苏科版2015-2016年第一学期初三数学期末试卷及答案
2015—2016学年第一学期初三期末质量检测数学试卷附答案
2015—2016学年第一学期初三期末质量检测数学试卷考生须知1.本试卷共6页,共五道大题,29道小题,满分120分。
考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一.选择题(共有10个小题,每小题3分,共30分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.我市南水北调配套工程建设进展顺利,工程运行调度有序.截止2015年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过―存水‖增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率. 将812000000用科学记数法表示应为 A .812×106 B .81.2×107 C .8.12×108 D .8.12×1092. 实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,相反数最大是A .aB .bC .cD .d3. 如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =2,DB =4,则AEAC的值为 A .12B .13C .14D .164. 若△ABC ∽△A ′B ′C ′,相似比为1:2,则△ABC 与△A ′B ′C ′的面积的比为A .1:2B . 2:1C .1:4D .4:1 5. 二次函数y =(x ﹣1)2+2的最小值为( )A .1B . -1C .2D .-2 6. 将抛物线2=-y x 向上平移2个单位,则得到的抛物线表达式为A .2y=-(x+2) B .2y=-(x-2) C .2y=-x -2 D .2y=-x +2 7. 已知Rt △ABC 中,∠C=90°,AC=3,BC=4,则cosA 的值为( ) A .34B . 43C . 35D . 458. 如图是拦水坝的横断面,斜坡AB 的水平宽度为12米,斜面坡度为1:2,则斜坡AB 的长为–3–2–1012345–4c b a d 2题图EDCB A 3题图B A O骨柄长的34长:243cm宽:21cm 青铜展馆A .43米B .65米C .125米D . 24米9. 如图,⊙O 是△ABC 的外接圆,∠ACO =45°,则∠B 的度数为( )A.30°B. 35°C. 40°D. 45°10.小刚在实践课上要做一个如图1所示的折扇,折扇扇面的宽度AB 是骨柄长OA 的34,折扇张开的角度为120°.小刚现要在如图2所示的矩形布料上剪下扇面,且扇面不能拼接,已知矩形布料长为243cm,宽为21cm.小刚经过画图、计算,在矩形布料上裁剪下了最大的扇面,若不计裁剪和粘贴时的损耗,此时扇面的宽度AB 为( )A . 21cmB .20 cmC .19cmD . 18cm二、填空题(本题共6个小题,每小题3分,共18分) 11.4的平方根是 .12.不等式组⎪⎩⎪⎨⎧->+≥-1230211x x 的正整数解是 .13.如图,tan ∠ABC= .14.写出一个抛物线开口向上,与y 轴交于(0,2)点的函数表达式 .15. 已知⊙O 的半径2,则其内接正三角形的面积为 .16. 学校组织社会大课堂活动去首都博物馆参观,明明提前上网做了功课,查到了下面的一段文字:首都博物馆建筑本身是一座融古典美和现代美于一体的建筑艺术品,既具有浓郁的民族特色,又呈现鲜明的现代感.首都博物馆建筑物(地面以上)东西长152米、南北宽66米左右,建筑高度41米.建筑内部分为三栋独立的建筑,即:矩形展馆,椭圆形专题展馆,条形的办公科研楼.椭圆形的青铜展馆斜出墙面寓意古代文物破土而出,散发着浓郁的历史气息. 明明对首都博物馆建筑物产生了浓厚的兴趣,站到首都博物馆北广场,他被眼前这座建筑物震撼了.整个建筑宏大壮13题图CB A30︒10题图1 10题图2观,斜出的青铜展馆和北墙面交出一条抛物线,抛物线与外立面之间和谐、统一,明明走到过街天桥上照了一张照片(如图所示).明明想了想,算了算,对旁边的文文说:―我猜想这条抛物线的顶点到地面的距离应是15.7米左右.‖ 文文反问:―你猜想的理由是什么‖?明明说:―我的理由是‖. 明明又说:―不过这只是我的猜想,这次准备不充分,下次来我要用学过的数学知识准确的测测这个高度,我想用学到的知识, 我要带等测量工具‖.三、解答题(本题共72分,第17—25题,每小题5分,第26题8分,第27题6分,第28题6分,第29题7分)17.计算:2012(3)3cos602π---+--︒.18.已知0362=--xx,求代数式()()311)3(2+-+--xxxx的值.19.已知如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,求DC的长.20.如图,一次函数y1=﹣x+2的图象与反比例函数y2=xk的图象相交于A,B两点,点B的坐标为(2m,-m).(1)求出m值并确定反比例函数的表达式;(2)请直接写出当x<m时,y2的取值范围.21.已知如图,在△ABC中,∠A=30°,∠C=105°,AC=32,求AB的长.22.已知如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接A C.若∠A=22.5°,CD=8cm,求⊙O的半径.23.如图,在数学实践课中,小明为了测量学校旗杆CD的高度,在地面A处放置高度为1.5米的测角仪AB,测得旗杆顶端D的仰角为32°,AC为22米,求旗杆CD的高度.(结果精确到0.1米.参考数据:sin32°= 0.53,cos32°= 0.85,tan32°= 0.62)19题图20题图21题图22题图24. 如图,已知AB 是⊙O 的直径,点P 在BA 的延长线上,PD 切⊙O 于点D ,过点B 作BE 垂直于PD ,交PD 的延长线于点C ,连接AD 并延长,交BE 于点E . (1)求证:AB =BE ;(2)若PA =2,cosB =,求⊙O 半径的长.25.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,BC 两边),设AB=xm .(1)若花园的面积为192m 2,求x 的值;(2)若在P 处有一棵树与墙CD ,AD 的距离分别是15m 和6m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求x 取何值时,花园面积S 最大,并求出花园面积S 的最大值.26.在―解直角三角形‖一章我们学习到―锐角的正弦、余弦、正切都是锐角的函数,统称为锐角三角函数‖ .小力根据学习函数的经验,对锐角的正弦函数进行了探究. 下面是小力的探究过程,请补充完成:(1)函数的定义是:―一般地,在一个变化的过程中,有两个变量x 和y ,对于变量x 的每一个值,变量y 都有唯一确定的值和它对应,我们就把x 称为自变量,y 称为因变量,y 是x 的函数‖.由函数定义可知,锐角的正弦函数的自变量是 ,因变量是 ,自变量的取值范围是___________.(2)利用描点法画函数的图象. 小力先上网查到了整锐角的正弦值,如下:sin1°=0.01745240643728351 sin2°=0.03489949670250097 sin3°=0.05233595624294383 sin4°=0.0697564737441253 sin5°=0.08715574274765816 sin6°=0.10452846326765346 sin7°=0.12186934340514747 sin8°=0.13917310096006544 sin9°=0.15643446504023087 sin10°=0.17364817766693033 sin11°=0.1908089953765448 sin12°=0.20791169081775931 sin13°=0.22495105434386497 sin14°=0.24192189559966773 sin15°=0.25881904510252074 sin16°=0.27563735581699916 sin17°=0.2923717047227367 sin18°=0.3090169943749474 sin19°=0.3255681544571567 sin20°=0.3420201433256687 sin21°=0.35836794954530027 sin22°=0.374606593415912 sin23°=0.3907311284892737 sin24°=0.40673664307580015 sin25°=0.42261826174069944 sin26°=0.4383711467890774 sin27°=0.45399049973954675 sin28°=0.4694715627858908 sin29°=0.48480962024633706 sin30°=0.5000000000000000 sin31°=0.5150380749100542 sin32°=0.5299192642332049 sin33°=0.544639035015027 sin34°=0.5591929034707468 sin35°=0.573576436351046 sin36°=0.5877852522924731 sin37°=0.6018150231520483 sin38°=0.6156614753256583 sin39°=0.629320391049837523题图24题图xyOyxO–112345–1–2–3–4–512345sin40°=0.6427876096865392 sin41°=0.6560590289905073 sin42°=0.6691306063588582 sin43°=0.6819983600624985 sin44°=0.6946583704589972 sin45°=0.7071067811865475 sin46°=0.7193398003386511 sin47°=0.7313537016191705 sin48°=0.7431448254773941 sin49°=0.7547095802227719 sin50°=0.766044443118978 sin51°=0.7771459614569708 sin52°=0.7880107536067219 sin53°=0.7986355100472928 sin54°=0.8090169943749474 sin55°=0.8191520442889918 sin56°=0.8290375725550417 sin57°=0.8386705679454239 sin58°=0.848048096156426 sin59°=0.8571673007021122 sin60°=0.8660254037844386 sin61°=0.8746197071393957 sin62°=0.8829475928589269 sin63°=0.8910065241883678 sin64°=0.898794046299167 sin65°=0.9063077870366499 sin66°=0.9135454576426009 sin67°=0.9205048534524404 sin68°=0.9271838545667873 sin69°=0.9335804264972017 sin70°=0.9396926207859083 sin71°=0.9455185755993167 sin72°=0.9510565162951535 sin73°=0.9563047559630354 sin74°=0.9612616959383189 sin75°=0.9659258262890683 sin76°=0.9702957262759965 sin77°=0.9743700647852352 sin78°=0.9781476007338057 sin79°=0.981627183447664 sin80°=0.984807753012208 sin81°=0.9876883405951378 sin82°=0.9902680687415704 sin83°=0.992546151641322 sin84°=0.9945218953682733 sin85°=0.9961946980917455 sin86°=0.9975640502598242 sin87°=0.9986295347545738sin88°=0.9993908270190958 sin89°=0.9998476951563913 ①列表(小力选取了10对数值);x … …y … …②建立平面直角坐标系(两坐标轴可视数值需要分别选取不同长度做为单位长度); ③描点.在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点; ④连线. 根据描出的点,画出该函数的图象;(3)结合函数的图象,写出该函数的一条性质: .27.已知:抛物线3bx x y 21++=与x 轴分别交于点A(-3,0),B (m ,0).将y 1向右平移4个单位得到y 2.(1)求b 的值;(2)求抛物线y 2的表达式;(点(3)抛物线y 2与y 轴交于点D ,与x 轴交于点E 、F E 在点F 的左侧),记抛物线在D 、F 之间的部分为图象G (包含D 、F 两点),若直线1-+=k kx y 与图象G 有一个公共点,请结合函数图象,求直线1-+=k kx y 与抛物线y 2的对称轴交点的纵坐标t 的值或取值范围.28. 如图1,点O 在线段AB 上,AO=2,OB=1,OC 为射线,且∠BOC=60°,动点P 以每秒2个单位长度的速度从点O 出发,沿射线OC 做匀速运动,设运动时间为t 秒. (1)当t=21秒时,则OP= ,S △ABP = ;(2)当△ABP 是直角三角形时,求t 的值;(3)如图2,当AP=AB 时,过点A 作AQ ∥BP ,并使得∠QOP=∠B ,求证:AQ·BP=3.为了证明AQ·BP=3,小华同学尝试过O 点作OE ∥AP 交BP 于点E.试利用小华同学给我们的启发补全图形并证明AQ·BP=3.29.如图,在平面直角坐标系中,抛物线)0(32≠-+=a bx ax y 与x 轴交于点A (2-,0)、B (4,0)两点,与y 轴交于点C . (1)求抛物线的表达式;(2)点P 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点Q 从B 点出发,在线段BC 上以每秒1个单位长度向C 点运动.其中一个点到达终点时,另一个点也停止运动.当△PBQ 存在时,求运动多少秒使△PBQ 的面积最大,最大面积是多少?(3)当△PBQ 的面积最大时,在BC 下方的抛物线上存在点K ,使2:5S P BQ CBK =△△:S ,求K 点坐标.2015—2016学年度第一学期期末初三质量检测28题图 128题备用图28题图2数学试卷答案及评分标准一、选择题(每小题有且只有一个选项是正确的,请把正确的选项前的序号填在相应的表格内. 本题共有10个小题,每小题3分,共30分)二、填空题(本题共6个小题,每小题3分,共18分) 11.2±. 12. 1,2. 13.33.14. a>0,c=2,答案不唯一. 15. 3. 16. 黄金分割,解直角三角形(答案不唯一),测角仪、皮尺(答案不唯一).三、解答题(本题共72分,第17—25题,每小题5分,第26题8分,第27题6分,第28题6分,第29题7分) 17.解:原式=11113422-+-⨯ ……………………………………………………4分 =2 ………………………………………………………………………5分 18.解:()()311)3(2+-+--x x x x=222613x x x --++ ……………………………………………………2分 =26x 4x -+. …………………………………………………………………3分 ∵0362=--x x , ∴263x x -=,∴原式=3+4=7. ………………………………………………………………… 5分 19.解:∵∠C=∠E ,∠ADC=∠BDE ,△ADC ∽△BDE ,………………………………………………… 2分 ∴BDAD DE DC =, 又∵AD :DE=3:5,AE=8, ∴AD=3,DE=5,…………………………………………………………………… 3分∵BD=4,……………………………………………………………………………… 4分 ∴435DC =, 题号 1 2 3 4 5 6 7 8 9 10答案 C A B C C D C B D D∴DC=415.……………………………………………………………………………… 5分 20.解:(1)∵据题意,点B 的坐标为(2m ,-m )且在一次函数y1=﹣x +2的图象上,代入得-m=-2m+2.∴m=2. ……………………………………………………… 1分 ∴B 点坐标为(4,-2)………………………………………… 2分 把B (4,﹣2)代入y 2=xk得k =4×(﹣2)=﹣8, ∴反比例函数表达式为y 2=﹣x8;…………………………………………………… 3分 (2)当x <4,y 2的取值范围为y 2>0或y 2<﹣2.……………………………… 5分 21.解:在△ABC 中,∠A=30°,∠C=105°∴∠B=45°,…………………………………………………… 1分 过C 作CD ⊥AB 于D , ∴∠ADC=∠BDC=90°, ∵∠B=45°, ∴∠BCD=∠B=45°,∴CD=BD ,…………………………………………………… 2分 ∵∠A=30°,AC=23,∴CD=3,…………………………………………………… 3分 ∴BD=CD=3,由勾股定理得:AD=22CD AC =3,…………………………………………………… 4分 ∴AB=AD+BD=3+3.…………………………………………………… 5分 22.解:连接OC ,………………………… 1分 ∵AB 是⊙O 的直径,弦CD ⊥AB ,∴CE =DE =CD =4cm ,………………………… 2分∵∠A =22.5°,∴∠COE =45°,………………………… 3分∴△COE 为等腰直角三角形,………………………… 4分 ∴OC =2CE =42cm ,………………………… 5分23.解:过点B 作CD BE ⊥,垂足为E (如图),……………………………… 1分 在Rt △DEB 中,∠DEB= 90,22AC BE ==(米),BEDEtan32=……………………………… 2分 13.640.6222BEtan32DE =⨯≈=∴ (米)……………………………… 3分5.1==AB EC ……………………………… 4分15.115.1413.641.5ED CE CD ≈=+=+=∴(米)……………………… 5分答:旗杆CD 的高度为15.1米.24.解:(1)证明:连接OD ,……………………… 1分 ∵PD 切⊙O 于点D ,……………………… 2分 ∴OD ⊥PD , ∵BE ⊥PC , ∴OD ∥BE , ∴∠ADO=∠E ,∵OA=OD , ∴∠OAD=∠ADO , ∴∠OAD=∠E ,∴AB=BE ;……………………… 3分 (2)解:有(1)知,OD ∥BE , ∴∠POD=∠B ,……………………… 4分 ∴cos ∠POD=cosB=, 在Rt △POD 中,cos ∠POD=53=OP OD , ∵OD=OA ,PO=PA+OA=2+OA ,xy–1–2–3–4123456–1–2–3–412345DFO∴53=+OA 2OA ,∴OA=3,∴⊙O 半径为3.……………………… 5分 25.解:(1)∵AB=xm ,则BC=(28﹣x )m , ∴x (28﹣x )=192,解得:x 1=12,x 2=16,答:x 的值为12m 或16m ;……………………… 2分 (2)由题意可得出:⎩⎨⎧≥≥15x -286x ,………………… 3分解得:13x 6≤≤. 又S=x (28﹣x )=﹣x 2+28x=﹣(x ﹣14)2+196, ∴当x≤14时,S 随x 的增大而增大.∴x=13时,S 取到最大值为:S=﹣(13﹣14)2+196=195.……………………… 5分 答:x 为13m 时,花园面积S 最大,最大面积为195m 2.26.(1)锐角的角度;正弦值;大于0°且小于90°;…………………………………… 3分 (2)(3)答案不唯一. …………………………………… 8分 27.解:(1)把A (-3,0)代入3bx x y 21++= ∴b=4……………………………………2分 ∴y 1的表达式为:34x x y 21++= (2)将y 1变形得:y 1=(x+2)2-1 据题意y 2=(x+2-4)2-1=(x-2)2-1∴抛物线y 2的表达式为342+-=x x y …………………………………4分 (3)34x x y 22+-=的对称轴x=2 ∴顶点(2,-1)∵直线1-+=k kx y 过定点(-1,-1)当直线1-+=k kx y 与图像G 有一个公共点时1-=t …………………………………… 4分当直线过F (3,0)时,直线4341-=x y把x=2代入4341-=x y∴41-=y当直线过D (0,3)时,直线34+=x y 把x=2代入34+=x y ∴11=y即11=t∴结合图象可知1-=t 或1141≤<-t .…………………………………… 6分 28.解:(1)1,433;…………………………………… 2分 (2)①∵∠A<∠BOC=60°,∴∠A 不可能是直角.②当∠ABP=90°时,∵∠BOC=60°,∴∠OPB=30°.∴OP=2OB ,即2t=2.∴t =1. …………………………………… 3分③当∠APB=90°,如图,过点P 作PD ⊥AB 于点D ,则OP=2t ,OD=t ,PD=3t ,AD=2t +,DB=1t -. ∵∠APD+∠BPD=90°,∠B+∠BPD=90°,∴∠APD=∠B. ∴△APD ∽△PBD. ∴BD PD PD AD =,即2t 3t 1t 3t +=-,即24t t 20+-=,解得12133133t ,t 88-+--== (舍去). …………………………………… 4分(3)补全图形,如图∵AP=AB ,∴∠APB=∠B.∵OE ∥AP∴∠OEB=∠APB=∠B.∵AQ ∥BP ,∴∠QAB+∠B=180°.又∵∠3+∠OEB=180°,∴∠3=∠QAB.又∵∠AOC=∠2+∠B=∠1+∠QOP ,∵∠B=∠QOP ,∴∠1=∠2.∴△QAO ∽△OEP. ∴EPAO EO AQ =,即AQ·EP=EO·AO. ∵OE ∥AP ,∴△OBE ∽△ABP. ∴31BA BO BP BE AP OE ===. ∴OE=31AP=1,BP=23EP. ∴AQ·BP=AQ·23EP=23AO·OE=23×2×1=3. …………………………………… 6分 29.解:(1)将A (-2,0),B (4,0)两点坐标分别代入y=ax 2+bx-3(a≠0),即⎩⎨⎧=-+=--034b 16a 032b 4a ,………………………… 1分 解得:⎪⎪⎩⎪⎪⎨⎧-==43b 83a ∴抛物线的表达式为:3x 43x 83y 2--=……………………………… 2分 (2)设运动时间为t 秒,由题意可知: 2t 0<< …………………………………… 3分 过点Q 作QD ⊥AB,垂直为D ,易证△OCB ∽△DQB, ∴BQBC DQ OC =…………………………………… 4分 OC=3,OB=4,BC=5,AP=3t,PB=6-3t,BQ=t ,t5DQ 3=∴t 53DQ =∴ ∴t 533t)(621DQ PB 21S ΔPBQ ⋅-=⋅=t59t 1092+-=对称轴1)(2t 10959=-⨯-=∴当运动1秒时,△PBQ 面积最大,10959109S ΔPBQ =+-=,最大为109. …………………………………… 5分(3)如图,设K(m,3m 43m 832--) 连接CK 、BK ,作KL ∥y 轴交BC 与L , 由(2)知:109S ΔPBQ =, 2:5S :S PBQ ΔCBK = ∴49S ΔCBK = 设直线BC 的表达式为y=kx+n3)C(0,B(4,0),-⎩⎨⎧-==+∴3n 0n 4k ,解得: ∴直线BC 的表达式为y=43x-3 ∴3)m 43L(m,- 2m 83m 23KL -= ΔKLB ΔKLC ΔCBK S S S += ∴m)(4)m 83m 23(21m )m 83m 23(2122-⋅-⋅+⋅-⋅= )m 83m 23(4212-⋅⋅= 即:49)m 83m 232(2=- 解得:31或m m ==∴K 坐标为(1,827-)或(3,815-)…………………………………… 7分⎪⎩⎪⎨⎧-==3n 43k。
苏科版2016届九年级上期末数学试卷含答案解析
江苏省扬州市宝应县2016届九年级上学期期末数学试卷一、选择题:本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请在答题卡上填涂1.下列方程中,是一元二次方程的是()A.x=2y﹣3 B.2(x+1)=3 C.x2+3x﹣1=x2+1 D.x2=92.下列说法正确的是()A.三点确定一个圆B.一个三角形只有一个外接圆C.和半径垂直的直线是圆的切线D.三角形的内心到三角形三个顶点距离相等3.如图,小正方形的边长均为1,则下列图形中的三角形与△ABC相似的是()A.B.C.D.4.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.B.C.D.5.“双十一”即指每年的11月11日,是指由电子商务代表的,在全中国范围内兴起的大型购物促销狂欢日.2013年双十一淘宝销售额达到350亿元.2015年11月12日,第七个天猫双11全球狂欢节落下帷幕,全天交易额达912.17亿元,设2013年到2015年年平均增长率为x,则下列方程正确的是()A.350(1+x)=912.17 B.350(1+2x)=912.17C.350(1+x)2=912.17 D.350(1+x)+350(1+x)2=912.176.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD 放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()A.(2,5)B.(2.5,5)C.(3,5)D.(3,6)7.如图,AB是⊙O的直径,D、C在⊙O上,AD∥OC,∠DAB=60°,连接AC,则∠DAC等于()A.15°B.30°C.45°D.60°8.如图,分别过点P i(i,0)(i=1、2、…、n)作x轴的垂线,交的图象于点A i,交直线于点B i.则的值为()A.B.2 C.D.二、填空题:本大题共10小题,每小题3分,共30分,请将答案填在答题卡上9.方程x2=2的解是.10.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2:(根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择.11.关于x的方程x2+2x﹣m=0有两个相等的实数根,则m= .12.一个圆锥的侧面展开图是半径为6,圆心角为120°的扇形,那么这个圆锥的底面圆的半径为.13.把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为.14.如图,在△ABC中,点G是重心,那么= .15.如图,⊙O中,∠AOB=80°,点C、D是上任两点,则∠C+∠D的度数是°.16.某同学用描点法y=ax2+bx+c的图象时,列出了表:由于粗心,他算错了其中一个y值,则这个错误的y值是.17.如图,为了估算河的宽度,小明采用的办法是:在河的对岸选取一点A,在近岸取点D,B,使得A,D,B在一条直线上,且与河的边沿垂直,测得BD=10m,然后又在垂直AB的直线上取点C,并量得BC=30m.如果DE=20m,则河宽AD为m.18.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为.三、解答题:本大题共10小题,共96分,请在答题卡上作答19.解下列方程:(1)(x﹣1)2=8(2)x2﹣2x﹣3=0.20.已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.21.在全运会射击比赛的选拔赛中,运动员甲10次射击成绩的统计表(表1)和扇形统计图如下:(1)根据统计表(图)中提供的信息,补全统计表及扇形统计图;(2)已知乙运动员10次射击的平均成绩为9环,方差为1.2,如果只能选一人参加比赛,你认为应该派谁去?并说明理由.22.王老师获得一张2016宝应春节联欢晚会的门票,想奖给班级学校优秀的同学,通过考察,小明和小刚脱颖而出,但问题是只有一张门票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看晚会,他们各自提出了一个方案:(1)小明的方案:将红桃2、3、4、5四张牌背面朝上,小明先抽一张,记下牌面数字后放回,小刚再从中抽一张,若两张牌上的数字之和是奇数,则小明看晚会,否则小刚看晚会,你认为小明的方案公平吗?请用列表法或画树状图的方法说明;(2)小刚将小明的方案修改为只用红桃2、3、4三张牌,抽取方式规则不变,小刚的方案公平吗(只回答,不说明理由)23.宝应运河大桥横跨京杭大运河,是连接宝应县城区与运西的重要通道,该桥原先坐落于扬州,1985年,当时的江苏省交通部门决定,将重达668吨的此桥,从扬州整体走水路浮运到108公里外的宝应安装使用,这成为我国桥梁史上的创举.运河大桥是宝应的一个标志性建筑,其拱形图形为呈圆弧形,其最高点C离桥面AB的高CD=4m,弦AB=60m,求桥拱所在的半径.24.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定位多少元?25.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.26.如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD、DE.(1)求证:D是BC的中点;(2)若DE=3,BD﹣AD=2,求⊙O的半径;(3)在(2)的条件下,求弦AE的长.27.如图①,在平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(4,0)、(4,3),点P 为OA边上一个动点,PQ⊥OA于P,交OB于点Q,过Q点作QR⊥AB于R,设OP=x,四边形PQRA的面积为S.(1)求S与x之间的函数关系式.(2)当x取何值时四边形PQRA的面积最大.(3)如图②,若点P从O点出发,沿OA运动,每秒1个单位长度,点M从B点出发,沿BO运动,每秒2个单位度,当其中一个点到达终点,另一个点也同时停止运动,连结PM,则当运动时间t取何值时,△OPM为等腰三角形.28.已知抛物线y=ax2+bx+3与x轴交于A、C两点,与y轴交于点B,A、C两点的坐标分别为(﹣3,0)(1,0).(1)求此抛物线的函数关系式;(2)动点Q从点A出发,以每秒3个单位长度的速度在线段AC上向终点C运动,同时动点M从O点出发以每秒2个单位长度的速度在线段OB上向终点B运动,当其中一个点到达终点时,另一个点即停止运动,过点Q作x轴的垂线交抛物线于点P,设运动的时间为t秒.①当四边形OMPQ是矩形,求满足条件的t的值;②连结QM、BC,当△QOM与以点O、B、C为顶点的三角形相似时,t的值为.江苏省扬州市宝应县2016届九年级上学期期末数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请在答题卡上填涂1.下列方程中,是一元二次方程的是()A.x=2y﹣3 B.2(x+1)=3 C.x2+3x﹣1=x2+1 D.x2=9【考点】一元二次方程的定义.【分析】一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.【解答】解:A、是二元一次方程;B、是一元一次方程;C、是一元一次方程;D、x2=9符合要求.故选D.【点评】判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.这是一个需要识记的内容.2.下列说法正确的是()A.三点确定一个圆B.一个三角形只有一个外接圆C.和半径垂直的直线是圆的切线D.三角形的内心到三角形三个顶点距离相等【考点】圆的认识.【分析】根据确定圆的条件对A、B进行判断;根据切线的判定定理对C进行判断;根据三角形内心的性质对D进行判断.【解答】解:A、不共线的三点确定一个圆,所以A选项错误;B、一个三角形只有一个外接圆,所以B选项正确;C、过半径的外端与半径垂直的直线是圆的切线,所以C选项错误;D、三角形的内心到三角形三边的距离相等,所以D选项错误.故选B.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了确定圆的条件和切线的判定.3.如图,小正方形的边长均为1,则下列图形中的三角形与△ABC相似的是()A.B.C.D.【考点】相似三角形的判定.【分析】设各小正方形的边长为1,根据勾股定理分别表示出已知阴影三角形的各边长,同理利用勾股定理表示出四个选项中阴影三角形的各边长,利用三边长对应成比例的两三角形相似可得出左图中的阴影三角形与已知三角形相似的选项.【解答】解:设各个小正方形的边长为1,则已知的三角形的各边分别为,2,,A、因为三边分别为:,,3,三边不能与已知三角形各边对应成比例,故两三角形不相似;B、因为三边分别为:1,,,三边与已知三角形的各边对应成比例,故两三角形相似;C、因为三边分别为:1,2,三边不能与已知三角形各边对应成比例,故两三角形不相似;D、因为三边分另为:2,,,三边不能与已知三角形各边对应成比例,故两三角形不相似,故选:B.【点评】此题考查了相似三角形的判定以及勾股定理的运用;相似三角形的判定方法有:1、二对对应角相等的两三角形相似;2、两边对应成比例且夹角相等的两三角形相似;3、三边长对应成比例的两三角形相似;4、相似三角形的定义.本题利用的是方法3.4.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】列表将所有等可能的结果列举出来,利用概率公式求解即可.【解答】解:列表得:∵共9种等可能的结果,两次都是黑色的情况有1种,∴两次摸出的球都是黑球的概率为,故选D.【点评】本题考查了列表法与树状图法的知识,解决本题时采用了两个独立事件同时发生的概率等于两个独立事件单独发生的概率的积,难度不大.5.“双十一”即指每年的11月11日,是指由电子商务代表的,在全中国范围内兴起的大型购物促销狂欢日.2013年双十一淘宝销售额达到350亿元.2015年11月12日,第七个天猫双11全球狂欢节落下帷幕,全天交易额达912.17亿元,设2013年到2015年年平均增长率为x,则下列方程正确的是()A.350(1+x)=912.17 B.350(1+2x)=912.17C.350(1+x)2=912.17 D.350(1+x)+350(1+x)2=912.17【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】是关于增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设从2013年到2015年年平均增长率为x,根据已知可以得出方程.【解答】解:如果设从2013年到2015年年平均增长率为x,那么根据题意得今年为:350(1+x)2,列出方程为:350(1+x)2=912.17.故选:C.【点评】考查了由实际问题抽象出一元二次方程,平均增长率问题,一般形式为a(1+x)2=b,a 为起始时间的有关数量,b为终止时间的有关数量.6.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD 放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()A.(2,5)B.(2.5,5)C.(3,5)D.(3,6)【考点】位似变换;坐标与图形性质.【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出A点坐标.【解答】解:∵以原点O为位似中心,在第一象限内,将线段CD放大得到线段AB,∴B点与D点是对应点,则位似比为:5:2,∵C(1,2),∴点A的坐标为:(2.5,5)故选:B.【点评】此题主要考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.7.如图,AB是⊙O的直径,D、C在⊙O上,AD∥OC,∠DAB=60°,连接AC,则∠DAC等于()A.15°B.30°C.45°D.60°【考点】圆的认识;平行线的性质.【分析】首先利用同一圆的半径相等和平行线的性质得到∠DAC=∠CAB,然后利用已知角求解即可.【解答】解:∵OA=OC,∴∠CAO=∠ACO,∵AD∥OC,∴∠DAC=∠ACO,∴∠DAC=∠CAB,∵∠DAB=60°,∴∠DAC=∠DAB=30°,故选B.【点评】本题考查了圆的认识及平行线的性质,属于基础题,比较简单.8.如图,分别过点P i(i,0)(i=1、2、…、n)作x轴的垂线,交的图象于点A i,交直线于点B i.则的值为()A.B.2 C.D.【考点】二次函数综合题.【专题】压轴题;规律型.【分析】根据A i的纵坐标与B i纵坐标的绝对值之和为A i B i的长,分别表示出所求式子的各项,拆项后抵消即可得到结果.【解答】解:根据题意得:A i B i=x2﹣(﹣x)=x(x+1),∴==2(﹣),∴++…+=2(1﹣+﹣+…+﹣)=.故选A【点评】此题考查了二次函数综合题,属于规律型试题,找出题中的规律是解本题的关键.二、填空题:本大题共10小题,每小题3分,共30分,请将答案填在答题卡上9.方程x2=2的解是±.【考点】解一元二次方程-直接开平方法.【分析】利用直接开平方法求解即可.【解答】解:x2=2,x=±.故答案为±.【点评】本题考查了解一元二次方程﹣直接开平方法,注意:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)运用整体思想,会把被开方数看成整体.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.10.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2:(根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲.【考点】方差;算术平均数.【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵,∴从甲和丙中选择一人参加比赛,∵,∴选择甲参赛,故答案为:甲.【点评】此题考查了平均数和方差,关键是根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.11.关于x的方程x2+2x﹣m=0有两个相等的实数根,则m= ﹣1 .【考点】根的判别式.【分析】根据方程有两个相等的实数根,判断出根的判别式为0,据此求出m的值即可.【解答】解:∵关于x的方程x2+2x﹣m=0有两个相等的实数根,∴△=0,∴22﹣4×1×(﹣m)=0,解得m=﹣1.故答案为;﹣1.【点评】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.一个圆锥的侧面展开图是半径为6,圆心角为120°的扇形,那么这个圆锥的底面圆的半径为2 .【考点】圆锥的计算.【分析】把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.【解答】解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,r=2.故答案为:2.【点评】主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.13.把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为y=2(x+1)2﹣2 .【考点】二次函数图象与几何变换.【分析】直接根据“上加下减,左加右减”的原则进行解答.【解答】解:由“左加右减”的原则可知,将二次函数y=2x2的图象向左平移1个单位长度所得抛物线的解析式为:y=2(x+1)2,即y=2(x+1)2;由“上加下减”的原则可知,将抛物线y=2(x+1)2向下平移2个单位长度所得抛物线的解析式为:y=2(x+1)2﹣2,即y=2(x+1)2﹣2.故答案为:y=2(x+1)2﹣2.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.14.如图,在△ABC中,点G是重心,那么= .【考点】三角形的重心.【分析】由于G是△ABC的重心,可得AG=2GM;根据等2016届高三角形的面积比等于底边比,可求出△ABG和△ABM的比例关系;同理M是BC中点,可得出△ABM和△ABC的面积比,由此得解.【解答】解:∵G是△ABC的重心,∴AG=2GM;∴S△AGB=2S△BGM,即S△ABG=S△ABM;∵M是BC的中点,即BM=BC,∴S△ABC=2S△ABM;故=.故答案为:.【点评】此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.15.如图,⊙O中,∠AOB=80°,点C、D是上任两点,则∠C+∠D的度数是80 °.【考点】圆周角定理.【分析】根据圆周角定理得到∠C=∠D=∠AOB=40°,然后求它们的和即可.【解答】解:∵∠AOB=80°,∴∠C=∠D=∠AOB=40°,∴∠C+∠D=80°.故答案为:80.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.16.某同学用描点法y=ax2+bx+c的图象时,列出了表:由于粗心,他算错了其中一个y值,则这个错误的y值是﹣5 .【考点】二次函数的性质.【分析】根据关于对称轴对称的自变量对应的函数值相等,可得答案.【解答】解:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,﹣2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得,解得.故函数解析式为y=﹣3x2+1.x=2时y=﹣11.故答案为﹣5.【点评】本题考查了二次函数图象,利用函数图象关于对称轴对称是解题关键.17.如图,为了估算河的宽度,小明采用的办法是:在河的对岸选取一点A,在近岸取点D,B,使得A,D,B在一条直线上,且与河的边沿垂直,测得BD=10m,然后又在垂直AB的直线上取点C,并量得BC=30m.如果DE=20m,则河宽AD为20 m.【考点】相似三角形的应用.【分析】证出△ADE和△ABC相似,然后根据相似三角形对应边成比例列式求解即可.【解答】解:∵AB⊥DE,BC⊥AB,∴DE∥BC,∴△ADE∽△ABC,∴,即,解得:AD=20m.故答案为:20.【点评】本题考查了相似三角形的应用,利用相似三角形对应边成比例列出比例式是解题的关键.18.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为.【考点】切线的性质.【分析】连接OE,OF,ON,OG,在矩形ABCD中,得到∠A=∠B=90°,CD=AB=4,由于AD,AB,BC分别与⊙O相切于E,F,G三点,得到∠AEO=∠AFO=∠OFB=∠BGO=90°,推出四边形AFOE,FBGO是正方形,得到AF=BF=AE=BG=2,由勾股定理列方程即可求出结果.【解答】解:连接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分别与⊙O相切于E,F,G三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切线,∴DN=DE=3,MN=MG,∴CM=5﹣2﹣MN=3﹣MN,在R t△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3﹣NM)2+42,∴NM=,∴DM=3+=.故答案为.【点评】本题考查了切线的性质,勾股定理,正方形的性质,正确的作出辅助线是解题的关键.三、解答题:本大题共10小题,共96分,请在答题卡上作答19.解下列方程:(1)(x﹣1)2=8(2)x2﹣2x﹣3=0.【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法.【分析】(1)两边开方,即可得出两个一元一次方程,求出方程的解即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)开方得:x﹣1=±,解得:x1=1+2,x2=1﹣2;(2)分解因式得:(x﹣3)(x+1)=0,x﹣3=0,x+1=0,x1=3,x2=﹣1.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.20.已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.【考点】根的判别式;一元二次方程的解;根与系数的关系.【分析】(1)关于x的方程x2﹣2x+a﹣2=0有两个不相等的实数根,即判别式△=b2﹣4ac>0.即可得到关于a的不等式,从而求得a的范围.(2)设方程的另一根为x1,根据根与系数的关系列出方程组,求出a的值和方程的另一根.【解答】解:(1)∵b2﹣4ac=(2)2﹣4×1×(a﹣2)=12﹣4a>0,解得:a<3.∴a的取值范围是a<3;(2)设方程的另一根为x1,由根与系数的关系得:,解得:,则a的值是﹣1,该方程的另一根为﹣3.【点评】本题考查了一元二次方程根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.21.在全运会射击比赛的选拔赛中,运动员甲10次射击成绩的统计表(表1)和扇形统计图如下:(1)根据统计表(图)中提供的信息,补全统计表及扇形统计图;(2)已知乙运动员10次射击的平均成绩为9环,方差为1.2,如果只能选一人参加比赛,你认为应该派谁去?并说明理由.【考点】方差;统计表;扇形统计图.【分析】(1)根据统计表(图)中提供的信息,可列式得命中环数是7环的次数是10×10%,10环的次数是10﹣3﹣2﹣1,再分别求出命中环数是8环和10环的圆心角度数画图即可,(2)先求出甲运动员10次射击的平均成绩和方差,再与乙比较即可.【解答】解:(1)命中环数是7环的次数是10×10%=1(次),10环的次数是10﹣3﹣2﹣1=4(次),命中环数是8环的圆心角度数是;360°×=72°,10环的圆心角度数是;360°×=144°,画图如下:故答案为:4,1;(2)∵甲运动员10次射击的平均成绩为(10×4+9×3+8×2+7×1)÷10=9环,∴甲运动员10次射击的方差=[(10﹣9)2×4+(9﹣9)2×3+(8﹣9)2×2+(7﹣9)2]=1,∵乙运动员10次射击的平均成绩为9环,方差为1.2,大于甲的方差,∴如果只能选一人参加比赛,认为应该派甲去.【点评】本题考查了方差:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.22.王老师获得一张2016宝应春节联欢晚会的门票,想奖给班级学校优秀的同学,通过考察,小明和小刚脱颖而出,但问题是只有一张门票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看晚会,他们各自提出了一个方案:(1)小明的方案:将红桃2、3、4、5四张牌背面朝上,小明先抽一张,记下牌面数字后放回,小刚再从中抽一张,若两张牌上的数字之和是奇数,则小明看晚会,否则小刚看晚会,你认为小明的方案公平吗?请用列表法或画树状图的方法说明;(2)小刚将小明的方案修改为只用红桃2、3、4三张牌,抽取方式规则不变,小刚的方案公平吗(只回答,不说明理由)【考点】游戏公平性;列表法与树状图法.【分析】(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,比较即可.(2)解题思路同上.【解答】解:(1)甲同学的方案不公平.理由如下:列表法,所有可能出现的结果共有12种,其中抽出的牌面上的数字之和为奇数的有:8种,故小明获胜的概率为:=,则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平;(2)不公平.理由如下:所有可能出现的结果共有6种,其中抽出的牌面上的数字之和为奇数的有:4种,故小明获胜的概率为:=,则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平.【点评】此题主要考查了游戏公平性,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合于两步或两步以上的完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.宝应运河大桥横跨京杭大运河,是连接宝应县城区与运西的重要通道,该桥原先坐落于扬州,1985年,当时的江苏省交通部门决定,将重达668吨的此桥,从扬州整体走水路浮运到108公里外的宝应安装使用,这成为我国桥梁史上的创举.运河大桥是宝应的一个标志性建筑,其拱形图形为呈圆弧形,其最高点C离桥面AB的高CD=4m,弦AB=60m,求桥拱所在的半径.【考点】垂径定理的应用;勾股定理.【分析】根据垂径定理求出AD,在Rt△ADO中,根据勾股定理得出关于R的方程,求出方程的解即可.【解答】解:∵OC⊥AB,OC过D,如图:∴根据垂径定理得:AD=BD=30,∵在Rt△ADO中,AD2+OD2=AO2,∴302+(R﹣4)2=R2,解得:R=114.5,答:桥拱所在的半径是114.5m.【点评】本题考查了勾股定理和垂径定理的应用,关键是构造直角三角形得出关于R的方程,题目比较典型,是一道比较好的题目.24.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定位多少元?【考点】一元二次方程的应用.【专题】销售问题.【分析】设降价x元,表示出售价和销售量,列出方程求解即可.【解答】解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,根据题意得,(60﹣x﹣40)(300+20x)=6080,解得x1=1,x2=4,又顾客得实惠,故取x=4,即定价为56元,答:应将销售单价定位56元.【点评】本题考查了一元二次方程应用,题找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.此题要注意判断所求的解是否符合题意,舍去不合题意的解.25.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.【考点】相似三角形的判定与性质;正方形的性质.【分析】(1)由正方形的性质得出AB=AD,∠B=90°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的长.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)解:∵∠B=90°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中点,∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.9,。
2015-2016学年度第一学期九年级数学期末考试卷(定稿)
2015-2016学年第一学期期末考试九年级数学试题(满分150分 考试时间120分钟)一、选择题(本题共有10小题,每小题4分,满分40分)1.下列函数是二次函数的是【 ▲ 】.A .13+=x yB .c bx ax y ++=2C .32+=x y D .22)1(x xy --= 2. 若反比例函数xk y 12+=的图象位于第一、三象限,则k 的取值可以是【 ▲ 】. A .-3 B .-2 C .-1 D .0 3.将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是【 ▲ 】.A.平行四边形 B .矩形 C .正方形 D .菱形4.已知二次函数c x x y ++=2的图象与x 轴的一个交点为(2,0),则它与x 轴的另一个交点坐标是 【 ▲ 】.A .(1,0)B .(﹣1,0) C.(2,0) D .(﹣3,0) 5.已知Rt △ABC 中,∠C =90°,AB =tan A =12,则BC 的长是【 ▲ 】. A .2 B .8 C .2 D .46.抛物线22221,3,,23y x y x y x y x ==-=-=的图象开口最大的是【 ▲ 】. A. 231x y =B. 23x y -=C. 2x y -=D.22y x = 7.b 是c a ,的比例中项,且b a :=1:3,则c b :=【 ▲ 】.A .1:3B .3:1C .1:9D .9:18. 如图,⊙O 的直径AB =2,点C 在⊙O 上,弦AC =1,则∠D 的度数是【 ▲ 】. A .30° B .45° C .60° D .75° 9.如图,A 点是半圆上一个三等分点,B 点是弧AN 的中点,P 点是直径MN 上一动点,⊙O 的半径为1,则BP AP +的最小值为【 ▲ 】.学校 班级 姓名 考号密 封 线 内 不 要 答 题A.1B.2 C.3 D.2210.已知函数{222(2)-68(2)x x x x x x y -≤+->=,若使y =【 ▲ 】.A .-1B .1二、填空题(本题共4小题,每小题5分,满分20分) 11. 抛物线5)1(22+-=x y 的顶点坐标是 ___ ____. 12.已知43=-b b a ,则=ba___ ____. 13.一只小虫由地面沿2:1=i 的坡面向上前进了10m ,则小虫距离地面的高度为_ ____m . 14.已知抛物线2221+-=x y 和直线222+=x y 的图象如图所示,当x 任取一值时,x 对应的函数值分别为21,y y .若21y y ≠,取21,y y 中的较小值记为M ;若21y y =,记21y y M ==,例如:当x =1时,1y =0,2y =4,12y y <,此时M =0.则下列结论中一定成立的是 .(把所有正确结论的序号都填在横线上.) ①当0x >时,12y y >;②使得M 大于2的x 值不存在; ③当0x <时,x 值越大,M 值越小; ④使得M =1的x 值是-12或2.第8题图第14题图三、(本题共两小题,每题8分,满分16分) 15.计算:6tan 230°-3sin60°-sin30°16. 如图,在ABC ∆中,90C∠= ,在AB 边上取一点D ,使B D B C =,过D 作DE AB⊥交AC 于E ,8AC =,6BC =.求DE 的长.四、(本题共两小题,每小题8分,满分16分)17.如图,二次函数m x y +-=2)2(的图象与y 轴交于点C ,点B 是点C 关于该函数图象对称轴对称的点,已知一次函数b kx y +=的图象经过该二次函数图象上的点1A (,0)及点B .(1)求二次函数的解析式; (2)求一次函数的解析式.第16题图第17题图18.如图,在平面直角坐标系中,已知ABC ∆三个顶点的坐标分别为-1A (,2),B (-3,4), -2C (,6).(1)画出ABC ∆绕点A 顺时针旋转90 后得到的111A B C ∆;(2)以原点O 为位似中心,画出将111A B C ∆三条边放大为原来的2倍后的222A B C ∆.五、(本题共两小题,每小题10分,满分20分)ABC第19题图20.如图所示,在合肥至黄山的高铁线路建设中需要确定某条隧道AB 的长度,已知在离地面2700米高度C 处的飞机上,测量人员测得正前方B A ,两点处的俯角分别是60 和30 ,求隧道AB 的长.(结果保留根号)六、(本题满分12分)七、(本题满分12分)第20题图(2)当CPQ ∆与ABC ∆第二次相似时,求点P 总共运动了多少秒.八、(本题满分14分)23.某水果经销商到大圩种植基地采购某种水果,经销商一次性采购某种水果的单价y (元/千克)与采购量x (千克)之间的函数关系图象如图中折线AB →BC →CD 所示(不包括端点A ).(1)当100<x <200时,写出y 与x 之间的函数关系式;(2)该水果的种植成本为2元/千克,某经销商一次性采购该水果的量不超过200千克,当采购量是多少时,大圩种植基地获利最大,最大利润w 是多少?(3)在(2)的条件下,求经销商一次性采购的水果是多少千克时,大圩种植基地能获得418元的利润?第23题图第22题图。
2015-2016学年第一学期期末水平测试试卷九年级数学附答案
2015-2016学年第一学期期末水平测试试卷九年级数学(测试时间:100分钟,满分:120分)一、单选选择题(共10个小题,每小题3分,满分30分)1.下列图形中,中心对称图形是2.一元二次方程022=-x x 的根是A .2,021-==x xB .2,121==x xC .2,121-==x xD .2,021==x x 3.下列事件中,必然事件是A .地球绕着太阳转B .抛一枚硬币,正面朝上C .明天会下雨D .打开电视,正在播放新闻4.圆O 的半径为,7cm 点P 到圆心O 的距离,10cm OP =则点P 与圆心O 的位置关系是 A .点P 在圆上 B .点P 在圆内 C .点P 在圆外 D .无法确定 5.反比例函数xy 5-=的图像在 A .第一、三象限内 B .第二、四象限内 C .第一、二象限内 D .第二、三象限内6.若一元二次方程022=++a x x 有实数根,则a 的取值范围是 A .1≤a B .4≤a C .1<a D .1≥a7.在一个不透明的盒子中有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.3,由此可估计盒中红球的个数约为 A .3 B .6 C .7 D .148.如图,AB 是圆O 的直径,BC 是圆O 的弦,若,800=∠AOC 则B ∠的度数为OABCA . 030B .035C .040D .0459.如图,正六边形ABCDEF 内接于圆O ,圆O 半径为2,则六边形的边心距OM 的长为 A .2 B .32 C .4 D .310. 二次函数322--=x x y 的图像如图所示,下列说法中错误的是A .函数的对称轴是直线1=xB .当,2<x y 随x 的增大而减小C .函数的开口方向向上D .函数图像与y 轴的交点坐标是)3,0(-二、填空题(共6个小题,每小题4分,满分24分)11. 从分别标有数-5,-2,-1,0,1,3,4的七张卡片中,随机抽取一张,所抽卡片上数的绝对值小于2的概率是 .12. 如果将抛物线1522-+=x x y 向上平移,使它经过点),3,0(A 那么所得新抛物线的解析式为 .13.已知方程032=-+mx x 的一个根是1,则它的另一个根是 .14. 如图,在ABC ∆中,,620=∠CAB 将ABC ∆在平面内绕点A 旋转到'''C B A ∆的位置,使,//'AB CC 则旋转角的度数为 .15.如图,直线4-=x y 与y 轴交于点,C 与x 轴交于点,B 与反比例函数xky =图像在第一象限交于点,A 连接,OA 若,2:1:=∆∆BO C AO B S S 则k 的值为 .16.如图,在半径为4,圆心角为090的扇形内,以BC 为直径作半圆交AB 于点,D 连接,CD 则阴影部分的面积是 .AB C F EDO MO y x三、解答题(共3个小题,每小题6分,满分18分)17. (6分)解方程:03422=--x x18. (6分)如图,AB 是圆O 的直径,弦AB CD ⊥于点,E 已知,2,8==AE CD 求圆O 的半径。
2015—2016学年第一学期九年级期末考试数学试卷附答案
2015一如16学年第一学期九年级期末考试数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.—2、0、2、-3这四个数中最小数的是1]A.2B.0C.—2D.—32.如果我们都能改掉餐桌上的陋习,珍惜每一粒粮食,合肥市每年就能避免浪费30.1亿元,将30.1亿用科学计数法表示为【】A.30.1父108B,3.01父108C,3.01父109D.0.301^10103.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是【】A.x—6=*B,x—6=4C,x+6=4D,x+6=M4.设a=2j3—1,a在两个相邻整数之间,则这两个整数是1]A.1和2B.2和3C.3和4D.4和55.直尺与三角尺按如图所示的方式叠放在一起,在图中所标记的角中,与/I互余的角有几个A.2个B.3个C.4个D.5个第5题图第7题图第8题图6.某选手在青歌赛中的得分如下(单位:分):99.60,99.45,99.60,99.70,98.80,99.60,99.83,则这位选手得分的众数和中位数分别是1】A.99.60,99.60B,99.60,99.70C.99.60,98.80D,99.70,99.607.如图为抛物线y=ax2+bx+c的图像,A、RC为抛物线与坐标轴的交点,且OAOG1,则下列关系中正确的是1]A.ac<0B.a—b=1C.a+b=—1D.b>2a8.如图,过DABCM对角线BD上一点M分别作平行四边形两边的平行线EF与GH那么图中的口AEMGJ面积&与口HCFM勺面积S2的大小关系是【】A.s1s2B.S1:二S2C.S1=S2D.2s l=颔9.如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周长可能是下列数据中的1]A.6B.8C.10D.12为E,设DP=x,AE=y,则能反映y与X之间函数关系的大致图象是第10题图10.如图,在矩形ABCD43,AB=3,BC=4,点P在BC边上运动,连结DP过点A作AHDP垂足A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(_3)2的平方根是。
2015-2016学年苏科版初三上期末数学试卷及答案
2015-2016学年第一学期初三数学期末试卷(分值:130分;时间:120分钟)2016年1月一、选择题(每小题3分,共24分)1.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这七名同学成绩的()A.众数B.平均数C.中位数D.方差2A.80,2 B.80,C.78,2 D.78,3.关于x的一元二次方程3x2﹣6x+m=0有两个不相等的实数根,则m的取值范围是()A.m<3 B.m≤3 C.m>3 D.m≥34.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.2a2B.3a2C.4a2D.5a2(4题)(5题)(6题)5.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A.﹣3 B.3 C.﹣6 D.96.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为()A.4 B.8C.2 D.47.如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP 的最大值是()A.30°B.45°C.60°D.90°8.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD为()A.2.5 B.1.6 C.1.5 D.1(7题)(8题)二、填空题(每小题3分,共30分)9则该校篮球班21名同学身高的中位数是cm.10.某校从参加计算机测试的学生中抽取了60名学生的成绩(40~100分)进行分析,并将其分成了六段后绘制成如图所示的频数分布直方图(其中70~80段因故看不清),若60分以上(含60分)为及格,试根据图中信息来估计这次测试的及格率约为.(10题)(11题)11.已知如图所示的图形的面积为24,根据图中的条件,可列出方程:.12.已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0的两根为x1和x2,且(x1﹣2)(x1﹣x2)=0,则k的值是.13.我市为了增强学生体质,开展了乒乓球比赛活动.部分同学进入了半决赛,赛制为单循环形式(即每两个选手之间都赛一场),半决赛共进行了6场,则共有人进入半决赛.14.在﹣1、3、﹣2这三个数中,任选两个数的积作为k的值,使反比例函数的图象在第一、三象限的概率是.15.P为⊙O外一点,PA,PB分别切⊙O于点A,B,∠APB=50°,点C为⊙O上一点(不与A,B重合),则∠ACB的度数为.16.如图,某小岛受到了污染,污染范围可以大致看成是以点O为圆心,AD长为直径的圆形区域,为了测量受污染的圆形区域的直径,在对应⊙O的切线BD(点D为切点)上选择相距300米的B、C两点,分别测得∠ABD=30°,∠ACD=60°,则直径AD=米.(结果精确到1米)(参考数据:,)(16题)(18题)172则当y≤的取值范围为.18.如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置.若正六边形的边长为2cm,则正六边形的中心O运动的路程为cm.三、解答题(共76分)(19、20题5分)19.计算:﹣22﹣3×3﹣1+(﹣1)0+2sin30°.20.已知x是一元二次方程x2+3x﹣1=0的实数根,求代数式:的值.21.(6分)如图,小丽假期在娱乐场游玩时,想要利用所学的数学知识测量某个娱乐场地所在山坡AE的长度.她先在山脚下点E处测得山顶A的仰角是30°,然后,她沿着坡度是i=1:1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度.(参考数据:≈1.41,结果精确到0.1米)22.(6分)小英与她的父亲、母亲计划外出旅游,初步选择了延安、西安、汉中、安康四个城市,由于时间仓促,他们只能去其中一个城市,到底去哪一个城市三个人意见不统一,在这种情况下,小英父亲建议,用小英学过的摸球游戏来决定,规则如下:①在一个不透明的袋子中装一个红球(延安)、一个白球(西安)、一个黄球(汉中)和一个黑球(安康),这四个球除颜色不同外,其余完全相同;②小英父亲先将袋中球摇匀,让小英从袋中随机摸出一球,父亲记录下其颜色,并将这个球放回袋中摇匀,然后让小英母亲从袋中随机摸出一球,父亲记录下它的颜色;③若两人所摸出球的颜色相同,则去该球所表示的城市旅游,否则,前面的记录作废,按规则②重新摸球,直到两人所摸出求的颜色相同为止.按照上面的规则,请你解答下列问题:(1)已知小英的理想旅游城市是西安,小英和母亲随机各摸球一次,均摸出白球的概率是多少?(2)已知小英母亲的理想旅游城市是汉中,小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是多少?23.(9分)2014年5月31日是世界卫生组织发起的第27个“世界无烟日”.为了更好地宣传吸烟的危害,某中学九年级(1)班数学兴趣小组设计了如下调查问卷,在东方广场随机调查了部分吸烟人群,并将调查结果绘制成如图所示的统计图.根据以上信息,解答下列问题:(1)本次接受调查的总人数是,并把条形统计图补充完整;(2)在扇形统计图中,C选项的人数所占百分比是,E选项所在扇形的圆心角的度数是.(3)若某区约有烟民38万人,试估计对吸烟有害持“无所谓”态度的人数,你对这部分人群有何建议?24.(8分)如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC 交⊙O于点D,BD的延长线交AC于E,连接AD.(1)求证:△CDE∽△CAD;(2)若AB=2,AC=2,求AE的长.25.(6分)一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?26.(9分)如图,在平面直角坐标系中,O为原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C点坐标为(2,0),BC=6,∠BCD=60°,点E是AB上一点,AE=3EB,⊙P 过D,O,C三点,抛物线y=ax2+bx+c过点D,B,C三点.(1)求抛物线的解析式;(2)求证:ED是⊙P的切线;27.(10分)如图1,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不与M、C重合),以AB为直径作⊙O,过点P作⊙O的切线,交AD于点F,切点为E.(1)求证:OF∥BE;(2)设BP=x,AF=y,求y关于x的函数解析式,并写出自变量x的取值范围;(3)延长DC、FP交于点G,连接OE并延长交直线DC于H(图2),问是否存在点P,使△EFO∽△EHG(E、F、O与E、H、G为对应点)?如果存在,求(2)中x和y的值;如果不存在,请说明理由.28.(12分)如图,二次函数y=a(x2﹣2mx﹣3m2)(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,﹣3),点D 在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2)求证:为定值;(3)设该二次函数图象的顶点为F,探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共24分)1.解:由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少.故选:C.2.解:根据题意得:80×5﹣(81+79+80+82)=78,方差=[(81﹣80)2+(79﹣80)2+(78﹣80)2+(80﹣80)2+(82﹣80)2]=2.故选C.3.解:根据题意得△=(﹣6)2﹣4×3×m>0,解得m<3.故选A.4.解:∵某小区将原来正方形地砖更换为如图所示的正八边形植草砖,设正八边形与其内部小正方形的边长都为a,∴AB=a,且∠CAB=∠CBA=45°,∴sin45°===,∴AC=BC=a,∴S△ABC=×a×a=,∴正八边形周围是四个全等三角形,面积和为:×4=a2.正八边形中间是边长为a的正方形,∴阴影部分的面积为:a2+a2=2a2,故选:A.5.解:(法1)∵抛物线的开口向上,顶点纵坐标为﹣3,∴a>0,=﹣3,即b2=12a,∵一元二次方程ax2+bx+m=0有实数根,∴△=b2﹣4am≥0,即12a﹣4am≥0,即12﹣4m≥0,解得m≤3,∴m的最大值为3.(法2)一元二次方程ax2+bx+m=0有实数根,可以理解为y=ax2+bx和y=﹣m有交点,可见﹣m≥﹣3,∴m≤3,∴m的最大值为3.故选B.(5题)(6题)6.解:∵⊙O的直径AB=12,∴OB=AB=6,∵BP:AP=1:5,∴BP=AB=×12=2,∴OP=OB﹣BP=6﹣2=4,∵CD⊥AB,∴CD=2PC.如图,连接OC,在Rt△OPC中,∵OC=6,OP=4,∴PC===2,∴CD=2PC=2×2=4.故选D.7.解:根据题意知,当∠OAP取最大值时,OP⊥AP;在Rt△AOP中,∵OP=OB,OB=AB,∴OA=2OP,∴∠OAP=30°.故选A.(7题)(8题)8.解:连接OD、OE,设AD=x,∵半圆分别与AC、BC相切,∴∠CDO=∠CEO=90°,∵∠C=90°,∴四边形ODCE是矩形,∴OD=CE,OE=CD,又∵OD=OE,∴CD=CE=4﹣x,BE=6﹣(4﹣x)=x+2,∵∠AOD+∠A=90°,∠AOD+∠BOE=90°,∴∠A=∠BOE,∴△AOD∽OBE,∴=,∴=,解得x=1.6,故选:B.二、填空题(每小题3分,共30分)9.187.10.解:∵频数=×组距,∴当40≤x<50时,频数=0.6×10=6,同理可得:50≤x<60,频数=9,60≤x<70,频数=9,80≤x<90,频数=15,90≤x<100,频数=3,∴70≤x<80,频数=60﹣6﹣9﹣9﹣15﹣3=18,∴这次测试的及格率=×100%=75%.11.解:根据题意得:(x+1)2﹣1=24,即:(x+1)2=25.故答案为:(x+1)2=25.12.解:∵(x1﹣2)(x1﹣x2)=0,∴x1﹣2=0或x1﹣x2=0.①如果x1﹣2=0,那么x1=2,将x=2代入x2+(2k+1)x+k2﹣2=0,得4+2(2k+1)+k2﹣2=0,整理,得k2+4k+4=0,解得k=﹣2;②如果x1﹣x2=0,那么(x1﹣x2)2=(x1+x2)2﹣4x1x2=[﹣(2k+1)]2﹣4(k2﹣2)=4k+9=0,解得k=﹣.又∵△=(2k+1)2﹣4(k2﹣2)≥0.解得:k≥﹣.所以k的值为﹣2或﹣.13.解:假设共有x人进入半决赛.∴x(x﹣1)=6,解得:x 1=4,x 2=﹣3(舍去),答:共有4人进入半决赛.故答案为:4.14.解:画树状图得:∵共有6种等可能的结果,任选两个数的积作为k的值,使反比例函数的图象在第一、三象限的有2种情况,∴任选两个数的积作为k的值,使反比例函数的图象在第一、三象限的概率是:=.故答案为:.15.解:连接OA、OB.∵PA,PB分别切⊙O于点A,B,∴OA⊥PA,OB⊥PB;∴∠PAO=∠PBO=90°;又∵∠APB=50°,∴在四边形AOBP中,∠AOB=360°﹣90°﹣90°﹣50°=130°,∴∠ADB=×∠AOB=×130°=65°,即当C在D处时,∠ACB=65°.在四边形ADBC中,∠ACB=180°﹣∠ADB=180°﹣65°=115°.于是∠ACB的度数为65°或115°.(15题)16.解:∵∠ABD=30°,∠ACD=60°,∴假设CD=x,AC=2x,∴AD=x,tanB==,∴=,解得:x=150,∴AD=x=×150≈260米.故答案为:260米.17.解:由表中数据可知抛物线y=ax2+bx+c与x轴的交点为(﹣2,0)、(3,0),根据表格确定y≤0的是x的取值范围﹣2≤x≤3,故答案为:﹣2≤x≤3.18.解:根据题意得:每次滚动正六边形的中心就以正六边形的半径为半径旋转60°,正六边形的中心O运动的路程∵正六边形的边长为2cm,∴运动的路径为:=;∵从图1运动到图2共重复进行了六次上述的移动,∴正六边形的中心O运动的路程6×=4πcm三、解答题(共76分)19.(5分)解:原式=﹣4﹣1+1+1=﹣3.20.(5分)解:∵x2+3x﹣1=0.∴x2+3x=1.x(x+3)=1∴原式=÷==.21.(6分)解:作EF⊥AC,根据题意,CE=18×15=270米,∵tan∠CED=1,∴∠CED=∠DCE=45°,∵∠ECF=90°﹣45°﹣15°=30°,∴EF=CE=135米,∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°﹣45°﹣60°﹣30°=45°,∴AE=135≈190.4米22.(6分)解:(1)画树状图得:∵共有16种等可能的结果,小英和母亲随机各摸球一次,均摸出白球的只有1种情况,∴小英和母亲随机各摸球一次,均摸出白球的概率是:;(2)由(1)得:共有16种等可能的结果,小英和母亲随机各摸球一次,至少有一人摸出黄球的有7种情况,∴小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是:.23.(9分)(1)调查的总人数=126÷42%=300,决定戒烟,远离烟草危害的人数为300﹣12﹣126﹣78﹣30=54人,如图,故答案为:300人;(23答图)(26答图)(2)在扇形统计图中,C选项的人数所占百分比是78÷300=26%,×360°=36°,故答案为:26%,36°.(3)估计对吸烟有害持“无所谓”态度的人数为38×=1.52(万人)建议:吸烟有害身体健康.24.(8分)(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∵AC为⊙O的切线,∴BA⊥AC,∴∠BAC=90°,即∠BAD+∠CAD=90°,∴∠B=∠CAD,∵OB=OD,∴∠B=∠ODB,而∠ODB=∠CDE,∴∠B=∠CDE,∴∠CAD=∠CDE,而∠ECD=∠DCA,∴△CDE∽△CAD;(2)解:∵AB=2,∴OA=1,在Rt△AOC中,AC=2,∴OC==3,∴CD=OC ﹣OD=3﹣1=2,∵△CDE∽△CAD,∴=,即=,∴CE=.∴AE=AC﹣CE=2﹣=.25.(6分)解:因为60棵树苗售价为120元×60=7200元<8800元,所以该校购买树苗超过60棵,设该校共购买了x棵树苗,由题意得:x[120﹣0.5(x﹣60)]=8800,解得:x1=220,x2=80.当x=220时,120﹣0.5×(220﹣60)=40<100,∴x=220(不合题意,舍去);当x=80时,120﹣0.5×(80﹣60)=110>100,∴x=80.答:该校共购买了80棵树苗.26.(9分)解:(1)∵C(2,0),BC=6,∴B(﹣4,0),在Rt△OCD中,∵tan∠OCD=,∴OD=2tan60°=2,∴D(0,2),设抛物线的解析式为y=a(x+4)(x﹣2),把D(0,2)代入得a•4•(﹣2)=2,解得a=﹣,∴抛物线的解析式为y=﹣(x+4)(x﹣2)=﹣x2﹣x+2;(2)在Rt△OCD中,CD=2OC=4,∵四边形ABCD为平行四边形,∴AB=CD=4,AB∥CD,∠A=∠BCD=60°,AD=BC=6,∵AE=3BE,∴AE=3,∴=,==,∴=,而∠DAE=∠DCB,∴△AED∽△COD,∴∠ADE=∠CDO,而∠ADE+∠ODE=90°∴∠CDO+∠ODE=90°,∴CD⊥DE,∵∠DOC=90°,∴CD为⊙P的直径,∴ED是⊙P的切线;27.(10分)(1)证明:连接OE。
江苏省苏州市相城区2015-2016学年九年级数学上学期期末考试试题 苏科版
江苏省苏州市相城区2015-2016学年九年级数学上学期期末考试试题本试卷由填空题、选择题和解答题三大题组成,共29题,满分130.考试用时120分钟. 注意事项:答题前,考生务必将学校、姓名、考场号、座位号、考试号填写在答题卷相应的位置上. 答题必须用0.5mm 黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题 .考生答题必须在答题卷上,答在试卷和草稿纸上一律无效.一、选择题(本大题共10小题,每小题3分,共30分;以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卷上将该项涂黑.)1.若ABC ∆∽A B C ∆′′′,相似比为1:2,则ABC ∆与A B C ∆′′′的面积的比为 A .1:2 B. 1:4 C. 2:1 D. 4:1 2.如图,AB 是⊙O 的直径,点C 在⊙O 上,若40A ∠=︒,则B ∠的度数为 A . 80︒ B. 60︒ C. 50︒ D. 40︒3.一元二次方程230x kx +-=的一个根是1x =,则另一个根是A. -3B. -1C. 2D. 3 4.在Rt ABC ∆中,已知90C ∠=︒,40A ∠=︒,3BC =,则AC =A. 3sin 40︒B. 3sin 50︒C. 3tan 40︒D. 3tan 50︒ 5.抛物线221y x mx m =--+的图象过原点,则m 为A. 0B. 1C. 1-D. 1±6.木盒里有1个红球和1个黑球,这两个球除颜色外其他都相同,从盒子里先摸出一个球,放回去摇匀后,再摸出一个球,两次都摸到红球的概率是A. 12B. 13C. 14D. 23 7.正方形网格中,AOB ∠如图放置,则cos AOB ∠的值为A.5B. 5C.12D. 2 8.二次函数23y x mx =-+,当2x -<时,y 随x 的增大而减小;当x >-2时,y 随x 的增大而增大,则当1x =时,y 的值为A. 8B. 0C. 3D. -89.如图,菱形ABCD 的边长为2cm ,60A ∠=︒,弧BD 是以点A 为圆心、AB 长为半径的弧,弧CD 是以点B 为圆心、BC 长为半径的弧,则阴影部分的面积为 A.21cm2C.22cm D.2cm π10.如图,以(()4.5,0P -为圆心的⊙P 经过(-2, 0)以1个单位/秒的速度沿x 轴向右运动,则当P 与y 轴相交的弦长为4时,则移动的时间为A. 2秒B. 3秒C. 2秒或4秒D. 3秒或6秒 二、填空题:(本大题共8小题,每小题3分,共24分,把答案直接填在答题卷相对应的位置上)11.一组数据2, 4, 2, 3, 4的方差2s = .12.如图,利用标杆BE 测量建筑物的高度,标杆BE 高1.5m ,测得2AB m =, 14BC m = ,则楼高CD 为= m .(第12题图) (第14题图)13.己知圆锥的底面半径为3cm ,侧面积为215cm π,则这个圆锥的高为 cm . 14.如图,小王从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体箱子,且此长方 体箱子的底面长比宽多2米,现己知购买这种铁皮每平方米需20元钱,这张矩形铁皮共 花钱 元.15.已知抛物线234y x x =+-与x 轴的两个交点为()1,0x 、()2,0x 则212315x x -+= . 16.如图,⊙O 与直线1l 相离,圆心O 到直线1l的距离OB =4OA =,将直线1l 绕点A 逆时针旋转30︒后得到的直线2l 刚好与⊙O 相切于点C ,则⊙O 的半径= .17.若关于x 的方程20x x m --=没有实数根,则二次函数2y x x m =--的图象的顶点在第 象限. a18.在ABC ∆中,角A 、B 、C 的对边分别是a 、b 、c ,若t an 2t a n A B =,2213a b c-=则c = . (第16题图) (第18题图)三、解答题(本大题共11小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.) 19.(本题满分5分) 解方程:()()()5125x x x -+=-20.(本题满分5分) 计算:4sin301tan 60︒+-︒︒21.(本题满分6分)如图,在ABC ∆中,AD 是角平分线,点E 在AB 上,且AE DE =. (1)BDE ∆与BCA ∆相似吗?为什么? (2)已知10,6AB AC ==,求DE 的长.22.(本题满分6分)关于x 的二次三项式249x x ++进行配方得()2249x x x m n ++=++(1)则m = , n = ;(2)求x 为何值时,此二次三项式的值为7 ?23.(本题满分6分)为推进阳光体育活动的开展,某学校决定开设以下体育课外活动项目:A. 排球;B.乒乓球;C.篮球;D.羽毛球.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:随机抽取的学生喜欢体育课外 随机抽取的学生喜欢体育课外 活动项目的人数扇形统计图 活动项目的人数条形统计图 图1 图2(1)这次被调查的学生共有 人; (2)请你将条形统计图补充完整;(3)求喜欢排球人数所占扇形圆心角的大小;(4)若甲、乙、丙、丁四位同学都喜欢乒乓球运动,现从这四名同学中任选两名进行对抗练习, 求恰好选中乙、丙两位同学的概率(用树状图或列表法解答).24.(本题满分6分)如图,小刚从点A 出发,沿着坡度为α的斜坡向上走了650米到达点B ,且sin 5α=13. (1)则他上升的高度是 米 ;(2)然后又沿着坡度为1:3i =的斜坡向上走了1000米达到点C .问小刚从A 点到C 点上升的高度CD 是多少米(结果保留根号)?25.(本题满分7分)已知二次函数的图象以()1,4A -为顶点,且过点()2,5B -. (1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将函数图象向左平移 个单位,该函数图象恰好经过原点.26.(本题满分7分)如图,P 是⊙O 外一点,PC 为切线,割线PAB 经过圆心O . (1)若12,PB PC ==O 的半径长;(2)作BPC ∠的角平分线交BC 于D ,求CDP ∠的度数.27.(本题满分8分)某公司在销售一种产品进价为10元的产品时,每年总支出为10万元(不含进价).经过若干年销售得知,年销售量y (万件)是销售单价x (元)的一次函数,并得到如下部分数据:(1)则y 关于x 的函数关系式是 ;(2)写出该公司销售这种产品的年利润w (万元)关于销售单价x (元)的函数关系式;当销售单价x 为何值时,年利润最大?(3)试通过(2)中的函数关系式及其大致图象,帮助该公司确定产品的销售单价范围,使年利润不低于14万元(请直接写出销售单价x 的范围).28.(本题满分10分)如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在x 轴上,顶点()4,2B 在抛物线2y ax bx =+上,且抛物线交x 轴于另一点()6,0D .(1)则a = ,b = ;(2)已知E 为BC 边上一个动点(不与B 、C 重合),连结AE 交OB 于点P ,过点E 作y 轴的平行线分别交抛物线、直线OB 于F 、G .①求线段FG 的最大值,此时PFG ∆的面积为 ;②若以点O 为圆心,OP 为半径作⊙O ,试判断直线AE 与⊙O 的能否相切,若能请求出E 点坐标,若不能请说明理由.29.(本题满分10分)如图1, ⊙O 是等边三角形ABC 的外接圆,P 是⊙O 上的一个点. (1)则APC ∠= ; (2)试证明:PA PB PC +=;(3)如图2,过点A 作⊙O 的切线交射线BP 于点D . ①试证明:DAP DBA ∠=∠; ②若2,1AD PD ==,求PA 的长.(图1) (图2)2015~2016学年第一学期期末考试试卷 九年级数学答案及评分标准。
2015—2016学年度第一学期期末考试数学试题【终稿】
2015—2016学年度第一学期九年级期末考试数学试题卷(Ⅰ)一、选择题:(每题只有一个正确选项,请把正确选项填在卷Ⅱ前相应的答案表格中,每题3分,共30分,多选或错选不得分)1.若反比例函数kyx=的图象经过点(-1,2),则这个函数的图象一定经过点( B )A、(12-,2) B、(2,-1) C、(-2,-1) D、(12,2)2.已知,在△ABC中,∠C=90°,AB=13,BC=5,则cosA的值是( B )A、 B、 C、 D、3.如图是由相同小正方体组成的立体图形,它的左视图为( A )4. 如图,E(-4,2),F(-1,-1),以坐标原点O为位似中心,按比例尺2∶1,把△EOF放大,则点E的对应点E'的坐标为(B).A.(2,-1)或(-2,1)B.(8,-4)或(-8,4)C.(2,-1)D.(8,-4)(第4题图)(第5题图)(第6题图)5.如图点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不.正确..的是( C )A.∠ABD=∠C B.∠ADB=∠ABC C. D.6.如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC 的余弦值为( B )A.12B.C.34D.451251312513135AB CBBD CD=AD ABAB AC=7.已知二次函数的图像如图所示,那么一次函数 和反比例函数在同一平面直角坐标系中的图像大致是( C ) A . B . C .D .8.如图是一个几何体的三视图,则这个几何体的全面积是( D )A. B.215cm π C.221cm π D.224cm π(第8题图)(第9题图)9.如图,在Rt △ABC 中∠C=90°,放置边长分别为4、6、x 的三个正方形,则x 的值为( B )A 、8B 、10C 、12D、10.如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转,若∠BOA 的两边分别与函数y=﹣、y=的图象交于B 、A 两点,则∠OAB 的大小的变化趋势为( D )A .逐渐变小B .逐渐变大C .时大时小D .保持不变2y ax bx c =++y bx c =+ay x=212cmπ2015—2016学年度第一学期九年级期末考试数学试题卷(Ⅱ)一、选择题:(每题只有一个正确选项多选或错选不得分,每题3分,共30分)二、填空题:(请把正确答案填横线上相应位置,每题3分,共15分)11.在△ABC中,若|cosA(1﹣tanB)2=0,则∠C的度数是.12.如图网格中,小正方形的边长均为1,点A、B、O都在格点上,sin∠AOB=.(第12题图)(第13题图)(第14题图)13.如图,在平面直角坐标系中,点A、B均在函数kyx(k>0,x>0)的图象上,⊙A与x轴相切,⊙B与y轴相切.若点B的坐标为(1,6),⊙A的半径是⊙B的半径的2倍,则点A的坐标为.14.已知:如图,△ABC中,∠BAC=90°,AB=AC=3,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°,CE=43,则BD的长.15.如图,在矩形AOBC中,点A(﹣2,1),点C的纵坐标是4,则经过点B的双曲线解析式为.三、解答题:(共55分,解答应写出文字说明、证明过程或推演步骤)16(1)(4分)计算:(﹣1)0﹣(﹣2)+3tan30°+(1 3)﹣1.(2)(4分)如图,建立平面直角坐标系,ABC△的顶点(2,3)(2,1)(62)A B C,,,,①以原点O为位似中心,相似比为2,在第一象限内将ABC△放大,画出放大后的图形A B C'''△;②计算A B C'''△的面积S.17.(7分)如图,⊙O的半径为3,B是⊙O外一点,且OB=5,连接BO并延长交⊙O于点A,点D为⊙O上的点,过点A作直线BD的垂线,垂足为C,若AD平分∠BAC.(1)求证:直线BC和⊙O相切;(2)求DC的长.18.(7分)在复习《函数》一课时,同桌的小明和小芳有一个间题观点不一致,小明认为如果两次分别从写有l 到4四个整数的卡片中任取一张,第一张卡片上数作为点的横坐标,第二个作为点的纵坐标,并且第一次抽取后不放回,则点在反比例函数4y x=的的图象上的概率一定大于在一次函数5y x =-+的图象上的概率,而小芳却认为两者概率相同.你赞成谁的观点? (1)试用列表或画树状图的方法列举出所有点的情形;(2)分别求出点在两个函数的图象上的概率,并说明谁的观点正确。
2015届苏科版数学九年级上学期期末考试试题1
江苏省扬州梅岭中学2015届九年级数学上学期期末考试试题(满分:150分 考试时间:120分钟) 友情提醒:本卷中的所有题目均在答题卷上作答,在本卷中作答无效。
一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题..卷.相应位置....上) 1.在Rt △ABC 中,若各边的长度同时都扩大2倍,则锐角A 的正切值A .扩大2倍B .缩小2倍C .不变D .扩大1倍2.用配方法解方程x 2-2x =2,原方程可变形为A .(x +1)2=3B .(x -1)2=3C .(x +2)2=7D .(x -2)2=73.如果关于x 的一元二次方程(m -1)x 2+2x +1=0有两个不相等的实数根,那么m 的取值范围是A .m >2B .m <2C .m >2且m ≠1D .m <2且m ≠14.将二次函数2x y =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是A .2)1(2+-=x y B .2)1(2++=x y C .2)1(2--=x y D .2)1(2-+=x y5.下列各组图形不一定相似的是A .两个正方形B .两个等边三角形C .各有一角是100°的两个等腰三角形D .各有一角是45°的两个等腰三角形 6.如图,AB 是半圆的直径,点D 是弧AC 的中点,∠ABC =50°, 则∠DAB 等于A .60°B .65°C .70°D .75°7.如果给定数组中每一个数都加上同一个非零常数,则数据的 A .平均数不变,方差不变 B .平均数改变,方差改变 C .平均数改变,方差不变 D .平均数不变,方差改变8.若关于x 的一元二次方程2250ax x +-=的两根中有且仅有一根在0和1之间(不含0和1),则a 的取值范围是A .3a <B .3a >C .3a <-D .3a >-二、填空题(本大题共10题,每题3分,共30分.不需写出解答过程,请把答案直接填写在答题卷相应位置.......上) 9.方程220x x -=的根是 ▲ .10.如果cos 2A =,那么锐角A 的度数为 ▲ .11. 二次函数22810y x x =+-的图象与x 轴的交点坐标是 ▲ .(第6题)12.点),2(1y P -和点),1(2y Q -分别为抛物线322--=x x y 上的两点,则1y▲ 2y .(用“>”或“<”填空)13.两个相似三角形的面积比为9∶16,则它们的周长之比为 ▲ . 14.正方形网格中,AOB ∠如图放置,则sin ∠AOB 的值为 ▲ .15.如图,在扇形OAB 中,∠AOB =110°,半径OA =18,将扇形OAB 沿过点B 的直线折叠,点O 恰好落在弧AB 上的点D 处,折痕交OA 于点C ,则弧AD 的长为 ▲ .16.某班九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1640张相片,如果全班有x 名学生,根据题意,列出方程为 ▲ . 17. 已知二次函数c bx ax y ++=2中,函数y 与自变量x 的部分对应值如下表:若1()A m y ,,2(1)B m y +,两点都在该函数的图象上,当m = ▲ 时,1y =2y .18. 如图,已知第一象限内的点A 在反比例函数2y x=的图象上,第二象限内的点B 在反比例函数ky x=的图象上,且OA ⊥OB ,tan BAO ∠=,则k = ▲ . 三.解答题(本大题共有10小题,共96分.请在答题卷指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)(1)计算:20140+121-⎪⎭⎫⎝⎛−2sin45°+tan60°;(2)解方程:0222=--x x .20.(本题满分8分) 已知:二次函数1322-+-=a x ax y 的图象开口向上,并且经过原点O (0,0).(1)求a 的值;(2)用配方法求出这个二次函数图象的顶点坐标. 21.(本题满分8分)有关部门从甲、乙两个城市所有的自动售货机中分别随机抽取了16台,记录下某一天各自的销售情况(单位:元):甲:18, 8,10,43, 5,30,10,22, 6,27,25,58,14,18,30,41(第18题) DCBAO(第15题) (第14题)乙:22,31,32,42,20,27,48,23,38,43,12,34,18,10,34,23 小强用如图所示的方法表示甲城市16台自动售货机的销售情况.(1)请你仿照小强的方法将乙城市16台自动售货机的销售情况表示出来;(2)用不等号填空:x 甲 ▲ x 乙;2s 甲 ▲ 2s 乙;(3)请说出此种表示方法的优点.. 22.(本题满分8分)为了庆祝春节,某食品厂制作了3种不同的精美卡片,每袋食品随机装入一张卡片,集齐三种卡片可获奖,现购买该种食品3袋,能获奖的概率是多少?23.(本题满分10分) 某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m 宽的空地,其它三侧内墙各保留1m 宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是2288m ?24.(本题满分10分)如图,在Rt △ABC 中,∠C =90°,AB 的垂直平分线与AC ,AB 的交点分别为D ,E .(1)若AD =15,4cos 5BDC ∠=,求AC 的长和tan A 的值; (2)若30BDC ∠=︒,求tan15︒的值.(结果保留根号)25.(本题满分10分)如图,在平面直角坐标系xoy 中,⊙A 与y 轴相切于点3(0,)2B ,与x 轴相交于M 、N 两点.如果点M 的坐标为1(,0)2,求⊙A 的半径及点N 的坐标.B AC E D26.(本题满分10分) 已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F . (1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为4,BE =2,求∠F 的度数.27.(本题满分12分)已知点PPA 交射线OM 于点A ,将射线PA 绕点P 逆时针旋转交射线ON 于点B ,且使∠APB +∠MON =180°. (1)利用图1,求证:PA =PB ;(2)如图2,若点C 是AB 与OP 的交点,当3POB PCB S S ∆∆=时,求PC 与PB 的比值; (3)若∠MON =60°,OB =2,射线AP 交ON 于点D ,且满足且PBD ABO ∠=∠, 请借助图3补全图形,并求OP 的长.28.(本题满分12分)如图,抛物线233y mx mx =+-(m >0)与y 轴交于点C ,与x 轴交于A 、B 两点,点 A 在点B 的左侧,且1tan 3OCB ∠=. (1)求此抛物线的解析式;(2)如果点D 是线段AC 下方抛物线上的动点,设D 点的横坐标为x ,△ACD 的面积为S ,求S 与x 的关系式,并求当S 最大时点D 的坐标;C A O P B M N T图2 图1 T N MB P O A 图3 TNM B P O A C(3)若点E 在x 轴上,点P 在抛物线上,是否存在以A 、C 、E 、P 为顶点的平行四边形?若存在求点P 坐标;若不存在,请说明理由.(备用图)2014-2015学年第一学期期末考试九年级数学参考答案说明:以下解答及标准,如有其它方法可参照评分.一、选择题二、填空题(每题3分,共30分)9.12=02x x =, 10.30° 11.(5,0),(1,0)- 12.> 13.3∶414.216.(1)1640x x -= 17.3218.-6三.解答题(本大题有10题,共96分.解答应写出文字说明、证明过程或演算步骤.) 19.(本题满分8分)(1)化简一个1分共4分,结果错误扣1分. (2)配方得:2(1)3x -= (2分)直接开平方得:1211x x ==(4分).20.(本题满分8分) 解:(1)a =1; ……………………………………………………………3分(2)x x y 32-=494932-+-=x x 49232--=)(x ………………………6分 ∴抛物线顶点坐标为)49,23(- ………………………………8分 21.(本题满分8分)解:(1)图略. ……………………………………………………2分 (2)_ x 甲<_x 乙;s 2甲>s 2乙. ……………………………………………………6分 (3)优点:所有的信息都可以从这张图中获得(或便于记录与表示)等; ………8分22.(本题满分8分)解:分别用卡1、卡2、卡3表示3张卡片,画出树状图(图略) …………4分 P(集齐三种卡片) 62279== …………………………………8分 23.(本题满分10分)设矩形温室的宽为m x ,则长为2m x .根据题意,得 …………………………1分(2)(24)288x x --=. ……………………………………5分解这个方程,得110x =-(不合题意,舍去),214x =. …………………………8分所以14x =,221428x =⨯=.答:当矩形温室的长为28m ,宽为14m 时,蔬菜种植区域的面积是2288m . ……10分 24.(本题满分10分) 解:(1)∵ DE 垂直平分AB ,∴ 15BD AD ==. …………………………1分 在Rt △ACD 中,90C ∠=︒,AD =15,4cos 5BDC ∠=, ∴ 4cos 15125CD AD BDC =⋅∠=⨯=.∴ 27AC CD AD =+=. ………………4分 3sin 1595BC AD BDC =⋅∠=⨯=.在Rt △ABC 中,90C ∠=︒,∴ 91tan 273BC A AC ===. …………………………7分 (2)tan15︒=…………………………10分25.(本题满分10分)解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .∵⊙A 与y 轴相切于点B (0,32),∴AB ⊥y 轴. 又∵AC ⊥MN ,x 轴⊥y 轴,∴四边形BOCA 为矩形. ∴AC =OB =32,OC =BA . ……… 3分 ∵AC ⊥MN ,∴∠ACM = 90°,MC =CN . ∵M (12,0),∴OM =12.在 Rt △AMC 中,设AM =r .理得:222MC AC AM +=.即22213()()22r r -+=, …………………… 6分 求得r=52.∴⊙A 的半径为52. …………………… 8分即AM =CO =AB =52. ∴MC =CN=2 .∴N (92, 0) . …………………… 10分26.(本题满分10分)(1)证明:连接OD .∵AB =AC ,∴ABC ACB ∠=∠.∵OD =OC ,∴ODC OCD ∠=∠. ∴ABC ODC ∠=∠.∴AB ∥OD .∴AED ODF ∠=∠. …………… 3分 ∵DE ⊥AB ,∴90AEF ∠=︒.∴90ODF ∠=︒.∴DE OD ⊥. ∴DE 是⊙O 的切线. …………………………………… 5分 (2)解:连接AD .∵AC 为⊙O 的直径,∴BC ⊥.又∵DE ⊥AB ,∴Rt AED ∆∽Rt ADB ∆.AEAD=.∴2AD AE AB =⋅. ∵⊙O 的半径为4,∴AB =AC =8.∴6AE AB BE =-=.∴AD =.…………………………………………………… 8分在Rt ADB ∆中,∵sin AD B AB ∠===,∴60ABC ∠=︒. 又∵AB =AC ,∴ABC ∆是等边三角形.∴60BAC ∠=︒∴30F ∠=︒. ………………………………………………10分27.解:(1)在OB 上截取OD =OA ,连接PD ,∵OP 平分∠MON ,∴∠MOP =∠NOP . 又∵OA =OD ,OP =OP ,∴△AOP ≌△DOP . ……………2分 ∴PA =PD ,∠1=∠2.∵∠APB +∠MON =180°,∴∠1+∠3=180°.∵∠2+∠4=180°,∴∠3=∠4. ∴PD =PB . ∴PA =PB . ……………4分(2)∵PA =PB ,∴∠3=∠4.∵∠1+∠2+∠APB =180°,且∠3+∠4+∠APB =180°, ∴∠1+∠2=∠3+∠4.∴∠2=∠4.……………6分 ∵∠5=∠5,∴△PBC ∽△POB .∴33P S =∆∆=POB S BC PB PC . …………… 8分 (3)作BE ⊥OP 交OP 于E ,∵∠AOB =600,且OP 平分∠MON , ∴∠1=∠2=30°.∵∠AOB +∠APB =180°,∴∠APB =120°.∵PA =PB ,∴∠5=∠6=30°. ∵∠3+∠4=∠7,∴∠3+∠4=∠7=(180°-30°)÷2=75°.∵在Rt △OBE 中,∠3=600,OB =2∴∠4=150,OE =3,BE =1…………… 10分∴∠4+∠5=450,∴在Rt △BPE 中,EP =BE =1∴OP =13+ ……………12分 28.(本题12分)(1)由已知可得C (0,-3), ∵1tan 3OCB ∠=,∠COB =90°,∴13OB OC = , ∴B (1,0) -----------------------2分∵抛物线233y mx mx =+-(m >0)过点B ,∴m+3m-3=0 , ∴m=43∴抛物线的解析式为349432-+=x x y 51243TNMP OA C7612435ECAOPBM NTD1234A O PBMNT-----------------------4分 (2)如图1,∵抛物线对称轴为23-=x ,B (1,0)∴A (-4,0) 联结OD ,∵点D 在抛物线349432-+=x x y 上 ∴设点D (x ,349432-+x x ),则 ACD AOD DOC AOC S S S S ∆∆∆∆=+-=()2139114334324422x x x ⎛⎫⨯--++⨯--⨯⨯ ⎪⎝⎭ =2362x x -- ---------------------------------------------------------6分 ∴S=()23262x -++ ∴当x=-2时,△ACD 的面积S 有最大值为6. ------ 7分 此时,点D的坐标为(-2,92-). ----------------------------------------------------- 8分 (3)①如图2,当以AC 为边,CP 也是平行四边形的边时, CP ∥AE ,点P 与点C 关于抛物线的对称轴对称,此时P (-3,-3).②如图3,当以AC 为对角线,CP 为边时,此时P 点的坐标是(-3,-3) --------- 9分 ③如图4、图5,当以AC 为边,CP 是平行四边形的对角线时,点P 、C 到x 轴的距离相等,则349432-+x x =3,解得2413±-=x ,此时P (2413--,3)(如图4) 或(2413+-,3)(如图5)--------------------------------------------------------------12分 综上所述,存在三个点符合题意,分别是1P (-3,-3),2P (2413--,3),3P (2413+-,3).(图2)(图3)(图4) (图5)。
2015年秋季新版苏科版九年级数学上学期期末复习试卷1
2015-2016学年江苏省南京市鼓楼区九年级(上)期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题纸相应位置上)1.从单词“happy”中随机抽取一个字母,抽中p的概率为()A.B.C.D.2.一元二次方程x2+x﹣2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根3.若x1,x2是一元二次方程2x2﹣7x+5=0的两根,则x1+x2的值是()A.﹣7 B.C.D.74.下列哪一个函数,其图形与x轴有两个交点()A.y=17(x+50)2+2016 B.y=17(x﹣50)2+2016C.y=﹣17(x+50)2+2016 D.y=﹣17(x﹣50)2﹣20165.如图,⊙O的内接四边形ABCD中,∠A=115°,则∠BOD等于()A.57.5°B.65°C.115°D.130°6.已知二次函数y=x2﹣x+a(a>0),当自变量x取m时,其相应的函数值小于0,那么下列结论中正确的是()A.m﹣1>0 B.m﹣1<0C.m﹣1=0 D.m﹣1与0的大小关系不确定二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.已知⊙O的半径为5cm,圆心O到直线l的距离为4cm,那么直线l与⊙O的位置关系是.8.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若AD:AB=4:9,则S△ADE:S△ABC=.9.若线段AB=6cm,点C是线段AB的一个黄金分割点(AC>BC),则AC的长为cm(结果保留根号).10.若一个圆锥的侧面展开图是一个半径为6cm,圆心角为120°的扇形,则该圆锥的高为cm.11.已知正六边形的边长为4cm,分别以它的三个不相邻的顶点为圆心,边长为半径画弧(如图),则所得到的三条弧的长度之和为cm.(结果保留π)12.如图,电线杆上的路灯距离地面8m,身高1.6m的小明(AB)站在距离电线杆的底部(点O)20m的A处,则小明的影子AM长为m.13.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是m.14.AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为.15.若二次函数y=ax2+bx+c的图象如图所示,则不等式a(x﹣2)2+b(x﹣2)+c<0的解集为.16.如图,在⊙O中,AD是直径,BC是弦,D为的中点,直径AD交BC于点E,AE=5,ED=1,则BC的长是m.三、解答题(本大题共11小题,共88分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(1)解方程:2x2﹣4x﹣6=0.(2)①直接写出函数y=2x2﹣4x﹣6的图象与x轴交点坐标;②求函数y=2x2﹣4x﹣6的图象的顶点坐标.18.九(2)班组织了一次朗读比赛,甲、乙两队各10人的比赛成绩(10分制)如下表(单位:分):甲7 8 9 7 10 10 9 10 10 10乙10 8 7 9 8 10 10 9 10 9(1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队成绩的平均数和方差;(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是队.19.如图,G是边长为8的正方形ABCD的边BC上的一点,矩形DEFG的边EF过点A,GD=10.(1)求FG的长;(2)直接写出图中与△BHG相似的所有三角形.20.一个不透明的袋子中装有3个红球和1个白球,这些球除颜色外都相同.(1)从中随机摸出1个球,记录颜色后放回,搅匀,再摸出1个球.摸出的两个球中,1个为红球,1个为白球的概率为;(2)从中随机摸出1个球,记录颜色后不放回,再摸出1个球.求摸出的两个球中,1个为红球,1个为白球的概率.21.在淘宝一年一度的“双十一”活动中,某电商在2014年销售额为2500万元,要使2016年“双十一”的销售额达到3600万元,平均每年“双十一”销售额增长的百分率是多少?22.在作二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象时,先列出下表:x …﹣1 0 1 2 3 4 5 …y1…0 ﹣3 ﹣4 ﹣3 0 5 12 …y2…0 2 4 6 8 10 12 …请你根据表格信息回答下列问题,(1)二次函数y1=ax2+bx+c的图象与y轴交点坐标为;(2)当y1>y2时,自变量x的取值范围是;(3)请写出二次函数y1=ax2+bx+c的三条不同的性质.23.请探究两个等腰三角形相似的条件,用文字语言直接写出探究的结果即可.24.(1)如图(1),已知射线OP与线段OH,在射线OP上取点D、E、F,且OD=DE=EF,用尺规作出OH的三等分点M、N;(不写作法,保留作图痕迹)(2)请用尺规在图(2)中∠BAC的内部作出一点O,使点O到AB的距离等于点O到AC的距离的2倍.(不写作法,保留作图痕迹)25.如图,在矩形ABCD中,点O是对角线AC上一点,以OC为半径的⊙O与CD交于点M,且∠BAC=∠DAM.(1)求证:AM与⊙O相切;(2)若AM=3DM,BC=2,求⊙O的半径.26.某家禽养殖场,用总长为110m的围栏靠墙(墙长为22m)围成如图所示的三块矩形区域,矩形AEHG与矩形CDEF面积都等于矩形BFHG面积的一半,设AD长为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,y有最大值?最大值是多少?27.如图(1),在矩形ABCD中,AB=3,BC=4,连接BD.现将一个足够大的直角三角板的直角顶点P放在BD所在的直线上,一条直角边过点C,另一条直角边与AB所在的直线交于点G.(1)是否存在这样的点P,使点P、C、G为顶点的三角形与△GCB全等?若存在,画出图形,并直接在图形下方写出BG的长.(如果你有多种情况,请用①、②、③、…表示,每种情况用一个图形单独表示,如果图形不够用,请自己画图)(2)如图(2),当点P在BD的延长线上时,以P为圆心、PB为半径作圆分别交BA、BC延长线于点E、F,连EF,分别过点G、C作GM⊥EF,CN⊥EF,M、N为垂足.试探究PM与FN的关系.2015-2016学年江苏省南京市鼓楼区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题纸相应位置上)1.从单词“happy”中随机抽取一个字母,抽中p的概率为()A.B.C.D.【考点】概率公式.【分析】由单词“happy”中有两个p,直接利用概率公式求解即可求得答案.【解答】解:∵单词“happy”中有两个p,∴抽中p的概率为:.故选C.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.2.一元二次方程x2+x﹣2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【考点】根的判别式.【专题】压轴题.【分析】先计算出根的判别式△的值,根据△的值就可以判断根的情况.【解答】解:△=b2﹣4ac=12﹣4×1×(﹣2)=9,∵9>0,∴原方程有两个不相等的实数根.故选A.【点评】本题主要考查判断一元二次方程有没有实数根主要看根的判别式△的值.△>0,有两个不相等的实数根;△=0,有两个相等的实数根;△<0,没有实数根.3.若x1,x2是一元二次方程2x2﹣7x+5=0的两根,则x1+x2的值是()A.﹣7 B.C.D.7【考点】根与系数的关系.【专题】计算题.【分析】直接根据根与系数的关系求解.【解答】解:根据题意得,x1+x2=﹣=.故选C.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.4.下列哪一个函数,其图形与x轴有两个交点()A.y=17(x+50)2+2016 B.y=17(x﹣50)2+2016C.y=﹣17(x+50)2+2016 D.y=﹣17(x﹣50)2﹣2016【考点】抛物线与x轴的交点.【分析】对于方程17(x+50)2+2016=0,17(x﹣50)2+2016=0,﹣17(x+50)2+2016=0,﹣17(x﹣50)2﹣2016=0,先判断它们的根的情况,然后根据△=b2﹣4ac决定抛物线与x轴的交点个数确定正确选项.【解答】解:A、方程17(x+50)2+2016=0没有实数解,则抛物线y=17(x+50)2+2016与x轴没有公共点,所以A选项错误;B、方程17(x﹣50)2+2016=0没有实数解,则抛物线y=17(x﹣50)2+2016与x轴没有公共点,所以B选项错误;C、方程﹣17(x+50)2+2016=0有两个不相等的实数解,则抛物线y=﹣17(x+50)2+2016与x轴有2个公共点,所以C选项正确;D、方程﹣17(x﹣50)2﹣2016=0没有实数解,则抛物线y=﹣17(x﹣50)2﹣2016与x轴没有公共点,所以D选项错误.故选C.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2﹣4ac决定抛物线与x轴的交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.5.如图,⊙O的内接四边形ABCD中,∠A=115°,则∠BOD等于()A.57.5°B.65°C.115°D.130°【考点】圆内接四边形的性质;圆周角定理.【分析】根据圆内接四边形的性质得到∠C=65°,根据圆周角定理得到答案.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,又∠A=115°,∴∠C=65°,则∠BOD=130°,故选:D.【点评】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补、在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.6.已知二次函数y=x2﹣x+a(a>0),当自变量x取m时,其相应的函数值小于0,那么下列结论中正确的是()A.m﹣1>0 B.m﹣1<0C.m﹣1=0 D.m﹣1与0的大小关系不确定【考点】二次函数的性质.【分析】根据二次函数的性质,由于二次项系数为1,故函数开口方向向上,根据函数解析式的特点,当x=1时,y=a,x=0时,y=a,又a>0,据此即可画出函数草图,利用数形结合的思想即可解答.【解答】解:根据题意画出图形:∵当自变量x取m时,其相应的函数值y<0,∴可知m﹣1表示的点在A、B之间,∴m﹣1>0,∴当自变量x取m﹣1时,函数值y<0.故选:A.【点评】本题考查的是二次函数的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.已知⊙O的半径为5cm,圆心O到直线l的距离为4cm,那么直线l与⊙O的位置关系是相交.【考点】直线与圆的位置关系.【分析】由题意得出d<r,根据直线和圆的位置关系的判定方法判断即可.【解答】解:∴⊙O的半径为5cm,如果圆心O到直线l的距离为4cm,∴4<5,即d<r,∴直线l与⊙O的位置关系是相交.故答案为:相交.【点评】本题考查了直线和圆的位置关系的应用;注意:已知⊙O的半径为r,如果圆心O 到直线l的距离是d,当d>r时,直线和圆相离,当d=r时,直线和圆相切,当d<r时,直线和圆相交.8.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若AD:AB=4:9,则S△ADE:S△ABC=16:81.【考点】相似三角形的判定与性质.【分析】由DE∥BC,证出△ADE∽S△ABC,根据相似三角形的性质即可得到结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴S△ADE:S△ABC=()2=,故答案为:16:81.【点评】本题考查了相似三角形的判定与性质,根据相似三角形面积的比等于相似比的平方解决问题.9.若线段AB=6cm,点C是线段AB的一个黄金分割点(AC>BC),则AC的长为3(﹣1)cm(结果保留根号).【考点】黄金分割.【专题】计算题.【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.【解答】解:根据黄金分割点的概念和AC>BC,得:AC=AB=3(﹣1).故本题答案为:3(﹣1).【点评】此题考查了黄金分割点的概念,要熟记黄金比的值.10.若一个圆锥的侧面展开图是一个半径为6cm,圆心角为120°的扇形,则该圆锥的高为4cm.【考点】圆锥的计算.【分析】易得扇形的弧长,除以2π即为圆锥的底面半径,加上母线长6,利用勾股定理即可求得圆锥的高.【解答】解:圆锥的侧面展开图的弧长为:=4π,∴圆锥的底面半径为4π÷2π=2,∴该圆锥的高为:=4.【点评】用到的知识点为:圆锥的侧面展开图的弧长等于圆锥的底面周长;圆锥的高,母线长,底面半径组成直角三角形.11.已知正六边形的边长为4cm,分别以它的三个不相邻的顶点为圆心,边长为半径画弧(如图),则所得到的三条弧的长度之和为8πcm.(结果保留π)【考点】弧长的计算;正多边形和圆.【分析】先求得正多边形的每一个内角,然后由弧长计算公式.【解答】解:方法一:先求出正六边形的每一个内角==120°,所得到的三条弧的长度之和=3×=8π(cm);方法二:先求出正六边形的每一个外角为60°,得正六边形的每一个内角120°,每条弧的度数为120°,三条弧可拼成一整圆,其三条弧的长度之和为8πcm.故答案为:8π.【点评】本题考查了弧长的计算和正多边形和圆.与圆有关的计算,注意圆与多边形的结合.12.如图,电线杆上的路灯距离地面8m,身高1.6m的小明(AB)站在距离电线杆的底部(点O)20m的A处,则小明的影子AM长为5m.【考点】相似三角形的应用.【分析】根据相似三角形对应边成比例列式计算即可得解.【解答】解:由题意得,=,即=,解得:AM=5.故答案为:5.【点评】本题考查了相似三角形的应用,利用相似三角形对应边成比例列出比例式是解题的关键.13.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是3m.【考点】二次函数的应用.【分析】设抛物线的解析式为:y=ax2+b,由图得知点(0,2.4),(3,0)在抛物线上,列方程组得到抛物线的解析式为:y=﹣x2+2.4,根据题意求出y=1.8时x的值,进而求出答案;【解答】解:设抛物线的解析式为:y=ax2+b,由图得知:点(0,2.4),(3,0)在抛物线上,∴,解得:,∴抛物线的解析式为:y=﹣x2+2.4,∵菜农的身高为1.8m,即y=1.8,则1.8=﹣x2+2.4,解得:x=(负值舍去)故他在不弯腰的情况下,横向活动范围是:3米,故答案为:3.【点评】此题主要考查了二次函数应用以及一元二次方程的解法,正确理解方程与函数关系是解题关键.14.AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为.【考点】圆周角定理.【分析】连接AQ,BQ,根据圆周角定理可得出∠QAB=∠P=45°,∠AQB=90°,故△ABQ 是等腰直角三角形,根据勾股定理即可得出结论.【解答】解:连接AQ,BQ,∵∠P=45°,∴∠QAB=∠P=45°,∠AQB=90°,∴△ABQ是等腰直角三角形.∵AB=2,∴2BQ2=4,∴BQ=.故答案为:.【点评】本题考查的是圆周角定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.15.若二次函数y=ax2+bx+c的图象如图所示,则不等式a(x﹣2)2+b(x﹣2)+c<0的解集为x<3或x>5.【考点】二次函数与不等式(组).【分析】直接利用函数图象即可得出结论.【解答】解:∵由函数图象可知,当x<1或x>3时,函数图象在x轴的下方,∴函数y=a(x﹣2)2+b(x﹣2)+c的图象与x轴的交点为3,5,∴等式a(x﹣2)2+b(x﹣2)+c<0<0的解集为x<3或x>5.故答案为:x<3或x>5.【点评】本题考查的是二次函数与不等式组,能根据题意利用数形结合求出不等式的解集是解答此题的关键.16.如图,在⊙O中,AD是直径,BC是弦,D为的中点,直径AD交BC于点E,AE=5,ED=1,则BC的长是2m.【考点】垂径定理;勾股定理.【分析】连接OB,根据题意求出圆的半径,根据勾股定理求出BE,根据垂径定理的推论计算即可.【解答】解:连接OB,∵AE=5,ED=1,∴AD=6,∴OB=0D=3,OE=2,∵AD是直径,D为的中点,∴OE⊥BC,BE=EC,在Rt△OBE中,BE==,∴BC=2BE=2,故答案为:2.【点评】本题考查的是垂径定理及其推论和勾股定理的应用,掌握垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧、弦的垂直平分线经过圆心,并且平分弦所对的两条弧、平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧是解题的关键.三、解答题(本大题共11小题,共88分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(1)解方程:2x2﹣4x﹣6=0.(2)①直接写出函数y=2x2﹣4x﹣6的图象与x轴交点坐标;②求函数y=2x2﹣4x﹣6的图象的顶点坐标.【考点】抛物线与x轴的交点;解一元二次方程-因式分解法;二次函数的性质.【专题】计算题.【分析】(1)先把方程整理为x2﹣2x﹣3=0,然后利用因式分解法解方程;(2)①利用抛物线与x轴的交点问题,通过解方程2x2﹣4x﹣6=0可得到函数y=2x2﹣4x ﹣6的图象与x轴交点坐标,于是利用(1)中的解可直接得到交点坐标;②把抛物线解析式配成顶点式,然后根据二次函数的性质求解.【解答】解:(1)解方程2x2﹣4x﹣6=0,整理得x2﹣2x﹣3=0,(x﹣3)(x+1)=0,x﹣3=0或x+1=0,所以x1=3,x2=﹣1;(2)①函数y=2x2﹣4x﹣6的图象与x轴交点坐标(3,0),(﹣1,0);②y=2(x2﹣2x)﹣6=2(x2﹣2x+1﹣1)﹣6=2(x﹣1)2﹣8,所以抛物线的顶点(1,﹣8).【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了解一元二次方程和二次函数的性质.18.九(2)班组织了一次朗读比赛,甲、乙两队各10人的比赛成绩(10分制)如下表(单位:分):甲7 8 9 7 10 10 9 10 10 10乙10 8 7 9 8 10 10 9 10 9(1)甲队成绩的中位数是9.5分,乙队成绩的众数是10分;(2)计算乙队成绩的平均数和方差;(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是乙队.【考点】方差;加权平均数.【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【解答】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:(10×4+8×2+7+9×3)=9,则方差是:[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【点评】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.19.如图,G是边长为8的正方形ABCD的边BC上的一点,矩形DEFG的边EF过点A,GD=10.(1)求FG的长;(2)直接写出图中与△BHG相似的所有三角形.【考点】相似三角形的判定与性质;矩形的性质;正方形的性质.【分析】(1)根据=,可以求出FG ,由ED=FG ,只要求出=即可,根据相似三角形的性质即可求解;(2)根据正方形的角都是直角,其余两个角加起来为90°,根据对顶角、余角等关系,可以看出△AFH ,△DCG ,△DEA ,△GBH 均是相似三角形.【解答】解:(1)在正方形ABCD 和矩形DEFG 中,∠E=∠C=90°,∵∠EDA 与∠CDG 均为∠ADG 的余角,∴∠EDA=∠CDG ,∴△DEA ∽△DCG ,∴=∵ED=FG ,∴=,∵GD=10,AD=CD=8,∴=,∴FG=6.4;(2)△AFH ,△DCG ,△DEA ,△GBH 均是相似三角形.【点评】本题考查了相似三角形的判定与性质,在做题过程中,要找全相似三角形要,综合考虑,解题的关键是掌握相似三角形判定和性质.20.一个不透明的袋子中装有3个红球和1个白球,这些球除颜色外都相同.(1)从中随机摸出1个球,记录颜色后放回,搅匀,再摸出1个球.摸出的两个球中,1个为红球,1个为白球的概率为;(2)从中随机摸出1个球,记录颜色后不放回,再摸出1个球.求摸出的两个球中,1个为红球,1个为白球的概率. 【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与摸出的两个球中,1个为红球,1个为白球的情况,再利用概率公式即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与摸出的两个球中,1个为红球,1个为白球的情况,再利用概率公式即可求得答案.【解答】解:(1)画树状图得:∵共有16种等可能的结果,摸出的两个球中,1个为红球,1个为白球的有6种情况,∴摸出的两个球中,1个为红球,1个为白球的概率为:=;故答案为:;(2)编画树状图得:∵共有12种可能出现的结果,它们出现的可能性相同,摸出“1个是红球,1个白球”(记为事件B)的结果有6种,∴摸出的两个球中,1个为红球,1个为白球的概率为:=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.在淘宝一年一度的“双十一”活动中,某电商在2014年销售额为2500万元,要使2016年“双十一”的销售额达到3600万元,平均每年“双十一”销售额增长的百分率是多少?【考点】一元二次方程的应用.【专题】增长率问题.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设平均增长率为x,根据“在2014年销售额为2500万元,要使2016年“双十一”的销售额达到3600万元”,即可得出方程.【解答】解:设平均每年“双十一”销售额增长的百分率是x,根据题意得2500(1+x)2=3600,(1+x)2=,1+x=±,x1==20%,x2=﹣(不合题意,舍去),答:平均每年“双十一”销售额增长的百分率是20%.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.22.在作二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象时,先列出下表:x …﹣1 0 1 2 3 4 5 …y1…0 ﹣3 ﹣4 ﹣3 0 5 12 …y2…0 2 4 6 8 10 12 …请你根据表格信息回答下列问题,(1)二次函数y1=ax2+bx+c的图象与y轴交点坐标为(0,﹣3);(2)当y1>y2时,自变量x的取值范围是x<﹣1或x>5;(3)请写出二次函数y1=ax2+bx+c的三条不同的性质.【考点】二次函数的性质.【分析】(1)令x=0,求得y的数值,确定与y轴交点坐标即可;(2)先利用待定系数法求出二次函数与一次函数的解析式,求出两函数图象的交点,进而可得出结论;(3)利用二次函数的性质:开口方向,对称轴,增减性直接得出答案即可.【解答】解:(1)二次函数y1=ax2+bx+c的图象与y轴交点坐标为(0,﹣3);(2)由题意得,,解得.∴二次函数的解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4.∵一次函数y2=kx+m的图象过点(﹣1,0),(0,2),∴,解得.∴一次函数的解析式为y=2x+2,如图所示,当x<﹣1或x>5时,二次函数的值大于一次函数的值.(3)该函数的图象开口向上;当x=1时,函数有最大值;当x<1时,y随x的增大而减小,当x≥1时,y随x的增大而增大;顶点坐标为(1,﹣4);对称轴为直线x=1.【点评】此题考查二次函数的性质,待定系数法求函数解析式,结合图象,利用二次函数的性质解决问题.23.请探究两个等腰三角形相似的条件,用文字语言直接写出探究的结果即可.【考点】相似三角形的判定;等腰三角形的性质.【分析】若要判定两三角形相似,最主要的方法是找两对对应相等的角.【解答】解:①顶角相等的两个等腰三角形相似;②底角相等的两个等腰三角形相似;③腰和底成比例的两个等腰三角形相似.【点评】本题考查了等腰三角形的性质、相似三角形的判定.相似三角形的判定定理:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.24.(1)如图(1),已知射线OP与线段OH,在射线OP上取点D、E、F,且OD=DE=EF,用尺规作出OH的三等分点M、N;(不写作法,保留作图痕迹)(2)请用尺规在图(2)中∠BAC的内部作出一点O,使点O到AB的距离等于点O到AC的距离的2倍.(不写作法,保留作图痕迹)【考点】作图—复杂作图;平行线分线段成比例.【专题】计算题.【分析】(1)连结FH,分别过点E、F作FH的平行线交OH于N、M,根据平行线分线段成比例定理可得到OM=MN=NH;(2)以A为圆心,任意长为半径画弧交AC与M,交AB与N,然后利用(1)的作法作MN的三等份点即可得到O点.【解答】解:(1)如图1,点M、N为所作;(2)如图2,点O为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.25.如图,在矩形ABCD中,点O是对角线AC上一点,以OC为半径的⊙O与CD交于点M,且∠BAC=∠DAM.(1)求证:AM与⊙O相切;(2)若AM=3DM,BC=2,求⊙O的半径.【考点】切线的判定;勾股定理;相似三角形的判定与性质.【分析】(1)首先连接OE,由四边形ABCD是矩形,∠BAC=∠DAM,可证得∠OMC+∠DMA=90°,即可得∠AMO=90°,则可证得AM与⊙O相切;(2)易证得△BAC∽△DAM,由相似三角形的性质得到=,得到=,根据AM=3DM,BC=2求得AC=6,在△DAM中,根据勾股定理得DM2+AD2=AM2,即可求得DM和AM,在△AMO中,根据AM2+MO2=AO2求得OM的长,即可得⊙O的半径.【解答】(1)证明:连接OM.在矩形ABCD中,AB∥DC,∠D=90°∴∠BAC=∠DCA,∵OM=OC,∴∠OMC=∠OCM.∵∠BAC=∠DAM,∴∠DAM=∠OMC.∴∠OMC+∠DMA=∠DAM+∠DMA.在△DAM中,∠D=90°,∴∠DAM+∠DMA=180°﹣90°=90°.∴∠OMC+∠DMA=90°.∴∠AMO=90°,∴AM⊥MO.点M在⊙O上,OM是⊙O的半径,∴AM与⊙O相切.(2)在△BAC与△DAM中,∵∠BAC=∠DAM,∠B=∠D,∴△BAC∽△DAM,∴=,∴=.∵AM=3DM,∴AC=3BC.BC=2,∴AC=6,在△DAM中,DM2+AD2=AM2即DM2+22=(3DM)2解得DM=.AM=.在△AMO中,AM2+MO2=AO2即()2+MO2=(6﹣MO)2.解得MO=.【点评】此题考查了切线的判定、相似三角形的判定与性质、矩形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.26.某家禽养殖场,用总长为110m的围栏靠墙(墙长为22m)围成如图所示的三块矩形区域,矩形AEHG与矩形CDEF面积都等于矩形BFHG面积的一半,设AD长为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,y有最大值?最大值是多少?【考点】二次函数的应用.【分析】(1)根据矩形AEHG与矩形CDEF面积都等于矩形BFHG面积的一半,得到矩形AEFB面积是矩形CDEF面积的3倍,求得AD=3DE,于是得到y=x(55﹣x)=﹣x2+55x,自变量x的取值范围为:24≤x<40;。
【初中数学】江苏省镇江市2015-2016学年度第一学期期末考试九年级数学试卷 苏科版
第8题图镇江市2015~2016学年度第一学期期末考试九年级数学试卷一、 填空题(每题2分,共24分)1.已知关于x 的方程2(1)310m x x -+-=是一元二次方程,则m 取值范围是 .2.如图所示,小区公园里有一块圆形地面被黑白石子铺成了面积相等的八部分,阴影部分是黑色石子,小华随意向其内部抛一个小球,则小球落在黑色石子区域内的概率是________.3.将抛物线y=x 2向右平移1个单位长度,再向下平移2个单位长度,得到的抛物线的函数表达式为_________.4.一元二次方程()240x -=的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为___ _.5.一组数据1、3、5、7的方差是_________.6.如图,四边形ABCD 是⊙O 的内接四边形,若∠DAB=60°,则∠BCD 的度数是________°.7.若关于x 的方程x 2-2x-a=0有一个根为﹣1,则方程的另一根为_____________.8.如图,在⊙O 中,AB 为直径,CD 为弦,已知∠ACD=35°,则∠BAD=_________°9.若一个圆锥的底面半径长是10cm,母线长是18cm ,则这个圆锥的侧面积= (结果保留π).10.图②是图①中拱形大桥的示意图,桥拱与桥面的交点为O 、B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=-21(80)400x -+16,桥拱与桥墩AC 的交点C 恰好在水面,有AC ⊥x 轴.若AC=174米,则水面宽度CD=_____米.11.二次函数2y ax bx =+的图像如图所示,若一元二次方程20ax bx m ++=有实数根,则m第6题图 第10题图第11题图① ② OD CBA第2题图的取值范围是____________.12.已知二次函数y=x 2-ax-1,若0<a,当-1≤x ≤1时,y 的取值范围是__________(用含a 的代数式表示). 二、 选择题(每题3分,共15分)13.某学校规定学生的数学成绩由三部分组成,期末考试成绩占70%,期中考试成绩占20%,平时作业成绩占10%,某人上述三项成绩分别为90分,85分,90分,则他的数学成绩是( )A.89分B.88.5分C.85.5分D.84分 14.如图,在半径为5cm 的⊙O 中,弦AB=6cm ,OC ⊥AB 于点C ,则OC 的值为( )A .6cmB .5cmC .4cmD .3cm 15.若关于x 的方程012kx 2=--x 有两个不相等的实数根,则k 的取值范围是( )A .k ﹤1B .k ﹥-1C .k ﹤1且k ≠0D .k ﹥-1且k ≠016.如图,AD 、BC 是⊙O 的两条互相垂直的直径,点P 从点O 出发,沿O →C →D →O 的路线匀速运动,设∠APB=y (单位:度),那么y 与点P 运动的时间x (单位:秒)的关系图是( )17.如图是抛物线y 1=ax 2+bx+c (a ≠0)图像的一部分,抛物线的顶点坐标A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx+n (m ≠0)与抛物线交于A ,B 两点,下列结论:①2a+b=0;②abc >0;③方程ax 2+bx+c=3有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x <4时,有y 2<y 1,其中正确结论的个数是( )A .5B .4C .3D .2 三、解答题(共81分)18.(本题满分8分)解下列方程:(1)2(1)9x -= (2)0342=+-x x19.(本题满分8分)如图,在Rt △ABC 中,∠ACB=90°,AC=2,AB=4(1)求作⊙O ,使它过点A 、B 、C (要求:尺规作图,保留作图痕迹,不写作法); (2)在(1)所作的圆中,求出劣弧的度数和的长.第14题图第17题图20.(本题满分6分)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛.各参赛选手的成绩如下:九(1)班:92,93,93,93,93,93,97,98,98,100 九(2)班:91,93,93,93,96,97,97,98,98,99 通过整理,得到数据分析表如下:(1)直接写出表中m 、n 的值; (2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由.21.(本题满分6分)小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1、2、3、4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后不放回,再从中摸出一个球,记下数字。
2015-2016学年第一学期期末考试九年级数学附答案
15.如图,四边形ABCD内接于⊙O,若⊙O的半径为6,∠A=130°,则扇形OBAD的面积为▲.
16.某数学兴趣小组研究二次函数y=mx2-2mx+1(m≠0)的图像时发现:无论m如何变化,该图像总经过两个定点(0,1)和(▲,▲).
三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
17.(8分)(1)解方程:3x(x-2)=x-2(2)x2-4x-1=0
18.(6分)如图,利用标杆BE测量建筑物的高度,如果标杆BE长1.2m,测得AB=1.6m,BC=8.4m,楼高CD是多少?
25.(8分)如图,要设计一本画册的封面,封面长40cm,宽30cm,正中央是一个与整个封面长宽比例相同的矩形画.如果要使四周的边衬所占面积是封面面积的,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(结果保留小数点后一位,参考数据:≈2.236).
26.(10分)如图①,A、B、C、D四点共圆,过点C的切线CE∥BD,与AB的延长线交于点E.
2015-2016学年第一学期期末考试九年级数学
(满分:120分考试时间:120分钟)
一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.方程x(x+2) =0的解是(▲)
A.-2
B.0,-2
C.0,2
D.无实数根
2.两个相似三角形的相似比是2:3,则这两个三角形的面积比是(▲)
2015-2016学年度第一学期期末考试九年级数学试题附答案
2015-2016学年度第一学期期末考试九年级数学试题本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为36分;第Ⅱ卷共4页,满分为84分.本试题共6页,满分为120分.考试时间为120分钟.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次方程x 2﹣9=0的解是( )A . x=3B . x=﹣3C . x 1=3,x 2=﹣3D . x 1=9,x 2=﹣9 2.如图,下列几何体的左视图不是矩形的是( )3.下列函数中,图象经过点(2,﹣3)的反比例函数关系式是 ( )A.3y x =- B.2y x = C.6y x = D.6y x=-4.如图,四边形ABCD 内接于⊙O ,已知∠A BC =35°,则∠AOC 的大小是( ) A.80° B.70° C. 60° D.50°5.在正方形网格中,ABC △的位置如图所示,则cos B ∠的值为( )A .12B .22C .32D .336.下列命题正确的是( )A .对角线互相垂直的四边形是菱形B .一组对边相等,另一组对边平形的四边形是平行四边形C .对角线相等的四边形是矩形D .对角线互相垂直平分且相等的四边形是正方形7.三角形两边长分别为3和6,第三边是方程x 2-13x+36=0的根,则三角形的周长为( ) A .13 B .15 C .18 D .13或188.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是( )A .∠ABP =∠CB .∠APB =∠ABC C .AP AB AB AC = D .AB ACBP CB=9. 二次函数y= -x 2+2x+4的最大值为( )A .3B .4C .5D .610.经过某十字路口的汽车,可能直行,也可能左转或者右转。
2015~2016学年度 最新精编 苏科版 九年级数学上册 期末教学质量调研数学试题
( 试卷满分l30分,考试时间120分钟 )一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.方程210x -=的解是A .1B .一1C .±1D .0或12.在下列各点中,一定在二次函数2(1)2y x =-+图象上的是A .(0,2)B .(1,2)C .(一1,2)D .(1,0)3.如图,在R t △ABC 中,∠C =90°,AC =1,∠B =30°,则AB 的长为A .2B .3C .12D4.抛掷一枚质地均匀、六个面上分别刻有1、2、3、4、5、6六个数字的方体骰子一次,则向上一面的数字小于3的概率是A .12 B . 13 C .23 D .165.如图,点P 为⊙O 外一点,点A 、B 在圆上,P A 、PB 交优弧AB 于点C 、D ,若∠AOB =60 ,则判断∠APB 大小正确的是A .∠APB=30B .∠APB >30C .∠APB <30D .不能确定6.己知一元二次方程223x x -+1=0的两根为X 1,X 2,,则X 1+ X 2的值为A.1 B .3 C .12 D .327.某商品经过两次降价,每件零售价比原来降低了36%,则平均每次降价的百分率是A 18%B .20%C .30%D .40%8.在R t △ABC 中,90C ∠=, a 、b 、c 分别是,,A B C ∠∠∠的对边,那么c 可以表示为A .22a b + B. cos cos aB b A ⋅+⋅C .sin sin a B b A ⋅+⋅ D.sin sin a b A B+ 9.已知二次函数用243y x x =-+, 当x > 0时,函数值y 的取值范围是A .y > 3B .y < 3C .y ≥ -1D .-l ≤y < 310.如图,在⊙O 中,AB 为直径,点C 为圆上一点,将 AC 沿弦AC翻折交AB 于点D ,连结CD .若25BAC ∠=,则DCA ∠的度数是A .30B .35C .40D .45二、填空题(本大题共8小题,每小题3分,共24分)11.一组数据-2, 0, 1 , 2, 4的中位数是 ▲ .12.若x= - l 是方程kx =22x K +的一个根,则K = ▲ . 13.如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,点D 是 CAB上一 点,若∠ABC=20,则∠D 的度数是 ▲ .14.已知抛物线22y ax x c =++的顶点坐标为(1,4),则c 的值为 ▲ .15.将代数式247x x -+化为2()a x h k -+的形式为 ▲ .16.在R t △ABC 中,已知90,,8,10,CD AB AC AB ∠=⊥== 则tan ∠ACD= ▲ .17.将半径为4cm 的半圆围成一个圆锥(接缝处不计),则该圆锥的高度是 ▲ cm .18.如图,在抛物线用2y x =的内部依次画正方形,使对角线在y 轴上,另两个顶点落在抛物线上.按此规律堆垒,第201 5个正方形的边长是 ▲ .三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文宇说明)19.(本题共2小题,每小题4分,满分8分)计算:3(1)3---;(2)1011)2cos602-⎛⎫-+ ⎪⎝⎭.20.(本题共2小题,每小题4分,满分8分)解下列方程:(1) 220x x --= (2) 2(21)42x x -=-21.(本题满分6分)如图①,在⊙O 中,AB 为弦,半径OD ⊥AB 于点C ,可称这个图形为“垂径基本形”.其中OA 为半径,AC 称为半弦,OC 为弦心距,C D 为弓形高,我们知道其中任意两个量即可求出其余两个量.(1) 已知OA=5,OC=3,求AB 的长;(2)问题解决:如图②,工程上常用钢珠来测量零件上小孔的直径.若钢珠的直径是10 mm ,钢珠顶端离零件表面的距离为8 mm ,求小孔的直径AB .22.(本题满分6分)某校抽样调查了部分初三学生的升学意向,调查结果有三种情况:A .考上三星级高中;B .考取四星级高中;C .进入职业技术学校.教务处将调查数据进行了整理,绘制了如下不完整的统计图.请根据相关信息,解答下列问题:(1)本次活动共调查了学生 ▲ 名;(2)求出图②中B 区域圆心角的度数;(3)若该校初三学生共有600名,请用样本估计该校学生中目标“考取四星级高中”的人数.23.(本题满分6分)如图,为了测量旗竿CD 的高度,在平地上选择点A ,用测角仪测得旗竿顶D 的仰角为30,再在A 、C 之间选择一点B (A 、B 、C 三点在同一直线上)进行测量,已知AB=40m .(1)若测得60DBC ∠= , 则CD= ▲ m ;(2)若测得75DBC ∠= ,求旗竿CD 的高度(以上结果均保留根号).24.(本题满分7分)已知关于x 的一元二次方程21202x mx m ++-=.(1)若该方程有两个相等的实数根,求m 的值;(2)在等腰△ABC 中,一边a =3,另两边b 、c 是该方程的两个根,试求△ABC 的周长。
九年级数学上学期期末试卷含解析苏科版1
江苏省苏州市吴江区2015-2016学年九年级(上)期末数学试卷一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的.)1.关于x的方程x2﹣4=0的根是()A.2 B.﹣2 C.2,﹣2 D.2,2.下列说法中,正确的是()A.三点肯定一个圆B.三角形有且只有一个外接圆C.四边形都有一个外接圆D.圆有且只有一个内接三角形3.若tan40°=a,则tan50°=()A.B.﹣a C.a D.2a4.某市地图上有一块草地,三边长别离为3cm、4cm、5cm,已知这块草地最短边的实际长度为90m,则这块草地的实际面积是()A.60m2B.120m2C.180m2D.5400m25.如图,AB、CD是⊙O的直径,弦CE∥AB,CE为100°,则∠AOC的度数为()A.30°B.39°C.40°D.45°6.有一人得了流感,通过两轮传染后共有100人得了流感,那么每轮传染中平均一个人传染的人数为()A.8人B.9人C.10人 D.11人7.已知一元二次方程ax2+bx+c=0(a>0)的两个实数根x1,x2知足x1+x2=4和x1•x2=3,那么二次函数ax2+bx+c(a>0)的图象有可能是()A.B.C.D.8.若是三条线段的长a、b、c知足==,那么(a,b,c)叫做“黄金线段组”.黄金线段组中的三条线段()A.必组成锐角三角形B.必构成直角三角形C.必组成钝角三角形D.不能构成三角形9.如图,方格纸中有每一个小正方形的边长为1,记图中阴影部份的面积为S1,△ABC的面积为S2,则=()A.B.C.D.10.如图,过⊙O外一点P作⊙O的两条切线,切点别离为A、B,点M是劣弧上的任一点,过M作⊙0的切线别离交PA、PB于点C、D,过圆心O且垂直于OP的直线与PA、PB别离交于点E、F,那么的值为()A.B.C.1 D.2二、填空题(本大题共8小题,每小题3分,共24分.)11.二次函数y=x2﹣4x+5的图象的极点坐标为______.12.弧的半径为24,所对圆心角为60°,则弧长为______.13.如图,点B、D、E在一条直线上,BE与AC相交于点F, ==,若∠EAC=18°,则∠EBC=______.14.已知==,且a+b+c=68,则a+b﹣c=______.15.如图,线段AB=1,P是AB的黄金分割点,且PA>PB,S1表示以PA为边长的正方形面积,S2表示以AB为长、PB为宽的矩形面积,则S1﹣S2=______.16.以下是龙湾风光区旅游信息:旅游人数收费标准不超过30人人均收费80元超过30人每增加1人,人均收费降低1元,但人均收费不低于50元按照以上信息,某公司组织一批员工到该风光区旅游,支付给旅行社2800元.从中能够推算出该公司参加旅游的人数为______.17.设关于x的方程x2+(a﹣3)x+3a=0有两个不相等的实数根x1、x2,且x1<2<x2,那么a的取值范围是______.18.如图,点A(﹣2,5)在以(1,﹣4)为极点的抛物线上,抛物线与x正半轴交于点B,点M(x,y)(其中﹣2<x<3)是抛物线上的动点,则△ABM面积的最大值为______.三、解答题(本大题共10小题,共76分,把解答进程写在答题卷相应的位置上,解答时应写出必要的计算进程、推演步骤或文字说明.)19.计算tan260°+4sin30°cos45°.20.解下列方程:(1)x(x+4)=﹣3(x+4);(2)(2x+1)(x﹣3)=﹣6.21.已知二次函数y=ax2+bx+16的图象通过点(﹣2,40)和点(6,﹣8)(1)别离求a、b的值,并指出二次函数图象的极点、对称轴;(2)当﹣2≤x≤6时,试求二次函数y的最大值与最小值.22.如图,点D是等腰△ABC底边的中点,过点A、B、D作⊙O.(1)求证:AB是⊙O的直径;(2)延长CB交⊙O于点E,连结DE,求证:DC=DE.23.某同窗为了检测车速,设计如下方案如图,观测点C选在东西方向的太湖大道上O点正南方向120米处.这时,一辆小轿车沿太湖大道由西向东匀速行驶,测得此车从A处行驶到B处所用的时刻为3秒,且∠ACO=60°,∠BCO=45°(1)求AB的长;(2)请判断此车是不是超过了太湖大道每小时80千米的限制速度?(参考数据:≈,≈)24.如图,BD、CE是△ABC的高,垂足别离为点D、E.(1)求证:∠ABD=∠ACE;(2)求证:AE•AB=AD•AC.25.某商场以每件42元的价钱购进一批服装,由试销知,天天的销量t(件)与每件的销售价x元之间的函数关系为t=204﹣3x.(1)试写出天天销售这种服装的毛利润y(元)与每件销售价x(元)之间的函数表达式(2015秋•吴江区期末)如图,AD是⊙O的直径,以AD为边作平行四边形ABCD,AB与⊙O交于点F,在边BC上取一点E(含端点),连接DE,使△ADF∽△CDE.(1)求证:DE是⊙O的切线;(2)若BF=3AF,且⊙O的面积与平行四边形面积之比为,试求的值.27.(10分)(2015秋•吴江区期末)如图①,已知二次函数y=ax2+bx﹣3的图象对应的抛物线与x轴交于A(﹣6,0),B(2,0)两点,与y轴交于C点.(1)求二次函数的表达式;(2)若M是x轴上的动点,点N在抛物线上,当四边形MNCB是平行四边形时,求M坐标;(3)如图②,若点P是x轴上的动点,PQ⊥x轴,交抛物线于点Q,连结QC,当QC与以OP 为直径的圆相切时.求点P坐标.28.(10分)(2015秋•吴江区期末)如图.在△ABC中,AB=4,D是AB上一点(不与点A、B)重合,DE∥BC,交AC于点E.设△ABC的面积为S,△DEC的面积为S′.(1)当D是AB中点时,求的值;(2)设AD=x, =y,求y与x的函数表达式,并写出自变量x的取值范围;(3)按照y的范围,求S﹣4S′的最小值.2015-2016学年江苏省苏州市吴江区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的.)1.关于x的方程x2﹣4=0的根是()A.2 B.﹣2 C.2,﹣2 D.2,【考点】解一元二次方程-直接开平方式.【分析】直接利用开平方式解方程得出答案.【解答】解:x2﹣4=0,则x2=4,解得:x1=2,x2=﹣2,故选:C.【点评】此题主要考查了直接开平方式解一元二次方程,正确开平方是解题关键.2.下列说法中,正确的是()A.三点肯定一个圆B.三角形有且只有一个外接圆C.四边形都有一个外接圆 D.圆有且只有一个内接三角形【考点】肯定圆的条件.【分析】按照肯定圆的条件一一判断后即可取得答案.【解答】解:A、不在同一直线上的三点肯定一个圆,故原命题错误;B、三角形有且只有一个外切圆,原命题正确;C、并非是所有的四边形都有一个外接圆,原命题错误;D、圆有无数个内接三角形.故选B.【点评】本题考查了肯定圆的条件,不在同一直线上的三点肯定一个圆.3.若tan40°=a,则tan50°=()A.B.﹣a C.a D.2a【考点】互余两角三角函数的关系.【分析】按照同一个角的正切、余切互为倒数,按照一个角的正切等于它余角的余切,可得答案.【解答】解:cot40°==.tan50°=cot40°=,故选:A.【点评】本题考查了互余两角三角函数的关系,利用一个角的正切等于它余角的余切是解题关键.4.某市地图上有一块草地,三边长别离为3cm、4cm、5cm,已知这块草地最短边的实际长度为90m,则这块草地的实际面积是()A.60m2B.120m2C.180m2D.5400m2【考点】比例线段.【分析】第一设该长方形草坪的实际面积为xcm2,然后按照比例尺的性质,列方程,解方程即可求得x的值,注意统一单位.【解答】解:因为三边长别离为3cm、4cm、5cm,已知这块草地最短边的实际长度为90m,可得:比例之比为:1:3000,所以这块草地的实际面积是3000×3×4×=18000=180m2,故选C【点评】此题考查了比例尺的性质.解题的关键是按照题意列方程,注意统一单位.5.如图,AB、CD是⊙O的直径,弦CE∥AB,CE为100°,则∠AOC的度数为()A.30° B.39° C.40° D.45°【考点】圆周角定理.【分析】由平行弦的性质得出,求出的度数,由圆周角定理即可得出结果.【解答】解:∵CE∥AB,∴,∴的度数=(180°﹣的度数)=40°,∴∠AOC=40°;故选:C.【点评】本题考查了圆周角定理、平行弦的性质;熟练掌握圆周角定理,由平行弦的性质得出相等的弧是解决问题的关键.6.有一人得了流感,通过两轮传染后共有100人得了流感,那么每轮传染中平均一个人传染的人数为()A.8人B.9人C.10人D.11人【考点】一元二次方程的应用.【分析】本题考查增加问题,应理解“增加率”的含义,若是设每轮传染中平均一个人传染的人数为x人,那么由题意可列出方程,解方程即可求解.【解答】解:设每轮传染中平均一个人传染的人数为x人,第一轮事后有(1+x)个人感染,第二轮事后有(1+x)+x(1+x)个人感染,那么由题意可知1+x+x(1+x)=100,整理得,x2+2x﹣99=0,解得x=9或﹣11,x=﹣11不符合题意,舍去.那么每轮传染中平均一个人传染的人数为9人.故选B.【点评】主要考查增加率问题,可按照题意列出方程,判断所求的解是不是符合题意,舍去不合题意的解.7.已知一元二次方程ax2+bx+c=0(a>0)的两个实数根x1,x2知足x1+x2=4和x1•x2=3,那么二次函数ax2+bx+c(a>0)的图象有可能是()A.B.C.D.【考点】抛物线与x轴的交点;二次函数的图象.【分析】按照二次函数二次函数y=ax2+bx+c(a>0)的图象与x轴的交点横坐标就是一元二次方程ax2+bx+c=0(a>0)的两个实数根,利用两个实数根x1,x2知足x1+x2=4和x1•x2=3,求得两个实数根,作出判断即可.【解答】解:∵已知一元二次方程ax2+bx+c=0(a>0)的两个实数根x1,x2知足x1+x2=4和x1•x2=3,∴x1,x2是一元二次方程x2﹣4x+3=0的两个根,∴(x﹣1)(x﹣3)=0,解得:x1=1,x2=3∴二次函数ax2+bx+c(a>0)与x轴的交点坐标为(1,0)和(3,0)故选:C.【点评】本题考查了抛物线与x轴的交点坐标及二次函数的图象,解题的关键是按照题目提供的条件求出抛物线与横轴的交点坐标.8.若是三条线段的长a、b、c知足==,那么(a,b,c)叫做“黄金线段组”.黄金线段组中的三条线段()A.必组成锐角三角形 B.必构成直角三角形C.必组成钝角三角形 D.不能构成三角形【考点】黄金分割;三角形三边关系.【分析】先由黄金线段组的概念得出b+c=a,再按照三角形三边关系定理得出结论.【解答】解:∵ ==,∴b=a,c=b=a,∴b+c=a+a=a,∴三条线段a、b、c不能组成三角形.故选D.【点评】本题主要考查了学生的阅读能力及知识的应用能力,能够按照已知条件得出b+c=a 是解题的关键.9.如图,方格纸中有每一个小正方形的边长为1,记图中阴影部份的面积为S1,△ABC的面积为S2,则=()A.B.C.D.【考点】相似三角形的判定与性质;三角形的面积;平行线分线段成比例.【分析】可运用平行线分线段成比例定理,求出DE、GI,从而求出EM、IM,进而可求出阴影部份的面积,然后只需运用割补法求出△ABC的面积,即可解决问题.【解答】解:如图,∵DE∥FC,∴=,即=,∴DE=,∴EM=,∵GI∥HC,∴=,即=,∴GI=,∴MI=,∴△EMI的面积=××=,同理可得,△KLJ的面积=××=,∴阴影部份的面积为S1=1﹣×2=,又∵△ABC的面积为S2=9﹣3﹣3﹣=,∴==,故选(C).【点评】本题主要考查了相似三角形的判定与性质,平行线分线段成比例定理和三角形的面积公式,运用割补法是解决本题的关键.解题时注意:平行于三角形的一边,而且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.10.如图,过⊙O外一点P作⊙O的两条切线,切点别离为A、B,点M是劣弧上的任一点,过M作⊙0的切线别离交PA、PB于点C、D,过圆心O且垂直于OP的直线与PA、PB别离交于点E、F,那么的值为()A.B.C.1 D.2【考点】切线的性质;相似三角形的判定与性质.【分析】先证明△EOC∽△FDO,由此取得EC•FD=EO2,即可取得答案.【解答】解:∵PA、PB、CD都是⊙O的切线,∴∠OPE=∠OPF,∠OAC=∠OCD,∠ODM=∠ODB,OA⊥PE,OM⊥D,OB⊥PF,∴∠OAC=∠OMC=∠OMD=∠OBD=90°,∵∠COA+∠AOC=90°,∠OCD+∠COM=90°∴∠COA=∠COM,同理∠DOM=∠DOB,∵PO⊥EF,∴∠OPE=∠POF=90°,∴∠OPE+∠E=90°,∠OPF+∠F=90°,∴∠E=∠F,∴PE=PF,∵∠EPO=∠FPO,∴OE=OF,∵∠E+∠AOE=90°,∠F+∠FOB=90°,∴∠AOE=∠BOF,∵∠AOE+∠AOC+∠COD+∠MOD+∠DOB+∠FOB=180°,∴2∠BOF+2∠AOC+2∠DOB=180°,∴∠BOF+∠AOC+∠DOB=90°,∴∠AOC+∠DOF=90°,∵∠AOC+∠ACO=90°,∴∠ACO=∠DOF,∵∠E=∠F,∴△EOC∽△FDO,∴=,∴EC•DF=OE•OF=OE2,∴==.故选A.【点评】本题考查切线的性质、相似三角形的判定和性质、肯定哪两个三角形相似是解决本题的关键.二、填空题(本大题共8小题,每小题3分,共24分.)11.二次函数y=x2﹣4x+5的图象的极点坐标为(2,1).【考点】二次函数的性质.【分析】利用配方式化为极点式求得极点坐标即可.【解答】解:∵y=x2﹣4x+5=x2﹣4x+4+1=(x﹣2)2+1.∴抛物线的极点坐标为(2,1).故答案为:(2,1).【点评】本题主要考查的是二次函数的性质,利用配方式求得二次函数的极点坐标是解题的关键.12.弧的半径为24,所对圆心角为60°,则弧长为8π.【考点】弧长的计算.【分析】直接利用弧长公式得出即可.【解答】解:∵弧的半径为24,所对圆心角为60°,∴弧长为l==8π.故答案为:8π.【点评】此题主要考查了弧长公式的应用,熟练记忆公式是解题关键.13.如图,点B、D、E在一条直线上,BE与AC相交于点F, ==,若∠EAC=18°,则∠EBC= 18°.【考点】相似三角形的判定与性质.【分析】由三边对应成比例的两个三角形相似可得△ABC∽△ADE,按照相似三角形的对应角相等取得∠B=∠E,于是取得A,B,C,E四点共圆,按照圆周角定理即可取得结论.【解答】解:∵ ==,∴△ABC∽△ADE.∴∠E=∠C,∴A,B,C,E四点共圆,∴∠EBC=∠EAC=18°.故答案为:18°.【点评】本题考查了相似三角形的判定和性质,四点共圆,圆周角定理,熟练掌握相似三角形的判定和性质是解题的关键.14.已知==,且a+b+c=68,则a+b﹣c= 12 .【考点】比例的性质.【分析】设比值为k,然后用k表示出a、b、c,再利用等式求出k的值,从而取得a、b、c的值,最后代入代数式进行计算即可得解.【解答】解:设===k,则a=9k,b=11k,c=14k,∵a+b+c=68,∴9k+11k+14k=68,解得k=2,∴a=18,b=22,c=28,∴a+b﹣c=18+22﹣28=12.故答案为:12.【点评】本题考查了比例的性质,利用“设k法”求解更简便.15.如图,线段AB=1,P是AB的黄金分割点,且PA>PB,S1表示以PA为边长的正方形面积,S2表示以AB为长、PB为宽的矩形面积,则S1﹣S2= 0 .【考点】黄金分割.【分析】按照黄金分割的概念取得PA2=PB•AB,再利用正方形和矩形的面积公式有S1=PA2,S2=PB•AB,那么S1=S2,即S1﹣S2=0.【解答】解:∵P是线段AB的黄金分割点,且PA>PB,∴PA2=PB•AB,又∵S1表示以PA为边长的正方形的面积,S2表示以AB为长、PB为宽的矩形面积,∴S1=PA2,S2=PB•AB,∴S1=S2,∴S1﹣S2=0故答案为0.【点评】本题考查了黄金分割的概念:一个点把一条线段分成较长线段和较短线段,而且较长线段是较短线段和整个线段的比例中项,那么就说那个点把这条线段黄金分割,那个点叫这条线段的黄金分割点.16.以下是龙湾风光区旅游信息:旅游人数收费标准不超过30人人均收费80元超过30人每增加1人,人均收费降低1元,但人均收费不低于50元按照以上信息,某公司组织一批员工到该风光区旅游,支付给旅行社2800元.从中能够推算出该公司参加旅游的人数为40 .【考点】一元二次方程的应用.【分析】第一肯定是不是超过三十人,然后设参加这次旅游的人数为x人,按照总费用为2800元列出一元二次方程求解即可.【解答】解:(因为30×80=2400<2800,所以人数超过30人;设参加这次旅游的人数为x人,依题意可知:x[80﹣(x﹣30)]=2800解之得,x=40或x=70,当x=70时,80﹣(x﹣30)=80﹣40=40<50,故应舍去,即:参加这次旅游的人数为40人.故答案是:40.【点评】本题考查了一元二次方程的应用,此类题目切近生活,有利于培育学生应用数学解决生活中实际问题的能力.解题关键是要读懂题目的意思,按照题目给出的条件,找出适合的等量关系,列出方程,再求解.17.设关于x的方程x2+(a﹣3)x+3a=0有两个不相等的实数根x1、x2,且x1<2<x2,那么a的取值范围是a<.【考点】根与系数的关系;根的判别式.【分析】按照根的判别式求出a的取值范围,再按照根与系数的关系求出a的取值范围,求其公共解即可.【解答】解:∵关于x的方程x2+(a﹣3)x+3a=0有两个不相等的实数根x1、x2,∴△=(a﹣3)2﹣4•3a=a2﹣6a+9﹣12a=a2﹣18a+9>0;解得a<9﹣6或a>9+6;又∵x1<2<x2,∴x1﹣2<0,x2﹣2>0,∴(x1﹣2)(x2﹣2)<0,即x1x2﹣2(x1+x2)+4<0,按照根与系数的关系得,3a﹣2×(3﹣a)+4<0,解得a<,综上,a<.故答案为a<.【点评】此题考查了一元二次方程根的判别式及根与系数的关系,将二者结合是解题常常利用的方式.18.如图,点A(﹣2,5)在以(1,﹣4)为极点的抛物线上,抛物线与x正半轴交于点B,点M(x,y)(其中﹣2<x<3)是抛物线上的动点,则△ABM面积的最大值为.【考点】抛物线与x轴的交点.【分析】先利用极点式求出抛物线解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3,再解方程x2﹣2x﹣3=0取得B(3,0),接着利用待定系数法求出直线AB的解析式为y=﹣x+3,作MN ∥y轴交AB于点N,如图,设M(t,t2﹣2t﹣3)(﹣2<x<3),则N(t,﹣t+3),利用S△ABM=S△AMN+S△BMN可取得S△ABM═﹣t2+t,然后按照二次函数的性质求解.【解答】解:设抛物线解析式为y=a(x﹣1)2﹣4,把A(﹣2,5)代入得a(﹣2﹣1)2﹣4=5,解得a=1,∴抛物线解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3,当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则B(3,0),设直线AB的解析式为y=kx+b,把A(﹣2,5),B(3,0)代入得,解得,∴直线AB的解析式为y=﹣x+3,作MN∥y轴交AB于点N,如图,设M(t,t2﹣2t﹣3)(﹣2<x<3),则N(t,﹣t+3),∴MN=﹣t+3﹣(t2﹣2t﹣3)=﹣t2+t∴S△ABM=S△AMN+S△BMN=•5•MN=﹣t2+t=﹣(t﹣)2+∴当t=时,△ABM面积有最大值,最大值为.故答案为.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a ≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质和三角形面积公式.三、解答题(本大题共10小题,共76分,把解答进程写在答题卷相应的位置上,解答时应写出必要的计算进程、推演步骤或文字说明.)19.计算tan260°+4sin30°cos45°.【考点】实数的运算;特殊角的三角函数值.【分析】原式利用特殊角的三角函数值化简,计算即可取得结果.【解答】解:原式=3+4××=3+2=5.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.解下列方程:(1)x(x+4)=﹣3(x+4);(2)(2x+1)(x﹣3)=﹣6.【考点】解一元二次方程-因式分解法.【分析】(1)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x(x+4)=﹣3(x+4),x(x+4)+3(x+4)=0,(x+4)(x+3)=0,x+4=0,x+3=0,x1=﹣4,x2=﹣3;(2)(2x+1)(x﹣3)=﹣6,整理得:2x2﹣5x+3=0,(2x﹣3)(x﹣1)=0,2x﹣3=0,x﹣1=0,x1=,x2=1.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.21.已知二次函数y=ax2+bx+16的图象通过点(﹣2,40)和点(6,﹣8)(1)别离求a、b的值,并指出二次函数图象的极点、对称轴;(2)当﹣2≤x≤6时,试求二次函数y的最大值与最小值.【考点】二次函数的最值.【分析】(1)待定系数法可求得a、b的值,配方成二次函数极点式可得极点坐标、对称轴;(2)由(1)知y=(x﹣5)2﹣9且﹣2≤x≤6,利用二次函数性质可得最值.【解答】解:(1)按照题意,将点(﹣2,40)和点(6,﹣8)代入y=ax2+bx+16,得:,解得:,∴二次函数解析式为:y=x2﹣10x+16=(x﹣5)2﹣9,该二次函数图象的极点坐标为:(5,﹣9),对称轴为x=5;(2)由(1)知当x=5时,y取得最小值﹣9,在﹣2≤x≤6中,当x=﹣2时,y取得最大值40,∴最大值y=40,最小值y=﹣9.【点评】本题考查了二次函数的性质及二次函数的最值,配方成极点式是根本,熟练掌握二次函数的图象与性质是关键.22.如图,点D是等腰△ABC底边的中点,过点A、B、D作⊙O.(1)求证:AB是⊙O的直径;(2)延长CB交⊙O于点E,连结DE,求证:DC=DE.【考点】圆周角定理;等腰三角形的性质.【分析】(1)连接BD,按照等腰三角形的三线合一取得BD⊥AC,按照圆周角定理证明结论;(2)按照等腰三角形的性质、圆周角定理和等量代换证明即可.【解答】(1)证明:连接BD,∵BA=BC,AD=DC,∴BD⊥AC,∴∠ADB=90°,∴AB是⊙O的直径;(2)证明:∵BA=BC,∴∠A=∠C,由圆周角定理得,∠A=∠E,∴∠C=∠E,∴DC=DE.【点评】本题考查的是圆周角定理和等腰三角形的性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半和等腰三角形的三线合一是解题的关键.23.某同窗为了检测车速,设计如下方案如图,观测点C选在东西方向的太湖大道上O点正南方向120米处.这时,一辆小轿车沿太湖大道由西向东匀速行驶,测得此车从A处行驶到B处所用的时刻为3秒,且∠ACO=60°,∠BCO=45°(1)求AB的长;(2)请判断此车是不是超过了太湖大道每小时80千米的限制速度?(参考数据:≈,≈)【考点】解直角三角形的应用.【分析】(1)按照题意能够别离求得AO和BO的长,从而能够求得AB的长;(2)按照题意能够求得此车的速度,从而能够判断现在是不是超过了太湖大道每小时80千米的限制速度.【解答】解:(1)由题意可得,CO=120米,∠COB=∠COA=90°,∠ACO=60°,∠BCO=45°,∴AO=CO•tan60°=120米,BO=CO•tan45°=120×1=120米,∴AB=AO﹣BO=(120)米,即AB的长是(120)米;(2)∵=s=千米/时>80千米/时,∴此车超过了太湖大道每小时80千米的限制速度.【点评】本题考查解直角三角形的应用,解题的关键是明确题意,找出所求问题需要的条件.24.如图,BD、CE是△ABC的高,垂足别离为点D、E.(1)求证:∠ABD=∠ACE;(2)求证:AE•AB=AD•AC.【考点】相似三角形的判定与性质.【分析】(1)由BD、CE是△ABC的高知∠BDA=∠CEA=90°,按照∠A是公共角可判定△ABD ∽△ACE,即可得证;(2)由(1)中△ABD∽△ACE依据相似三角形对应边成比例可得.【解答】证明:(1)∵BD⊥AC,CE⊥AB,∴∠BDA=∠CEA=90°,又∵∠A=∠A,∴△ABD∽△ACE,∴∠ABD=∠ACE;(2)由(1)知△ABD∽△ACE,∴,∴AE•AB=AD•AC.【点评】本题主要考查相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键,相似三角形的对应角相等、对应边成比例.25.某商场以每件42元的价钱购进一批服装,由试销知,天天的销量t(件)与每件的销售价x元之间的函数关系为t=204﹣3x.(1)试写出天天销售这种服装的毛利润y(元)与每件销售价x(元)之间的函数表达式(2015秋•吴江区期末)如图,AD是⊙O的直径,以AD为边作平行四边形ABCD,AB与⊙O交于点F,在边BC上取一点E(含端点),连接DE,使△ADF∽△CDE.(1)求证:DE是⊙O的切线;(2)若BF=3AF,且⊙O的面积与平行四边形面积之比为,试求的值.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)按照相似三角形的性质得出∠ADF=∠CDE,按照圆周角定理得出DF⊥AB,按照平行四边形的性质进而证得DF⊥CD,进一步证得∠ADF+∠EDF=90°,即可证得结论;(2)按照⊙O的面积与平行四边形面积之比为得出AD2=AB•DF,进一步得出AD2=4AF•DF,按照勾股定理得出AD2=AF2+DF2,从而求得DF=(+2)AF,由△ADF∽△CDE得出=, =由AD2=AB•DF得出=,即可得出=,由AB=DC,得出DE=AD=BC,从而得出=,所以==2﹣.【解答】(1)证明:∵△ADF∽△CDE.∴∠ADF=∠CDE,∵AD是⊙O的直径,∴DF⊥AB,∵四边形ABCD是平行四边形,∴AB∥CD,∴DF⊥CD,∴∠EDF+∠CDE=90°,∴∠ADF+∠EDF=90°,即∠ADE=90°,∴DE是⊙O的切线;(2)解:∵⊙O的面积与平行四边形面积之比为,∴=,∴AD2=AB•DF,∵BF=3AF,∴AB=4AF,∴AD2=4AF•DF,∵AD2=AF2+DF2,∴AF2+DF2﹣4AF•DF=0,∴DF=(+2)AF,∴==2﹣,∵△ADF∽△CDE,∴=, =∵AD2=AB•DF,∴=,∴=,∵AB=DC,∴DE=AD=BC,∴=,∴==2﹣.【点评】本题考查了切线的判定,平行四边形的性质,圆周角定理三角形相似的性质,勾股定理的应用,(2)求得DF=(+2)AF是解题的关键.27.(10分)(2015秋•吴江区期末)如图①,已知二次函数y=ax2+bx﹣3的图象对应的抛物线与x轴交于A(﹣6,0),B(2,0)两点,与y轴交于C点.(1)求二次函数的表达式;(2)若M是x轴上的动点,点N在抛物线上,当四边形MNCB是平行四边形时,求M坐标;(3)如图②,若点P是x轴上的动点,PQ⊥x轴,交抛物线于点Q,连结QC,当QC与以OP 为直径的圆相切时.求点P坐标.【考点】二次函数综合题.【分析】(1)按照待定系数法,可得函数解析式;(2)按照平行四边的对边平行且相等,可得N点坐标,可得BM的长;(3)按照切线的性质,得出CQ=PQ+OC,按照解方程,可得a的值,可得答案.【解答】解:(1)将A、C点的坐标代入函数解析式,得,解得,二次函数的表达式y=x2+x﹣3;(2)如图1,由MNCB是平行四边形,得NC∥MB,NC=MB.当y=﹣3时, x2+x﹣3=﹣3,解得x=﹣4,x=0(不符合题意,舍),即N点(﹣4,﹣3),MB=NC=4.2﹣4=﹣2,即M(﹣2,0);(3)如图2,设P(2a,0),Q点的横坐标为2a,当x=2a时,y=a2+2a﹣3,即Q(2a,a2+2a﹣3).由PQ与以OP为直径的圆相切,BC与以OP为直径的圆相切,QC与以OP为直径的圆相切,得CQ=PQ+OC,即(6﹣a2﹣2a)=,方程化简,得4a2+6a﹣9=0,解得a=﹣±,2a=﹣+,2a=﹣﹣,即P(﹣+,0),(﹣﹣,0).【点评】本题考查了二次函数综合题,利用待定系数法求函数解析式;利用平行四边的对边平行且相等得出N点坐标是解题关键;利用切线的性质得出关于a的方程是解题关键.28.(10分)(2015秋•吴江区期末)如图.在△ABC中,AB=4,D是AB上一点(不与点A、B)重合,DE∥BC,交AC于点E.设△ABC的面积为S,△DEC的面积为S′.(1)当D是AB中点时,求的值;(2)设AD=x, =y,求y与x的函数表达式,并写出自变量x的取值范围;(3)按照y的范围,求S﹣4S′的最小值.【考点】三角形综合题.【分析】(1)先求出△ADE和△CDE的面积相等,再按照平行线得出△ADE∽△ABC,推出=把AB=2AD代入求出即可;(2)求出= x2①②,联立①②即可求出函数关系式;y==﹣x2+x,(3)把函数关系式写成极点式即可求出结论.【解答】解:(1)∵D为AB中点,∴AB=2AD,∵DE∥BC,∴AE=EC,∵△ADE的边AE上的高和△CED的边CE上的高相等,∴S△ADE=S△CDE=S1,∵DE∥BC,∴△ADE∽△ABC,∴∴S′:S=1:4;(2)∵AB=4,AD=x,∴①,∵DE∥BC,∴△ADE∽△ABC,∴∵AB=4,AD=x,∴,∴,∵△ADE的边AE上的高和△CED的边CE上的高相等,∴②,①÷②得:∴y==﹣x2+x,∵AB=4,∴x的取值范围是0<x<4;(3)由(2)知x的取值范围是0<x<4,∴y==﹣x2+x=﹣(x﹣2)2+≤,∴S′≤S.∴S≥4S′,∴S﹣4S'≥0,∴S﹣4S′的最小值为0.【点评】本题主要考查了相似三角形的性质和判定,三角形的面积的计算方式,二次函数的最值问题,熟练掌握相似三角形的判定和性质定理是解题的关键.。
2015-2016学年度苏科版九年级第一学期期末学情调研数学试题及答案(2套16页)
2015-2016学年度九年级第一学期期末学情调研数学试题一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.0)30(tan o 的值是A .33B .0C .1D .32.一元二次方程0)2(=-x x 的解是A .x 1=1,x 2=2B .0=xC .2=xD .x 1=0,x 2=23.县医院住院部在连续10天测量某病人的体温与36℃的上下波动数据为:0.2, 0.3, 0.1, 0.1, 0, 0.2, 0.1, 0.1, 0.1, 0,则对这10天中该病人的体温波动数据分析不正确的是 A .平均数为0.12 B .众数为0.1 C .中位数为0.1 D .方差为0.02 4.△ABC 为⊙O 的内接三角形,若∠AOC =160°,则∠ABC 的度数是A .80°B .160°C .100°D .80°或100° 5.若二次函数ax y =2的与y 的部分对应值如下表:则当0=x 时,y A .5 B .-3 C .-13 D .-27 6.如图,在平面直角坐标系中,⊙A 经过原点O ,并且分别与x 轴、y 轴交于B 、C 两点,已知B (8,0),C (0,6),则⊙A 的半径为 A .3 B .4 C .5D .87.如图,在△ABC 中,EF ∥BC ,21=EB AE ,S 四边形BCFE =8,则S △ABC 等于 A .9B .10C .12D .138.二次函数c bx ax y ++=2的图象如图所示,反比例函数xay =与正比例函数x c b y )(+=在同一坐标系中的大致图象可能是A B C D二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.如果线段c 是a 、b 的比例中项,且a=4,b=9,则c= ▲ .10.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出 ▲ 球的可能性最大.11.两个相似三角形的面积比为4:9,那么它们对应中线的比为 ▲ .x xxxxyyyyy(13题)A EF BC12.若等腰三角形的两边分别为8和10,则底角的余弦值为 ▲ . 13.在等腰直角△ABC 中,∠C =90°,AC =6,D 为AC 上一点,若1tan DBC 3∠=,则AD =______。
2015-2016学年第一学期期末测试卷初三数学附答案
E DCBA2015-2016学年第一学期期末测试卷初三数学一、选择题(本题共30分,每小题3分)1.⊙O 的半径为R ,点P 到圆心O 的距离为d ,并且d ≥ R ,则P 点 A.在⊙O 内或圆周上 B.在⊙O 外C.在圆周上D.在⊙O 外或圆周上2. 把10cm 长的线段进行黄金分割,则较长线段的长(236.25≈, 精确到0.01)是A .3.09cmB .3.82cmC .6.18cmD .7.00cm 3.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E ,若AD =4,DB =2,则AE ︰EC 的值为 A . 0.5 B . 2 C . 32 D . 23 4. 反比例函数xky =的图象如图所示,则K 的值可能是 A .21B . 1C . 2D . -1 5. 在Rt △ABC 中,∠C =90°,BC =1,那么AB 的长为A .sin AB .cos AC .1cos AD . 1sin A6.如图,正三角形ABC 内接于⊙O ,动点P 在圆周的劣弧AB 上, 且不与A,B 重合,则∠BPC 等于A .30︒B .60︒ C. 90︒ D. 45︒ 7.抛物线y=21x 2的图象向左平移2个单位,在向下平移1个单位,得到的函数表达式为A . y =21x 2+ 2x + 1B .y =21x 2+ 2x - 2C . y =21x 2 - 2x - 1 D. y =21x 2- 2x + 18. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论: ① 0>abc ;② c a b +<;③ 024>++c b a ; ④ b c 32<; ⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有A. 2个B. 3个C. 4个D. 5个9. 如图所示,在正方形ABCD 中,E 是BC 的中点,F 是CD 上的一点,AE ⊥EF ,下列结论:①∠BAE =30°;②CE 2=AB·CF ;③CF =31FD ;④△ABE ∽△AEF .其中正确的有A. 1个B. 2个C. 3个 D . 4个10.如图,已知△ABC 中,BC =8,BC 边上的高h =4,D 为BC 边上一个动点,EF ∥BC ,交AB 于点E ,交AC 于点F ,设E 到BC 的距离为x ,△DEF 的面积为y ,则y 关于x 的函数图象大致为A. B. C. D.二、填空题(本题共18分, 每小题3分) 11.若5127==b a ,则32ba -= . 12. 两个相似多边形相似比为1:2,且它们的周长和为90,则这两个相似多边形的周长分别 是 , . 13.已知扇形的面积为15πcm 2,半径长为5cm ,则扇形周长为 cm .14. 在Rt △ABC 中,∠C =90°,AC =4, BC =3,则以2.5为半径的⊙C 与直线AB 的位置关系 是 .15. 请选择一组你喜欢的a,b,c 的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满足下列条件:①开口向下,②当2<x 时,y 随x 的增大而增大;当2>x 时,y 随x 的增大而减小.这样的二次函数的表达式可以是 .16. 如图,正方形OABC ,点F 在AB 上,点B 、若阴影部分的面积为是 . 三、解答题(本题共7229题8分)17. 4sin3018.如图:在Rt △ABC 19. 已知反比例函数x1k y -=图象的两个分支分别位于第一、第三象限.(1)求k 的取值范围;(2)取一个你认为符合条件的K 值,写出反比例函数的表达式,并求出当x =﹣6时反比例函数y 的值;20. 已知圆内接正三角形边心距为2cm ,求它的边长.23. 如图,AB 是⊙O 的直径,CB 是弦,OD ⊥CB 于E ,交劣弧CB 于D ,连接AC . (1)请写出两个不同的正确结论; (2)若CB =8,ED =2,求⊙O 的半径.24. 密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.25. 如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径, D 是AB 的延长线上的一点,AE ⊥DC 交DC 的延长线 于点E ,且AC 平分∠EAB . 求证:DE 是⊙O 的切线.26. 已知:抛物线y=x 2+bx+c 经过点(2,-3)和(4,5)(1)求抛物线的表达式及顶点坐标; (2)将抛物线沿x 轴翻折,得到图象G ,求图象G 的表达式;(3)在(2)的条件下,当-2<x <2时, 直线y =m 与该图象有一个公共点,()求m 的值或取值范围.27. 如图,已知矩形ABCD 的边长3cm 6cmAB BC ==,.某一时刻,动点M 从A 点出发沿AB 方向以1c m /s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方 向以2c m /s 的速度向A 点匀速运动,问: (1)经过多少时间,AMN △的面积等于矩形ABCD 面积的19? (2)是否存在时刻t ,使以A,M,N 为顶点的三角形与ACD △相似?若存在,求t 的 值;若不存在,请说明理由.28.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置 关系,并说明理由.(2)结论应用:① 如图2,点M ,N 在反比例函数xky =(k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F .试证明:MN ∥EF .② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断 MN 与 EF 是否平行?请说明理由.图 3D29. 设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m .n ]上的―闭函数‖.如函数4y x =-+,当x =1时,y =3;当x =3时,y =1,即当13x ≤≤时,有13y ≤≤,所以说函数4y x =-+是闭区间[1,3]上的―闭函数‖.(1)反比例函数y =x2016是闭区间[1,2016]上的―闭函数‖吗?请判断并说明理由; (2)若二次函数y =22x x k --是闭区间[1,2]上的―闭函数‖,求k 的值;(3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的―闭函数‖,求此函数的表达式(用含 m ,n 的代数式表示).参考答案初三数学 2016.1阅卷说明:本试卷72分及格,102分优秀. 一、选择题:(本题共30分,每小题3分)二、填空题(本题共18分, 每小题3分)三、计算题:(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分, 第29题8分)17. 4sin3060︒.解:原式=33222214⨯+⨯-⨯--------------------- 4分 =2-1+3 =4--------------------- 5分18. 解:∵在Rt △ABC 中,∠C =90°,∠B =60°∵∠A=90°-∠B =30°--------------------- 1分∴AB==16--------------------- 3分∴AC=BCtanB=8.--------------------- 5分19. 解:(1)∵反比例函数图象两支分别位于第一、三象限,∴k ﹣1>0,解得:k >1;---------------- 2分(2)取k=3,∴反比例函数表达式为x2y = ---------------- 4分当x=﹣6时,3162x 2y -=-==;--------------------- 5分 (答案不唯一)20. 解: 如图:连接OB,过O 点作OD ⊥BC 于点D ---------------- 1分在Rt △OBD 中,∵∠BOD =︒︒=606360---------------- 2分 ∵ BD=OD ·tan60°---------------- 3分 =23---------------- 4分B∴BC=2BD=43∴三角形的边长为43 cm ---------------- 5分 21.证明∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∠C =∠E ,---------------- 1分 ∴∠BAC -∠DAC =∠DAE -∠DAC ,∴∠1=∠3, ------------------------------ 2分 又∵∠C =∠E ,∠DOC =∠AOE ,∴△DOC ∽△AOE ,----------------------------3分 ∴∠2=∠3 , ----------------------------4分 ∴∠1=∠2=∠3. ----------------------------5分22. 解:过P 作PD ⊥AB 于D ,---------------- 1分在Rt △PBD 中,∠BDP =90°,∠B =45°, ∴BD =PD . ---------------- 2分在Rt △P AD 中,∠ADP =90°,∠A =30°, ∴AD =PD =PD=3PD ,--------------------3分 ∴PD =13100+≈36.6>35, 故计划修筑的高速公路不会穿过保护区.----------------------------5分23.解:(1)不同类型的正确结论有:①BE=CE ;②BD=CD ;③∠BED=90°;④∠BOD=∠A ;⑤AC//OD ;⑥AC ⊥BC ;⑦222OE +BE =OB ;⑧OE BC S A BC ∙=∆;⑨△BOD 是等腰三角形;⑩ΔBOE ΔBAC ~;等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2 2
2
8
8
8
8
O
4
8 x(s)
O
4
8 x(s)
O
4
8 x(s)
O
4
8 x(s)
A.
B.
C.
D.
10.如图,在△ABC 中,AB=AC=10,以 AB 为直径的⊙O 分别交 AC、BC 于点 D、E,点 F 在
1
O
2
A E
F C
(第 13 题) (第 14 题) (第 15 题)
B
(第 17 题)
三、解答题(本大题共 10 小题,共 84 分.) 19.(本题 8 分)解下列方程: (1) (x+3)2=5(x+3); (2) x2+4x-2=0.
20.(本题 8 分)为了解学生参加户外活动的情况,某校对初三学生参加户外活动的时间进行抽样调 查,并将调查结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题: (1)将条形统计图补画完整. (2)求每天参加户外活动时间达到 2 小时的学生所占调查学生的百分比. (3)这批参加调查的初三学生参加户外活动的平均时间是多少.
AC 的延长线上,且∠CBF= ∠A,tan∠CBF= ,则 CF 的长为……………………………………(▲)
2 3 5 A. 2 1 B. 2
B
1
1
3
C.
12 5
D C
D.
5
A
D
Q
·O
E B (第 10 题)
C
P B
A (第 7 题)
C (第 8 题)
A
F
(第 9 题)
二、填空题(本大题共 8 小题,每题 2 分,共 16 分.) 11.方程 x2=2x 的根为 ▲ . 12.一元二次方程 x2-3x-1=0 的两根是 x1,x2,则 x1+x2= ▲ . 13.如图,△ABC 中,DE∥BC,DE=2,AD=4,DB=6,则 BC= ▲ . 14.某水库堤坝的横断面如图所示, 迎水坡 AB 的坡度是 1︰ 3, 堤坝高 BC=50m, 则 AB= ▲ m.
6.若关于 x 的一元二次方程 x2-2x-k=0 没有实数根,则 k 的取值范围是………………………(▲) A.k>-1 B.k≥-1 C.k<-1 D.k≤-1
7.如图,在 Rt△ABC 中,∠ACB=90°,BC=1,AB=2,下列结论正确的是……………………(▲) A.sinA= 3 2 1 B.tanA= 2 C.cosB= 3 2 D.tanB= 3
4.二次函数 y=x2-2x+3 的图像的顶点坐标是………………………………………………………(▲) A.(1,2) B.(1,6) C.(-1,6) D.(-1,2)
5.已知圆锥的底面半径为 3cm,母线为 5cm,则圆锥的侧面积是…………………………………(▲) A.30πcm2 B.15πcm2 C. 15π 2 cm2 D.10πcm2
2015~2016 学年度第一学期期末考试
九年级数学(试题卷)
一、选择题(本大题共 10 小题,每题 3 分,共 30 分.) 1.如果一个一元二次方程的根是 x1=x2=1,那么这个方程是……………………………………(▲) A.(x+1)2=0 B.(x-1) 2=0 C.x2=1 D.x2+1=0
P 为 AB 延长线上的点,∠APD=30°.
(1)求证:DP 是⊙O 的切线. (2)若⊙O 的半径为 3cm,求图中阴影部分的面积.
24.( 本题 8 分)如图,小明从 P 处出发,沿北偏东 60°方向行驶 200 米 到达 A 处,接着向正南方向行驶一段时间到达 B 处.在 B 处观测到 出发时所在的 P 处在北偏西 37°方向上,这时 P、B 两点相距多少米? (精确到 1 米,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75, 2≈1.41, 3≈1.73)
15.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=58°,则∠BCD 的度数为 ▲ . 16.若二次函数 y=ax2-3x+a2-1 的图象开口向下且经过原点,则 a 的值是 ▲ . ⌒上,若 OA=1cm,∠1=∠2,则EF ⌒ 17.如图,四边形 OABC 为菱形,点 B、C 在以点 O 为圆心的EF 的长为 ▲ cm. 18.△ABC 中,∠ACB=120°,AC=BC=3,点 D 为平面内一点,满足∠ADB=60°,若 CD 的长度 为整数,则所有满足题意的 CD 的长度的可能值为 ▲ .
条形统计图 扇形统计图
21.(本题 8 分)小张、 小王和另两名同学一起去看电影 《寻龙诀》 , 小张买到 4 张座位相连的电影票, 座位号顺次为 8 排 3、4、5、6 座.现在小张和小王从中随机各抽取一张电影票,求小张和小王抽 取的电影票正好是相邻座位的概率(请通过画树状图或列表法写出分析过程) .
22.(本题 8 分)如图,矩形 ABCD 中,E 为 BC 上一点,DF⊥AE 于 F. A (1)△ABE 与△ADF 相似吗?请说明理由. (2)若 AB=6,AD=12,BE=8,求 DF 的长.
F B E
D
C
23.(本题 8 分)如图,AB 是⊙O 的直径,AC、DC 为弦,∠ACD=60°,
8.如图,⊙O 的直径 CD=5cm,弦 AB⊥CD,垂足为 M,OM︰OD=3︰5.则 AB 的长是……(▲) A.2 3cm B.3cm C.4cm D.2 5cm
9.如图,正方形 ABCD 的边长为 4cm,动点 P、Q 同时从点 A 出发,以 1cm/s 的速度分别沿 A→B→C 和 A→D→C 的路径向点 C 运动,设运动时间为 x(单位:s),四边形 PBDQ 的面积为 y(单位:cm2),
2.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是(▲) A.平均数是 80 B.极差是 15 C.中位数是 75 D.方差是 25
3.已知⊙O 的半径是 5,直线 l 是⊙O 的切线,P 是 l 上的任一点,那么下列结论正确的是……(▲) A. 0<OP<5 B. OP=5 C. OP>5 D. OP≥5