方程(组)和不等式(组)的应用

合集下载

线性方程组与不等式

线性方程组与不等式

线性方程组与不等式线性方程组和不等式是数学中常见的概念和问题类型,它们在实际生活和各个领域中都有广泛的应用。

本文将从基本概念入手,逐步介绍线性方程组和不等式的定义、解法以及一些实际问题的应用。

一、线性方程组的定义与解法线性方程组是由一组线性方程构成的方程组。

线性方程的一般形式为:a₁x₁ + a₂x₂ + ... + aₙxₙ = b,其中a₁、a₂、...、aₙ为系数,x₁、x₂、...、xₙ为变量,b为常数。

为了解决线性方程组,在解法上可以使用消元法、代入法或矩阵法等。

其中,消元法是一种常用的解法。

消元法的基本思路是通过不改变方程组解集的操作,将线性方程组逐步化为简化的形式。

具体步骤如下:1. 化简:将线性方程组化为行简化阶梯形式,即将系数矩阵转化为行阶梯形矩阵。

2. 消元:从最后一行开始,逐行进行消元操作,通过倍乘和相减操作将系数矩阵化为最简形式。

3. 回代:从最后一行开始,逐行进行回代操作,通过代入求解出每个变量的值,得到方程组的解集。

需要注意的是,线性方程组的解不一定存在,或者存在无穷多个解。

通过解方程组可以得到变量的具体取值,从而解决相应的问题。

二、线性不等式的定义与解法线性不等式是包含线性函数或变量的不等关系的数学表达式。

一般形式为:a₁x₁ + a₂x₂ + ... + aₙxₙ ≤ b(或≥、<、>)。

解线性不等式的方法主要有图解法和代入法。

图解法利用平面直角坐标系,将不等式绘制成直线或线段,然后根据不等式的性质找到使其成立的解集。

代入法则是通过将不等式中的变量替换为特定的常数,然后求解得到不等式的解集。

与线性方程组不同的是,线性不等式的解集通常是一个区域或者是所有满足不等式条件的点的集合。

解线性不等式可以帮助我们确定变量的取值范围,解决约束条件下的问题。

三、线性方程组与不等式的应用线性方程组和不等式在实际问题中有广泛的应用,涵盖了许多不同领域。

以下是一些常见的应用场景:1. 经济学:线性方程组可以用来描述供求关系、成本与收益关系等经济问题,如经济平衡、市场均衡等。

方程组及不等式组的应用---利润问题

方程组及不等式组的应用---利润问题

方案二:甲进货49件,乙进货51件;方案三:甲进
货50件,乙进货50件.
(3).在条件(2)下,并且不再考虑其他因素, 如甲、乙两商品全部售完,哪种方案利润最大?
最大利润是多少? 解:销售的利润
W=100×10% a +80(100- a )×25% =2000-10 a
∵ -10<0 ∴当x取最小值48时,W取得最大值, ∴2000-10×48=1520元 此时,乙商品进货的件数时100-48=52件
例2. (2016.湘西)某商店购进甲、乙两种商品,甲
的进货单价比乙的进货单价高20元,已知20个 甲商品的进货总价与25个乙商品的进货总价相同.
(1)求甲、乙每个商品的进货单价;
(2)若甲、乙两种商品共进货100件,要求两种 商品的进货总价不高于9000元,同时甲商品按进 价提高10%后的价格销售,乙商品按进价提高25% 后价格销售,两种商品全部售完后的销售总额 不低于10480元,问有哪几种进货方案?
1.某商店A商品售价为120元,进价为100元.
(1)每件商品利润为:______2_0_元________, 利润率为:______2_0_%____________.
(2)若该商品一天售出60件,则这天总利润为: ___1_2_0_0_元_____________.
2.某商店甲牛奶标价为100元,“五一”打9折 销售,则售价为:____9_0_元______.
方程(组)及不等式(组) 的应用---利润问题
1.销售问题: (1)利润=售价-_进__价_ =进价×利润率
(2)利润率=售价进-价进___价_ 100%

利润 进价
100%
(3)售价= 标价 打___折__数_ =进价×(1-利润率)

第2讲 方程(组)与不等式(组)(解析)

第2讲 方程(组)与不等式(组)(解析)

第2讲 方程(组)与不等式(组)知识点1 一元一次方程1.等式及其性质 ⑴ 等式:用等号“=”来表示等量关系的式子叫等式.⑵ 性质:① 如果,那么b ±c ;② 如果,那么bc ;如果,那么b c2. 方程、一元一次方程的解、概念(1) 方程:含有未知数的等式叫做方程;使方程左右两边的值相等的未知数的值,叫做方程的解;求方程解的过程叫做解方程. 方程的解与解方程不同.(2) 一元一次方程:在整式方程中,只含有一个未知数,并且未知数的次数是1,系数不等于0的方程叫做一元一次方程;它的一般形式为ax+b=0. 3. 解一元一次方程的步骤:①去分母;②去;③移;④合并;⑤系数化为1. 4. 一元一次方程的应用:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系.(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数. (3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一.(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可.b a ==±c a b a ==ac ba =()0≠c =c a ()0≠a(6)“答”就是写出答案,注意单位要写清楚.【典例】例1如果3m=3n,那么下列等式不一定成立的是()A.m﹣3=n﹣3B.2m+3=3n+2C.5+m=5+n D.m−3=n −3【解答】解:A、由3m=3n得m=n,两边都减去3得m﹣3=n﹣3,原变形正确,故此选项不符合题意;B、3m=3n两边都加上2得3m+2=3n+2,原变形错误,故此选项符合题意;C、由3m=3n得m=n,两边都加上5得5+m=5+n,原变形正确,故此选项不符合题意;D、由3m=3n得m=n,两边都除以﹣3得m−3=n−3,原变形正确,故此选项不符合题意;故选:B.【方法总结】本题考查了等式的性质,解题的关键是掌握等式的性质:性质1:等式两边同时加上(或减去)同一个代数式,所得结果仍是等式;性质2:等式两边同时乘同一个数(或除以一个不为0的数),所得结果仍是等式.例2解方程:(1)2﹣3(x﹣1)=2(x﹣2);(2).【解答】解:(1)2﹣3(x﹣1)=2(x﹣2),去括号,得2﹣3x+3=2x﹣4,移项,得﹣3x﹣2x=﹣4﹣2﹣3,合并同类项,得﹣5x=﹣9,系数化为1,得x=;(2),去分母,得3(3x+2)=15﹣5(2x﹣1),去括号,得9x+6=15﹣10x+5,移项,得9x+10x=15+5﹣6,合并同类项,得19x=24,系数化为1,得x=.【方法总结】本题考查了解一元一次方程,掌握解一元一次方程的基本步骤是解答本题的关键.例3若方程12﹣3(x+1)=7﹣x的解与关于x的方程6﹣2k=2(x+3)的解相同,求k的值.【解答】解:∵12﹣3(x+1)=7﹣x,∴12﹣3x﹣3=7﹣x,∴2=2x,∴x=1,把x=1代入6﹣2k=2(x+3)得6﹣2k=8,∴k=﹣1.【方法总结】本题考查了同解方程:如果两个方程的解相同,那么这两个方程叫做同解方程.例4若方程2(2x﹣1)=3x+1与关于x的方程2ax=(a+1)x﹣6的解互为倒数,求a的值.【解答】解:解方程①得,x=3,方程②的解为x=,代入得,解得a=﹣17.【方法总结】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.例5我市某区为鼓励毕业大学生自主创业,经过调研决定:在2021年对60名自主创业的大学生进行奖励,共计奖励50万元.奖励标准是:大学生自主创业连续经营一年以上的给予5000元奖励;自主创业且解决3人以上失业人员稳定就业的,再给予1万元奖励.问:该区自主创业大学生中连续经营一年以上的和自主创业且解决3人以上失业人员稳定就业的大学生分别有多少人?【解答】解:50万=500000元,设自主创业且连续经营一年以上的大学生有x人,自主创业且解决3人以上失业人员稳定就业的大学生有(60﹣x)人,根据题意得:5000x +10000(60﹣x )=500000, 解得:x =20,则60﹣x =60﹣20=40(人),答:自主创业且连续经营一年以上的大学生有20人,自主创业且解决3人以上失业人员稳定就业的大学生有40人.【方法总结】本题考查一元一次方程的应用,关键是找到等量关系列出方程.例6两辆汽车从相距80km 的两地同时出发相向而行,甲车的速度比乙车的速度快20km /h ,半小时后两车相遇? (1)两车的速度各是多少? (2)两车出发几小时后相距20km ?【解答】解:(1)设乙车的速度为xkm /h ,则甲车速度为(x +20)km /h , 根据题意得:(x +x +20)×12=80, 解得:x =70, ∴x +20=70+20=90,则甲车速度为90km /h ,乙车速度为70m /h ; (2)设两车出发y 小时相距20km , 当两车没有相遇时相距20km , 根据题意得:(70+90)y +20=80, 解得:y =38;当两车相遇后相距20km , 根据题意得:(70+90)y =80+20, 解得:y =58,综上,两车出发38小时或58小时后相距20km .【方法总结】此题考查了一元一次方程的应用,弄清题意是解本题的关键.【随堂练习】1.在下列方程的变形中,正确的是( ) A .由2x +1=3x ,得2x +3x =1 B .由25x =34,得x =34×52C .由2x =34,得x =32D .由−x+13=2,得﹣x +1=6 【解答】解:A 、由2x +1=3x 得2x ﹣3x =﹣1,原变形错误,故此选项不符合题意; B 、由25x =34得x =34×52,原变形正确,故此选项符合题意;C 、由2x =34得x =38,原变形错误,故此选项不符合题意; D 、由−x+13=2得﹣x ﹣1=6,原变形错误,故此选项不符合题意; 故选:B . 2.解方程:(1)3x +2=4(2x +3); (2)﹣1.【解答】解:(1)去括号得:3x +2=8x +12, 移项得:3x ﹣8x =12﹣2, 合并得:﹣5x =10, 解得:x =﹣2;(2)去分母得:2(5y ﹣9)=3(3y ﹣1)﹣6, 去括号得:10y ﹣18=9y ﹣3﹣6, 移项得:10y ﹣9y =﹣3﹣6+18, 合并得:y =9. 3.某同学在解关于y 的方程﹣=1去分母时,忘记将方程右边的1乘以12,从而求得方程的解为y =10. (1)求a 的值; (2)求方程正确的解.【解答】解:(1)该同学去分母时方程右边的1忘记乘12, 则原方程变为3(3y ﹣a )﹣2(5y ﹣7a )=1, ∵方程的解为y =10,代入得3(30﹣a )﹣2(50﹣7a )=1.解得a=1.(2)将a=1代入方程﹣=1,得﹣=1,解得y=﹣1,即原方程的解为y=﹣1.4.已知关于x的方程2(x﹣1)=3m﹣1与3x﹣2=﹣4的解相同,求m的值.【解答】解:因为关于x的方程2(x﹣1)=3m﹣1与3x﹣2=﹣4的解相同,所以解方程3x﹣2=﹣4,得x=−2 3,把x=−23代入2(x﹣1)=3m﹣1,得2(−23−1)=3m﹣1,解得m=−7 9.5.为加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格如表:每月用水量单价(元)不超过23立方米的部分m超过23立方米的部分m+1.1(1)某用户4月份用水10立方米,共交费26元,求m的值;(2)在(1)的前提下,该用户5月份交水费82元,请问该用户5月份用水多少立方米?【解答】解:(1)依题意得:10m=26,∴m=2.6,答:m的值为2.6;(2)∵23×2.6=59.8<82,∴该用户5月份用水超过23立方米,设该用户5月份用水x立方米,根据题意得:23×2.6+(2.6+1.1)•(x﹣23)=82,解得x=29,答:该用户5月份用水为29立方米.知识点2 一元二次方程1.一元二次方程:在整式方程中,只含一个未知数,并且未知数的最高次数是2的方程叫做一元二次方程.一元二次方程的一般形式是)0(02≠=++a c bx ax .其中2ax 叫做二次项,bx 叫做一次项,c 叫做常数项;a 叫做二次项的系数,b 叫做一次项的系数. 2. 一元二次方程的常用解法:(1)直接开平方法:形如或的一元二次方程,就可用直接开平方的方法.(2)配方法:用配方法解一元二次方程的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为的形式,⑤如果是非负数,即,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程的求根公式 .(4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为0;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. 3. 一元二次方程根的判别式:关于x 的一元二次方程的根的判别式为=∆. (1)>0一元二次方程有两个不相等的实数根,即242ab b ac -±-.(2)=0一元二次方程有两个相等的实数根,即2ba-. )0(2≥=a a x )0()(2≥=-a a b x ()02≠=++a o c bx ax 2()x m n +=0n ≥20(0)ax bx c a ++=≠221,2440)b b ac x b ac -±-=-≥()002≠=++a c bx ax ac b 42-ac b 42-⇔()002≠=++a c bx ax =2,1x ac b 42-⇔==21x x(3)<0一元二次方程没有实数根.4. 一元二次方程根与系数的关系关于x 的一元二次方程有两根分别为,,那么 a b -,c a. 【典例】例1若关于x 的方程(m +1)x |m |+1+x ﹣3=0是一元二次方程,求m 的值. 【解答】解:∵关于x 的方程(m +1)x |m |+1+x ﹣3=0是一元二次方程, ∴,解得m =1.【方法总结】本题主要考查一元二次方程的定义,一元二次方程的一般形式是:ax 2+bx +c =0(a ,b ,c 是常数且a ≠0),特别要注意a ≠0的条件. 例2解方程:9(x ﹣1)2=16(x +2)2.【解答】解:两边直接开平方,得:3(x ﹣1)=±4(x +2), 即3x ﹣3=4x +8或3x ﹣3=﹣4x ﹣8, 解得:x =﹣11或x =﹣.【方法总结】考查了解一元二次方程﹣直接开平方法.解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a ≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x 2=a (a ≥0);ax 2=b (a ,b 同号且a ≠0);(x +a )2=b (b ≥0);a (x +b )2=c (a ,c 同号且a ≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”. (2)运用整体思想,会把被开方数看成整体.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点. 例3用配方法解方程:x 2﹣8x +13=0.ac b 42-⇔()002≠=++a c bx ax 20(0)ax bx c a ++=≠1x 2x =+21x x =⋅21x x移项,得:x2﹣8x=﹣13,配方,得:x2﹣8x+16=﹣13+16,即(x﹣4)2=3,开方,得:x﹣4=±,∴x1=+4,x2=﹣+4.【方法总结】本题考查解一元二次方程—配方法,解答本题的关键是会用配方法解方程.例4若关于x的一元二次方程kx2﹣6x+9=0有实数根,求k的取值范围.【解答】解:根据题意得k≠0且△=(﹣6)2﹣4k×9≥0,解得k≤1且k≠0.【方法总结】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.例5岳池县是电子商务百强县,某商店积极利用网络优势销售当地特产—西板豆豉.已知每瓶西板豆豉的成本价为16元,当销售单价定为20元时,每天可售出80瓶.为了回馈广大顾客,该商店现决定降价销售(销售单价不低于成本价).经市场调查反映:若销售单价每降低0.5元,则每天可多售出20瓶.(1)当销售单价降低1元时,每天的销售利润为360元;(2)为尽可能让利于顾客,若该商店销售西板豆豉每天的实际利润为350元,求西板豆豉的销售单价.【解答】解:(1)(20﹣16﹣1)×[80+20×(1÷0.5)]=360(元).答:如果销售单价降低1元,那么每天的销售利润为360元.故答案为:360;(2)设销售单价降低x元,则每瓶的销售利润为20﹣16﹣x=(4﹣x)元,每天的销售量为80+20×=(80+40x)瓶,依题意,得:(4﹣x)(80+40x)=350,解得:x1=1.5,x2=0.5,又∵为尽快减少库存,∴x=1.5,∴20﹣x=18.5,答:西板豆豉的销售单价为18.5元.【方法总结】本题考查了一元二次方程的应用,找准等量关系:每天的销售利润=每瓶的销售利润×日销售量是解决问题的关键.例6在学校劳动基地里有一块长40米、宽20米的矩形试验田,为了管理方便,准备沿平行于两边的方向纵、横开辟三条等宽的小道,如图.已知这块矩形试验田中种植的面积为741平方米,小道的宽为多少米?【解答】解:设小道的宽为x米,则剩余部分可合成长(40﹣x)米,宽(20﹣x)米的矩形,依题意得:(40﹣x)(20﹣x)=741,整理得:x2﹣60x+59=0,解得:x1=1,x2=59.又∵20﹣x>0,∴x<20,∴x=1.答:小道的宽为1米.【方法总结】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.【随堂练习】1.解方程:(1)(x﹣1)2﹣=0;(2)2x2+8x﹣1=0.【解答】解:(1)(x﹣1)2﹣=0,(x﹣1)2=,∴x﹣1=或x﹣1=﹣,解得x1=,x2=﹣;(2)2x2+8x﹣1=0,x2+4x=,x2+4x+4=+4,即(x+2)2=,则x+2=±,∴x1=﹣2+,x2=﹣2﹣.2.已知关于x的方程x2+kx﹣2=0.(1)求证:不论k取何实数,该方程总有两个不相等的实数根;(2)若该方程的一个根为2,求它的另一个根.【解答】解:(1)∵a=1,b=k,c=﹣2,∴b2﹣4ac=k2+8,∵不论k取何实数,k2≥0,∴k2+8>0,即b2﹣4ac>0,∴不论k取何实数,该方程总有两个不相等的实数根;(2)设方程的另一个根为β,∴2β=﹣2,∴β=﹣1,∴另一个根为﹣1.3.惠友超市于今年年初以25元/件的进价购进一批商品.当商品售价为40元/件时,一月份销售了256件.二、三月份该商品十分畅销,销售量持续走高.在售价不变的基础上,三月份的销售量达到了400件.(1)求二、三月份销售量的月平均增长率.(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每件每降价1元,销售量增加5件.当每件商品降价多少元时,商场获利4250元?【解答】解:(1)设二、三这两个月的月平均增长率为x,则256(1+x)2=400,解得:x1=25%,x2=﹣2.25(不合题意,舍去),答:二、三月份销售量的月平均增长率是25%;(2)设降价y元,(40﹣y﹣25)(400+5y)=4250,整理得:y2+65y﹣350=0,解得:y1=5,y2=﹣70(不合题意,舍去),答:当商品降价5元时,商场当月获利4250元.4.如图是一张长20cm、宽13cm的矩形纸板,将纸板四个角各剪去一个边长为xcm的正方形,然后将四周突出部分折起,可制成一个无盖纸盒.(1)这个无盖纸盒的长为(20﹣2x)cm,宽为(13﹣2x)cm;(用含x的式子表示)(2)若要制成一个底面积是144cm2的无盖长方体纸盒,求x的值.【解答】解:(1)∵纸板是长为20cm,宽为13cm的矩形,且纸板四个角各剪去一个边长为xcm的正方形,∴无盖纸盒的长为(20﹣2x)cm,宽为(13﹣2x)cm.故答案为:(20﹣2x);(13﹣2x).(2)依题意,得:(20﹣2x)(13﹣2x)=144,整理,得:2x2﹣33x+58=0,解得:x1=2,x2=14.5(不合题意,舍去).答:x的值为2.知识点3 分式方程1.分式方程:分母中含有未知数的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以最简公分母,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入最简公分母中,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 用换元法解分式方程的一般步骤:① 设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;② 解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③ 把辅助未知数的值代入原设中,求出原未知数的值;④ 检验作答.4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解,是否是所列分式方程的解;(2)检验所求的解,是否为增根.【典例】例1解方程:(1)=﹣2.(2)=.【解答】解:(1)=﹣2,原方程化为:=﹣2,方程两边都乘2(x﹣1),得2x=3﹣4(x﹣1),解得:,检验:当时,2(x﹣1)≠0,所以x=是原分式方程的根,即原分式方程的解是x=;(2)=,原方程化为:=,方程两边都乘(2x+1)(2x﹣1),得2(2x+1)=4,解得:,检验:当时,2x﹣1=0,所以x=是原方程的增根,即原方程无解.【方法总结】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.例2用换元法解方程(xx+1)2+5(x x+1)+6=0时,若设xx+1=t,则原方程可化为关于t的一元二次方程是t2+5t+6=0.【解答】解:把xx+1=t代入方程(x x+1)2+5(x x+1)+6=0,得t2+5t+6=0.故答案为:t2+5t+6=0.【方法总结】此题考查了换元法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.例3定义一种新运算“⊗”,规则如下:a⊗b=,(a≠b2),这里等式右边是实数运算,例如:1⊗3==﹣.求x⊗(﹣2)=1中x的值.【解答】解:根据题中的新定义化简得:=1,即=1,去分母得:x﹣4=1,解得:x=5,检验:把x=5代入得:x﹣4≠0,∴分式方程的解为x=5.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验,弄清题中的新定义是解本题的关键.例4疫情过后,为做好复工复产,某工厂用A 、B 两种型号机器人搬运原料.已知A 型机器人每小时搬运的原料比B 型机器人每小时搬运的原料的一半多50千克,且B 型机器人搬运2400千克所用时间与A 型机器人搬运2000千克所用时间相等,求这两种机器人每小时分别搬运多少千克原料.【解答】解:设B 型机器人每小时搬运xkg 原料,则A 型机器人每小时搬运(12x +50)kg原料, 依题意,得:2400x=200012x+50, 解得:x =150,经检验,x =150是原方程的解,且符合题意, ∴12x +50=125.答:A 型机器人每小时搬运125kg 原料,B 型机器人每小时搬运150kg 原料.【方法总结】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 例5 2020年春节寒假期间,小伟同学完成数学寒假作业的情况是这样的:原计划每天都做相同页数的数学作业,做了5天后,由于新冠疫情加重,当地加强了防控措施,对外出进行限制,小伟有更多的时间待在家里,做作业的效率提高到原来的2倍,结果比原计划提前6天完成了数学寒假作业,已知数学寒假作业本共有34页,求小伟原计划每天做多少页数学寒假作业?【解答】解:设小伟原计划每天做x 页数学寒假作业,则做作业的效率提高后每天做2x 页的数学寒假作业, 依题意,得:﹣(5+)=6,解得:x =2,经检验,x =2是原方程的解,且符合题意. 答:小伟原计划每天做2页数学寒假作业.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 例6要在规定天数内修筑一段公路,若让甲队单独修筑,则正好在规定天数内按期完成;若让乙队单独修筑,则要比规定天数多8天才完成.现在由乙队单独修筑其中一小段,用去了规定时间的一半,然后甲队接着单独修筑2天,这段公路还有一半未修筑.若让两队共同再修筑2天,能否完成任务?【解答】解:设甲队x 天完成任务,则乙队(x +8)天完成任务, 由题意得:×+=,解得:x =8,检验得:x =8是原方程的根,则2×(+)=<,答:若让两队再共同修筑2天,不能完成任务.【方法总结】此题主要考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.【随堂练习】1.用换元法解方程x−1x=3x x−1−2时,设x−1x=y ,换元后化成关于y 的一元二次方程的一般形式为 y 2+2y ﹣3=0 . 【解答】解:x−1x=3x x−1−2时,设x−1x=y ,则原方程化为:y =3y −2, y 2=3﹣2y , y 2+2y ﹣3=0,故答案为:y 2+2y ﹣3=0. 2.解方程: (1)=;(2)﹣3.【解答】解:(1)去分母得:x +2(x ﹣2)=x +2,去括号得:x+2x﹣4=x+2,解得:x=3,检验:把x=3代入得:(x+2)(x﹣2)≠0,∴分式方程的解为x=3;(2)去分母得:1=x﹣1﹣3(x﹣2),去括号得:1=x﹣1﹣3x+6,解得:x=2,检验:把x=2代入得:x﹣2=0,∴x=2是增根,分式方程无解.3.若关于x的方程有增根,则增根是多少?并求方程产生增根时m的值.【解答】解:去分母,得:m+2(x﹣3)=x+3,由分式方程有增根,得到x﹣3=0或x+3=0,即x=±3,把x=3代入整式方程,可得:m=6,把x=﹣3代入整式方程,可得:m=12,综上,可得:方程的增根是x=±3,方程产生增根时m=6或12.4.虎林西苑社区在扎实开展党史学习教育期间,开展“我为群众办实事”活动,为某小区铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.【解答】解:设原计划每天铺设管道x米.由题意,得:﹣=2,解得x=60.经检验,x=60是原方程的解.且符合题意.答:原计划每天铺设管道60米.5.某所学校有A、B两班师生前往一个农庄参加植树活动.已知A班每天植树量是B班每天植树量的1.5倍,A班植树300棵所用的天数比B班植树240棵所用的天数少2天,求A、B两班每天各植树多少棵?【解答】解:设B班每天植树x棵,那么A班每天植树1.5x棵,依题意,得3001.5x =240x−2,解之得x=20,经检验,x=20是原方程的解则当x=20时,1.5x=30.答:A班每天植树30棵,B班每天植树20棵.知识点4 方程组(1)二元一次方程:含有两个未知数(元)并且未知数的次数是2的整式方程.(2) 二元一次方程组:由2个或2个以上的含有相同未知数的二元一次方程组成的方程组叫二元一次方程组.(3)二元一次方程的解:适合一个二元一次方程的两个未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有无数个解.(4)二元一次方程组的解:使二元一次方程组成立的未知数的值,叫做二元一次方程组的解.(5)①代入消元法、②加减消元法.【典例】例1下列方程中,是二元一次方程的是()A.xy=2B.3x=4y C.x+1y=2D.x2+2y=4【解答】解:A、是二元二次方程,故本选项不符合题意;B、是二元一次方程,故本选项符合题意;C、不是整式方程,故本选项不符合题意;D、是二元二次方程,故本选项不符合题意;故选:B.【方法总结】本题主要考查二元一次方程的定义,二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.例2解方程组:(1);(2).【解答】解:(1),①+②×2,得11x=﹣11,解得x=﹣1,把x=﹣1代入②,得y=2,故方程组的解为;(2)方程组整理,得,②×2﹣①,得5x=10,解得x=2,把x=2代入②,得6﹣2y=6,解得y=0,故方程组的解为.【方法总结】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.例3已知方程组与有相同的解,求m和n值.【解答】解:由已知可得,解得,把代入剩下的两个方程组成的方程组,得,解得m=﹣1,n=﹣4.【方法总结】解答此题的关键是熟知方程组有公共解得含义,考查了学生对题意的理解能力. 例4糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根竹签上.如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签.这些竹签有多少根?山楂有多少个?【解答】解:设竹签有x 根,山楂有y 个, 由题意得:{5x +4=y 8(x −7)=y ,解得:{x =20y =104,答:竹签有20根,山楂有104个.【方法总结】本题考查了二元一次方程组的应用以及二元一次方程组的解法;根据题意列出方程组是解题的关键.例5中药是我国的传统医药,其独特的疗效体现了我们祖先的智慧,并且在抗击新冠疫情中,中医药发挥了重要的作用.现某种药材种植基地欲将一批150吨的重要中药材运往某药品生产厂,现有甲、乙两种车型供运输选择,每辆车的运载能力(假设每辆车均满载)和运费如下表所示:车型 甲 乙 运载量(吨/辆) 10 12 运费(元/辆)700720若全部中药材用甲、乙两种车型一次性运完,需支付运费9900元,问甲、乙两种车型各需多少辆?【解答】解:设甲种车型需x 辆,乙种车型需y 辆, 根据题意得:,解得:,答:甲种车型需9辆,乙种车型需5辆.【方法总结】本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.【随堂练习】1.如果3x 3m﹣2n﹣4y n﹣m+12=0是关于x 、y 的二元一次方程,那么m 、n 的值分别为( ) A .m =2,n =3 B .m =2,n =1C .m =﹣1,n =2D .m =3,n =4【解答】解:∵3x 3m ﹣2n﹣4y n﹣m+12=0是关于x 、y 的二元一次方程,∴{3m −2n =1n −m =1, 解得:{m =3n =4,故选:D .2.如果方程组{ax −by =134x −5y =41与{ax +by =32x +3y =−7有相同的解,则a ,b 的值是( )A .{a =2b =1B .{a =2b =−3C .{a =52b =1D .{a =4b =−5【解答】解:由已知得方程组{4x −5y =412x +3y =−7,解得{x =4y =−5,代入{ax −by =13ax +by =3,得到{4a +5b =134a −5b =3,解得{a =2b =1.故选:A .3.解方程组:.【解答】解:,①+②×2得:13x =26,即x =2, 把x =2代入②得:y =4, 则方程组的解为.4.列二元一次方程组解应用题:小颖家离学校1880米,其中有一段为上坡路,另一段为下坡路.她跑步去学校共用了16分钟,已知小颖在上坡路上的平均速度是80米/分钟,在下坡路上的平均速度是200米/分钟.求小颖上坡、下坡各用了多长时间?【解答】解:设小颖上坡用了x 分钟,下坡用了y 分钟, 依题意得:{x +y =1680x +200y =1880,解得:{x =11y =5.答:小颖上坡用了11分钟,下坡用了5分钟.5.某市要在A ,B 两景区安装爱心休闲椅,它有长条椅和弧形椅两种类型,其中每条长条椅可以同时供3人使用,每条弧形椅可以同时供5人使用.(列二元一次方程组解答) (1)市政府现在要为B 景区购买长条椅120条,弧形椅80条,若购买一条长条椅和一条弧形椅的价格共360元,为B 景区购买共花费了32800元,求长条椅和弧形椅的单价分别为多少元?(2)现决定从某公司为A 景区采购两种爱心休闲椅共400条,且正好可让1400名游客同时使用,求A 景区采购的长条椅和弧形椅分别为多少条? 【解答】解:(1)设长条椅的单价为x 元,弧形椅的单价为y 元, 依题意得:,解得:.答:长条椅的单价为100元,弧形椅的单价为260元. (2)设A 景区采购长条椅m 条,弧形椅n 条, 依题意得:,解得:.答:A 景区采购长条椅300条,弧形椅100条.知识点5不等式(组)1. 用不等号连接起来的式子叫不等式;使不等式成立的未知数的值叫做不等式的解;一些使不等式成立的未知数的值叫做不等式的解集.求一个不等式的解的过程或证明不等式无解的过程叫做解不等式.2.不等式的基本性质:(1)若<,则+<; (2)若>,>0则> (或> ); (3)若>,<0则 < (或< ). 3.一元一次不等式:只含有一个未知数,且未知数的次数是一次且系数不等于0的不等式,称为一元一次不等式;一元一次不等式的一般形式为ax >b 或;解一元一次不等式的一般步骤:去分母、去括号 、移项、合并同类项、系数化为1.4.一元一次不等式组:几个含有相同未知数的一元一次不等式合在一起就组成一个一元一次不等式组.一般地,几个不等式的解集的公共部分,叫做由它们组成的不等式组的解集. 5.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知)的解集是,即“小小取小”;的解集是,即“大大取大”;的解集是,即“大小小大中间找”;的解集是空集,即“大大小小取不了”. 6.求不等式(组)的特殊解:不等式(组)的解一般有无数多个,但其特殊解在某些范围内是有限的,如整数解,非负整数解,求这些特殊解应先确定不等式(组)的解集,然后再找到相应答案.7.列不等式(组)解应用题的一般步骤:①审:审题,分析题中已知什么、求什么,明确各数量之间的关系;②找:找出能够表示应用题全部含义的一个不等关系;③设:设未知数(一般求什么,就设什么为;④a b a c c b +a b c ac bc c a c b a b c ac bc c a cbax b <a b <x a x b <⎧⎨<⎩x a <x ax b >⎧⎨>⎩x b >x ax b>⎧⎨<⎩a x b <<x ax b <⎧⎨>⎩x。

中考数学压轴题---《方程(组)+不等式(组)二次函数模型》例题讲解

中考数学压轴题---《方程(组)+不等式(组)二次函数模型》例题讲解

中考数学压轴题---《方程(组)+不等式(组)二次函数模型》例题讲解【典例3】(2021•遂宁)某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高x元.(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?【解答】解:(1)设T恤的销售单价提高x元,由题意列方程得:(x+40﹣30)(300﹣10x)=3360,解得:x1=2或x2=18,∵要尽可能减少库存,∴x2=18不合题意,应舍去.∴T恤的销售单价应提高2元,答:T恤的销售单价应提高2元;(2)设利润为M元,由题意可得:M=(x+40﹣30)(300﹣10x),=﹣10x2+200x+3000,=﹣10(x﹣10)2+4000,∴当x=10时,M最大值=4000元,∴销售单价:40+10=50(元),答:当服装店将销售单价定为50元时,得到最大利润是4000元.【变式3-1】(2023•蜀山区校级一模)随着我国经济、科技的进一步发展,我国的农业生产的机械化程度越来越高,过去的包产到户就不太适合机械化的种植,现在很多地区就出现了一种新的生产模式,很多农民把自己的承包地转租给种粮大户或者新型农村合作社,出现了大农田,这些农民则成为合作社里的工人,这样更有利于机械化种植.某地某种粮大户,去年种植优质水稻200亩,平均每亩收益480元.计划今年多承包一些土地,已知每增加一亩,每亩平均收益比去年每亩平均收益减少2元.(1)该大户今年应承租多少亩土地,才能使今年总收益达到96600元?(2)该大户今年应承租多少亩土地,可以使今年总收益最大,最大收益是多少?【解答】解:(1)设该大户今年应承租x亩土地,才能使今年总收益达到96600元,由题意得x[480﹣2(x﹣200)]=96600,解得x2﹣440x+48300=0,解得x=230或x=210,∴该大户今年应承租210亩或230亩土地,才能使今年总收益达到96600元;(2)设该大户今年应承租m亩土地,收益为W元,由题意得W=m[480﹣2(m﹣200)]=﹣2m2+880m=﹣2(m﹣220)2+96800,∵﹣2<0,∴当m=220时,W最大,最大为96800,∴大户今年应承租220亩土地,可以使今年总收益最大,最大收益是96800元.【变式3-2】某文具店最近有A,B两款纪念册比较畅销.该店购进A款纪念册5本和B款纪念册4本共需156元,购进A款纪念册3本和B款纪念册5本共需130元.在销售中发现:A款纪念册售价为32元/本时,每天的销售量为40本,每降低1元可多售出2本;B款纪念册售价为22元/本时,每天的销售量为80本,B款纪念册每天的销售量与售价之间满足一次函数关系,其部分对应数据如下表所示:(1)求A,B两款纪念册每本的进价分别为多少元;(2)该店准备降低每本A款纪念册的利润,同时提高每本B款纪念册的利润,且这两款纪念册每天销售总数不变,设A款纪念册每本降价m元;①直接写出B款纪念册每天的销售量(用含m的代数式表示);②当A款纪念册售价为多少元时,该店每天所获利润最大,最大利润是多少?【解答】解:(1)设A款纪念册每本的进价为a元,B款纪念册每本的进价为b元,根据题意得:,解得,答:A款纪念册每本的进价为20元,B款纪念册每本的进价为14元;(2)①根据题意,A款纪念册每本降价m元,可多售出2m本A款纪念册,∵两款纪念册每天销售总数不变,∴B款纪念册每天的销售量为(80﹣2m)本;②设B款纪念册每天的销售量与售价之间满足的一次函数关系是y=kx+b',根据表格可得:,解得,∴y=﹣2x+124,当y=80﹣2m时,x=22+m,即B款纪念册每天的销售量为(80﹣2m)本时,每本售价是(22+m)元,设该店每天所获利润是w元,由已知可得w=(32﹣m﹣20)(40+2m)+(22+m﹣14)(80﹣2m)=﹣4m2+48m+1120=﹣4(m﹣6)2+1264,∵﹣4<0,∴m=6时,w取最大值,最大值为1264元,此时A款纪念册售价为32﹣m=32﹣6=26(元),答:当A款纪念册售价为26元时,该店每天所获利润最大,最大利润是1264元.【变式3-3】(2022秋•中原区校级期中)党的“二十大”期间,某网店直接从工厂购进A、B两款纪念“二十大”的钥匙扣,进货价和销售价如下表:(注:利润=销售价﹣进货价)(1)网店第一次用8500元购进A、B两款钥匙扣共300件,求两款钥匙扣分别购进的件数;(2)第一次购进的两款钥匙扣售完后,该网店计划再次购进A、B两款钥匙扣共800件(进货价和销售价都不变),且进货总价不高于22000元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?(3)“二十大”临近结束时,B款钥匙扣还有大量剩余,网店打算把B款钥匙扣调价销售.如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,为了尽快减少库存,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?【解答】解:(1)设购进A款钥匙扣x件,B款钥匙扣y件,根据题意得:,解得:.答:购进A款钥匙扣200件,B款钥匙扣100件.(2)设购进m件A款钥匙扣,则购进(800﹣m)件B款钥匙扣,根据题意得:30m+25(800﹣m)≤22000,解得:m≤400.设再次购进的A、B两款钥匙扣全部售出后获得的总利润为w元,则w=(45﹣30)m+(37﹣25)(800﹣m)=3m+9600.∵3>0,∴w随m的增大而增大,∴当m=400时,w取得最大值,最大值=3×400+9600=10800,此时800﹣m=800﹣400=400.答:当购进400件A款钥匙扣,400件B款钥匙扣时,才能获得最大销售利润,最大销售利润是10800元.(3)设B款钥匙扣的售价定为a元,则每件的销售利润为(a﹣25)元,平均每天可售出4+2(37﹣a)=(78﹣2a)件,根据题意得:(a﹣25)(78﹣2a)=90,整理得:a2﹣64a+1020=0,解得:a1=30,a2=34.又∵要尽快减少库存,∴a=30.答:B款钥匙扣的售价应定为30元.【变式3-4】(2020•鄂州)一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现,该商品每周的销售量y(件)与售价x(元/件)(x为正整数)之间满足一次函数关系,下表记录的是某三周的有关数据:(1)求y与x的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?(3)抗疫期间,该商场这种商品售价不大于15元/件时,每销售一件商品便向某慈善机构捐赠m元(1≤m≤6),捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出m的取值范围.【解答】解:(1)设y与x的函数关系式为:y=kx+b(k≠0),把x=4,y=10000和x=5,y=9500代入得,,解得,,∴y=﹣500x+12000;(2)根据“在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,”得,,解得,3≤x≤12,设利润为w元,根据题意得,w=(x﹣3)y=(x﹣3)(﹣500x+12000)=﹣500x2+13500x﹣36000=﹣500(x﹣13.5)2+55125,∵﹣500<0,∴当x<13.5时,w随x的增大而增大,∵3≤x≤12,且x为正整数∴当x=12时,w取最大值为:﹣500×(12﹣13.5)2+55125=54000,答:这一周该商场销售这种商品获得的最大利润为54000元,售价为12元;(3)根据题意得,w=(x﹣3﹣m)(﹣500x+12000)=﹣500x2+(13500+500m)x﹣36000﹣12000m,∴对称轴为x=﹣=13.5+0.5m,∵﹣500<0,∴当x<13.5+0.5m时,w随x的增大而增大,∵该商场这种商品售价不大于15元/件时,捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.又∵x为整数,∴对称轴在x=14.5的右侧时,当x≤15(x为整数)时,w都随x的增大而增大,∴14.5<13.5+0.5m,解得m>2,∵1≤m≤6,∴2<m≤6。

北京中考复习——方程(组)与不等式(组)的应用(解析版)

北京中考复习——方程(组)与不等式(组)的应用(解析版)

北京中考复习——方程(组)与不等式(组)的应用一、解答题1、李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟,他骑自行车的平均速度是250米/分,步行的平均速度是80米/分,他家离学校的距离是2900米,求他骑行和步行的时间分别是多少?答案:骑行了10分钟,步行了5分钟解答:设他步行了x分钟,则骑行了15-x分钟,依题意得:80x+250(15-x)=2900,解得,x=5.15-x=10答:他骑行了10分钟,步行了5分钟.2、自从2012年9月1日昌平区首批50辆纯电动出租车正式运营以来,电动出租车以绿色环保受到市民的广泛欢迎,给市民的生活带来了很大方便.下表是行驶15公里以内普通燃油出租车和纯电动出租车的运营价格:老张每天从家去单位打出租车上班(路程在15公里以内),结果发现正常情况下乘坐纯电动出租车比燃油出租车平均每公里节省0.8元,求老张家到单位的路程是多少公里?答案:小明家到单位的路程是8.2千米.解答:设小明家到单位的路程是x千米.依题意,得13+2.3(x-3)=8+2(x-3)+0.8x.解这个方程,得x=8.2.答:小明家到单位的路程是8.2千米.3、某机械厂加工车间有84名工人,平均每人每天加工大齿轮16个或者小齿轮10个,已知1个大齿轮与2个小齿轮刚好配成一套,问分别安排多少名工人加工大,小齿轮,才能使每天加工的大小齿轮刚好配套?答案:每天加工大齿轮的有20人,每天加工小齿轮的有64人.解答:设每天加工大齿轮的有x人,则每天加工小齿轮的有(84-x)人,根据题意可得;2×16x=10(84-x),解得:x=20,则84-20=64(人).答:每天加工大齿轮的有20人,每天加工小齿轮的有64人.4、根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2013年4月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:2013年5月份,该市居民甲用电100度,交电费60元;居民乙用电200度,交电费122.5元.(1)上表中a=______,b=______.(2)试行“阶梯电价”收费以后,该市一户居民2013年8月份平均电价每度为0.63元,求该用户8月用电多少度?答案:(1)0.6;0.65(2)该市一户居民月用电为375度.解答:(1)根据2013年5月份,该市居民甲用电100度时,交电费60元,得出:a=60÷100=0.6,居民乙用电200度时,交电费122.5元.则(122.5-0.6×150)÷(200-150)=0.65,故答案为:0.6,0.65.(2)设居民月用电为x度,依题意得:150×0.6+0.65(x-150)=0.63x,整理得:90+0.65x-97.5=0.63x,解得:x=375,答:该市一户居民月用电为375度.5、北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日到2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?答案:轨道交通日均客运量为353万人次,地面公交日均客运量为1343万人次. 解答:设轨道交通日均客运量为x 万人次,地面公交日均客运量为y 万人次.依题意得:1696469x y y x +=⎧⎨=-⎩, 解得:3531343x y =⎧⎨=⎩.答:轨道交通日均客运量为353万人次,地面公交日均客运量为1343万人次.6、体育文化用品商店购进篮球和排球共20个,进价和售价如表,全部销售完后共获利润260元.求商店购进篮球,排球各多少个.答案:购进篮球12个,购进排球8个.解答:设购进篮球x 个,购进排球y 个,由题意得:()()2095806050260x y x y +=⎧⎨-+-=⎩, 解得:128x y =⎧⎨=⎩.答:购进篮球12个,购进排球8个.7、水上公园的游船有两种类型,一种有4个座位,另一种有6个座位.这两种游船的收费标准是:一条4座游船每小时的租金为60元,一条6座游船每小时的租金为100元.某公司组织38名员工到水上公园租船游览,若每条船正好坐满,并且1小时共花费租金600元,求该公司分别租用4座游船和6座游船的数量.答案:该公司租用4座游船5条,6座游船3条.解答:设租用4座游船x 条,租用6座游船y 条.依题意得463860100600x y x y +=⎧⎨+=⎩解得53 xy=⎧⎨=⎩答:该公司租用4座游船5条,6座游船3条.8、小志从甲、乙两超市分别购买了10瓶和6瓶cc饮料,共花费51元;小云从甲、乙两超市分别购买了8瓶和12瓶cc饮料,且小云在乙超市比在甲超市多花18元,在小志和小云购买cc饮料时,甲、乙两超市cc饮料价格不一样,若只考虑价格因素,到哪家超市购买这种cc饮料便宜?请说明理由.答案:到甲超市购买这种cc饮料便宜,证明见解答.解答:设甲超市cc饮料每瓶的价格为x元,乙超市cc饮料每瓶的价格为y元,依题意,得:1065112818x yy x+=⎧⎨-=⎩,解得:33.5xy=⎧⎨=⎩,∵3<3.5,∴到甲超市购买这种cc饮料便宜.9、台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域的交流越来越深入,2015年10月10日是北京故宫博物院成立90周年院庆日,两岸故宫同根同源,合作举办了多项纪念活动.据统计北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中北京故宫博物院藏品数量比台北故宫博物院藏品数量的2倍还多50万件,求北京故宫博物院和台北故宫博物院各约有多少万件藏品.答案:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品.解答:设北京故宫博物院约有x万件藏品,台北故宫博物院约有y万件藏品.依题意,列方程组得:245250 x yx y+=⎧⎨=+⎩,解得18065xy=⎧⎨=⎩.答:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品.10、某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?答案:(1)小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,销售完后,该水果商共赚了3200元.(2)大樱桃的售价最少应为41.6元/千克.解答:(1)设小樱桃的进价为每千克x 元,大樱桃的进价为每千克y 元,根据题意可得: 200200800020x y y x +=⎧⎨-=⎩, 解得:1030x y =⎧⎨=⎩, 小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,200×[(40-30)+(16-10)]=3200(元),∴销售完后,该水果商共赚了3200元.(2)设大樱桃的售价为a 元/千克,(1-20%)×200×16+200a -8000≥3200×90%,解得:a ≥41.6,答:大樱桃的售价最少应为41.6元/千克.11、小宜跟几位同学在某快餐厅吃饭,如图为此快餐厅的菜单.若他们所点的餐食总共为10份盖饭,x 杯饮料,y 份凉拌菜.A 套餐:一份盖饭加一杯饮料B 套餐:一份盖饭加一份凉拌菜C 套餐:一份盖饭加一杯饮料与一份凉拌菜(1)他们点了______份A 套餐,______份B 套餐,______份C 套餐(均用含x 或y 的代数式表示).(2)若x =6,且A 、B 、C 套餐均至少点了1份,则最多有______种点餐方案. 答案:(1)(10-y );(10-x );(x +y -10)(2)5解答:(1)根据题意,有(10-y )份套餐,只点了饮料,故有(10-y )份A 套餐.有(10-x )份套餐,点了凉拌饭,故有(10-x )份B 套餐.则C 套餐有10-(10-y +10-x )=(x +y -10)份.(2)若x =6,则10-6=4份点了B 套餐,∵A 、B 、C 套餐均至少点了1份,∴共有以下5种点餐方案.如下表:12、为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?答案:甲工厂每天加工40件产品,乙工厂每天加工60件产品.解答:设甲工厂每天加工x 件产品,则乙工厂每天加工1.5x 件产品,依题意得120012001.5x x-=10, 解得:x =40.经检验:x =40是原方程的根,且符合题意.所以1.5x =60.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.13、某市计划建造80万套保障性住房,用于改善百姓的住房状况.开工后每年建造保障性住房的套数比原计划增加25%,结果提前两年保质保量地完成了任务.求原计划每年建造保障性住房多少万套?答案:原计划每年建造保障性住房8万套.解答:设原计划每年建造保障性住房x 万套,根据题意可得:()8080125%x x-+=2,解方程,得x =8.经检验:x =8是原方程的解,且符合题意.答:原计划每年建造保障性住房8万套.14、为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工产品的数量是甲工厂每天加工产品数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?答案:甲、乙两个工厂每天分别能加工新产品40件、60件.解答:设甲工厂每天加工x件新产品,则乙工厂每天加工1.5x件新产品.依题意,得120012001.5x x-=10.解得x=40.经检验,x=40是所列方程的解,且符合实际问题的意义.当x=40时,1.5x=60.答:甲、乙两个工厂每天分别能加工新产品40件、60件.15、某服装厂设计了一款新式夏装,想尽快制作8800件投入市场,服装厂有A、B两个制衣车间,A车间每天加工的数量是B车间的1.2倍,A、B两车间共同完成一半后,A车间出现故障停产,剩下全部由B车间单独完成,结果前后共用20天完成,求A、B两车间每天分别能加工多少件.答案:A车间每天生产384件,B车间每天生产320件.解答:设B车间每天生产x件,则A车间每天生产1.2x件.由题意得44001.2x x++4400x=20.解得x=320.经检验x=320是方程的解.此时A车间每天生产320×1.2=384(件).答:A车间每天生产384件,B车间每天生产320件.16、为应对雾霾天气,使师生有一个更加舒适的教学环境,学校决定为南北两幢教学楼安装空气净化器.南楼安装的55台由甲队完成,北楼安装的50台由乙队完成.已知甲队比乙队每天多安装两台,且两队同时开工,恰好同时完成任务.甲、乙两队每天各安装空气净化器多少台?答案:甲队每天安装空气净化器22台,乙队每天安装20台.解答:设甲队每天安装空气净化器x台,则乙队每天安装(x-2)台,依题意得,55x=502x-,解方程得,x=22.经检验,x=22是原方程的解,且符合实际意义.x-2=22-2=20(台).答:甲队每天安装空气净化器22台,乙队每天安装20台.17、列方程(组)解应用题某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫.但每件进价比第一批衬衫的每件进价少了10元,且进货量是第一批进货量的一半.求第一批购进这种衬衫每件的进价是多少元?答案:第一批衬衫每件进价为150元.解答:设第一批衬衫每件进价为x 元, 依题意,得12·4500x =210010x -, 解得x =150.经检验x =150是原方程的解,且满足题意.答:第一批衬衫每件进价为150元.18、某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务,若每人每小时绿化面积相同,求每人每小时的绿化面积.答案:每人每小时的绿化面积2.5平方米.解答:设每人每小时的绿化面积x 平方米,由题意,得()180180662x x-+=3,解得:x =2.5.经检验,x =2.5是原方程的解,且符合题意.答:每人每小时的绿化面积2.5平方米.19、小马自驾私家车从A 地到B 地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动汽车所需电费27元.已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费. 答案:新购买的纯电动汽车每行驶1千米所需的电费为0.18元.解答:设A 、B 两地距离为x 千米, 由题意可知:10827x x-=0.54,解得:x =150. 经检验:x =150是原方程的解,且符合题意. ∴纯电动汽车每行驶一千米所需电费为:27150=0.18(元/千米). 答:新购买的纯电动汽车每行驶1千米所需的电费为0.18元.20、京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的37.小王用自驾车方式上班平均每小时行驶多少千米.答案:小王用自驾车方式上班平均每小时行驶27千米.解答:设小王用自驾车方式上班平均每小时行驶x千米.依题意,得1829x=37×18x,解得:x=27,经检验,x=27是原方程的解,且符合题意.答:小王用自驾车方式上班平均每小时行驶27千米.。

专题05 方程(组)与不等式(组)的应用(解析版)

专题05 方程(组)与不等式(组)的应用(解析版)

专题05 方程(组)与不等式(组)的应用一、列方程解应用题的六个步骤(1)审:弄清题目中涉及的已知量和未知量以及量与量之间的等量关系;(2)设:设未知数,根据等量关系用含未知数的代数式表示其他未知量;(3)列:根据等量关系,列出方程;(4)解:求出所列方程的解;(5)检:检验结果是否符合题意,如果是分式方程双检验:A.检验是否是分式方程的解,B.检验是否符合实际问题;(6)答:写出答案.核心考点方程(组)与不等式(组)的应用方程(组)与不等式(组)的应用是广东省中考的核心考点,常在解答题进行考查,主要考查解决实际问题的能力.在考查时经常方程组与不等式组结合考查;分式方程应用考查时经常结合实际问题和增根进行考,解题时不要忘记验根;二元一次方程组和不等式组常和方案选择问题结合考查;一元二次方程【经典示例】某商场“家电下乡”指定型号冰箱,彩电的进价和售价如下表所示:(1)按国家政策,购买“家电下乡”产品享受售价13%的政府补贴.若到该商场购买了冰箱,彩电各一台,可以享受多少元的补贴?(2)为满足需求,商场决定用不超过85000元采购冰箱,彩电共40台,且冰箱的数量不少于彩电数量的5 6 .①请你帮助该商场设计相应的进货方案;②用哪种方案商场获得利润最大?(利润=售价-进价),最大利润是多少?答题模板(1)设:设未知数,根据等量关系用含未知数的代数式表示其他未知量; (2)列:根据等量关系,列出方程; (3)解:求出所列方程的解;(4)检:检验结果是否符合题意,如果是分式方程双检验:A .检验是否是分式方程的解,B .检验是否符合实际问题;(5)答:写出答案.【满分答案】(1)(2420+1980)×13%=572(元).(2)①设冰箱采购x 台,则彩电采购(40-x )台,所以23201900(40)850005(40)6x x x x +⨯-≤⎧⎪⎨≥⨯-⎪⎩, 解不等式组得,因为x 为整数,所以x =19、20、21,方案一:冰箱购买19台,彩电购买21台, 方案二:冰箱购买20台,彩电购买20台, 方案一:冰箱购买21台,彩电购买19台.②设商场获得总利润为y 元,则y =(2420-2320)x +(1980-1900)(40-x )=20x +3200 ∵20>0,∴y 随x 的增大而增大,∴当x =21时,y 最大=20×21+3200=3620(元).【解题技巧】在进行解题时,先找出题目中的等量关系,根据等量关系列出方程,根据方程组的解法解除方程组,然后根据实际问题进行判断和作答.模拟训练1.为了美化家园,创建文明城市,园林部门决定利用现有的3600盆甲种花卉和2900盆乙种花卉搭配A 、B 两种园艺造型共50个,摆放在迎宾大道两侧,搭配每个造型所需花卉的情况如下表所示;231821117x ≤≤综合上述信息,解答下列问题: (1)符合题意的搭配方案有哪儿种?(2)若搭配一个A 种造型的成本为1000元,搭配一个B 种选型的成本为1200元,试说明选用(1)中哪种方案成本最低?【解析】(1)设搭配x 个A 种造型,则需要搭配(50-x )个B 种造型,由题意,得9040(50)3600,30100(50)2900,x x x x +-≤⎧⎨+-≤⎩ 解得30≤x ≤32. 所以x 的正整数解为30,31,32. 所以符合题意的方案有3种,分别为: A 种造型30个,B 种造型20个; A 种造型31个,B 种造型19个; A 种造型32个,B 种造型18个.(2)由题意易知,三种方案的成本分别为: 第一种方案:30×1000+20×1200=54000; 第二种办案:31×1000+19×1200=53800; 第三种方案:32×1000+18×1200=53600. 所以第三种方案成本最低.2.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A 型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%. (1)今年A 型车每辆售价多少元?(列方程解答)(2)该车行计划今年新进一批A 型车和B 型车共60辆,A 型车的进货价为每辆1100元,销售价与(1)相同;B 型车的进货价为每辆1400元,销售价为每辆2000元,且B 型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多?【解析】(1)设今年A 型车每辆售价x 元,则去年售价每辆为()400x +元,根据题意,得()50000120%50000400x x-=+, 计算得出:1600x =,经检验,1600x =是元方程的根.答:今年A 型车每辆售价1600元.(2)设今年新进A 型车a 辆,则B 型车()60a -辆,获利y 元,根据题意,得()()()16001100200014006010036000y a a a =-+--=-+,∵B 型车的进货数量不超过A 型车数量的两倍, ∴602a a -≤, ∴20a ≥. ∵1000k =-<, ∴y 随a 的增大而减小.∴20a =时,y 最大34000=元. ∴B 型车的数量为602040-=辆.∴当新进A 型车20辆,B 型车40辆时,这批车获利最大.1.(2018•广东)某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等. (1)求该公司购买的A 、B 型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A 型芯片? 【答案】(1)A 型芯片的单价为26元/条,B 型芯片的单价为35元/条;(2)购买了80条A 型芯片. 【解析】(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x –9)元/条, 根据题意得:312042009x x=-,解得:x =35, 经检验,x =35是原方程的解,且符合题意, ∴x –9=26.答:A 型芯片的单价为26元/条,B 型芯片的单价为35元/条. (2)设购买a 条A 型芯片,则购买(200–a )条B 型芯片, 根据题意得:26a +35(200–a )=6280,解得:a =80. 答:购买了80条A 型芯片.2.(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【答案】(1)第一批饮料进货单价为8元;(2)销售单价至少为11元.【解析】(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•160060002x x=+,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m–8)+600(m–10)≥1200,解得:m≥11.答:销售单价至少为11元.3.(2018•广州)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.【答案】(1)当x=8时,应选择方案一,该公司购买费用最少,最少费用是7.2a元;(2)x的取值范围是x>10.【解析】设购买A型号笔记本电脑x台时的费用为w元,(1)当x=8时,方案一:w=90%a×8=7.2a,方案二:w=5a+(8–5)a×80%=7.4a,∴当x=8时,应选择方案一,该公司购买费用最少,最少费用是7.2a元;(2)∵若该公司采用方案二购买更合算,∴x>5,方案一:w=90%ax=0.9ax,方案二:当x>5时,w=5a+(x–5)a×80%=5a+0.8ax–4a=a+0.8ax,则0.9ax>a+0.8ax,解得x>10,∴x 的取值范围是x >10.4.(2018•锦州)为迎接“七•一”党的生日,某校准备组织师生共310人参加一次大型公益活动,租用4辆大客车和6辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15个. (1)求每辆大客车和每辆小客车的座位数;(2)经学校统计,实际参加活动的人数增加了40人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生均有座位,最多租用小客车多少辆?【答案】(1)每辆大客车的座位数是40个,每辆小客车的座位数是25个;(2)最多租用小客车3辆. 【解析】(1)设每辆小客车的座位数是x 个,每辆大客车的座位数是y 个,根据题意可得:1546310y x y x -=⎧⎨+=⎩, 解得:2540x y =⎧⎨=⎩.答:每辆大客车的座位数是40个,每辆小客车的座位数是25个; (2)设租用a 辆小客车才能将所有参加活动的师生装载完成,则 25a +40(10–a )≥310+40, 解得:a ≤313, 符合条件的a 最大整数为3. 答:最多租用小客车3辆.5.(2018•郴州)郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A 、B 两种奖品以鼓励抢答者.如果购买A 种20件,B 种15件,共需380元;如果购买A 种15件,B 种10件,共需280元.(1)A 、B 两种奖品每件各多少元?(2)现要购买A 、B 两种奖品共100件,总费用不超过900元,那么A 种奖品最多购买多少件? 【答案】(1)A 种奖品每件16元,B 种奖品每件4元;(2)A 种奖品最多购买41件. 【解析】(1)设A 种奖品每件x 元,B 种奖品每件y 元,根据题意得:20153801510280x y x y +=⎧⎨+=⎩,解得:164x y =⎧⎨=⎩.答:A种奖品每件16元,B种奖品每件4元.(2)设A种奖品购买a件,则B种奖品购买(100–a)件,根据题意得:16a+4(100–a)≤900,解得:a1253≤.∵a为整数,∴a≤41.答:A种奖品最多购买41件.6.(2018•泸州)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?【答案】(1)甲图书每本价格是50元,乙图书每本价格为20元;(2)该图书馆最多可以购买28本乙图书.【解析】(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:8008002.5x x-=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50,答:甲图书每本价格是50元,乙图书每本价格为20元;(2)设购买甲图书本数为x,则购买乙图书的本数为:2x+8,故50x+20(2x+8)≤1060,解得:x≤10,故2x+8≤28,答:该图书馆最多可以购买28本乙图书.7.(2018•济南)本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款2000元,票价信息如下:(1)请问参观历史博物馆和民俗展览馆的人数各是多少人? (2)若学生都去参观历史博物馆,则能节省票款多少元?【答案】(1)参观历史博物馆的有100人,则参观民俗展览馆的有50人;(2)若学生都去参观历史博物馆,则能节省票款500元.【解析】(1)设参观历史博物馆的有x 人,参观民俗展览馆的有y 人,依题意,得15010202000x y x y +=⎧⎨+=⎩, 解得10050x y =⎧⎨=⎩.答:参观历史博物馆的有100人,则参观民俗展览馆的有50人. (2)2000–150×10=500(元).答:若学生都去参观历史博物馆,则能节省票款500元.8.(2018•贵港)某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用才合算?【答案】(1)这批学生有240人,原计划租用45座客车5辆;(2)若租用同一种客车,租4辆60座客车划算.【解析】(1)设这批学生有x 人,原计划租用45座客车y 辆, 根据题意得:()4515601x y x y =+⎧⎨=-⎩,解得:2405x y =⎧⎨=⎩.答:这批学生有240人,原计划租用45座客车5辆. (2)∵要使每位学生都有座位,∴租45座客车需要5+1=6辆,租60座客车需要5–1=4辆. 220×6=1320(元),300×4=1200(元),∵1320>1200,∴若租用同一种客车,租4辆60座客车划算.9.(2018•宜昌)我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.【答案】1个大桶可以盛酒1324斛,1个小桶可以盛酒724斛【解析】设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,则5352x yx y+=⎧⎨+=⎩,解得1324724xy⎧=⎪⎪⎨⎪=⎪⎩,答:1个大桶可以盛酒1324斛,1个小桶可以盛酒724斛.10.(2018•河池)某冷饮店用200元购进A,B两种水果共20kg,进价分别为7元/kg和12元/kg.(1)这两种水果各购进多少千克?(2)该冷饮店将所购进的水果全部混合制成50杯果汁,要使售完后所获利润不低于进货款的50%,则每杯果汁的售价至少为多少元?【答案】(1)购进A种水果8千克,B种水果12千克;(2)每杯果汁的售价至少为6元.【解析】(1)设A种水果购进了x千克,则B种水果购进了(20–x)千克,根据题意得:7x+12(20–x)=200,解得x=8,则20–x=12.答:购进A种水果8千克,B种水果12千克;(2)设每杯果汁的售价至少为y元,根据题意得,50y–200≥200×50%,解得y≥6,答:每杯果汁的售价至少为6元.。

二元一次方程(组)和不等式(组)的应用

二元一次方程(组)和不等式(组)的应用

二元一次方程(组)和不等式(组)的应用1、端午节是我国传统的节日,人们素有吃粽子的习俗。

某商场在端午节来临之际,用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同,已知A种粽子的单价是B种粽子的单价的1.2倍。

(1)求A、B两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种粽子共260 0个,已知A、B 两种粽子的进价不变,求A种粽子最多能购进多少个?2、某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品,这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话:老板:如果你在多买一个,就可以打八五折,花费比现在还省17元。

小明:那就多买一个吧,谢谢!(1)结合两人的对话内容,求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,两次购买奖品总支出不超过400元,其中钢笔标价每支8元,签字笔标价每支6元,经过沟通,这次老板给予8折优惠,那么小明最多可购买钢笔多少支?3、在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的总量比A型粽子的2倍少20千克,购进两种粽子公用了2560元,求两种型号粽子各多少千克?4、刘阿姨到超市购买大米,第一次按原价购买,用了105元,几天后,遇上这种大米8折出售,她用了140元又买了一些,两次一共购买了40 kg,这种大米的原价是多少?5、随着中国传统几日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折销售,乙品牌粽子打七五折销售,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需要660元,打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元。

(1)打折前甲乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?6、某商场购进甲乙两种商品,甲种商品公用了2000元,乙种商品公用了2400元。

方程(组)与不等式(组)问题数学教案

方程(组)与不等式(组)问题数学教案

方程(组)与不等式(组)问题数学教案标题:方程(组)与不等式(组)问题的数学教案
I. 引言
- 简述方程(组)与不等式(组)在日常生活中的应用
- 阐明学习方程(组)与不等式(组)的重要性
II. 教学目标
- 学生能够理解并掌握方程(组)与不等式(组)的基本概念
- 学生能够解决实际问题中涉及的方程(组)与不等式(组)
III. 教学内容
A. 方程(组)
1. 定义与性质
2. 解方程的方法(如代入法、消元法等)
3. 应用实例
B. 不等式(组)
1. 定义与性质
2. 解不等式的方法(如移项、合并同类项等)
3. 应用实例
IV. 教学方法
- 互动教学:通过讨论、小组活动等方式让学生参与进来
- 实例教学:使用生活中的实例帮助学生理解方程(组)与不等式(组)
V. 教学评估
- 测试:设计相关的测试题目以检查学生的理解程度
- 反馈:收集学生的反馈,了解他们对课程的理解和感受
VI. 结论
- 回顾本课的主要内容
- 鼓励学生将所学知识应用到日常生活中。

中考数学总复习:方程(组)与不等式(组)的实际应用ppt专题课件

中考数学总复习:方程(组)与不等式(组)的实际应用ppt专题课件

第 九 讲
第 十 讲
复习目标
知识回顾
重点解析
探究拓展
真题演练
3. 利率问题中的等量关系: ( 1) 本息和= 本金+ ( 2) 利息= 本金× 利率×
第 七 讲
第 八 讲
第 九 讲
( 3) 利息税= 利息× 利息税率 4. 利润问题中的等量关系: ( 1) 毛利润= 售价( 2) 纯利润= 售价- 其他费用
第 七 讲
第 八 讲
第 九 讲
第 十 讲
复习目标
知识回顾
重点解析
探究拓展
真题演练
第 七 讲
一、方程( 组) 与不等式( 组) 的实际应用 1. 行程问题中的基本数量关系: 路程= 速度× 2. 工程问题中的基本数量关系: 工作效率= ➡特别提醒: 工程问题中通常把工作总量看作整体“1”.
第 八 讲
复习目标
知识回顾
重点解析
探究拓展
真题演练
方程(组)与不等式(组)的实际应用
课标要求 理解:列方程(组)、不等式(组)解决实际问题的意义. 掌握:列方程(组)、不等式(组)解应用题的步骤与方法. 会:列方程( 组) 、不等式(组) 解决实际问题. 高频考点 1.列方程(组)解决实际问题. 2.列不等式(组)解决实际问题.
第 八 讲
第 九 讲
第 十 讲
复习目标
知识回顾
重点解析
探究拓展
真题演练
【思路点拨】 利用时间作为等量关系, 即骑车行驶 2. 1 千米所用的时间= 步行 2. 1 千米所用的时间-20 分钟, 在列方程时要注意单位的统一.
第 七 讲
第 八 讲
【自主解答】 ( 1) 设李明步行速度为 x米/ 分, 则骑自行车的速度为 3x米/ 分.

专题09方程与不等式(组)的应用2024-2025学年八年级数学上册同步学与练(湘教版)[含答案]

专题09方程与不等式(组)的应用2024-2025学年八年级数学上册同步学与练(湘教版)[含答案]

专题09 方程与不等式(组)的应用题型1:列方程(组)与不等式(组)解销售问题题型2:列方程(组)与不等式(组)解工程问题题型3:列方程(组)与不等式(组)解方案问题题型1:列方程(组)与不等式(组)解销售问题1.2020年12月28日,习近平总书记在主持召开中央农村工作会议中指出:“坚持中国人的饭碗任何时候都要牢牢端在自己手中,饭碗主要装中国粮.”某粮食生产基地为了落实总书记的重要讲话精神,积极扩大粮食生产规模,计划投入一笔资金购买A型和B型两种农机具,已知1件A型农机具比1件B型农机具多0.5万元,用18万元购买A型农机具和15万元购买B 型农机具的数量相同.(1)求购买1件A型农机具和1件B型农机具各需多少钱?(2)若该粮食生产基地计划购买A型和B型两种农机具共24件,且购买的总费用不超过66万元,购买A型农机具最多能购买多少件?一.解答题(共4小题)2.某体育用品商场的采购员到厂家批发购进篮球和排球共100个,要求付款总额不超过11815元.两种球的厂家批发价和商场零售价如表所示:厂家批发价/(元/个)商场零售价/(元/个)篮球130160排球100120(1)该采购员最多可购进篮球多少个?(2)若该商场把这100个球全部以零售价售出,为使商场获得的利润不低于2580元,则该采购员最少购进篮球多少个?3.某地光纤上网有两种收费方式,用户可以任选其一.A:计时制:0.05元/分,B:包月制:50元/月,每一种上网时间都要再收取通信费0.02元/分(1)某用户某月上网时间为x小时,请写出两种收费方式下该用户应该支付的费用.(2)用户选哪一种收费方式更合算?4.在运动会前夕,实验学校购买篮球、足球作为奖品.若购买10个篮球和15个足球共花费3000元,且购买一个篮球比购买一个足球多花50元.(1)求购买一个篮球,一个足球各需多少元?(2)学校计划购买这种篮球和足球共10个,恰逢商场在搞促销活动,篮球打九折,足球打八五折.①若此次购买两种的总费用不超过1050元,则最多可购买多少个篮球?②若此次购买篮球的数量不少于足球数量的4倍,请设计出最省钱的购买方案,并说明理由.5.某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:销售数量销售收入销售时段A种型号B种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.题型2:列方程(组)与不等式(组)解工程问题6.中国·哈尔滨冰雪大世界,始创于1999年,是由黑龙江省哈尔滨市政府为迎接千年庆典神州世纪游活动,凭借哈尔滨的冰雪时节优势,而推出的大型冰雪艺术精品工程,展示了北方名城哈尔滨冰雪文化和冰雪旅游魅力.2024年在准备冰雪大世界的建造时,需要取冰,现安排甲、乙两个采冰队共同完成.已知甲队的工作效率是乙队工作效率的1.5倍,甲队取240立方米的冰比乙队取同样体积的冰少用2天.(1)甲、乙两个采冰队每天能采冰的体积分别是多少立方米?(2)如需40天采冰3970立方米.甲乙队共同工作若干天后,甲另有任务,剩下的由乙队独立完成为了能在规定的时间内完成任务,至少安排甲队工作多少天?一.解答题(共4小题)7.在高速铁路建设中,某渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方.已知2辆大型渣土运输车与3辆小型渣土运输车一次共运输土方31吨,5辆大型渣土运输车与6辆小型渣土运输车一次共运输土方70吨.(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨;(2)该渣土运输公司决定派出大、小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不小于148吨,大型渣土运输车至少派出多少辆.8.维修某段公路,现计划由甲、乙两工程队来完成,已知甲、乙两工程队合作6个月,可完成工程的78甲工程队先独做6个月,剩下的由乙工程队独做8个月才能完成.(1)甲、乙两工程队单独完成此工程各需几个月?(2)已知甲工程队每月费用为20万元,乙工程队每月费用为10万元.现要求15个月内完工,且施工总费用最低,如果甲、乙两工程队单独施工,那么甲、乙两工程队各应施工多长时间?9.长沙第一条地铁线路于2014年4月开通,随后十年相继开通了多条地铁线路及磁悬浮快线.某地铁建设公司租赁大、小挖掘机共20台进行地铁建设.(1)已知每台大挖掘机1小时可挖土80立方米,每台小挖掘机1小时可挖土60立方米,若所租大、小挖掘机同时施工2小时恰好可以挖土3000立方米,求租赁的大、小挖掘机各多少台?(2)已知大挖掘机租赁费为每小时600元,小挖掘机租赁费为每小时400元,若公司预算每小时的租赁费不超过10000元,求最多可以租赁多少台大挖掘机?题型3:列方程(组)与不等式(组)解方案问题10.“一盔一带”安全守护行动是公安部在全国开展的一项安全守护行动,也是营造文明城市,做文明市民的重要标准,电动自行车驾驶人和乘坐人员应当戴安全头盔,某商场欲购进一批头盔,已知购进8个甲型头盔和6个乙型头盔需要630元,购进6个甲型头盔和8个乙型头盔需要700元.(1)购进1个甲型头盔和1个乙型头盔分别需要多少元?(2)若该商场准备购进200个这两种型号的头盔,总费用不超过10200元,则最多可购进乙型头盔多少个?(3)在(2)的条件下,若该商场分别以58元/个、98元/个的价格销售完甲,乙,能否实现利润不少于6190元的目标?若能,请给出相应的采购方案,请说明理由.一.解答题(共6小题)11.我校即将进行秋季实践活动,计划租用A、B两种型号的大巴车,已知租用3辆A型大巴车和2辆台B型大巴车,共需费用2100元;4辆台A型大巴车比5辆B型大巴车的费用多500元.(1)求A型大巴车和B型大巴车每辆俩各需多少元;(2)若计划租用A、B两种型号大巴车共30辆,且A型大巴车的辆数不少于B型大巴车的一半,两种型号大巴车的租用采购总费用不超过11500元,共有哪几种采购方案?(3)在(2)的条件下,直接写出采用哪一种租用方案可使总费用最低,最低费用是多少元?12.某电器经销商计划同时购进一批甲、乙两种型号的微波炉,若购进1台甲型微波炉和2台乙型微波炉,共需要资金2600元;若购进2台甲型微波炉和3台乙型微波炉,共需要资金4400元.(1)求甲、乙型号的微波炉每台进价为多少元?(2)该店计划购进甲、乙两种型号的微波炉销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两种型号的微波炉共20台,请问有几种进货方案?请写出进货方案;13.某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品13件,B种纪念品4件.(1)求A、B两种纪念品的进价分别为多少?(2)若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出后总获利不低于216元,问共有几种方案并求出利润最大值?14.某网店销售甲、乙两种遮阳帽,已知甲种遮阳帽每顶售价比乙种遮阳帽每顶售价的3倍少20元,网购3顶甲种遮阳帽和2顶乙种遮阳帽共花费160元(包邮),请解答下列问题:(1)该网店甲、乙两种遮阳帽每顶售价各是多少元?(2)根据消费者需求,该网店决定用不超过2400元购进甲、乙两种遮阳帽共100顶,且甲种遮阳帽的数量超过57顶,已知甲种遮阳帽每顶进价为30元,乙种遮阳帽每顶进价为15元,该网店有哪几种进货方案?15.根据下列信息,探索完成任务:信息一2024年巴黎奥运会,即第33届夏季奥林匹克运动会(The33rd Summer Olympic Games),是由法国巴黎举办的国际性奥林匹克赛事,2024年7月26日本届奥运会在巴黎塞纳河上举行开幕式.某校七年级举行了关于“奥林匹克运动会”的线上知识竞赛,竞赛试卷共30道题目,每道题都给出四个答案,其中只有一个答案正确,参赛者选对得4分,不选或者选错扣2分,得分不低于78分者获奖.信息二为奖励获奖同学,学校准备购买A、B两种文具作为奖品,已知购买1个A型文具和4个B型文具共需44元,购买2个A型文具和购买3个B型文具所花的钱一样多.信息三学校计划完成本次活动的总费用(包含支付线上平台使用费和购买奖品两部分)不超过850元,其中支付线上平台使用费刚好用了180元,剩余的钱用于购买两种型号的文具共60个作为奖品,其中A型文具数量大于45个.解决问题任务一小明同学是获奖者,他至少应选对多少道题.任务二求A型文具和B型文具的单价.任务三通过计算说明该校共有哪几种购买方案.16.某中学计划举行阳光体育运动比赛,决定让各班购买跳绳和毽子作为活动器材.已知购买2根跳绳和5个毽子共需32元;购买4根跳绳和3个毽子共需36元.(1)求购买一根跳绳和一个毽子分别需要多少元?(2)某班需要购买跳绳和毽子的总数量是54,且购买的总费用不能超过260元;若要求购买跳绳的数量多于20根,通过计算说明共有哪几种购买跳绳的方案.1.(1)购买一件A 型农机具需要3万元,购买一件B 型农机具需要2.5万元(2)最多可以购买12件A 型农机具【分析】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找出数量关系,正确列出一元一次不等式.(1)设购买一件A 型农机具需要x 万元,购买一件B 型农机具需要()0.5x -万元,根据用18万元购买A 型农机具和15万元购买B 型农机具的数量相同.列出分式方程,解方程即可;(2)设购买A 型农机具m 件,则乙种农机具能购买(24)a -件,根据购买的总费用不超过66万元,列出一元一次不等式,解不等式即可.【详解】(1)设购买一件A 型农机具需要x 万元,购买一件B 型农机具需要()0.5x -万元,根据题意,得1815.0.5x x =-解这个方程,得3x =,经检验,3x =是原方程的解,0.5 2.5x -=(万元),所以,购买一件A 型农机具需要3万元,购买一件B 型农机具需要2.5万元;(2)设购买A 型农机具m 件,根据题意,得()3 2.52466,m m +-£解这个不等式,得12.m £所以,最多可以购买12件A 型农机具.2.(1)该采购员最多可购进篮球60个(2)该采购员最少购进篮球58个【分析】本题主要考查了一元一次不等式的实际应用:(1)设该采购员购进篮球x 个,则购进排球()100x -个,再根据总费用不超过11815元列出不等式求解即可;(2)设该采购员购进篮球m 个,则购进排球()100m -个,再根据总利润不低于2580元列出不等式求解即可.【详解】(1)解:设该采购员购进篮球x 个,则购进排球()100x -个,由题意得,()13010010011815x x +-£,解得60.5x ≤,∵x 为整数,∴x 的最大值为60,∴该采购员最多可购进篮球60个;(2)解:设该采购员购进篮球m 个,则购进排球()100m -个,由题意得,()()()1601301201001002580m m -+--³,解得58m ³,∴m 的最小值为58,∴该采购员最少购进篮球58个.3.(1)A 种收费方式的费用为4.2x 元;B 种收费方式的费用为()1.250x +()0.0250x +元;(2)当上网时间低于53小时时,选择甲种收费方式合算;当上网时间等于53小时时,选择两种收费方式一样合算;当上网时间高于53小时时,选择乙种收费方式合算【分析】本题主要考查了列代数式,一元一次不等式的实际应用,一元一次方程的实际应用:(1)A 种收费等于上网费用加上通信费,B 种收费等于包月费用加上通信费,据此求解即可;(2)根据(1)所求分别求出4.2 1.250x x <+时,4.2 1.250x x =+时,4.2 1.250x x >+时的x 的值或取值范围即可得到答案.【详解】(1)解:由题意得,A 种收费方式的费用为()600.050.02 4.2x x ´+=元;B 种收费方式的费用为()600.0250 1.250x x ´+=+元;(2)解:当4.2 1.250x x <+时,解得53x <;当4.2 1.250x x =+时,解得53x =;当4.2 1.250x x >+时,解得53x >;∴当上网时间低于53小时时,选择甲种收费方式合算;当上网时间等于53小时时,选择两种收费方式一样合算;当上网时间高于53小时时,选择乙种收费方式合算.4.(1)购买一个篮球,一个足球各需150元,100元(2)①最多可购买4个篮球;②买8个篮球,2个足球的费用最少,见解析【分析】本题考查一元一次不等式的应用,二元一次方程组的应用,关键是根据数量作为等量关系列出方程和不等式求解.(1)设购买一个篮球需x 元,购买一个足球需y 元,根据题意列出方程组解答即可;(2)①设购买a 个篮球,根据题意列出不等式解答即可;②设购买b 个篮球,根据题意列出不等式解答即可.【详解】(1)解:设购买一个篮球需x 元,购买一个足球需y 元,根据题意可得:5010153000x y x y -ìí+î==,解得:150100x y ìíî==,答:购买一个篮球,一个足球各需150元,100元;(2)①设购买a 个篮球,根据题意可得:()0.91500.85100101050a a ´+´-£,解得:4a £,∴最多可购买4个篮球.②设购买b 个篮球,根据题意可得:()410b b ³-,∴8b ³,且10b <,b 为整数,∴8b =或9,当8b =时,总费用()0.915080.851001081250=´´+´-=元,当9b =时,总费用()0.915090.851001091300=´´+´-=元,答:买8个篮球,2个足球的费用最少.5.(1)A 、B 两种型号电风扇的销售单价分别为200元、150元(2)超市最多采购A 种型号电风扇37台时,采购金额不多于7500元(3)有两种:当36a =时,采购A 种型号的电风扇36台,B 种型号的电风扇14台;当37a =时,采购A 种型号的电风扇37台,B 种型号的电风扇13台.【分析】对于(1),设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,根据3台A 型号4台B 型号的电扇收入1200元,5台A 型号6台B 型号的电扇收入1900元,列方程组求解;对于(2),设采购A 种型号电风扇a 台,则采购B 种型号电风扇(50)a -台,根据金额不多余7500元,列不等式求解;对于(3),根据A 种型号电风扇的进价和售价、B 种型号电风扇的进价和售价以及总利润=一台的利润×总台数,列出不等式,求出a 的取值范围,再根据a 为整数,即可得出答案.【详解】(1)解:设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,依题意得:341200561900x y x y +=ìí+=î,解得:200150x y =ìí=î,答:A 、B 两种型号电风扇的销售单价分别为200元、150元.(2)解:设采购A 种型号电风扇a 台,则采购B 种型号电风扇(50)a -台.依题意得:160120(50)7500a a +-£,解得:1372a £,∵a 是整数,∴a 最大是37,答:超市最多采购A 种型号电风扇37台时,采购金额不多于7500元.(3)解:根据题意得:(200160)(150120)(50)1850a a -+-->,解得:35a >,∵1372a £,且a 应为整数,∴在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:当36a =时,采购A 种型号的电风扇36台,B 种型号的电风扇14台;当37a =时,采购A 种型号的电风扇37台,B 种型号的电风扇13台.【点睛】本题主要考查了二元一次方程组的应用,不等式组的应用,方案设计,根据题意弄清等量(不等)关系是解题的关键.6.(1)甲采冰队每天能采冰的体积是60立方米,乙采冰队每天能采冰的体积是40立方米(2)39.5天【分析】本题考查分式方程的应用和一元一次不等式的应用,解题的关键是读懂题意,列出方程和不等式解决问题.(1)设乙采冰队每天能采冰的体积是x 立方米.根据甲队取240立方米的冰比乙队取同样体积的冰少用2天可得:24024021.5x x=+,解方程并检验可得答案;(2)设安排甲队工作m 天,可得:6040403970m +´³,即可解得答案.【详解】(1)解:设乙采冰队每天能采冰的体积是x 立方米.则甲采冰队每天能采冰的体积是1.5x 立方米;根据题意得:24024021.5x x=+,解得40x =,经检验,40x =是原方程的解,也符合题意,1.5 1.54060x \=´=;\甲采冰队每天能采冰的体积是60立方米,乙采冰队每天能采冰的体积是40立方米;(2)解:设安排甲队工作m 天,根据题意得:6040403970m +´³,解得39.5m ³,\至少安排甲队工作39.5天.7.(1)大型渣土运输车一次运输土方8吨,小型渣土运输车一次运输土方5吨(2)大型渣土运输车至少派出16辆【分析】本题考查一元一次不等式的应用、二元一次方程组的应用,解题的关键是明确题意,找出所求问题需要的条件.(1)设一辆大型渣土运输车一次运输x 吨,一辆小型渣土运输车一次运输y 吨,根据题意列出关于x 、y 的二元一次方程组,从而可以求得一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨;(2)设该渣土运输公司决定派出大、小两种型号的渣土运输车分别为a 辆、()20a -辆, 根据题意可以列出不等式,求出a 的取值范围,即可得出答案.【详解】(1)解:设一辆大型渣土运输车一次运输x 吨,一辆小型渣土运输车一次运输y 吨,由题意得:2331,5670x y x y +=ìí+=î解得:8,5x y =ìí=î∴一辆大型渣土运输车一次运输8吨,一辆小型渣土运输车一次运输5吨;(2)解:设该渣土运输公司决定派出大、小两种型号的渣土运输车分别为a 辆、()20a -辆,由题意可得:()8520148,a a +-³解得:16,a ³∴大型渣土运输车至少派出16辆.8.(1)甲工程队单独完成此工程需12个月,乙工程队单独完成此工程需16个月(2)甲工程队应施工3个月,乙工程队应施工12个月【分析】本题考查分式方程的应用,一元一次不等式的应用:(1)先求出两个工程队合作的效率,设甲工程队单独完成此工程需x 个月,根据甲工程队先独做6个月,剩下的由乙工程队独做8个月才能完成,列出分式方程进行求解即可;(2)设甲工程队施工y 个月,则乙工程队施工1411612163y y æöæö-¸=-ç÷ç÷èøèø个月,根据题意,列出不等式求出y 的范围,再根据施工总费用最低进行判断即可.【详解】(1)解:由题意,得:甲乙两队合作的效率为:776848¸=,设甲单独完成此工程需要x 个月,则乙的工效为7148x æö-ç÷èø,由题意,得:17168148x x æö×+-=ç÷èø,解得:12x =,经检验,12x =是原方程的的解,∴711164812æö¸-=ç÷èø, 答:甲工程队单独完成此工程需12个月,乙工程队单独完成此工程需16个月;(2)解:设甲工程队施工y 个月,则乙工程队施工1411612163y y æöæö-¸=-ç÷ç÷èøèø个月,由题意,得:416153y y æö+-£ç÷èø,解得:3y ³;∵甲队每月费用20万元,乙队每月费用10万元,10万元20<万元,∴在要求完成时间内,甲工程队施工时间越短,施工总费用越低,∴当甲工程队施工3个月时,剩下的由乙做需要的费用最低,乙工程队施工的月为:4163123-´=(个)月,答:施工总费用最低时,甲工程队施工3个月,乙工程队施工12个月.9.(1)租赁的大、小挖掘机分别为15台、5台(2)最多可以租赁10台大挖掘机【分析】本题考查了二元一次方程组的应用、一元一次不等式的应用,根据题意列出方程组和不等式是解题的关键.(1)设租赁大、小挖掘机分别为x 台、y 台,根据题意列出二元一次方程组,求解即可;(2)设租赁大挖掘机m 台,根据题意列出不等式,求解即可.【详解】(1)解:设租赁大、小挖掘机分别为x 台、y 台,根据题意得:202(8060)3000x y x y +=ìí+=î,解得:155x y =ìí=î,故租赁的大、小挖掘机分别为15台、5台.(2)解:设租赁大挖掘机m 台,根据题意得:600400(20)10000m m +-£,解得:10m £,答:最多可以租赁10台大挖掘机.10.(1)购进1个甲型头盔需要30元,购进1个乙型头盔需要65元(2)最多可购进乙型头盔120个(3)能,该商场有三种采购方案:①采购甲型头盔82个,采购乙型头盔118个;②采购甲型头盔81个,采购乙型头盔119个;③采购甲型头盔80个,采购乙型头盔120个【分析】本题考查二元一次方程组和一元一次不等式的应用,关键是根据题意找到关系式.(1)设购进1个甲型头盔需要x 元,购进1个乙型头盔需要y 元,根据题意列二元一次方程组并求解即可;(2)设乙型头盔m 个,根据所需费用=数量´单价,计算甲、乙头盔总费用列不等式,求得乙型头盔m 的最大值;(3)根据利润=单件利润´数量,列不等式,求出乙型头盔m 的取值范围,结合(2)中答案确定m 的取值范围,即可得出可选方案.【详解】(1)解:设购进1个甲型头盔需要x 元,购进1个乙型头盔需要y 元,根据题意得8663068700x y x y +=ìí+=î,解得3065x y =ìí=î,答:购进1个甲型头盔需要30元,购进1个乙型头盔需要65元;(2)解:设购进乙型头盔m 个,则购进甲型头盔(200)m -个,根据题意得6530(200)10200m m +-£,解得120m £,m \的最大值为120,答:最多可购进乙型头盔120个;(3)解:能,理由如下:根据题意得(5830)(200)(9865)6190m m --+-³,解得118m ³,118120m \££,m Q 为整数,m \可取118,119或120,对应的200m -的值分别为82,81或80,因此能实现利润不少于6190元的目标,该商场有三种采购方案:①采购甲型头盔82个,采购乙型头盔118个;②采购甲型头盔81个,采购乙型头盔119个;③采购甲型头盔80个,采购乙型头盔120个.11.(1)每辆A 型大巴车需500元,每辆B 型大巴车需300元(2)该校共有3种租车方案,方案1:租用10辆A 型大巴车,20辆B 型大巴车;方案2:租用11辆A 型大巴车,19辆B 型大巴车;方案3:租用12辆A 型大巴车,8辆B 型大巴车;(3)采用租车方案1可使总费用最低,最低费用是11000元【分析】(1)设每辆A 型大巴车需x 元,每辆B 型大巴车需y 元,根据“租用3辆A 型大巴车和2辆台B 型大巴车,共需费用2100元;4辆台A 型大巴车比5辆B 型大巴车的费用多500元”,可列出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设租用m 辆A 型大巴车,则租用(30)m -辆B 型大巴车,根据“A 型大巴车的辆数不少于B 型大巴车的一半,两种型号大巴车的租用总费用不超过11500元”,可列出关于m 的一元一次不等式组,解之可得出m 的取值范围,再结合m 为正整数,即可得出各租车方案;(3)利用总租金=每辆A 型大巴车的租金´租用A 型大巴车的数量+每辆B 型大巴车的租金´租用B 型大巴车的数量,可求出采用各租车方案所需费用,比较后即可得出结论.本题考查了二元一次方程组的应用、一元一次不等式组的应用以及有理数的混合运算,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,求出采用各租车方案所需费用.【详解】(1)解:设每辆A 型大巴车需x 元,每辆B 型大巴车需y 元,根据题意得:32210045500x y x y +=ìí-=î,解得:500300x y =ìí=î.答:每辆A 型大巴车需500元,每辆B 型大巴车需300元;(2)解:设租用m 辆A 型大巴车,则租用(30)m -辆B 型大巴车,根据题意得:1(30)2500300(30)11500m m m m ì³-ïíï+-£î,解得:25102m ££,又m Q 为正整数,m \可以为10,11,12,\该校共有3种租车方案,方案1:租用10辆A 型大巴车,20辆B 型大巴车;方案2:租用11辆A 型大巴车,19辆B 型大巴车;方案3:租用12辆A 型大巴车,8辆B 型大巴车;(3)解:采用租车方案1所需费用为500103002011000´+´=(元);采用租车方案2所需费用为500113001911200´+´=(元);采用租车方案3所需费用为500123001811400´+´=(元).110001120011400<<Q ,\采用租车方案1可使总费用最低,最低费用是11000元.12.(1)甲型号微波炉每台进价为1000元,乙型号微波炉每台进价为800元;(2)共有四种方案,方案一:购进甲种型号微波炉7台、乙种型号微波炉13台;方案二:购进甲种型号微波炉8台、乙种型号微波炉12台;方案三:购进甲种型号微波炉9台、乙种型号微波炉11台;方案四:购进甲种型号微波炉10台、乙种型号微波炉10台.【分析】本题考查了一元一次不等式组与二元一次方程组的应用,(1)设甲种型号微波炉每台进价为x 元,乙种型号微波炉每台进价为y 元,根据题意建立方程组求解就可以求出答案;(2)设购进甲种型号微波炉a 台,则购进乙种型号微波炉()20a -台,根据“用不多于1.8万元且不少于1.74万元的资金购进这两种型号的微波炉共20台”建立不等式组,求出其解就可以得出结论.【详解】(1)解:设甲种型号微波炉每台进价为x 元,乙种型号微波炉每台进价为y 元,根据题意得22600234400x y x y +=ìí+=î,解得:1000800x y =ìí=î,答:甲型号微波炉每台进价为1000元,乙型号微波炉每台进价为800元;(2)解:设购进甲种型号微波炉a 台,则购进乙种型号微波炉()20a -台,根据题意得:()£+-£1740010008002018000a a ,解得:710a ££,∵a 为整数,∴共有四种方案,方案一:购进甲种型号微波炉7台、乙种型号微波炉13台;方案二:购进甲种型号微波炉8台、乙种型号微波炉12台;方案三:购进甲种型号微波炉9台、乙种型号微波炉11台;方案四:购进甲种型号微波炉10台、乙种型号微波炉10台.13.(1)A 、B 两种纪念品的进价分别为20元、30元(2)一共有3种方案,当购进A 种30件,B 种10件时,获得最大利润220元【分析】本题主要考查二元一次方程组及一元一次不等式组的应用,解题的关键是理解题意;(1)设A 、B 两种纪念品的进价分别为x 元、y 元,然后根据题意可得方程组为78380134380x y x y +=ìí+=î,进而求解即可;(2)设商店准备购进A 种纪念品a 件,则购进B 种纪念品()40a -件,由(1)即题意可得()()2030409005740216a a a a ì+-£ïí+-³ïî,然后分别求出利润即可.【详解】(1)解:设A 、B 两种纪念品的进价分别为x 元、y 元.由题意,得78380134380x y x y +=ìí+=î,。

2025年湖南中考数学一轮复习考点研析 第二章 方程(组)与不等式(组)一元一次不等式(组)及其应用

2025年湖南中考数学一轮复习考点研析 第二章 方程(组)与不等式(组)一元一次不等式(组)及其应用
x<3
(2)不等式②的解集为________;
(3)把不等式组的解集在如图的数轴上表示出来;
解:在数轴上表示不等式组的解集如解图.
1≤x<3
(4)不等式组的解集为____________;
1,2
(5)不等式组的整数解为________.
解图


变式2-1
是(
C
-+3<5,
(2023·娄底)不等式组ቊ
的单价为380元/个.若学校购买这两种灭火器的总价不超过21 000元,则最多
可购买这种型号的水基灭火器多少个?
解:设可购买这种型号的水基灭火器x个,则购买这种型
号的干粉灭火器(50-x)个.
根据题意,得540x+380(50-x)≤21 000,解得x≤12.5.
∵x为整数,∴x的最大值为12.
∴最多可购买这种型号的水基灭火器12个.

1.若a>b,则下列四个选项一定成立的是( A )
A.a+2>b+2
B.-3a>-3b


C. <
4
4
D.a-1<b-1
2.(2022·益阳)若x=2是下列四个选项中的某个不等式组的一个解,则这个不
等式组是( D )
<1,
A.ቊ
<-1
<1,
B.ቊ
> -1
> 1,
C.ቊ
<-1
> 1,
不等式的解集 不等式的解的全体称为不等式的解集
2.不等式的性质
性质
性质1
内容
应用
不等式两边都加上(或减去)同一个数(或式),不等号
b±c
的方向不变,即如果a>b,那么a±c>_______

中考数学专题复习课件 --- 第十讲方程(组)与不等式(组)的实际应用

中考数学专题复习课件 --- 第十讲方程(组)与不等式(组)的实际应用

【思路点拨】
【自主解答】设原来每天加固x米,根据题意,得
600 4 800 600 9. x 2x
去分母,得1 200+4 200=18x(或18x=5 400).
解得x=300. 检验:当x=300时,2x≠0(或分母不等于0) ∴x=300是原方程的解. 答:该地驻军原来每天加固300米.
液晶显示器25台或电脑机箱26台、液晶显示器24台,共三种 进货方案; 24×10+160×26=4 400(元), 25×10+160×25=4 250(元), 26×10+160×24=4 100(元), ∴购买电脑机箱24台、液晶显示器26台时利润最大,最大利 润是4 400元.
1.(2010·西宁中考)西宁市天然气公司在一些居民小区安装
【解析】设原计划每天生产x吨纯净水,则依据题意,得
1 800 1 800 3, x 1.5x
整理得:4.5x=900, 解之得:x=200,
把x代入原方程,成立.
∴x=200是原方程的解.
答:原计划每天生产200吨纯净水.
11.(2010·济宁中考)某市在道路改造过程中,需要铺设一条
长为1 000米的管道,决定由甲、乙两个工程队来完成这一工
2.相遇问题:
两个物体同时从不同地点出发,相向而行最后相遇的行程问题 等量关系:甲路程+乙路程=总路程;甲速度×相遇时间+乙速 度×相遇时间=总路程. 3.一般行程问题的等量关系:速度×时间=路程. 4.航行问题的等量关系:顺水速度=静水速度+水流速度,逆水 速度=静水速度-水流速度.
【例2】(2010·赤峰中考)从甲地到乙地的路有一段平路与一 段上坡路,如果骑自行车保持平路每小时行15 km,上坡每小 时行10 km,下坡每小时行18 km,那么从甲地到乙地需29分 钟,从乙地到甲地需25分钟,从甲地到乙地全程是多少km?

_方程(组)与不等式(组)应用题(含答案)-

_方程(组)与不等式(组)应用题(含答案)-

方程(组)与不等式(组)应用题【例题经典】一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:例如,购买A类会员卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡【点评】此题通过数学建模能培养同学们应用数学知识解决问题的能力,此题先将实问题转化为列方程组和不等式组解应用题.例2《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架。

它的代数成就主要包括开放术、正负术和方程术。

其中,方程术是《九章算术》最高的数学成就。

《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两。

问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两。

问每头牛、每只羊各值金多少两”设每头牛值金x,每只羊各值金y两,可列方程组为_____________.例3:(2010•北京)列方程或方程组解应用题:2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米?【点评】此题通过数学建模能培养同学们应用数学知识解决问题的能力,此题先将实问题转化为列方程组和不等式组解应用题.中考达标函数/不等式/方程的应用问题(东城)9. 为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品. 已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过...200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是A.5 B.6 C.7D.8(海淀)9.油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:某人计划购入一辆上述品牌的汽车.他估算了未来10年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计平均每年行驶的公里数至少..为A.5 000 B.10 000 C.15 000 D.20 000(燕山)9.手工课上,老师将同学们分成A,B两个小组制作两个汽车模型,每个模型先由A组同学完成打磨工作,再由B组同学进行组装完成制作,两个模型每道工序所需时间如下:A.20分钟B.22分钟C.26分钟D.31分钟(石景山)9.王先生清明节期间驾车游玩,每次加油都把油箱加满.下表记录了该车相邻两次加油时的相关数据:注:“累计里程”指汽车从出厂开始累计行驶的路程.根据数据,王先生计算出这段时间内该车行驶一百公里....的平均耗油量大约是 A .7升 B .8升 C .9升 D .10升则应选择的套餐是A .套餐1B .套餐2C .套餐3D .套餐4(门头沟)15.某地中国移动“全球通”与“神州行”收费标准如下表:65~70分钟之间,那么他选择 较为省钱(填“全球通”或“神州行”).(2016房山一模)9.在科技迅猛发展的今天,移动电话成为了人们生活中非常普及的通讯工具,选择经济实惠的计费方式成为了人们所关心的具有实际意若小明的爸爸每月打电话的时间在300分钟,请问选择哪种方式省钱 A. 方式一 B. 方式二 C.两种方式一样 D. 无法确定(2016昌平二模)9.商场为了促销,推出两种促销方式: 方式①:所有商品打8折销售. 方式②:购物每满100元送30元现金.杨奶奶同时选购了标价为120元和280元的商品各一件,现有四种购买方案: 方案一:120元和280元的商品均按促销方式①购买;方案二:120元的商品按促销方式①购买,280元的商品按促销方式②购买; 方案三:120元的商品按促销方式②购买,280元的商品按促销方式①购买; 方案四:120元和280元的商品均按促销方式②购买. 你给杨奶奶提出的最省钱的购买方案是A. 方案一B.方案二C.方案三D.方案四(2016海淀二模)8.某通信公司自2016年2月1日起实行新的4G 飞享套餐,部分套餐资费标准如下:小明每月大约使用国内数据流量200MB,国内主叫200分钟,若想使每月付费最少,则他应预定的套餐是A.套餐1 B.套餐2 C.套餐3 D.套餐4(2016朝阳二模)8.现有A、B两种商品,买3件A商品和2件B商品用了160元,买2件A商品和3件B商品用了190元.如果准备购买A、B两种商品共10件,下列方案中费用最低的为A.A商品7件和B商品3件B.A商品6件和B商品4件C.A商品5件和B商品5件D.A商品4件和B商品6件【考点精练】1.(2006年潍坊市)据《淮坊日报》报道,潍坊市物价局下发了《关于调整潍坊市城市供数50%(•含)•以内的部分]•的基本水价在基数内基本水价的基础上,••每立方米加收_______元;基数外二档(即超基数50%以外的部分)•的基本水价在基数内基本水价的基础上,每立方米加收_________元;(2)若李明家基数内用水为每月6吨,5月份他家用水12吨,那么李明家5月份应交水费(按综合水价计算)多少元?若李明家计划6月份水费不超过30元,那么李明家6月份最多用水多少吨?(精确到0.01)2.双蓉服装店老板到厂家选购A、B两种型号的服装,若购进A种型号服装9件,•B种型号服装10件,需要1810元;若购进A种型号服装12件,B种型号服装8件,•需要1880元.(1)求A、B两种型号的服装每件分别为多少元?(2)若销售1件A型号服装可获利18元,销售1件B型号服装可获利30元,•根据市场需求,服装店老板决定,购进A型服装的数量要比购进B型服装数量的2倍还多4件,•且A型服装最多可购进28件,这样服装全部售出后,可使总的获利不少于699元,•问有几种进货方案?如何进货?3.(2006年龙岩市)某水果经销商上月份销售一种新上市的水果,•平均售价为10元/千克,月销售量为1000千克.经市场调查,若将该种水果价格调低至x元/千克,•则本月份销售量y(千克)与x(元/千克)之间符合一次函数关系式y=kx+b.当x=7•时,•y=2000;x=5时,y=4000.(1)求y与x之间的函数关系式;(2)已知该种水果上月份的成本价为5元/千克,本月份的成本价为4元/千克,•要使本月份销售这种水果所获利润比上月份增加20%,同时又要让顾客得到实惠,•那么该种水果价格每千克应调低至多少元?(利润=售价-成本价)4.武汉市江汉一桥维修工程中拟由甲、乙两个工程队共同完成某项目,•从两个工程队的资料可以知道:若两个工程队合做24天恰好完成;若两队工程队合做18天后,甲工程队再单独做10天,也恰好完成,请问:(1)甲、乙两个工程队单独完成该项目各需多少天?(2)已知甲工程队每天的施工费为0.6万元,乙工程队每天的施工费为0.35万元,要使该项目总的施工费不超过22万元,则乙工程队最少施工多少天?5.(2006年日照市)日照市是中国北方最大的对虾养殖产区,•被国家农业部列为对虾养殖重点区域;贝类产品西施舌是日照特产.沿海某养殖场计划今年养殖无公割标准化对虾和西施舌,由于受养殖水面的制约,这两个品种的种苗每投放一吨的先期投资、290千元,•设西施舌种苗的投放量为x吨.(1)求x的取值范围;(2)设这两个品种的总产值为y(千元),试写出y与x之间的函数关系式,并求出当x等于多少时,y有最大值?最大值是多少?6.某企业在“蜀南竹海”收购毛竹进行粗加工,每天可加工8吨,•每吨获利800元,如果对毛竹进行精加工,每天可加工1吨,每吨获利4000元.由于受条件限制,每天只能采用一种方式加工,要求在一月内(30天)将这批毛竹全部销售.为此企业厂长召集职工开会,让职工们讨论如何加工销售更合算.甲说:将毛竹全部进行粗加工销售;乙说:30天都进行精加工,未加工的毛竹直接销售;丙说:30天中可以几天粗加工,再用几天精加工后销售,请问厂长采用哪位说的方案获利最大?7.(2005年盐城市)学校书法兴趣小组准备到文具店购买A,B两种类型的毛笔,文具店的销售方法是:一次性购买A型毛笔不超过20枝时,按零售价销售;超过20枝时,•超过部分每枝比零售价低0.4元,其余部分仍按零售价销售;一次性购买B型毛笔不超过15枝时,按零售价销售;超过15枝时,超过部分每枝比零售价低0.6元,•其余部分仍按零售价销售.(1)如果全组共有20名同学,若每人各买1枝A型毛笔和2枝B型毛笔,共支付145元;若每人各买2枝A型毛笔和1枝B型毛笔,共支付129元,这家文具店的A,B•两种类型毛笔的零售价各是多少?(2)为了促销,该文具店对A型毛笔除了原来的销售方法外,同时又推出了一种新的销售方法:无论购买多少枝,一律按原零售价(即(1)中所求得的A型毛笔的零售价)的90%出售,现要购买A型毛笔a枝(a>40),在新的销售方法和原来的销售方法中,•应选择哪种方法购买花钱较少?并说明理由.8.(2006年天门市)某地为促进特种水产养殖业的发展,•决定对甲鱼和黄鳝的养殖提供政府补贴.该地某农户在改建的10个1亩大小的水池里分别养殖甲鱼和黄鳝,•因资金有限,投入不能超过14万元,并希望获得不低于10.8万元的收益,•相关信息如下表所示:(收益=(1(2)应怎样安排养殖,可获得最大收益?(3)据市场调查,在养殖成本不变的情况下,黄鳝的毛利润相对稳定,而每亩甲鱼的毛利润针减少m万元.问该农户又该如何安排养殖,才可获得最大收益?答案:例题经典例1. 设甲班人数为x 人,乙班人数为y 人.9169(1)138(1)830069(1)40027334439y x x y x x ⎧=-⎪+-=+-⎧⎪⎨⎨<+-<⎩⎪<<⎪⎩即, 因为x 为整数,所以x=34,35,36,37,38,39,40,41,42,43,44.又因为y 也整数,x 必须是8的倍数,所以x=40,•y=44, 所以总人数为84人.例2. 分析:可设A 、B 两种型号的轿车每辆分别为x 万元、y 万元. 通过列方程组解出(1)问. 解:(1)设A 型号的轿车每辆为x 万元,B•型号的轿车每辆为y 万元,根据题意,得1015300,15,818300.10.x y x x y y +==⎧⎧⎨⎨+==⎩⎩解得. 答:A 、B 两种型号的轿车每辆分别为10万元,15•万元(2)设购进A 种型号的轿车a 辆,则购进B 种型号的轿车(30-a )辆. 根据题意,得1510(30)400,0.80.5(30)20.4.a a a a +-≤⎧⎨+-≥⎩,解此不等式组得18≤a ≤20,∵a 为整数,∴a=18,19,20, ∴有三种购车方案.方案1:•购进A 种型号轿车18辆,购进B 型号轿车12辆; 方案2:购进A 型号轿车19辆,购进B 型号轿车11辆; 方案3:购进A 型号轿车20辆,购进B 型号轿车10辆.• 汽车销售公司将这些轿车全部售出后; 方案1获利18×0.8+12×0.5=20.4(万元); 方案2获利19×0.8+11×0.5=•20.7(万元); 方案3获利20×0.8+10×0.5=21(万元).答:在三种购车方案中,•汽车销售公司将这些轿车全部售出后分别获利为20.4万元,20.7万元,21万元.考点精练 1.(1)0.9;1.9(2)解:由题意知,李明家5月份基数内6吨水费为3.2×6=19.2(元),基数外一档3吨水费为4.1×3=12.3(元); 基数外二档3吨水费为5.1×3=15.3(元),所以,李明家5月份应交水费为19.2+12.3+15.3=46.8(元). 设李明家6月份计划用水x 吨,∵19.2<30<19.2+12.3,∴6<x<9, 依题意得19.2+(x-6)×4.1≤30,••解得x ≤8.63, ∴李明家6月份计划用水8.63吨. 2.(1)解:设A 种型号服装每件x 元,B 型服装每件y 件,由题意得9101810901281880100x y x x y y +==⎧⎧⎨⎨+==⎩⎩,解得; (2)设B 型服装购进m 件,则A 型服装购进(2m+4)件,由题意得18(24)306992428m m m ++≥⎧⎨+≤⎩,解不等式组,得912≤m ≤12,∵m 为正整数,∴m=10,11,12,∴2m+4=24,26,283.解:(1)依题意得:200071000400059000k b k k b b =+=-⎧⎧⎨⎨=+=⎩⎩, ,y=-1000x+9000. (2)•设该种水果价格每千克应调低至x•元.•(9000-1000x )(x-4)=(10-5)·(1+20%)·1000,整理得:x 2-13x+42=0,解得:x 1=6,x 2=7,• ∵要让顾客得到实惠,∴取x 1=6,答:该种水果价格每千克应调低至6元4.(1)解:•设甲独做x 天完成,乙独做y 完成.111402411106018()1x x y y x yx ⎧+=⎪=⎧⎪⎨⎨=⎩⎪++=⎪⎩,解之得符合题意. (2)设甲施工a 天,乙施工b 天.•140600.60.3522ab a b ⎧+=⎪⎨⎪+≤⎩,解之得b ≥40,即乙最少施工40天5.(1)94(50)360310(50)290x x x x +-≤⎧⎨+-≤⎩,解之得30≤x ≤32,(2)y=30x+20(•50-•x )•=10x+1000, ∵k=10>0,∴x=32时,y=1320千克6.设m 为毛竹的数量(吨),m ≤30•时应用精加工,当30<m<150时,应用30240,77m m--天粗加工天精加工, 当m ≥150时,应用粗加工7.解:(1)设每枝A 型毛笔x 元,每枝B 型毛笔y 元,则,2015(4015)(0.6)145,220(4020)(0.4)155(0.6)129.3x y y x x x y y y ++-⨯-==⎧⎧⎨⎨+-⨯-++-==⎩⎩解得, 故每枝A 型毛笔2元,每枝B 型毛笔3元.(2)如果按原来的销售方法购买a 枝A 型毛笔共需m 元,则m=20×2+(a-20)×(2-0.4)=1.6a+8;如果按新的销售方法购买a 枝A 型毛笔共需n 元,则n=a ×2×90%=1.8a ,于是n-m=1.8a-(1.6a+8)=0.2a-8,[键入文字]- 11 - ∵a>40,∴0.2a>8,∴n-m>0,可见,当a>40时,用新的方法购买A 型毛笔花钱多,因此应选择原来的方法购买.8.解:(1)设安排x 亩养甲鱼,得 1.5(10)14(2.5 1.50.2)(1.810.1)(10)10.8x x x x +-≤⎧⎨-++-+-≥⎩解得:6≤x ≤8,∴x=6,7,8.即安排:① 6亩水池养甲鱼,4亩水池养黄鳝;② 7亩养甲鱼,3亩养黄鳝;③8亩养甲鱼,2亩养黄鳝.(2)设收益为W 1,则W 1=(2.5-1.5+0.2)x+(1.8-1+0.1)(10-x )=0.3x+9,由(1)当x=8时W 最大.即8亩水池养甲鱼,2亩水池养黄鳝.(3)设收益为W 2,则W 2=(2.5-1.5+0.2-m )x+(1.8-1+0.1)(10-x )=(0.3-m )x+9, ① 当m=0.3时,按(1)中的安排均可获得最大收益.② 当m<0.3时,安排8亩养甲鱼,2亩养黄鳝.③当m>0.3时,安排6亩养甲鱼,4亩养黄鳝.。

2021年数学中考数学不等式(组)方程(组)的应用

2021年数学中考数学不等式(组)方程(组)的应用

中考数学不等式(组)与方程(组)的应用【例题经典】例1(1)甲、乙两公司单独完成这项工程各需多少天?(2)要使整个工程费用不超过22.5万元;则乙公司最少应施工多少天?【点评】(1)利用方程组解决;(2)利用不等式解决;结合实际取值.例2为了加强学生的交通安全意识;某中学和交警大队联合举行了“我当一日小交警”活动;星期天选派部分学生到交通路口值勤;协助交通警察维持交通秩序.若每一个路口安排4人;那么还剩下78人:若每个路口安排8人;•那么最后一个路口不足8人;但不少于4人.求这个中学共选派值勤学生多少人?•共在多少个交通路口安排值勤?【分析】本题与学生生活实际联系紧密;是一道很好的列不等式组应用题;解决本题应注意路口人数与总人数之间的关系.例3 华溪学校科技夏令营的学生在3名老师的带领下;准备赴北京大学参观;体验大学生活.现有两个旅行社前来承包;报价均为每人2000元;他们都表示优惠:希望社表示带队老师免费;学生按8折收费:青春社表示师生一律按7折收费.经核算;参加两家旅行社费用正好相等.(1)该校参加科技夏令营的学生共有多少人?(2)如果又增加了部分学生;学校应选择哪家旅行社?【点评】方程与不等式的综合应用;注意取值与实际生活要相符【基础训练】1.九年级的几位同学拍了一张合影作留念;•已知冲一张底片需要0.80元;洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下;平均每人分摊的钱不足0.5元;那么参加合影的同学人数( )A .至多6人B .至少6人C .至多5人D .至少5人2.现用甲、乙两种运输车将46吨抗旱物资运往灾区;甲种运输车载重5吨;•乙种运输车载重4吨;安排车辆不超过10辆;则甲种运输车至少应安排( )A .4辆B .5辆C .6辆D .7辆3.在一次“人与自然”知识竞赛中;竞赛题共25道;每道题都给4个答案;其中只有一个答案正确;选对得4分;不选或选错倒扣2分;得分不低于60•分得奖;那么得奖至少应选对题( )A .18道B .19道C .20道D .21道4.一种灭虫药粉30千克;含药率15%;现要用含药率较高的同种灭虫药粉50•千克和它混合;使混合后的含药率大于20%而小于35%;则所用药粉的含药率x 的范围是( •)A .15%<x<23%B .15%<x<35%C .23%<x<47%D .23%<x<50%5.某林场原计划在一定期限内固沙造林240公顷;实际每天固沙造林的面积比原计划多4公顷;结果提前5天完成任务;设原计划每天固沙造林x 公顷;根据题意下列方程正确的是( ) 240240240240.5.544240240240240.5.544A B x x x x C D x x x x +=-=+++=-=-- 6.某学校要印刷一批完全材料;甲印务公司提出制版费900元;•另外每份材料收印刷费0.5元:乙印务公司提出不收制版费;每份材料收印刷费0.8元.(1)分别写出两家印务公司的收费y (元)与印刷材料的份数x (份)•之间的函数关系式.(2)若学校预计要印刷5000份以内的宣传材料;请问学校应选择哪一家印务公司更合算?7.水是人类最宝贵的资源之一;我国水资源人均占有量远远低于世界平均水平;为了节约用水;保护环境;学校于本学期初制定了详细的用水计划.如果实际每天比计划多用一吨水;那么本学期的用水总量将会超过2300吨:如果实际每天计划节约一吨水;那么本学期用水量将会不足2100吨.如果本学期的在校时间按110天(22周)•计算;那么学校计划每天用水量是在什么范围?(结果保留四个有效数字)8.某商场购进甲、乙两种服装后;都加价40%标价出售.•“春节”期间商场搞优惠促销;决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付款182元;两种服装标价之和为210元;问这两种服装的进价和标价各是多少元?【能力提升】9.某公司开发的960件新产品;需加工后才能投放市场;•现有甲、乙两个工厂都想加工这批产品;•已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用20天;而乙工厂每天比甲工厂多加工8件产品.在加工过程中;公司需每天支付50元劳务费请工程师到厂进行技术指导.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)该公司要选择省时又省钱的工厂加工;乙工厂预计甲工厂将向公司报加工费用为每天800元;请问:乙工厂向公司报加工费用每天最多为多少元时;才可满足公司要求;有望加工这批产品.10.“中国荷藕之乡”扬州市宝应县有着丰富的荷藕资源.•某荷藕加工企业已收购荷藕60吨;根据市场信息;如果对荷藕进行粗加工;•每天可加工8吨;每吨可获利1000元:如果进行精加工;每天可加工0.5吨;每吨可获利5000元.•由于受设备条件的限制;两种加工方式不能同时进行.(1)设精加工的吨数为x•吨;•则粗加工的吨数为______•吨;•加工这批荷藕需要____天;可获利______元(用含x的代数式表示)(2)为了保鲜需要;该企业必须在一个月(30天)内将这批荷藕全部加工完毕;•精加工的吨数x在什么范围内时;该企业加工这批荷藕的获利不低于80000元?11.某公司为了扩大经营;决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择;其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算;本次购买机器所耗资金不能超过(1(2)若该公司购进的6台机器的日生产能力不能低于380个;那么为了节约资金应选择哪种购买方案?12.为迎接“2005.中国贵州黄果树瀑布节”;•园林部门决定利用现有的3600盆甲种花卉和2900盆乙种花奔搭配A、B两种园艺造型共50个;•摆放在迎宾大道两侧;搭配每个(1(2)若搭配一个A种造型的成本为1000元;搭配一个B种造型的成本为1200元;•试说明选用(1)中哪种方案成本最低?【应用与探究】13.我市某乡A、B两村盛产柑桔;A村有柑桔200吨;•B•村有柑桔300吨.现将这些柑桔运到C、D两个冷藏室;已知C仓库可储存240吨;D•仓库可储存260吨:从A村运往C、D两处的费用分别为每吨20元和25元;从B村运往C、D•两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑桔重量为x吨;A、B•两村运往两仓库的柑桔运输费用分别为y A元和y B元.(1)请填写下表;(2)试讨论A、B(3)考虑到B村的经济承受能力;B村的柑桔运费不得超过4830元.在这种情况下;请问怎样调运;才能使两村运费之和最小?求出这个最小值.答案:例题经典例1:(1)甲独做20天;乙独做30天(2)设甲做了x天;乙做了y天完成作业;1.20.722.51 2030x yx y+≤⎧⎪⎨+=⎪⎩解y≥15;即乙公司最少应施工15天.例2:学校派出158名;共有20个交通路口安排值勤例3:(1)学生共有21人(2)应选青春社考点精练1.B 2.C 3.B 4.C 5.B6.(1)9000.50.8y x y x=+⎧⎨=⎩甲乙(2)y甲<y乙;∴900+0.5x<0.8x;•解得x>3000;∴选甲公司8.甲进价为50元;•标价70元;乙进价为100元;标价140元9.解:(1)设甲工厂每天加工x件;则乙公司每天加工(x+8)件由题意得:960960208x x-=+;解之得:x1=-24;x2=16.经检验;x1、x2均为所列方程的根;但x1=-24不合题意;舍去.此时x+8=24.答:甲工厂每天加工16件;乙工厂每天加工24件.(2)由(1)可知加工960件产品;甲工厂要60天;乙工厂要40天.所以甲工厂的加工总费用为60×(800+50)=51000(元).设乙工厂报价为每天m元;•则乙工厂的加工总费用为40×(m+50)元.由题意得:40×(m+50)≤51000;解得m≤1225.答:•乙工厂所报加工费每天最多为1225元;可满足公司要求;有望加工这批产品.10.(1)(60-x)吨;(600.58x x-+)天;•[5000x+(60-x)×1000]元(2)5(吨)≤x≤12(吨)11.(1)有3种方案:①甲0台;•乙6台;②甲1台;乙5台;③甲2台;乙4台(2)应选方案②12.(1)(2)•(50-x)=-200x+60000;∴A32天;B18个费用最低.13. (1)y A=-B(2)当y A=y B时;-5x+5000=3x+4680;x=40:当y A>y B时;-5x+5000>3x+4680;x<40:当y A<y B时;-5x+5000<3x+4689;x>40;∴当x=40时;y A=y B•即两村运费相等:当0≤x<40时;y A>y B即B村运费较少:当40<x≤200时;y A<y B即A村费用较小.•(3)由y B≤4830;3x+4680≤4830;∴x≤50;设两村运费之和为y;∴y=y A+y B;即:y=-2x+9680.又∵0≤x≤50时;y随x增大而减小.∴当x=50时;y有最小值;y最小值=9580(元).答:•当A村调往C仓库的柑桔重量为50吨;调往D仓库为150吨;B村调往C仓库为190吨;调往D仓库110吨的时候;两村的运费之和最小;最小费用为9580元.。

人教版七年级数学下册 第九章:不等式(组)和方程(组)的综合应用(含答案)

人教版七年级数学下册 第九章:不等式(组)和方程(组)的综合应用(含答案)

不等式(组)与方程(组)的综合应用1.方程组或不等式出现字母系数时可将字母当数字,解方程组成不等式的参数解。

2.解决不等式(组)或方程(组)的问题可运用整体思想、转化思想、消元思想。

【例1】若方程组3133x y k x y +=+⎧⎨+=⎩解为x ,y ,且2<k <4,则x -y 的取值范围是( ) A.102x y -<<B.01x y -<<C.31x y ---<<D.11x y --<<【例2】若关于x ,y 的二元一次方程组323225x y m x y m -=+⎧⎨-=-⎩的解满足x >y ,求m 的取值范围。

【例3】若2a +b =12,其中a ≥0,b ≥=0,又P=3a +2b ,试确定P 的最小值和最大值。

【例4】若关于x ,y 的二元一次方程组25x y a x y +=⎧⎨-=⎩的解满足1x >,1y ≤,其中a 是满足条件的最小整数,求a 2+1的值。

【例5】已知关于x,y的方程组2232 4x y mx y m-=⎧⎨+=+⎩①②的解满足不等式组3050x yx y+≤⎧⎨+⎩>,求满足条件的m的整数值。

1.已知关于x,y的方程组2121x y ax y a-=+⎧⎨+=-⎩的解满足不等式21x y->,求a的取值范围。

2.已知x、y同时满足三个条件:①324x y p-=-,②4x-3y=2+p,③x>y,则()A.p>-1B.p<1C.1p-< D.1p>3.若30x y z++=,350x y z+-=,x、y、z皆为非负数,求M=5x+4y+2z的取值范围。

4.在关于x ,y 的方程组2728x y m x y m +=+⎧⎨+=-⎩中,未知数满足x ≥0,y >0,那么m 的取值在数轴上应表示为( )5.已知关于x ,y 的方程组213252x y k x y k +=+⎧⎨-=-⎩的解满足5035x y x y -⎧⎨-+≥-⎩>,求整数k 的值。

列方程(组)、不等式(组)解应用题

列方程(组)、不等式(组)解应用题

列方程(组)、不等式(组)解应用题1、某城市按以下规定收取每月的水费:用水量不超过6吨,按每吨1.2元收费;如果超过6吨,未超过部分仍按每吨1.2元收取,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.4元,那么该用户5月份应交水费多少元?2、江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000千克,求粗加工的该种山货质量.3、植树节期间,两所学校共植树834棵,其中海石中学植树的数量比励东中学的2倍少3棵,两校各植树多少棵?4、整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?5、一群学生前往位于青田县境内的滩坑电站建设工地进行社会实践活动,男生戴白色安全帽,女生戴红色安全帽.休息时他们坐在一起,大家发现了一个有趣的现象,每位男生看到白色与红色的安全帽一样多,而每位女生看到白色的安全帽是红色的2倍.根据这些信息,请你推测这群学生共有多少人?6、A 、B 两地相距40km ,甲骑自行车从A 地出发1小时后,乙也从A 地出发,用相当于甲的1.5的速度追赶,当追到B 地时,甲比乙先到20分钟,求甲、乙两人的速度.7、 某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?8、北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=⨯利润成本)9、开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本. (1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.10、某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件.(1) 求A、B两种纪念品的进价分别为多少?(2) 若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出候总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?参考答案1、【解析】根据总费用等于水量乘以平均值得出方程,求出水量,然后求出水费。

9讲:方程(组)与不等式(组)的应用

9讲:方程(组)与不等式(组)的应用

方程(组)与不等式(组)的综合应用【课前练习】1.某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤,价格为每斤y 元.后来他以每斤2x y +元的价格卖完后,结果发现自己赔了钱,其原因是( )A.x y < B.x y > C.x y ≤ D.x y ≥ 2.某电脑用户计划使用不超过530元的资金购买单价为70元的单片软件和80元的盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒,不相同的选购方式共存( )A.4种B.5种C.6种D.7种3. (2010宿迁)某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.(1)求甲、乙两种花木每株成本分别是多少元?(2)据市场调研,1株甲种花木售价为760元,一株乙种花木售价为540元.该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21600元,花农有哪几种具体的培育方案?【考点剖析】一、方程(组)与不等式(组)的实际应用:1.行程中的基本关系: 路程=速度×时间;速度?(1)相遇问题: 快行距+慢行距=原距(2)追及问题: 快行距-慢行距=原距※同时出发开始计时,到相遇时两者所花时间是相等的;※在解决行程问题时,单位必须统一,必要时须画图进行思考.2.工程问题: 工作总量=工作效率×工作时间 (工作总量常看为1)工作效率?如,一项工程甲队需x 天完成任务,乙队需要y 天完成任务,两人一起合作完成该项工作需_______天.3.利润问题中的等量关系:利润=商品售价-商品进价 ;利润=商品进价×商品利润率 商品利润率=商品利润商品成本价×100% 商品销售额=商品销售价×商品销售量某件商品9折降价销售后每件商品售价为a 元,则该商品每件原价为________4.利率问题中的等量关系:本息和=本金+利息;利息=本金×利率×时间;利息税=利息×税率5.数字数位问题: 数字×数位=数如一个两位数十位数字是x ,个位数字是y ,则这个两位数可表示为_______6.浓度问题:溶液的浓度=溶质的质量÷溶液的质量100%⨯7.日历中的数量关系日历中前后两日相差1,上下两日相差7.8.人员分配问题二、解决实际问题的一般步骤:1.审题;2.设未知数;3.列方程(组)或不等式(组);4.解方程(组)或不等式(组);5.检验;6.写出答案.【典例探究】例1.(2010江苏泰州)近期以来,大蒜和绿豆的市场价格离奇攀升,网民戏称为“蒜你狠”、“豆你玩”.以绿豆为例,5月上旬某市绿豆的市场价已达16元/千克.市政府决定采取价格临时干预措施,调进绿豆以平抑市场价格.经市场调研预测,该市每调进100吨绿豆,市场价格就下降1元/千克.为了即能平抑绿豆的市场价格,又要保护豆农的生产积极性,绿豆的市场价格控制在8元/千克到10元/千克之间(含8元/千克和10元/千克).问调进绿豆的吨数应在什么范围内为宜?例2.(2010盐城)整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题:(1)降价前,甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?(2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%、对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?练. (2010年门头沟区)某商场用2500元购进A、B两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示:类型A型B型价格进价(元/盏) 40 65标价(元/盏) 60 100(1)这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场计划销售这批台灯的总利润不少于1400元,问至少需购进B种台灯多少盏?例3 某公司为了扩大经营,决定购进6台机器用于生产某种活塞,现有甲、乙两种机器供选择,其中每种机器的价格和每台机器的日生产活塞的数量如下表表示,经过预算,本(1) 按该公司要求可以有几种购买方案?(2) 若该公司购进6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种方案?【达标练习】 方程(组)不等式(组)应用中考真题集锦1.(2010毕节)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为( )A .8人B .9人C .10人D .11人2.(2009深圳)某商场的老板销售一种商品,他要以不低于进价20%的价格才能出售,但为了获得更多利润,他以高出80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售( )A . 80元 B. 100元 C.120元 D.160元3.(2009襄樊) 为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为10平方米提高到12.1平方米,若每年的增长率相同,则年增长率为( )A .9% B.10% C.11% D.12%4. (2009德城)某商品进价为800元,标价1200元,由于该商品积压,商店准备打折出售,但要保证利润率不低于20%,则至少可以打( )折A. 6折B.7折C.8折D.9折5. (2009临沂)某制药厂两年前生产1吨某种药品的成本是100万元,随着生产技术的进步,现在生产一吨这种药品的成本是81万元,则这种药品的成本的年平均下降率为 .6.(2010临沂)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a ,b ,c ,d 对应密文a + 2b ,2b + c ,2c + 3d ,4d .例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为 .7.(2009泉州)某工地实施爆破,操作人员点燃导火线后,必须在炸药爆炸前跑到400米外安全区域,若导火线燃烧的速度为1.1/cm s ,人跑步的速度为5/cm s ,则导火线的长x 应满足的不等式是 .8.(2010年益阳市) 货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意可列方程 .9.(2010泉州)和谐商场销售甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.(1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价-进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案.10.(2010福建德化)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案? 并直接写出其中获利最大的购货方案.11.(2010年四川省眉山)某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?(此问涉及一次函数,暂时不解)12.(2010年山东省济南市)某超市销售有甲、乙两种商品.甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市同时一次购进甲、乙两种商品共80件,恰好用去1600元,求能购进甲、乙两种商品各多少件?(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元.请你帮助该超市设计相应的进货方案.。

中考数学复习知识点专题讲解49---方程(组)与不等式(组)中转化思想的应用

中考数学复习知识点专题讲解49---方程(组)与不等式(组)中转化思想的应用

解析 可以先解出 x 的解集,得 x > 6 − a ,又因为关于 x 的不等式 3x + a > 6 的解 3
集是 x > 3 ,所以 x > 6 − a 与 x > 3 是同一个解集,所以 6 − a = 3 ,可求得 a = −3。
3
3
例 6 关于 x 的的不等式组 −2 < 2x + a < b + 2 的解集是 −4 < x < 1,求 b 的值。
x 的解,又因为 x 是非负数,所以建立关于 a 的不等式,从而可以把方程 问题转化为不
等式问题,体现了数学学习中 的转化思想。
求解的方法是:1. 解(方程),2,代(用 a 的代数式代替 x ) ,3.求(不等式的解集)
解 由 3x − a = 6 得: x = 6 + a 3
因为关于 x 的方程 3x − a = 6 的解是非负数,所以 x ≥ 0 ,所以 6 + a ≥ 0 。所以 a ≥ −6 。 3

x、y


程组
2x
+
y
=
a


x + 2y = 3
y
=
6
− 3
a
x + 2y = 3
x、y
是非负数,所以
x

0
,即
2a − 3
3

0
,所以
3

a

6

y ≥0
6
− 3
a

0
2
3. 从不等式(组)到方程(组)的转化问题
2/3
例 5 关于 x 的不等式 3x + a > 6 的解集是 x > 3 ,求 a 的值.

初二数学-一次函数、方程(组)及不等式的综合应用

初二数学-一次函数、方程(组)及不等式的综合应用

不等式在实际问题中的应用
方案优选问题 在多种方案中选择最优方案,可以通过建立和解决不等式来比较各种方案的优劣。 最大值最小值问题 在生产、生活中,经常需要求某个量的最大值或最小值,可以通过建立不等式来解决。 经济问题 在经济学中,价格、成本、利润等变量之间存在不等关系,可以通过建立和解决不等式来分析经济问题。
建立实际问题与数学模型的联系
实际问题的数学建模与解决
通过分析实际问题,将问题转化为数学模型,如线性方程、不等式或函数表达式。
利用数学知识和方法求解数学模型,得出实际问题的解决方案。
实际问题的数学解决方案
将数学解决方案应用到实际问题中,验证其可行性和有效性。
实际问题的应用与验证
综合应用题的解题思路与技巧
方程组在实际问题中的应用
在经济学中,方程组被用来描述和解决各种问题,如供需关系、成本和收益等。
经济问题
在解决物理问题时,经常需要建立和解决方程组,例如在力学、电磁学和热力学等领域。
物理问题
在航天工程中,需要建立复杂的方程组来描述和解决飞行器的轨道、速度和加速度等问题。
航天工程
PART THREE
初二数学-一次函数、方程(组)及不等式的综合应用
答辩学生:XXX 指导老师:XXX
Contents
目 录
目录
绪论
研究 方法
PART ONE
一次函数的应用
3.1关键技术 3.2技术难点 3.3案例分析
一次函数的定义与性质
一次函数是形如$y=kx+b$的函数,其中$k$和$b$是常数,且$k neq 0$。 一次函数的图像是一条直线,其斜率为$k$,截距为$b$。 一次函数的性质包括单调性、奇偶性等,这些性质在解决实际问题中具有重要意义。

方程(组)与不等式(组)问题

方程(组)与不等式(组)问题
近几年中考注重对学生“知识联系实际”的考查,实际问题中往往蕴含着方程与不等式,分析问题中的等量关系和不等关系,建立方程(组)模型和不等式(组)模型,从而把实际问题转化为数学模型,然后用数学知识来解决。
方程(组)与不等式(组)是代数中的重要内容,有的已知方程(组)的解求方程(组)、应用题的条件编制、也有根据方程进行数学建模等等.解决有关方程(组)与不等式(组)的试题,首先弄清题目的要求;其次,充分考虑结果的多样性,使答案简明、准确.
1010350
3020850
信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.
根据以上信息,回答下列问题:
(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分?
(2)小王该月最多能得多少元?此时生产甲、乙两种产品分别多少件?
类型之二 借助方程组合或不等式(组)解决方案问题
借助二元一次方程组和一元一次不等式(组)求解方案问题是中考一种新题型,考察了同学们综合运用方程组不等式深入的分析、比较、归纳和说理的能力.
4.(. 济南市)某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.
3.(. 济南市)某厂工人小王某月工作的部分信息如下:
信息一:工作时间:每天上午8∶20~12∶00,下午14∶00~16∶00,每月25元;
信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.
生产产品件数与所用时间之间的关系见下表:
生产甲产品件数(件)生产乙产品件数(件)所用总时间(分)
(1)设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方程(组)和不等式(组)的应用
(时间:100分钟 分数:100分)
一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个符合题目要求的)
1.为适应国民经济持续协调发展,自2004年4月18日起,全国铁路第五次提速.提速后,火车由天津到上海的时间缩短了7.42小时.若天津到上海的路程为1 326千米,提速前火车的平均速度为x 千米/时,提速后火车的平均速度为y 千米/时,则x 、y•应满足的关系式是( )
A .x-y=13267.42
B .y-x=13267.42
C .1326x -1326y =7.42
D .1326y -1326x =7.42 2.某商店售出了一批进价为a 的商品,利润率为20%,则每件商品的售价为( )
A .20%a
B .80%a
C .(120%)a +
D .120%a
3.一个两位数的十位数字与个位数字和是7,把这个两位数加上45后,•结果恰好成为数字对调后组成的两位数,则这个两位数是( )
A .16
B .25
C .34
D .61
4.甲比乙大15岁,5年前甲的年龄是乙的年龄的2倍,则乙现在的年龄是( )
A .10岁
B .15岁
C .20岁
D .30岁
5.某日历上一竖列3个日期的数字和可能是( )
A .32
B .45
C .9
D .75
6.用板车运煤,若每辆板车运300千克,则还余下1000千克,若每辆板车运400•千克,则可超额500千克.设有x 辆板车,要运y 千克煤,根据题意,列方程组得( )
A .3001000,400500y x y x =-⎧⎨=+⎩
B .3001000,400500y x y x =+⎧⎨=+⎩
C .3001000,400500y x y x =-⎧⎨=-⎩
D .3001000,400500
y x y x =+⎧⎨=-⎩
7.某超市4月份的营业额为220万元,5月份的营业额为242万元,如果保持同样增长率,则6月份应完成营业额是( )
A .264万元
B .266.2万元
C .272.4万元
D .286万元
8.两个连续偶数的积是168,则这两个偶数分别是( )
A .12,14
B .12,14或-12,-14
C .16,18
D .16,18或-16,-18
9.某地出租车的收费标准是:起步价为7元,超过3千米以后,每增加1千米,•加收2.4元.某人乘这种出租车从甲地到乙地共付车费19元,•设此人从甲地到乙地经过的路程为x 千米,那么x 的最大值是( )
A .11
B .8
C .7
D .5
10.有两个学生参加四次测验,他们的平均分数不同,但都是低于90分的整数,他们又参加了第五次测验,测验后,他们的平均分都提高到90分,问在第五
次测验前,这两个学生的平均分数是()
A.88分,89分 B.87分,88分
C.86分,87分 D.85分,86分
二、填空题(本大题共8小题,每小题3分,共24分)
•11.•设甲数为x,•乙数为y,•甲数的1
3
比乙数的3•倍多2,•则可列二元一次
方程为________.
12.购某种3年期国债x元,到期后可得本息和y元,已知y=kx,•则这种国债的年利率为_________.
13.今有鸡兔若干,它们共有24个头和74只脚,则鸡兔分别有_______.14.甲、乙两人分别从两地同时出发,若相向而行,则2小时相遇,•若同向而行驶4小时甲追上乙,那么甲、乙速度的比为_______.
15.一位老师说,他们班学生的一半在学习数学,1
4
的学生在学习音乐,
1
7
的学
生在学习英语,还剩不超过6名的同学在踢球,则这个球上最多有_______名学生.
16.如果n是一个正偶数,且它的3倍加10不小于它的5倍减2,则n为________.17.一艘船从A港顺流到B港需要6小时,而从B港逆流到A港需要8小时,•若在静水条件下,从A港到B港需________小时.
18.在一次知识竞赛中共有30道题,规定答对一道题得4分,答错或不答一道题扣1分,若这次竞赛获奖必须达到80分,则获奖的人至少要答对________道题.
三、解答题(本大题共46分,19~24题每题6分,25题10分,•解答题应写出文字说明、证明过程或演算步骤)
19.小刚在商场发现他喜欢的随身听和书包,若一起买可以打8折,小刚算了一下,自己手里的361.6元刚好可以买下来且没有剩余.•已知随身听的标价比书包标价的4倍少8元,请你求出小刚喜欢的书包和随身听的标价分别是多少.
20.育英中学七年级(2)班23名同学星期天去公园游览,公园售票窗口标明票价:每人10元,团体票25人以上(含25人)8折优惠,请你为这23名同学设计较好的购票方案.
21.某移动公司开通了两种通讯业务:“全球通”使用者先缴50元/月基础费,然后每通话1分钟,再付电话费0.4元;“神州行”不缴月基础费,每通话1分钟,•付话费0.6元(这里均指市内通话).若一个月通话时间为x分钟,
元和y2元.
两种通讯方式的费用分别为y
1
(1)分别写出y1,y2与x的关系式.
(2)一个月内通话多少分钟时,两种通讯方式的费用相同?
(3)请你运用你所学的知识帮助李大伯选一种便宜的通讯方式.
22.一个长方形如图,恰分成六个正方形,其中最小的正方形的面积是1cm2,这个长方形的面积.
23.幼儿园有玩具若干份分给小朋友,如果每人分3件,那么还余59件.•如果每人分5件,那么最后一个人不少于3件但不足5件,试求这个幼儿园有多少件玩具,有多少个小朋友.
24.某厂去年总产值比总支出多500万元,而今年计划的总产值比总支出多950万元.已知今年计划总产值比去年增加15%,而计划总支出比去年减少10%,•求今年计划的总支出和总产值各为多少.
25.某通讯器材商场,计划用60 000元从厂家购进若干部新型手机,•以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为:•甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.(1)若商场同时购进某两种不同型号手机共40部,并将60 000地恰好用完,•请你帮助商场计算一下,如何购买.
(2)若商场同时购进三种不同型号的手机共40部,并将60 000元恰好用完,•并且要求乙种型号手机的购买数量不少于6部且不多于8部,•请你求出商场每种型号手机购买的数量.。

相关文档
最新文档