业技术体系建设专项资金项目(CARS-26-18)* 通信作者Author for correspondence(E-mail:zhangxian098@)He Jie,Gu Xiu-rong,Wei Chun-hua,Yang Xiao-zhen,Li Hao,Ma Jian-xiang,Zhang Yong,Yang Jian-qiang,Zhang Xian.Identification and expression analysis under abiotic stresses of the bHLH transcription factor gene family in watermelon. 282Acta Horticulturae Sinica,2016,43 (2):281–294. to express by low temperature,ABA and salt stress,respectively. Importantly,gene ClabHLH41 had significantly higher expression levels under all three abiotic treatments,indicating its important function in response to these stresses in watermelon.Key words:watermelon;bHLH;genomic identification;stress response;gene expressionbHLH(basic Helix-Loop-Helix,碱性螺旋–环–螺旋)转录因子家族普遍存在于真核生物中,因其含有螺旋–环–螺旋(Helix-Loop-Helix,HLH)结构而被命名。

植物GRAS家族转录因子的研究现状

植物GRAS家族转录因子的研究现状

植物GRAS家族转录因子的研究现状作者:李桂英田玉富杨成君来源:《安徽农业科学》2014年第14期摘要GRAS转录因子是植物特有的转录因子,参与植物的生长发育、信号转导、解毒作用、生物胁迫和非生物胁迫相关的应答过程。

该文从GRAS转录因子的结构特征、在植物中的分布和功能作用方面对GRAS家族转录因子的研究现状进行综述,为GRAS家族转录因子的进一步开发利用提供依据。

关键词GRAS转录因子;生长发育;信号转导;生物胁迫;非生物胁迫中图分类号S188文献标识码A文章编号0517-6611(2014)14-04207-04Research Situation of GRAS Family Transcription Factor in PlantsLI Guiying, YANG Chengjun et al (College of Forestry, Northeast Forestry University,Harbin, Heilongjiang 150040)AbstractGRAS transcription factor is plant specific transcription factor, which participate in the growth and development of plants, detoxification, biotic and abiotic stressrelated response process. The article summarizes the research status of GRAS family transcription factors from the three aspects of structural features, distribution of plants and function of GRAS transcription factor, which will provide reference for further development and utilization of GRAS transcription factor.Key words GRAS transcription factor; Growth and development; Signal transduction;Biotic stress; Abiotic stress植物转录因子的研究是功能基因组学研究的一个重要内容。

光质信号转录因子英文

光质信号转录因子英文

光质信号转录因子英文English:Light quality signal transcription factors are proteins that play a crucial role in translating the quality of light signals into specific gene expression responses in plants. These transcription factors are sensitive to different wavelengths of light, such as red, blue, and far-red light, and can modulate the expression of various target genes involved in plant growth, development, and stress responses. For example, phytochrome interacting factors (PIFs) are a group of transcription factors that are regulated by phytochromes, a type of photoreceptor that absorbs red and far-red light. PIFs can act as both positive and negative regulators of gene expression, depending on the light conditions, to regulate processes such as seed germination, seedling growth, and leaf senescence. Additionally, cryptochromes are another class of photoreceptors that interact with transcription factors known as cryptochrome-interacting basic helix-loop-helix (CIB) proteins to regulate gene expression in response to blue light signals. These interactions between light quality signal transcription factors and photoreceptors provide plants with the ability to perceive and respond to changes in their light environment,ultimately allowing them to optimize their growth and developmentin varying light conditions.Translated content:光质信号转录因子是在植物中将不同光信号质量转化为特定基因表达反应的蛋白质,起着至关重要的作用。

植物SPL_转录因子研究进展

植物SPL_转录因子研究进展

杂的 高 等 植 物 均 有 分 布, 如 从 衣 藻 ( Chlamyydomonas
reinhardtii)到小立碗藓(Physcomitrella patens)再到高等植物,
其存在数量不一
[3,10]
。 随着科技的进步,近年来已有大量
SPLs 基因被鉴定,如在拟南芥( Arabidopsis thaliana) 中有 17
八、九分支其基因的 CDS 区内含有 miR156 靶点,第六分支其
其中第一、二、三分支不包含 miR156 靶基因,第四、五、七、
在不同植物中具有较高的保守性。
据 miR156 靶点的分布,将 SPL 基因家族分为 9 个主要分支,
基因的 3’ UTR 区含有 miR156 靶点,由此可见 miR156 位点
SPL 转录因子带有一个约由 79 个氨基酸残基组成的高
promoter-binding protein domain) [5] 。 SBP 结构域是典型的锌
中前 4 个氨基酸残基结合一个锌离子,后 4 个氨基酸残基结
合另外一个锌离子[6] 。 目前发现的 SBP 蛋白中还存在一个
位于该结构域 C 端的保守核定位信号。 该信号能够与第 2
中图分类号 Q 943. 2 文献标识码 A
文章编号 0517-6611(2023)23-0025-05
doi:10. 3969 / j. issn. 0517-6611. 2023. 23. 006
开放科学(资源服务)标识码(OSID):
Research Progress of SPL Transcription Factors in Plants
势进行了展望,以期为植物 SPL 转录因子的研究发展提供有

小麦SPL_家族基因在非生物胁迫下的表达分析

小麦SPL_家族基因在非生物胁迫下的表达分析

麦类作物学报 2023,43(10):1335-1343JournalofTriticeaeCropsdoi:10.7606/j.issn.1009 1041.2023.10.15网络出版时间:2023 08 25网络出版地址:https://link.cnki.net/urlid/61.1359.s.20230823.1746.010小麦犛犘犔家族基因在非生物胁迫下的表达分析贺金秋,苗敬南,马超,樊紫薇,王超丽,李欢欢,赵月,刘文轩(河南农业大学生命科学学院,河南郑州450002)摘 要:SQUAMOSApromoterbindingproteinlike(SPL)是一类在植物中广泛存在的转录因子家族,在调控植物生长发育、响应逆境胁迫等方面发挥着重要作用。

为解析小麦中SPL家族基因响应非生物胁迫的机理,本研究采用生物信息学的方法在全基因组范围内对小麦SPL基因家族成员进行鉴定,并对鉴定到的SPL基因进行表达模式分析。

结果表明,在全基因组范围内共鉴定到56个小麦SPL基因,其中27个是miR156的靶基因;系统进化分析发现,56个小麦SPL基因聚类为7个亚家族。

基于转录组数据对表达模式进行分析,发现36个小麦SPL基因与非生物胁迫响应相关,响应缺氮、缺磷、高盐、低温、干旱、高温胁迫以及热旱共胁迫的基因分别有12、16、22、6、13、14和21个,其中TraesCS3D02G425800同时响应7种非生物胁迫。

qRT PCR验证结果与转录组数据基本一致。

关键词:小麦;SPL家族基因;非生物胁迫;表达模式中图分类号:S512.1;S330 文献标识码:A 文章编号:1009 1041(2023)10 1335 09犈狓狆狉犲狊狊犻狅狀犃狀犪犾狔狊犻狊狅犳犛犘犔犌犲狀犲犉犪犿犻犾狔犻狀犠犺犲犪狋狌狀犱犲狉犃犫犻狅狋犻犮犛狋狉犲狊狊犲狊犎犈犑犻狀狇犻狌,犕犐犃犗犑犻狀犵狀犪狀,犕犃犆犺犪狅,犉犃犖犣犻狑犲犻,犠犃犖犌犆犺犪狅犾犻,犔犐犎狌犪狀犺狌犪狀,犣犎犃犗犢狌犲,犔犐犝犠犲狀狓狌犪狀(CollegeofLifeSciences,HenanAgriculturalUniversity,Zhengzhou,Henan450002,China)犃犫狊狋狉犪犮狋:SQUAMOSApromoterbindingproteinlike(SPL)genefamilyisafamilyoftranscriptionfactorswidelyexistinginplants,andplaysimportantrolesinregulatingplantgrowthanddevelop mentandresponsestostresses.InordertofurtheranalyzethemechanismofSPLgenefamilyrespon dingtoabioticstresses,bioinformaticsmethodswereusedtoidentifySPLfamilymembersinthewheatgenomedatabase,andtheexpressionoftheidentifiedgeneswereanalyzedunderabioticstressconditionssuchasnitrogendeficiency,phosphorusdeficiency,highsalt,lowtemperature,drought,andhightemperature.Theresultsshowedthat56SPLfamilygeneswereidentifiedinwheatgenome,and27ofwhichweretargetgenesofmiR156.Phylogeneticanalysisshowedthat56wheatSPLgeneswereclusteredinto7subfamilies.Basedontranscriptomedata,theexpressionpatternsof36wheatSPLgenesrelatedtoabioticstressresponsewereanalyzed,and12,16,22,6,13,14and21geneswerefoundtorespondtonitrogendeficiency,phosphorusdeficiency,highsalt,lowtemperature,drought,hightemperature,andcombinationstressofhightemperatureanddrought,respectively.TraesCS3D02G425800respondedtosevenabioticstressessimultaneously.TheresultsofqRT PCRwereconsistentwiththetranscriptomedata.犓犲狔狑狅狉犱狊:Wheat;SPLgenefamily;Abioticstress;Expressionpattern收稿日期:2022 08 11 修回日期:2022 11 22基金项目:国家自然科学基金项目(31801363);河南省科技研发计划联合基金项目(222103810004);河南省高等学校重点科研项目(23A210020)第一作者E mail:hejinqiu1015@163.com通讯作者:赵月(E mail:zhaoyue@henau.edu.cn)Copyright©博看网. All Rights Reserved. SPL(SQUAMOSApromoterbindingpro tein)是植物特有的转录因子家族之一,具有高度保守的SBP结构域,该结构域由70~80个氨基酸构成,具有2个锌指位点(Cys Cys His和Cys Cys Cys His)[1 2]。

DOF转录因子AtDof1.7 RNA干扰载体的构建及拟南芥的遗传转化

DOF转录因子AtDof1.7 RNA干扰载体的构建及拟南芥的遗传转化

作物学报ACTA AGRONOMICA SINICA 2011, 37(7): 1196−1204/zwxb/ ISSN 0496-3490; CODEN TSHPA9E-mail: xbzw@DOI: 10.3724/SP.J.1006.2011.01196DOF转录因子AtDof1.7 RNA干扰载体的构建及拟南芥的遗传转化尹明智官梅肖钢李栒官春云*湖南农业大学油料作物研究所 / 国家油料作物改良中心湖南分中心, 湖南长沙 410128摘要: DOF (DNA binding with one finger)转录因子是植物特有的转录因子家族, 含有一个独特的富含Cys残基的单锌指DNA结合区域, 在植物生长发育中参与多种生物学过程。

本研究根据拟南芥AtDof1.7基因(GenBank登录号为AT1G51700)序列设计含有不同酶切位点的特异性扩增引物, 以拟南芥总DNA为模板, 扩增AtDof1.7基因片段, 将AtDof1.7基因正向反向分别插入表达载体的相应位置, 构建成AtDof1.7基因的RNA干扰载体pADOF1。

利用改良的floral-dip方法将干扰载体pADOF1成功转入野生型拟南芥, 经草甘膦抗性筛选和PCR检测获得5株阳性转基因植株。

利用RT-PCR技术和气相色谱法分别分析了AtDof1.7基因的表达和种子脂肪酸组成, 结果表明, 5株转基因植株中AtDof1.7基因的表达量不同程度低于野生型植株, 种子油酸含量明显上升, 亚麻酸含量明显下降, 说明AtDof1.7转录因子与拟南芥种子脂肪酸代谢途径有一定的关系, 为进一步研究其在脂肪酸代谢过程中的调控作用以及在油菜中研究该类转录因子的功能奠定了基础。

关键词: DOF转录因子; AtDof1.7; 拟南芥; RNA干扰载体; 脂肪酸代谢途径RNAi Vector Construction of AtDof1.7 Transcription Factors and Genetic Transformation into Arabidopsis thalianaYIN Ming-Zhi, GUAN Mei, XIAO Gang, LI Xun, and GUAN Chun-Yun*Oilseed Crops Institute / National Oil Crops Improvement Center, Hunan Agricultural University, Changsha 410128, ChinaAbstract: The DOF (DNA binding with one finger) transcription factors are members of a family of plant-specific transcription factors that have a highly conserved DNA-binding domain, namely Dof domain which contains a single C2C2-type zinc-finger- like motif and specifically recognizes an (A/T)AAAG sequence as the recognition core. It suggests that the Dof transcription fac-tors play diverse roles in specific biological processes in plants. Members of this protein family in plants are found to be involvedin the gene regulation of many processes, but the roles in fatty acid metabolism are rarely reported. To investigate whether At-Dof1.7 Dof transcription factor can regulate fatty acid metabolism, on the basis of the sequence of AtDof1.7 (GenBank accession No. AT1G51700), we designed the specific primer containing different enzyme sites. With the template of Arabidopsis thaliana DNA, the AtDof1.7 gene fragment was isolated, which was inserted into the expression vector by forward and reverse ways re-spectively. The RNA interference vector of pADOF1 containing AtDof1.7 gene fragment was constructed. Using floral-dip method, pADOF1 was successfully transformed into wide-type Arabidopsis thaliana. Glyphosate resistance screening and PCR detection showed that five positive transgenic plants were obtained. The result of RT-PCR showed that transgenic plants had lower expression level of AtDof1.7 gene than the wild type. Fatty acid content was analyzed by gas chromatography which showed that the content of oleic acid increased and the content of linolenic acid decreased drastically in each transgenic plant compared with wide-type plants. These results indicated that AtDof1.7 transcription factor has certain relation with fatty acid metabolic pathwayin Arabidopsis thaliana seed which provides a good foundation for further study on the function of AtDof1.7 transcription factorin fatty acid metabolic regulation.Keywords: DOF transcription factors; AtDof1.7; Arabidopsis thaliana; RNA interference vector; Fatty acid metabolic pathway本研究由国家重点基础研究计划(973计划)项目(2006CB101600)资助。

MYB类转录因子在植物细胞生长发育中的作用及其应用

MYB类转录因子在植物细胞生长发育中的作用及其应用

MYB类转录因子在植物细胞生长发育中的作用及其应用刘忠丽;丛悦玺;苟维超;王响;陈坤明【摘要】The MYB family is one of the most important transcription factors family in plants. They play important roles in various processes including anthocyanin biosynthesis, environmental stress resistance, and the regulation of the growth and development of cotton fibers. Furthermore, these processes interact with each other with MYB as a key bridge. In this review,*we summarized and discussed these processes according to recent researches in MYB, mainly about the roles of MYB in the formation of anthocyanin, reaction to environmental stresses, and development of cotton fibers.%MYB是植物中重要的转录因子家族之一,它在调节花色素形成,抵抗逆境胁迫,调节棉花纤维发育等过程中发挥着重要的作用,且上述过程以MYB为中心,相互制约和影响.文章简要综述了人们近年来对于MYB在花色素形成、环境胁迫应答以及棉花纤维发育的过程中的作用.【期刊名称】《浙江农业学报》【年(卷),期】2012(024)001【总页数】6页(P174-179)【关键词】MYB类转录因子;花色素;干旱;棉花纤维【作者】刘忠丽;丛悦玺;苟维超;王响;陈坤明【作者单位】浙江大学农业与生物技术学院作物科学研究所,浙江杭州310058;浙江大学农业与生物技术学院作物科学研究所,浙江杭州310058;西北农林科技大学生命科学学院,陕西杨凌712100;西北农林科技大学生命科学学院,陕西杨凌712100;西北农林科技大学生命科学学院,陕西杨凌712100【正文语种】中文【中图分类】Q78MYB(myeloblastosis)家族转录因子是植物中重要的一类转录因子,在生物体内主要起转录激活作用。

植物转录因子最新研究方法

植物转录因子最新研究方法

植物转录因子最新研究方法王传琦;孔稳稳;李晶【期刊名称】《生物技术通讯》【年(卷),期】2013(000)001【摘要】Transcription factors regulate vast downstream genes and play an important role in regulation of devel⁃opment, metabolism and response to environment in plants. In this review, we analyzed the recent research prog⁃ress in plant transcription factors and introduced strategies and current developed methodology. The main strategies including bioinformatic analysis, transient transfection, phenotypic mutation and regulatory network were discussed. Our review may provide some useful instruction for the future research of transcription factor in prediction, func⁃tional analysis and identification of targets.% 转录因子可以调控众多下游基因的表达,在植物的生长发育、代谢及对外界环境的反应中起着重要作用。

我们结合近年来植物转录因子的研究进展,归纳分析了高等植物转录因子研究的主要策略和最新的技术方法,并从生物信息学分析、瞬间转化技术的应用、突变体表型分析及调控网络等几个方面进行了全面阐述,为植物转录因子的预测、功能鉴定及靶基因分析等相关研究提供理论和方法的参考。

转基因动植物(英文翻译)

转基因动植物(英文翻译)

Transgenic plants and animalsTransgenic plants and animals result from genetic engineering experiments in which genetic material is moved from one organism to another, so that the latter will exhibit a characteristic. Business corporations, scientists, and farmers hope that transgenic techniques will allow more cost-effective and precise plants and animals with desirable characteristics that are not available using up to date breeding technology. Transgenic techniques allow genetic material to be transferred between completely unrelated organisms.In order for a transgenic technique to work, the genetic engineer must first construct a transgene, which is the gene to be introduced plus a control sequence. When making a transgene, scientists usually substitute the original promoter sequence with one that will be active in the correct tissues of the recipient plant or animal.The creation of transgenic animals is one of the most dramatic advanced derived from recombinant DNA technology. A transgenic animal results from insertion of a foreign gene into an embryo. The foreign gene becomes a permanent part of the host animals’ genetic material. As the embryo develops, the foreign gene may be present in many cells of the body. If the transgenic animal is fertile, the inserted foreign gene (transgene) will be inherited by future progeny. Thus, a transgenic animal, once created, can persist into future generations. Transgenic animals are different from animals in which foreign cells or foreign organs have been engrafted. The progeny of engrafted animals do not inherit the experimental change. The progeny of transgenic animals do.The techniques for creating a transgenic animal include the following:1)picking a foreign gene, 2) placing the foreign gene in a suitable form called a “construct”which guides the insertion of the foreign gene into the animal genome and encourages its expression, and 3) injecting the construct into a single fertilized egg or at the very early embryo stage of the host animal. Much genetic engineering goes into the choice of a foreign gene and building a construct. The construct must have promoters to turn on foreign gene expression at its new site within the host animal genome. By choosing a particular promoter and splicing it in front of the foreign gene, we can encourage expression of our transgene within a specific tissue.转基因植物和动物转基因植物和动物,源于遗传物质从一个有机体转移到另一个,从而使后者表达前者特征的基因工程实验。

MYB转录因子在植物抗逆胁迫中的作用及其分子机理_刘蕾

MYB转录因子在植物抗逆胁迫中的作用及其分子机理_刘蕾

已在拟南芥、玉米等真核生物中发现存在着大量的 MYB 转录因子。例如, 拟南芥中已发现大约 130 个 成员, 玉米中大约有 100 个成员[7~9]等。它们广泛参 与植物次生代谢的调控、对激素和环境因子的应 答[10~13], 并对细胞分化、器官的形成、植物叶片的 形态建成及抗病具有重要的调节作用[14~17]。
据统计, 在世界范围内适于耕种的土地不足 10%, 大部分土地处于干旱、盐渍、沼泽等逆境中。 随着环境恶化和人口不断增长, 迫切需要培育出能 在各种逆境下生长的经济作物。利用转录因子改良 和提高植物的综合抗逆性成为一种很有潜力的方 法。文章简要介绍了 MYB 转录因子的结构特征和 功能特性, 着重讨论了其在植物抗逆反应中的作用 及其分子机理。
摘要: 在植物抗逆反应体系中, 通过转录因子调控功能基因的表达, 是植物逆境应答反应的关键环节。作为植
物体内最大的转录因子家族之一, MYB(v-myb avian myeloblastosis viral oncogene homolog)类转录因子在
植物抗逆胁迫过程中起着重要的作用。文章论述了 MYB 转录因子的结构特征、功能特性及其分子机理, 并结 合研究进展着重讨论了它们在植物抗逆胁迫中的作用。 关键词: MYB; 转录因子; 抗逆胁迫; 转录调控
transcriptionalregulation转录因子transcriptionfactortf又称反式作用因子是指能与真核基因启动子区域中的顺式作用元件发生特异性结合通过它们之间以及与其他相关蛋白之间的相互作用激活或抑制转录从而保证目的基因以特定的强度在特定的时间与空间表达的蛋白质分子
HEREDITAS (Beijing) 2008 年 10 月, 30(10): 1265―1271 ISSN 0253-9772
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BIOLOGIA PLANTARUM 54 (2): 201-212, 2010201REVIEWTranscription factors in plants and ABA dependent and independent abiotic stress signallingP.K. AGARWAL* and B. JHADiscipline of Marine Biotechnology and Ecology, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, Bhavnagar-364002, Gujarat, IndiaAbstractPlants face variable environmental stresses that negatively affect plant growth and productivity. The multiplicity of responses is an important aspect of the complexity of stress signalling. Abscisic acid (ABA) is a broad-spectrum phytohormone involved not only in regulating stomatal opening, growth and development but also in coordinating various stress signal transduction pathways in plants during abiotic stresses. The both ABA-dependent and ABA-independent signal transduction pathways from stress signal perception to gene expression involve different transcription factors such as DREB, MYC/MYB, AREB/ABF, NAM, ATAF1,2, CUC and their corresponding cis -acting elements DRE, MYCRS/MYBRS, ABRE, NACRS. Genetic analysis of ABA mutants has given insight that ABA-dependent and ABA-independent pathways for osmotic stress and cold stress interact and converge. This review focuses on ABA-dependent and ABA-independent transcriptional components and cascades, their specificity and cross-talk in stress gene regulation.Additional key words : cis -element, cross talk, downstream genes, gene regulation, overexpression.IntroductionPlants face variable forms of environmental stresses like drought, cold, temperature and soil salinity. Although, plants gradually evolved a remarkable ability to cope with such environmental onslaughts, the stresses nevertheless represent a primary cause of crop loss worldwide. During abiotic stress plants show an array of biochemical and physiological changes. Plant breeding showed that abiotic stress tolerance is governed by multiple loci and thus is multigenic in nature, therefore adapting with variable environmental cues is a highly complex phenomenon. A number of abiotic stress related genes, some transcription factors and regulatory sequences in plant promoters have been studied and characterized. The transcription factors interact with cis -elements in the promoter regions of various abiotic stress-related genes and thus up-regulate the expression of many secondary responsive genes resulting in abiotic stresses tolerance. In Arabidopsis thaliana , cis -elements and corresponding binding proteins, with distinct type of DNA binding domains, such as AP2/ERF (apetala 2/ ethylene responsive factor), basic leucine zipper, HD-ZIP (homeodomain leucine zipper), MYC (myelocytoma-tosis), MYB (myeloblastosis) and different classes of zinc finger domains, have been identified (Shinozaki and Yamaguchi-Shinozaki 2000, Pastori and Foyer 2002). Genetically engineering the expression of certain transcription factors can greatly influence plant stress tolerance. The transcription factor-based technologies are likely to be a prominent part of the next generation of successful biotechnology-derived crop (Century et al. 2008). Some transcription factors follow an ABA-dependent signal transduction pathway, while others⎯⎯⎯⎯Received 5 April 2009, accepted 27 September 2009.Abbreviations : ABA - abscisic acid; ABF - ABRE binding factor; AP2 - apetala 2; AREBs - ABA responsive element binding protein; ATAF1,2 - Arabidopsis transcription factor 1 or 2 like family; CUC - cup-shaped cotyledon; DREB2 - drought responsive element binding protein 2; ERF - ethylene responsive factor; hos5 - high expression of osmotic responsive genes; NAM - no apical meristem.Acknowledgments : The financial assistance from the Council of Scientific and Industrial Research (CSIR) and Department of Science and Technology, New Delhi, India is duly acknowledged.* Corresponding author, fax: (+91) 278 2570885, e-mail: pagarwal@P.K. AGARWAL, B. JHA202appear ABA-independent. The molecular mechanisms for ABA-dependent and ABA-independent gene regulation are not entirely clear, analysis of the promoters of stress-responsive genes and the isolation of transcription factors that activate these genes suggest that there are distinct regulatory mechanisms for the different pathways. Despite the differences in transcriptional activation,molecular mechanisms indicate that the ABA-dependent and ABA-independent pathways have extensive inter-actions in controlling gene expression under abiotic stress (Ishitani et al. 1997, Xiong et al. 1999a). In this review, we discuss the role of ABA in stress signalling and its involvement in different regulatory systems during abiotic stress in ABA-dependent and independent manner.Role of ABA in stress signallingABA is an important plant hormone and is involved in many aspects of plant growth and development, as embryo maturation, prevention of precocious germina-tion, seed development, seed dormancy, seed germi-nation, stomatal aperture regulation and activation of stress responsive genes. ABA is also known to influence flowering in plants (Tanimoto et al. 1985, Saxena et al. 2008). In addition to its involvement in developmental pathways, ABA controls many stress adaptation responses, activation of genes involved in osmotic adjustment, ion compartmentation, regulation of shoot versus root growth and modifications of root hydraulic conductivity (Ruggiero et al. 2004, Verslues and Zhu 2005). ABA also helps in limiting transpiration rate and controls wilting, thus helps reduce water loss in the plants (Pospíšilová et al. 2009). A number of stress-responsive genes are upregulated by ABA (Ingram and Bartels 1996) in desiccation and osmotic imbalance. There is an overlap in the expression pattern of stress genes under cold, drought, high salt and or ABA application. The role of ABA in osmotic stress signalling was studied by ABA biosynthesis mutants in Arabidopsis (Finkelstein et al. 2002). Several ABA deficient mutants namely aba1, aba2 and aba3 have been reported from Arabidopsis (Koornneef et al. 1998). Without any stress treatment the growth of these mutants was comparable to wild type plants. Under prolong drought conditions the ABA deficient mutants wilt and die and under salt stress they show poor growth.The role of ABA in cold response is not clearly understood. Studies have shown transient increase of ABA in response to chilling treatment (Lang et al. 1994)and increased freezing tolerance after exogenous ABA application (Chen et al. 1983). However, other studies have shown that ABA accumulation is not observed under cold stress, probably owing to slowing down of the cellular metabolism. Studies in the ABA-deficient mutant aba1-1 and ABA-insensitive mutants abi1-1 and abi2-1, indicate that low-temperature-regulated gene expression is relatively independent of ABA, whereas drought and salt stress signal transduction is controlled by both ABA-dependent and ABA-independent pathways (Thomashow 1999, Shinozaki and Yamaguchi-Shinozaki 2000). The hos5 (high expression of osmotic responsive genes) mutants showed enhanced induction of the RD29A-LUC transgene and increased osmotic stress but not cold induction by ABA (Xiong et al. 1999a). The los5 (low expression of osmotic responsive genes) mutation reduces the induction of several stress-responsive genes by cold and severely blocks the induction of RD29A, COR15, COR47, RD22 and P5CS by osmotic stresses (Xiong et al. 2001). The los5 and los6 mutants show different responses to cold treatment. In los6/aba1, the ABA treatment complemented the defect in cold-regulated RD29A-LUC expression, whereas the same treatment failed to rescue los5/aba3 (Xiong et al. 2002). This suggests that cold signalling requires a function of LOS5/ABA3, which is not related directly to ABA biosynthesis. However, it is unclear how LOS5/ABA3 involved in the cold or ABA regulation of some genes. Recently, Zhou and Guo (2009) reported in Stylosanthes guianensis that ABA enhances chilling resistance by inducing antioxidant enzymes, like superoxide dismutase (SOD) and ascorbate peroxidase (APX).ABA-dependent and ABA-independent signallingDehydration and salt stress activate ABA-dependent and ABA-independent gene expression systems involving ABFs (ABRE binding factor)/AREBs (ABA responsive element binding protein), MYC/MYB, DREB2 (drought responsive element binding) and NAC (NAM, ATAF1,2 and CUC ) transcription factors. The cold stress regulates an ABA-independent pathway through CBF/DREB1 transcription factors. These major transcription factors show differential transcript regulation in response to different stresses (Table 1) and their overexpression resulted in upregulation of large number of genes directly or indirectly linked with stress tolerance in plants (Table 2).AREB and ABA-dependent stress signal transduction: The bZIP-ABRE system is an ABA-dependent stress signal transduction pathway. Many ABA-inducible genes contain a conserved, ABA-responsive cis -acting element named ABRE (ABA responsive element PyACGTGGC) in their promoter regions (Grill and Himmelbach 1998). ABREs were first reported in wheat EM gene which functions in seed during late embryogenesis (Guiltnan et al. 1990) and in rice RAB16, which is expressed in dehydrated vegetative tissues and maturing seeds (Mundy et al. 1990). A coupling element (CE3) is needed to specify the function of ABRE for the expression of ABAABA DEPENDENT AND INDEPENDENT SIGNALLING203Table 1. Differential transcript regulation of ABA-dependent and ABA-independent transcription factors. Ah - Atriplex hortensis , At - Arabidopsis thaliana , Ca - Capsicum annuum , Dm - Dendranthema × moriforlium , Dv - Dendranthema vestitum, Gm - Glycine max , Lp - Lolium perenne , Os - Oryza sativa , Pg - Pennisetum glaucum , Ss - Saccharum species, Ta - Triticum aestivum , W - common wheat, Zm - Zea mays . Family Gene nameResponsive to ABA Inducible byReferencesABF1 cold ABF2 salt ABF3 salt ABF4 yes drought Choi et al. 2000 GmbZIP44 yes drought, salt, water stress GmbZIP62 yes cold, drought, salt GmbZIP78 yes drought, salt Liao et al. 2008a GmbZIP132 yes cold, drought, salt Liao et al. 2008b bZIPWlip19 yes cold, drought Kobayashi et al. 2008a ATAF1 yes drought Lu et al. 2007 AtNAC2 yes salt He et al. 2005 AtNAC019 AtNAC055 AtNAC072 yes drought, salt Tran et al. 2004 OsNAC6 yes cold, drought, salt Ohnishi et al. 2005Nakahsima et al. 2007SNAC1 yes cold, drought, salt Hu et al. 2006 SNAC2 yes cold, drought, salt Hu et al. 2008 SsNAC23 yes low temperature Nogueira et al. 2005 NACAtMYB2 yes drought, salt Abe et al. 1997 GmMYB76 no salt GmMYB92 no cold, salt GmMYB177 no drought, salt Liao et al. 2008c MYB15 - cold Agarwal et al. 2006b MYBOsMYB3R-2 - cold, drought, salt Dai et al. 2007bHLH AtMYC2 yes drought, salt Abe et al. 1997 CBF1, CBF2, CBF3 nocold Gilmour et al. 1998Medina et al. 1999Jaglo et al. 2001 Choi et al. 2002CBF2-1, CBF2-2 no cold, drought Kume et al. 2005 CBF4 yes salt Haake et al. 2002 LpCBF3 no cold Xiong and Fei 2006 AhDREB1 - salt Shen et al. 2003a Ca-DREBLP1 no drought, salt Hong and Kim 2005 DREB1A/REB1B no cold Liu et al. 1998 DREB2A yes drought, salt Liu et al. 1998DvDREB2yes cold, drought, salt Liu et al. 2008 DmDREBa DmDREBb yes cold Yang et al. 2009 GmDREB2 yes cold, drought, salt Chen et al. 2007 GmDREBa yes cold, drought, salt GmDREBb no cold, drought, salt GmDREBc yes drought, salt Li et al. 2005 OsDREB1A no cold, salt Dubouzet et al. 2003 OsDREB2A no drought, salt OsDREB1F yes cold, drought, salt Wang et al. 2008 PgDREB2A - cold, drought, salt Agarwal et al. 2007 TaDREB1 yes cold, drought, salt Shen et al. 2003b WDREB2 yes cold, drought, salt Egawa et al. 2006 CBF/DREB ZmDREB2 no cold, drought, salt Qin et al. 2007induced genes (Shen and Ho 1995). The ABREs core motif, ACGT is present in G-boxes of variety of genes responsive to different environmental and physiologicalfactors, like irradiance (Giuliano et al. 1988), auxin (Liu et al. 1994), anaerobiosis (McKendree and Ferl 1992), jasmonic acid (Mason et al. 1993) and salicylic acid (QinP.K. AGARWAL, B. JHA204et al. 1994). Recently cis -elements other than ABREs related to ABA signalling are also suggested based on the mismatch of cell type-specific enrichment and regulation of gene expression by ABA (Dinneny et al. 2008). AREB1, AREB2 and AREB3 from Arabidopsis encode bZIP-type proteins. Stress-inducible AREB1 and AREB2 function as transcriptional activators in the ABA-inducible expression of RD29B (Uno et al. 2000). Four ABFs (ABF1, ABF2, ABF3, ABF4) cDNA similar to AREB1 and AREB2 are reported from Arabidopsis . ABF1 expression is induced by cold, ABF2 and ABF3 by high salt and ABF4 by cold, drought and high salt (Choi et al. 2000). The constitutive overexpression of stress-responsive ABF3 or ABF4/AREB2 resulted in ABA hypersensitivity as well as reduced transpiration rates and enhanced drought tolerance (Kang et al. 2002). ABF2/ AREB1 is an essential component of glucose signalling, and its overexpression increased tolerance to multiple stresses (Kim et al. 2004, Fujita et al. 2005). 131 bZIP genes of different groups were identified from soybean. Generally, it is known that group A bZIP proteins are involved in ABA and stress signalling. Recently, it was found that other bZIP-type proteins GmbZIP44, GmbZIP62 and GmbZIP78 belonging to subgroup S, C and G, respectively, are also involved in salt and freezing stress. These proteins bind to GCN4-like motif (GLM, GTGAGTCAT), ABRE (CCACGTGG) and PB-like (TGAAAA) elements with differential affinity and improve stress tolerance in transgenic Arabidopsis by upregulating ERF5, KIN1, COR15A , COR78A and P5CS1 and down regulating DREB2A and COR47 (Liao et al. 2008a). The salt tolerance conferred by GmbZIP genes is dependent on developmental stage and freezing tolerance depends on proline content of the transgenics (Liao et al. 2008a,b). The transgenics of group A bZIP proteins ABF2/AREB1, ABF3 and ABF4 are hypersensitive to ABA and act as positive regulators of ABA signalling, whereas the GmbZIPs act as negative regulators for ABA signalling, thereby facilitating the plants to balance ABA signalling and avoid extreme stress responses. ABI5 (ABA insensitive 5) is a member of Arabidopsis bZIP transcription factor subfamily that contains four highly conserved domains in addition to the bZIP binding domain (Jakoby et al. 2002). ABI5 expression is higher in mature seeds and young seedling exposed to ABA or dehydration stress and also its expression is promoted by multiple ABI gene products including the transcription factors ABI3, ABI4 and ABI5 itself (Finkelstein and Lynch 2000, Lopez-Molina et al. 2001, Brocard et al. 2002) and inhibited by closely related ABF3 (Finkelstein et al. 2005). OsABI5 from rice showed transcript upregulation by ABA, high salt and down regulation by drought and cold. Its overexpression enhanced salinity tolerance (Zou et al. 2008). The expression of AREB1 is induced by ABA application, however, its overexpression is not sufficient to activate ABRE-dependent gene expression. According to recent reports, AREB1 and its homologs are phosphorylated in vitro or in vivo (Kagaya et al. 2002), which may be involved in modulation of its activity. Furihata et al. (2006) revealed that the ABA-dependent multisite phosphorylation of AREB1 activates ABRE-dependent gene expression. A rice ABF, TRAB1 (transcription factor responsible for ABA regulation) is activated via ABA-dependent phosphorylation. ABA-activated SnRK2 protein kinases directly phosphorylate TRAB1 in response to ABA. TRAB1 gets phosphorylated not only in response to ABA, but also in response to hyper osmotic stress (Kobayashi et al. 2005). These studies show that phosphorylation/dephospho-rylation regulated events play important role in ABA signalling.The low temperature induced protein (lip), a bZIP type transcription factor has been isolated from different cereal plants. Rice lip is strongly induced by cold (Aguan et al. 1993), whereas maize mlip5 is expressed in response to low temperature, salt stress and exogenous ABA (Kusano et al. 1995). Recently a Wlip19 identified from wheat showed higher expression to cold, drought and ABA treatments. The transactivation study of this gene showed the positive regulation of five wheat LEA genes WDHN13, WRAB17, WRAB18 and WRAB19 (Kobayashi et al. 2008a).MYC/MYB and ABA-dependent stress signal transduction: The MYC/MYB families of proteins are found in both plants and animals and known to have diverse functions. Members of this family were first identified in the regulation of anthocyanin biosynthesis (Goodrich et al. 1992). Both MYC/MYB transcription factors participate in the ABA-dependent pathway for the upregulation of the abiotic stress responsive genes. The DNA-binding domain of plant MYB proteins usually consist of two imperfect repeats of about 50 residues (R2, R3), whereas it contains three repeats (R1, R2 and R3) in animals. However, recently OsMYB3R-2 with three repeats was reported in rice (Dai et al. 2007). Different MYB proteins bind to different cis -elements in their target gene’s promoter. Mammalian MYBs such as C-MYB, A-MYB, and B-MYB bind to the cognate site T/CAACG/TGA/C/TA/C/T (MBSI). Several plant MYB proteins that bind to MBSI will also bind to a second site, TAACTAAC (MBSII) (Romero et al. 1998). The AtMYC2 and AtMYB2 proteins bind to CACATG and TGGTTAG cis -acting elements, respectively, of the rd22 promoter of Arabidopsis and cooperatively activate this promoter (Abe et al. 1997). Overexpression of 35S:AtMYC2 and 35S:AtMYB2 and 35S:AtMYC2+ AtMYB2 in Arabidopsis induced ABA responsive stress genes. The transgenic showed an ABA-hypersensitive phenotype and increased osmotic stress tolerance (Abe et al. 2003). In contrast, OsMYB3R-2 transgenic plants enhanced tolerance to freezing, dehydration and salt stress and decreased sensitivity to ABA (Dai et al. 2007). Liao et al. (2008c) identified 156 GmMYB genes of which the expression of 43 genes changed on treatment with ABA, salt, drought and/or cold stress. GmMYB76, GmMYB92 and GmMYB177 could bind to the sequenceABA DEPENDENT AND INDEPENDENT SIGNALLING205MBSI but with different affinity, the GmMYB92 also showed binding to MRE4 (TCTCACCTA) and mMRE1 (CCGAAAAAAGGAT). The differential binding ability suggests that these genes may regulate different set of downstream genes. The expression levels of RD29B, DREB2A, P5CS, RD1, ERD10, and COR78/RD29A were enhanced in the GmMYB76 transgenic plants, whereas in GmMYB92 transgenic plants the expression of DREB2A, RD17, and P5CS was higher and the expression of RD29B , COR6.6, COR15a and COR78/rd29A was lowered. In the GmMYB177 transgenic plants RD29B , ABI2, DREB2A , RD17, P5CS , ERD10, COR6.6, ERD11 and COR78 were upregulated. The OsMYB4 imparts different level of tolerance depending on the nature of the host plants. Arabidopsis transgenic plants overexpressing OsMYB4 showed increased chilling and freezing tolerance with a dwarf phenotype (Vannini et al. 2004), the tomato transgenic showed higher tolerance to drought stress and viral disease but not to cold stress (Vannini et al. 2007), whereas the apple transgenic showed increased drought and cold tolerance (Pasquali et al. 2008).Functions and interactions of transcription factors in an ABA-independent manner: The ABA-independent stress-responsive gene expression is regulated by DREB proteins that bind to DRE cis -elements. DREBs are important plant-specific transcription factors that induce a set of abiotic stress related genes and impart stress tolerance to the plant system. They belong to ERF family of transcription factors unique to plants and contain two subclasses, DREB1/CBF and DREB2 that are induced by cold and dehydration, respectively. DREB genes have been isolated and characterized from wide variety of plants, and their differential transcript regulation and functional analysis is reviewed in Agarwal et al. (2006a). The DREB1 and DREB2-type proteins have different binding specificities, therefore, upregulate different set of abiotic stress related genes. The AtDREB1A, AtDREB2A and OsDREB2A proteins bind to both ACCGAC and GCCGAC with same efficiency, however, OsDREB1A showed preferential binding to GCCGAC (Liu et al. 1998, Dubouzet et al. 2003). In our studies PgDREB2A showed preferential binding to ACCGAC (Agarwal et al. 2007), similarly, in AtDREB2A preferential binding to ACCGAC is reported (Sakuma et al. 2006a).A number of downstream genes are activated by the overexpression of the DREB transcription factors leading to enhanced abiotic stress tolerance (Table 2). Overexpression of AtDREB1A and OsDREB1A upregu-lated 12 and 10 genes, respectively, which were involved in freezing and dehydration tolerance (Seki et al. 2001, Dubouzet et al. 2003). Microarray analysis of AtDREB2A transgenic plants have shown overexpression of the 21 genes, of these 14 genes were upregulated by drought, 9 of which encode LEA class proteins, which are thought to protect macromolecules, such as enzymes and lipids from dehydration (Sakuma et al. 2006a). A number of heat shock related genes (268 and 778 at 0.5 h and 5 h heat shock treatment) were also upregulated by AtDREB2A overexpression (Sakuma et al. 2006b). Recently, Schramm et al. (2008) reported that HsfA3, one of the 21 members of Arabidopsis Hsf family, is transcriptionally activated during heat shock by DREB2A and regulates a subset of genes encoding Hsps. Microarray analysis of plants overexpressing the ZmDREB2A showed upregulation of 44 genes belonging to LEA, heat shock, detoxification, seed proteins and enzymes involved in metabolism, etc . Zhao et al. (2006) isolated two groups of low-temperature-responsive DREB genes from Brassica napus , expression analysis and the trans -active activity of these two groups of genes indicated that they functioned in a competitive manner to regulate the DRE-mediated signalling pathway in response to cold stress. The trans -active Group I DREBs were expressed rapidly on exposure to cold stress to switch on the DRE-mediated signalling pathway and when the proteins of Group I reach a certain level the trans -inactive Group II were expressed, and they compete with Group I to bind to the DRE elements on the promoter of target genes and decrease their expression, and finally the DRE-mediated signalling pathway is switched off. Using a reverse genetics approach it was shown that CBF2/DREB1C acts as a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression (Novillo et al. 2004). The DREB1/CBF genes were also regulated by bHLH-type of transcription factor, ICE1 (Chinnusamy et al. 2003), and by Ca 2+ related processes, because mutations in CAX1 (encoding a Ca 2+/H + transporter) and CBL1 (Ca 2+-sensor protein) affected expression pattern of DREB1/CBF genes (Albrecht et al. 2003, Catala et al. 2003).The mechanism of activation of DREB2-type genes is not well studied, earlier studies have shown that the over-expression of AtDREB2A and OsDREB2A protein in Arabidopsis was not sufficient for the induction of target stress inducible genes (Liu et al. 1998, Dubouzet et al. 2003), and it was assumed that some post-translational modifications, probably phosphorylation and/or dephosphorylation events may be necessary to play a role in activating the expression of stress responsive genes. Furthermore, the removal of a negative regulatory domain containing the PEST sequence (RSDASE VTSTSSQSEVCTVETPGCV) from AtDREB2A, changed it to constitutive active form, capable of upregulating a number of drought, salt and heat-responsive downstream genes. In ZmDREB2A, a PEST sequence is not reported and its overexpression in original form resulted in expression of the abiotic stress tolerance genes (Qin et al. 2007). We have shown that stress-inducible DREB2A gene from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DRE binding activity (Agarwal et al. 2007). Another class of transcription factors, NAC is reported in plants, which regulate both ABA-dependent and independent genes. They are expressed in different tissues at various developmental stages and are involved in many aspects of plant growth and development (OlsenP.K. AGARWAL, B. JHA206et al. 2005). The N-terminal region contains highly conserved NAC [for NAM (no apical meristem), ATAF1, 2, and CUC2 (cup-shaped cotyledon)] domains, which may form helix-turn-helix structure, that specifically binds to target DNA (Aida et al. 1997). The C-terminal region of these proteins is a putative transcriptional activation domain and shows high divergence in sequence. The first NAC gene isolated was NAM from petunia (Souer et al. 1996), which plays a critical role in determining meristem and primordia positions. Recently, NAC genes were also found to be involved in abiotic and biotic stresses (Fujita et al. 2004, Tran et al. 2004, 2007, Nakashima et al. 2007). The ERD1, a NAC family member, is upregulated in response to drought, high salinity and dark-induced senescence but not with cold orABA treatment (Kiyosue et al. 1993, Nakashima et al. 1997). Promoter analysis of the ERD1 gene shows that its expression during dehydration depends on the integrity of both 14-bp rps1 sequence and the putative MYC like (CATGTG) sequence (Simpson et al. 2003). Three NAC trans -acting factors, responsive to drought, high salinity, ABA and MeJA (methyl jasmonic acid) interact with the above mentioned putative cis -acting motifs found in the ERD1 promoter region (Tran et al. 2004). The NAC proteins bound specifically to the NAC recognition site (NACRS), which contains the CATGTG motif, both in vivo and in vitro . The NAC proteins could bind to NACRS even as multimers, heterodimerization might potentiate the transcriptional activity of the NAC proteins (Tran et al. 2004). Structural studies of the NACTable 2. Abiotic stress tolerance potential of transgenic plants overexpressing ABA dependent and independent transcription factors. Ah - Atriplex hortensis , At - Arabidopsis thaliana , BN - Brassica napus, Gm - Glycine max , Os - Oryza sativa , W - common wheat, Zm - Zea mays , * - microarray analysis. GeneIncreased tolerance toABA senstivity (+ or -) Upregulated genes ReferencesABF2 drought, salt, freezing (+) or (-) 7 Kim et al. 2004 ABF3 drought, chilling, freezing, heat (+) 7 ABF4 drought, freezing, heat (+) 6Kang et al. 2002 GmbZip44, 62, 78 salt, freezing (+) 7, 7, 7 Liao et al. 2008a GmbZIP132 salt at germination stage 6 Liao et.al . 2008bWlip19 freezing, osmotic stressKobayashi et al. 2008a AtMYB2/ AtMYC2 osmotic stress (+) 40* Abe et al. 2003 GmMBY76 GmMBY92 GmMBY177 salt, freezing 6 3 9 Liao et al. 2008c OsMYB3R2 cold, drought, salt (-) 3 Dai et al. 2007MYB15 reduced freezing tolerance Agarwal et al. 2006b ANAC019 ANAC055 ANAC072 drought 8 9 22 Tran et al. 2004 OsNAC6 dehydration, salt 163* Nakashima et al. 2007 SNACI drought, salt 91 Hu et al. 2006 SNAC2 cold, drought, salt(+)2 Jaglo et al. 2001 1 Hsieh et al. 2002 AtCBF1 freezing 2Xiong and Fei 2006AtCBF3 freezing4 Gilmour et al. 2000 AtCBF4freezing, dehydration 2 Haake et al. 2002 BNCBF5, BNCBF17 freezing16* Savitch et al. 2005freezing, dehydration12Liu et al. 1998; Seki et al.2001freezing, dehydration4 Kasuga et al. 2004 AtDREB1Adrought1Zhao et al. 2007AhDREB1 dehydration, salt 2 Shen et al. 2003a AtDREB2A dehydration, salinity483*Sakuma et al. 2006a AtDREB2A heat stress 778* Sakuma et al. 2006b GmDREB2 dehydration, salt 2 Chen et al. 2007 OsDREB1A freezing, dehydration, salt 10* Dubouzet et al. 2003 OsDREB1F salt, drought, cold 4 Wang et al. 2008 OsDREB1G OsDREB2B drought Chen et al. 2008 WDREB2 freezing, osmotic stress (+)Kobayashi et al. 2008b ZmDREB2A drought, heat stress44*Qin et al. 2007。

相关文档
最新文档