高中数学会考模拟试题(A)
山东普通高中会考数学真题及答案A
山东普通高中会考数学真题及答案A一、选择题(每小题3分,共75分)1.(3分)已知集合A={0,1},B={﹣1,1,3},那么A∩B等于()A.{0} B.{1} C.{0,1} D.{0,1,3} 2.(3分)平面向量,满足=2,如果=(1,2),那么等于()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣4)D.(2,4)3.(3分)如果直线y=kx﹣1与直线y=3x平行,那么实数k的值为()A.﹣1 B.C.D.34.(3分)如图,给出了奇函数f(x)的局部图象,那么f(1)等于()A.﹣4 B.﹣2 C.2 D.45.(3分)如果函数f(x)=a x(a>0,且a≠1)的图象经过点(2,9),那么实数a等于()A.2 B.36.(3分)某中学现有学生1800人,其中初中学生1200人,高中学生600人.为了解学生在“阅读节”活动中的参与情况,决定采用分层抽样的方法从全校学生中抽取一个容量为180的样本,那么应从高中学生中抽取的人数为()A.60 B.90 C.100 D.110(3分)已知直线l经过点O(0,0),且与直线x﹣y﹣3=0垂直,那么直线l的方程是()7.A.x+y﹣3=0 B.x﹣y+3=0 C.x+y=0 D.x﹣y=0 8.(3分)如图,在矩形ABCD中,E为CD中点,那么向量等于()A.B.C.D.9.(3分)实数的值等于()A.1 B.2 C.3 D.410.(3分)函数y=x2,y=x3,,y=lgx中,在区间(0,+∞)上为减函数的是()A.y=x2B.y=x3C.D.y=lgx11.(3分)某次抽奖活动共设置一等奖、二等奖两类奖项.已知中一等奖的概率为0.1,中二等奖的概率为0.1,那么本次活动中,中奖的概率为()A.0.1 B.0.2 C.0.3 D.0.712.(3分)如果正△ABC的边长为1,那么•等于()A.B.C.1 D.213.(3分)在△ABC中,角A,B,C所对的边分别为a,b,c,如果a=10,A=45°,B=30°,那么b等于()A.B.C.D.14.(3分)已知圆C:x2+y2﹣2x=0,那么圆心C到坐标原点O的距离是()A.B.C.1 D.15.(3分)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是正方形,A1A⊥底面ABCD,A1A=2,AB =1,那么该四棱柱的体积为()A.1 B.2 C.4 D.816.(3分)函数f(x)=x3﹣5的零点所在的区间是()A.(1,2)B.(2,3)C.(3,4)D.(4,5)17.(3分)在sin50°,﹣sin50°,sin40°,﹣sin40°四个数中,与sin130°相等的是()A.sin50°B.﹣sin50°C.sin40°D.﹣sin40°18.(3分)把函数y=sin x的图象向右平移个单位得到y=g(x)的图象,再把y=g(x)图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),所得到图象的解析式为()A.B.C.D.19.(3分)函数的最小值是()A.﹣1 B.0 C.1 D.220.(3分)在空间中,给出下列四个命题:①平行于同一个平面的两条直线互相平行;②垂直于同一个平面的两条直线互相平行;③平行于同一条直线的两个平面互相平行;④垂直于同一个平面的两个平面互相平行.其中正确命题的序号是()A.①B.②C.③D.④21.(3分)北京市环境保护监测中心每月向公众公布北京市各区域的空气质量状况.2018年1月份各区域的PM2.5浓度情况如表:各区域1月份PM2.5浓度(单位:微克/立方米)表区域PM2.5浓度区域PM2.5浓度区域PM2.5浓度怀柔27 海淀34 平谷40密云31 延庆35 丰台42门头沟32 西城35 大兴46顺义32 东城36 开发区46昌平32 石景山37 房山47朝阳34 通州39从上述表格随机选择一个区域,其2018年1月份PM2.5的浓度小于36微克/立方米的概率是()A.B.C.D.22.(3分)已知,那么=()A.B.C.D.23.(3分)在△ABC中,角A,B,C所对的边分别为a,b,c,如果,那么△ABC的最大内角的余弦值为()A.B.C.D.24.(3分)北京故宫博物院成立于1925年10月10日,是在明、清朝两代皇宫及其宫廷收藏的基础上建立起来的中国综合性博物馆,每年吸引着大批游客参观游览.下图是从2012年到2017年每年参观人数的折线图.根据图中信息,下列结论中正确的是()A.2013年以来,每年参观总人次逐年递增B.2014年比2013年增加的参观人次不超过50万C.2012年到2017年这六年间,2017年参观总人次最多D.2012年到2017年这六年间,平均每年参观总人次超过160万25.(3分)阅读下面题目及其证明过程,在横线处应填写的正确结论是()如图,在三棱锥P﹣ABC中,平面PAC⊥平面ABC,BC⊥AC求证:BC⊥PA证明:因为平面PAC⊥平面ABC平面PAC∩平面ABC=ACBC⊥AC,BC⊂平面ABC所以______.因为PA⊂平面PAC.所以BC⊥PAA.AB⊥底面PAC B.AC⊥底面PBC C.BC⊥底面PAC D.AB⊥底面PBC 二、解答题(共4小题,满分25分)26.(7分)已知函数(Ⅰ)A=;(将结果直接填写在答题卡的相应位置上)(Ⅱ)函数f(x)的最小正周期T=(将结果直接填写在答题卡的相应位置上)(Ⅲ)求函数f(x)的最小值及相应的x的值.27.(7分)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,AB⊥BC,D,E,分别为PB,PC的中点.(Ⅰ)求证:BC∥平面ADE;(Ⅱ)求证:BC⊥平面PAB.28.(6分)已知圆O:x2+y2=r2(r>0)经过点A(0,5),与x轴正半轴交于点B.(Ⅰ)r=;(将结果直接填写在答题卡的相应位置上)(Ⅱ)圆O上是否存在点P,使得△PAB的面积为15?若存在,求出点P的坐标;若不存在,说明理由.29.(5分)种植于道路两侧、为车辆和行人遮阴并构成街景的乔木称为行道树.为确保行人、车辆和临近道路附属设施安全,树木与原有电力线之间的距离不能超出安全距离.按照北京市《行道树修剪规范》要求,当树木与原有电力线发生矛盾时,应及时修剪树枝.《行道树修剪规范》中规定,树木与原有电力线的安全距离如表所示:树木与电力线的安全距离表电力线安全距离(单位:m)水平距离垂直距离≤1KV≥1 ≥13KV~10KV≥3 ≥335KV~110KV≥3.5 ≥4154KV~220KV≥4 ≥4.5 330KV≥5 ≥5.5500KV≥7 ≥7现有某棵行道树已经自然生长2年,高度为2m.据研究,这种行道树自然生长的时间x(年)与它的高度y(m)满足关系式(Ⅰ)r=;(将结果直接填写在答题卡的相应位置上)(Ⅱ)如果这棵行道树的正上方有35kV的电力线,该电力线距地面20m.那么这棵行道树自然生长多少年必须修剪?(Ⅲ)假如这棵行道树的正上方有500kV的电力线,这棵行道树一直自然生长,始终不会影响电力线段安全,那么该电力线距离地面至少多少m?参考答案与解析一、选择题(每小题3分,共75分)1.(3分)已知集合A={0,1},B={﹣1,1,3},那么A∩B等于()A.{0} B.{1} C.{0,1} D.{0,1,3}【考点】1E:交集及其运算.菁优网版权所有【专题】11:计算题;37:集合思想;4O:定义法;5J:集合.【分析】利用交集定义直接求解.【解答】解:∵集合A={0,1},B={﹣1,1,3},∴A∩B={1}.故选:B.【点评】本题考查交集的求法,考查交集定义、不等式等基础知识,考查运算求解能力,是基础题.2.(3分)平面向量,满足=2,如果=(1,2),那么等于()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣4)D.(2,4)【考点】96:平行向量(共线).菁优网版权所有【专题】11:计算题;34:方程思想;4O:定义法;5A:平面向量及应用.【分析】利用数乘向量运算法则直接求解.【解答】解:∵平面向量,满足=2,=(1,2),∴=2(1,2)=(2,4).故选:D.【点评】本题考查向量的求法,考查数乘向量运算法则等基础知识,考查运算求解能力,是基础题.3.(3分)如果直线y=kx﹣1与直线y=3x平行,那么实数k的值为()A.﹣1 B.C.D.3【考点】II:直线的一般式方程与直线的平行关系.菁优网版权所有【专题】11:计算题;34:方程思想;4O:定义法;5B:直线与圆.【分析】利用两条直线相互平行的充要条件即可得出.【解答】解:∵直线y=kx﹣1与直线y=3x平行,∴k=3,经过验证满足两条直线平行.故选:D.【点评】本题考查了两条直线相互平行的充要条件,考查了推理能力与计算能力,属于基础题.4.(3分)如图,给出了奇函数f(x)的局部图象,那么f(1)等于()A.﹣4 B.﹣2 C.2 D.4【考点】3K:函数奇偶性的性质与判断.菁优网版权所有【专题】11:计算题;34:方程思想;35:转化思想;51:函数的性质及应用.【分析】根据题意,由函数的图象可得f(﹣1)的值,结合函数的奇偶性可得f(1)的值,即可得答案.【解答】解:根据题意,由函数的图象可得f(﹣1)=2,又由函数为奇函数,则f(1)=﹣f(﹣1)=﹣2,故选:B.【点评】本题考查函数的奇偶性的性质,关键是掌握函数单调性的性质,属于基础题.5.(3分)如果函数f(x)=a x(a>0,且a≠1)的图象经过点(2,9),那么实数a等于()A.2 B.3【考点】4B:指数函数的单调性与特殊点.菁优网版权所有【专题】38:对应思想;4R:转化法;51:函数的性质及应用.【分析】由题意代入点的坐标,即可求出a的值.【解答】解:指数函数f(x)=a x(a>0,a≠1)的图象经过点(2,9),∴9=a2,解得a=3,故选:B.【点评】本题考查了指数函数的图象和性质,属于基础题.6.(3分)某中学现有学生1800人,其中初中学生1200人,高中学生600人.为了解学生在“阅读节”活动中的参与情况,决定采用分层抽样的方法从全校学生中抽取一个容量为180的样本,那么应从高中学生中抽取的人数为()A.60 B.90 C.100 D.110【考点】B3:分层抽样方法.菁优网版权所有【专题】11:计算题;38:对应思想;4O:定义法;5I:概率与统计.【分析】根据分层抽样的定义和题意知,抽样比例是,根据样本的人数求出应抽取的人数【解答】解:根据分层抽样的定义和题意,则高中学生中抽取的人数 600×=60(人).故选:A.【点评】本题的考点是分层抽样方法,根据样本结构和总体结构保持一致,求出抽样比,再求出在所求的层中抽取的个体数目.(3分)已知直线l经过点O(0,0),且与直线x﹣y﹣3=0垂直,那么直线l的方程是()7.A.x+y﹣3=0 B.x﹣y+3=0 C.x+y=0 D.x﹣y=0【考点】IJ:直线的一般式方程与直线的垂直关系.菁优网版权所有【专题】11:计算题;34:方程思想;4O:定义法;5B:直线与圆.【分析】由题意可求出直线l的斜率,由点斜式写出直线方程化简即可.【解答】解:∵直线l与直线x﹣y﹣3=0垂直,∴直线l的斜率为﹣1,则y﹣0=﹣(x﹣0),即x+y=0故选:C.【点评】本题考查了直线方程的求法,属于基础题.8.(3分)如图,在矩形ABCD中,E为CD中点,那么向量等于()A.B.C.D.【考点】9H:平面向量的基本定理.菁优网版权所有【专题】35:转化思想;5A:平面向量及应用.【分析】直接利用向量的线性运算求出结果.【解答】解:在矩形ABCD中,E为CD中点,所以:,则:=.故选:A.【点评】本题考查的知识要点:向量的线性运算的应用,主要考查学生的运算能力和转化能力,属于基础题型.9.(3分)实数的值等于()A.1 B.2 C.3 D.4【考点】41:有理数指数幂及根式;4H:对数的运算性质.菁优网版权所有【专题】33:函数思想;4A:数学模型法;51:函数的性质及应用.【分析】直接利用有理指数幂及对数的运算性质求解即可.【解答】解:=2+0=2.故选:B.【点评】本题考查了有理指数幂及对数的运算性质,是基础题.10.(3分)函数y=x2,y=x3,,y=lgx中,在区间(0,+∞)上为减函数的是()A.y=x2B.y=x3C.D.y=lgx【考点】3E:函数单调性的性质与判断.菁优网版权所有【专题】11:计算题;34:方程思想;35:转化思想;51:函数的性质及应用.【分析】根据题意,依次分析4个函数在区间(0,+∞)的单调性,综合即可得答案.【解答】解:根据题意,函数y=x2,为二次函数,在区间(0,+∞)为增函数;y=x3,为幂函数,在区间(0,+∞)为增函数;,为指数函数,在区间(0,+∞)上为减函数;y=lgx中,在区间(0,+∞)为增函数;故选:C.【点评】本题考查函数单调性的判定,关键是掌握常见函数的单调性,属于基础题.11.(3分)某次抽奖活动共设置一等奖、二等奖两类奖项.已知中一等奖的概率为0.1,中二等奖的概率为0.1,那么本次活动中,中奖的概率为()A.0.1 B.0.2 C.0.3 D.0.7【考点】C2:概率及其性质.菁优网版权所有【专题】38:对应思想;4R:转化法;5I:概率与统计.【分析】根据互斥事件概率加法公式即可得到其发生的概率的大小.【解答】解:由于中一等奖,中二等奖,为互斥事件,故中奖的概率为0.1+0.1=0.2,故选:B.【点评】此题考查概率加法公式及互斥事件,是一道基础题.12.(3分)如果正△ABC的边长为1,那么•等于()A.B.C.1 D.2【考点】9O:平面向量数量积的性质及其运算.菁优网版权所有【专题】38:对应思想;4R:转化法;5A:平面向量及应用.【分析】根据向量的数量积的运算性质计算即可.【解答】解:∵正△ABC的边长为1,∴•=||•||cos A=1×1×cos60°=,故选:B.【点评】本题考查了向量的数量积的运算,是一道基础题.13.(3分)在△ABC中,角A,B,C所对的边分别为a,b,c,如果a=10,A=45°,B=30°,那么b等于()A.B.C.D.【考点】HP:正弦定理.菁优网版权所有【专题】38:对应思想;4R:转化法;58:解三角形.【分析】根据正弦定理直接代入求值即可.【解答】解:由正弦定理==,得=,解得:b=5,故选:B.【点评】本题考查了正弦定理的应用,考查解三角形问题,是一道基础题.14.(3分)已知圆C:x2+y2﹣2x=0,那么圆心C到坐标原点O的距离是()A.B.C.1 D.【考点】J2:圆的一般方程.菁优网版权所有【专题】11:计算题;34:方程思想;35:转化思想;5B:直线与圆.【分析】根据题意,由圆的一般方程分析可得圆心C的坐标,进而由两点间距离公式,计算可得答案.【解答】解:根据题意,圆C:x2+y2﹣2x=0,其圆心C为(1,0),则圆心C到坐标原点O的距离d==1;故选:C.【点评】本题考查圆的一般方程,涉及两点间距离公式,属于基础题.15.(3分)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是正方形,A1A⊥底面ABCD,A1A=2,AB =1,那么该四棱柱的体积为()A.1 B.2 C.4 D.8【考点】LF:棱柱、棱锥、棱台的体积.菁优网版权所有【专题】11:计算题;31:数形结合;4O:定义法;5F:空间位置关系与距离.【分析】该四棱柱的体积为V=S正方形ABCD×AA1,由此能求出结果.【解答】解:∵在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是正方形,A1A⊥底面ABCD,A1A=2,AB=1,∴该四棱柱的体积为V=S正方形ABCD×AA1=12×2=2.故选:B.【点评】本题考查该四棱柱的体积的求法,考查四棱柱的性质等基础知识,考查运算求解能力,是基础题.16.(3分)函数f(x)=x3﹣5的零点所在的区间是()A.(1,2)B.(2,3)C.(3,4)D.(4,5)【考点】52:函数零点的判定定理.菁优网版权所有【专题】11:计算题;34:方程思想;35:转化思想;49:综合法;51:函数的性质及应用.【分析】求得f(1)f(2)<0,根据函数零点的判定定理可得函数f(x)的零点所在的区间.【解答】解:由函数f(x)=x3﹣5可得f(1)=1﹣5=﹣4<0,f(2)=8﹣5=3>0, 故有f(1)f(2)<0,根据函数零点的判定定理可得,函数f(x)的零点所在区间为(1,2),故选:A.【点评】本题主要考查函数的零点的判定定理的应用,属于基本知识的考查.17.(3分)在sin50°,﹣sin50°,sin40°,﹣sin40°四个数中,与sin130°相等的是()A.sin50°B.﹣sin50°C.sin40°D.﹣sin40°【考点】GF:三角函数的恒等变换及化简求值.菁优网版权所有【专题】35:转化思想;56:三角函数的求值.【分析】利用诱导公式化简可得答案.【解答】解:由sin130°=sin(180°﹣50°)=sin50°.∴与sin130°相等的是sin50°故选:A.【点评】题主要考察了诱导公式的应用,属于基本知识的考查.18.(3分)把函数y=sin x的图象向右平移个单位得到y=g(x)的图象,再把y=g(x)图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),所得到图象的解析式为()A.B.C.D.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.菁优网版权所有【专题】35:转化思想;49:综合法;57:三角函数的图象与性质.【分析】由题意利用函数y=A sin(ωx+φ)的图象变换规律,得出结论.【解答】解:把函数y=sin x的图象向右平移个单位得到y=g(x)=sin(x﹣)的图象,再把y=g(x)图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),所得到图象的解析式为y=2sin(x﹣),故选:A.【点评】本题主要考查函数y=A sin(ωx+φ)的图象变换规律,属于基础题.19.(3分)函数的最小值是()A.﹣1 B.0 C.1 D.2【考点】3H:函数的最值及其几何意义.菁优网版权所有【专题】33:函数思想;48:分析法;51:函数的性质及应用.【分析】分别讨论两段函数的单调性和最值,即可得到所求最小值.【解答】解:当x>﹣1时,f(x)=x2的最小值为f(0)=0;当x≤﹣1时,f(x)=﹣x递减,可得f(x)≥1,综上可得函数f(x)的最小值为0.故选:B.【点评】本题考查分段函数的最值求法,注意分析各段的单调性和最值,考查运算能力,属于基础题.20.(3分)在空间中,给出下列四个命题:①平行于同一个平面的两条直线互相平行;②垂直于同一个平面的两条直线互相平行;③平行于同一条直线的两个平面互相平行;④垂直于同一个平面的两个平面互相平行.其中正确命题的序号是()A.①B.②C.③D.④【考点】2K:命题的真假判断与应用.菁优网版权所有【专题】38:对应思想;48:分析法;5F:空间位置关系与距离.【分析】由线面平行的性质可判断①;由线面垂直的性质定理可判断②;由两个平面的位置关系可判断③;由面面平行的判定定理可判断④.【解答】解;对于①,平行于同一个平面的两条直线互相平行或相交或异面,故①错误;对于②,垂直于同一个平面的两条直线互相平行,故②正确;对于③,平行于同一条直线的两个平面互相平行或相交,故③错误;对于④,垂直于同一个平面的两个平面互相平行或相交,故④错误.故选:B.【点评】本题考查空间线线和面面的位置关系的判断,考查平行和垂直的判断和性质定理的运用,属于基础题.21.(3分)北京市环境保护监测中心每月向公众公布北京市各区域的空气质量状况.2018年1月份各区域的PM2.5浓度情况如表:各区域1月份PM2.5浓度(单位:微克/立方米)表区域PM2.5浓度区域PM2.5浓度区域PM2.5浓度怀柔27 海淀34 平谷40密云31 延庆35 丰台42门头沟32 西城35 大兴46顺义32 东城36 开发区46昌平32 石景山37 房山47朝阳34 通州39从上述表格随机选择一个区域,其2018年1月份PM2.5的浓度小于36微克/立方米的概率是()A.B.C.D.【考点】CB:古典概型及其概率计算公式.菁优网版权所有【专题】11:计算题;38:对应思想;4O:定义法;5I:概率与统计.【分析】由表可知从上述表格随机选择一个区域,共有17种情况,其中2018年1月份PM2.5的浓度小于36微克/立方米的地区有9个,根据概率公式计算即可.【解答】解:从上述表格随机选择一个区域,共有17种情况,其中2018年1月份PM2.5的浓度小于36微克/立方米的地区有9个,则2018年1月份PM2.5的浓度小于36微克/立方米的概率是,故选:D.【点评】本题主要考查频率分布表、古典概型、统计等基础知识,考查数据处理能力、运算求解能力以及应用意识,考查必然与或然思想等22.(3分)已知,那么=()A.B.C.D.【考点】GP:两角和与差的三角函数.菁优网版权所有【专题】35:转化思想;36:整体思想;56:三角函数的求值.【分析】直接利用同角三角函数关系式的应用求出结果.【解答】解:知,那么,则:=sin==, 故选:D.【点评】本题考查的知识要点:三角函数关系式的恒等变变换,主要考查学生的运算能力和转化能力,属于基础题型.23.(3分)在△ABC中,角A,B,C所对的边分别为a,b,c,如果,那么△ABC的最大内角的余弦值为()A.B.C.D.【考点】HR:余弦定理.菁优网版权所有【专题】38:对应思想;4O:定义法;58:解三角形.【分析】先判断△ABC的最大内角为A,再利用余弦定理计算cos A的值.【解答】解:△ABC中,,∴△ABC的最大内角为A,且cos A===.故选:A.【点评】本题考查了余弦定理的应用问题,是基础题.24.(3分)北京故宫博物院成立于1925年10月10日,是在明、清朝两代皇宫及其宫廷收藏的基础上建立起来的中国综合性博物馆,每年吸引着大批游客参观游览.下图是从2012年到2017年每年参观人数的折线图.根据图中信息,下列结论中正确的是()A.2013年以来,每年参观总人次逐年递增B.2014年比2013年增加的参观人次不超过50万C.2012年到2017年这六年间,2017年参观总人次最多D.2012年到2017年这六年间,平均每年参观总人次超过160万【考点】F4:进行简单的合情推理.菁优网版权所有【专题】11:计算题;31:数形结合;44:数形结合法;5I:概率与统计.【分析】由从2012年到2017年每年参观人数的折线图,得2012年到2017年这六年间,2017年参观总人次最多.【解答】解:由从2012年到2017年每年参观人数的折线图,得:在A中,2013年以来,2015年参观总人次比2014年参观人次少,故A错误;在B中,2014年比2013年增加的参观人次超过50万,故B错误;在C中,2012年到2017年这六年间,2017年参观总人次最多,故C正确;在D中,2012年到2017年这六年间,平均每年参观总人次不超过160万,故D错误.【点评】本题考查命题真假的判断,考查折线图的应用,考查运算求解能力,考查数形结合思想,是基础题.25.(3分)阅读下面题目及其证明过程,在横线处应填写的正确结论是()如图,在三棱锥P﹣ABC中,平面PAC⊥平面ABC,BC⊥AC求证:BC⊥PA证明:因为平面PAC⊥平面ABC平面PAC∩平面ABC=ACBC⊥AC,BC⊂平面ABC所以______.因为PA⊂平面PAC.所以BC⊥PAA.AB⊥底面PAC B.AC⊥底面PBC C.BC⊥底面PAC D.AB⊥底面PBC 【考点】LW:直线与平面垂直.菁优网版权所有【专题】38:对应思想;4R:转化法;5F:空间位置关系与距离.【分析】根据面面垂直的性质定理判断即可.【解答】解:根据面面垂直的性质定理判定得:BC⊥底面PAC,故选:C.【点评】本题考查了面面垂直的性质定理,考查数形结合思想,是一道基础题.二、解答题(共4小题,满分25分)26.(7分)已知函数(Ⅰ)A= 2 ;(将结果直接填写在答题卡的相应位置上)(Ⅱ)函数f(x)的最小正周期T=2π(将结果直接填写在答题卡的相应位置上)(Ⅲ)求函数f(x)的最小值及相应的x的值.【考点】HW:三角函数的最值.菁优网版权所有【专题】33:函数思想;4O:定义法;57:三角函数的图象与性质.【分析】(Ⅰ)由f(0)=1求得A的值;(Ⅱ)由正弦函数的周期性求得f(x)的最小正周期;(Ⅲ)由正弦函数的图象与性质求得f(x)的最小值以及对应x的值.【解答】解:(Ⅰ)函数由f(0)=A sin=A=1,解得A=2;(Ⅱ)函数f(x)=2sin(x+),∴f(x)的最小正周期为T=2π;(Ⅲ)令x+=2kπ﹣,k∈Z;x=2kπ﹣,k∈Z;此时函数f(x)取得最小值为﹣2.故答案为:(Ⅰ)2,(Ⅱ)2π.【点评】本题考查了正弦函数的图象与性质的应用问题,是基础题.27.(7分)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,AB⊥BC,D,E,分别为PB,PC的中点.(Ⅰ)求证:BC∥平面ADE;(Ⅱ)求证:BC⊥平面PAB.【考点】LS:直线与平面平行;LW:直线与平面垂直.菁优网版权所有【专题】14:证明题;31:数形结合;49:综合法;5F:空间位置关系与距离.【分析】(Ⅰ)由D、E分别为PB、PC的中点,得DE∥BC,由此能证明BC∥平面ADE.(Ⅱ)推导出PA⊥BC,AB⊥BC,由此能证明BC⊥平面PAB.【解答】证明:(Ⅰ)在△PBC中,∵D、E分别为PB、PC的中点,∴DE∥BC,∵BC⊄平面ADE,DE⊂平面ADE,∴BC∥平面ADE.(Ⅱ)∵PA⊥平面ABC,BC⊂平面ABC,∴PA⊥BC,∵AB⊥BC,PA∩AB=A,∴BC⊥平面PAB.【点评】本题考查线面平行、线面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.28.(6分)已知圆O:x2+y2=r2(r>0)经过点A(0,5),与x轴正半轴交于点B.(Ⅰ)r= 5 ;(将结果直接填写在答题卡的相应位置上)(Ⅱ)圆O上是否存在点P,使得△PAB的面积为15?若存在,求出点P的坐标;若不存在,说明理由.【考点】J9:直线与圆的位置关系.菁优网版权所有【专题】34:方程思想;4R:转化法;5B:直线与圆.【分析】(Ⅰ)直接由已知条件可得r;(Ⅱ)存在.由(Ⅰ)可得圆O的方程为:x2+y2=25,依题意,A(0,5),B(5,0),求出|AB|=,直线AB的方程为x+y﹣5=0,又由△PAB的面积,可得点P到直线AB的距离为,设点P(x0,y0),解得x0+y0=﹣1或x0+y0=11(显然此时点P不在圆上,故舍去),联立方程组,求解即可得答案.【解答】解:(Ⅰ)r=5;(Ⅱ)存在.∵r=5,∴圆O的方程为:x2+y2=25.依题意,A(0,5),B(5,0),∴|AB|=,直线AB的方程为x+y﹣5=0,又∵△PAB的面积为15,∴点P到直线AB的距离为,设点P(x0,y0),∴,解得x0+y0=﹣1或x0+y0=11(显然此时点P不在圆上,故舍去),联立方程组,解得或.∴存在点P(﹣4,3)或P(3,﹣4)满足题意.【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,是中档题.29.(5分)种植于道路两侧、为车辆和行人遮阴并构成街景的乔木称为行道树.为确保行人、车辆和临近道路附属设施安全,树木与原有电力线之间的距离不能超出安全距离.按照北京市《行道树修剪规范》要求,当树木与原有电力线发生矛盾时,应及时修剪树枝.《行道树修剪规范》中规定,树木与原有电力线的安全距离如表所示:树木与电力线的安全距离表电力线安全距离(单位:m)水平距离垂直距离≤1KV≥1 ≥13KV~10KV≥3 ≥335KV~110KV≥3.5 ≥4154KV~220KV≥4 ≥4.5330KV≥5 ≥5.5500KV≥7 ≥7现有某棵行道树已经自然生长2年,高度为2m.据研究,这种行道树自然生长的时间x(年)与它的高度y(m)满足关系式(Ⅰ)r=;(将结果直接填写在答题卡的相应位置上)(Ⅱ)如果这棵行道树的正上方有35kV的电力线,该电力线距地面20m.那么这棵行道树自然生长多少年必须修剪?(Ⅲ)假如这棵行道树的正上方有500kV的电力线,这棵行道树一直自然生长,始终不会影响电力线段安全,那么该电力线距离地面至少多少m?【考点】5C:根据实际问题选择函数类型.菁优网版权所有【专题】11:计算题;33:函数思想;4A:数学模型法;51:函数的性质及应用.【分析】(Ⅰ)将x=2,y=2代入计算即可,(Ⅱ)函数解析式为y=,令y=20﹣4=16,解得x=10,问题得以解决, (Ⅲ)根据指数函数的性质可得y=<30,问题得以解决【解答】解:(Ⅰ)r=,故答案为:(Ⅱ)根据题意,该树木的高度为16米时需要及时修剪这颗行道数,函数解析式为y=,令y=20﹣4=16,解得x=10,故这棵行道树自然生长10年必须修剪;(Ⅲ)因为>0,所以1+28×>1,所以y=<30,所以该电力线距离地面至少37米,这这棵行道树一直自然生长,始终不会影响电力线段安全.【点评】本题考查了函数在实际生活中的应用,考查了分析问题解决问题的能力,属于中档题.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/7/25 12:12:34;用户:qgjyuser10448;邮箱:qgjyuser10448.21957750;学号:21985455。
(完整word版)高中数学会考模拟试题(A).doc
高中数学会考模拟试题( A )一选择题(共20 个小题,每小题 3 分,共 60 分)在每小题给出的四个备选答案中,只有一个是符合题目要求的,请把所选答案的字母按要求填在相应的位置上1.满足条件M {1} {1,2,3} 的集合M的个数是A4 B3 C 2 D 12.sin 6000的值为A3 3 1D1 2B C22 23." m 1" 是“直线(m+2)x+3my+1=0 与直线 (m-2)x+(m+2)y-3=0 相互垂直的2A 充分必要条件B 充分不必要条件C 必要不充分条件D 既不充分也不必要条件4.设函数f ( x) log a x( a 0, a 1) 的图象过点(1,– 3),则 a 的值8A2 B – 2 C1D1 –2 2∥5.直线 a 平面 M, 直线 a⊥直线 b,则直线 b 与平面 M 的位置关系是A 平行B 在面内C 相交D 平行或相交或在面内6.下列函数是奇函数的是A y x 2 1B y sin xC y log 2 ( x 5)D y 2x 3 7.点( 2,5)关于直线x y 1 0 的对称点的坐标是A ( 6, 3)B( -6, -3)C(3, 6)D( -3, -6)8.1 cos2 值为126 3 2 3C 3D7A4 B4 449.已知等差数列{ a n}中,a2 a8 8,则该数列前9 项和S9等于A 18B 27C 3 6D 4510.甲、乙两个人投篮,他们投进蓝的概率分别为 2 , 1 ,现甲、乙两人各投篮 1 次5 2A 1 3 9 4B C10D5 10 511.已知向量a和b的夹角为120 0 rrr, a 3, a b 3,则b等于A 1 B2 2 32C D3 312.两个球的体积之比是8: 27,那么两个球的表面积之比为A 2:3B4: 9C 2 : 3D8 : 27 13.椭圆短轴长是2,长轴是短轴的 2 倍,则椭圆的中心到其准线的距离8 5 4 5C 8 3 4 3A5 B3D5 3x 2 2 cos( 为参数 ) ,那么该圆的普通方程是14.已知圆的参数方程为1 2 sinyA ( x 2)2 ( y 1)2 2B ( x 2)2 ( y 1)2 2C ( x 2)2 ( y 1)2 2D ( x 2) 2 ( y 1)2 215.函数y13) 的最小正周期为sin( x2A2B C 2 D 4 16.双曲线x2 y2 1 的离心率为A2B 3C 21 2D217.从数字1, 2, 3, 4, 5 中任取 3 个,组成没有重复数字的三位数中是偶数的概率1B 3C1 2A5 4 D5 518.圆x2 y 2 2x 4y 20 0 截直线5x 12 y c 0 所得弦长为8,则 C 的值为A10 B-68 C 12 D 10 或 -6819. 6 名同学排成一排,其中甲、乙两人必须排在一起的不同排法有A720 B 360 C 240 D 12020.国庆期间,某商场为吸引顾客,实行“买100 送 20 ,连环送活动”即顾客购物每满100 元,就可以获赠商场购物券 20 元,可以当作现金继续购物。
浙江省杭州市高三数学1月普通高中会考模拟考试试题新人教A版
1月 普通高中会考模拟考试高三数学试题卷考生须知:1.全卷分试卷Ⅰ、Ⅱ和答卷Ⅰ、Ⅱ.试卷共6页,有四大题,42小题,其中第二大题为选做题,其余为必做题,满分为100分.考试时间120分钟.2.本卷答案必须做在答卷Ⅰ、Ⅱ的相应位置上,做在试卷上无效.3.请用铅笔将答卷Ⅰ上的准考证号和学科名称所对应的括号或方框内涂黑,请用钢笔或圆珠笔将姓名、准考证号分别填写在答卷Ⅰ、Ⅱ的相应位置上.4.参考公式:球的表面积公式:S =4R2球的体积公式:334R V π=(其中R 为球的半径)试 卷 Ⅰ一、选择题(本题有26小题,每小题2分,每小题3分,共58分.选出各题中一个符合题意的正确选项,不选、多选、错选均不给分) 1.设全集U ={1,2,3,4,5},则集合A ={1, 3,5},则C U A = (A){1, 4} (B){3, 4} (C){2, 4} (D){2, 3}2.函数x x f +=1)(的定义域是 (A)),1[+∞(B)(0,+∞)(C)),0[+∞(D)(∞,+∞)3.直线032=++y x 的斜率是 (A) 21- (B)21(C) 2-(D) 24.以矩形的一边所在的直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体是 (A)球 (B)圆锥 (C)圆柱 (D)圆台 5.已知角α的终边与单位圆相交于点),21,23(-P 则αsin 等于(A)23- (B)21- (C) 23 (D) 216.已知函数11)(+=x x f ,g (x )=x 2+1,则f [g (0)]的值等于(A )0 (B )21(C )1 (D )27.椭圆192522=+y x 的焦点坐标是 (A)(3,0),(3,0) (B)(4,0),(4,0) (C)(0,4),(0,4) (D)(0,3),(0,3) 8.在等差数列{}n a 中,首项,21=a 公差2=d ,则它的通项公式是(A) n a n 2= (B) 1+=n a n (C) 2+=n a n (D) 22-=n a n9.函数)62cos()(π-=x x f ,x ∈R 的最小正周期为(A)4π (B)2π(C)(D)210.函数xx x f 2)(+= (A)是奇函数,但不是偶函数 (B)是偶函数,但不是奇函数 (C)既是奇函数,又是偶函数 (D)既不是奇函数,又不是偶函数 11.右图是某职业篮球运动员在连续11场比赛中得分的茎叶统计图,则该组数据的中位数是 (A)36 (B)35 (C)32 (D)31 12.已知向量),4,(),2,1(x ==且⊥,则实数x 的值是(A)2- (B)2 (C)8 (D) 8- 13.若非零实数a , b 满足a >b ,则(A)b a 11< (B)2211ba > (C)a 2>b 2 (D)a 3>b 314.同时抛掷两枚质地均匀的硬币,出现两枚都是正面朝上的概率为(A)41 (B)31(C) 21 (D) 4315.若x x x f 2ln )(+=的零点个数是(A)0 (B)1 (C)2 (D)3 16.已知=+-=-∈)4tan(,54sin ),0,2(πααπα则 (A)71(B)71- (C) 7 (D) 7- 17.在空间直角坐标系中,设A (1,2,a ),B (2,3,4),若|AB |=3,则实数a 的值是(A)3或 5 (B)3或 5 (C)3或 5 (D)3或518.某几何体的三视图如图所示,则该几何体的体积是(A)π34(B)2 (C)π38(D)π31019.空间中,设n m ,表示直线,γβα,,表示平面,则下列命题正确的是(A)若,,γβγα⊥⊥ 则α∥β (B)若 ,,βα⊥⊥m m 则 α∥β1 2 3 4 5 2 55 46 5 1 9 77 1(第11题)正视图俯视图侧视图2(C),,βαβ⊥⊥m 则 m ∥α (D) ,,α⊥⊥n m n 则 m ∥α 20.函数f (x )=log 2(1x )的图象为21.如图,在三棱锥S -ABC 中,SA =SC =AB =BC ,则直线SB 与AC 所成角的大小是 (A)30º (B)45º (C)60º(D)90º22.数列{}n a 中,),(1.,41,212221*++∈=++==N n a a a a a a n n n n 则65a a +等于(A) 43 (B) 65 (C) 127(D)151423.若log 2x +log 2y =3,则x +2y 的最小值是(A)24(B)8(C)10(D)1224.右图是某同学用于计算S =sin1+sin2+sin3+…+sin2012值的程序框图,则在判断框中填写(A)k <2011?(B)k <2012?(C)k >2011? (D)k >2012?25.设圆C :(x 5)2+(y 3)2=5,过圆心C 作直线l 与圆交于A ,B 两点,与x 轴交于P 点,若A 恰为线段BP 的中点,则直线l 的方程为 (A) x 3y +4=0,x +3y 14=0 (B)2x y 7=0,2x +y 13=0(C) x 2y +1=0,x +2y 11=0(D)3x y 12=0,3x +y 18=026.在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤++≤--≥+-0012012a y x y x y x,所围成的平面区域面(A)(第23题)ACS(第20题)积为23,则实数a 的值是 (A)3(B)1(C)1(D)3二、选择题(本题分A 、B 两组,任选一组完成,每组各4小题,选做B 组的考生,填涂时注意第27-30题留空;若两组都做,以27-30题记分. 每小题3分,共12分,选出各题中一个符合题意的正确选项,不选、多选、错选均不给分)A 组27.在复平面内,设复数33i 对应点关于实轴、虚轴的对称点分别是A ,B ,则点A ,B 对应的复数和是(A)0(B)6(C)32-i (D)632-i28.设x ∈R ,则“x >1”是“x 2>x ”的 (A)充分而不必要条件 (B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件29.直线y =kx +1与双曲线191622=-y x 的一条渐近线垂直,则实数k 的值是(A)54或54- (B)45或45- (C)43或43- (D)34或34- 30.已知函数b xaax x f ++=)((a ,b ∈R )的图象在点(1,f (1))处的切线在y 轴上的截距为3,若f (x )>x 在(1,+∞)上恒成立,则a 的取值范围是(A)]1,0((B)]891[,(C)),89(+∞(D)),1[+∞B 组31.若随机变量X 分布如右表所示, X 的数学期望EX =2,则实数a 的值是(A)0 (B)31 (C)1 (D)2332.函数y =x sin2x 的导数是 (A)y '=sin2x x cos2x (B)y '=sin2x 2x cos2x (C)y '=sin2x x cos2x(D)y '=sin2x +2x cos2x(第33题)33.二项式6(x 展开式中的常数项为 (A)240- (B)160 (C)160- (D)24034.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 是BC 的中点,P , Q 是正方体内部及面上的两个动点,则⋅的最大值是 (A)21 (B) 1(C)23 (D)45 试 卷 Ⅱ请将本卷的答案用钢笔或圆珠笔写在答卷Ⅱ上. 三、填空题(本题有5小题,每小题2分,共10分) 35.不等式x2x-6<0的解集是 ▲36.某校对学生在一周中参加社会实践活动时间进行调查,现从中抽取一个容量为n 的样本加以分析,其频率分布直方图如图所示,已知时间不超过2小时的人数为12人,则n = ▲37.已知非零向量b a ,满足|a |=1,3||=-b a ,a 与b 的夹角为120º,则|b |= ▲38.已知函数00,1,)(2≤>⎩⎨⎧-=x x x x x f ,则f (x )的值域是 ▲39.把椭圆C 的短轴和焦点连线段中较长者、较短者分别作为椭圆C '的长轴、短轴,使椭圆C变换成椭圆C ',称之为椭圆的一次“压缩”. 按上述定义把椭圆C i (i =0,1,2,…)“压缩”成椭圆C i +1,得到一系列椭圆C 1,C 2,C 3,…,当短轴长于截距相等时终止“压缩”. 经研究发现,某个椭圆C 0经过n (n ≥3)次“压缩”后能终止,则椭圆C n 2的离心率可能是:①23,②510,③33,④36中的 ▲ (填写所有正确结论的序号) 四、解答题(本题有3小题,共20分)40.(本题6分)在锐角ABC 中,角A , B , C 所对的边分别为a , b , c . 已知b =2,c =3,sin A =322. 求ABC 的面积及a 的值.(第37题)41.(本题6分)如图,由半圆)0(122≤=+y y x 和部分抛物线)0,0)(1(2>≥-=a y x a y 合成的曲线C 称为“羽毛球形线”,且曲线C 经过点(2,3)。
高中数学会考模拟试题(A)
高中数学会考模拟试题(A )一选择题(共20个小题,每小题3分,共60分)在每小题给出的四个备选答案中,只有一个是符合题目要求的,请把所选答案的字母按要求填在相应的位置上 1. 满足条件}3,2,1{}1{=⋃M 的集合M 的个数是A 4B 3C 2D 1 2.0600sin 的值为A 23B 23- C 21- D 213."21"=m 是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直的A 充分必要条件B 充分不必要条件C 必要不充分条件D 既不充分也不必要条件4.设函数()log (0,1)a f x x a a =>≠的图象过点(18,–3),则a 的值A 2B –2C – 12D 125.直线a ∥平面M, 直线a ⊥直线b ,则直线b 与平面M 的位置关系是A 平行B 在面内C 相交D 平行或相交或在面内6.下列函数是奇函数的是 A 12+=x yB x y sin =C )5(log 2+=x yD 32-=xy7.点(2,5)关于直线01=++y x 的对称点的坐标是A (6,3)B (-6,-3)C (3,6)D (-3,-6)8.21cos12π+值为A634+ B 234+ C 34 D 749.已知等差数列}{n a 中,882=+a a ,则该数列前9项和9S 等于 A 18 B 27 C 3 6 D 4510.甲、乙两个人投篮,他们投进蓝的概率分别为21,52,现甲、乙两人各投篮1次A 15B 103C 910D 4511.已知向量a 和b 的夹角为0120,3,3a a b =⋅=- ,则b 等于A 1 B23 C 23 D 212.两个球的体积之比是8:27,那么两个球的表面积之比为 A 2:3 B 4:9 C3:2 D 27:813.椭圆短轴长是2,长轴是短轴的2倍,则椭圆的中心到其准线的距离 A558 B 554 C 338 D 334 14. 已知圆的参数方程为22()12x y θθθ⎧=⎪⎨=⎪⎩为参数,那么该圆的普通方程是A 22(2)(1)2x y -+-=B 22(2)(1)2x y +++=C 22(2)(1)2x y -+-= D 22(2)(1)2x y +++= 15.函数)321sin(+=x y 的最小正周期为 A2πB πC π2D π4 16.双曲线122=-y x 的离心率为A22B 3C 2 D2117.从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数中是偶数的概率 A51 B 53 C 41 D 52 18.圆0204222=-+-+y x y x 截直线0125=+-c y x 所得弦长为8,则C 的值为A 10 B-68 C 12 D 10或-6819.6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有 A720 B 360 C 240 D 12020.国庆期间,某商场为吸引顾客,实行“买100送20 ,连环送活动”即顾客购物每满100元,就可以获赠商场购物券20元,可以当作现金继续购物。
(完整word版)高中数学会考模拟试题(A)
高中数学会考模拟试题(A )一选择题(共20个小题,每小题3分,共60分)在每小题给出的四个备选答案中,只有一个是符合题目要求的,请把所选答案的字母按要求填在相应的位置上 1. 满足条件}3,2,1{}1{=⋃M 的集合M 的个数是A 4B 3C 2D 1 2.0600sin 的值为A 23B 23-C 21- D 21 3."21"=m 是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直的A 充分必要条件B 充分不必要条件C 必要不充分条件D 既不充分也不必要条件4.设函数()log (0,1)a f x x a a =>≠的图象过点(18,–3),则a 的值A 2B –2C – 12D 125.直线a ∥平面M, 直线a ⊥直线b ,则直线b 与平面M 的位置关系是A 平行B 在面内C 相交D 平行或相交或在面内6.下列函数是奇函数的是 A 12+=x yB x y sin =C )5(log 2+=x yD 32-=xy7.点(2,5)关于直线01=++y x 的对称点的坐标是A (6,3)B (-6,-3)C (3,6)D (-3,-6)8.21cos12π+值为B 24+C 34D 749.已知等差数列}{n a 中,882=+a a ,则该数列前9项和9S 等于 A 18 B 27 C 3 6 D 4510.甲、乙两个人投篮,他们投进蓝的概率分别为21,52,现甲、乙两人各投篮1次A 15B 103C 910D 4511.已知向量a ρ和b ρ的夹角为0120,3,3a a b =⋅=-r r r ,则b ρ等于A 1 B23C3 D 212.两个球的体积之比是8:27,那么两个球的表面积之比为 A 2:3 B 4:9 C3:2 D 27:813.椭圆短轴长是2,长轴是短轴的2倍,则椭圆的中心到其准线的距离 A558 B 554 C 338 D 334 14.已知圆的参数方程为2()1x y θθθ⎧=⎪⎨=+⎪⎩为参数,那么该圆的普通方程是A 22(2)(1)x y -+-=B 22(2)(1)x y +++=C 22(2)(1)2x y -+-= D 22(2)(1)2x y +++= 15.函数)321sin(+=x y 的最小正周期为 A2πB πC π2D π4 16.双曲线122=-y x 的离心率为A22B 3C 2 D2117.从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数中是偶数的概率 A51 B 53 C 41 D 52 18.圆0204222=-+-+y x y x 截直线0125=+-c y x 所得弦长为8,则C 的值为 A 10 B-68 C 12 D 10或-6819.6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有 A720 B 360 C 240 D 12020.国庆期间,某商场为吸引顾客,实行“买100送20 ,连环送活动”即顾客购物每满100元,就可以获赠商场购物券20元,可以当作现金继续购物。
高中数学会考模拟试题(A)
高中数学会考模拟试题(A )一选择题(共20个小题,每小题3分,共60分) 在每小题给出的四个备选答案中,只有一个是符合题目要求的,请把所选答案的字母按要求填在相应的位置上1.满足条件}3,2,1{}1{=⋃M 的集合M 的个数是 A4B3 C2D1 2.0600sin 的值为A18B27 C36D4510.甲、乙两个人投篮,他们投进蓝的概率分别为21,52,现甲、乙两人各投篮1次则两个人都投进的概率是 A 15B 103C 910D 4511.已知向量a 和b 的夹角为0120,3,3a a b =⋅=-,则b 等于A1B23D2 12.两个球的体积之比是8:27,那么两个球的表面积之比为 A2:3B4:9 C 3:2D 27:813.椭圆短轴长是2,长轴是短轴的2倍,则椭圆的中心到其准线的距离 A558B 554C 338D 334 14A (x -C (x -15A 2πB 16A2217A 511819.20元,场购物,最多可以获赠购物券累计 A120元B136元C140元D160元二填空题(共4小题,每小题3分,共12分) 21.直线x y 33=与直线1=x 的夹角 22.直角坐标系xoy 中若定点A (1,2)与动点(x,y )满足4=⋅oA op ,则点P 的轨迹方程为 23.平面内三点A (0,-3),B (3,3),C (x ,-1)若AB ∥BC ,则x 的值24.已知函数11)(+=x x f ,则)]([x f f 的定义域为 三:解答题(3小题,共28分)25.如图ABCD 是正方形,⊥PD 面ABCD ,PD=DC ,E 是PC 的中点O 为⊥所以DE ⊥面PBC(2) 作EF ⊥PB 于F ,连DF ,因为DE ⊥面PBC 所以DF ⊥PB 所以EFD ∠是二面角的平面角 设PD=DC=2a,则DE=a DF a 362,2=又DE ⊥面PBC (已证) DE ⊥EF 所以23sin =∠EFD 即060=∠EFD26.(1)解:设双曲线方程为)0,0(12222>>=-b a b y a x因为13,1,4,2,322222=-∴=∴=+==y x b b a c a(2)将2:+=kx y l 代入双曲线中得0926)31(22=---kx x k由直线与双曲线交与不同两点的⎪⎩⎪⎨⎧>-=-+=∆≠-0)1(36)31(36)26(0312222k k k k 即k 设A 得1x 即k 27.(1)(1x f ∴(2) 12(3所以41≤a 即0<a 或41≤a。
高中数学会考模拟试题(附答案)
高二数学会考模拟试卷班级: 姓名:一、选择题:本大题共12小题,每小题5分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,4,6,8A =,{}1,2,3,6,7B =,则=)(B C A U ( )A .{}2,4,6,8B .{}1,3,7C .{}4,8D .{}2,6 20y -=的倾斜角为( ) A .6π B .3π C .23π D .56π3.函数y = )A .(),1-∞B .(],1-∞C .()1,+∞D .[)1,+∞ 4.某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图1所示的茎叶图表示,则甲、乙两名运动员得分的平均数分别为( ) A .14、12 B .13、12C .14、13D .12、145.在边长为1的正方形ABCD 内随机取一点P ,则点P 到点A 的距离小于1的概率为( )A .4π B .14π- C .8π D .18π- 6.已知向量a 与b 的夹角为120,且1==a b ,则-a b 等于( ) A .1 BC .2D .37.有一个几何体的三视图及其尺寸如图2所示(单位:cm ),( A .212cm π B. 215cm π C. 224cm πD. 236cm π8.若372log πlog 6log 0.8a b c ===,,,则( ) A . a b c >>B . b a c >>C . c a b >>D . b主视图6侧视图图2图19.已知函数()2sin()f x x ωϕ=+0,2πωϕ⎛⎫>< ⎪⎝⎭的图像如图3所示,则函数)(x f 的解析式是( )A .10()2sin 116f x x π⎛⎫=+ ⎪⎝⎭B .10()2sin 116f x x π⎛⎫=- ⎪⎝⎭C .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭D .()2sin 26f x x π⎛⎫=- ⎪⎝⎭ 10.一个三角形同时满足:①三边是连续的三个自然数;②最大角是 最小角的2倍,则这个三角形最小角的余弦值为( )A .378 B .34 C .74 D .1811.在等差数列{}n a 中, 284a a +=,则 其前9项的和9S 等于 ( )A .18B .27C .36D .912.已知实数x,y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+,0,0,1y x y x 则z=y-x 的最大值为( )A.1 B.0 C.-1 D.-213. 函数x y x +=2的根所在的区间是( )A .⎪⎭⎫ ⎝⎛--21,1B .⎪⎭⎫ ⎝⎛-0,21C .⎪⎭⎫⎝⎛21,0 D .⎪⎭⎫ ⎝⎛1,2114.函数|2|sin xy =的周期是( ) A .2πB .πC .π2D .π4 15. sin15cos75cos15sin105+等于( ) A .0B .12C .32D .116. 过圆044222=-+-+y x y x 内一点M (3,0)作圆的割线l ,使它被该圆截得的线段最短,则直线l 的方程是( )A .03=-+y xB .03=--y xC .034=-+y xD .034=--y x1 Oxy 1112π图3二、填空题:本大题共4小题,每小题5分,满分20分. 17.圆心为点()0,2-,且过点()14,的圆的方程为 . 18.如图4,函数()2x f x =,()2g x x =,若输入的x 值为3, 则输出的()h x 的值为 .19.若函数84)(2--=kx x x f 在[]8,5上是单调函数,则k 的取值范围是20.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是21.已知两条直线82:,2)3(:21-=+=++y mx l y m x l . 若21l l ⊥,则m = 22.样本4,2,1,0,2-的标准差是23.过原点且倾斜角为060的直线被圆04x 22=-+y y 所截得的弦长为三、解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程和演算步骤. 24.(本小题满分10分)在△ABC 中,角A ,B ,C 成等差数列.(1)求角B 的大小;(2)若()sin A B +=sin A 的值.25.已知:a 、b 、c 是同一平面内的三个向量,其中a =(1,2) (Ⅰ)若|c |52=,且a c //,求c 的坐标; (Ⅱ)若|b |=,25且b a 2+与b a 2-垂直,求a 与b 的夹角θ 26.(本小题满分12分)如图5,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,PA AB =,点E 是PD 的中点.(1)求证://PB 平面ACE ;(2)若四面体E ACD -的体积为2,求AB 的长.图427.(本小题满分12分)某校在高二年级开设了A ,B ,C 三个兴趣小组,为了对兴趣小组活动的开展情况进行调查,用分层抽样方法从A ,B ,C 三个兴趣小组的人员中,抽取若干人组成调查小组,有关数据见下表(单位:人) (1)求x ,y 的值;(2)若从A ,B 两个兴趣小组抽取的人中选2人作专题发言,求这2人都来自兴趣小组B 的概率.28. (本小题满分12分)已知数列{}n a 是首项为1,公比为2的等比数列,数列{}n b 的前n 项和2n S n =.(1)求数列{}n a 与{}n b 的通项公式;(2)求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和.29. (本小题满分12分)直线y kx b =+与圆224x y +=交于A 、B 两点,记△AOB 的面积为S (其中O 为坐标原点).(1)当0k =,02b <<时,求S 的最大值; (2)当2b =,1S =时,求实数k 的值.数学试题参考答案及评分标准二、填空题:本大题主要考查基本知识和基本运算.共4小题,每小题5分,满分20分.13.()22225x y ++=(或224210x y y ++-=) 14.915.()0,+∞(或[)0,+∞) 16.122⎡⎤⎢⎥⎣⎦,三、解答题24.解:(1)在△ABC 中,A B C π++=,由角A ,B ,C 成等差数列,得2B A C =+. 解得3B π=.(2)方法1:由()sin 2A B +=,即()sin 2C π-=,得sin 2C =. 所以4C π=或34C π=. 由(1)知3B π=,所以4C π=,即512A π=. 所以5sin sinsin 1246A πππ⎛⎫==+ ⎪⎝⎭sincoscossin4646ππππ=+12222=+⨯4=.25. 解(Ⅰ)设20,52,52||),,(2222=+∴=+∴==y x y x c y x c x y y x a a c 2,02),2,1(,//=∴=-∴= ……2分由20222=+=y x x y ∴42==y x 或42-=-=y x∴)4,2(),4,2(--==c c 或 ……5分(Ⅱ)0)2()2(),2()2(=-⋅+∴-⊥+b a b a b a b a ……7分 0||23||2,02322222=-⋅+∴=-⋅+b b a a b b a a ……(※) ,45)25(||,5||222===b a 代入(※)中, 250452352-=⋅∴=⨯-⋅+⨯∴b a b a ……10分 ,125525||||cos ,25||,5||-=⋅-=⋅=∴==b a b a θ26.(1)证明:连接BD 交AC 于点O ,连接EO ,因为ABCD 是正方形,所以点O 是BD 的中点. 因为点E 是PD 的中点,所以EO 是△DPB 的中位线.所以PBEO .因为EO ⊂平面ACE ,PB ⊄平面ACE , 所以PB平面ACE .(2)解:取AD 的中点H ,连接EH , 因为点E 是PD 的中点,所以EHPA .因为PA ⊥平面ABCD ,所以EH ⊥平面ABCD . 设AB x =,则PA AD CD x ===,且1122EH PA x ==. 所以13E ACD ACD V S EH -∆=⨯ 1132AD CD EH =⨯⨯⨯⨯3111262123x x x x ===.解得2x =.故AB 的长为2. 27.解:(1)由题意可得,3243648x y==, 解得2x =,4y =.(2)记从兴趣小组A 中抽取的2人为1a ,2a ,从兴趣小组B 中抽取的3人为1b ,2b ,3b ,则从兴趣小组A ,B 抽取的5人中选2人作专题发言的基本事件有()12,a a ,()11,a b ,()12,a b ,()13,a b ,()21,a b ,()22,a b ,()23,a b ,()12,b b ,()13,b b ,()23,b b 共10种.设选中的2人都来自兴趣小组B 的事件为X ,则X 包含的基本事件有()12,b b ,()13,b b ,()23,b b 共3种.所以()310P X =. 故选中的2人都来自兴趣小组B 的概率为310.28.解:(1)因为数列{}n a 是首项为1,公比为2的等比数列,所以数列{}n a 的通项公式为12n n a -=. 因为数列{}n b 的前n 项和2n S n =.所以当2n ≥时,1n n n b S S -=-()22121n n n =--=-,当1n =时,111211b S ===⨯-, 所以数列{}n b 的通项公式为21n b n =-. (2)由(1)可知,1212n n n b n a --=. 设数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为n T , 则 213572321124822n n n n n T ----=++++++, ①即111357232122481622n n n n n T ---=++++++, ② ①-②,得2111112111224822n n nn T --=++++++- 11121211212n nn -⎛⎫- ⎪-⎝⎭=+-- 2332nn +=-, 所以12362n n n T -+=-. 故数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为12362n n -+-.29.解:(1)当0k =时,直线方程为y b =,设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,,由224x b +=,解得12x =, 所以21AB x x =-= 所以12S AB b==22422b b +-=≤.当且仅当b =,即b =S 取得最大值2.(2)设圆心O 到直线2y kx =+的距离为d,则d=.因为圆的半径为2R =, 所以2AB ===. 于是241121k S AB dk =⨯===+,即2410k k -+=,解得2k =.故实数k 的值为2+2-,2-+2-。
高中数学会考模拟题(含答案)
实用文档一、选择题(共20个小题,每小题3分,共60分)1.若集合{}13A x x =≤≤,集合{}2B x x =<,则A B =(A ){}12x x ≤< (B ){}12x x << (C ){}3x x ≤ (D ){}23x x <≤2.tan330︒=(A(B(C) (D) 3.已知lg2=a ,lg3=b ,则3lg 2=(A )a -b (B )b -a (C )ba(D )a b4.函数()2sin cos f x x x =的最大值为(A )2 (B )2- (C )1(D )1-5.随机投掷1枚骰子,掷出的点数恰好是3的倍数的概率为(A )12 (B )13(C )15(D )166.在等比数列{}n a 中,若32a =,则12345a a a a a = (A )8(B )16(C )32(D )7.已知点()0,0O 与点()0,2A 分别在直线y x m =+的两侧,那么m 的取值范围是(A )20m -<< (B )02m <<(C )0m <或2m >(D )0m >或2m <-8.如果直线ax +2y +1=0与直线x +3y -2=0互相垂直,那么a 的值等于(A )6(B )-32(C )- (D )-69.函数sin 26y x π⎛⎫=+ ⎪⎝⎭图像的一个对称中心是(A )(,0)12π-(B )(,0)6π-(C )(,0)6π(D )(,0)3π10.已知0a >且1a ≠,且23a a >,那么函数()x f x a =的图像可能是11.已知()1f x x x=+,那么下列各式中,对任意不为零的实数x 都成立的是(A )(B ) (C ) (D )(A )()()f x f x =-(B )()1f x f x ⎛⎫= ⎪⎝⎭(C )()f x x > (D )()2f x >12.如果一个几何体的三视图中至少有两个三角形,那么这个几何体不可能...是 (A )正三棱锥(B )正三棱柱(C )圆锥(D )正四棱锥13.如图,D 是△ABC 的边AB 的三等分点,则向量CD 等于(A )23CA AB + (B )13CA AB + (C )23CB AB +(D )13CB AB + 14.有四个幂函数:①()1f x x -=; ②()2f x x -=; ③()3f x x =; ④()13f x x =.某同学研究了其中的一个函数,他给出这个函数的两个性质:(1)定义域是{x | x ∈R ,且x ≠0};(2)值域是{y | y ∈R ,且y ≠0}.如果这个同学给出的两个性质都是正确的, 那么他研究的函数是(A )① (B )②(C )③(D )④15.如果执行右面的程序框图,那么输出的S 等于(A )45 (B )55(C )90 (D )11016.若0(,)b a a b R <<∈,则下列不等式中正确的是(A )b 2<a 2 (B )1b >1a(C )-b <-a (D )a -b >a +b17.某住宅小区有居民2万户,从中随机抽取200户,调查是否已接入宽带. 调查结果如下表所示:(A )3000户(B )6500户(C )9500户(D )19000户18.△ABC 中,45A ∠=︒,105B ∠=︒,A ∠的对边2a =,则C ∠的对边c 等于(A )2(B(C(D )119.半径是20cm 的轮子按逆时针方向旋转,若轮周上一点转过的弧长是40cm ,则轮子转过的弧度数是(A )2(B )-2(C )4(D )-420.如果方程x 2-4ax +3a 2=0的一根小于1,另一根大于1,那么实数a 的取值范围是CADB(A )113a << (B )1a >(C )13a <(D )1a =二、填空题(共4道小题,每小题3分,共12分)21.函数()f x ________________________.22.在1-和4之间插入两个数,使这4个数顺次构成等差数列,则插入的两个数的和为____.23.把函数sin 2y x =的图象向左平移6π个单位,得到的函数解析式为________________. 24.如图,单摆的摆线离开平衡位置的位移s (厘米)和时间t (秒)的函数关系是1sin 223s t ππ⎛⎫=+ ⎪⎝⎭,则摆球往复摆动一次所需要的时间是_____ 秒.实用文档ADBCB ;CBDAA ;BBBAB ;DCCAA ;[]1,1-;3;sin 23y x π⎛⎫=+⎪⎝⎭;1。
高三会考数学模拟试卷答案
一、选择题(本大题共12小题,每小题5分,共60分)1. 下列各式中,绝对值最小的是()A. |3|B. |-3|C. |2|D. |-2|答案:B2. 函数f(x) = 2x + 3的图像是()A. 一次函数图像B. 二次函数图像C. 指数函数图像D. 对数函数图像答案:A3. 已知等差数列{an}的首项a1 = 2,公差d = 3,则第10项a10 =()A. 29B. 28C. 27D. 26答案:A4. 下列命题中,正确的是()A. 若a > b,则a^2 > b^2B. 若a > b,则a^3 > b^3C. 若a > b,则a^2 > b^2D. 若a > b,则a^3 < b^3答案:B5. 若log2x + log2y = 3,则xy的值为()A. 2B. 4C. 8D. 16答案:C6. 已知圆的方程为x^2 + y^2 - 4x - 6y + 9 = 0,则该圆的半径为()A. 1B. 2C. 3D. 4答案:B7. 函数y = (x - 1)^2 + 3的图像是()A. 抛物线B. 直线C. 双曲线D. 椭圆答案:A8. 已知等比数列{an}的首项a1 = 3,公比q = 2,则第5项a5 =()A. 24B. 12C. 6D. 3答案:A9. 下列函数中,有最大值的是()A. y = x^2B. y = -x^2C. y = x^3D. y = -x^3答案:B10. 已知函数f(x) = |x| + 1,则f(-1)的值为()A. 0B. 1C. 2D. 3答案:C11. 若log2x - log2y = 1,则x与y的比值为()A. 2B. 1/2C. 4D. 1/4答案:A12. 圆的标准方程为(x - 2)^2 + (y - 3)^2 = 25,则该圆的圆心坐标为()A. (2, 3)B. (2, -3)C. (-2, 3)D. (-2, -3)答案:A二、填空题(本大题共8小题,每小题5分,共40分)13. 若等差数列{an}的首项a1 = 3,公差d = 2,则第n项an = _______。
山西普通高中会考数学真题及答案A
山西普通高中会考数学真题及答案A1.已知两条不同直线、,两个不同平面、,给出下列命题:①若∥,则平行于内的所有直线;②若,且⊥,则⊥;③若,,则⊥;④若,且∥,则∥;其中正确命题的个数为()A.1个B.2个C.3个D.4个答:A分析:试题分析:因为若∥,则与内的直线平行或异面,故①错;因为若且⊥,,则∥或与相交,故②错;③就是面面垂直的判定定理,故③正确;因为若,且∥,则∥或异面,故④错,故选A考点:空间线面平行与垂直的判定与性质,空间面面平行与垂直的判定与性质2.( )A.B.C.D.不存在答:C分析:试题分析:.考点:定积分的运算.3.点到图形上每一个点的距离的最小值称为点到图形的距离,那么平面内到定圆的距离与到定点的距离相等的点的轨迹不可能是()A.圆B.椭圆C.双曲线的一支D.直线答:D分析:试题分析:根据题意,由于点到图形上每一个点的距离的最小值称为点到图形的距离,平面内到定圆的距离与到定点的距离相等的点可能满足圆的定义,以及椭圆的定义,和双曲线的定义,不可能为直线,故选D.考点:新定义点评:主要是考查了新定义的运用,属于基础题。
4.极坐标方程表示的曲线为()A.两条直线B.一条射线和一个圆C.一条直线和一个圆D.圆答:C分析:试题分析:方程可化为或,所以表示的曲线为一条直线和一个圆.考点:本小题主要考查极坐标的应用.点评:解决本小题时,不要忘记造成漏解.5.用5种不同颜色给图中A、B、C、D四个区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则不同的涂色方法种数为()A.120B.160C. 180D.240答:C分析:试题分析:若A,C的颜色相同时:第一步涂A,C有5种方法,第二步涂B有4种方法,第三步涂D有4种方法,共计种;若A,C的颜色不同时:第一步涂A有5种方法,第二步涂B有4种方法,第三部涂C有3种方法,第四步涂D有2种方法,共计种方法,所以有180种方法考点:分步计数原理点评:完成一件事需要n部,第一步有方法,第二步有方法第n步有方法,则总的方法数有种方法6.抛物线的焦点坐标为()A.B.C.D.答:D分析:试题分析:抛物线整理为,焦点在y轴上,所以焦点为考点:抛物线标准方程及性质点评:抛物线标准方程有4个:焦点在x轴上,焦点在y轴上,其中,其焦点依次为,求抛物线焦点先要将其整理为标准方程7.如图,面,为的中点,为面内的动点,且到直线的距离为,则的最大值()A.B.C.D.答:B分析:试题分析:解:空间中到直线CD的距离为的点构成一个圆柱面,它和面α相交得一椭圆,所以P在α内的轨迹为一个椭圆,D为椭圆的中心,b=,a=,则c=1,于是A,B为椭圆的焦点,椭圆上点关于两焦点的张角,在短轴的端点取得最大,故为60°.故选B 考点:椭圆的简单几何性质点评:本题是立体几何与解析几何知识交汇试题,题目新,考查空间想象能力,计算能力.8.如果,,那么直线不通过()A.第一象限B.第二象限C.第三象限D.第四象限答:C分析:试题分析:由得,所以直线不通过第三象限。
安徽省普通高中会考数学真题及答案A
安徽省普通高中会考数学真题及答案A一、选择题(本大题共18小题,每小题3分,满分54分.每小题4个选项中,只有1个选项符合题目要求,多选不给分.)1. 已知集合{1,0,1},{1,0}A B =-=-,则A B =( )A .{1}-B .{0}C .{1,0}-D .{1,0,1}-2. 如图放置的几何体的俯视图为( )A .B .C .D .3. 一人连续投掷硬币两次,事件“至少有一次为正面”的互斥事件是( ) A .至多有一次为正面 B .两次均为正面 C .只有一次为正面D .两次均为反面4. 下列各式:①222(log 3)2log 3=;②222log 32log 3=; ③222log 6log 3log 18+=; ④222log 6log 3log 3-=.其中正确的有( ) A .1个B .2个C .3个D .4个5. 执行程序框图如图,若输出y 的值为2,则输入x 的值应是( ) A .2-B .3C .2-或2D .2-或36. 已知3sin 5α=,且角α的终边在第二象限,则cos α=( ) A .45-B .34-C .34D .457. 若,a b c d >>且0c d +<,则下列不等式一定成立的是( ) A .ac bc >B .ac bc <C . ad bd >D . ad bd <8. 在2与16之间插入两个数a 、b ,使得2,,,16a b 成等比数列,则ab =( ) A .4B .8C .16D .329. 正方体上的点P 、Q 、R 、S 是其所在棱的中点,则直线PQ 与直线RS 异面的图形是( )第5题图A .B .C .D .10. 已知平面向量(,3)a λ=-与(3,2)b =-垂直,则λ的值是( ) A .-2B .2C .-3D .311. 下列函数中既是奇函数又在(0,2π)上单调递增的是( ) A .y x =- B . 2y x = C .sin y x = D .cos y x = 12. 不等式组0,10x x y ≥⎧⎨-+≥⎩所表示的平面区域为( )A .B .C .D .13. 某学校共有老、中、青职工200人,其中有老年职工60人,中年职工人数与青年职工人数相等.现采用分层抽样的方法抽取部分职工进行调查,已知抽取的老年职工有12人,则抽取的青年职工应有( ) A .12人B .14人C .16人D .20人14. 已知1cos 2α=-,则sin(30)sin(30)αα++-的值为( ) A .12-B .14-C .12D .1415.不等式31x x --<0的解集是( ) A . {|13}x x -<<B .{|13}x x <<C .{|13}x x x <->或D .{|13}x x x <>或16如图,P 是△ABC 所在的平面内一点,且满足BA BC BP +=,则( ) A .BA PC =B .BC PA = C .BC CP BP +=D .BA BP AP -=.17. 函数2()f x x ax =-的两零点间的距离为1,则a 的值为( ) A .0B .1C .0或2D .1-或118. 已知函数22y x x =-++的最小值为m ,最大值为M ,则mM的值为( ) A .14B .12C .22D .32第Ⅱ卷(非选择题 共46分)题 号 二三总 分2324 25 得 分注意事项:1.答题前,请将密封线内的项目写清楚,并在本页右上角“座位序号”栏中填写座位号最后两位数字.2.第Ⅱ卷共4页,用钢笔或圆珠笔直接在试卷上答题,不得将答案写在密封线内.二、填空题(本大题共4小题,每小题4分,满分16分,把答案填在题中的横线上.)19. 函数3sin(2)3y x π=-的最小正周期是______________.20. 已知直线1:21l y x =+,2:30l kx y --=,若1l ∥2l ,则k =______________.21. 从3张100元,2张200元的上海世博会门票中任取2张, 则所取2张门票价格相同的概率为______________.22. 如图,在离地面高200m 的热气球上,观测到山顶C 处的仰角为15º、山脚A 处的俯角为45º,已知∠BAC=60º,则山的高度BC 为_______ m.第16题图三、解答题(本大题共3小题,满分30分.解答题应写出文字说明及演算步骤.)23.(本小题满分10分)求圆心C 在直线2y x 上,且经过原点及点M (3,1)的圆C 的方程. 【解】第22题图24.(本小题满分10分)如图,四边形ABCD为正方形,PD⊥平面ABCD,E、F分别为BC和PC的中点. (1)求证:EF∥平面PBD;【证】(2)如果AB=PD,求EF与平面ABCD所成角的正切值. 【解】第24题图第23题图25.(本小题满分10分)皖星电子科技公司于2019年底已建成了太阳能电池生产线.自2019年1月份产品投产上市一年来,该公司的营销状况所反映出的每月获得的利润y (万元)与月份x 之间的函数关系式为:265621020x y x -⎧=⎨-⎩**(15,)(512,)x x N x x N ≤≤∈<≤∈ . (1)2019年第几个月该公司的月利润最大?最大值是多少万元? 【解】(2)若公司前x 个月的月平均利润w (x w x=前个月的利润总和)达到最大时,公司下个月就应采取改变营销模式、拓宽销售渠道等措施,以保持盈利水平. 求w (万元)与x (月)之间的函数关系式,并指出这家公司在2009年的第几个月就应采取措施. 【解】数学参考答案与评分标准一、选择题(本大题共18小题,每小题3分,满分54分.每小题4个选项中,只有1个选项符合题目要求,多选不给分.)19. π 20. 2 21.2522. 300 三、解答题(本大题共3小题,满分30分.解答题应写出文字说明及演算步骤.) 23. 解:设圆心C 的坐标为(,2a a ),则||||OC OM =,即2222(2)(3)(21)a a a a +=-+-,解得1a =.所以圆心(1,2)C ,半径r =故圆C 的标准方程为:22(1)(2)5x y -+-=.24.证:(1)在△PBC 中,E 、F 为BC 和PC 的中点,所以EF ∥BP.因此EF PBEF PBD EF PBD PB PBD ⎫⎪⊄⇒⎬⎪⊂⎭平面平面平面∥∥. (2)因为EF ∥BP,PD ⊥平面ABCD,所以∠PBD 即为直线EF 与平面ABCD 所成的角. 又ABCD 为正方形AB,所以在Rt △PBD 中,tan 2PB PBD BD ∠==. 所以EF 与平面ABCD所成角的正切值为2. 25. 解:(1)因为2656y x =-*(15,)x x N ≤≤∈单增,当5x =时,74y =(万元);21020y x =-*(512,)x x N <≤∈单减,当6x =时,90y =(万元).所以y 在6月份取最大值,且max 90y =万元.(2)当*15,x x N ≤≤∈时,(1)302621343x x x w x x--+⋅==-. 当*512,x x N <≤∈时,(5)(6)11090(5)(20)640210200x x x w x x x--+-+⋅-==-+-. 所以w =134364010200x x x -⎧⎪⎨-+-⎪⎩**(15,)(512,)x x N x x N ≤≤∈<≤∈. 当15x ≤≤时,w ≤22; 当512x <≤时,6420010()40w x x=-+≤,当且仅当8x =时取等号. 从而8x =时,w 达到最大.故公司在第9月份就应采取措施.。
高中数学会考模拟题(含答案)
一、选择题(本大题共19个小题,每小题3分,共57分;在每小题给出的四个选项中,只有一项是符合题目要求的) 1.集合P={0,2,4},Q={0,1,3,5},则P∪Q=A){0} B){7} C){0,1,2,3,4,5} D)φ 2.函数y =A)[2,+∞) B )[-2,+∞) C)(-∞,-2] D)(-∞,2] 3.在正方体ABCD -A1B1C1D1中,BC1与AC 所成角为A)30° B)45° C)60° D)90°4.函数11||y x =-A)是奇函数但不是偶函数 B)是偶函数但不是奇函数 C)既是奇函数又是偶函数 D)既不是奇函数又不是偶函数 5.已知数列{}n a 满足11a =,12n n a a +=+,则4a =A)5 B)6 C)7 D)86.函数cos()42xy π=-的最小正周期为A)2πB)π C)2π D)4π7.圆22210x y x ++-=的圆心和半径为A)(1,0),2B)(-1,0),2C)(1,0),2 D)(—1,0),2 8.1tan 151tan 15-+的值为A)3 B)33C)1 D)229.设0b a >>,则下列各式中正确的是A)2a b a b+>>>B)2a b b a+>>>C)2a b a b +>>>D)2a b b a +>>>10.函数21(0)y x x =+<的反函数为A))y x R =∈B) )y x R =∈C)1)y x =≥D) 1)y x =≥11.已知数列{}n a 满足前n项和21()nn sa n N *=-∈则3a =A)2 B)4 C)8 D)1612.已知向量()1,sin a θ=- ,1,cos 2b θ⎛⎫= ⎪⎝⎭ ,若a b ⊥ ,且θ为锐角,则θ= A)12πB)6πC)4π D)3π13.“0ab <”是“方程22ax by c +=表示双曲线”的 A) 充分不必要条件 B)必要不充分条件 C)充要条件 D)既不充分也不必要条件14.由数字0,1,2,3,4,5组成没有重复数字的五位数中,偶数的个数为A)120 B)240 C)96 D)312 15.在(1-x)4展开式的各项中,系数最大是A)—4 B)4 C)—6 D)6 16.已知G为△ABC所在平面上一点,若GCGB GA ++=0 ,则G 为△ABC 的A)内心 B)外心 C)重心 D)垂心17.将函数()y f x =的图象按(,2)4a π=-- 平移得到函数sin y x =的图象,则函数()f x 为 A)sin()24x π++ B)sin()24x π+-C)sin()24x π-+ D)sin()24x π--18.椭圆2214xym+=的离心率为0.5,则m的值为A)3 B)316 C)3或316 D)-3或-31619.从甲口袋内摸出1个白球的概率是31,从乙口袋内摸出1个白球的概率是21,从两个口袋内各摸出1个球,至少有一个是白球的概率为A)61B)23 C)65 D)21第Ⅱ卷(非选择题,共43分)二、填空题(本大题共5个小题,每小题3分,共15分;请直接在每小题的横线上填写结果) 20.已知球面的表面积为36π,则此球的半径为21.已知3cos 5θ=,且θ∈(—2π,0),则sin2θ=________22.61⎛⎝的展开式的常数项为_________(用数字作答)23.函数f (x) =2-x -x1(x>0)的最大值为________24.过点A(—1,1)的一束光线射向x 轴,经反射后与圆()2211x y -+=(相切,则入射线所在直线的方程为______________三、解答题(本大题共4小题,共28分;要求写出必要的文字说明、演算步骤或推理过程) 26.(本题满分6分)甲、乙二人独立地破译一个密码,他们能译出密码的概率分别为13和14,求: (Ⅰ)恰有1人译出密码的概率; (Ⅱ)至多有1人译出密码的概率.参考答案选择题CDCBC , DBBBD , BCADD , CCCB 填空题:20.3; 21.2425-; 22.52-; 23.0; 24.4310x y ++=解答题26.解:设甲、乙二人独立破译密码分别为事件A 、B.则11(),()34P A P B ==(Ⅰ)恰有1人译出密码概率为11115()()()()()(1)(1)343412P A B A B P A P B P A P B +=⋅+⋅=⋅-+-⋅=(Ⅱ)至少有1人译出密码的概率为11111()1()()13412P A B P A P B -⋅=-⋅=-⋅=。
云南省2023年高中数学会考模拟卷
云南省2023年高中数学会考模拟卷一、填空(每小题2分,共20分)1.小明买了4块橡皮,每块a元,需要()元。
当a=1.5时,需要()元。
2.在()里填上“小于号”、“大于号”或“等于号”。
3.78÷0.99()3.78;2.6×1.01()2.67.2×1.3()7.2÷1.3;9.7÷1.2()9.7-1.23.在()里填上合适的数。
2.05吨=()吨()千克3升50毫升=()升4.一个两位小数保留一位小数是2.3,这个两位小数最大是(),最小是()。
5.一个数的小数点先向左移动两位,再向右移动三位后是0.123,这个数是()。
6.一个平行四边形的底是2.6厘米,高是4厘米,面积是(),一个三角形的底是2.5厘米,面积是10平方厘米,高是()。
7.一条裤子n元,一件上衣的价格是一条裤子的6倍,则一件上衣需要()元,买一套服装共需()元。
8.501班进行1分钟跳绳测试,六位学生的成绩分别是:137个、142个、136个、150个、138个、149个,这组数据的平均数是(),中位数是()。
9.正方体的六个面分别写着1——6,每次掷出“3”的可能性是(),每次掷出双数的可能性是()。
10.一辆汽车开100公里需要8升汽油,开1公里需要()升汽油,1升汽油可以开()公里。
二、判断(每小题1分,共5分)1.被除数不变,除数扩大100倍,商也扩大100倍。
()2.a的平方就是a×2。
()3.大于0.2而小于0.4的数只有0.3一个。
()4.两个等底等高的三角形一定可以拼成一个平行四边形。
()5.一组数据的中位数和平均数可能相等。
()三、选择(每小题1分,共5分)1.2.695保留两位小数是()。
A.2.69B.2.70C.0.702.已知0.35×170=59.5,那么3.5×1.7的积是()A.0.595B.5.95C.59.53.在一个位置观察一个长方体,一次最多能看到它的()。
会考数学模拟试题与答案解析
会考数学模拟试题与答案解析高中会考数学模拟试题与答案解析一、选择题1. 若函数 f(x) = 2x^2 - 5x + 3,求 f(2) 的值。
解析:将 x=2 代入函数 f(x),得 f(2) = 2(2)^2 - 5(2) + 3 = 8 - 10 + 3 = 1。
2. 设直线 y = mx + c 与曲线 y = 2x^2 - x + 1 相切,则常数 m 的值为多少?解析:相切的直线与曲线有且仅有一个交点。
首先,求出曲线的导函数 f'(x) = 4x - 1。
然后,令导函数与直线的斜率相等,即 4x - 1 = m。
由于相切,令导函数与直线在交点处的函数值相等,即 2x^2 - x + 1 = mx + c。
联立两个方程,求解得 m = 2,c = 2。
二、填空题1. 直线 x - 3y - 3 = 0 与直线 5x + ky - 7 = 0 平行,则 k 的值为______。
解析:两条直线平行,斜率相等。
将两条直线的方程转化为一般式,得到 y = (1/3)x - 1 和 y = -(5/k)x + 7/k。
比较斜率,得 (1/3) = -(5/k),解得 k = -15。
2. 已知集合 A={1, 3, 5, 7},集合 B={2, 4, 6, 8},则 A ∪ B = ______。
解析:集合的并集是指将两个集合中的元素合并,形成一个新的集合,不包括重复的元素。
将集合 A 和集合 B 合并,得到集合 A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8}。
三、解答题1. 解方程 3x + 2 = 4x - 1,并判断方程的解是否正确。
解析:将方程化简,得到 x = 3。
验证解是否正确,将 x = 3 代入方程,两边相等,方程的解是正确的。
2. 函数 y = 2x^2 + bx + 3 与 x 轴交于两个点 A(-1, 0) 和 B(2, 0),求常数 b 的值。
解析:由题意得到两个方程,-1:0 = 2(-1)^2 + b(-1) + 3 和 2:0 =2(2)^2 + b(2) + 3。
高中数学会考模拟试题一
5.直线Q 与两条直线y = 1, (1,—1),那么直线Q 的斜率是 23 A. - B. - C. 32) 23 - D.—— 32兀6.为了得到函数y = 3sin2x , x e R 的图象,只需将函数y = 3sm (2x - -3), x e R 的9.如果a = (—2,3), b = (x , — 6),而且a 1 b ,那么x 的值是( )C. 9D. —9 a 2 二 3,a 7 =13,则 $ 1。
等于()高中数学会考模拟试题(一)一. 选择题:(每小题2分,共40分) 1.已知I 为全集,P 、Q 为非空集合,且P 5 Q ^ I ,则下列结论不正确的是( )A. P u Q = IB. 2.若 sin(180o+a ) = 3 P u Q =Q C. P c Q =。
D .P c Q =。
贝 U cos(2700+a )=( ) 1 A. 3 1 B. - 3 2%: 2 2<2C. ——D.——— 33 x 2 3,椭圆天十乙J 标是( ) y 2y = 1上一点P 到两焦点的距离之积为m 。
则当m 取最大值时,点P 的坐A. (5,0)和(—5,0) 卢3V 巨、工,5 3工;3、B. (2,)和(2,一下)C. (0,3)和(0, — 3) z 5;3 3、 / D .(—,2) 和 ( 4,函数y = 2sin x - cos x +1 - 2sin 2 x 的最小正周期是5 <3 3二,2)() 兀A.一 2B.九C. 2兀D. 4兀 x - y — 7 = 0分别交于P 、 Q 两点。
线段PQ 的中点坐标为图象上所有的点( )兀A.向左平行移动y 个单位长度兀C.向左平行移动下个单位长度 611 A.30。
B.45。
8.如果a > b则在①11C.1兀B.向右平行移动y 个单位长度兀D.向右平行移动下个单位长度61160o D. 90o② a 3 > b 3,③ lg(a 2 +1) > lg(b 2 +1),④ 2 a > 2 b中,正确的只有 ( B. ) ①和③ C. ③和④ D. ②和④ A. 4 B. —410.在等差数列{a j 中,A. 19B. 50C. 100D. 12011 . a > 1,且 \ > :是 log |x |> log bl 成立的()I xy 丰 0 a aB. 必要而不充分条件 D. 既不充分也不必要条件12 .设函数 f (xg (x ) = lg1-x ,则()21 + xA. 3或 9 B. 6 或 9 C, 3 或 6 D. 6 14 .函数y = - ;x 2-1 (x < -1)的反函数是()…、x +1..................... ,、15 .若 f (x ) = ,g (x ) = f -1(—x ),贝U g (x )( )x -1A.在R 上是增函数 B,在(-8 , -1)上是增函数 C.在(1, +8)上是减函数 D.在(-8,-1)上是减函数16 .不等式log 1 (x + 2) > 10g l x 2的解集是()22A. { x I x < -1 或 x > 2 }B. { x I -1 < x < 2 }C. { x I -2 < x < -1}D. { x I -2 < x < -1 或 x > 2 }17 . 把4名中学生分别推荐到3所不同的大学去学习,每个大学至少收一名,全部分完,不同的分配方案数为( )A. 12B. 24C. 36D. 2818 .若a 、b 是异面直线,则一定存在两个平行平面a 、p ,使( )A. a u a , b u pB. a ±a , b ± pC. a //a , b ± PD. a u a , b ± P—b-19.将函数 y = f (x )按 a = (-2,3)平移后,得到 y = 4x2-2x +4,则 f (x )=()A . 4x 2+2x +4 + 3B . 4 x 2 -6x +12 + 3C . 4x 2-6x +12 - 3D . 4 x 2-6x +920.已知函数f (x ) , x e R ,且f (2 - x ) = f (2 + x ),当x > 2时,f (x )是增函数,设 a = f(1.2。
高中数学会考模拟试题(A)
高中数学会考模拟试题(A)数学必修模块5期中试题第一卷选择题40一.选择题(本大题共10小题,每题4分,共40分,每小题给出的4个选项中,只有一项是符合题目要求的)1.在已知的算术序列{an}中,a7?a9?16,a4?1,那么A12的值是a.15bc.31d.6411?? 2.如果是AX2?bx?2.0的解决方案集是?x |??十、那么A-B的值是23??a.-10b.-14c.10d.143.在比例序列{an}中,S4=1,S8=3,然后是A17?a18?a19?A20的值为a.14b、十六c.18d、二十4、对于任意实数a、b、c、d,命题①若a?b,c?0,则ac?bc;②若a?b,则ac2?bc2③若ac?bc,则a?b;④若a?b,则2211?;⑤若a?b?0,c?d,则ac?bd.其ab中真命题的个数是(a) 1(b)2(c)3(d)435.如果已知序列{an}是具有公共比率Q的等比序列≠ 1,然后在“(1){Anan+1},(2){an+1-an},(3){an},(4){nan}”这四个数列中,成等比数列的个数是(a)1(b)2(c)3(d)46、下列结论正确的是(a) x什么时候?0和X?1点,lgx?1.2(b)x什么时候?0,x?1.二lgxx11的最小值为2(d)当0?x?2时,x?无最大值xxac7、若a,b,c成等比数列,m是a,b的等差中项,n是b,c的等差中项,则??Mn(c)当x?两点,x?(a) 4(b)3(c)2(d)1n8.在等比序列{an}中,已知对于任何自然数n,a1+A2+a3+?+那么An=2-12222a1+a2+a3+A等于nn2(a)(2?1)(b)(2?1)(c)4?1(d)(4?1)13n13n9。
有人向正东走x公里后,向右拐150,然后走3公里。
因此,他离起点正好3公里,所以X的值为(a)3(b)23(c)3或23(d)三,o10、某厂生产甲、乙两种产品,产量分别为45个、50个,所用原料为a、b两种规格的金22属板,每张面积分别为2m、3m,用a种金属板可造甲产品3个,乙产品5个,用b种金属板可分别制成a和B的6种产品。
高三数学会考试卷模拟题
一、选择题(每题5分,共50分)1. 若函数f(x) = x^2 - 2ax + 1在区间[0,1]上单调递增,则a的取值范围是()A. a ≤ 0B. 0 < a ≤ 1C. a > 1D. a ≤ 0 或 a ≥ 12. 已知向量a = (1, 2),向量b = (2, 1),则向量a与向量b的夹角余弦值为()A. 1/√2B. -1/√2C. 1/2D. -1/23. 函数y = log2(x - 1)的图像与直线y = x相交于点P,则点P的坐标是()A. (2, 1)B. (3, 2)C. (2, 2)D. (3, 1)4. 已知等差数列{an}的前n项和为Sn,若S3 = 6,S6 = 24,则该数列的公差d是()A. 2B. 3C. 4D. 55. 下列命题中正确的是()A. 若函数f(x)在区间(a, b)内单调递增,则f(a) < f(b)B. 若函数f(x)在区间(a, b)内连续,则f(a) ≤ f(x) ≤ f(b)C. 若函数f(x)在区间(a, b)内可导,则f(a) < f(x) < f(b)D. 若函数f(x)在区间(a, b)内具有极值,则f(a) = f(b)6. 若复数z满足|z - 1| = |z + 1|,则复数z的实部是()A. 0B. 1C. -1D. 27. 下列不等式中正确的是()A. (x + 1)^2 > x^2 + 1B. (x + 1)^2 ≥ x^2 + 1C. (x + 1)^2 < x^2 + 1D. (x + 1)^2 ≤ x^2 + 18. 已知函数f(x) = x^3 - 3x^2 + 2x,则f'(x) = ()A. 3x^2 - 6x + 2B. 3x^2 - 6x - 2C. 3x^2 - 6x + 1D. 3x^2 - 6x - 19. 已知等比数列{an}的前n项和为Sn,若S3 = 8,S6 = 32,则该数列的公比q 是()A. 2B. 1/2C. 4D. 1/410. 若函数y = e^x在区间(a, b)内单调递减,则a、b的关系是()A. a > bB. a < bC. a = bD. a ≥ b 或 a ≤ b二、填空题(每题5分,共50分)11. 函数f(x) = x^2 - 4x + 3的图像与x轴的交点坐标为______。
甘肃普通高中会考数学真题及答案A
甘肃普通高中会考数学真题及答案A一、选择题:本大题共10小题,每小题3分,共30分,每小只有一个正确选项.1.(3分)下列四个图案中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A.此图案是中心对称图形,符合题意;B.此图案不是中心对称图形,不合题意;C.此图案不是中心对称图形,不合题意;D.此图案不是中心对称图形,不合题意;故选:A.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)在0,2,﹣3,﹣这四个数中,最小的数是()A.0 B.2 C.﹣3 D.﹣【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣3<﹣<0<2,所以最小的数是﹣3.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.3.(3分)使得式子有意义的x的取值范围是()A.x≥4 B.x>4 C.x≤4 D.x<4【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:使得式子有意义,则:4﹣x>0,解得:x<4,即x的取值范围是:x<4.故选:D.【点评】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.4.(3分)计算(﹣2a)2•a4的结果是()A.﹣4a6B.4a6C.﹣2a6D.﹣4a8【分析】直接利用积的乘方运算法则化简,再利用同底数幂的乘法运算法则计算得出答案.【解答】解:(﹣2a)2•a4=4a2•a4=4a6.故选:B.【点评】此题主要考查了积的乘方运算以及同底数幂的乘法运算,正确掌握相关运算法则是解题关键.5.(3分)如图,将一块含有30°的直角三角板的顶点放在直尺的一边上,若∠1=48°,那么∠2的度数是()A.48°B.78°C.92°D.102°【分析】直接利用已知角的度数结合平行线的性质得出答案.【解答】解:∵将一块含有30°的直角三角板的顶点放在直尺的一边上,∠1=48°, ∴∠2=∠3=180°﹣48°﹣30°=102°.故选:D.【点评】此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.6.(3分)已知点P(m+2,2m﹣4)在x轴上,则点P的坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)【分析】直接利用关于x轴上点的坐标特点得出m的值,进而得出答案.【解答】解:∵点P(m+2,2m﹣4)在x轴上,∴2m﹣4=0,解得:m=2,∴m+2=4,则点P的坐标是:(4,0).故选:A.【点评】此题主要考查了点的坐标,正确得出m的值是解题关键.7.(3分)若一元二次方程x2﹣2kx+k2=0的一根为x=﹣1,则k的值为()A.﹣1 B.0 C.1或﹣1 D.2或0【分析】把x=﹣1代入方程计算即可求出k的值.【解答】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故选:A.【点评】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.8.(3分)如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=()A.54°B.64°C.27°D.37°【分析】由∠AOC=126°,可求得∠BOC的度数,然后由圆周角定理,求得∠CDB的度数.【解答】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=∠BOC=27°.故选:C.【点评】此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.(3分)甲,乙两个班参加了学校组织的2019年“国学小名士”国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是()参加人数平均数中位数方差甲45 94 93 5.3乙45 94 95 4.8A.甲、乙两班的平均水平相同B.甲、乙两班竞赛成绩的众数相同C.甲班的成绩比乙班的成绩稳定D.甲班成绩优异的人数比乙班多【分析】由两个班的平均数相同得出选项A正确;由众数的定义得出选项B不正确;由方差的性质得出选项C不正确;由两个班的中位数得出选项D不正确;即可得出结论.【解答】解:A、甲、乙两班的平均水平相同;正确;B、甲、乙两班竞赛成绩的众数相同;不正确;C、甲班的成绩比乙班的成绩稳定;不正确;D、甲班成绩优异的人数比乙班多;不正确;故选:A.【点评】本题考查了平均数,众数,中位数,方差;正确的理解题意是解题的关键.10.(3分)如图是二次函数y=ax2+bx+c的图象,对于下列说法:①ac>0,②2a+b>0,③4ac <b2,④a+b+c<0,⑤当x>0时,y随x的增大而减小,其中正确的是()A.①②③B.①②④C.②③④D.③④⑤【分析】根据二次函数的图象与性质即可求出答案.【解答】解:①由图象可知:a>0,c<0,∴ac<0,故①错误;②由于对称轴可知:<1,∴2a+b>0,故②正确;③由于抛物线与x轴有两个交点,∴△=b2﹣4ac>0,故③正确;④由图象可知:x=1时,y=a+b+c<0,故④正确;⑤当x>时,y随着x的增大而增大,故⑤错误;故选:C.【点评】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)分解因式:x3y﹣4xy=xy(x+2)(x﹣2).【分析】先提取公因式xy,再利用平方差公式对因式x2﹣4进行分解.【解答】解:x3y﹣4xy,=xy(x2﹣4),=xy(x+2)(x﹣2).【点评】本题是考查学生对分解因式的掌握情况.因式分解有两步,第一步提取公因式xy,第二步再利用平方差公式对因式x2﹣4进行分解,得到结果xy(x+2)(x﹣2),在作答试题时,许多学生分解不到位,提取公因式不完全,或者只提取了公因式.12.(3分)不等式组的最小整数解是0 .【分析】求出不等式组的解集,确定出最小整数解即可.【解答】解:不等式组整理得:,∴不等式组的解集为﹣1<x≤2,则最小的整数解为0,故答案为:0【点评】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.13.(3分)分式方程=的解为.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x+6=5x+5,解得:x=,经检验x=是分式方程的解.故答案为:.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.14.(3分)在△ABC中∠C=90°,tan A=,则cos B=.【分析】本题可以利用锐角三角函数的定义求解,也可以利用互为余角的三角函数关系式求解.【解答】解:利用三角函数的定义及勾股定理求解.∵在Rt△ABC中,∠C=90°,tan A=,设a=x,b=3x,则c=2x,∴cos B==.故答案为:.【点评】此题考查的知识点是特殊角的三角函数值,关键明确求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.15.(3分)已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为(18+2)cm2.【分析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.【解答】解:该几何体是一个三棱柱,底面等边三角形边长为2cm,高为cm,三棱柱的高为3,所以,其表面积为3×2×3+2×=18+2(cm2).故答案为(18+2)cm2.【点评】本题考查了三视图,三视图是中考经常考查的知识内容,难度不大,但要求对三视图画法规则要熟练掌握,对常见几何体的三视图要熟悉.(3分)如图,在Rt△ABC中,∠C=90°,AC=BC=2,点D是AB的中点,以A、B为圆心,AD、16.BD长为半径画弧,分别交AC、BC于点E、F,则图中阴影部分的面积为2﹣.【分析】根据S阴=S△ABC﹣2•S扇形ADE,计算即可.【解答】解:在Rt△ABC中,∵∠ACB=90°,CA=CB=2,∴AB=2,∠A=∠B=45°,∵D是AB的中点,∴AD=DB=,∴S阴=S△ABC﹣2•S扇形ADE=×2×2﹣2×=2﹣,故答案为:2﹣【点评】本题考查扇形的面积,等腰直角三角形的性质等知识,解题的关键是学会用分割法求面积,属于中考常考题型.17.(3分)如图,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE折叠,使点C 落在AB边上的F处,则CE的长为.【分析】设CE=x,则BE=6﹣x由折叠性质可知,EF=CE=x,DF=CD=AB=10,所以AF=8,BF=AB﹣AF=10﹣8=2,在Rt△BEF中,BE2+BF2=EF2,即(6﹣x)2+22=x2,解得x=.【解答】解:设CE=x,则BE=6﹣x由折叠性质可知,EF=CE=x,DF=CD=AB=10, 在Rt△DAF中,AD=6,DF=10,∴AF=8,∴BF=AB﹣AF=10﹣8=2,在Rt△BEF中,BE2+BF2=EF2,即(6﹣x)2+22=x2,解得x=,故答案为.【点评】本题考查了矩形,熟练掌握矩形的性质以及勾股定理是解题的关键.18.(3分)如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n幅图中有2019个菱形,则n=1010 .【分析】根据题意分析可得:第1幅图中有1个,第2幅图中有2×2﹣1=3个,第3幅图中有2×3﹣1=5个,…,可以发现,每个图形都比前一个图形多2个,继而即可得出答案.【解答】解:根据题意分析可得:第1幅图中有1个.第2幅图中有2×2﹣1=3个.第3幅图中有2×3﹣1=5个.第4幅图中有2×4﹣1=7个.….可以发现,每个图形都比前一个图形多2个.故第n幅图中共有(2n﹣1)个.当图中有2019个菱形时,2n﹣1=2019,n=1010,故答案为:1010.【点评】本题考查规律型中的图形变化问题,难度适中,要求学生通过观察,分析、归纳并发现其中的规律.三、解答题(一)本大共5小题,共26分.解答应写出必要的文字说明,证明过程成演算步骤.19.(4分)计算:(﹣)﹣2+(2019﹣π)0﹣tan60°﹣|﹣3|.【分析】本题涉及零指数幂、负整数指数幂、绝对值、特殊角的三角函数值等4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=4+1﹣,=1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(4分)如图,在△ABC中,点P是AC上一点,连接BP,求作一点M,使得点M到AB和AC 两边的距离相等,并且到点B和点P的距离相等.(不写作法,保留作图痕迹)【分析】根据角平分线的作法、线段垂直平分线的作法作图即可.【解答】解:如图,点M即为所求,【点评】本题考查的是复杂作图、角平分线的性质、线段垂直平分线的性质,掌握基本尺规作图的一般步骤是解题的关键.21.(6分)中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?【分析】设共有x人,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设共有x人,根据题意得:+2=,去分母得:2x+12=3x﹣27,解得:x=39,∴=15,则共有39人,15辆车.【点评】此题考查了一元一次方程的应用,弄清题意是解本题的关键.22.(6分)为了保证人们上下楼的安全,楼梯踏步的宽度和高度都要加以限制.中小学楼梯宽度的范围是260mm~300mm含(300mm),高度的范围是120mm~150mm(含150mm).如图是某中学的楼梯扶手的截面示意图,测量结果如下:AB,CD分别垂直平分踏步EF,GH,各踏步互相平行,AB=CD,AC=900mm,∠ACD=65°,试问该中学楼梯踏步的宽度和高度是否符合规定.(结果精确到1mm,参考数据:sin65°≈0.906,cos65°≈0.423)【分析】根据题意,作出合适的辅助线,然后根据锐角三角函数即可求得BM和DM的长,然后计算出该中学楼梯踏步的宽度和高度,再与规定的比较大小,即可解答本题.【解答】解:连接BD,作DM⊥AB于点M,∵AB=CD,AB,CD分别垂直平分踏步EF,GH,∴AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∴∠C=∠ABD,AC=BD,∵∠C=65°,AC=900,∴∠ABD=65°,BD=900,∴BM=BD•cos65°=900×0.423≈381,DM=BD•sin65°=900×0.906≈815,∵381÷3=127,120<127<150,∴该中学楼梯踏步的高度符合规定,∵815÷3≈272,260<272<300,∴该中学楼梯踏步的宽度符合规定,由上可得,该中学楼梯踏步的宽度和高度都符合规定.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.23.(6分)在甲乙两个不透明的口袋中,分别有大小、材质完全相同的小球,其中甲口袋中的小球上分别标有数字1,2,3,4,乙口袋中的小球上分别标有数字2,3,4,先从甲袋中任意摸出一个小球,记下数字为m,再从乙袋中摸出一个小球,记下数字为n.(1)请用列表或画树状图的方法表示出所有(m,n)可能的结果;(2)若m,n都是方程x2﹣5x+6=0的解时,则小明获胜;若m,n都不是方程x2﹣5x+6=0的解时,则小利获胜,问他们两人谁获胜的概率大?【分析】(1)首先根据题意画出树状图,然后由树状图可得所有可能的结果;(2)画树状图展示所有6种等可能的结果数,再找出数字之积能被2整除的结果数,然后根据概率公式求解.【解答】解:(1)树状图如图所示:(2)∵m,n都是方程x2﹣5x+6=0的解,∴m=2,n=3,或m=3,n=2,由树状图得:共有12个等可能的结果,m,n都是方程x2﹣5x+6=0的解的结果有2个, m,n都不是方程x2﹣5x+6=0的解的结果有2个,小明获胜的概率为=,小利获胜的概率为=,∴小明、小利获胜的概率一样大.【点评】本题考查了列表法与树状图法、一元二次方差的解法以及概率公式;画出树状图是解题的关键.四、解答题(二):本大题共5小题,共40分解答应写出必要的文字说明,证明过程或演算步骤24.(7分)良好的饮食对学生的身体、智力发育和健康起到了极其重要的作用,荤菜中蛋白质、钙、磷及脂溶性维生素优于素食,而素食中不饱和脂肪酸、维生素和纤维素又优于荤食,只有荤食与素食适当搭配,才能强化初中生的身体素质.某校为了了解学生的体质健康状况,以便食堂为学生提供合理膳食,对本校七年级、八年级学生的体质健康状况进行了调查,过程如下:收集数据:从七、八年级两个年级中各抽取15名学生,进行了体质健康测试,测试成绩(百分制)如下:七年级:74 81 75 76 70 75 75 79 81 70 74 80 91 69 82八年级:81 94 83 77 83 80 81 70 81 73 78 82 80 70 50整理数据:年级x<60 60≤x<80 80≤x<90 90≤x≤100七年级0 10 4 1八年级 1 5 8 1 (说明:90分及以上为优秀,80~90分(不含90分)为良好,60~80分(不含80分)为及格,60分以下为不及格)分析数据:年级平均数中位数众数七年级76.8 75 75八年级77.5 80 81 得出结论:(1)根据上述数据,将表格补充完整;(2)可以推断出八年级学生的体质健康状况更好一些,并说明理由;(3)若七年级共有300名学生,请估计七年级体质健康成绩优秀的学生人数.【分析】(1)由平均数和众数的定义即可得出结果;(2)从平均数、中位数以及众数的角度分析,即可得到哪个年级学生的体质健康情况更好一些;(3)由七年级总人数乘以优秀人数所占比例,即可得出结果.【解答】解:(1)七年级的平均数为(74+81+75+76+70+75+75+79+81+70+74+80+91+69+82)=76.8,八年级的众数为81;故答案为:76.8;81;(2)八年级学生的体质健康状况更好一些;理由如下:八年级学生的平均数、中位数以及众数均高于七年级,说明八年级学生的体质健康情况更好一些;故答案为:八;(3)若七年级共有300名学生,则七年级体质健康成绩优秀的学生人数=300×=20(人).【点评】本题主要考查了统计表,众数,中位数以及方差的综合运用,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.25.(7分)如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(﹣1,n)、B(2,﹣1)两点,与y轴相交于点C.(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=上的两点,当x1<x2<0时,比较y2与y1的大小关系.【分析】(1)利用待定系数法即可解决求问题.(2)根据对称性求出点D坐标,发现BD∥x轴,利用三角形的面积公式计算即可.(3)利用反比例函数的增减性解决问题即可.【解答】解:(1)∵反比例函数y=经过点B(2,﹣1),∴m=﹣2,∵点A(﹣1,n)在y=上,∴n=2,∴A(﹣1,2),把A,B坐标代入y=kx+b,则有,解得,∴一次函数的解析式为y=﹣x+1,反比例函数的解析式为y=﹣.(2)∵直线y=﹣x+1交y轴于C,∴C(0,1),∵D,C关于x轴对称,∴D(0,﹣1),∵B(2,﹣1)∴BD∥x轴,∴S△ABD=×2×3=3.(3)∵M(x1,y1)、N(x2,y2)是反比例函数y=﹣上的两点,且x1<x2<0,∴y1<y2.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法解决问题,学会利用函数的增减性,比较函数值的大小.26.(8分)如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.(1)证明:△ADG≌△DCE;(2)连接BF,证明:AB=FB.【分析】(1)依据正方形的性质以及垂线的定义,即可得到∠ADG=∠C=90°,AD=DC,∠DAG=∠CDE,即可得出△ADG≌△DCE;(2)延长DE交AB的延长线于H,根据△DCE≌△HBE,即可得出B是AH的中点,进而得到AB=FB.【解答】解:(1)∵四边形ABCD是正方形,∴∠ADG=∠C=90°,AD=DC,又∵AG⊥DE,∴∠DAG+∠ADF=90°=∠CDE+∠ADF,∴∠DAG=∠CDE,∴△ADG≌△DCE(ASA);(2)如图所示,延长DE交AB的延长线于H,∵E是BC的中点,∴BE=CE,又∵∠C=∠HBE=90°,∠DEC=∠HEB,∴△DCE≌△HBE(ASA),∴BH=DC=AB,即B是AH的中点,又∵∠AFH=90°,∴Rt△AFH中,BF=AH=AB.【点评】本题主要考查了正方形的性质以及全等三角形的判定与性质,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.27.(8分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC 于点E.(1)求证:∠A=∠ADE;(2)若AD=8,DE=5,求BC的长.【分析】(1)只要证明∠A+∠B=90°,∠ADE+∠B=90°即可解决问题;(2)首先证明AC=2DE=10,在Rt△ADC中,DC=6,设BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2﹣102,可得x2+62=(x+8)2﹣102,解方程即可解决问题.【解答】(1)证明:连接OD,∵DE是切线,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠ADE=∠A.(2)解:连接CD.∵∠ADE=∠A,∴AE=DE,∵BC是⊙O的直径,∠ACB=90°,∴EC是⊙O的切线,∴ED=EC,∴AE=EC,∵DE=5,∴AC=2DE=10,在Rt△ADC中,DC=6,设BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2﹣102,∴x2+62=(x+8)2﹣102,解得x=,∴BC==.【点评】本题考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.28.(10分)如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y 轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.【分析】(1)用交点式函数表达式,即可求解;(2)分当AB为平行四边形一条边、对角线,两种情况,分别求解即可;(3)利用S四边形AEBD=AB(y D﹣y E),即可求解.【解答】解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;故二次函数表达式为:y=x2﹣4x+3;(2)①当AB为平行四边形一条边时,如图1,则AB=PE=2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形, 故:点P(4,3)或(0,3);②当AB是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点坐标为:,即:=2,解得:m=2,故点P(2,﹣1);故:点P(4,3)或(0,3)或(2,﹣1);(3)直线BC的表达式为:y=﹣x+3,设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3),S四边形AEBD=AB(y D﹣y E)=﹣x+3﹣x2+4x﹣3=﹣x2+3x,∵﹣1<0,故四边形AEBD面积有最大值,当x=,其最大值为,此时点E(,﹣).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
高中数学会考试题及答案
高中数学会考试题及答案第一部分:选择题1. 下列哪个不是一次函数?A. f(x) = 2x + 3B. f(x) = 5x^2 - 3C. f(x) = 4x - 1D. f(x) = x/2 + 12. 已知直角三角形ABC,∠A = 90°,AB = 5 cm,AC = 12 cm,求BC的长度。
A. 10 cmB. 11 cmC. 13 cmD. 15 cm3. 解方程2x + 5 = 17的解为:A. x = 6B. x = 7C. x = 8D. x = 94. 已知函数f(x) = 3x - 2,求f(a + b)的值。
A. 4a + b - 2B. 2a + 3b - 2C. 3a + 3b - 2D. 3a + 3b + 25. 若三角形的三边分别为a, b, c,且满足c^2 = a^2 + b^2,这个三角形是:A. 等腰三角形B. 锐角三角形C. 直角三角形D. 钝角三角形第二部分:填空题6. 一个几何中心名为 ____________。
7. 一条直线和一个平面相交,交点个数为 ____________。
8. 未知数的指数为负数,表示 ____________。
9. 若两个角的和等于180°,则这两个角称为 ____________。
10. 在一个等边三角形中,每个内角大小为 ____________。
第三部分:解答题11. 用二分法求方程x^2 - 4x + 3 = 0在区间[1, 3]上的一个根的精确值。
12. 已知函数f(x) = 3x^2 - 12x + 9,求f(x)的最小值。
13. 若平面内通过点A(-2, 3)和点B(4, 1)的直线与x轴交于点C,求直线AC的斜率和方程。
答案:1. B2. C3. A4. B5. C6. 几何中心7. 一个8. 负数9. 互补角10. 60°11. 使用二分法可得根的精确值为2。
12. f(x)的最小值为 0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学会考模拟试题(A )
一选择题(共20个小题,每小题3分,共60分)
在每小题给出的四个备选答案中,只有一个是符合题目要求的,请把所选答案的字母按要求填在相应的位置上 1. 满足条件}3,2,1{}1{=⋃M 的集合M 的个数是
A 4
B 3
C 2
D 1 2.0
600sin 的值为
A 23
B 23-
C 21-
D 2
1 3."2
1
"=
m 是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直的
A 充分必要条件
B 充分不必要条件
C 必要不充分条件
D 既不充分也不必要条件
4.设函数()log (0,1)a f x x a a =>≠的图象过点(1
8,–3),则a 的值
A 2
B –2
C – 12
D 1
2
5.直线a ∥平面M, 直线a ⊥直线b ,则直线b 与平面M 的位置关系是
A 平行
B 在面内
C 相交
D 平行或相交或在面内
6.下列函数是奇函数的是 A 12
+=x y
B x y sin =
C )5(log 2+=x y
D 32-=x
y
7.点(2,5)关于直线01=++y x 的对称点的坐标是
A (6,3)
B (-6,-3)
C (3,6)
D (-3,-6)
8.2
1cos
12
π
+值为
B C 34 D 7
4
9.已知等差数列}{n a 中,882=+a a ,则该数列前9项和9S 等于 A 18 B 27 C 3 6 D 45
10.甲、乙两个人投篮,他们投进蓝的概率分别为21
,52
,现甲、乙两人各投篮1次
A 15
B 103
C 910
D 45
11.已知向量a 和b 的夹角为0
120,3,3a a b =⋅=-,则b 等于
A 1 B
2
3
C 3
D 2
12.两个球的体积之比是8:27,那么两个球的表面积之比为 A 2:3 B 4:9 C
3:2 D 27:8
13.椭圆短轴长是2,长轴是短轴的2倍,则椭圆的中心到其准线的距离 A
558 B 554 C 338 D 3
3
4
14.
已知圆的参数方程为2()1x y θ
θθ
⎧=⎪⎨
=+⎪⎩
为参数,那么该圆的普通方程是 A 22
(2)(1)x y -+-=
B 22(2)(1)x y +++=
C 22
(2)(1)2x y -+-= D 2
2
(2)(1)2x y +++= 15.函数)32
1sin(+=x y 的最小正周期为 A
2
π
B π
C π2
D π4 16.双曲线12
2
=-y x 的离心率为
A
2
2
B 3
C 2 D
2
1
17.从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数中是偶数的概率 A
51 B 53 C 41 D 5
2 18.圆020422
2
=-+-+y x y x 截直线0125=+-c y x 所得弦长为8,则C 的值为 A 10 B-68 C 12 D 10或-68
19.6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有 A720 B 360 C 240 D 120
20.国庆期间,某商场为吸引顾客,实行“买100送20 ,连环送活动”即顾客购物每满100元,就可以获赠商场购物券20元,可以当作现金继续购物。
如果你有680元现金,在活动期间到该商场购物,最多可以获赠购物券累计
A 120元
B 136元
C 140元 D160元
二填空题(共4小题,每小题3分,共12分) 21.直线x y 3
3
=
与直线1=x 的夹角 22.直角坐标系xoy 中若定点A (1,2)与动点(x,y )满足4=⋅oA op ,则点P 的轨迹方程为 23.平面内三点A (0,-3),B (3,3),C (x ,-1)若AB ∥BC ,则x 的值 24.已知函数1
1
)(+=x x f ,则)]([x f f 的定义域为
三:解答题(3小题,共28分)
25.如图ABCD 是正方形,⊥PD 面ABCD ,PD=DC ,E 是PC 的中点 (1)证明DE ⊥面PBC (2)求二面角D PB C --的大小
26.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3(
(1) 求双曲线C 的方程 (2) 若直线2:+
=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点)
求 K 的取值范围
E
A
B
C
P D
27.已知函数)0(2
1)(>+-
=x x
a x f (1)判断)(x f 在),0(+∞上的增减性,并证明你的结论 (2)解关于x 的不等式0)(>x f
(3)若02)(≥+x x f 在),0(+∞上恒成立,求a 的取值范围
参考答案
21.3
π
22.042=-+y x
23.1
24.{x |1-≠x 且2-≠x }
25.简证(1)因为PD ⊥面ABCD 所以PD ⊥BC ,又BC ⊥DC 所以BC ⊥面PDC 所以BC ⊥DE ,又PD ⊥BC ,PD=DC ,E 是PC 的中点所以DE ⊥PC 所以DE ⊥面PBC
(2) 作EF ⊥PB 于F ,连DF ,因为DE ⊥面PBC 所以DF ⊥PB 所以EFD ∠是二面角的平面角 设PD=DC=2a,则DE=a DF a 3
6
2,2=
又DE ⊥面PBC (已证) DE ⊥EF 所以2
3sin =
∠EFD 即060=∠EFD 26.(1)解:设双曲线方程为)0,0(122
22>>=-b a b y a x
因为13
,1,4,2,322
2
2
2
=-∴=∴=+==y x b b a c a (2)将2:+
=kx y l 代入双曲线中得0926)31(22=---kx x k
由直线与双曲线交与不同两点的⎪⎩
⎪⎨⎧>-=-+=∆≠-0)1(36)31(36)26(0
312
222
k k k k 即1,3
122
<≠k k ------------------------(1)
设),(),,(2211y x B y x A 则2
2
1221319
,3126k x x k x x --=-=
+由2>⋅OB OA 732+k 732+k 1
即k 的)1,3
3()33,1(⋃-
- 27.(1)证明设210x x <<
0)
(222)21()21()()(2
112212121>-=-=+--+-
=-x x x x x x x a x a x f x f )(),()(21x f x f x f >∴在),0(+∞上为减函数
(2) 不等式0)(>x f 即02
1>+-
x
a 即 1) 当0)2(,0<->a x x a ,不等式的解a x 20<< 2) 当0)2(,0>-<a x x a 不等式的解0>x 或a x 2<(舍) (3)若
02)(≥+x x f 在),0(+∞恒成立即022
1≥++-
x x
a 所以
)1(21x x a +≤因为)1
(2x x +的最小值为4 所以41≤a 即0<a 或4
1≤a。