2018-2019学年七年级数学上册第二章有理数及其运算2-11有理数的混合运算知能演练提升新版北师大版
临泉县四中七年级数学上册第二章有理数及其运算11有理数的混合运算说课稿新版北师大版1
《有理数的混合运算》说课稿一、说教材教材所处的位置及前后联系:本节课是七年级上册第二章第十一节的内容,是在学生学习并掌握了有理数的加、减、乘、除,乘方运算的基础上提出的,也是为以后学习整式的加减,解方程及解不等式、分式的运算奠定了基础,因此,这节课是学生必须掌握的内容。
学情分析:刚入初中的学生,对从算术数到有理数,从算术数的运算扩充到有理数的混合运算,尤其是负数的引入,使他们进入了抽象领域,因此在学习时应引导学生从具体情境,实际例子出发从直观形象思维向抽象思维过渡。
二、教学目标1.知识目标:①了解有理数的混合运算的意义;②熟练掌握有理数的混合运算的顺序,会进行简单有理数的混合运算;2.能力目标:培养学生运算能力及综合运用知识、解决问题能力。
3.情感与价值目标:①通过学生做题,提高学生的灵活解题的能力;②通过师生共同的活动,培养学生的应用意识,训练学生的思维;③提高学生的学习兴趣,独立思考的能力,在学习中享受成功的喜悦。
教学重点:有理数的运算顺序的确定,根据运算顺序正确地进行有理数的混合运算。
教学难点:熟练掌握有理数运算顺序和运算符号的确定和性质符号的处理。
三、教学方法:根据七年级学生的心理特征及思维能力,我将采取“复习导入,新旧知识的转化,引导发现总结法则,共同训练提高来完成教学任务,学生采用自主探索,共同训练,完成本节课的学习。
四、论教学过程(一)复习回顾,引入新课回忆小学的四则混合运算,并说出顺序及法则,由此引入今天的新课。
这样设计可使学生由熟悉的知识转入新知识,过渡自然,易于接受。
(二)出示例题,归纳总结,得出有理数的混合运算的顺序出示例子,与学生共同来完成,边提示边总结。
使学生熟悉运算顺序应由高级到低级的顺序,这样设计学生会很快总结出法则。
(板书)学生参与了这项活动,培养了他们发现事物规律的能力,及自主学习的能力。
(三)尝试训练、巩固法则出示6道练习题让学生板演,熟悉法则,做完后讲评批改纠错,这样及时纠错,共同提高。
2023-2024学年北师大版七年级数学上册《第二章有理数及其运算2.6有理数的加减混合运算(第2课
2023-2024学年北师大版七年级数学上册《第二章有理数及其运算2.6有理数的加减混合运算(第2课时)》教学设计一. 教材分析本节课的主要内容是第二章有理数及其运算2.6有理数的加减混合运算(第2课时)。
在这一节中,学生需要掌握有理数的加减混合运算的法则,并能熟练地进行相关运算。
教材通过具体的例题和练习题,帮助学生理解和掌握这些运算规则。
二. 学情分析学生在学习本节课之前,已经学习了有理数的基本概念,包括正数、负数、整数、分数等,并对有理数的加减法有了初步的了解。
然而,对于加减混合运算,学生可能还存在一定的困惑,需要通过本节课的学习,进一步理解和掌握。
三. 教学目标1.让学生理解有理数的加减混合运算的法则。
2.培养学生能熟练地进行有理数的加减混合运算。
3.培养学生运用数学知识解决实际问题的能力。
四. 教学重难点1.重点:有理数的加减混合运算的法则。
2.难点:如何运用这些运算规则解决实际问题。
五. 教学方法采用讲授法、案例分析法、小组合作法等多种教学方法,以激发学生的学习兴趣,提高学生的学习效果。
六. 教学准备1.准备相关的教学PPT。
2.准备一些实际的例子,用于讲解和练习。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入本节课的主题——有理数的加减混合运算。
例如,小华买了一本书,原价是25元,然后又买了一支笔,价格是10元,请问小华一共花费了多少钱?2.呈现(15分钟)通过PPT,展示有理数的加减混合运算的法则,并通过具体的例子,讲解这些法则的应用。
3.操练(15分钟)让学生进行一些实际的运算,以巩固所学的知识。
可以让学生独立完成,也可以分组进行。
4.巩固(10分钟)通过一些练习题,帮助学生巩固所学知识。
可以设置一些难易不同的问题,以满足不同学生的需求。
5.拓展(10分钟)通过一些综合性的问题,让学生运用所学知识解决实际问题。
例如,可以让学生设计一个购物预算,或者计算一个长方形的面积等。
北师大版七年级上册数学教案:第二章有理数及其运算
(4)混合运算中的运算顺序:学生在进行有理数混合运算时,容易忽视运算顺序,导致计算错误。
举例:强调先计算括号内的运算,再进行乘除运算,最后进行加减运算。
(5)运算律的应用:学生在运用运算律简化运算时,可能不熟练,需要加强练习。
举例:解释为何-3表示3的相反数,理解负数在实际问题中的应用。
(2)有理数的加减运算:特别是在异号相加和减法运算中,理解为何同号相加取相同符号,异号相加取绝对值较大的加数的符号。
举例:讲解-3+2的结果是-1,而不是1,理解其背后的运算规律。
(3)有理数的乘除运算:掌握有理数乘除运算的符号规律,尤其是零与有理数相乘、不为零的有理数相除的规则。
北师大版七年级上册数学教案:第二章有理数及其运算
一、教学内容
本节课选自北师大版七年级上册数学教材第二章“有理数及其运算”。主要内容包括:
1.有理数的概念:整数和分数统称为有理数,介绍正有理数、负有理数和零的概念。
2.有理数的分类:将有理数按照正、负和零进行分类,并了解它们的特点。
3.有理数的加法:掌握同号相加、异号相加、零与有理数相加的法则,并能熟练进行计算。
举例:运用结合律将(3+4)×5简化为3×5+4×5,降低计算难度。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《有理数及其运算》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过数字的正负和计算的问题?”比如,温度上升和下降,银行存款和取款等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数的奥秘。
北师大版七年级数学上册第二章有理数及其运算全章教案(共180页)
第二章有理数及其运算1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.2.能借助数轴理解相反数和绝对值的意义,知道|a|的含义(这里a表示有理数).3.理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主).4.理解有理数的运算定律,能运用运算律简化计算.5.能运用有理数的运算解决简单的问题.1.在求一个数的相反数和绝对值的过程中,让学生掌握求有理数的相反数和绝对值的方法.2.能按照有理数的运算法则进行有理数的加、减、乘、除及混合运算,掌握计算的方法和技巧.3.能用科学记数法表示数,以及用四舍五入法取近似数,掌握其表示的方法.1.在认识数的过程中,体验知识之间的必然联系,激发学生爱数学、学数学的兴趣.2.培养学生养成认真做题的良好习惯,认识数学是解决实际问题和进行交流的重要工具.3.在解决问题的过程中,能对问题提出自己的猜想,树立学好数学的信心.对于负数的引入,教材借助生活中的实例,引进负数,让学生在活动中体会数概念的扩张,了解负数的本质意义,然后再指出可以用正负数表示现实生活中具有相反意义的量,使学生感受到负数的引入源自实际生活的需要,体会数学知识与现实世界的联系.就学生的学习而言,负数的概念、意义有一定的抽象性,为什么要引进负数正是学生理解的困难所在.从数学的发展进程来看,数的出现的主要原因更多的是由于对实际现象(事物)“表示”的需要.所以教材遵循历史发展的过程,采用这样的线索展开:产生的实际背景——有理数的意义——数的表示.对于有理数运算法则的获得,教材没有采用直接给出的方式而是设置了丰富的现实背景,如足球比赛中的净胜球数、气温变化等,以直观形象地解释、归纳、探索的方式,寻求有理数运算法则和运算律.如有理数的加法法则,仅仅借助数轴理解,学生会有一定的困难,所以教材先从知识竞赛中的答对题数与答错题数入手,使学生首先理解(+1)+(- 1)=0和(- 1)+(+1)=0,然后利用“正负抵消”的思想,讨论整数加法的几种情形,最后再由特例归纳出有理数的加法法则,并借助数轴加深理解.基于有理数运算的学习重点是对法则和运算律的理解,所以为了避免因为小数、分数运算的复杂性而冲淡学习的重点,有理数的运算以整数运算的学习为出发点,然后过渡到含有小数、分数的运算.【重点】理解有理数的意义,掌握有理数的运算法则和运算律,会用科学记数法表示较大的数.【难点】利用有理数的加、减、乘、除、乘方等运算解决简单的实际问题.1.负数是一个比较抽象的概念.在教学中应该让学生充分了解引入负数的必要性和实际背景,通过生活中具有相反意义的量的讲解,让学生接受负数的概念.2.本章的重点内容是有理数的运算,所以一定要让学生有足够的练习的机会,只有通过一定量的计算实践,才能真正体会并熟练掌握有理数计算的一些技巧.让学生通过计算、观察、猜测、归纳等数学活动,自己总结出有理数的运算律.3.对绝对值概念的学习也要有一个循序渐进的过程,与绝对值相关的知识,如数轴上两点之间的距离的表示、绝对值不等式等,都是在后续学习中要专门安排的,因此这里不要涉及.本章安排绝对值概念,目的是为有理数的运算作准备,会求一个数的绝对值就达到了本章的要求.教材中用字母表示求一个数的绝对值的结论,只是给出一个数的绝对值的符号表示,教学时不要对这个符号表示进行变式训练,更不要在绝对值中出现字母并加以讨论.4.计算器是一个既简便又实用的计算工具,让学生通过实际操作,掌握计算器的基本用法.5.在本章的学习中,要注意数形结合思想、转化与化归思想、分类讨论思想的运用.1有理数1课时2数轴1课时3绝对值1课时4有理数的加法2课时5有理数的减法1课时6有理数的加减混合运算3课时7有理数的乘法2课时8有理数的除法1课时9有理数的乘方2课时10科学记数法1课时11有理数的混合运算1课时12用计算器进行运算1课时本章概括整合1课时1有理数1.通过实例理解引入负数的必要性和负数应用的广泛性,理解有理数的含义,体会有理数应用的广泛性.2.能用正数和负数表示具有相反意义的量.3.培养逻辑思维能力,以及按一定规律对事物进行分类整理的能力.会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量,能把有理数合理分类和把具体数正确归类.1.通过实例,使学生深刻体会到有理数和负数的实用性,加深对数的理解.2.让学生体会到数学中的基本概念都来源于实际需要.3.让学生进一步了解学习数学对于解决实际生活中各种问题的必要性,增强学习数学知识的兴趣.【重点】负数的意义、特点及实际应用,有理数的概念,能够对学过的数进行分类.【难点】正确用正、负数表示生活中具有相反意义的量,正确理解有理数的概念,会合理进行有理数的分类和把具体数归类到相应的数集.【教师准备】多媒体课件.【学生准备】预习教材P23~24.导入一:师:同学们小学都学过哪些数?生:整数、小数、分数、奇数、偶数……师:原始社会,从打猎记数开始,首先出现自然数,经过漫长岁月,人们用数“0”表示没有,随着人类的不断进步,在丈量土地进行分配时,又用小数使测量结果更加准确,小数也属于分数.那么小学学过的这些数能否满足社会生产生活及数学自身发展的需要呢?[设计意图]通过介绍数的产生与发展,向学生渗透“实践第一”的辩证唯物主义观点,使同学们感到数的每一次发展都是为了满足社会生产与生活的需要,也为讲述有理数概念及其分类做好铺垫.导入二:观察课本P22的图片.珠穆朗玛峰高出海平面8844 m,记作:+8844 m;吐鲁番盆地低于海平面155 m,记作: - 155 m.教师出示图片,并提出问题:1.生活中我们会遇到用负数表示的量,你能说出一些例子吗?2.你在小学的学习中对负数有什么样的认识?3.有了负数,数的运算与过去相比有什么区别和联系?有了负数,能解决哪些实际问题?本章将在小学学习的基础上,进一步学习负数,研究有理数的有关概念及其运算,并利用有理数的知识解决实际问题.[设计意图]通过提供学生熟悉的情境引导学生回顾小学有关负数的知识,三个问题不仅为本节课成功引入,也为本章的学习做了铺垫.学生在对问题的思考与交流中体会负数在生活中的广泛应用,激发了学生学习本章内容的兴趣.(出示课件1)(例题讲解)请同学们完成以下问题,并与同伴交流.某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基本分均为0分.两个队答题情况如下表:答题情况第一队第二队如果答对题所得的分数用正数表示,那么你能写出每个队答题得分的情况吗?思路一试完成下表:答对题的得分答错题的得分未回答题的得分第一队+6第二队- 2思路二提出思考问题:(1)第一队答对几题?是如何表示的?答错几题?又是如何表示的?(2)第二队答对几题?是如何表示的?答错几题?又是如何表示的?(3)如何理解+6和- 2?(出示课件2)(教材议一议)生活中你见过其他用负数表示的量吗?与同伴进行交流.想一想:根据上面各队分数的计算及2010年全国居民消费价格的上涨情况及温度计上的温度,你能知道正、负数和零的大小关系吗?[处理方式]学生思考交流,完成后再展示说明,学生之间互相补充,教师适时点评.师生总结:“加分与扣分”“上涨量与下跌量”“零上温度与零下温度”等都是具有相反意义的量.为了表示具有相反意义的量,我们把其中一个量规定为正的,用正数来表示,而把与这个意义相反的量规定为负的,用负数来表示.[设计意图]本活动的设计意在引导学生通过自主探究、合作交流,用知识竞赛得分的情境启发学生用正、负数表示相反意义的量.通过练习引导学生举一反三地找出身边可以用正、负数表示的量,从而体会学习负数的必要性.从学生熟悉的情境讨论问题,学生积极参与,在教师的引导下寻找生活实例的过程中充分体会学习负数是生活的需要.探究活动2用正、负数表示生活中具有相反意义的量(出示课件3)(教材例题)(1)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02 g 记作+0.02 g,那么- 0.03 g 表示什么?(3)某大米包装袋上标注着“净含量:10 kg±150 g”,这里的“10 kg±150 g”表示什么?[处理方式]学生先独立思考,再小组交流如何用正、负数表示生活中具有相反意义的量.思路一如果用+5圈表示沿逆时针方向转了5圈,那么和逆时针方向具有相反意义的量是,所以沿顺时针方向转了12圈可表示为;一只乒乓球超出标准质量0.02 g记作+0.02 g,那么和超出标准质量具有相反意义的量是,所以- 0.03 g可以表示为;综上所述,“净含量:10 kg±150 g”,这里的“10 kg±150 g”表示.思路二(1)想一想:什么是具有相反意义的量?(2)品一品:如何表示具有相反意义的量?(3)考一考:和逆时针方向具有相反意义的量是,和超出标准质量具有相反意义的量是.【师生活动】学生讨论,教师巡视发现问题,并及时解决.解:(1)沿顺时针方向转了12圈记作- 12圈.(2) - 0.03 g表示乒乓球的质量低于标准质量0.03 g.(3)每袋大米的标准质量应为10 kg,但实际每袋大米可能有150 g的误差,即每袋大米的净含量最多是10 kg+150 g,最少是10 kg - 150 g.反馈练习(出示课件4) (1)在知识竞赛中如果用“+10”表示加10分,那么扣20分记作什么? (2)东、西为两个相反方向,如果 - 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?(3)某粮库运进面粉7.5吨记作+7.5吨,那么运出3.8吨应记作什么?议一议:你能选定一个高度为标准,用正、负数表示本班每位同学的身高与选定的身高标准的差异吗?你是怎样表示的?与同伴交流.通过例题和练习题的分析,让学生知道用正、负数表示相反意义的量时要明确“基准”.教材例题中各题的基准分别是“转盘静止不动”“一只乒乓球的标准质量”“10 kg ”. “议一议”则联系生活实际让学生学会如何选定“基准”.学生认识当用正、负数表示相反意义的量时要考虑“基准”.“0”是常用的基准,但不是所有的基准都必须为0.探究活动3 有理数的概念及分类1.新的整数、分数概念:引进负数后,数的范围扩大了.过去我们说整数只包括正整数和零,引进负数后,正整数前加上负号的数叫做负整数,因而整数包括正整数、负整数和零,同样分数包括正分数、负分数.整数和分数统称为有理数.(有理数分类结构图如下)有理数{整数{正整数0负整数分数{正分数负分数 2.有理数的分类.问题:为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同,根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法呢?待学生思考后,请学生回答、评议、补充.教师小结:按有理数的符号分为三类:正有理数、负有理数和零,并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:对有理数的分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.[设计意图] 使学生在原有认知结构的基础上,将数扩充到了有理数的范围.通过练习使学生加深理解有理数的意义.[知识拓展] 对正数和负数的理解要注意以下几点:(1)并不一定必须将某一种量规定为正,若将其中的一种量规定为正,则与其意义相反的量即为负.(2)零既不是正数,也不是负数,这个数十分特殊,随着我们的学习,对于零这个数将有更深刻的认识.(3)负数前面的“一”号,表示这个数的性质,是性质符号,读作“负”号,但正数前面的“+”可以省略.即时巩固将下列各数填入到相应的数集中: - 2015, - 13,14,12, - 513, - 7.3,3,369,0.1,92, - 374.正数集合{ …}; 负数集合{ …}; 正整数集合{ …}; 负整数集合{ …}; 分数集合{ …}; 负分数集合{ …}; 负有理数集合{ …}; 有理数集合{ …}.〔解析〕 小数 - 7.3,0.1都属于分数,369=4不属于分数.(学生口述解答过程,师总结、板演)1.正数与负数都来自于生活实际,用正、负数可以表示实际问题中具有相反意义的量.2.正数前面添上“ - ”号的数是负数;0既不是正数,也不是负数,它表示正、负数的界限.3.有理数的分类方法不是唯一的,可以按整数和分数分成两大类,也可以按正有理数、零、负有理数分成三大类.1.如果将汽车向东行驶3千米记为+3千米,那么记为 - 3千米表示的是 ( )A.向西行驶3千米B.向南行驶3千米C.向北行驶3千米D.向东南方向行驶3千米解析:先根据向东行驶3千米记为+3千米,可确定向西为负,而 - 3千米表示的应是向西行驶3千米.故选A .2.在0,2, - 7, - 513,3.14, - 317, - 3,+0.75中,负数共有 ( )A.1个B.2个C.3个D.4个解析:在正数的前面加上“ - ”号的数即是负数,本题中的 - 7, - 513, - 317, - 3是负数.故选D .3.飞机上升了 - 80米,实际上是 ( ) A.上升80米 B.下降 - 80米C.先上升80米,再下降80米D.下降80米解析:解题的关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.负号表示与上升意义相反,即下降.故选D .4.举一个能用正数、负数表示生活中的量的实例,并解释其中相关数量的含义.解:本题答案不唯一,只要满足题意即可,如:河道中第一天的水位是 - 0.2米,第二天的水位是+0.3米,其中 - 0.2米表示比正常水位低0.2米,+0.3米表示比正常水位高0.3米.1有理数1.认识生活中的负数.2.用正、负数表示生活中具有相反意义的量.3.有理数的概念及分类.一、教材作业【必做题】教材第26页习题2.1的2,3题.【选做题】教材第26页习题2.1的4,5题.二、课后作业【基础巩固】1.下列结论中正确的是()A.0既是正数,又是负数B.0是最小的正数C.0是最大的负数D.0既不是正数,也不是负数2.向东运动记作“+”,向西运动记作“- ”,下列说法正确的是()A. - 5米表示向东运动了5米B.向西运动5米表示向东运动了- 5米C.+5米表示向西运动了5米D.向西运动5米也可以记作向西运动- 5米3.武汉市夏季气温比较高,若以30 ℃为标准,高出标准的为正,低于标准的为负,则38 ℃与28 ℃分别记作()A.+8 ℃- 2 ℃B.+8 ℃+2 ℃C. - 8 ℃- 2 ℃D. - 8 ℃+2 ℃4.某药品说明书上标明药品保存的温度是(20±2)℃,该药品在温度范围内保存才合适.5.请指出下列各数中哪些是正数,哪些是负数.- 18,+227,3.1416,0.2011, - 35, - 0.1010…, - π, - 2,99%.【能力提升】6.如果海平面的高度为0 m,一潜水艇在海平面以下40 m处航行,一条鲨鱼在潜水艇上方10 m 处游动,试用正、负数分别表示潜水艇和鲨鱼的高度.7.用正数和负数表示下列具有相反意义的量.(1)钟表的指针逆时针方向旋转20°记作- 20°,顺时针方向旋转30°记作;(2)运进200箱记作,运出150箱记作- 150箱.【拓展探究】8.某日小明在一条南北方向的公路上跑步,他从A地出发,如果把向北跑1100 m记作- 1100 m,那么他向北跑1100 m时向后转又继续跑了1200 m是什么意思?这时他停下来休息,此时他在A地的什么方向?距A地多远?【答案与解析】1.D(解析:根据0既不是正数,也不是负数,可以判断A,B,C都错误,D正确.故选D.)2.B(解析:A. - 5米表示向西运动了5米,故A错误;C.+5米表示向东运动了5米,故C错误;D.向西运动5米记为- 5米,故D错误.故选B.)3.A (解析:因为以30 ℃为标准,高出标准的为正,低于标准的为负,所以38 ℃与28 ℃分别记作:+8 ℃, - 2 ℃.故选A.)4.18~22 ℃(解析:温度是20 ℃±2 ℃,表示最低温度是20 ℃- 2 ℃=18 ℃,最高温度是20 ℃+2 ℃=22 ℃,即18~22 ℃之间是合适温度.)5.解:正数有:+227,3.1416,0.2011,99%;负数有: - 18, - 35, - 0.1010…, - π, - 2.6.解:因为海平面的高度为0 m,所以低于海平面的高度为负数,由于潜水艇和鲨鱼的高度都在海平面的下方,故分别为- 40 m和- 30 m.7.(1)+30°(2)+200箱8.解:如果把向北跑1100 m 记作 - 1100 m ,那么他向北跑1100 m 时向后转又继续跑了1200 m ,说明小明又向南跑了1200 m ,此时他在A 地的南边,距A 地的距离=1200 - 1100=100(m ).本节课从学生较熟悉的珠穆朗玛峰、气温开始,接下来从具体问题情境出发,使学生感受到现有的数确实不够用了,唤起学生的好奇心和求知欲,然后引出负数、正数和零的概念和实际意义,接着引导学生回顾、总结学过的数,告诉学生有理数的意义,和学生一起探讨有理数的分类,这样学生易于接受,在学习过程中,学生经历了观察、比较、归纳、总结,学会了研究问题、解决问题的方法,加深了对所学知识的理解,完成了从数不够用到数可以表示具有相反意义的量的成长过程。
2018-2019学年七年级数学上册第二章有理数及其运算2.7有理数的乘法第2课时知能演练提升新版北
7 有理数的乘法第二课时知能演练提升一、能力提升1.n个不等于零的有理数相乘,它们的积的符号().A.由因数的个数决定B.由正因数的个数决定C.由负因数的个数决定D.由负因数的大小决定2.下列运算过程有错误的个数是().①×2=3-4×2;②-4×(-7)×(-125)=-(4×125×7);③9×15=×15=150-;④[3×(-25)]×(-2)=3×[(-25)×(-2)]=3×50.A.1B.2C.3D.43.(xx·福建龙岩新罗区校级期中改编)若|x|=3,|y|=5,且xy<0,则x+y的值是().A.2B.-2C.-8D.2或-24.计算:(1)×30= ;(2)-2.125××(-8)= .5.大于-3且小于4的所有整数的和为,积为.6.比较大小:173××(-3.1)(-173)××0.1.7.(xx·西藏拉萨城关区校级期中)计算:(1)-0.75×(-0.4)×1;(2)0.6×.8.学习了有理数的乘法以后,老师布置了一道作业题:计算-3.14×35.2+6.28×(-23.3)-1.57×36.4.小刚一看感叹说:“这么麻烦的数据,需要算很久啊!”聪明的同学,你能用运算律帮助小刚简化一下计算过程吗?二、创新应用9.讲完“有理数的乘法”后,老师在课堂上出了下面一道计算题:71×(-8).不一会儿,不少同学算出了答案,老师把班上同学的解答归类写到黑板上:解法一:原式=-×8=-=-575.解法二:原式=×(-8)=71×(-8)+×(-8)=-575.解法三:原式=×(-8)=72×(-8)-×(-8)=-575.对这三种解法,大家议论纷纷,你认为哪种解法最好?理由是什么?知能演练·提升一、能力提升1.C2.A3.D4.(1)25(2)-525.306.=7.解 (1)原式=.(2)原式=-=-1.8.解-3.14×35.2+6.28×(-23.3)-1.57×36.4=-3.14×35.2+3.14×(-46.6)-3.14×18.2=-3.14×(35.2+46.6+18.2)=-3.14×100=-314.二、创新应用9.解解法三最好.理由:将带分数分成整数和真分数,利用乘法对加法的分配律简化了运算过程.。
七年级数学上册 第二章 有理数及其运算 2.6 有理数的加减混合运算教案 (新版)北师大版-(新版)
2.6有理数的加减混合运算(第1课时)一、学生知识状况分析学生的知识技能基础:学生在前面几节课中已经学习过有理数的加法、减法的法则,并利用其解决了一些问题,但前面的运算比较简单且多为单纯的加法运算或减法运算,而少有加法减法的混合运算.学生活动经验基础:在本章前面知识的学习过程中,学生已经经历了一些探索、发现的数学活动,积累了初步的数学活动经验,具备了一定的探究能力;经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力;同时在本章前面的数学学习中学生已经具备了一定的运算技能,能够解决一些简单的实际问题.这些为本节课的学习作了很好的奠基和知识准备.二、教学任务分析本节课是学生在前两节学习整数加法、减法运算的基础上自然地过渡到含有小数、分数的加减混合运算. 为了避免学生对单纯的运算产生厌烦情绪,所以利用游戏来训练有理数的加减混合运算,以增加学习的趣味性.本课时的教学目标如下:1.让学生熟练地按照运算顺序进行有理数加减混合运算.2.熟练运用有理数加法、减法运算法则进行加减混合运算.掌握有理数的加减混合运算及其运算顺序.三、教学过程分析本节课设计了六个教学环节:第一环节:问题引入;第二环节:讲授新课;第三环节:巩固练习;第四环节:合作学习;第五环节:课堂小结;第六环节:布置作业.第一环节问题引入活动内容:通过游戏来引入有理数的加减混合运算(课前每人准备红色卡片和白色卡片共20X,在每X卡片上写上任意数字).游戏规则如下:四人一组,每组选一学生当代表,在同组的80X卡片中,抽取4X,如果抽到白色卡片,那么加上卡片上的数字;如果抽到红色卡片,那么减去卡片上的数字.活动目的:复习旧知识的同时,引出新的知识.活动的实际效果:熟练写出加减混合运算的算式.第二环节:讲授新课活动内容:利用各小组写出的算式引导学生分析有理数的混合运算应该怎么算. 活动目的:既然是混合运算,自然联想到小学学习的运算顺序,要让学生明白,并不是学习有理数的运算就要抛弃小学的知识和方法.活动的实际效果:通过对运算顺序的回忆,学生尝试混合运算,体会运算顺序的重要性.教师要引导学生重视初小衔接,领悟知识的连贯和延续.第三环节:巩固练习 活动内容: 例1、计算: (1)5451)53(-+- (2)377)21()5(-+--- 随堂练习: 1.计算: (1)21)43(41--+; (2); (3)3)5.4(5.11----;(4))52()352(71---+-. 活动目的:让学生体会根据运算顺序,进行有理数的加减混合运算.活动的实际效果: 例1由教师指定几名学生板演,其余学生在笔记本上解答,教师巡视,发现问题及时解决,在复习有理数的加法、减法法则的同时,训练学生熟练进行有理数的加减混合运算.第四环节:合作学习活动内容: 通过游戏来进一步熟练有理数的加减混合运算). 游戏规则如下:(1)四人一组,每组选一学生当代表,在同组的80X 卡片中,抽取4X ,如果抽到白色卡片,那么加上卡片上的数字;如果抽到红色卡片,那么减去卡片上的数字.(2)每组四人都计算,然后看结果的正确与否,再看一看谁用的计算方法最简便,交流经验.活动目的:利用游戏训练有理数的加减混合运算,以激发学生学习数学的兴趣,增加学习的趣味性.活动的实际效果:学生参与教学活动,从而使学生积极主动的学习,学生学习的热情高涨,气氛热烈.第五环节:课堂小结活动内容:师生共同完成.1.有理数的加减混合运算可以利用运算顺序进行计算.2.熟练进行含有整数、小数、分数的加减混合运算.活动目的:鼓励学生结合本节课的学习,谈谈自己的收获和感想,学会及时的反思和总结.活动的实际效果:学生畅所欲言自己的切身感受和实际的收获,在愉快的氛围中结束本节课的学习.第六环节:布置作业习题 2.7四、教学反思有理数的加减混合运算共两个课时.这一课时的重点一是体会混合运算中运算顺序的重要性,在运算顺序的指引下巩固加法和减法的法则;二是熟练含有整数、小数、分数等各种数据的加减混合运算.教材对本节两个课时内容调整的用意应该也在于此,先按部就班计算;再考虑灵活简便.2.6有理数的加减混合运算(第2课时)一、学生知识状况分析学生的知识技能基础:在上一节课的学习中学生已经学习了有理数的加减混合运算,初步接触了含有小数或分数的有理数的加减混合运算,知道加减混合运算可以利用运算顺序从左往右依次进行运算,但还不够熟练,同时对在混合运算中如何运用加法交换律和结合律简化计算还不了解.学生活动经验基础:在本章前面知识的学习过程中,学生已经经历了一些探索、发现的数学活动,积累了初步的数学活动经验,具备了一定的探究能力;经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力;同时在本章前面的数学学习中学生已经具备了一定的运算技能,能够解决一些简单的实际问题.这些为本节课的学习作了很好的奠基和知识准备.二、教学任务分析本节课就是在前面学习的基础上进一步熟练有理数的加减混合运算,体会可以适当地运用加法交换律和结合律来简化运算.通过对一架特技飞机起飞的高度变化这个实际问题的讨论,引导学生从减法法则与实际问题两个方面回答两种算法的关系.对两种算法比较的同时,学生将体会到加减混合运算可以统一成加法,以及加法运算可以省略括号及前面加号的形式(即“代数和”的问题),使学生进一步熟悉有理数加减混合运算. 具体教学目标如下:1.使学生理解有理数的加减法可以互相转化,并了解代数和概念;2.使学生熟练地进行有理数的加减混合运算;3.培养学生的运算能力.三、教学过程分析本节课设计了六个教学环节:第一环节:问题引入;第二环节:讲授新课;第三环节:巩固练习;第四环节:合作学习;第五环节:课堂小结;第六环节:布置作业.第一环节:问题引入活动内容:一架飞机进行特技表演,飞行的高度变化由表格给出.对于题中的“高度变化”,你是怎么理解的?你能通过列式计算此时飞机的高度吗?4.5+(-3. 2)+1.1+(-1.4)=1.3+1.1+(-1.4)=2.4+(-1.4)=1(千米)还可以这样计算:=1(千米)活动目的:通过对身边的数学问题的讨论,学生将回顾有理数的运算法则,加深对法则的认识,并用以进行有关复杂数据的运算.活动的实际效果:对于这一实际问题,学生特别是男同学很感兴趣,都瞪大眼睛仔细听讲.通过学生的合作探讨,培养学生与他人合作交流的习惯与意识,改变他们的学习方式,争取让每个学生都在同伴的交流中获益.第二环节:讲授新课活动内容: 比较以上两种算法,你发现了什么?有理数的加减混合运算可以统一成加法运算.如算式“4.5-3.2+1.1-1.4”可以看作4.5、-3.2、1.1、-1.4这4个数的和,因此在进行加减混合运算时可运用加法交换律和结合律简化运算.如4.5+(-3.2)+1.1+(-1.4) =4.5+1.1+[(-3.2)+(-1.4)] =5.6+(-4.6) =1活动目的:学生参与教学活动,从而使学生积极主动的学习,学生学习的热情高涨,气氛热烈.活动的实际效果:通过对两种算法的比较,学生将体会加减法混合运算可以统一成加法,以及加法运算可以写成省略括号及前面加号的形式(即“代数和”问题).对“代数和”的学习,重点是让学生通过具体情境加以体会,无须出现“代数和”的名称.学生在学会混合运算运算顺序的前提下,理解利用运算律可以改变运算顺序,从而达到简化计算的目的.第三环节:巩固练习 活动内容:计算:(1) (8)(15)(9)(12)---+--- (2)12()15()33--+- (3)67(18)()(8)()510---++-+(4)2111()()3642-+---- 活动目的: 让学生能进行包括小数、分数在内的有理数的加减混合运算.活动的实际效果: 本例由教师指定几名学生板演,其余学生在笔记本上解答,教师巡视,发现问题及时解决,这样让学生在运算的过程中逐步熟练掌握有理数的加减混合运算.第四环节:合作学习活动内容:做一做下表是某年某市汽油价格的调整情况:与上一年年底相比,11月9日汽油价格是上升了还是下降了?变化了多少元?活动目的:在具体情境中体会混合运算的作用,在进行加减混合运算时,可以适当运用加法交换律和结合律来简化运算.活动的实际效果:本例由教师板演,在复习加减混合运算的同时,为下一小节的学习埋下伏笔.第五环节:课堂小结活动内容:师生共同完成.1.通过本节课的学习研究,我们进一步巩固和掌握有理数的加减混合运算,并能根据具体问题适当运用加法交换律和结合律简化运算.2.在加减运算时,适当运用加法运算律,把正数与负数分别相加,可使运算简便.但要注意交换加数的位置时,要连同前面的符号一起交换.活动目的:鼓励学生谈自己的收获和感想,让学生总结本节所学内容的同时,学会及时的反思和总结.活动的实际效果:学生畅所欲言自己的切身感受和实际的收获,在愉快的氛围中结束本节课的学习.第六环节:布置作业习题 2.8四、教学反思这一课时的重点是继续帮助学生实现减法向加法的转化与加减法互化,了解运算符号和性质符号之间的关系.把任何一个含有有理数加、减混合运算的算式都看成和式,这一点对学生熟练掌握有理数运算非常重要,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算.因此在教学中要让学生真正理解加法和减法的关系.2.6 有理数的加减混合运算(第3课时)一、学生起点分析知识技能基础:学生在前面已经学习了有理数加减混合运算,能够综合运用有理数的意义及其加法、减法的有关知识,解决简单的实际问题.活动经验基础:在相关知识的学习过程中,学生已经经历了观察、抽象、计算等活动,解决了一些简单的现实问题,感受到了有理数的意义和作用,体会到数学与现实生活的联系;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力.二、教学任务分析本节设置了一个丰富的现实情境一—流花河的水文资料,并据此资料,提出相关问题,综合运用有理数及其加法、减法的有关知识对现实问题进行讨论,进一步体会数学和现实生活的联系.通过对流花河一周内的水位变化的数据信息进行分析,判断一周中每天河流水位情况,继而用折线统计图表示本周的水位情况,让学生体会用数学的方法对生活中的问题进行合理判断,并学会用数学工具直观地表示事物的变化情况.它对学生进一步理解有理数加减运算,提高运用知识解决实际问题能力,激发学习数学的热情具有重要作用.本节教学目标为:教学目标:(1)培养学生的动态观察、对比、分析生活问题的能力;让学生能综合运用有理数及其加、减法的有关知识灵活地解决简单的实际问题.(2)在师生、生生的交流活动中,复习巩固加减运算,逐步把学生牵引到对较复杂数据的灵活处理.使学生感受到折线统计图确实可以直观地反映事物的变化情况.(3)让学生经历和体验用所学的知识解决实际生活中问题的乐趣,感受到有理数运算的实用性,增强学生学好数学的信心.三、教学过程设计本节课设计了六个教学环节:第一环节:课前准备一一收集资料;第二环节:情境引入;第三环节:合作学习;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业.第一环节课前准备活动内容:对学生有理数的加减运算的掌握情况进行检测,,并让学生收集一些与上课相关的资料(新闻与水文资料).活动目的:复习的目的是让学生对已有知识进行补充与完善,为新一次的挑战作好准备.收集资料的目的是丰富学生对背景资料的学习,减少学习的障碍.活动的实际效果:通过前面的学习学生对有理数的加减运算普遍掌握得不错,并收集了丰富的新闻和水文资料.第二环节:情境引入引例1:大湖水库平均水位为62.6米,今年七月,由于久旱无雨,大湖水库水位降到了历史最低水位51.5米,而八月的连续降雨又使水位创历史新高75.3米.若取警戒水位73.4米记作O点,那么最高水位75.3米可记作米,最低水位51.5米可以记作米,平均水位62.6米可以记作米.引例 2:小华是一个理财小能手,上周末他数了数自己的零花钱共有120元,下表是小华本周零花钱记录情况,+号表示当天的零花钱有节余,-号表示当天的零花钱超出预算:(2)本周末小华的零花钱总数比上周末多还是少?活动目的:创设丰富的现实情境,让学生体验所学知识与现实世界的联系,引起学生对学习内容的兴趣.活动的实际效果:学生独立观察思考后与交流组内的同学交流,然后全组内发表看法进行交流.有助于培养学生独立思考、善于与人合作的习惯和语言表达能力,运用数学解决简单问题的能力.第三环节:合作学习上图是流花河的水文资料(单位:米)流花河的警戒水位记为0点,那么其他数据可以分别记为什么?2.下表是小明记录的今年雨季流花河一周内的水位变化情况(上周末的水位达到警戒水位).(1)本周哪一天流花河的水位最高?哪一某某位最低?它们位于警戒水位之上还是之下?与警戒水位的距离分别是多少?(2)与上周末相比,本周末流花河水位是上升了还是下降了?(3)请完成下面的本周水位记录表:活动目的:通过老师指导,学生之间的交流,讨论,思维水平及思维方法灵活多样,促进思维的提高,培养学生的“数感”.活动的实际效果:学生分组讨论,相互交流,取得一致意见,并做汇报.培养学生语言表达能力,运用有理数的加减法解决实际问题,培养学生学习兴趣.学生表现得都非常出色,积极地动脑筋思考问题,能大胆表明自己的观点.第四环节:练习提高1.光明中学初一(1)班学生的平均身高是160厘米.(1)下表给出了该班6名同学的身高情况(单位:厘米),试完成下表:(3)最高和最矮的学生身高相差多少?2. 9.11事故后,美国股市出现狂跌,股市指数一度跌到历史最低点,后经政府宏观调控,稍有反弹,下表是某周的股市指数升跌情况,+号表示指数比头一天上升,-号表示指数比头一天下跌:(2)本周五的股市指数比上周五的股市指数高还是低?(3)若将上周五的股市指数即为O点,请你画出本周的股市指数折线图。
七年级数学第二章有理数及其运算知识总结+教师用
有理数及其运算知识总结一、本章知识概述本章所学习的是有理数及其运算,我们可以将本章的内容分为三大部分:第一部分:主要内容是有理数的有关概念.首先是理解有理数的意义及分类,判断一个数是正数还是负数,运用正、负数表示生活中具有相反意义的量.其次是认识数轴,用数轴上的点表示有理数,借助数轴认识相反数的概念及互为相反数的一对数在数轴上的位置关系,利用数轴比较有理数的大小.第三是理解绝对值的概念及求一个数的绝对值,利用绝对值比较两个负数的大小,通过应用题解决实际问题,体会绝对值的意义和作用.第二部分:学习有理数的加减法运算,通过探索有理数加法法则和运算律的过程,理解有理数的加法法则和运算律,利用有理数的加法法则进行有理数的加法运算,并利用运算律简化运算;通过探索有理数减法法则的过程,理解有理数的减法法则,利用有理数的减法法则进行有理数的减法运算;利用有理数的加、减法法则进行包括整数、分数或小数的有理数的加减混合运算,并适当利用运算律简化运算;综合运用有理数及其加法、减法的有关知识,解决简单的实际问题,体会数学与现实生活的联系.第三部分:主要内容是有理数的乘、除、乘方运算及有理数的加、减、乘、除、乘方混合运算.经历探索有理数乘法法则及运算律的过程,发展观察、归纳、猜测、验证等能力 .根据有理数乘法法则进行有理数的乘法运算,运用乘法运算律简化计算;根据有理数除法法则进行有理数的除法运算,求有理数的倒数;根据有理数乘方的意义进行有理数的乘方运算,通过实例感受当底数大于1时,乘方运算结果的快速增长.根据有理数混合运算顺序的规定,进行有理数加、减、乘、除、乘方的混合运算,在运算过程中,合理使用运算律简化运算;使用计算器进行有理数的加、减、乘、除、乘方运算,使用计算器进行实际问题的复杂运算.二、重点知识归纳及讲解1、正数和负数的概念比0大的数叫做正数;在正数前面加上“-”号的数叫做负数;0既不是正数,也不是负数.为了突出数的符号,可以在正数前面加“+”号,一般地“+”号往往省略不写,但负数前面的“-”号不能省略.对于正数和负数的概念,不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数.2、有理数的概念及分类整数和分数统称为有理数:正数、负数和零也统称为有理数.整数包括正整数、零和负整数、分数包括正分数和负分数;正数包括正整数和负整数;负整数包括负整数和负分数.到目前为止,我们学过的数细分有五类:正整数、正分数、零、负整数、负分数,因为有限小数和无限循环小数可以化为分数,所以把有限小数和无限循环小数都看作分数.有时为了研究的需要,整数也可以看作是分母为 1的分数,但本章中的分数是指不包括分母是1的分数.通常把正整数和零统为非负数;负数和零统称为非正数;正整数和零统称为非负整数,即为自然数;负整数和零统称为非正整数.3、数轴的概念及画法规定了原点、正方向和单位长度的直线叫做数轴.数轴的概念中包含有三层含义:一是说数轴是一条直线,可以向两端无限延伸;二是说数轴具有原点,正方向和单位长度三要素,三者缺一不可;三是说数轴原点的选定,正方向的取向、单位长度大小的确定,是根据实际需要规定的.画数轴的步骤:(1)画一条直线,一般画成水平的直线;(2)在直线上选取一点为原点,用实心点表示,在原点下边标上0;(3)用箭头表示正方向,一般规定向右为正;(4)选取适当的长度为单位长度,用细短线画出,并在下边标上对应的数.4、相反数的概念如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数,特别地,0的相反数是0.在数轴上,表示互为相反数的两个点,位于原点的两侧,且与原点的距离相等,这就是相反数的几何意义.一般地,数a的相反数是-a,这里a表示任意一个数,可以是正数、负数或零,还可以代表任意一个代数式,表示或求一个数的相反数,只要在这个数的前面添上一个“-”号就可以了.相反数是成对出现的,不能单独存在,单独的一个数不能说是相反数;不能理解为只要符号不同的两个数就互为相反数,只有符合不同的两个数是说除了符号不同以外完全相同.5、绝对值的概念在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,数a的绝对值记作“|a|”.正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0,这就是绝对值的代数意义,也可表示为:6、绝对值的有关性质(1)对任意有理数a,都有|a|≥0;(2)若|a|=0,则a=0;(3)若|a|=|b|,则a=b或a=-b;(4)若|a|=b(b>0),则a=±b;(5)若|a|+|b|=0,则a=0且b=0;(6)对任意有理数a,都有|a|=|-a|.7、有理数大小的比较法则在数轴上表示的两个数,右边的数总比左边的数大;正数都大于 0,负数都小于0,正数大于一切负数;两个负数,绝对值大的反而小 .8、有理数加法法则同号两数相加,取相同的符号,并把绝对值相加 .异号两数相加,绝对值相等时和为 0;绝对值不等时,取绝对值较大的数的符号,并把较大的绝对值减去较小的绝对值.一个数同 0相加,仍得这个数.9、有理数加法运算律加法交换律: a+b=b+a加法结合律: (a+b)+c=a+(b+c)10、有理数减法法则减去一个数,等于加上这个数的相反数,即: a-b=a+(-b).11、代数和的意义几个正数或负数的和叫做代数和,代数和一般用省略加号、括号的和的形式来表示,代数和不仅表示有理数相加的结果,而且还可表示加法运算.12、有理数加减混合运算步骤(1)把加减混合运算统一成加法;(2)写成省略加号、括号的代数和;(3)利用加法法则及运算律进行计算.13、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同零相乘都得0.14、多个非零因数相乘,积的符号规律n个不等于零的有理数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数的个数为偶数个时,积为正.n个数相乘,有一个因数为0,积就为0.15、有理数乘法的运算律(1)交换律:两个因数相乘,交换因数的位置,积不变.即a·b=b·a;(2)结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变,即(a·b)·c=a·(b·c);(3)分配律:一个数同两个数的和相乘,等于把这个数分别同这两数相乘,再把所得的积相加.即a(b +c)=ab+ac.16、倒数的概念乘积为1的两个有理数互为倒数.即当a·b=1时,a与b互为倒数.由于任何一个有理数与0的积为0,不可能是1,所以0没有倒数.倒数还可以说成是:1除以一个数(除数不等于0)的商叫做这个数的倒数,如a≠0,a的倒数为1a.17、有理数的除法法则除以一个数等于乘以这个数的倒数.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都得0.18、利用除法化简分数除法可以写成几种不同的形式,例如:6÷3可以写成63,还可写成6∶3.说明除法可以表示成分数和比的形式;反过来,分数和比可化为除法,由于除法、分数和比可以互化,所以可以利用除法化简分数.19、乘方的概念求几个相同因数的积的运算,叫做乘方,即在n a中,a叫做底数,n叫做指数,n a叫做幂.na的读法有两种:(1)读作a的n次幂.(2)读作a的n次方.20、有理数的乘方法则正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.21、学记数法a 的形式,其中a的整数位数只有一位,这种记数的方法,叫做学记数把一个大于10的数记成10n法.22、有理数的混合运算有理数的运算中,加减为一级运算,乘除为二级运算,乘方(及开方——乘方的逆运算,以后将讲到)为三级运算.对于有理数的混合运算,要特别注意运算顺序及正确使用符号法则确定各步运算结果的符号.有理数的运算顺序是:先算乘方,再算乘除,最后算加减,对于同级运算,一般从左到右依次进行.如果有括号,就先算括号内的,且一般先算小括号内的,再算中括号内的,最后算大括号内的.如果能利用运算律简化计算,可变更上面的运算顺序,灵活处理.三、难点知识剖析1、负数的产生及其意义随着社会的发展,小学学过的自然数、分数和小数已不能满足实际的需要,为了满足实际需要,引入了负数、负数是由于实际需要产生的,负数也是客观存在的数 .正数和负数通常表示具有相反意义的量,若正数表示某种意义的量,则负数就表示其相反意义的量,反之亦然 .2、数集的概念把一些数放在一起,就组成一个数的集合,简称数集、所有的有理数组成的数集叫做有理数集,类似地,所有整数组成的数集叫做整数集,所有正数组成的数集叫做正数集,所有负数组成的数集叫做负数集,等等 .3、多重符号的化简规律单独一个有理数前面的“+”号和“-”号,一般都是性质符号,读作“正”号或“负”号 .括号前是“+”号时,去掉括号和“+”号后,括号内的数不变,括号前是“-”号时,去掉括号和“-”号后,括号内的数就变成它的相反数 .在一个数的前面添加一个“+”号,仍然与原数相同;在一个数的前面添加一个“-”号,就成为原数的相反数 .4、两个负有理数的大小比较两个负有理数的大小比较与其它数一样,可以利用数轴找准两个负有理数在数轴上的对应点,右边的数总比左边的数大 .两个负有理数的大小比较,还可以利用绝对值,求这两个数的绝对值,比较两个数绝对值的大小,绝对值大的反而小 .5、有关绝对值的计算及化简灵活正确运用绝对值的代数意义及有关性质 .6、积的符号的确定方法有理数乘法与算术中的乘法的区别在于积的符号.几个正数与负数相乘时积的符号法则:几个不等于0的有理数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数有偶数个数,积为正;几个数相乘,有一个因数为0,积为0,根据积的符号法则,在有理数乘法中,不管有多少个不为0的数相乘,都应该首先根据负因数的个数一次性地先确定积的符号,这样做的好处是既简练又准确.7、几个非0的有理数相除,商的符号的确定几个非0的有理数相除,商的符号由负数的个数决定:当负数的个数为奇数时,商为负;当负数的个数为偶数时,商为正.如: (-12)÷(-2)÷(-3)——三个负数:负=-(12÷2÷3)=-2(-12)÷2÷(-3)——两个负数:正=+(12÷2÷3)=28、有理数混合运算中应注意的问题(1)要注意运算顺序;(2)要灵活运用运算定律进行简便运算,不要搞错符号,特别是乘方的符号;(3)要灵活进行小数、分数的互化;(4)互为相反数的和,互为倒数的积,有因数为零,特殊运算先行结合.典型例题例1:一个物体沿着南北两个相反方向运动,如果把向南的方向规定为正,那么走 6km,走-4.5km,走0km的意义各是什么?分析:正数与负数可表示具有相反意义的量,正数表示向南运动,则负数表示向北运动 .0表示原地不动,0表示正数与负数的分界,在实际问题中也有确定的意义.解:走 6km表示物体向南走6km;走- 4.5km表示物体向北走4.5km;走 0km表示物体原地不动.例2:某老师把某一小组五名同学的成绩简记为:+ 10、-5、0、+8、-3,又知记为0的实际成绩表示90分,正数表示超过90分,则这五位同学的平均成绩为多少分?分析:由题意先求出这五位同学的实际成绩,如简记为+ 10的学生实际成绩为100,然后再求平均成绩.解:依题意知,五位同学在实际成绩分别为:100、85、90、98、87,其平均成绩为:1(10085909887)92().5++++=分例3:如图所示的数轴上, A、B、C、D、E各点分别表示什么数?分析:根据各点在原点的左侧,右侧还是在原点上,来确定数是负数,正数还是 0,根据各点距离原点多少个长度单位,来确定数的值.解:点A表示数132;点B表示数12;点C表示数0;点D表示-3;点E 表示数142-. 例4:在数轴上画出表示下列各数的点,并用“<”连接起来;分析:首先画出数轴,三要素要齐全;再把各数在数轴上的对应点找出来;然后根据这些数在数轴上的位置顺序比较大小,再用“<”连接起来.解:这些数在数轴上的表示如图所示.它们从小到大的排列为:111132101242242<-<-<<<< 例5:利用绝对值比较下列有理数的大小 .(1)-0.6,-60234(2) ,,345--- 分析:比较负数的大小,先求出各数的绝对值,关键是比较绝对值的大小,绝对值大的反而小,比较分数大小,一般要化成同分母的分数来比较 .解:(1)|-0.6|=0.6, |-60|=60∵ 0.6<60,∴ -0.6>-60.224033454448(2) ||||||336044605560404548 ,606060234 .345---<<∴->->-==,==,==, 例6:已知 |a +2|+|b -3|=0,求a 和b 的值.分析:由绝对值的非负性可知, |a +2|≥0,|b -3|≥0,而且只有当|a +2|和|b -3|都等于0时,|a +2|+|b -3|=0才成立,因为只有0的绝对值等于0,所以a=-2,b=3.解:∵ |a +2|+|b -3|=0,又 ∵ |a+2|≥0,|b -3|≥0,∴ |a +2|=0,|b -3|=0.∴ a +2=0,b -3=0.∴ a=-2,b=3.例7:计算分析:进行有理数加减混合运算时,应先把加减运算统一成加法运算,再写成省略加号和括号的代数和,最后运用有理数的加法法则及运算律进行计算,能够简化运算的尽量简化运算 .解:(1)原式=(-5)+(-3)+(-9)+(+7)=-5-3-9+7=(-5-3-9)+7=-17+7=-1034210(2)()()()()10757++++-+-原式=例8:计算题:2322232183(1)(1)(1)(0.51);362141(2)(3)12(2).3(2)÷-+⨯------÷--- 268491(1)()()3721168471 76834922 (2)29(8)1⨯-+⨯---++-⨯-----解:原式==121=1684-6原式====-1 注:(1)要按运算顺序进行计算.(2)乘方时要看清楚底数与指数,先确定幂的符号.例9:计算题:242112518(1){[(2)]()(2)}();23639131(2)0.25()(1)(12 3.75)24.283--÷---÷--÷-⨯-++-⨯112518(1){[2)]()2)}()23639251 []631 3 3131 (2)16(1)124224 3.7521683+÷-+÷-⨯⨯⨯⨯-⨯⨯-+⨯+⨯-⨯解:原式=169=(-)+2(-)589=(-5+2)(-)889=(-)(-)38=原式=4 1+33+56-900== 注:第(1)小题先由里及外逐层去掉括号,同时把除法转化为乘法进行运算,第(2)小题应用乘法分配律使运算得以简化.例10:用学记数法表示下列各数.(1)270.3; (2)3870000;(3)光的速度约为300 000 000米/秒;(4)0.5×9×1000000; (5)10.解:(1)270.3=2.703×100=2.703×102.(2)3870000=3.87×1000000=3.87×106.(3)300000000=3×100000000=3×108.(4)0.5×9×1000000=4.5×106.(5)10=1×10.说明:学记数法a ×10n 中,a 是小于10且大于等于1的数,n 比原数位的整数位数少1,比如:3870000000是10位数,指数n 就是9.这就是说n 等于原数的整数位数减1,而不是比所有的数位和少1.如179.4=1.794×102,而不是179.4=1.794×103.例11:某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6 ℃,若该地地面温度为21 ℃,高空某处温度为-39 ℃,求此处的高度是多少千米?解: 1×{[21-(-39)]÷6}=1×(60÷6)=10(千米)因此:此处的高度是10千米.。
北师版初中七上数学2.11 有理数的混合运算(课件)
探索&交流
(1)小飞抽到了
,他运用下面的方法凑成
了24:7×(3+3÷7)=24.如果抽到是
,
你能凑成24吗?如果是
呢?
(2)请将下面的每组扑克牌凑成24.
例题欣赏 ☞
例题&解析
例2.若a,b互为相反数,c,d互为倒数,m的绝对值是2,求2a+ 3cd+2b+m2的值. 解:因为a,b互为相反数,c,d互为倒数,m的绝对值是2,
×
+
=502.
练习&巩固
小结&反思
有理数的混合运算要把握两点: 一是要考虑运算顺序; 二是要善于观察题目中各数之间的特殊关系,能够运用运算律, 使运算快捷而准确.
所以a+b=0,cd=1,m2=4. 所以2a+3cd+2b+m2
=2(a+b)+3cd+m2 =0+3+4=7.
例题欣赏 ☞
例题&解析
例4.已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1. (1)求2※4的值; (2)求(1※4)※(-2)的值; (3)任意选择两个有理数(至少有一个是负数),分别填入下面的□ 和○中,并比较它们的运算结果:□※○和○※□; (4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出 来.
(2)两数相除同号得正,异号得负;并把绝对值相除;
(3)零除以任何非零的数为零.
有理数的乘方符号法则
(1)正数的任何次幂都是正数;
(2)负数的奇次幂为负,偶次幂为正.
知识点一 有理数的混合运算
探索&交流
计算:
-3-{[-4+(1-1.6×
5 8
)]÷(-2)}÷3
带有括号的运算
—从内到外依次进行运算
2.11 有理数的混合运算 课件1(北师大版七年级上)
“24点”游戏
扑克牌(去掉大小王),根据牌 面上的数字进行混合运算(每张牌只 能用一次),使得运算结果为24或- 24。其中红色代表负数,黑色代表正 数,J、Q、K分别表示11、12、13。
17
“24点”游戏
扑克牌(去掉大小王),根据牌 面上的数字进行混合运算(每张牌只 能用一次),使得运算结果为24或- 24。其中红色代表负数,黑色代表正 数,J、Q、K分别表示11、12、13。
乘法
除法
同号取 异号取 同号取 异号取 除以一个数等于
5
有理数的混合运算
加法 减法
符号 同号取相同的符号 异号取绝对值大的符号 计算绝对值 绝对值相加 绝对值相减
减去一个数等于加上这个数的相反数
乘法
除法
同号取 异号取 同号取 异号取 除以一个数等于
6
有理数的混合运算
加法 减法
符号 同号取相同的符号 异号取绝对值大的符号 计算绝对值 绝对值相加 绝对值相减
2
11
2 5 解法二:原式 9 9 3 9
6 5
11
11
做一做,自主探究 选择填空
1 1 ①计算 3 3 的结果是( A ) 3 3
A. 9 B.-9 C.1 D.-1 2 2 ②计算 2 3 2 3 的结果为( D ) A.-54 B.-18 C.-72 D.0 2 3 ③ 22 2 23 2 的结果为( C )
2
正确解法:
4 解:原式 4 2 9
4 2 9
14 9
4 2 1 解:原式 9 3 3
4 2 9 9
北师大版七年级数学上册教学设计《第二章有理数及其运算2.1有理数》
北师大版七年级数学上册教学设计《第二章有理数及其运算2.1有理数》一. 教材分析《北师大版七年级数学上册》第二章“有理数及其运算”是整个初中数学的基础,而2.1节“有理数”更是这一基础中的基础。
本节内容主要介绍了有理数的定义、分类和基本性质,为后续的数的运算、方程的求解等知识点奠定了基础。
本节课的内容对于学生来说,不仅需要理解和掌握有理数的概念,还需要培养他们的逻辑思维能力和数学语言表达能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对实数的概念有一定的了解。
但是,对于有理数的定义、分类和性质,他们可能还比较陌生。
因此,在教学过程中,需要从学生的实际出发,循序渐进地引导他们理解和掌握有理数的概念,并能够运用有理数解决实际问题。
三. 教学目标1.理解有理数的定义,掌握有理数的分类和基本性质。
2.能够运用有理数解决实际问题,培养学生的数学应用能力。
3.培养学生逻辑思维能力和数学语言表达能力。
四. 教学重难点1.有理数的定义和分类。
2.有理数的基本性质。
3.有理数的运算。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究有理数的定义和性质。
2.利用实例和实际问题,让学生感受有理数在生活中的应用。
3.采用小组合作学习的方式,培养学生的团队协作能力。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备一些实际问题,用于引导学生运用有理数解决。
七. 教学过程1.导入(5分钟)利用问题驱动的方式,引导学生回顾实数的概念,进而引出有理数的定义。
例如:“你们知道实数包括哪些类型吗?那么有理数是实数的一部分,它又是怎样的数呢?”2.呈现(15分钟)通过讲解和示例,呈现有理数的定义、分类和基本性质。
在此过程中,引导学生积极参与,主动提问,以理解有理数的概念。
3.操练(15分钟)让学生通过解决实际问题,运用有理数进行计算。
例如:“小明有2.5个苹果,小华给了小明1个苹果,请问小明现在有几个苹果?”4.巩固(10分钟)通过小组合作学习,让学生进一步巩固有理数的定义和性质。
七年级数学 第二章 有理数及其运算2.11 有理数的混合运算作业1
第三页,共十二页。
5.-12-(-13)=_-_16__,(-2)3÷(-26)=__18__.
6.计算(jìsuàn):32×3.14+3×(-9.42)=_0___.
7.计算:
(1)-10+8÷(-2)2-(-4)×(-3);
(2)4×(-3)2-5×(-2)3+6;
352
9.按照如图所示的操作步骤,若输入x的值为-2,则输出的值为____.7
输入x → 平方 → 乘以3 → 减去5 → 输出
10.一架直升机从高度为600米的位置开始,先以20米/秒的速度垂直上升60秒,后以12米/
秒的速度垂直下降100秒,这时直升机所在的高度是_______.
600米
11.某公司去年1~3月平均每月亏损1.2万元,4~6月平均每月盈利1.5万元,7~10月平均每月盈 利1.8万元,11~12月平均每月亏损2万元.则这个公司去年总的盈亏(yíngkuī)情况是 _______________.
A.-9 1B.15 C.-18 D.21
15.如果四个有理数之和的3是 4,其中三个数是-12,-6,9,那么第四个数是(
D
)
16.如果|aA-.1-|=20,B(.b+-3)32=0C,.那-么4ba+D1.的4值是( A )
17.当 n 为正整数时,-15[2-(-1)n]的值为( C )
A.-15
(3)取每行数的第9个数,计算这三个数的和.
解:(1)后面一个数是前面(qián mian)一个数乘以-2得到的. (2)第②行每个数是第①行每个数除以-2得到的;第③行每个数是第①行每个数加1得到的. (3)2×(-2)8+2×(-2)8÷(-2)+2×(-2)8+1=769.
2018-2019学年北师版七年级数学上册《第二章有理数及其运算》单元测试卷及答案
2018-2019学年北师版七年级数学上册《第二章有理数及其运算》单元测试卷及答案预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制2018-2019学年北师版七年级数学上册单元测试卷班级姓名第二章有理数及其运算一、选择题(每小题3分,共30分)1.-13的倒数的绝对值是( )A .-3B .13C .-13D .32.检验4个工件,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的工件是( )A .-2B .-3C .3D .53.在-12,0,-2,13,1这五个数中,最小的数为( )A .0B .-12C .-2D .134.下列说法中,正确的个数有( )①-3.14既是负数,又是小数,也是有理数;②-25既是负数,又是整数,但不是自然数;③0既不是正数也不是负数,但是整数;④0是非负数.A .1个B .2个C.3个D.4个5.下列运算结果正确的是() A.-87×(-83)=7 221B.-2.68-7.42=-10C.3.77-7.11=-4.66D.-101102<-1021036.据中国电子商务研究中心监测数据显示,2018年第一季度中国轻纺城市场群的商品成交额达27 800 000 000元.将27 800 000 000用科学记数法表示为()A.2.78×1010B.2.78×1011C.27.8×1010D.0.278×10117.一件商品的成本价是100元,提高50%后标价,又以8折出售,则这件商品的售价是()A.150元B.120元C.100元D.80元8.如图,数轴上的A,B,C三点所表示的数分别为a,b,c,其中AB=B C.如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在()A.点A的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边9.式子? ????12-310+25×4×25=? ??12-310+25×100=50-30+40中运用的运算律是( )A .乘法交换律及乘法结合律B .乘法交换律及乘法对加法的分配律C .加法结合律及乘法对加法的分配律D .乘法结合律及乘法对加法的分配律10.有理数a ,b 在数轴上的位置如图所示,下面结论正确的是( )A .b -a <0B .ab >0C .a +b >0D .|a |>|b |二、填空题(每小题4分,共16分)11.-23的相反数是________,绝对值是________,倒数是________.12.在-1,0,-2这三个数中,最小的数是________.13.某品牌汽车经过两次连续的调价,先降价10%,后又提价10%,原价10万元的汽车,现售价________万元.。
七年级数学上册 第二章 有理数及其运算 1 有理数优秀教案 (新版)北师大版
1.内容结构特点本章是在小学非负有理数知识的基础上引进负数的.首先介绍有理数的基本概念,然后再学习有理数的运算,并用有理数的知识解决实际问题.本章知识的引入注重从实际情境入手,通过学习有理数的分类、相反数、数轴、绝对值、有理数大小的比较,理解并掌握有理数的概念,初步渗透数形结合的数学思想,通过探索归纳的方式,寻求有理数的加法、减法法则和运算律,通过探索规律的方式归纳总结有理数的乘、除法法则和运算律,在现实背景中理解有理数乘方的意义,通过24点游戏的设立,训练基本运算能力,培养思维能力,通过计算器的使用,既使学生解脱了繁杂的运算,同时又培养了学生探索数字规律的能力.2.教材的地位及作用数是学习代数式、方程、不等式、函数等内容的基础.本章是初中阶段对数学习的一部分.在小学阶段学生已经学习了算术数,积累了初步的数感、符号感和基本的运算能力,本章将进一步探索有理数的相关知识并解决实际问题.教材通过现实生活提供的问题背景,给学生提供了归纳、猜想、验证、推理、计算、交流等数学活动机会,使学生在活动中发现问题、探索规律,促进了学生对知识的理解和掌握.所以,本章内容在知识的掌握、数学思想方法的渗透、学习能力的培养等方面都是非常重要的.3.教学重点与难点教学重点:(1)有理数的概念,特别是有理数的分类、绝对值、相反数等的概念.(2)有理数大小的比较方法,探索有理数四则运算法则并熟练计算.(3)用科学记数法表示数.(4)应用有理数的相关知识解决实际问题.教学难点:(1)有理数的概念和有理数的运算.(2)数形结合思想的应用.4.教学目标(1)在具体情境中,理解有理数及其运算的意义.(2)能用数轴上的点表示有理数,会比较有理数的大小.(3)借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值.(4)经历探索有理数运算法则和运算律的过程;掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主);理解有理数的运算律,并能运用运算律简化运算.(5)会利用科学记数法表示数.(6)能运用有理数及其运算解决简单的实际问题.5.教学建议第一,教师应尽量从实际问题引入有理数的概念,借助有趣的情境和生活实例帮助学生理解概念,使学生正确地理解正数和负数是表示具有相反意义的量.也可让学生自己从生活中寻找素材,加深理解;第二,进行有理数运算教学时,鼓励学生自己探索运算法则和运算律,并在与同伴交流的过程中逐步形成较为规范的解题格式.在该过程中,提倡算法多样化,教学时应减少繁难的笔算,对于出现的繁杂运算,鼓励学生使用计算器;第三,要重视应用有理数及其运算解决实际问题的教学,让学生会用正负数表示实际问题中的量,能用运算的结果作出合理的解释,并赋予实际意义.1 有理数1课时2 数轴1课时3 绝对值1课时4 有理数的加法2课时5 有理数的减法1课时6 有理数的加减混合运算3课时7 有理数的乘法2课时8 有理数的除法1课时9 有理数的乘方2课时10 科学记数法1课时11 有理数的混合运算1课时12 用计算器进行运算1课时教学重点与难点教学重点:1.理解并掌握有理数的概念.2.会用正、负数表示生活中具有相反意义的量.教学难点:有理数的分类.学情分析认知基础:学生在小学已经学习并掌握了非负有理数的意义,对应用非负有理数表示生活中的量比较熟悉,并且已经熟练地掌握了非负有理数的四则运算法则及运算律,能规范条理地表述运算过程,初步具有了有条理地思考和书面表达能力,这些都为本章的学习奠定了基础.活动经验基础:北师大版的小学数学重视学生的生活经验,密切数学与现实的联系,教材对重要的数学内容都是按照“问题情境——建立模型——解释与应用”的叙述方式编排的,学生在学习中掌握了基本的数学知识和方法,形成了良好的数学思维习惯和应用意识,有了一定的解决问题的能力,同时学生在研究具体问题的过程中自主地参与、探究和交流,具备了一定的主动参与、合作意识和初步的观察、分析、抽象概括的能力.教学目标1.了解正数与负数是从实际需要中产生的,并会判断一个数是正数还是负数.2.会用正、负数表示具有相反意义的量.3.在负数概念的形成过程中,培养学生的观察、归纳与概括的能力.教学方法创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索.通过小组交流合作的形式,构建以教师为主导,学生为主体自主探索的课堂学习环境,使学生在探索合作的过程中掌握知识,提高技能,形成自己的观点.教学过程一、引入新课设计说明教材例题贴近学生生活实际,生动活泼,通过对该例设置问题串,由浅入深,引导学生在轻松熟悉的气氛中进行思考,既复习旧知,作好新知学习的铺垫,同时鼓励学生大胆想象,充分进行思考、交流.阅读教材本节起始部分的内容,回答下列问题:问题1:你能很快地为这两个队排一下名次吗?你的依据是什么?学生排名次的依据可能不唯一,如:数笑脸的个数、计算总得分等,只要学生能充分思考,正确表达出排名次的依据,就进行表扬.问题2:在完成表格后,你有什么发现?学生通过填“答错题的得分”这一栏,发现“-3”“-2”,这种数字是我们没有学过的数,它是什么数?表示什么意义?和我们以前学过的数有什么关系?——引入新课.教学说明以上问题从学生已有的知识入手,以问题为载体,自然理顺学生解决问题的思路,问题1和问题2对于开拓学生解题思维有很大帮助,使个性化思维得到鼓励和发展,同时引入了新课的学习.实践证明,该设计调动了学生的积极性,成功引入了新课.二、讲授新课1.达标导学,初探新知通过上面的问题我们看到,生活中的有些量用我们以前学过的数不能表示了,这些比0小的数,可以用带有“-”的数来表示.比如-10,我们读作“负10”.对于比0大的数,我们用带有“+”的数来表示.如+10,读作“正10”.注意:“+”常常可以省略.问题:“-”可以省略吗?为什么?学生回答:不可以省略.“+”和“-”是表示数的性质符号,“-”省略了,数的性质就改变了.2.小组讨论,理解新知生活中你见过带有“-”的数吗?设计说明安排这一活动的目的,主要为了鼓励学生自己寻找生活中的例子,并在寻求实例的过程中体会负数的引入是实际生活的需要.同时,可以根据实际需要,选择一些学生熟悉的实例展开讨论.如,零上温度与零下温度,海拔高于海平面的高度与海拔低于海平面的高度,等等.像5,1.2,23…这样的数叫做正数,它们都比0大. 在正数前面加上“-”的数叫做负数,如-10,-3,…问题1:正数和负数有什么关系?根据学生关于具有相反意义的量的讨论,使学生通过对数学模型的观察、归纳、概括、交流等数学活动,进一步理解怎样用正、负数表示现实生活中具有相反意义的量,掌握正、负数的意义,培养学生的正、负数的数感.问题2:0是正数还是负数?学生的回答会多种多样,甚至有的学生无法回答,这里教师明确告诉学生,引入负数以后,“0”的意义就不仅仅表示“没有”了,它还是正、负数的分界,是“基准”.问题3:带“-”的数一定是负数吗?该问题学生回答有一定困难.对于正数和负数的概念,要提醒学生注意不要认为带“+”的数就是正数,带“-”的数就是负数.如-a 不一定是负数.但此处不易引申太多.3.例题处理,巩固新知设计说明通过例题的教学,要求学生能正确地表达出负数所表示的实际意义以及用正、负数表示相反意义的量;同时,了解并不是所有的基准都必须为0.教材实例(例题):问题1:在以上3道题中正数、负数分别表示什么量?问题2:每道题的基准分别是什么?问题1根据学生的回答强调,习惯上人们经常把零上的温度、上升的高度、向东的行程等规定为正的,而把零下的温度、下降的高度、向西的行程等与前面意义相反的量规定为负的;问题2要求学生注意并不是所有的基准都必须为0,如第1小题的基准为转盘静止不动,第2小题的基准为一只乒乓球的标准质量,第3小题的基准为10 kg.练习题组设计说明为了让学生更好地理解巩固正数和负数是表示一对意义相反的量,在例题讲解完成后及时补充练习,同时通过填空题的形式规范书写格式,包括正、负数的书写及填空题的单位.通过该练习培养学生严谨规范地书写.练习完成后教师可提问学生各题中互为相反意义的量分别是什么?基准分别是什么?帮助学生更全面地理解本节的重点.(1)海平面上的高度记为正,海平面下的深度记为负,则海平面下150米记作________;(2)盈利100元记作+100元,那么亏损100元记作________;(3)如果零上5 ℃记作+5 ℃,那么零下5 ℃记作________;(4)某仓库运进面粉7.5吨记作+7.5吨,那么运出3.8吨应记作________;(5)东西为两个相反方向,如果-4米表示一个物体向西运动4米,那么+2米表示________,物体原地不动记为________;(6)向南走-4米,实际上是向________走了________米.4.小组活动,再探新知现在大家分组活动,列举我们已学过的数,然后将列举的所有数适当地分成几组,并说明这样分组的理由.有理数的分类:有理数(按定义)⎩⎪⎨⎪⎧ 整数⎩⎪⎨⎪⎧ 正整数零负整数分数⎩⎪⎨⎪⎧ 正分数负分数 有理数(按性质)⎩⎪⎨⎪⎧ 正数⎩⎪⎨⎪⎧ 正整数正分数零负数⎩⎪⎨⎪⎧ 负整数负分数整数和分数统称有理数.设计说明有理数的概念是本节课的重点内容,通过该题组使学生充分理解有理数的分类.把下列各数填入相应数集里:3,-2,3.5,-23,0,-3.14,-10% 正数集合:﹛ …﹜;负数集合:﹛ …﹜; 整数集合:﹛ …﹜;有理数集合:﹛ …﹜. 教学说明本过程通过初探、理解、巩固、再探四个环节,使学生在教师的引导下,通过问题的探讨、交流、合作,自主地解决问题,巩固知识.同时练习题组的设计使学生的新知得到了及时地巩固掌握,教学效果良好.三、巩固提高设计说明通过三个练习,使学生对本节课学习过程中易出错和模糊的概念从不同题型加以理解,掌握解题技巧.1.小学学过的小数是不是有理数?属于分类中的哪一类?2.判断下列说法是否正确:(1)一个有理数不是整数就是分数;(2)一个有理数不是正数就是负数;(3)一个整数不是正整数就是负整数;(4)一个分数不是正分数就是负分数.3.议一议:一种商品的标准价格是200元,但随着季节的变化,商品的价格可浮动±10%.(1)±10%的含义是什么?(2)请你算出该商品的最高价格和最低价格;(3)如果以标准价格为标准,超过标准记作“+”,低于标准记作“-”,该商品价格的浮动范围又可以怎样表示?答案:1.有限小数和无限循环小数都是有理数,属于分数;无限不循环小数不是有理数.2.第(1),(4)说法正确.3.(1)±10%的含义是在标准的基础上加价或降价的幅度不超过10%.(2)最高价格为200+200×10%=220(元);最低价格为200-200×10%=180(元).(3)因为220-200=20(元),200-180=20(元),所以这件商品加价或降价的幅度不超过20元,所以这件商品价格的浮动范围又可以表示为±20元. 中考链接:1.在一条东西向的跑道上,小亮先向东走了8米,记作“+8米”,又向西走了10米,此时他的位置可记作( )A.+2米 B.-2米 C.+18米 D.-18米2.如果水库的水位高于标准水位3 m时,记作+3 m,那么低于标准水位2 m时,应记作( )A.-2 m B.-1 m C.+1 m D.+2 m答案:1.B 2.A教学说明本过程仍然先让学生独立思考,再进行小组交流的方式进行展开.课堂上鼓励学生大胆发言,用自己的语言说明理由,进一步培养提高学生的思维表达能力.练习1对于有限小数和无限循环小数都是分数,学生不能很好的说明理由,考虑到为避免喧宾夺主,教学时可视学生情况适当解释.四、总结反思通过本节课的学习,请大家总结我们都学到了哪些数学知识和方法?1.我们知道了为什么要学习负数,学会了用正、负数表示生活中的具有相反意义的一对量,还知道了有理数都包括哪些数及其分类.2.我们还要掌握分类的思想方法.3.学生易困惑的地方:学生对于有理数的分类理解不是很好,易把两种分类混淆和重复,应通过判断题或选择题的形式多加练习.评价与反思本节课设计为学生创设了轻松愉快地自主探索交流的学习环境,四大环节的设计遵循学生的认知规律,重在挖掘学生潜力,给了学生更多的思考空间.教学过程中注重发挥学生的主体作用,培养学生在学习互动过程中学会竞争与合作,增强团队互助合作精神.教学时一直让学生处于发现问题、提出猜想、交流讨论的状态中,用自己的思维方式形成自己对于问题独特地理解和认识.。
北师大版七年级数学上册知识点归纳:第二章有理数及其运算
北师大版七年级数学上册第二章知识点整理北师大版七年级数学上册第二章知识点整理七年级上册第二章有理数及其运算1.有理数:有理数=整数+分数(包括有限小数+无限循环小数)整数=正整数+0+负整数分数=正分数+负分数有理数=正有理数+0+负有理数正有理数=正整数+正分数负有理数=负整数+负分数l 正数的概念:数轴上0右边的数即比0大的数叫正数,形如+1,+0.5,+10.1,0.001…l 负数的概念:数轴上0左边的数,形如-3,-0.2,-100…(负号不能省略).l 0既不是正数也不是负数,0是整数也是偶数.①正负数的表示方法:盈利,亏损;足球比赛胜,负;收入,支出;提高,降低;上升,下降;②不投入不支出,不盈也不亏,海平面的海拔,某一个标准或基准….用0表示;2.数轴:概念:规定了原点,正方向和单位长度的直线数轴是一条可以向两端无限延伸的直线,数轴有三要素:原点,正方向,单位长度;画法:首先画一条直线;在这条直线上任取一点,作为原点;再确定正方向,一般规定向右为正,画上箭头,反方向为负方向;最后选取适应的长度作为单位长度;数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示。
有理数的大小比较:在数轴上表示的两个数,右边的数比左边的数大,正数都大于0,负数都小于0,正数大于负数.3. 相反数:(1)只有符号不同的两个数叫做互为相反数(在数轴上互为相反数的两点位于原点两侧,并且到原点的距离相等),0的相反数是0;a,b互为相反数a+b=0;(2)求一个数的相反数,只要在它的前面添上负号“-”即得原数的相反数,当原数是多个数的和差时,要用括号括起来再添“-”;下面的a,b即可以是数字,字母,也可以是代数式;(3)一般地,数a的相反数是-a,这里的a表示任意一个数,可以是正数、负数、0.4. 绝对值:(1)几何定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值;(2)代数定义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;互为相反数的两个数的绝对值相等.(3)对于任何有理数a,都有a的绝对值≥0 ,即绝对值非负性;若几个数的绝对值的和等于0,则这几个数同时为0;(4)比较两个负数,绝对值大的反而小;5.倒数:(1)乘积为1的两个数互为倒数,所以数a(a≠0) 的倒数是1/a,0没有倒数;(2)求一个整数的倒数,写成这个整数分之一;求一个小数的倒数,先将其化成分数,再求其倒数;求一个带分数的倒数,先将其化为假分数,再求出倒数.(3)用1除以一个非0数,商就是这个数的倒数.6. 有理数的四则运算:⑴加法法则:①同号两数相加,符号不变,把绝对值相加;②异号两数相加,绝对值相等时(即互为相反数的两个数)相加得0;绝对值不相等时,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数;有理数加法运算律:交换律和结合律(互为相反数的可先相加;相加可得整数的可先相加;同分母的分数可先相加;符号相同的可先相加;易于通分的可先相加).⑵减法法则:①减去一个数,等于加上这个数的相反数,依据加法法则②加减混合运算,通过减法法则将减法转化为加法,统一成只含有加法运算的和式;减法没有交换律.⑶乘法法则:①两数相乘,同号得正,异号得负,把绝对值相乘;②任何数同0相乘,得0;(另外1乘任何数都等于这个数本身;-1乘以任何数都等于这个数的相反数.)③几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积为负;当负因数的个数是偶数时,积为正.乘法的运算律:交换律、结合律、乘法对加法的分配律.⑷除法法则:①两数相除,同号得正,异号得负,把绝对值相除;②0除以任何非0的数都得0.③除以一个数,等于乘上这个数的倒数,即 .⑸乘方:①求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n个相同因数乘积的运算;②负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1时,可省略不写;③正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数(奇次幂2n+1,2n-1; 偶次幂2n);0的正整数次幂都是0.⑹混合运算:①从左到右的顺序进行;②先乘方,再乘除,后加减;如有括号,应先算括号里面的;7. 科学记数法(1)把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数,它的值等于原数的整数位数减1,),这种记数方法叫科学记数法;(2)准确数与近似数:与实际完全相符的数是准确数;与实际相接近的数是近似数;(3)精确度:近似数与准确数的接近程度,可以用精确度表示;一般地,把一个数四舍五入到哪一位,就说这个数精确到了那一位;所以,精确度是描述一个近似数的近似程度的量;(4)有效数字:在近似数中,从左边第一个不是0的数字起,到精确的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;。
北师版七年级数学上册作业课件(BS) 第二章 有理数及其运算 有理数的混合运算
19.(阿凡题:1070812)某个体户经营香蕉,7月8日晚库存香蕉0千克,若 进价是2.5元/千克,售价是3.3元/千克,7月9日至7月11日这三天销售情况如 下表:
(1)第一天结束库存香蕉__4__千克,第二天结束库存香蕉__1__千克; (2)①成本:购进量×进价=_3_7_5_元; ②售出额:售出量×售价= 452.1元 ; ③损耗费用:损耗量×进价= 22.5元 ; ④库存费用:库存量×进价=_1_0_元_. 该个体户盈利了吗?请通过分析计算作答.
4.下列计算正确的是( B ) A.-52×(-215)=-1 B.25×(-0.5)5=-1 C.-24×(-3)2=144 D.(35)2÷(1÷259)=253
5.下列计算结果为0的是(B ) A.-42-42 B.-42+(-4)2 C.(-4)2+42 D.-42-4×4
6.计算下列各题: (1)(-3)-(-15)÷(-3); 解:-8
C.-(-2)2×|-12| D.(-3)×(-24)2
11.下列各式结果最大的是( D )
A.3×32-2×22 B.(3×3)2-(2×2)2
C.332-222
D.33×33-23×23
12.计算-3-32+32÷13×3 的结果是( ,b=-(2×4)2,c=-(2-4)2, 则 a,b,c 的大小关系为( B ) A.a<b<c B.b<a<c C.c<b<a D.c<b<a
七年级上册(北师版)数学
第二章 有理数及其运算
2.11 有理数的混合运算
1.有理数的加减乘除混合运算,如无括号则先算_乘__除_, 再算_加__减_;有括号应先算 括号里面的 (先算_小___括号,再算__中__括号, 最后算_大___括号).
七年级数学第二章有理数及其运算知识点总结
第二章 有理数及其运算1、有理数的分类2、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,并能灵活运用.1)任何一个有理数都可以用数轴上的一个点来表示 2)在数轴上表示的两个数,右边的数总比左边的数大 3)正数都大于0,负数都小于0;正数大于一切负数;3、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零1)数a 的相反数是—a(a 是任意一个有理数) 2)0的相反数是0.3)若a 、b 互为相反数,则a+b=0.4、倒数:如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和—1。
零没有倒数.5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
数a 的绝对值记作︱a ︱1) 对任何有理数a ,总有︱a ︱≥0.2)零的绝对值时它本身,也可看成它的相反数,若|a |有理数整数分数正整数(自然数)零 负整数 正分数 负分数正数 零 负数正整数 正分数负整数 负分数有理数=a,则a≥0;若|a|=—a,则a≤0。
3)若a>0,则︱a︱= a ;若a<0,则︱a︱= —a ;若a =0,则︱a︱= 0 ;6、有理数比较大小:1)正数大于零,负数小于零,正数大于一切负数;2)数轴上的两个点所表示的数,右边的总比左边的大;3)两个负数,绝对值大的反而小。
7、有理数的运算:(1)五种运算:加、减、乘、除、乘方(2)有理数的运算顺序先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的,对只含乘除,或只含加减的运算,应从左往右运算。
(3)运算法则1)有理数加法法则①同号两数相加,取相同的符号,并把绝对值相加;②异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数相加得0;2)有理数减法法则:减去一个数,等于加上这个数的相反数. 即a—b=a+(-b)3)有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0.①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当因数有偶数个时,积为正.②几个数相乘,有一个因数为0,积就为0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11 有理数的混合运算
知能演练提升
一、能力提升
1.计算-22-(-2)3×(-1)2-(-1)3的结果是().
A.-30
B.-1
C.24
D.5
2.计算-2×32-的结果是().
A.0B.-54C.-18D.18
3.已知119×21=2 499,则119×213-2 498×212等于().
A.431
B.441
C.451
D.461
4.32×3.14+3×(-9.42)=.
5.计算:-22××(-2)3=.
6.空调是一种常用的电器,若空调开放热风或冷风时平均每分使室内温度升高或降低0.5 ℃(规定开放热风为正),则等式0.5×10=5表示空调在开放风,工作时间为,室温变化为;若空调开放冷风10 min,则室温变化可列式表达为,表示室温变化为.
7.计算:
(1)-9÷3+×12+32;
(2)(-1)2 017-[(-2)3+32]÷.
二、创新应用
8.前进的道路:从起点——数字1出发,顺次经过每一个分岔口,选择+,-,×,÷四种运算之一进行运算,到达目的地时结果要恰好是10.你能找到前进的道路吗?道路不止1条,请你至少找出3条来,并列出你的算式.
知能演练·提升
一、能力提升
1.D
2.B
3.B
4.0
5.32
6.热10 min升高5 ℃(-0.5)×10=-5降低5 ℃
7.解 (1)原式=-9÷3+×12-×12+9=-3+6-8+9=4.
(2)原式=-1-(-8+9)×(-7)=-1+7=6.
二、创新应用
8.解①[1-(-2)]×3+(-4)+5=10;
②[1-(-2)]÷3-(-4)+5=10;
③[1-(-2)+3+(-4)]×5=10;
④1×(-2)+3-(-4)+5=10.。