两条直线的位置关系.1两条直线的位置关系(一)
两条直线的位置关系(1)
父亲上学时,按照当时来讲,是有钱家的孩子才能上得了学的,大冬天的能提着暖手的火炉子上学,相当得气派,穿着得自然要好点。父亲的婆婆赵氏很支持我父亲的学业,因此,父亲能顺利地从 陕西泾干中学高中毕业。听父亲讲过,家里人把一头毛驴卖掉了供我父亲上学。父亲的勤奋也证明了这头毛驴卖掉是正确的。在我爷爷的八个孩子当中,父亲排行老二,也就只有父亲一个人跳出了农门, 到了外面做事,当了国家干部。也有人说,父亲是赵氏一手养大看大的娃娃,性格和脾气很像赵氏,而赵氏出自泾阳县里的一个大家族。在历史上,从赵氏的娘家大户焦家的确走出了几位泾阳名人, 《泾阳县志》2001年版上都有记载。
父亲的家境是一个殷实的家庭,有着好地百亩,有着好多长工,比如叫什么王相、什么张相。回想当年定成分时,我们家被什么的小组划定成为了富农。而事实上,有人也说了是我爷爷得罪了村里 的人,我们家顶多是一个中农。父亲的父亲,也就是我爷爷是过继给了同村的另一户杨家。因此,我爷爷的名字从原本的德理改成了长德,在家排行老四。我祖爷,按照血统上讲的是应该是杨居耀,过 继给了另一户杨家,我祖爷名字改叫成了杨天佑,有着一大家子的人,还有要经营的生意,听我父亲讲是在甘肃张掖一带。杨天佑有三个女儿,没有儿子,我爷爷到了杨天佑家,延续了香火。而杨天佑 家里的生意都是由我父亲的婆婆赵氏,也就是杨天佑的内人来经营着的。电游网 Leabharlann
两直线的位置关系公式
两直线的位置关系公式两直线的位置关系公式是指用数学公式来描述两条直线之间的位置关系。
在平面几何中,直线是最基本的图形,研究直线之间的位置关系对于解决很多几何问题具有重要意义。
下面将介绍两条直线的四种位置关系及其对应的公式。
1. 平行关系:当两条直线之间没有交点且始终保持相同的方向时,它们是平行的。
此时,可以使用斜率来判断两条直线是否平行。
如果两条直线的斜率相等但截距不相等,那么它们是平行的。
用数学公式表示为:直线1的斜率 = 直线2的斜率且直线1的截距≠ 直线2的截距2. 垂直关系:当两条直线之间的夹角为90度时,它们是垂直的。
在平面直角坐标系中,两条直线垂直的条件是它们的斜率的乘积等于-1。
用数学公式表示为:直线1的斜率× 直线2的斜率 = -13. 相交关系:当两条直线在平面上有一个公共的交点时,它们是相交的。
相交的情况有两种:交点为有限点和交点为无穷远点。
直线相交的条件是它们的斜率不相等。
用数学公式表示为:直线1的斜率≠ 直线2的斜率4. 重合关系:当两条直线完全重合时,它们是重合的。
重合的直线有无穷多个交点,它们的斜率和截距相等。
用数学公式表示为:直线1的斜率 = 直线2的斜率且直线1的截距 = 直线2的截距两条直线的位置关系可以通过斜率、截距等数学公式来判断。
这些公式可以帮助我们在解决几何问题时确定直线之间的位置关系,从而得出准确的结论。
在实际应用中,我们可以通过计算斜率和截距,或者观察直线的图形来判断它们的位置关系,进而解决相关问题。
直线的位置关系公式是平面几何中的重要概念,对于几何学的学习和实际问题的解决都具有重要意义。
两条直线的位置关系(相交平行重合)
或 A1 B1 C1 A2 B2 C2
( A2、B2、C2 0)
(2)求过点A(1,-4)且与直线2x+3y+5=0平 行的直线的方程
解:设∵直所线求方直程线为与2已x知+直3y线+平C=行0 ∴代所入求点直(线1,k=-4-)32 。得 2-12+C=0 ∴C=所1求0 直线的方程是y+4=- 32(x-1) 所即求直2x线+3的y+方10程=0是 2x+3y+10=0
例2.已知直线方程l1:x+mБайду номын сангаас+6=0, l2:(m-2) x+3y+2m=0 , 当m为何值时 l1、 l2(1)相交 (2)平行 (3)重合
例3.已知三条直线ax+y+1=0, x+y+a=0 x+ay+1=0 可构成三角形,求a的取值条件。
两条直线的位置关系(1)
---------相交、平行、重合
问1.两条不重合直线l1与l2的倾斜角相等, 这两条直线的位置关系如何?
两直线平行或重合 问2.两条直线l1与l2平行, 1)这两条直线的倾斜角大小有何关系?
2)这两条直线的纵截距相等吗?
3)斜率相等吗? 1)两直线平行倾斜角相等;
2)如果纵截距存在,则纵截距不相等; 3) 倾斜角不为900时斜率相等,为900时斜率不存在
已知直线l1与l2的斜截式方程为
l1:y=k1x+b1 l2:y=k2x+b2,
直线l1∥ l2
k1=k2且b1 ≠ b2
直线l1、 l2重合
k1=k2且b1 = b2
直线l1、 l2相交
2.1两条直线的位置关系(1)
4、填空: ∵∠A+∠B=90º,∠B+∠C=90º ∴∠A ∠C( ) ∵∠1+∠3=90º,∠2+∠4=90º且∠1=∠2 ∴∠3 ∠4( ) 5、一个角的补角与这个角的余角的和比平角少 10°,求这个角.
课后反思:
七年级数学导学案第 17 课时 主备人:曹晓磊
审核人:
施晓海
审批人: 王文锦
课题:2.1 两条直线的位置关系(1) 学习目标: 在具体情景中了解对顶角、 补角、 余角, 知道对顶角相等、 等角的余角相等、等角的补角相等,并能解决一些实际问题。
一、自主预习:预习书 38-39 页
在同一平面内,两条直线的位置关系有 只有一个公共点的两条直线叫做 做 , 在同一平面内, 平行线。 和 , ,这个公共点叫 叫做
1
三、当堂检测:1、判断题:对的打“√”, 错的打“×” 。
① 一个角的余角一定是锐角。 ( ② 一个角的补角一定是钝角。 ( ) ) 互为余角。 ( )
③ 若∠1+∠2+∠3=90°, 那么∠1、 ∠2、 ∠3 2、下列说法正确的是( )
A. 相 等 的 角 是 对 顶 角 C.两条直线相交所成的角是对顶角 角是对顶角
,
一个角 30
45
60
25
83
∠
O
O
O
∠
这个角 的余角 这个角 的补角 (2)性质 如图,∠DON=∠CON=900,∠1=∠2 问题 1:哪些角互为补角?哪些角互为余角有什么关系?为什么? 3 4 ∵∠1+∠3=90º,∠2+∠4=90º ∴∠3=90º-∠1,∠4=90º-∠2 A B N ∵∠1=∠2 ∴∠3=∠4 问题 3:∠AOC 与∠BOD 有什么关系?为什么?你能仿照问题 2 写出
两条直线的位置关系
命题点 2 点关于直线对称 例 3 如图,已知 A(4,0),B(0,4),从点 P(2,0)射出的光线经直线 AB 反射后再射
到直线 OB 上,最后经直线 OB 反射后又回到 P 点,则光线所经过的路程是( )
A.3 3
B.6
C.2 10
D.2 5
解析:直线 AB 的方程为 x+y=4,点 P(2,0)关于直线 AB 的对称点为 D(4,2),关 于 y 轴的对称点为 C(-2,0),则光线经过的路程为|CD|= 62+22=2 10.
6.点(x,y)关于直线 y=x 的对称点为(y,x),关于直线 y=-x 的对称点为(-y, -x).
7.点(x,y)关于直线 x=a 的对称点为(2a-x,y),关于直线 y=b 的对称点为(x,2b -y). 8.点(x,y)关于点(a,b)的对称点为(2a-x,2b-y). 9.点(x,y)关于直线 x+y=k 的对称点为(k-y,k-x),关于直线 x-y=k 的对称 点为(k+y,x-k).
答案:-2 2
题组三 易错排查 5.直线 2x+(m+1)y+4=0 与直线 mx+3y-2=0 平行,则 m 等于( )
A.2
B.-3
C.2 或-3
D.-2 或-3
解析:直线 2x+(m+1)y+4=0 与直线 mx+3y-2=0 平行,则有m2 =m+3 1≠-42,
故 m=2 或-3.故选 C.
【思维升华】 (1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般 情况,也要考虑到斜率不存在的特殊情况.同时还要注意 x,y 的系数不能同时为 零这一隐含条件. (2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.
两条直线的位置关系(1)
a2 1 a
a a
2 1
;
k2
a 1 2a 3
1 a 2a 3
又两直线垂直k1 k2 1
即 a 2 1 a 1a 1 a 1 2a 3
(2)当a 1时, (a 2)x (1 a) y 3 0的斜率不存在
而(a 1)x (2a 3) y 2 0的斜率为0
§7. 3. 2两条直线的位置关系(二)
复习回顾: 上节课,我们研究学习了两直线平行或垂直
的充要条件及其应用: 平行问题
1.当直线L1和直线L2的斜率都存在时
得到: l1 // l2 k1 k2且b1 b2
2.当直线L1和直线L2的斜率都不存在时
得到: l1 // l2 或两直线重合
3.当直线L1和直线L2的斜率有一条存在, 有一 条不存在时
两直线仍然垂直a 1也符合题意
综上所述, a 1.
解法二: A1 a 2, A2 a 1; B1 1 a, B2 2a 3 又 两直线垂直 (a 2) (a 1) (1 a) (2a 3) 0 整理得(a 1) (a 1) 0 a 1
令y 0, 得x轴上的截距为a m 3
由题意得( m) ( m) 7
4
33
解得m 4
所求直线的方程为3x 4 y 4 0
三、课堂练习: 1.已知两点 A(7, 4),B( 5,6),求线段 AB的 垂直平分线的方程。
2.求经过点 A(2,1)且与直线 2x y 10 0垂直 的直线 l的方程。
一、先分析两直线平行的情况
分析:(1)当B1 0,B2 0时,把直线l1和l2化成
立体几何——两条直线之间的位置关系(一)
立体几何——两条直线之间的位置关系(一)一、知识导学1.平面的基本性质. 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线. 公理3:经过不在同一条直线上的三点,有且只有一个平面. 推论1:经过一条直线和这条直线外的一点,,有且只有一个平面. 推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.2.空间两条直线的位置关系,包括:相交、平行、异面.3.公理4:平行于同一条直线的两条直线平行.定理4:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.4.异面直线. 异面直线所成的角;两条异面直线互相垂直的概念;异面直线的公垂线及距离.5.反证法.会用反证法证明一些简单的问题.二、疑难知识导析1.异面直线是指不同在任何一个平面内,没有公共点.强调任何一个平面.2.异面直线所成的角是指经过空间任意一点作两条分别和异面的两条直线平行的直线所成的锐角(或直角).一般通过平移后转化到三角形中求角,注意角的范围.3.异面直线的公垂线要求和两条异面直线垂直并且相交,4.异面直线的距离是指夹在两异面直线之间公垂线段的长度.求两条异面直线的距离关键是找到它们的公垂线.5.异面直线的证明一般用反证法、异面直线的判定方法:如图,如果b,A且A,a,则a与b异面.三、经典例题导讲[例1]在正方体AB CD-ABCD中,O是底面AB CD的中心,M、N分别是棱D D、DC的中点,则直线OM( ).A .是AC和MN的公垂线.B .垂直于AC但不垂直于M N.C .垂直于MN,但不垂直于A C.D .与AC、MN都不垂直.错解:B.错因:学生观察能力较差,找不出三垂线定理中的射影.正解:A.[例2]如图,已知在空间四边形ABC D中,E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,且,求证:直线EG,FH,AC相交于一点.错解:证明:、F分别是AB,AD的中点,∥BD,EF=BD,又, GH∥BD,GH=BD,四边形EFG H是梯形,设两腰EG,FH相交于一点T,,F分别是AD.AC与FH交于一点.直线EG,FH,AC相交于一点正解:证明:、F分别是AB,AD的中点,∥BD,EF=BD, 又,GH∥BD,GH=BD,四边形EFGH是梯形,设两腰EG,FH相交于一点T,平面ABC,FH平面ACD,T面ABC,且T面ACD,又平面ABC平面ACD=AC,,直线EG,FH,AC相交于一点T.[例3]判断:若a,b是两条异面直线,P为空间任意一点,则过P点有且仅有一个平面与a,b 都平行.错解:认为正确.错因:空间想像力不够.忽略P在其中一条线上,或a与P确定平面恰好与b平行,此时就不能过P作平面与a平行.正解:假命题.[例4]如图,在四边形AB CD中,已知AB∥CD,直线AB,BC,AD,DC分别与平面α相交于点E,G,H,F.求证:E,F,G,H四点必定共线(在同一条直线上).分析:先确定一个平面,然后证明相关直线在这个平面内,最后证明四点共线.证明∵ AB//CD, AB,CD确定一个平面β.又∵AB ∩α=E,ABβ, Eα,Eβ,即 E为平面α与β的一个公共点.同理可证F,G,H均为平面α与β的公共点.∵两个平面有公共点,它们有且只有一条通过公共点的公共直线,∴ E,F,G,H四点必定共线.点评:在立体几何的问题中,证明若干点共线时,先证明这些点都是某两平面的公共点,而后得出这些点都在二平面的交线上的结论.[例5]如图,已知平面α,β,且α∩β=.设梯形ABC D中,AD∥BC,且ABα,CDβ,求证:AB,CD,共点(相交于一点).分析:AB,CD是梯形A BCD的两条腰,必定相交于一点M,只要证明M在上,而是两个平面α,β的交线,因此,只要证明M∈α,且M∈β即可.证明:∵梯形ABCD中,AD∥BC,∴AB,CD是梯形A B CD的两条腰.∴ AB,CD必定相交于一点,设 AB ∩CD=M.又∵ ABα,CDβ,∴ M∈α,且M∈β.∴ M∈α∩β.又∵α∩β=,∴ M∈,即 AB,CD,共点.点评:证明多条直线共点时,与证明多点共线是一样的.[例6]已知:a,b,c,d是不共点且两两相交的四条直线,求证:a,b,c,d共面.分析:弄清楚四条直线不共点且两两相交的含义:四条直线不共点,包括有三条直线共点的情况;两两相交是指任何两条直线都相交.在此基础上,根据平面的性质,确定一个平面,再证明所有的直线都在这个平面内.证明 1?若当四条直线中有三条相交于一点,不妨设a,b,c相交于一点A ∴直线d和A确定一个平面α.又设直线d与a,b,c分别相交于E,F,G,则 A,E,F,G∈α.∵ A,E∈α,A,E∈a,∴ aα.同理可证 bα,cα.∴ a,b,c,d在同一平面α内.2?当四条直线中任何三条都不共点时,如图.∵这四条直线两两相交,则设相交直线a,b确定一个平面α.设直线c与a,b分别交于点H,K,则 H,K∈α.又∵ H,K∈c,∴ cα.同理可证 dα.∴ a,b,c,d四条直线在同一平面α内.点评:证明若干条线(或若干个点)共面的一般步骤是:首先由题给条件中的部分线(或点)确定一个平面,然后再证明其余的线(或点)均在这个平面内.本题最容易忽视“三线共点”这一种情况.因此,在分析题意时,应仔细推敲问题中每一句话的含义.[例7]在立方体AB CD-A1B1C1D1中,(1)找出平面AC的斜线BD1在平面A C内的射影;(2)直线BD1和直线AC的位置关系如何?(3)直线BD1和直线AC所成的角是多少度?解:(1)连结BD, 交AC于点O.(2)BD1和AC是异面直线.交DD1于点M,连结MA、MC,则∠MOA或其补角即为异面直线AC和BD1所(3)过O作BD1的平行线成的角.不难得到MA=MC,而O为AC的中点,因此MO⊥AC,即∠MOA=90°,∴异面直线BD1与AC所成的角为90°.[例8] 已知:在直角三角形ABC中,A为直角,PA⊥平面ABC,BD⊥PC,垂足为D,求证:AD⊥PC证明:∵PA ⊥平面ABC∴PA⊥BA又∵BA⊥AC ∴BA⊥平面PAC∴AD是BD在平面PAC内的射影又∵BD⊥PC∴AD⊥PC.(三垂线定理的逆定理)四、典型习题导练1.如图, P 是△ABC 所在平面外一点,连结PA 、PB 、PC 后,在包括AB 、BC 、CA 的六条棱所在的直线中,异面直线的对数为( )A.2对B.3对C.4对D.6对2. 两个正方形A B CD 、ABEF 所在的平面互相垂直,则异面直线A C 和BF 所成角的大小为 .3. 在棱长为a 的正方体A B CD -A1B1C 1D 1中,体对角线D B 1与面对角线BC1所成的角是 ,它们的距离是 .4.长方体中,则所成角的大小为_ ___. 5.关于直角A O B 在定平面α内的射影有如下判断:①可能是0°的角;②可能是锐角;③可能是直角;④可能是钝角;⑤可能是180°的角. 其中正确判断的序号是_____.(注:把你认为正确的序号都填上).6.在空间四边形A BCD中,AB⊥CD,AH⊥平面BCD,求证:BH⊥CD7.如图正四面体中,D、E是棱PC上不重合的两点;F、H分别是棱P A、PB上的点,且与P 点不重合.求证:EF和DH是异面直线.。
两条直线的位置关系
两条直线的位置关系 Ting Bao was revised on January 6, 20021两条直线的位置关系1.两条直线的位置关系 (1)两条直线平行与垂直 ①两条直线平行:(ⅰ)对于两条不重合的直线l 1、l 2,若其斜率分别为k 1、k 2,则有l 1∥l 2k 1=k 2. (ⅱ)当直线l 1、l 2不重合且斜率都不存在时,l 1∥l 2. ②两条直线垂直:(ⅰ)如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则有l 1⊥l 2k 1·k 2=-1. (ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2. (2)两条直线的交点直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.2.几种距离(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离|P 1P 2|=x 2-x 12+y 2-y 12. (2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离:d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离d =|C 1-C 2|A 2+B2.选择题:设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 解析 充分性:当a =1时,直线l 1:x +2y -1=0与直线l 2:x +2y +4=0平行; 必要性:当直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行时有a =-2或1; 所以“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的充分不必要条件已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于( ) B .2- 2 -1 +1解析 依题意得|a -2+3|1+1=1,解得a =-1+2或a =-1-2,∵a >0,∴a =-1+ 2.已知直线l 1:(3+m )x +4y =5-3m ,l 2:2x +(5+m )y =8平行,则实数m 的值为( ) A .-7 B .-1 C .-1或-7解析 l 1的斜率为-3+m 4,在y 轴上的截距为5-3m 4,l 2的斜率为-25+m ,在y 轴上的截距为85+m .又∵l 1∥l 2,由-3+m 4=-25+m得,m 2+8m +7=0,得m =-1或-7.m =-1时,5-3m 4=85+m =2,l 1与l 2重合,故不符合题意;m =-7时,5-3m 4=132≠85+m =-4,符合题意已知两条直线l 1:(a -1)·x +2y +1=0,l 2:x +ay +3=0平行,则a 等于( ) A .-1 B .2 C .0或-2 D .-1或2解析 若a =0,两直线方程为-x +2y +1=0和x =-3,此时两直线相交,不平行,所以a ≠0.当a ≠0时,若两直线平行,则有a -11=2a ≠13,解得a =-1或a =2,选D.已知点O (0,0),A (0,b ),B (a ,a 3).若△OAB 为直角三角形,则必有( ) A .b =a 3 B .b =a 3+1aC .(b -a 3)⎝ ⎛⎭⎪⎫b -a 3-1a =0D .|b -a 3|+⎪⎪⎪⎪⎪⎪b -a 3-1a =0解析 若以O 为直角顶点,则B 在x 轴上,则a 必为0,此时O ,B 重合,不符合题意;若∠A =π2,则b =a 3≠0,若∠B =π2,根据垂直关系可知a 2·a 3-b a =-1,所以a (a 3-b )=-1,即b -a 3-1a =0,以上两种情况皆有可能,故只有C 满足条件.已知过点A (m +1,0),B (-5,m )的直线与过点C (-4,3),D (0,5)的直线平行,则m 的值为( ) A .-1 B .-2 C .2 D .1 解析 由题意得:k AB =m -0-5-m +1=m -6-m ,k CD =5-30--4=12.由于AB ∥CD ,即k AB =k CD ,所以m-6-m =12,所以m =-2当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析 解方程组⎩⎨⎧kx -y =k -1,ky -x =2k 得两直线的交点坐标为⎝⎛⎭⎪⎫k k -1,2k -1k -1,因为0<k <12,所以k k -1<0,2k -1k -1>0,故交点在第二象限.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2经过定点( )A .(0,4)B .(0,2)C .(-2,4)D .(4,-2)解析 直线l 1:y =k (x -4)经过定点(4,0),其关于点(2,1)对称的点为(0,2),又直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,故直线l 2经过定点(0,2).从点(2,3)射出的光线沿与向量a =(8,4)平行的直线射到y 轴上,则反射光线所在的直线方程为( )A .x +2y -4=0B .2x +y -1=0C .x +6y -16=0D .6x +y -8=0 解析 由直线与向量a =(8,4)平行知:过点(2,3)的直线的斜率k =12,所以直线的方程为y -3=12(x -2),其与y 轴的交点坐标为(0,2),又点(2,3)关于y 轴的对称点为(-2,3),所以反射光线过点(-2,3)与(0,2),由两点式知A 正确.填空题:已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0互相平行,则2a +3b 的最小值为_____解析 由于直线ax +by -6=0与直线2x +(b -3)y +5=0互相平行,所以a (b -3)=2b ,即2a +3b=1(a ,b 均为正数),所以2a +3b =(2a +3b )⎝ ⎛⎭⎪⎫2a +3b =13+6⎝ ⎛⎭⎪⎫b a +a b ≥13+6×2b a ·a b =25(当且仅当ba=ab ,即a =b =5时取等号)若直线(3a +2)x +(1-4a )y +8=0与(5a -2)x +(a +4)y -7=0垂直,则a =________ 解析 由两直线垂直的充要条件,得(3a +2)(5a -2)+(1-4a )(a +4)=0,解得a =0或a =1.已知两直线方程分别为l 1:x +y =1,l 2:ax +2y =0,若l 1⊥l 2,则a =________. 解析 ∵l 1⊥l 2,∴k 1k 2=-1,即a2=-1,解得a =-2.已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________解析由方程组⎩⎨⎧y =kx +2k +1,y =-12x +2,解得⎩⎪⎨⎪⎧x =2-4k2k +1,y =6k +12k +1.(若2k +1=0,即k =-12,则两直线平行),∴交点坐标为⎝⎛⎭⎪⎫2-4k 2k +1,6k +12k +1, 又∵交点位于第一象限,∴⎩⎪⎨⎪⎧2-4k 2k +1>0,6k +12k +1>0,解得-16<k <12.直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为______ 解析 当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0. 由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3k -1|=|-3k -3|,∴k =-13.∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意.过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________解析 设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0与直线l 1:3x +2y -6=0和直线l 2:6x +4y -3=0等距离的直线方程是________解析 l 2:6x +4y -3=0化为3x +2y -32=0,所以l 1与l 2平行,设与l 1,l 2等距离的直线l 的方程为3x +2y +c =0,则:|c +6|=|c +32|,解得c =-154,所以l 的方程为12x +8y -15=0.已知两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,若l 1∥l 2,且坐标原点到这两条直线的距离相等,则a +b =________解析由题意得⎩⎨⎧a +ba -1=0,4a 2+-b 2=|b |a -12+1.解得⎩⎨⎧a =2,b =-2或⎩⎨⎧a =23,b =2经检验,两种情况均符合题意,∴a +b 的值为0或83已知直线l 1:ax +y -1=0,直线l 2:x -y -3=0,若直线l 1的倾斜角为π4,则a =______;若l 1⊥l 2,则a =________;若l 1∥l 2,则两平行直线间的距离为_______ 解析 若直线l 1的倾斜角为π4,则-a =k =tan45°=1,故a =-1;若l 1⊥l 2,则a ×1+1×(-1)=0,故a =1;若l 1∥l 2,则a =-1,l 1:x -y +1=0,两平行直线间的距离d =|1--3|1+1=2 2.已知直线l :2x -3y +1=0,点A (-1,-2),则点A 关于直线l 的对称点A ′的坐标为________解析 设A ′(x ,y ),由已知得⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413,故A ′⎝⎛⎭⎪⎫-3313,413.解答题:已知两直线l 1:x +y sin α-1=0和l 2:2x ·sin α+y +1=0,求α的值,使得: (1)l 1∥l 2; (2)l 1⊥l 2.解 (1)当sin α=0时,直线l 1的斜率不存在,l 2的斜率为0,显然l 1不平行于l 2. 当sin α≠0时,k 1=-1sin α,k 2=-2sin α,要使l 1∥l 2,需-1sin α=-2sin α,即sin α=±22. 所以α=k π±π4,k ∈Z ,此时两直线的斜率相等.故当α=k π±π4,k ∈Z 时,l 1∥l 2.(2)因为A 1A 2+B 1B 2=0是l 1⊥l 2的充要条件,所以2sin α+sin α=0,即sin α=0,所以α=k π,k ∈Z .故当α=k π,k ∈Z 时,l 1⊥l 2.如图,设一直线过点(-1,1),它被两平行直线l 1:x +2y -1=0,l 2:x +2y -3=0所截的线段的中点在直线l 3:x -y -1=0上,求其方程.解 与l 1、l 2平行且距离相等的直线方程为x +2y -2=0.设所求直线方程为(x +2y -2)+λ(x -y -1)=0,即(1+λ)x +(2-λ)y -2-λ=0.又直线过(-1,1),∴(1+λ)(-1)+(2-λ)·1-2-λ=0,解得λ=-13.∴所求直线方程为2x +7y -5=0.正方形的中心为点C (-1,0),一条边所在的直线方程是x +3y -5=0,求其他三边所在直线的方程 解 点C 到直线x +3y -5=0的距离d =|-1-5|1+9=3105.设与x +3y -5=0平行的一边所在直线的方程是x +3y +m =0(m ≠-5),则点C 到直线x +3y +m =0的距离d =|-1+m |1+9=3105,解得m =-5(舍去)或m =7,所以与x +3y -5=0平行的边所在直线的方程是x +3y +7=0. 设与x +3y -5=0垂直的边所在直线的方程是3x -y +n =0,则点C 到直线3x -y +n =0的距离d =|-3+n |1+9=3105,解得n =-3或n =9,所以与x +3y -5=0垂直的两边所在直线的方程分别是3x -y -3=0和3x -y +9=0.已知直线l :2x -3y +1=0,求直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程 解 在直线m 上任取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上.设对称点M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,解得⎩⎪⎨⎪⎧a =613,b =3013,∴M ′⎝ ⎛⎭⎪⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎨⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3).∴由两点式得直线m ′的方程为9x -46y +102=0.求与直线3x +4y +1=0平行且过点(1,2)的直线l 的方程. 解 依题意,设所求直线方程为3x +4y +c =0 (c ≠1), 又因为直线过点(1,2),所以3×1+4×2+c =0,解得c =-11. 因此,所求直线方程为3x +4y -11=0.求经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程.解 解方程组⎩⎨⎧x -2y +4=0,x +y -2=0,得P (0,2).因为l 3的斜率为34,且l ⊥l 3,所以直线l 的斜率为-43,由斜截式可知l 的方程为y =-43x +2,即4x +3y -6=0.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解 依题意知:k AC =-2,A (5,1),∴l AC 为2x +y -11=0, 联立l AC 、l CM 得⎩⎨⎧2x +y -11=0,2x -y -5=0,∴C (4,3).设B (x 0,y 0),AB 的中点M 为(x 0+52,y 0+12),代入2x -y -5=0,得2x 0-y 0-1=0,∴⎩⎨⎧2x 0-y 0-1=0,x 0-2y 0-5=0,∴B (-1,-3),∴k BC =65,∴直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.已知直线l 经过直线l 1:2x +y -5=0与l 2:x -2y =0的交点. (1)若点A (5,0)到l 的距离为3,求l 的方程; (2)求点A (5,0)到l 的距离的最大值.解 (1)易知l 不可能为l 2,可设经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0,∵点A (5,0)到l 的距离为3,∴|10+5λ-5|2+λ2+1-2λ2=3,即2λ2-5λ+2=0,∴λ=2,或λ=12,∴l 的方程为x =2或4x -3y -5=0.(2)由⎩⎨⎧2x +y -5=0,x -2y =0,解得交点P (2,1),如图,过P 作任一直线l ,设d 为点A 到l 的距离,则d ≤PA (当l ⊥PA 时等号成立).∴d max =PA =5-22+0-12=10.专项能力提升若点(m ,n )在直线4x +3y -10=0上,则m 2+n 2的最小值是 ( ) A .2 B .2 2 C .4 D .23 解析 因为点(m ,n )在直线4x +3y -10=0上,所以4m +3n -10=0.欲求m 2+n 2的最小值可先求m -02+n -02的最小值,而m -02+n -02表示4m +3n -10=0上的点(m ,n )到原点的距离,如图.当过原点的直线与直线4m +3n -10=0垂直时,原点到点(m ,n )的距离最小为2.所以m 2+n 2的最小值为4.已知直线l :y =12x -1,(1)求点P (3,4)关于l 对称的点Q ; (2)求l 关于点(2,3)对称的直线方程.解 (1)设Q (x 0,y 0),由于PQ ⊥l ,且PQ 中点在l上,有⎩⎪⎨⎪⎧y 0-4x 0-3=-2,y 0+42=12·x 0+32-1,解得⎩⎪⎨⎪⎧x 0=295,y 0=-85,∴Q ⎝ ⎛⎭⎪⎫295,-85.(2)在l 上任取一点,如M (0,-1),则M 关于点(2,3)对称的点为N (4,7).∵当对称点不在直线上时,关于点对称的两直线必平行,∴所求直线过点N 且与l 平行, ∴所求方程为y -7=12(x -4),即为x -2y +10=0.。
七年级下册数学两条直线的位置关系(一)
七年级下册数学两条直线的位置关系(一)
七年级下册数学两条直线的位置关系
引言
本文将介绍七年级下册数学中,关于两条直线的位置关系的内容。
通过本篇文章,读者将了解两条直线的位置关系的定义以及常见的几
种情况。
一、两条直线的位置关系定义
两条直线的位置关系可以分为以下几种:
1.相交:两条直线交于一点,称为相交。
2.平行:两条直线不相交,且在同一平面上不相交的直线在无穷远
处相交,称为平行。
3.重合:两条直线方程相同,表示两条直线重合。
二、两条直线位置关系的解释说明
相交
当两条直线存在一点同时属于两条直线时,我们称它们为相交。
相交的情况可以分为以下几种: - 点相交:两条直线相交于一个点。
- 线段相交:两条直线相交于一条线段。
- 射线相交:两条直线相交
于一条射线。
平行
当两条直线不存在任何一个公共点时,我们称它们为平行。
平行的情况包括: - 平行线:两条直线在无穷远处相交。
- 平行线段:两条直线在无穷远处相交,并且在同一平面上不相交。
重合
当两条直线的方程相同,表示两条直线完全重合。
结论
通过本文我们了解了七年级下册数学中关于两条直线的位置关系的定义和解释。
对于数学问题,理解数学中的基本概念和定义是解决问题的关键。
希望本文能对读者在学习数学过程中的理解有所帮助。
数学(七下)2.1两条直线的位置关系(一)
D E C
A
A O B
O
动手实践三
D
O
2 1 34
C
图2.1—7
A N B 图2.1—8
打台球时,选择适当的方向,用白球击打红球, 反弹后的红球会直接入袋,此时∠1=∠2,将图 2.1—7抽象成成图2.1—8,ON与DC交于点O, ∠DON=∠CON=900,∠1=∠2
动手实践三
D
O
2 1 34
C
A N B 图2.1—7 图2.1—8 小组合作交流,解决下列问题:在图2.1—8中 问题1:哪些角互为补角?哪些角互为余角? 问题2:∠3与∠4有什么关系?为什么? 问题3:∠AOC与∠BOD有什么关系?为什么? 你还能得到哪些结论?
动手实践、探究新知 问题2:剪子可以看成图2.1—4, 那么剪子在剪东西的过程中, ∠1和∠2还保持相等吗?∠3和 ∠4呢?你有何结论?
A
4 D
2ቤተ መጻሕፍቲ ባይዱ3 1
C
2.1─5
对顶角相等
B
巩固练习 1.下列各图中,∠1和∠2是对顶角的是(D )
1
2
1
2
1
1
A
B
C
2
2
D
2.如图所示,有一个破损 的扇形零件,利用图中的 量角器可以量出这个扇形 零件的圆心角的度数吗? 你能说出所量角的度数是 多少吗?为什么?
C A B A C
两条直线的位置关系(1)两条直线的相交、平行与重合
Ax+By+m=0(m≠C),代入已知条件求出m即可.
当堂达标
堂达标
1.判断下列各对直线是否平行 : (p91练习A)
(1) 3x+4y-5=0, 6x+8y-7=0
平行
(2) y=3x+4, 2y-6x+1=0
平行
(3) x=3, 3x+5=0
平行
(4) x+y=0 , x-y=0
不平行
2.过点(1,0)且与直线x-2y-2=0平行的直线方
程是(
)
A.x-2y-1=0
B.x-2y+1=0
C.2x+y-2=0
D.x+2y-1=0
解析:因为所求直线与直线x-2y-2=0平行,所以所求
直线斜率k= 12 ,排除C,D.又直线过点(1,0),排除B.
答案:A
课堂小结
判断两直线位置关系的解法有三种:
一是根据方程组的解的个数判定;
二是根据方程的系数间的关系判定;
三是化成斜截式方程判定.
作业布置
P91练习A1,2,3
感谢观看
(方法二)(1)因为 A1=4,B1=3,C1=-2,A2=1,B2=2,C2=2,
所以 A1B2-A2B1=4×2-1×3=5≠0,所以两直线相交.
4 + 3-2 = 0,
= 2,
解方程组
得
= -2,
+ 2 + 2 = 0,
所以两直线的交点坐标为(2,-2).
1
(2)因为 A1=1,B1=2,C1=-2,A2=2,B2=4,C2=-1,所以 A1B2-A2B1=1×41
典例解析
两直线的位置关系
例 3 求经过两条直线 2x+3y+1=0 和 x-3y+4=0 的交 点,并且垂直于直线 3x+4y-7=0 的直线方程.
【思路】 (1)先求两条直线的交点坐标,再由两线的垂直 关系得到所求直线的斜率,最后由点斜式可得所求直线方程. (2)因为所求直线与直线 3x+4y-7=0 垂直, 两条直线的斜 率互为负倒数,所以可设所求直线方程为 4x-3y+m=0,将两 条直线的交点坐标代入求出 m 值,就得到所求直线方程.
5 7 ∴交点为(- , ). 3 9
∵所求直线与 3x+4y-7=0 垂直, 4 ∴所求直线的斜率 k= . 3 7 4 5 由点斜式,得 y- = (x+ ). 9 3 3 故所求直线的方程为 4x-3y+9=0.
方法二 设所求直线的方程为 4x-3y+m=0. 5 x=-3, 将方法一中求得的交点坐标 y=7. 9 5 7 代入上式得 4· (- )-3·+m=0. 3 9 ∴m=9.代入所设方程. 故所求直线的方程为 4x-3y+9=0.
1 2 【答案】 a=2,垂足坐标为( ,- )或 a=-3,垂足坐 2 3 9 2 标为(- , ) 17 17
例 2
(2013· 北京东城区)若 O(0,0),A(4,-1)两点到直线
ax+a2y+6=0 的距离相等,则实数 a=________.
|4a-a2+6| 6 2 【解析】 由题意,得 2 4= ,即 4 a - a + 2 4 a +a a +a 6=± 6,解之得 a=0 或-2 或 4 或 6.检验得 a=0 不合题意,所 以 a=-2 或 4 或 6.
(1)当 m=4 时,直线 l1 的方程为 4x+8y+n=0,把 l2 的方 程写成 4x+8y-2=0. |n+2| ∴ = 5,解得 n=-22 或 n=18. 16+64 所以,所求直线的方程为 2x+4y-11=0 或 2x+4y+9=0.
高二数学两条直线的位置关系
两条直线的位置关系 两条直线的位置关系(1)一、知识小结1.行列式方法研究直线位置关系:设直角坐标平面上两条直线的方程分别为1111:0l a x b y c ++=,2222:0l a x b y c ++=,则在二元一次方程组111222a xb yc a x b y c +=-⎧⎨+=-⎩中(其中1a 、1b 不全为零,2a 、2b 不全为零);记1122a b D a b =为方程组的系数行列式;记x D =1122c b c b --,1122y a c D a c -=-,则根据我们之前学过的行列式知识:(1)若0D ≠,则方程组有唯一一组解,此时两条直线相交于一点,交点坐标为,y x D D D D ⎛⎫⎪⎝⎭;(2)若0D =,且x D 、y D 中至少有一个不为零,则方程组无解,此时两条直线无交点,即两条直线平行;(3)若0x y D D D ===,则方程组有无穷多解,此时两条直线有无穷多个交点,即两条直线重合.2.两条直线的位置关系:设有直线1111:0l A x B y C ++=,2222:0l A x B y C ++=,当它们的斜率存在时,把它们的斜率记为1k 、2k ,在y 轴上的截距记为1b 、2b : (1)若12l l ,则12k k =且12b b ≠,或1k 与2k 均不存在,写成系数的关系即为111222A B C A B C =≠(假设2A 、2B 、2C 都不为0)或120B B ==.我们可以把两条直线的方程化为x 和y 的系数对应相同的形式,设为''11:0l Ax By C ++=, ''22:0l Ax By C ++=,那么这时1l 与2l之间距离为d =;(2)若1l 与2l 相交,则1122A B A B ≠(假设2A 、2B 不为0)(交点坐标由1111:0l A x B y C ++=,2222:0l A x B y C ++=组成的方程组的解确定);两直线的夹角公式为cos θ=特别地,当12l l ⊥时,必有()12121210k k A A B B ⋅=-+=或10k =,2k 不存在,或20k =,1k 不存在.3.点到直线的距离(1)已知点()00,P x y 和直线:0l Ax By C ++=,则P 到直线l 的距离d =.(2)记γ=,当点()00,P x y 在法向量(),n a b =指向的同侧时,γ为正;当点()00,P x y 在法向量(),n a b =指向的异侧时,γ为负;当点()00,P x y 在直线上时,0γ=.二、应用举例例1、若点(),M x y 在线段1x y +=,()0,1x ∈上移动(不包括端点),则22x y+的最小值是__________.例2、直线()()()21310k x k y k --+--=恒过定点_____________.两条直线的位置关系 两条直线的位置关系(2)1.填空题例4.过1:3210l x y +-=和2:5210l x y ++=的交点且和3:3560l x y -+=垂直的直线l 的方程是___________例5、已知π02θ≤≤,当点()1,cos θ到直线sin cos 10x y θθ+-=的距离是14时,这条直线的斜率为____________.例6、ABC △中,()1,5A ,高BE 、CF 所在的直线方程分别为20x y -=和5100x y ++=,则BC 所在直线的方程为_____________例6拓展、ABC △中,()1,5A ,角B 、角C 的角平分线分别为20x y -=和5100x y ++=,则BC 所在直线的方程为_____________例6拓展、ABC △中,()1,5A ,AB ,AC 边上的中线CF ,BE 分别为20x y -=和5100x y ++=,则BC 所在直线的方程为_____________、例7、平行四边形ABCD 的一条对角线固定在()3,1A -,()2,3C -两点,D 点在直线310x y -+=上移动,则B 点轨迹所在的方程为 .例8、由方程112x y -+-=确定的曲线所围成的面积是__________________.两条直线的位置关系 两条直线的位置关系(3)一、应用举例:1、填空题例10、已知()0,0A ,(),B a b 两点,其中0ab ≠,1P 是AB 的中点,2P 是1BP 的中点,3P 是12P P 中点,……,2n P +是1n n P P +的中点,……,则点n P 的极限位置是什么?2.选择题例11、直线()1:1520l m x y m ++-=与()()22:1140l m x m y +++-=平行,则m 为( ). (A )2-(B )1-(C )2-或1-(D )不存在例12、设全集(){},R,I x y x y =∈∈R ,()3,12y M x y x ⎧-⎫==⎨⎬-⎩⎭,(){},1N x y y x =≠+,则集合M N 等于( ). (A )∅(B )(){}2,3两条直线的位置关系 两条直线的位置关系(4)一、应用举例:1.解答题例19、已知三条直线1:210l x y +-=,2:0l mx y +=,3:2320l x my --=,若这三条直线不能构成三角形,求m 的值.例20、设集合{L l =直线l 与直线2y x =相交,且以交点的横坐标为斜率} (1)点()2,2-到L 中哪条直线距离最小?(2)设a +∈R ,点()2,P a -到L 中的直线距离的最小值设为min d ,求min d 的解析式.例21、A 是直线:3l y x =上在第一象限内的点,()3,2B 为定点,直线AB 交x 轴正半轴于C ,求OAC △面积的最小值,并求此时A 点坐标.(C )()2,3(D )(){},1x y y x =+。
两条直线的位置关系(1)(新教材)
两条直线的位置关系(1)目的:1、掌握两条直线平行的充要条件,会由直线方程判断两条直线是否平行; 2、通过教学,提倡形式用旧知识解决新问题,注意解析几何思想方法的 渗透,同时,注意思考的严密性,表述的规范性,培养形式探索、概括能力。
过程:一、复习提问1、平面内不重合的两条直线的位置关系有几种?2、两条直线的倾斜角相等,这两条直线是否平行?反过来是否成立?3、“βα=”是“βαtan tan =”的什么条件?4、在解析几何中是利用什么来判定两条直线平行的? 二、新课两条直线的位置关系——平行设问1:已知直线1l 、2l 的斜截式方程为1l :11b x k y +=,2l :22b x k y += 求证:1l ∥2l 的充要条件是21k k =且21b b ≠。
必有性:如果1l ∥2l ,那么21b b ≠,它们的倾斜角相等21αα=, ∴21tan tan αα=,即21k k =充分性:如果21k k =,即21tan tan αα=。
∵︒<≤︒18001α,︒<≤︒18002α ∴21αα=,又21b b ≠,即两直线不重合,∴1l ∥2l 当直线1l 、2l 有斜截式方程1l :11b x k y +=,2l :22b x k y +=时, 直线1l ∥2l 的充要条件是21k k =且21b b ≠设问2:已知直线1l 、2l 的方程为1l :0111=++C y B x A ,2l :0222=++C y B x A )0,0(222111≠≠C B A C B A求证:1l ∥2l 的充要条件是212121C C B B A A ≠= 设问3:已知两条直线的方程,如何判断两条直线平行?例1、两条直线1l :0742=+-y x 2l :052=+-y x 。
求证:1l ∥2l 证一:(见教材55页略)2证二:∵572412≠--=,∴1l ∥2l 例2、求使直线12=-ay x 和122=-ay x 平行的实数a 的取值。
高中数学考点-两条直线的位置关系
9.2 两条直线的位置关系1.两条直线的位置关系(1)平行:对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,有l 1∥l 2⇔____________,特别地,当直线l 1,l 2的斜率都不存在时,l 1与l 2的关系为____________.(2)垂直:如果两条直线l 1,l 2的斜率都存在,且分别为k 1,k 2,则有l 1⊥l 2⇔____________,特别地,若直线l 1:x =a ,直线l 2:y =b ,则l 1与l 2的关系为____________. 2.两条直线的交点坐标一般地,将两条直线的方程联立,得方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0. 若方程组有唯一解,则两条直线__________,此解就是__________;若方程组无解,则两条直线____________,此时两条直线____________. 3.距离公式(1)点到直线的距离:点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =____________.(2)两条平行直线间的距离:两条平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0(C 1≠C 2)间的距离 d =____________________. 4.过两直线交点的直线系方程若已知直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0相交,则方程A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(其中λ∈R ,这条直线可以是l 1,但不能是l 2)表示过l 1和l 2交点的直线系方程.自查自纠1.(1)k 1=k 2 l 1∥l 2 (2)k 1k 2=-1 l 1⊥l 2 2.相交 交点的坐标 无公共点 平行 3.(1)||Ax 0+By 0+C A 2+B 2(2)||C 1-C 2A 2+B 2过点A (2,3)且垂直于直线2x +y -5=0的直线方程为( ) A .x -2y +4=0 B .2x +y -7=0 C .x -2y +3=0D .x -2y +5=0解:由题意可设所求直线方程为:x -2y +m =0,将A (2,3)代入上式得2-2×3+m =0,即m =4,所以所求直线方程为x -2y +4=0.故选A.对任意实数a ,直线y =ax -3a +2所经过的定点是( ) A .(2,3) B .(3,2) C .(-2,3)D .(3,-2)解:直线y =ax -3a +2变为a (x -3)+(2-y )=0.又a ∈R ,所以⎩⎪⎨⎪⎧x -3=0,2-y =0,解得⎩⎪⎨⎪⎧x =3,y =2得定点为(3,2).故选B.已知直线l 1:mx +y -2=0,l 2:6x +(2m -1)y -6=0,若l 1∥l 2,则实数m 的值是( ) A .-32B .2C .-32或2D.32或-2 解:当m =0时,直线l 1:y -2=0,l 2:6x -y -6=0,则l 1与l 2不平行,同理m =12时不平行;当m ≠0且≠12时,由l 1∥l 2,得m 6=12m -1≠-2-6,解得m =-32,故选A.已知A ,B 两点分别在两条互相垂直的直线2x -y =0和x +ay =0上,且线段AB 的中点为P ⎝⎛⎭⎫0,10a ,则线段AB 的长为________.解:依题意,a =2,P (0,5),设A (x ,2x ),B (-2y ,y ),故⎩⎨⎧x -2y2=0,2x +y 2=5,解得⎩⎪⎨⎪⎧x =4,y =2,所以A (4,8),B (-4,2),所以|AB |=(4+4)2+(8-2)2=10.故填10.已知点A (3,2)和B (-1,4)到直线ax +y +1=0的距离相等,则a 的值为________.解:由平面几何知识得AB 平行于直线ax +y +1=0或AB 中点(1,3)在直线ax +y +1=0 上,k AB =-12,所以a =12或-4.故填12或-4.类型一 两条直线平行、重合或相交已知两条直线l 1:ax -y +a +2=0,l 2:ax +(a 2-2)y +1=0,当a 为何值时,l 1与l 2:(1)相交;(2)平行;(3)重合.解:首先由a ·(a 2-2)=(-1)a , 得:a =0或a =-1或a =1.所以当a ≠0且a ≠-1且a ≠1时两直线相交. 当a =0时,代入计算知l 1∥l 2, 当a =-1时,代入计算知l 1与l 2重合, 当a =1时,代入计算知l 1∥l 2.因此,(1)当a ≠-1且a ≠0且a ≠1时,l 1与l 2相交; (2)当a =0或a =1时,l 1与l 2平行; (3)当a =-1时,l 1与l 2重合.【点拨】由直线的一般式直接判断两条直线是否平行时,可直接应用结论:若A 1A 2=B 1B 2≠C 1C 2,则直线A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0平行,这是一个很实用的结论,但要注意分母不能为零.当实数m 为何值时,三条直线l 1:3x +my -1=0,l 2:3x -2y -5=0,l 3:6x +y -5=0不能围成三角形.解:当m =0时,直线l 1,l 2,l 3可以围成三角形,要使直线l 1,l 2,l 3不能围成三角形,则m ≠0. 记l 1,l 2,l 3三条直线的斜率分别为k 1,k 2,k 3,则k 1=-3m ,k 2=32,k 3=-6.若l 1∥l 2,或l 1∥l 3,则k 1=k 2=32,或k 1=k 3=-6,解得m =-2或m =12;若三条直线交于一点,由⎩⎪⎨⎪⎧3x -2y -5=0,6x +y -5=0得⎩⎪⎨⎪⎧x =1,y =-1, l 2与l 3交于点(1,-1),将点(1,-1)代入3x +my -1=0,得m =2.所以当m =±2或12时,l 1,l 2,l 3不能围成三角形.类型二 两条直线垂直(1)已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,若l 1⊥l 2,且l 1过点(-3,-1),求a ,b 的值;(2)已知两直线l 1:x +y sin α-1=0和l 2:2x ·sin α+y +1=0,若l 1⊥l 2,求α的值. 解:(1)解法一:由已知可得l 2的斜率k 2存在,且k 2=1-a . 若k 2=0,则1-a =0,a =1.因为l 1⊥l 2,所以直线l 1的斜率k 1必不存在,即b =0.又因为l 1过点(-3,-1),所以-3a +4=0,得a =43(矛盾).所以此种情况不存在,所以k 2≠0, 所以k 1,k 2都存在.因为k 2=1-a ,k 1=ab ,l 1⊥l 2,所以k 1k 2=-1,即ab(1-a )=-1.①又因为l 1过点(-3,-1),所以-3a +b +4=0.② 联立①②可得a =2,b =2.解法二:因为l 1⊥l 2,所以a (a -1)+(-b )·1=0, 即b =a 2-a .①又因为l 1过点(-3,-1), 所以-3a +b +4=0.②联立①②可得⎩⎪⎨⎪⎧a =2,b =2.经验证,符合题意.故a =2,b =2.(2)因为A 1A 2+B 1B 2=0是l 1⊥l 2的充要条件, 所以2sin α+sin α=0,即sin α=0,α=k π,k ∈Z . 所以当α=k π,k ∈Z 时,l 1⊥l 2.【点拨】判定两直线垂直的方法:(1)判定两直线的斜率是否存在,若存在,可先化成斜截式,若k 1·k 2=-1,则两直线垂直;若一条直线的斜率不存在,另一条直线的斜率为0,则两直线也垂直.(2)直接用以下方法,可避免对斜率是否存在进行讨论.设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,l 1⊥l 2⇔A 1A 2+B 1B 2=0.已知定点A (-1,3),B (4,2),以A 、B 为直径的端点作圆与x 轴有交点C ,求交点C 的坐标.解:以线段AB 为直径的圆与x 轴交点为C ,则AC ⊥C B.据题设条件可知AC ,BC 的斜率均存在.设C (x ,0),则k AC =-3x +1,k BC =-2x -4,所以-3x +1·-2x -4=-1,去分母解得x =1或2.故C (1,0)或C (2,0).类型三 对称问题已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A (-1,-2)对称的直线l ′的方程. 解:(1)设A ′(x ,y ), 则有⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413,所以A ′⎝⎛⎭⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m ′上. 设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝⎛⎭⎫a +22-3×⎝⎛⎭⎫b +02+1=0,b -0a -2×23=-1,解得M ′⎝⎛⎭⎫613,3013.设m 与l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又因为m ′经过点N (4,3),所以由两点式得直线m ′的方程为9x -46y +102=0.(3)解法一:在l :2x -3y +1=0上任取两点,如P (1,1),N (4,3). 则P ,N 关于点A 的对称点P ′,N ′均在直线l ′上.易知P ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0. 解法二:设Q (x ,y )为l ′上任意一点, 则Q (x ,y )关于点A (-1,-2)的对称点为 Q ′(-2-x ,-4-y ),因为Q ′在直线l 上,所以2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0.【点拨】(1)关于中心对称问题的处理方法:①若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1.②求直线关于点的对称直线的方程,其主要方法是:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利用两直线平行,由点斜式得到所求直线方程,当然,斜率必须存在. (2)关于轴对称问题的处理方法:①点关于直线的对称.若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,则线段P 1P 2的中点在l 上,且连接P 1P 2的直线垂直于l ,由方程组⎩⎪⎨⎪⎧A ⎝⎛⎭⎫x 1+x 22+B ⎝⎛⎭⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝⎛⎭⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2).②直线关于直线的对称.此类问题一般转化为点关于直线的对称问题来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.如图,已知A (4,0)、B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是________.解:由题意知点P 关于直线AB 的对称点为D (4,2),关于y 轴的对称点为C (-2,0),则光线所经过的路程的长为|CD |=210.故填210.类型四 距离问题(1)已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是( ) A.1710B.175C .8D .2 解:因为63=m 4≠14-3,所以m =8,直线6x +8y +14=0可化为3x +4y +7=0,两平行线之间的距离d =|-3-7|32+42=2.故选D.(2)过点P (1,2)引直线,使A (2,3)、B (4,-5)到它的距离相等,求这条直线的方程. 解法一:因为k AB =-4,线段AB 中点C (3,-1),所以过P (1,2)与直线AB 平行的直线方程为y -2=-4(x -1),即4x +y -6=0.此直线符合题意.过P (1,2)与线段AB 中点C (3,-1)的直线方程为y -2=-32(x -1),即3x +2y -7=0.此直线也是所求.故所求直线方程为4x +y -6=0或3x +2y -7=0. 解法二:显然这条直线斜率存在. 设直线方程为y =kx +b , 据条件有⎩⎪⎨⎪⎧2=k +b ,|2k -3+b |k 2+1=|4k +5+b |k 2+1.化简得⎩⎪⎨⎪⎧k +b =2,k =-4或⎩⎪⎨⎪⎧k +b =2,3k +b +1=0. 所以k =-4,b =6或k =-32,b =72.所以直线方程为y =-4x +6或y =-32x +72.即4x +y -6=0或3x +2y -7=0. 【点拨】距离的求法: (1)点到直线的距离.可直接利用点到直线的距离公式来求,但要注意此时直线方程必须为一般式. (2)两平行直线间的距离.①利用“化归”法将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离;②利用两平行线间的距离公式d =|C 1-C 2|A 2+B 2.若动点A 、B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为________.解:依题意知AB 的中点M 所在直线方程为x +y -6=0,根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=3 2.故填3 2.类型五 直线系及其应用求证:动直线(m 2+2m +3)x +(1+m -m 2)y +3m 2+1=0(其中m ∈R )恒过定点,并求出定点坐标. 证法一:令m =0,则直线方程为3x +y +1=0,① 再令m =1时,直线方程为6x +y +4=0,②联立①②,得方程组⎩⎪⎨⎪⎧3x +y +1=0,6x +y +4=0,解得⎩⎪⎨⎪⎧x =-1,y =2.将点A (-1,2)代入动直线(m 2+2m +3)x +(1+m -m 2)y +3m 2+1=0中, (m 2+2m +3)×(-1)+(1+m -m 2)×2+3m 2+1 =(3-1-2)m 2+(-2+2)m +2+1-3=0,故点A (-1,2)的坐标恒满足动直线方程,所以动直线(m 2+2m +3)x +(1+m -m 2)y +3m 2+1=0恒过定点A. 证法二:将动直线方程按m 降幂排列整理得, m 2(x -y +3)+m (2x +y )+3x +y +1=0,① 不论m 为何实数,①式恒为零, 所以有⎩⎪⎨⎪⎧x -y +3=0,2x +y =0,3x +y +1=0,解得⎩⎪⎨⎪⎧x =-1,y =2.故动直线恒过点(-1,2).【点拨】此题属于数学中恒成立问题,所以证法一是先赋给m 两个特殊值得两条直线,那么这两条直线的交点就是那个定点,但m 只是取两个特殊值,是否m ∈R 时都成立,则要进行代入检验;证法二是将动直线方程按m 的降幂排列,由于∀m ∈R 恒成立,所以得关于x ,y 的方程组,解此方程组便得定点坐标.直线系也称直线束,是具有某一共同性质的直线的集合.常见直线系方程有:(1)过定点(x 1,y 1)的直线系:y -y 1=k (x -x 1)和x =x 1.(2)平行于直线Ax +By +C =0的直线系:Ax +By +λ=0(λ≠C ).(3)垂直于直线Ax +By +C =0的直线系:Bx -Ay +λ=0.(4)过A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0的交点的直线系:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(不包括直线A 2x +B 2y +C 2=0).已知直线l :(2a +b )x +(a +b )y +a -b =0及点P (3,4). (1)证明直线l 过某定点,并求该定点的坐标; (2)当点P 到直线l 的距离最大时,求直线l 的方程. 解:(1)证明:直线l 的方程可化为 a (2x +y +1)+b (x +y -1)=0,由⎩⎪⎨⎪⎧2x +y +1=0,x +y -1=0,得⎩⎪⎨⎪⎧x =-2,y =3, 所以直线l 恒过定点(-2,3). (2)由(1)知直线l 恒过定点A (-2,3),当直线l 垂直于直线P A 时,点P 到直线l 的距离最大.又直线P A 的斜率k P A =4-33+2=15,所以直线l 的斜率k l =-5.故直线l 的方程为y -3=-5(x +2), 即5x +y +7=0.1.当直线的方程中含有字母参数时,不仅要考虑斜率存在与不存在的情况,同时还要注意x ,y 的系数不能同时为零这一隐含条件.2.两条直线的位置关系一般用斜率和截距来判定,但当直线方程用一般式给出且系数中有参数时,往往需要繁琐地讨论.但也可以这样避免:设两直线为A 1x +B 1y +C 1=0和A 2x +B 2y +C 2=0,则两直线垂直的条件为⎝⎛⎭⎫-A 1B 1·⎝⎛⎭⎫-A 2B 2=-1,由此得A 1A 2+B 1B 2=0,但后者适用性更强,因为当B 1=0或B 2=0时前者不适用但后者适用.3.运用直线系方程,有时会使解题更为简单快捷,常见的直线系方程有: (1)与直线Ax +By +C =0平行的直线系方程是Ax +By +m =0(m ∈R 且m ≠C ); (2)与直线Ax +By +C =0垂直的直线系方程是Bx -Ay +m =0(m ∈R );(3)过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ),但不包括l 2. 4.运用公式d =||C 1-C 2A 2+B 2求两平行直线间的距离时,一定要将两条直线方程中x ,y 的系数化成相等的系数,求两平行直线间的距离也可化归为点到直线的距离,即在一条直线上任取一点(如直线与坐标轴的交点),求该点到另一条直线的距离即为两平行直线间的距离.这一方法体现了化归思想的应用.5.对称主要分为中心对称和轴对称两种,中心对称仅用中点坐标公式即可,轴对称因对称点连线的中垂线就是对称轴,所以根据线段的中点坐标公式和两条直线垂直的条件即可解决.1.点(1,-1)到直线x -y +1=0的距离是( ) A.12 B.32 C.22 D.322 解:d =|1+1+1|2=322.故选D.2.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0解:设所求直线方程为x -2y +c =0,将(1,0)代入得c =-1.所以所求直线方程为x -2y -1=0.故选A. 3.已知直线l 1:x +ay -2=0,l 2:x -ay -1=0,则“a =-1”是“l 1⊥l 2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解:由l 1⊥l 2,得1×1+a ×(-a )=0,解得a =-1或a =1,则“a =-1”是“l 1⊥l 2”的充分不必要条件, 故选A.4.(2015·武汉调研)直线x -2y +1=0关于直线x =1对称的直线方程是( )A .x +2y -1=0B .2x +y -1=0C .2x +y -3=0D .x +2y -3=0解:设直线x -2y +1=0关于直线x =1对称的直线为l 2,则l 2的斜率为-12,且过直线x -2y +1=0与x =1的交点(1,1),则l 2的方程为y -1=-12(x -1),即x +2y -3=0.故选D.5.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A.⎣⎡⎭⎫π6,π3 B.⎝⎛⎭⎫π6,π2 C.⎝⎛⎭⎫π3,π2 D.⎝⎛⎦⎤π6,π2解:如图,直线l :y =kx -3,过定点P (0,-3),又A (3,0),所以k P A =33,则直线P A 的倾斜角为π6,满足条件的直线l 的倾斜角的范围是⎝⎛⎭⎫π6,π2.故选B.6.(2015·洛阳统考)已知点P (x 0,y 0)是直线l :Ax +By +C =0外一点,则方程Ax +By +C +(Ax 0+By 0+C )=0表示( )A .过点P 且与l 垂直的直线B .过点P 且与l 平行的直线C .不过点P 且与l 垂直的直线D .不过点P 且与l 平行的直线解:因为点P (x 0,y 0)不在直线Ax +By +C =0上,所以Ax 0+By 0+C ≠0,所以直线Ax +By +C +(Ax 0+By 0+C )=0不经过点P .又直线Ax +By +C +(Ax 0+By 0+C )=0与直线l :Ax +By +C =0平行.故选D. 7.点P 为x 轴上的一点,A (1,1),B (3,4),则|P A |+|PB |的最小值是________.解:点A (1,1)关于x 轴的对称点A ′(1,-1),则|P A |+|PB |的最小值是线段A ′B 的长为29.故填29.8.若O (0,0),A (4,-1)两点到直线ax +a 2y +6=0的距离相等,则实数a =________.解:由题意,得6a 2+a 4=|4a -a 2+6|a 2+a 4,即4a -a 2+6=±6,解得a =0或-2或4 或6.检验得a =0不合题意,所以a =-2或4或6.故填-2或4或6.9.已知两直线l 1:x +y sin θ-1=0和l 2:2x sin θ+y +1=0,试求θ的值,使得: (1)l 1∥l 2; (2)l 1⊥l 2.解:(1)由12sin θ=sin θ≠-11,得sin θ=±22.由sin θ=±22,得θ=k π±π4(k ∈Z ). 所以当θ=k π±π4(k ∈Z )时,l 1∥l 2.(2)由2sin θ+sin θ=0,得sin θ=0,θ=k π(k ∈Z ), 所以当θ=k π(k ∈Z )时,l 1⊥l 2.10.已知直线l 经过直线2x +y -5=0与x -2y =0的交点. (1)点A (5,0)到l 的距离为3,求l 的方程; (2)求点A (5,0)到l 的距离的最大值.解:(1)经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0,所以|10+5λ-5|(2+λ)2+(1-2λ)2=3.解得λ=2或λ=12.所以l 的方程为x =2或4x -3y -5=0.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得交点P (2,1),如图,过P 作任一直线l ,设d 为点A 到l 的距离, 则d ≤|P A |(当l ⊥P A 时等号成立). 所以d max =|P A |=10.11.在△ABC 中,BC 边上的高所在直线l 1的方程为x -2y +1=0,∠A 的平分线所在的直线l 2的方程为y =0,若点B 的坐标为(1,2),求点A 、C 的坐标. 解:如图,设C (x 0,y 0),由题意知l 1∩l 2=A ,则⎩⎪⎨⎪⎧x -2y +1=0,y =0⇒⎩⎪⎨⎪⎧x =-1,y =0.即A (-1,0). 又因为l 1⊥BC , 所以k BC ·k l 1=-1. 所以k BC =-1k l 1=-112=-2.所以由点斜式可得BC 的直线方程为y -2=-2(x -1),即2x +y -4=0.又因为l 2:y =0(x 轴)是∠A 的平分线, 所以B 关于l 2的对称点B ′在直线AC 上,易得B ′点的坐标为(1,-2),由两点式可得直线AC 的方程为x +y +1=0.由C (x 0,y 0)在直线AC 和BC 上,可得⎩⎪⎨⎪⎧x 0+y 0+1=0,2x 0+y 0-4=0⇒⎩⎪⎨⎪⎧x 0=5,y 0=-6.即C (5,-6). 已知直线l 1:x +a 2y +1=0和直线l 2:(a 2+1)x -by +3=0(a ,b ∈R ).(1)若l 1∥l 2,求b 的取值范围;(2)若l 1⊥l 2,求|ab |的最小值.解:(1)因为l 1∥l 2,所以-b -(a 2+1)a 2=0,且a 2+1≠3. 则b =-a 2(a 2+1)=-a 4-a 2=-⎝⎛⎭⎫a 2+122+14, 因为a 2≥0,所以b ≤0.又因为a 2+1≠3,所以b ≠-6.故b 的取值范围是(-∞,-6)∪(-6,0].(2)因为l 1⊥l 2,所以(a 2+1)-a 2b =0, 又若a =0,不满足l 1⊥l 2,则a ≠0,所以ab =a +1a,|ab |=⎪⎪⎪⎪a +1a ≥2,当且仅当a =±1时等号成立,因此|ab |的最小值为2.。
两条直线的位置关系(含答案)
两直线的位置关系【知识清单】:1.两条直线位置关系的判定(1)易忽视斜率是否存在,两条直线都有斜率可根据条件进行判断,若无斜率,要单独考虑. (2)比例式A 1A 2与B 1B 2,C 1C 2的关系容易记住,在解答选择、填空题时,建议多用比例式来解答.2.两条直线的交点的求法:直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B2y +C 2=0的解.3.距离注意:运用两平行直线间的距离公式时易忽视两方程中的x ,y 的系数分别相等这一条件,盲目套用公式导致出错.【考点突破】:考点一 两条直线的位置关系 (基础送分型考点——自主练透)1.(2016·重庆巴蜀中学模拟)若直线ax +2y +1=0与直线x +y -2=0互相垂直,那么a 的值等于( ) A .1 B .-13C .-23D .-2解析:选D 由a ·1+2·1=0得a =-2,故选D.2.(2016·金华十校模拟)“直线ax -y =0与直线x -ay =1平行”是“a =1”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 由直线ax -y =0与x -ay =1平行得a 2=1,即a =±1,所以“直线ax -y =0与x -ay =1平行”是“a =1”的必要不充分条件.3.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=0解析:选A 依题意,设所求的直线方程为x -2y +a =0,由于点(1,0)在所求直线上,则1+a =0,即a =-1,则所求的直线方程为x -2y -1=0.考点二 距离问题(重点保分型考点——师生共研)已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,在坐标平面内求一点P ,使|PA |=|PB |,且点P 到直线l 的距离为2.解:设点P 的坐标为(a ,b ). ∵A (4,-3),B (2,-1),∴线段AB 的中点M 的坐标为(3,-2). 而AB 的斜率k AB =-3+14-2=-1,∴线段AB 的垂直平分线方程为y +2=x -3, 即x -y -5=0.∵点P (a ,b )在直线x -y -5=0上, ∴a -b -5=0.①又点P (a ,b )到直线l :4x +3y -2=0的距离为2,∴|4a +3b -2|5=2, 即4a +3b -2=±10,②由①②联立可得⎩⎪⎨⎪⎧a =1,b =-4或⎩⎨⎧a =277,b =-87.∴所求点P 的坐标为(1,-4)或⎝⎛⎭⎫277,-87. [由题悟法]处理距离问题的2大策略(1)点到直线的距离问题可直接代入点到直线的距离公式去求.注意直线方程为一般式.(2)动点到两定点距离相等,一般不直接利用两点间距离公式处理,而是转化为动点在两定点所在线段的垂直平分线上,从而计算简便,如本例中|PA |=|PB |这一条件的转化处理.[即时应用](2016·绵阳一诊)若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为( ) A .95B .185 C .2910D .295解析:选C 因为36=48≠-125,所以两直线平行,由题意可知|PQ |的最小值为这两条平行直线间的距离, 即|-24-5|62+82=2910, 所以|PQ |的最小值为2910.考点三 对称问题(常考常新型考点——多角探明)[命题分析]对称问题是高考常考内容之一,也是考查学生转化能力的一种常见题型.常见的命题角度有: 角度一:点关于点的对称问题1.(2016·蚌埠期末)点P (3,2)关于点Q (1,4)的对称点M 为( ) A .(1,6) B .(6,1) C .(1,-6)D .(-1,6)解析:选D 设M (x ,y ),则⎩⎨⎧3+x2=1,2+y2=4,∴x =-1,y =6,∴M (-1,6).角度二:点关于线的对称问题2.已知直线l :2x -3y +1=0,点A (-1,-2),则点A 关于直线l 的对称点A ′的坐标为________. 解析:设A ′(x ,y ),由已知得⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413,故A ′⎝⎛⎭⎫-3313,413. 答案:A ′⎝⎛⎭⎫-3313,413 角度三:线关于线的对称问题3.直线2x -y +3=0关于直线x -y +2=0对称的直线方程是( ) A .x -2y +3=0 B .x -2y -3=0 C .x +2y +1=0D .x +2y -1=0解析:选A 设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0), 由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-(y -y 0),得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, ∴2(y -2)-(x +2)+3=0,即x -2y +3=0. 角度四:对称问题的应用4.(2016·淮安一调)已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′, 所以⎩⎪⎨⎪⎧b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0. 答案:6x -y -6=0[方法归纳]:1.中心对称问题的2个类型及求解方法 (1)点关于点对称:若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2)直线关于点的对称,主要求解方法是:①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程. 2.轴对称问题的2个类型及求解方法 (1)点关于直线的对称:若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧A ⎝⎛⎭⎫x 1+x 22+B ⎝⎛⎭⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝⎛⎭⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2). (2)直线关于直线的对称:一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.【三维演练】:一抓基础,多练小题做到眼疾手快[小题纠偏]1.已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是( ) A .1710B .175C .8D .2解析:选D ∵63=m 4≠14-3,∴m =8,直线6x +my +14=0可化为3x +4y +7=0,两平行线之间的距离d=|-3-7|32+42=2.2.已知p :直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行,q :a =-1,则p 是q 的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选A 由于直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行的充要条件是1×a -(-1)×1=0,即a =-1.1.直线2x +y +m =0和x +2y +n =0的位置关系是( ) A .平行 B .垂直 C .相交但不垂直D .不能确定解析:选C 由⎩⎪⎨⎪⎧2x +y +m =0,x +2y +n =0,可得3x +2m -n =0,由于3x +2m -n =0有唯一解,故方程组有唯一解,故两直线相交,两直线的斜率分别为-2,-12,斜率之积不等于-1,故不垂直.2.已知直线(k -3)x +(4-k )y +1=0与2(k -3)x -2y +3=0平行,那么k 的值为( ) A .1或3 B .1或5 C .3或5D .1或2解析:选C 法一:把k =1代入已知两条直线,得-2x +3y +1=0与-4x -2y +3=0,此时两条直线的斜率不相等 ,所以两条直线不平行,所以k ≠1,排除A ,B ,D.法二:因已知两条直线平行,所以k =3或⎩⎪⎨⎪⎧k ≠3,k -32(k -3)=4-k -2≠13,解得k =3或k =5. 3.平行线3x +4y -9=0和6x +8y +2=0的距离是( ) A .85B .2C .115D .75解析:选B 依题意得,所求的距离等于|-18-2|62+82=2.4.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0D .x +2y -3=0解析:选D 设所求直线上任一点(x ,y ),则它关于直线x =1的对称点(2-x ,y )在直线x -2y +1=0上,即2-x -2y +1=0,化简得x +2y -3=0.5.已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.解析:由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.又|15-3a |5≤3,即|15-3a |≤15,解得0≤a ≤10,所以a 的取值范围是[0,10].答案:[0,10]二保高考,全练题型做到高考达标1.(2015·大连二模)已知直线l 1:(3+a )x +4y =5-3a 和直线l 2:2x +(5+a )y =8平行,则a =( ) A .-7或-1 B .-7 C .7或1D .-1解析:选B 由题意可得a ≠-5,所以3+a 2=45+a≠5-3a 8,解得a =-7(a =-1舍去). 3.(2016·宜春统考)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为( ) A .2x +3y -18=0 B .2x -y -2=0C .3x -2y +18=0或x +2y +2=0D .2x +3y -18=0或2x -y -2=0解析:选D 依题意,设直线l :y -4=k (x -3), 即kx -y +4-3k =0, 则有|-5k +2|k 2+1=|k +6|k 2+1, 因此-5k +2=k +6,或-5k +2=-(k +6), 解得k =-23或k =2,故直线l 的方程为2x +3y -18=0或2x -y -2=0.4.(2015·合肥一模)已知直线l :x -y -1=0,l 1:2x -y -2=0.若直线l 2与l 1关于l 对称,则l 2的方程是( ) A .x -2y +1=0 B .x -2y -1=0 C .x +y -1=0D .x +2y -1=0解析:选B 因为l 1与l 2关于l 对称,所以l 1上任一点关于l 的对称点都在l 2上,故l 与l 1的交点(1,0)在l 2上.又易知(0,-2)为l 1上一点,设它关于l 的对称点为(x ,y ),则⎩⎨⎧x +02-y -22-1=0,y +2x ×1=-1,解得⎩⎪⎨⎪⎧x =-1,y =-1,即(1,0),(-1,-1)为l 2上两点,可得l 2的方程为x -2y -1=0.6.(2015·成都检测三)已知直线l 1:ax +(3-a )y +1=0,l 2:2x -y =0.若l 1⊥l 2,则实数a 的值为________. 解析:由2×a +(3-a )×(-1)=0, 解得a =1. 答案:17.已知点A (-3,-4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值为________. 解析:由题意及点到直线的距离公式得|-3a -4+1|a 2+1=|6a +3+1|a 2+1,解得a =-13或-79. 答案:-13或-798.(2016·江西八校联考)已知点P (x ,y )到A (0,4)和B (-2,0)的距离相等,则2x +4y 的最小值为________. 解析:由题意得,点P 在线段AB 的中垂线上,则易得x +2y =3,∴2x +4y ≥22x ·4y =22x+2y=42,当且仅当x =2y =32时等号成立,故2x +4y 的最小值为4 2.答案:4 29.已知光线从点A (-4,-2)射出,到直线y =x 上的B 点后被直线y =x 反射到y 轴上的C 点,又被y 轴反射,这时反射光线恰好过点D (-1,6),求BC 所在的直线方程.解:作出草图,如图所示,设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′, 则易得A ′(-2,-4),D ′(1,6).由入射角等于反射角可得A ′D ′所在直线经过点B 与C . 故BC 所在的直线方程为 y -6-4-6=x -1-2-1,即10x -3y +8=0.10.已知直线l :(2a +b )x +(a +b )y +a -b =0及点P (3,4). (1)证明直线l 过某定点,并求该定点的坐标. (2)当点P 到直线l 的距离最大时,求直线l 的方程.解:(1)证明:直线l 的方程可化为a (2x +y +1)+b (x +y -1)=0,由⎩⎪⎨⎪⎧ 2x +y +1=0,x +y -1=0,得⎩⎪⎨⎪⎧x =-2,y =3,∴直线l 恒过定点(-2,3).(2)设直线l 恒过定点A (-2,3),当直线l 垂直于直线PA 时,点P 到直线l 的距离最大. 又直线PA 的斜率k PA =4-33+2=15,∴直线l 的斜率k l =-5.故直线l 的方程为y -3=-5(x +2),即5x +y +7=0.三上台阶,自主选做志在冲刺名校1.(2016·湖北七市三联)设两条直线的方程分别为x +y +a =0,x +y +b =0,已知a ,b 是方程x 2+x +c =0的两个实根,且0≤c ≤18,则这两条直线之间的距离的最大值和最小值分别是( )A .24,14B .2,22C .2,12D .22,12解析:选D 依题意得|a -b |=(a +b )2-4ab =1-4c ,当0≤c ≤18时,22≤|a -b |=1-4c ≤1.因为两条直线间的距离等于|a -b |2,所以两条直线间的距离的最大值与最小值分别是22,22×12=12.2.已知直线l 1:x +a 2y +1=0和直线l 2:(a 2+1)x -by +3=0(a ,b ∈R). (1)若l 1∥l 2,求b 的取值范围; (2)若l 1⊥l 2,求|ab |的最小值. 解:(1)因为l 1∥l 2, 所以-b -(a 2+1)a 2=0,即b =-a 2(a 2+1)=-a 4-a 2=-⎝⎛⎭⎫a 2+122+14, 因为a 2≥0, 所以b ≤0.又因为a 2+1≠3,所以b ≠-6.故b 的取值范围是(-∞,-6)∪(-6,0].(2)因为l 1⊥l 2,所以(a 2+1)-a 2b =0,显然a ≠0,所以ab =a +1a ,|ab |=⎪⎪⎪⎪a +1a ≥2,当且仅当a =±1时等号成立,因此|ab |的最小值为2.【拓展延伸】:1、 设a 、b 、c 分别是ABC ∆中角A 、B 、C 的对边的长,则直线sin y+c=0A x a + 与直线sin y+sinC=0bx B - 的位置关系为2、 在平面直角系xoy 中,已知圆C :222(62)4560x y m x my m m +---+-=,直线l 经过点(1,0) .若对任意的实数m ,定直线l 被圆C 截得的弦长为定值,则直线l 的方程为 . 3、(1)如果直线+2y+2=0ax 与直线3y 2=0x -- 平行,则a = . (2)直线1+ay+6=0l x :与直线2:(2)3y+2=0l a x a -+ 平行,则a = . (3)已知直线1+2ay 1=0l x -:与直线2:(31)y 1=0l a x a --- 平行,则a = . 4、(1)若直线m +y=0x 与直线+2y+1=0x 互相垂直,则m =(2)直线1+y =0l x a a -:与直线2:(23)y 1=0l ax a ---垂直,则a = . 5、已知m 为实数,直线1m +y+3=0l x :与直线2:(3m 2)+my+2=0l x -,则: (1)当12l l 时,m 的值为 ;(2)当12l l ⊥时,m 的值为6、求过点A (2,3),分别满足下列条件的直线的方程:(1)与直线2+y 5=0x -平行 ; (2)与直线2+y 5=0x -垂直7、(1)已知直线l 与直线+3y 5=0m x -:2平行,且在两坐标轴上的截距之和为1,求直线l 方程.(2)求与直线5+3y 1=0x -垂直,且在两坐标轴上的截距之和为4的直线方程.8、(1)两条直线13y 15=0l x --:与直线2:3y 6=0l kx --与两坐标轴正向围成的四边形有一个外接圆,则实数k 的值为(2)若点A (-1,1)在直线p y+4=0x q +m:上,且直线m 与直线n :(p 1)y+q=0x -+互相垂直,当p 、q 同号时,求直线m 的方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五环节
学有所思,反馈巩固
1.你学到了哪些知识? 2.你学会了哪些方法? 3.你认为应注意哪些问题? 4.你还有哪些困惑?
第五环节
学有所思,反馈巩固 1. 如图2.1-13,直线AB与CD交于点O,∠BOC=900,EF经过点O. (1)指出图中所有的对顶角; (2)图中那些角与∠AOE互余? (3)若∠BOF=34°,试求出∠AOF,∠BOE,∠DOE的度数. 2.如图2.1—14,点O在直线AB上,OC平分∠BOD,OE平分 ∠AOD,请找出∠COD的余角和补角,并说明理由。 3.学以致用: 如图2.1—15:小颖想测量一堵拐角高墙在底 面上所成的角∠AOB度数,人不能进入围墙内,你能帮小颖 想出简单的测量方法吗?请简述你的方法。
巩固练习
问题1:①.因为∠1+∠2=90º ,∠2+∠3=90º , 所以∠1= ∠3 ,理由是同角或等角的余角相等 . ② 因为∠1+∠2=180º ,∠2+∠3=180º ,所以 ∠1=∠3,理由是 同角或等角的补角相等 .
巩固练习 问题2:①用你手中的三角板,画一个直角三角 形,如图2.1—9.则∠A是∠B的 。 变式训练:在①的基础上,做∠CDA=90º 。 1.则∠A的余角有哪几个?为什么? 2.请找出互补的角,并说明理由。 C A B A C
2.1─9
D
2.1─10
B
巩固练习 问题1:如图2.1—11已知:直线AB与CD交于点O,
∠EOD=90º ,回答下列问题:
1.∠AOE的余角是∠AOC, ∠BOD;补角是∠BOE 。 2.∠AOC的余角是∠AOE ;补角是 ∠BOC, ∠AOD ; 对顶角是∠BOD 。 A C 2.1─11 E O D B
A
D
B E
巩固练习
下列说法正确的有 ①②④⑥ 。(填序号) ①已知∠A=40º ,则∠A的余角等于50º ②若1+∠2=180º ,则∠1和∠2互为补角。 ③若∠1+∠2+∠3=180º ,则∠1、∠2、∠3互补 ④若∠A=40º 26′,则∠A的补角=139º 34′ ⑤一个角的补角必为钝角。 ⑥一个锐角的补角比这个角的余角大90º
巩固练习
问题2:如图2.1—12,点O在直线AB上,∠DOC和 ∠BOE都等于90º . E D 请找出图中互余的角、互补 C 的角、相等的角, 并说明理由。先独立探究, A 再小组交流。
O 2.1─12 B
互余的角:∠AOD与∠DOE,∠DOE与∠COE,∠BOC与∠COE, ∠AOD与 ∠BOC 互补的角:∠AOD与∠DOB, ∠BOC与∠AOC,∠DOE与∠COA,∠COE与 ∠BOD, ∠AOE与∠EOB,∠AOE与∠DOC,∠BOE与∠DOC, 相等的角:∠AOD=∠COE,∠DOE=∠COB,∠AOE=∠BOE=∠DOC
C
F
A O E D B
A
D E C
A
O
B
O
B
2.1—13
2.1—14
2.1—15
第六环节
布置作业,能力延伸
基础题:1.书P42页习题2.1 第 1,2,3,4,5题 提高题:2.下图由两块相同的直角三角板拼 成,其中∠FDE=∠AOB=900,点O在 FD上,DE在直线AB上, 请找出相等 的角、互余的角、互补的角。 F O
动手实践三
D
O
2 1 34
C
图2.1—7
A N B 图2.1—8
打台球时,选择适当的方向,用白球击打红球, 反弹后的红球会直接入袋,此时∠1=∠2,将图 2.1—7抽象成成图2.1—8,ON与DC交于点O, ∠DON=∠CON=90º .
动手实践三
D
O
2 1 34
C
A N B 图2.1—7 图2.1—8 合作交流,解决下列问题:在图2.1—8中 问题1:哪些角互为补角?哪些角互为余角? 问题2:∠3与∠4有什么关系?为什么? 问题3:∠AOC与∠BOD有什么关系?为什么? 你还能得到哪些结论?
动手实践、探究新知
请动手画出两条直线直线AB和 直线CD,交于点O.
A 4 1 D B
2
3
C
动手实践、探究新知 问题1:观察你所画图形, C A ∠1和∠2的位置有什么关系?大 2 小有何关系?为什么?合作交流, 4 3 尝试用自己的语言描述对顶角的 1 D B 定义。 直线AB与CD相交于点O, ∠1和∠2有公共 顶点O,它们的两边互为反向延长线,具有这 种位置关系的两个角叫做对顶角。 对顶角特征: 1.有公共顶点 2.两边互为反向延长线。
第二章
相交线与平行线
§2.1两条直线的位置关系(1)
观察图片
在同一平面内,两条直线的位置关系有 相交和平行两种 若两条直线只有一个公共点,我们称这 两条直线为相交线
在同一平面内,不相交的两条直线叫平行线。
巩固练习
问题1:在图中,直线m和n 的关系是 平行 ; a和b是 平行 ;a和n是 相交 。 m n b a
动手实践二 1.画出两个角,使它们的和为90度。 2.画出两个角,使它们的和为180度。 3.小组交流画法,相互点评。 4.用自己的语言描述补角余角的定义。
如果两个角的和是900,那么称这两个角互为余角
如果两个角的和是1800,那么称这两个角互为补角。
Hale Waihona Puke 注意:互余与互补是指两个角之间的数量关系, 与它们的位置无关。
动手实践、探究新知 问题2:剪子可以看成图2.1—4, 那么剪子在剪东西的过程中, ∠1和∠2还保持相等吗?∠3和 ∠4呢?你有何结论?
A
4 D
2 3 1
C
2.1─5
对顶角相等
B
2.1—4
巩固练习 1.下列各图中,∠1和∠2是对顶角的是( D)
1
A
2
1
2
1
1
B
C
2
2
D
2.如图所示,有一个破损 的扇形零件,利用图中的 量角器可以量出这个扇形 零件的圆心角的度数吗? 你能说出所量角的度数是 多少吗?为什么?
归纳总结 同角或等角 的余角相等 因为∠1+∠3=90º ∠2+∠3=90º 所以∠1= ∠2 因为∠1=∠2 ∠1+∠3=90º ∠2+∠4=90º 所以 ∠3= ∠4
同角或等角 的补角相等
因为∠1+∠3=180º ∠2+∠3=180º 所以 ∠1= ∠2
因为∠1=∠2 ∠1+∠3=180º ∠2+∠4=180º 所以 ∠3= ∠4