(培优卷)必修四三角函数(3)

合集下载

高中数学必修4_三角函数上经典提升培优题组.docx

高中数学必修4_三角函数上经典提升培优题组.docx

数学 4 必修)第一章三角函数(上)[ 基础训练 A 组]一、选择题1.设角属于第二象限,且cos cos,则角属于()222A.第一象限 B .第二象限 C .第三象限 D .第四象限2.给出下列各函数值:①sin( 1000 0 ) ;② cos( 22000 ) ;sin 7cos③ tan( 10) ;④10. 其中符号为负的有()17tan9A.①B.② C .③ D .④3.sin 2 1200等于()A.333D1 2B .C ..2224.已知sin 4是第二象限的角,那么,并且tan5的值等于()A.4B.3C.34 344D.5.若3是第四象限的角,则是()A. 第一象限的角B.第二象限的角C. 第三象限的角D. 第四象限的角6.sin 2 cos3tan 4的值()A. 小于0B. 大于0C.等于 0D.不存在二、填空题1.设分别是第二、三、四象限角,则点P(sin ,cos) 分别在第___、___、___象限.2.设MP和OM分别是角17的正弦线和余弦线,则给出的以下不等式:18①MP OM0;② OM0 MP;③OM MP 0;④ MP 0OM ,其中正确的是 _____________________________ 。

3.若角与角的终边关于 y 轴对称,则与的关系是 ___________ 。

4.设扇形的周长为8cm,面积为4cm2,则扇形的圆心角的弧度数是。

5.与2002 0终边相同的最小正角是 _______________ 。

三、解答题1.已知tan,1是关于 x 的方程 x2kx k 2 3 0 的两个实根,tan且 37,求 cos sin 的值.22.已知tanx 2,求cos xsin x 的值。

cos x sin x3.化简: sin(5400x)1x)cos(3600x)tan(9000x) tan(4500x) tan(8100sin( x)4.已知sin x cos x m, ( m2, 且m1) ,求( 1)sin3x cos3 x ;(2) sin 4 x cos4x 的值。

三角函数培优专练题及参考答案(精品)

三角函数培优专练题及参考答案(精品)

三角函数培优专练题类型一:三角函数最值与值域【例1】【解析】(1)因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有sin()sin()x x θθ+=-+,即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+,故2sin cos 0x θ=,所以cos 0θ=.又[0,2π)θ∈,因此π2θ=或3π2. (2)2222ππππsin sin 124124y f x f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππ1cos 21cos 213621cos 2sin 222222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭=+=-- ⎪ ⎪⎝⎭π1cos 223x ⎛⎫=-+ ⎪⎝⎭.因此,函数的值域是[122-+. 类型二:三角函数图象与性质的综合应用【例2-1】【解析】解法一:(Ⅰ)5555()2cos (sin cos )4444f ππππ=+ 2cos (sin cos )444πππ=---2= (Ⅱ)因为2()2sin cos 2cos f x x x x =+sin 2cos21x x =++)14x π=++. 所以22T ππ==. 由222,242k x k k Z πππππ-≤+≤+∈, 得3,88k x k k Z ππππ-≤≤+∈, 所以()f x 的单调递增区间为3[,],88k k k Z ππππ-+∈.解法二:因为2()2sin cos 2cos f x x x x =+sin 2cos21x x =++)14x π=++(Ⅰ)511()112444f πππ=+=+=. (Ⅱ)22T ππ==. 由222,242k x k k Z πππππ-≤+≤+∈, 得3,88k x k k Z ππππ-≤≤+∈, 所以()f x 的单调递增区间为3[,],88k k k Z ππππ-+∈.【例2-2】【解析】(1)因为(cos ,sin )x x =a ,(3,=b ,∥a b ,所以3sin x x =.若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是tan x = 又[0,]x π∈,所以56x π=.(2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅=-=+a b . 因为[0,]x π∈,所以ππ7π[,]666x +∈,从而π1cos()62x -≤+≤. 于是,当ππ66x +=,即0x =时,()f x 取到最大值3;当π6x +=π,即5π6x =时,()f x 取到最小值- 【例2-3】【解析】(Ⅰ)因为()sin()sin()62f x x x ππωω=-+-,所以1()cos cos 22f x x x x ωωω=--3cos 22x x ωω=-13(sin )2x x ωω=)3x πω=- 由题设知()06f π=, 所以63k ωπππ-=,k Z ∈.故62k ω=+,k Z ∈,又03ω<<,所以2ω=.(Ⅱ)由(Ⅰ)得())3f x x π=-所以()))4312g x x x πππ=+-=-. 因为3[,]44x ππ∈-, 所以2[,]1233x πππ-∈-, 当123x ππ-=-, 即4x π=-时,()g x 取得最小值32-. 类型三:三角函数的实际应用【例3】【解析】(Ⅰ)因为1()10sin )102sin()12212123f t t t t ππππ--+--+, 又240<≤t ,所以373123ππππ<+≤t ,1)312sin(1≤+≤-ππt , 当2=t 时,1)312sin(=+ππt ;当14=t 时,1)312sin(-=+ππt ; 于是)(t f 在)24,0[上取得最大值12,取得最小值8.故实验室这一天最高温度为12C ︒,最低温度为8C ︒,最大温差为4C ︒(Ⅱ)依题意,当11)(>t f 时实验室需要降温. 由(Ⅰ)得)312sin(210)(ππ+-=t t f ,所以11)312sin(210>+-ππt ,即1sin()1232t ππ+<-, 又240<≤t ,因此61131267ππππ<+<t ,即1810<<t ,故在10时至18时实验室需要降温.类型四:已知边角关系利用正余弦定理解三角形【解析】(1)由余弦定理可得2222282cos1507b a c ac c ==+-⋅︒=,2,c a ABC ∴==△的面积1sin 2S ac B ==. (2)30A C +=︒,sin sin(30)A C C C ∴+=︒-+1cos sin(30)22C C C =+=+︒=, 030,303060C C ︒<<︒∴︒<+︒<︒,3045,15C C ∴+︒=︒∴=︒.类型五:利用正弦定理、余弦定理解平面图形【例5】【解析】(1)90ADC ∠=︒,45A ∠=︒,2AB =,5BD =.∴由正弦定理得:sin sin AB BD ADB A =∠∠,即25sin sin 45ADB =∠︒,2sin 45sin 5ADB ︒∴∠==, AB BD <,ADB A ∴∠<∠,cos ADB ∴∠==(2)90ADC ∠=︒,cos sin BDC ADB ∴∠=∠, 2DC =BC ∴=5=.巩固练习1.【解析】(Ⅰ)因为()sin cos )22f x x x =--sin()42x π=+- 所以()f x 的最小正周期为2π.(Ⅱ)因为0x π-≤≤,所以3444x πππ-≤+≤. 当42x ππ+=-,即34x π=-时,()f x 取得最小值.所以()f x 在区间[],0π-上的最小值为3()142f π-=--. 2.解:(1)由题意得f (x )=-2sin 2x +23sin x cos x , =3sin 2x +cos 2x -1=2sin ⎝⎛⎭⎪⎫2x +π6-1, 令2k π-π2≤2x +π6≤2k π+π2(k ∈Z), 得k π-π3≤x ≤k π+π6(k ∈Z).∴f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z). (2)由(1)和条件可得f (C )=2sin ⎝⎛⎭⎪⎫2C +π6-1=1, 则sin ⎝⎛⎭⎪⎫2C +π6=1. ∵角C 是三角形内角,∴2C +π6=π2,即C =π6. ∴cos C =b 2+a 2-c 22ab =32, 又c =1,ab =23,∴a 2+12a 2=7,解得a 2=3或a 2=4, ∴a =3或2,b =2或3,∵a >b ,∴a =2,b = 3.。

(2021年整理)高中数学必修4三角函数综合测试题及答案详解

(2021年整理)高中数学必修4三角函数综合测试题及答案详解

(完整)高中数学必修4三角函数综合测试题及答案详解编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)高中数学必修4三角函数综合测试题及答案详解)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)高中数学必修4三角函数综合测试题及答案详解的全部内容。

必修4三角函数综合测试题及答案详解一、选择题1.下列说法中,正确的是( )A .第二象限的角是钝角B .第三象限的角必大于第二象限的角C .-831°是第二象限角D .-95°20′,984°40′,264°40′是终边相同的角2.若点(a ,9)在函数y =3x 的图象上,则tan 错误!的值为( )A .0 B.错误! C .1 D.错误!3.若|cos θ|=cos θ,|tan θ|=-tan θ,则θ2的终边在( ) A .第一、三象限B .第二、四象限C .第一、三象限或x 轴上D .第二、四象限或x 轴上4.如果函数f (x )=sin (πx +θ)(0〈θ〈2π)的最小正周期是T ,且当x =2时取得最大值,那么( )A .T =2,θ=π2B .T =1,θ=πC .T =2,θ=π D.T =1,θ=错误!5.若sin 错误!=-错误!,且π<x <2π,则x 等于( )A.错误!πB.错误!πC.错误!π D 。

错误!π 6.已知a 是实数,而函数f (x )=1+a sin ax 的图象不可能是( )7.将函数y =sin x 的图象向左平移φ(0≤φ<2π)个单位长度后,得到y =sin 错误!的图象,则φ=( )A 。

(压轴题)高中数学必修四第一章《三角函数》测试题(包含答案解析)(3)

(压轴题)高中数学必修四第一章《三角函数》测试题(包含答案解析)(3)

一、选择题1.函数()sin()(0||)2,f x x πωϕωϕ=+><的部分函数图象如图所示,将函数()f x 的图象先向右平移3π个单位长度,然后向上平移1个单位长度,得到函数()g x 的解析式为( )A .()sin 21g x x =-B .()sin 21g x x =+C .()sin(2)13g x x π=--D .()sin(2)13g x x π=-+ 2.如图,一半径为4.8m 的筒车按逆时针方向转动,已知筒车圆心O 距离水面2.4m ,筒车每60s 转动一圈,如果当筒车上点P 从水中浮现时(图中点0P )开始计时,则( )A .点P 第一次到达最高点需要10sB .点P 距离水面的高度h (单位:m )与时间t (单位:s )的函数解析式为4.8sin 2.4306h t ππ⎛⎫=-+ ⎪⎝⎭ C .在筒车转动的一圈内,点P 距离水面的高度不低于4.8m 共有10s 的时间 D .当筒车转动50s 时,点P 在水面下方,距离水面1.2m 3.设函数()32sin cos f x x x x +,给出下列结论: ①()f x 的最小正周期为π ②()y f x =的图像关于直线12x π=对称③()f x 在2,63ππ⎡⎤⎢⎥⎣⎦单调递减 ④把函数2cos2y x =的图象上所有点向右平移12π个单位长度,可得到函数()y f x =的图象.其中所有正确结论的编号是( ). A .①④B .②④C .①②④D .①②③4.己知函数()sin()(0,||)2f x x πωϕωϕ=+><的最小正周期为π,且图象向右平移12π个单位后得到的函数为偶函数,则下列说法错误的有( ) A .()f x 关于点5(,0)12π对称 B .()f x 关于直线6x π=对称C .()f x 在,]1212π5π[-单调递增 D .()f x 在7[,]1212ππ单调递减5.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,下列说法正确的是( )①函数()y f x =的图象关于点,06π⎛⎫-⎪⎝⎭对称 ②函数()y f x =的图象关于直线512x π=-对称 ③函数()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦单调递减 ④该图象向右平移3π个单位可得2sin 2y x =的图象 A .①②B .①③C .①②③D .①②④6.函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图,将()y f x =的图象向右平移π6个单位长得到函数y g x 的图象,则()g x 的单调增区间为( )A .()ππ2π,2π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z B .()π5π2π,2π36k k k ⎡⎤++∈⎢⎥⎣⎦Z C .()πππ,π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z D .()π5ππ,π36k k k ⎡⎤++∈⎢⎥⎣⎦Z 7.下列函数中,既是偶函数,又在(),0-∞上是增函数的是( )A .()22xxf x -=- B .()23f x x =-C .()2ln =-f x xD .()cos3=f x x x8.将函数()3sin()2f x x =--图象上每一点的纵坐标不变,横坐标缩短为原来的13,再向右平移29π个单位得到函数()g x 的图象,若()g x 在区间,18πθ⎡⎤-⎢⎥⎣⎦上的最大值为1,则θ的最小值为( )A .12πB .6πC .3π D .18π 9.函数()()sin ln 0=->f x x x ωω只有一个零点,则实数ω的取值范围是( ) A .()0,πB .5,2⎫⎛⎪⎝⎭ππe C .50,2⎫⎛ ⎪⎝⎭πeD .5,2⎫⎛∞ ⎪⎝⎭π+e 10.若函数)22()sin 23cos sin f x x x x =-的图像为E ,则下列结论正确的是( ) A .()f x 的最小正周期为2π B .对任意的x ∈R ,都有()()3f x f x π=-C .()f x 在7(,)1212ππ上是减函数D .由2sin 2y x =的图像向左平移3π个单位长度可以得到图像E 11.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象(如图所示),则下列有关函数()f x 的结论错误的是( )A .图象关于点,012π⎛⎫- ⎪⎝⎭对称 B .最小正周期是π C .在0,6π⎛⎫⎪⎝⎭上单调递减 D .在0,12π⎡⎤⎢⎥⎣⎦312.已知定义在R 上的函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>≤ ⎪⎝⎭在[]1,2上有且仅有3个零点,其图象关于点1,04⎛⎫⎪⎝⎭和直线14x =-对称,给出下列结论:①1222f ⎛⎫=⎪⎝⎭;②函数()f x 在[]0,1上有且仅有3个最值点;③函数()f x 在35,24⎛⎫-- ⎪⎝⎭上单调递增;④函数()f x 的最小正周期是2.其中所有正确结论的个数是( ) A .1B .2C .3D .4二、填空题13.将函数()sin (0)f x x ωω=>的图象向右平移12π个单位长度得到函数()y g x =的图象,若函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递增函数,则实数ω的取值范围是__________. 14.某地区每年各个月份的月平均最高气温近似地满足周期性规律,因此第n 个月的月平均最高气温()G n 可近似地用函数()()cos G n A n k ωϕ=++来刻画,其中正整数n 表示月份且[]1,12n ∈,例如1n =表示1月份,n 和k 是正整数,0>ω,()0,πϕ∈.统计发现,该地区每年各个月份的月平均最高气温有以下规律:①该地区月平均最高气温最高的7月份与最低的1月份相差30摄氏度; ②1月份该地区月平均最高气温为3摄氏度,随后逐月递增直到7月份达到最高; ③每年相同的月份,该地区月平均最高气温基本相同. 根据已知信息,得到()G n 的表达式是______. 15.已知函数()sin()0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,关于函数()y f x =有下列结论:①图象关于点,03π⎛⎫⎪⎝⎭对称; ②单调递减区间为2,,63k k k ππππ⎛⎫++∈ ⎪⎝⎭Z ; ③若()f x a =,则cos 32a x πω⎛⎫-= ⎪⎝⎭; ④2()()log g x f x x =-有4个零点. 则其中结论正确的有____________(填上所有正确结论的序号)16.已知函数()f x 的定义域为R ,且()2()f x f x π+=,当[0,)x π∈时,()sin f x x =.若存在0(,]x m ∈-∞,使得0()43f x ≥m 的取值范围为________.17.已知5tan22α=,则sin()2πα+=_______. 18.将函数()sin 23cos2f x a x x =+的图象向左平移6π个单位长度,若所得图象关于原点对称,则a 的值为_________.19.已知函数()2sin()(0)f x x ωϕω=+>满足()24f π=,()0f π=,且()f x 在区间(,)43ππ上单调,则ω的值有_________个. 20.关于函数()sin |||sin |f x x x =+有下述四个结论: ①()f x 是偶函数;②()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递增;③()f x 在[],ππ-有4个零点;④()f x 的最大值为2; 其中所有正确结论的编号是_________.三、解答题21.已知函数π()3sin 26f x x ⎛⎫=+⎪⎝⎭. (1)用“五点法”画出函数()y f x =在一个周期内的简图;(2)说明函数()y f x =的图像可以通过sin y x =的图像经过怎样的变换得到?(3)若003()[2π3π]2f x x =∈,,,写出0x 的值.22.如图,某公园摩天轮的半径为40m ,圆心O 距地面的高度为50m ,摩天轮做匀速转动,每3min 转一圈,摩天轮上的点P 的起始位置在距地面最近处.(1)已知在(min)t 时点P 距离地面的高度为()sin()0,0,||2f t A t h A πωϕωϕ⎛⎫=++>>≤ ⎪⎝⎭,求2020t =时,点P 距离地面的高度;(2)当离地面(503)m +以上时,可以看到公园的全貌,求转一圈中在点P 处有多少时间可以看到公园的全貌. 23.已知函数21()3cos cos 2222x x x f x =++. (1)求函数()f x 的最小正周期;(2)将函数()y f x =的图象上的各点向左平移32π个单位,再保持纵坐标不变,横坐标缩短到原来的一半;得到函数()y g x =的图象,求函数()y g x =的最大值及取得最大值时x 的取值集合.24.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭,,28M π⎛⎫ ⎪⎝⎭、5,28N π⎛⎫-⎪⎝⎭分别为其图象上相邻的最高点、最低点. (1)求函数()f x 的解析式;(2)求函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的单调区间和值域.25.已知函数1()sin 223f x x π⎛⎫=- ⎪⎝⎭. (1)当x ∈R 时,求()f x 的最小正周期及单调递增区间; (2)求()f x 在,44ππ⎡⎤-⎢⎥⎣⎦上的最大值及最小值,并指出相应x 的值. 26.已知函数()()()f x g x h x =,其()22g x x =,()h x =_____. (1)写出函数()f x 的一个周期(不用说明理由);(2)当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的最大值和最小值. 从①cos 4x π⎛⎫+⎪⎝⎭,②2sin 24x π⎛⎫- ⎪⎝⎭这两个条件中任选一个,补充在上面问题中并作答,注:如果选择多个条件分别解答.按第一个解答计分.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由周期求出ω,由五点法作图求出ϕ的值,可得()f x 的解析式,再根据函数sin()y A x ωϕ=+的图象变换规律,得出结论.【详解】根据函数()sin()(0f x x ωϕω=+>,||)2πϕ<的部分函数图象,1274123πππω⋅=-,2ω∴=. 再根据五点法作图,23πϕπ⨯+=,3πϕ∴=,()sin(2)3f x x π=+.将函数()f x 的图象先向右平移3π个单位长度,可得sin(2)3y x π=-的图象.然后向上平移1个单位长度,得到函数()g x 的解析式为()sin(2)13g x x π=-+,故选:D 【点睛】关键点睛:解答本题的关键在于准确地根据三角函数的图象求出三角函数sin()y A x ωϕ=+的解析式,一般根据周期求出ω的值,根据最值求出A 的值,根据最值点求出ϕ的值.2.B解析:B 【分析】先建立坐标系,从点0P 开始计时,建立三角函数模型()0sin h A t b ωϕ=++,通过题中条件求出参数0,,,A b ωϕ,再利用函数解析式对选项依次判断正误即可. 【详解】以水面所在直线为t 轴,过O 作OO t '⊥轴,建立坐标系如图:设点P 距离水面的高度h (单位:m )与时间t (单位:s )的函数解析式为()0sin h A t b ωϕ=++.依题意可知, 2.4OO '=, 2.41sin 4.82OPO '∠==,6OPO π'∠=. 高度h 最大值为2.4 4.87.2+=,最小值为2.4 4.8 2.4-=-,故()()7.2 2.47.2 2.44.8, 2.422A b --+-====, 周期60T =s ,则230T ππω==, 0t =时,06πϕ=-,故函数解析式为 4.8sin 2.4306h t ππ⎛⎫=-+⎪⎝⎭,故B 正确;点P 到达最高点时 4.8sin 2.47.2306h t ππ⎛⎫=-+= ⎪⎝⎭,即sin 1306t ππ⎛⎫-= ⎪⎝⎭,故2,3062t k k Z ππππ-=+∈,即2060,t k k Z =+∈,又0t ≥,故第一次到达最高点时,0,20k t ==s ,故A 错误;在筒车转动的一圈内,点P 距离水面的高度不低于4.8m ,即4.8sin 2.4 4.8306h t ππ⎛⎫=-+≥ ⎪⎝⎭,得1sin 3062t ππ⎛⎫-≥ ⎪⎝⎭,故563066t ππππ≤-≤,解得1030t ≤≤,故共有20 s 时间,C 错误;当筒车转动50s 时,即50t =代入 4.8sin 2.4306h t ππ⎛⎫=-+⎪⎝⎭得,34.8sin 50 2.4 4.8sin 2.4 2.43062h πππ⎛⎫=⨯-+=+=- ⎪⎝⎭,故点P 在水面下方,距离水面2.4m ,故D 错误. 故选:B. 【点睛】 关键点点睛:本题解题关键在于按照题意,建立三角函数模型()0sin h A t b ωϕ=++,并解出解析式,才能解决选项中的实际问题,突破难点.3.C解析:C 【分析】根据题意,利用辅助角公式和两角和的正弦公式化简得()2sin(2)3f x x π=+,根据2T ωπ=求出最小正周期即可判断①;利用整体代入法求出()y f x =的对称轴,即可判断②;利用整体代入法求出()y f x =的单调减区间,从而可得在区间2,63ππ⎡⎤⎢⎥⎣⎦上先减后增,即可判断③;根据三角函数的平移伸缩的性质和诱导公式化简,即可求出平移后函数,从而可判断④. 【详解】解:函数()2sin cos sin 22sin(2)3f x x x x x x x π++=+, 即:()2sin(2)3f x x π=+,所以()f x 的最小正周期为222T πππω===,故①正确; 令2,32πππ+=+∈x k k Z ,解得:,122k x k Z ππ=+∈, 当0k =时,则直线12x π=为()y f x =的对称轴,故②正确;令3222,232k x k k Z πππππ+≤+≤+∈,解得:7,1212ππππ+≤≤+∈k x k k Z , 所以()f x 的单调递减区间为:7,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,当0k =时,()f x 的一个单调递减区间为7,1212ππ⎡⎤⎢⎥⎣⎦, 则区间7,612ππ⎡⎤⎢⎥⎣⎦上单调递减,故在区间2121,3228,6ππππ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦上先减后增,故③错误; 把函数2cos2y x =的图象上所有点向右平移12π个单位长度,得到s 2)2cos 22co 22cos 2126332sin(2y x x x x πππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-=-=+-= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎦⎣⎦+⎝⎭⎣即平移后得到函数()y f x =的图象,故④正确. 所以所有正确结论的编号是:①②④. 故选:C. 【点睛】关键点点睛:本题考查三角函数的图象和性质,熟练掌握正弦型函数的周期、对称轴、单调区间的求法,以及三角函数的平移伸缩是解题的关键,还考查辅助角公式、两角和的正弦公式以及诱导公式的应用,考查学生化简运算能力.4.A解析:ABD 【分析】由周期可求出ω,再由平移后为偶函数求出ϕ,即得()sin 23πf x x ⎛⎫=-⎪⎝⎭,求出512f π⎛⎫⎪⎝⎭可判断A ;求出6f π⎛⎫⎪⎝⎭可判断B ;令222,232k x k k Z πππππ-+≤-≤+∈求出单调递增区间可判断C ;由C 选项可判断D. 【详解】()f x 的最小正周期为π,22πωπ∴==,()sin(2)f x x ϕ=+,向右平移12π个单位后得到sin 26y x πϕ⎛⎫=-+ ⎪⎝⎭为偶函数, ,62k k Z ππϕπ∴-=+∈,即2,3k k Z πϕπ=+∈, ||2πϕ<,3ϕπ∴=-,()sin 23f x x π⎛⎫∴=- ⎪⎝⎭, 对于A ,55sin 2sin 10121232f ππππ⎛⎫⎛⎫=⨯-==≠ ⎪ ⎪⎝⎭⎝⎭,故()f x 不关于点5(,0)12π对称,故A 错误; 对于B ,sin 2sin 001663f πππ⎛⎫⎛⎫=⨯-==≠± ⎪ ⎪⎝⎭⎝⎭,故B 错误;对于C ,令222,232k x k k Z πππππ-+≤-≤+∈,解得5,1212k x k k Z ππππ-+≤≤+∈, 当0k =时,51212x ππ-≤≤,故()f x 在,]1212π5π[-单调递增,故C 正确; 对于D ,由C 选项可知,()f x 在5[,]1212ππ单调递增,故D 错误.故选:ABD. 【点睛】本题考查正弦型函数的性质,可通过代入验证的方法判断对称轴和对称中心,利用整体换元可求单调区间.5.A解析:A根据()f x 的图象及三角函数图像和性质,解得函数()f x 的解析式,得到()2sin(2)3f x x π=+,再结合三角函数的图像和性质逐一判定即可.【详解】由函数的图象可得2A =,周期4312T πππ⎛⎫=⨯-= ⎪⎝⎭所以222T ππωπ===, 当12x π=时函数取得最大值,即2sin 221212f ππϕ⎛⎫⎛⎫=⨯+=⎪ ⎪⎝⎭⎝⎭, 所以22()122k k ππϕπ⨯+=+∈Z ,则23k πϕπ=+,又||2ϕπ<,得 3πϕ=,故函数()2sin(2)3f x x π=+,对于①,当6x π=-时,()2sin(2())0663f πππ-=⨯-+=,正确; 对于②,当512x π=-时,()2sin 551212(2())23f πππ=⨯+-=--,正确; 对于③,令3222()232k x k k Z πππππ+≤+≤+∈得7()1212k x k k Z ππππ+≤≤+∈, 所以函数的单调递减区间为7,()1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,27,,()361212k k k Z ππππππ⎡⎤⎡⎤--⊄++∈⎢⎥⎢⎥⎣⎦⎣⎦,所以不正确; 对于④,向右平移3π个单位,()2sin(2())2sin(2)3333f x x x ππππ-=-+=-,所以不正确; 故选:A. 【点睛】求三角函数单调区间的2种方法:(1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间;(2)图象法:函数的单调性表现在图象上是从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.6.C【分析】根据()f x 的图象,可求出()f x 的解析式,进而根据图象平移变换规律,可得到()g x 的解析式,然后求出单调增区间即可. 【详解】由()f x 的图象,可得1A =,311ππ4126T =-,即πT =,则2ππT ω==,所以2ω=,由π16f ⎛⎫=⎪⎝⎭,可得πsin 216ϕ⎛⎫⨯+= ⎪⎝⎭,所以ππ22π62k ϕ⨯+=+()k ∈Z ,则π2π6k ϕ=+()k ∈Z , 又π2ϕ<,所以π6ϕ=,故()πsin 26f x x ⎛⎫=+ ⎪⎝⎭.将()f x 的图象向右平移π6个单位长得到函数πππsin 22sin 2666y x x ⎛⎫⎛⎫=-⨯+=- ⎪ ⎪⎝⎭⎝⎭,故函数()πsin 26g x x ⎛⎫=- ⎪⎝⎭, 令πππ2π22π262k x k -≤-≤+()k ∈Z ,解得()ππππ63k x k k -≤≤+∈Z , 所以()g x 的单调增区间为()πππ,π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z . 故选:C. 【点睛】本题考查三角函数的图象性质,考查三角函数图象的平移变换,考查三角函数的单调性,考查学生的推理能力与计算求解能力,属于中档题.7.C解析:C 【分析】利用奇偶性的定义判断函数奇偶性,判断AD 错误,结合常见基本初等函数的单调性判断B 错误,C 正确即可. 【详解】选项A 中,()22xxf x -=-,定义域R ,()()()2222xx x x f x f x ---=-=--=-,则()f x 是奇函数,不符合题意;选项D 中,()cos3=f x x x ,定义域R ,()()()cos 3cos3f x x x x x f x -=--=-=-,则()f x 是奇函数,不符合题意;选项B 中,()23f x x =-,定义域R ,()()()2233x x f x f x -=--=-=,则()f x 是偶函数,但二次函数()23f x x =-在在(),0-∞上是减函数,在()0,∞+上是增函数,故不符合题意;选项C 中,()2ln =-f x x ,定义域为(),0-∞()0,+∞,()()2ln 2ln f x x x f x -=--=-=,则()f x 是偶函数.当()0,x ∈+∞时,()2ln f x x =-是减函数,所以由偶函数图象关于y 轴对称可知,()f x 在(),0-∞上是增函数,故符合题意. 故选:C. 【点睛】 方法点睛:定义法判断函数()f x 奇偶性的方法: (1)确定定义域关于原点对称; (2)计算()f x -;(3)判断()f x -与()f x 的关系,若()()f x f x -=,则()f x 是偶函数;若()()f x f x -=-,则()f x 是奇函数;若两者均不成立,则()f x 是非奇非偶函数.8.D解析:D 【分析】由题先求出()3sin 323g x x π⎛⎫=+- ⎪⎝⎭,可得3,3363x πππθ⎡⎤+∈+⎢⎥⎣⎦,要满足题意,则332ππθ+≥,即可求出.【详解】将()f x 横坐标缩短为原来的13得到3sin(3)2y x =--,再向右平移29π个单位得到()23sin 323sin 3293g x x x ππ⎡⎤⎛⎫⎛⎫---=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=,,18x πθ⎡⎤∈-⎢⎥⎣⎦,则3,3363x πππθ⎡⎤+∈+⎢⎥⎣⎦,要使()g x 在区间,18πθ⎡⎤-⎢⎥⎣⎦上的最大值为1,则332ππθ+≥,即18πθ≥,则θ的最小值为18π. 故选:D. 【点睛】本题考查正弦型函数的性质,解题的关键是通过图象变化得出()3sin 323g x x π⎛⎫=+- ⎪⎝⎭,再根据正弦函数的性质求解.9.C解析:C 【分析】函数()()sin ln 0=->f x x x ωω只有一个零点,等价于sin y x ω=与ln y x =图象只有一个交点,作出两个函数的图象,数形结合即可求解. 【详解】函数()()sin ln 0=->f x x x ωω只有一个零点, 可得sin ln 0x x ω-=只有一个实根,等价于sin y x ω=与ln y x =图象只有一个交点, 作出两个函数的图象如图所示,由sin y x ω=可得其周期2T πω=,当x e =时,ln 1y e ==sin y x ω=最高点5,12A πω⎛⎫⎪⎝⎭所以若恰有一个交点,只需要5ln 12πω>,即52e πω>, 解得:52e πω<,又因为0>ω,所以502eπω<<, 故选:C 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.10.C解析:C 【分析】利用二倍角和辅助角公式化简函数为()2sin(2+)3f x x π=;根据正弦型函数的性质验证选项得解 【详解】()sin 222sin(2+)3f x x x x π==()f x 最小正周期22T ππ==,A 错误; ()2sin[2()+]2sin(2)2sin 2333f x x x x ππππ-=-=-=,B 错误; 当7(,)1212x ππ∈时,32(,)322x πππ+∈ ()f x ∴在7(,)1212ππ上是减函数,C 正确; 将2sin 2y x =向左平移3π个单位长度得到22sin[2()]2sin(2)33y x x ππ=-=-,D 错误. 故选:C 【点睛】本题考查正弦型函数性质的相关命题的辨析,涉及到二倍角和辅助角公式化简三角函数、正弦型函数的周期性、对称性和单调区间的求解、三角函数平移变换的应用等知识;关键是能够熟练掌握整体对应的方法,通过代入检验,结合正弦函数图象可确定正弦型函数的性质.11.C解析:C 【分析】首先根据题中所给的函数图象,从最值、周期和特殊点着手将解析式确定,之后结合函数的性质对选项逐一分析,得到结果. 【详解】根据图象得到:2A =,311341264T πππ=-=,所以T π=, 所以2ππω=,解得2ω=,所以()()2sin 2f x x ϕ=+.将点,26π⎛⎫ ⎪⎝⎭代入,得到2sin 23πϕ⎛⎫+= ⎪⎝⎭, 则()232k k Z ππϕπ+=+∈,得()26k k Z πϕπ=+∈,又2πϕ<,所以6π=ϕ, 所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 对于A ,20126ππ⎛⎫⨯-+= ⎪⎝⎭,则函数()f x 关于,012π⎛⎫- ⎪⎝⎭对称,故A 正确; 对于B ,函数的周期22T ππ==,故B 正确; 对于C ,当0,6x π⎛⎫∈ ⎪⎝⎭时,2,662x πππ⎛⎫+∈ ⎪⎝⎭,此时函数()f x 为增函数,故C 错误; 对于D ,当0,12x π⎡⎤∈⎢⎥⎣⎦时,2,663x πππ⎡⎤+∈⎢⎥⎣⎦,则1sin 262x π⎡⎛⎫+∈⎢ ⎪⎝⎭⎣⎦,2sin 26x π⎛⎫⎡+∈ ⎪⎣⎝⎭,故()f x 在0,12π⎡⎤⎢⎥⎣⎦D 正确. 故选:C . 【点睛】该题考查的是有关三角函数的问题,涉及到的知识点有根据图象确定函数解析式,正弦型函数的相关性质,属于简单题目.12.B解析:B 【分析】由三角函数的图象与性质可得()sin 34f x x ππ⎛⎫=+ ⎪⎝⎭,代入即可判断①;令03,42()x k k Z ππππ+∈+=,化简即可判断②;令232,242k k x k Z ππππππ-≤+≤+∈+,化简即可判断③;由最小正周期的公式即可判断④. 【详解】∵函数()f x 的图象关于点1,04⎛⎫⎪⎝⎭对称,∴111,4k k Z ωϕπ+=∈,又函数()f x 的图象关于直线14x =-对称,∴221,42k k Z ππωϕ-+=+∈,∴()1221k k ωπ=--⎡⎤⎣⎦,即(21),n n Z ωπ=∈-, ∵函数()sin()f x x ωϕ=+在[]1,2上有且仅有3个零点,∴24,)201(ππωωω<>≤-,即24πωπ≤<,所以3ωπ=,()()sin 3f x x πϕ=+, ∵104f ⎛⎫=⎪⎝⎭,∴3,4k k Z πϕπ+=∈, 又||2πϕ≤,∴4πϕ=,∴()sin 34f x x ππ⎛⎫=+ ⎪⎝⎭;对于①,3sin 24122f ππ⎛⎫+ ⎪⎝⎛⎫==-⎪⎭⎝⎭,故①错误; 对于②,令03,42()x k k Z ππππ+∈+=,则01,31(2)Z k x k =+∈, 令101312k ≤+≤,则可取0,1,2k =, ∴0112x =,512,34,即函数()f x 在[]0,1上有且仅有3个最值点,故②正确; 对于③,令232,242k k x k Z ππππππ-≤+≤+∈+,则1212,43123k x k Z k -+≤≤∈+,当2k =-时,195,124⎡⎤--⎢⎥⎣⎦为()f x 的一个递增区间, 而35195,,24124⎛⎫⎡⎤--⊆-- ⎪⎢⎥⎝⎭⎣⎦,∴()f x 在35,24⎛⎫-- ⎪⎝⎭上单调递增,故③正确; 对于④,∵()sin 34f x x ππ⎛⎫=+⎪⎝⎭,∴函数的最小正周期2233T ππ==,故④错误. 综上所述,其中正确的结论的个数为2个. 故选:B. 【点睛】本题考查了三角函数解析式的确定及三角函数图象与性质的应用,考查了运算求解能力,属于中档题.二、填空题13.【分析】先求出由可求出利用单调性可得结合即可求解【详解】将函数的图象向右平移个单位长度得到函数因为所以因为函数在区间上是单调递增函数所以解得:因为所以故答案为:【点睛】关键点点睛:本题解题的关键点是解析:60,5⎛⎤⎥⎝⎦【分析】先求出()sin 12g x x πω⎛⎫=-⎪⎝⎭,由0,2x π⎡⎤∈⎢⎥⎣⎦可求出5121212x πππωωω⎛⎫-≤-≤ ⎪⎝⎭,利用单调性可得1225122ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,结合0>ω即可求解.【详解】将函数()sin (0)f x x ωω=>的图象向右平移12π个单位长度得到函数()sin 12g x x πω⎛⎫=- ⎪⎝⎭,因为02x π≤≤,所以5121212x πππωωω⎛⎫-≤-≤⎪⎝⎭, 因为函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递增函数, 所以1225122ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得:665ωω≤⎧⎪⎨≤⎪⎩,因为0>ω,所以605ω<≤, 故答案为:60,5⎛⎤ ⎥⎝⎦【点睛】关键点点睛:本题解题的关键点是由x 的范围求出12x πω⎛⎫-⎪⎝⎭的范围,将12x πω⎛⎫-⎪⎝⎭看成一个整体让其满足正弦函数的单调递增区间,即可得其满足的条件.14.是正整数且【分析】根据最值列出等式求再根据最高点和最低点对应的月份求周期并求以及利用最高点求【详解】由题意可知解得:解得:当时得:所以的表达式是是正整数且故答案为:是正整数且【点睛】方法点睛:形如一解析:()π5π15cos 1866G n n ⎛⎫=++ ⎪⎝⎭,n 是正整数且[]1,12n ∈【分析】根据最值列出等式求,A k ,再根据最高点和最低点对应的月份求周期,并求ω,以及利用最高点求ϕ. 【详解】 由题意可知()()330A k A k A k -+=⎧⎨+--+=⎩,解得:1518A k =⎧⎨=⎩,12712πω-=⋅,解得:6π=ω,当7x =时,72,6k k Z πϕπ⨯+=∈,得:726k ϕππ=-+()0,ϕπ∈,56ϕπ∴=,所以()G n 的表达式是()515cos 1866G n n ππ⎛⎫=++⎪⎝⎭,n 是正整数且[]1,12n ∈. 故答案为:()515cos 1866G n n ππ⎛⎫=++⎪⎝⎭,n 是正整数且[]1,12n ∈ 【点睛】方法点睛:形如()sin y A x k ωϕ=++ ()0,0A ω>>,一般根据最值求,A k ,利用最值,零点对应的自变量的距离求周期和ω,以及“五点法”中的一个点求ϕ.15.②③【分析】先根据图象结合已知条件限制求出的解析式再利用代入验证法判断①错误;利用整体代入法求单调区间判断②正确;解方程并结合诱导公式判断③正确;将函数零点问题转化成函数交点问题数形结合判断④错误即解析:②③ 【分析】先根据图象,结合已知条件限制求出()y f x =的解析式,再利用代入验证法判断①错误;利用整体代入法求单调区间判断②正确;解方程并结合诱导公式判断③正确;将函数零点问题转化成函数交点问题,数形结合判断④错误即可. 【详解】由图象可知,2A =,(0)2sin 1f ϕ==,故1sin 2ϕ=,又2πϕ<,故6π=ϕ,故()2sin 6f x x πω⎛⎫=+⎪⎝⎭,又由11112sin 012126f πππω⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭得,112,126k k Z ππωπ+=∈,即224,1111kk Z ω=-+∈, 由题意0>ω,由图知1112T π>,即22411T πω=<,故1k =时2ω=.故()2sin 26f x x π⎛⎫=+ ⎪⎝⎭.①因为252sin 2sin 103366f ππππ⎛⎫⎛⎫=+==≠⎪ ⎪⎝⎭⎝⎭,故点,03π⎛⎫ ⎪⎝⎭不是()y f x =图象的对称中心,故错误; ②令322,2,622x k k k Z πππππ⎛⎫+∈++∈ ⎪⎝⎭,解得单调递减区间为2,,63k k k ππππ⎛⎫++∈⎪⎝⎭Z ,故正确;③若()2sin 26f x x a π⎛⎫=+= ⎪⎝⎭,则sin 262a x π⎛⎫+= ⎪⎝⎭, 则cos cos 2sin 2sin 2332362a x x x x πππππω⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=-=+-=+= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故正确; ④令2()()log 0g x f x x =-=,得方程2()log f x x =的根的问题, 即函数()2sin 26y f x x π⎛⎫==+⎪⎝⎭与函数2log y x =的交点个数问题,如图,令22,62x k k Z πππ+=+∈,则,6x k k Z ππ=+∈时()y f x =取得最大值2.如图,6x π=时,2()log f x x >;76x π=时,746π<,227log log 426π<=2()2log f x x =>;当136x π=时,1346π>,2213log log 426π>=,2()2log f x x =<. 故函数()2sin 26y f x x π⎛⎫==+ ⎪⎝⎭与函数2log y x =有3个交点,即2()()log g x f x x =-有3个零点.故错误. 故答案为:②③. 【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点; (2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()0f x =等价于()()h x g x =,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.16.【分析】由f (x+)=2f (x )得f (x )=2f (x ﹣)分段求解析式结合图象可得m 的取值范围【详解】解:∵∴∵当时∴当时当时当时作出函数的图象:令解得:或若存在使得则故答案为:【点睛】本题考查函数与解析:10[,)3π+∞ 【分析】由f (x +π)=2f (x ),得f (x )=2f (x ﹣π),分段求解析式,结合图象可得m 的取值范围. 【详解】解:∵()()2f x f x π+=,∴()()2f x f x π=-, ∵当0,x时,()sin f x x =.∴当[),2x ππ∈时,()()2sin f x x π=-.当[)2,3x ππ∈时,()()4sin 2f x x π=-.当[)3,4x ππ∈时,()()8sin 3f x x π=-.作出函数的图象:令()8sin 343x π-=103x π=,或113π, 若存在(]0,x m ∈-∞,使得()043f x ≥,则103m π≥, 故答案为:10[,)3π+∞【点睛】本题考查函数与方程的综合运用,训练了函数解析式的求解及常用方法,考查数形结合的解题思想方法,属中档题.17.【分析】先切化弦再诱导公式化简后运用余弦二倍角公式得解【详解】故答案为:【点睛】本题考查同角三角函数的基本关系诱导公式二倍角公式同角三角函数的基本关系本身是恒等式也可以看作是方程对于一些题可利用已知解析:19-【分析】先切化弦,再诱导公式化简后,运用余弦二倍角公式得解. 【详解】2tan|cos |,|sin |2232ααα∴=∴== 22451sin()cos cos sin 222999παααα∴+==-=-=-故答案为:19-. 【点睛】本题考查同角三角函数的基本关系、诱导公式、二倍角公式.同角三角函数的基本关系本身是恒等式,也可以看作是方程,对于一些题,可利用已知条件,结合同角三角函数的基本关系列方程组,通过解方程组达到解决问题的目的. 应用诱导公式化简求值的关键是利用诱导公式把任意角的三角函数值转化为锐角的三角函数值求解.转化过程中注意口诀“奇变偶不变,符号看象限”的应用.18.【分析】求出平移后的函数解析式由新函数图象过原点得出【详解】将函数的图象向左平移个单位长度得解析式为它的图象关于原点对称则即故答案为:【点睛】本题考查三角函数的图象平移变换考查三角函数的对称性注意性解析:【分析】求出平移后的函数解析式,由新函数图象过原点得出a , 【详解】将函数()sin 23cos2f x a x x =+的图象向左平移6π个单位长度,得解析式为()sin 23cos 266g x a x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,它的图象关于原点对称,则(0)0g =,即sin3cos033a ππ+=,a =故答案为:. 【点睛】本题考查三角函数的图象平移变换,考查三角函数的对称性,注意性质:函数()sin()f x A x ωϕ=+的图象与x 轴的交点是其对称中心,它的对称中心在函数图象上.19.9【分析】由在区间上单调可得故进一步求出范围即可【详解】由知故;又在区间上单调故即18符合条件的的值有9个故答案为:9【点睛】本题考查三角函数的图象与性质考查转化与化归思想考查逻辑推理能力运算求解能解析:9 【分析】 由()f x 在区间(,)43ππ上单调,可得342T ππ-,故6T π,进一步求出ω范围即可. 【详解】由()24f π=,()0f π=知,34244T kT πππ+=-=,k ∈N , 故312T k π=+,2(12)3k ω+=,k ∈N ; 又()f x 在区间(,)43ππ上单调,∴342T ππ-,故6T π, ∴212T πω=,即2(12)123k +, ∴172k,k ∈N , 0k ∴=,1,2⋯,8符合条件的ω的值有9个. 故答案为:9. 【点睛】本题考查三角函数的图象与性质,考查转化与化归思想,考查逻辑推理能力、运算求解能力,属中档题.20.①④【分析】结合题意得出函数的奇偶性根据奇偶性研究函数在时的性质对结论逐一判断即可【详解】解:∵定义域为∴∴函数是偶函数故①对;当时∴由正弦函数的单调性可知函数在区间上单调递减故②错;当时由得根据偶解析:①④ 【分析】结合题意,得出函数的奇偶性,根据奇偶性研究函数在0x >时的性质对结论逐一判断即可. 【详解】解:∵()sin |||sin |f x x x =+,定义域为R ,∴()()sin |||sin |f x x x -=-+-sin sin ()x x f x =+=,∴函数()f x 是偶函数,故①对;当[]0,x π∈时,()sin |||sin |f x x x =+sin sin 2sin x x x =+=, ∴由正弦函数的单调性可知,函数()f x 在区间,2ππ⎛⎫⎪⎝⎭上单调递减,故②错; 当[]0,x π∈时,由()2sin 0f x x ==得0x =,x π=,根据偶函数的图象和性质可得,()f x 在[),0π-上有1个零点x π=- , ∴()f x 在[],ππ-有3个零点,故③错;当0x ≥时,()sin |||sin |f x x x =+sin sin x x =+2sin ,sin 00,sin 0x x x ≥⎧=⎨<⎩, 根据奇偶性可得函数()f x 的图象如图,∴当sin 1x =时,函数()f x 有最大值()max 2f x =,故④对; 故答案为:①④. 【点睛】本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键,属于中档题.三、解答题21.(1)答案见解析; (2)答案见解析;(3)72π3π ,3π,. 【分析】(1)令26x π+分别等于0,2π,π,32π,2π,求出对应的坐标,再描点作图即可作出函数sin()y A x ωϕ=+在一个周期上的简图.(2)将函数sin y x =的横坐标不变,纵坐标变为原来的3倍,再将得到的图象向左平移6π得,然后将得到的图象的纵坐标不变,横坐标变为原来的12倍即可. (3)由03()2f x =,可得0,x k k Z π=∈或03,x k k Z ππ=+∈,结合0[2π3π]x ∈,即可得答案.【详解】 (1)列表:26x π+2π π32π 2πx12π-6π 512π 23π 1112π()f x3 03-(2)将函数sin y x =的横坐标不变,纵坐标变为原来的3倍得到3sin y x =,再将得到的图象向左平移6π得到3sin 6y x π⎛⎫=+ ⎪⎝⎭,再将得到的图象的纵坐标不变,横坐标变为原来的12倍得到,3sin 26y x π⎛⎫=+ ⎪⎝⎭; (3)因为03()2f x =,所以00313sin 2sin 26262x x ππ⎛⎫⎛⎫+=⇒+= ⎪ ⎪⎝⎭⎝⎭,022,66x k k Z πππ+=+∈或0522,66x k k Z πππ+=+∈, 即0,x k k Z π=∈或03,x k k Z ππ=+∈,又因为0[2π3π]x ∈,, 所以0x 的值为72π3π ,3π,. 【点睛】方法点睛:三角函数图象变换步骤:sin y x =先向左(0ϕ>)或向右(0ϕ<)平移ϕ个单位长度,得到函数sin()y x ϕ=+的图象;然后使曲线上各点的横坐标变为原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;最后把曲线上各点的纵坐标变为原来A (横坐标不变),这时的曲线就是()y Asin x ωϕ=+的图象. 22.(1)70m ;(2)0.5min . 【分析】(1)根据题意,确定()sin()f t A t h ωϕ=++的表达式,代入2020t =运算即可;(2)要求()50f t >+2cos 32t π<,解不等式即可. 【详解】(1)依题意,40A =,50h =,3T =, 由23πω=得23πω=,所以2()40sin 503f t t πϕ⎛⎫=++⎪⎝⎭. 因为(0)10f =,所以sin 1ϕ=-,又||2πϕ≤,所以2πϕ=-.所以2()40sin 50(0)32f t t t ππ⎛⎫=-+≥ ⎪⎝⎭,所以2(2020)40sin 2020507032f ππ⎛⎫=⨯-+=⎪⎝⎭.即2020t =时点P 距离地面的高度为70m . (2)由(1)知22()40sin 505040cos (0)323f t t t t πππ⎛⎫=-+=-≥ ⎪⎝⎭.令()50f t >+2cos 32t π<-, 从而()*52722N 636k t k k πππππ+<<+∈, ∴()*5733N 44k t k k +<<+∈. ∵()*751330.5N 442k k k ⎛⎫+-+==∈ ⎪⎝⎭, ∴转一圈中在点P 处有0.5min 的时间可以看到公园的全貌. 【点睛】本题考查了已知三角函数模型的应用问题,解答本题的关键是能根据题目条件,得出相应的函数模型,作出正确的示意图,然后再由三角函数中的相关知识进行求解,解题时要注意综合利用所学知识与题中的条件,是中档题. 23.(1)2π;(2)2,5,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 【分析】(1)先利用二倍角公式化简,再用辅助角公式化为()f x sin 16x π⎛⎫=++ ⎪⎝⎭,即可求出()f x 的最小正周期;(2)利用图像变换得到()y g x =的解析式,利用换元法就可以得到()y g x =的最大值及取得最大值时 x 的取值 【详解】(1)∵函数1cos 1()22x f x x +=++ sin 16x π⎛⎫=++ ⎪⎝⎭∴函数的周期为2π(2)依题意:函数()f x sin 16x π⎛⎫=++ ⎪⎝⎭的图象上的各点向左平移32π个单位,得到y 3sin +1= -cos 1626x x πππ⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭;再保持纵坐标不变,横坐标缩短到原来的一半,得到y = -cos 216x π⎛⎫++ ⎪⎝⎭; 所以()cos 216g x x π⎛⎫=-++ ⎪⎝⎭令226t x k πππ=+=+,即5()12x k k Z ππ=+∈ 使函数()g x 取得最大值2,即max ()2g x = 使函数()g x 取得最大值的集合为5,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 【注意】取得最大值的集合为7,12x x k k Z ππ⎧⎫=-∈⎨⎬⎩⎭也可以. 【点睛】 :(1)关于三角函数图像平移伸缩变换:先平移的话,如果平移a 个单位长度那么相位就会改变ωa ;而先伸缩势必会改变ω大小,这时再平移要使相位改变值仍为ωa ,那么平移长度不等于a ;(2)求y =Asin (ωx +φ)+B 的值域通常用换元法; 24.(1)()2sin 24f x x π⎛⎫=+⎪⎝⎭;(2)单调递增区间为0,8π⎡⎤⎢⎥⎣⎦,单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦,()f x 值域为⎡⎤⎣⎦. 【分析】。

三角函数专题能力培优(含答案)

三角函数专题能力培优(含答案)

三角函数专题能力培优(含答案)三角函数专题能力培优(含答案)一、正弦函数1. 定义正弦函数是一个周期为 $2\pi$ 的函数,其定义域为实数集。

正弦函数用符号 $\sin x$ 表示,表示角 $x$ 的正弦值。

2. 周期性质正弦函数是一个周期函数,其最小正周期为 $2\pi$。

3. 奇偶性质正弦函数为奇函数,即 $\sin(-x) = -\sin x$。

二、余弦函数1. 定义余弦函数是一个周期为 $2\pi$ 的函数,其定义域为实数集。

余弦函数用符号 $\cos x$ 表示,表示角 $x$ 的余弦值。

2. 周期性质余弦函数是一个周期函数,其最小正周期为 $2\pi$。

3. 奇偶性质余弦函数为偶函数,即 $\cos(-x) = \cos x$。

三、正切函数1. 定义正切函数是一个周期为 $\pi$ 的函数,在定义域内不存在$k\pi+\frac{\pi}{2}(k\in\mathbb{Z})$,即其极限值不存在。

正切函数用符号 $\tan x$ 表示,表示角 $x$ 的正切值。

2. 周期性质正切函数是一个周期函数,其最小正周期为 $\pi$。

3. 奇偶性质正切函数为奇函数,即 $\tan(-x) = -\tan x$。

四、反三角函数1. 定义反正弦函数、反余弦函数和反正切函数的定义如下:- $\arcsin x$ 表示满足 $-\frac{\pi}{2}\leq\arcsin{x}\leq\frac{\pi}{2}$ 且 $\sin\arcsin{x}=x$ 的实数;- $\arccos x$ 表示满足 $0\leq\arccos{x}\leq\pi$ 且$\cos\arccos{x}=x$ 的实数;- $\arctan x$ 表示满足 $-\frac{\pi}{2}<\arctanx<\frac{\pi}{2}$ 且 $\tan\arctan{x}=x$ 的实数。

2. 基本性质反三角函数是三角函数的反函数,其定义域和值域与三角函数相反。

(易错题)高中数学必修四第一章《三角函数》测试卷(包含答案解析)(3)

(易错题)高中数学必修四第一章《三角函数》测试卷(包含答案解析)(3)

一、选择题1.已知关于x 的方程2cos ||2sin ||20(0)+-+=≠a x x a a 在(2,2)x ππ∈-有四个不同的实数解,则实数a 的取值范围为( ) A .(,0)(2,)-∞+∞ B .(4,)+∞ C .(0,2)D .(0,4)2.函数()()sin cos y x =的部分图象大致为( )A .B .C .D .3.已知实数a ,b 满足0<2a <b <3-2a ,则下列不等关系一定成立的是( ) A .sin sin2b a < B .()2cos >cos 3a b -C .()2sin sin3a b +<D .23cos >sin 2b a ⎛⎫-⎪⎝⎭4.设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0,0A ω>>).若()f x 在区间[,]32ππ上具有单调性,且()(),23f f ππ=-2()()23f f ππ=,则ω=( ) A .6 B .3 C .2D .15.如图,一个摩天轮的半径为10m ,轮子的最低处距离地面2m .如果此摩天轮按逆时针匀速转动,每30分钟转一圈,且当摩天轮上某人经过点P (点P 与摩天轮天轮中心O 的高度相同)时开始计时,在摩天轮转动的一圈内,此人相对于地面的高度不小于17m 的时间大约是( )A .8分钟B .10分钟C .12分钟D .14分钟6.下列结论正确的是( ) A .sin1cos1< B .2317cos cos 54ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭C .()()tan 52tan 47->-D .sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭7.已知曲线1C :sin y x =,2C :cos 23y x π⎛⎫=-⎪⎝⎭,则下面结论正确的是( ) A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移23π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12π个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移12π个单位长度,得到曲线2C 8.函数()3sin 22xf x x =-的部分图象大致为( ) A . B .C .D .9.已知()f x 是定义在R 上的奇函数,()1f x +也是奇函数,当(]0,1x ∈时,()11f x x=-.若函数()()sin F x f x x π=+,则()F x 在区间[]1949,2021上的零点个数是( ) A .108 B .109 C .144 D .14510.函数2()cos sin (R)f x x x x =+∈的最小值为( ) A .54B .1C .1-D .2-11.:sin 3cos 1p x x +>的一个充分不必要条件是( ) A .02x π<<B .203x π<<C .32x ππ-<<D .566x ππ<<12.如图,摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色.某摩天轮最高点距离地面高度为120m ,转盘直径为110m 设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周大约需要20min .游客甲坐上摩天轮的座舱,开始转动t min 后距离地面的高度为H m ,则在转动一周的过程中,高度H 关于时间t 的函数解析式是( )A .()55cos 65020102H t t ππ⎛⎫=-+≤≤ ⎪⎝⎭B .()55sin 65020102H t t ππ⎛⎫=-+≤≤ ⎪⎝⎭C .()55cos 65020102H t t ππ⎛⎫=++≤≤ ⎪⎝⎭D .()55sin 65020102H t t ππ⎛⎫=++≤≤ ⎪⎝⎭二、填空题13.设函数()3sin 23f x x π⎛⎫=-⎪⎝⎭的图象为C ,给出下列命题:①图象C 关于直线1112π=x 对称;②函数()f x 在区间5,1212ππ⎛⎫- ⎪⎝⎭内是减函数;③函数()f x 是奇函数;④图象C 关于点,03π⎛⎫⎪⎝⎭对称.其中,错误命题的是______. 14.将函数()2sin 26f x x π⎛⎫=+⎪⎝⎭的图象向左平移12π个单位,再向上平移1个单位,得到()g x 的图象.若()()129g x g x =,且[]12,2,2x x ππ∈-,则122x x -的最大值为_______________.15.圆心角为2弧度的扇形的周长为3,则此扇形的面积为 _____ . 16.已知函数()sin 2sin 23f x x x π⎛⎫=++⎪⎝⎭,将其图象向左平移(0)ϕϕ>个单位长度后,得到的图象为偶函数,则ϕ的最小值是_______17.已知函数f (x ),任意x 1,x 2∈,22ππ⎛⎫- ⎪⎝⎭(x 1≠x 2),给出下列结论:①f (x +π)=f (x );②f (-x )=f (x );③f (0)=1; ④1212()()f x f x x x -->0;⑤1212()()22x x f x f x f ++⎛⎫> ⎪⎝⎭.当()tan f x x =时,正确结论的序号为________. 18.如图是函数()2sin(),(0,)2f x x πωφωφ=+><的图象上的一段,则ω=_________φ =____19.定义在R 上的偶函数()f x 满足()()3f x f x +=-,且()12019f -=,则()2020f =______.20.已知函数()3)cos(2)(0)f x x x ϕϕϕπ=+-+<<是定义在R 上的奇函数,则()8f π-的值为______.三、解答题21.已知函数()1tan ln1tan xf x x-=+.(1)判断函数()f x 的奇偶性,并证明;(2)若()()()1tan tan f xa x g x e x-=-在,04π⎛⎫- ⎪⎝⎭上有零点,求实数a 的取值范围. 22.某同学用“五点法”画函数()() sin ωϕ=++f x A x B (其中A >0,0>0,||)2πϕ<在某一个周期内的图象时,列表并填入部分数据,如表:f (x )的解析式; (2)若定义在区间,44ππ⎡⎤-⎢⎥⎣⎦上的函数g (x )=af (x )+b 的最大值为7,最小值为1,求实数a ,b 的值.23.已知()sin()(0,0)f x x ωϕϕπω=+<<>为偶函数,且()y f x =图像的两相邻对称中心点间的距离为2π. (1)求()f x 的解析式;(2)函数()y f x =的图像向右平移6π个单位后,再将得到的图像上各点的横坐标伸长到原来的2倍,纵坐标不变,得到()y g x =的图像,求()g x 的单调递减区间. 24.已知函数()()sin 0,06f x A x A πωω⎛⎫=+>> ⎪⎝⎭只能满足下列三个条件中的两个:①函数()f x 的最大值为2;②函数()f x 的图象可由4y x π⎛⎫=- ⎪⎝⎭的图象平移得到;③函数()f x 图象的相邻两条对称轴之间的距离为.2π(1)请写出满足()f x 的这两个条件序号,并说明理由; (2)求出()f x 的解析式;(3)求方程()10f x +=在区间[],ππ-上所有解的和. 25.设函数()3sin (0)4f x x πωω⎛⎫=+> ⎪⎝⎭,且以23π为最小正周期. (1)求函数()f x 的单调递减区间;(2)当,32x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域. 26.已知某海滨浴场的海浪高度y (单位:米)与时间()024t t ≤≤(单位:时)的函数关系记作()y f t =,下表是某日各时的浪高数据:经长期观测,函数y f t =可近似地看成是函数cos y A t b =+.(1)根据以上数据,求出函数cos y A t b ω=+的最小正周期T 及函数表达式(其中0A >,0>ω);(2)根据规定,当海浪高度不低于0.75米时,才对冲浪爱好者开放,请根据以上结论,判断一天内从上午7时至晚上19时之间,该浴场有多少时间可向冲浪爱好者开放?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】令2()cos ||2sin ||2(0)=+-+≠f x a x x a a ,易知函数()f x 是偶函数,将问题转化为研究当(0,2)x π∈时,2()cos 2sin 2=+-+f x a x x a 有两个零点,令sin t x =,则转化为2()22(0)=--≠h t at t a 有一个根(1,1)t ∈-求解.【详解】当(2,2)x ππ∈-,2()cos ||2sin ||2(0)=+-+≠f x a x x a a ,则()()f x f x -=,函数()f x 是偶函数,由偶函数的对称性,只需研究当(0,2)x π∈时,2()cos 2sin 2=+-+f x a x x a 有两个零点,设sin t x =,则2()22(0)=--≠h t at t a 有一个根(1,1)t ∈- ①当0a <时,2()22=--h t at t 是开口向下,对称轴为10t a=<的二次函数, (0)20h =-<则(1)0->=h a ,这与0a <矛盾,舍去;②当0a >时,2()22=--h t at t 是开口向上,对称轴为10t a=>的二次函数, 因为(0)20h =-<,(1)220-=+->=h a a ,则存在(1,0)t ∈-,只需(1)220=--<h a ,解得4a <, 所以04a <<.综上,非零实数a 的取值范围为04a <<. 故选:D . 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解2.A解析:A 【分析】先确定奇偶性,再取特殊值确定函数值可能为负,排除三个选项后得出结论. 【详解】记()()sin cos f x x =,则()()()sin cos()sin cos ()f x x x f x -=-==,为偶函数,排除D , 当23x π=时,21()sin cos sin 032f x π⎛⎫⎛⎫⎛⎫==-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,排除B ,C . 故选:A . 【点睛】本题考查由解析式先把函数图象,解题方法是排除法,可通过研究函数的性质如奇偶性、单调性等排除一些选项,再由特殊的函数值,函数值的正负,变化趋势等排除一些选项后得出正确结论.3.D解析:D 【分析】对各个选项一一验证:对于A.由0<2a <b <3-2a ,可以判断出2ba <,借助于正弦函数的单调性判断; 对于B.由0<2a <b <3-2a ,可以判断出23a b <-,借助于余弦函数的单调性判断; 对于C.由0<2a <b <3-2a ,可以判断出23a b +<,借助于正弦函数的单调性判断; 对于D.先用诱导公式转化为同名三角函数,借助于余弦函数的单调性判断; 【详解】 因为0<2a <b <3-2a 对于A. 有0<2b a <,若22b a π<<,有sin sin 2b a <;若22b a π<<,有sin sin 2ba >,故A 错; 对于B.有 23ab <-,若232a b π<<-,有()2cos >cos 3a b -,故B 错;对于C. 23a b +<,若232a b π<+<,有()2sin sin 3a b +>,故C 错;对于D. 222333sin cos cos 2222a a a ππ+⎛⎫⎛⎫⎛⎫-=--=- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭又因为b <3-2a <3,所以2cos >cos(3)b a - ∵22332a a π+-<-∴()223cos 3cos 2a a π+⎛⎫->-⎪⎝⎭∴()22233cos cos 3cos sin 22a a b a π+⎛⎫⎛⎫>->-=- ⎪ ⎪⎝⎭⎝⎭,故D 对. 故选:D. 【点睛】利用函数单调性比较大小,需要在同一个单调区间内.4.B解析:B 【分析】 由2()()23f f ππ=求出函数的一条对称轴,结合()f x 在区间[,]32ππ上具有单调性,且()()23f f ππ=-,可得函数的四分之一周期,即可求出ω的值.【详解】解:由2()()23f f ππ=,可知函数()f x 的一条对称轴为2723212x πππ+==, 则2x π=离最近对称轴距离为712212πππ-=. 又()()23f f ππ=-,则()f x 有对称中心5,012π⎛⎫⎪⎝⎭, 由于()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上具有单调性, 则1232T ππ-,所以3T π≥,从而7512124Tππ-=,所以23T π=,因为2T πω=,所以3ω=.故选:B 【点睛】本题考查()sin()f x A x ωϕ=+型函数图象的应用,考查了学生灵活处理问题和解决问题的能力.5.B解析:B 【分析】由题可得此人相对于地面的高度h 与时间t 的关系是()10sin1203015h t t π=+≤≤,再令10sin121715t π+≥求出t 的范围即可得出. 【详解】设时间为t 时,此人相对于地面的高度为h , 则由题可得当0t =时,12h =, 在时间t 时,此人转过的角为23015t t ππ=, 此时此人相对于地面的高度()10sin 1203015h t t π=+≤≤,令10sin 121715t π+≥,则1sin 152t π≥, 所以56156t πππ≤≤,解得52522t ≤≤, 故在摩天轮转动的一圈内,此人相对于地面的高度不小于17m 的时间大约是()25510min 22-=. 故选:B. 【点睛】本题考查三角函数的实际应用,解题的关键是得出高度与时间的关系()10sin1203015h t t π=+≤≤,再解三角函数不等式即可.6.D解析:D 【分析】利用正弦函数的单调性可判断AD 选项的正误;利用正切函数的单调性可判断C 选项的正误;利用余弦函数的单调性可判断B 选项的正误. 【详解】对于A 选项,因为正弦函数sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增, 且01122ππ<-<<,则sin1sin 1cos12π⎛⎫>-=⎪⎝⎭,A 选项错误;对于B 选项,因为余弦函数cos y x =在()0,π上为减函数,23233cos cos cos 555πππ⎛⎫-== ⎪⎝⎭,1717cos cos cos 444πππ⎛⎫-== ⎪⎝⎭, 3045πππ<<<,则3cos cos 54ππ<,即2317cos cos 54ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,B 选项错误; 对于C 选项,当900x -<<时,正切函数tan y x =单调递增, 因为9052470-<-<-<,所以,()()tan 52tan 47-<-,C 选项错误;对于D 选项,因为正弦函数sin y x =在,02π⎛⎫- ⎪⎝⎭上单调递增,因为021018πππ-<-<-<,所以,sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,D 选项正确. 故选:D. 【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.7.C解析:C 【分析】由题意利用诱导公式得1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,根据函数()cos y A x ωϕ=+的图象变换规律,得出结论. 【详解】已知曲线1sin cos :2C y x x π⎛⎫==-⎪⎝⎭,2cos 23:C y x π⎛⎫=-⎪⎝⎭, ∴把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,可得cos 22y x π⎛⎫=- ⎪⎝⎭的图象,再把得到的曲线向左平移 12π个单位长度,得到曲线2cos 2cos 263:2C x x πππ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭的图象,故选C .【点睛】本题主要考查函数()cos y A x ωϕ=+的图象变换规律,属于基础题.8.A解析:A 【分析】求得函数()y f x =的定义域,分析函数()y f x =的奇偶性,结合2f π⎛⎫⎪⎝⎭的值以及排除法可得出合适的选项. 【详解】 对于函数()3sin 22xf x x =-,20x -≠,得2x ≠±,所以,函数()y f x =的定义域为{}2x x ≠±.()()()sin 2sin 222x xf x f x x x --==-=----,函数()y f x =为奇函数,图象关于原点对称,排除B 、D 选项; 又02f ⎛⎫=⎪⎝⎭π,排除C 选项. 故选:A. 【点睛】本题考查利用函数的解析式选择图象,一般分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查分析问题和解决问题的能力,属于中等题.9.D解析:D 【分析】由题可得()f x 是周期为2的函数,进而判断()F x 是周期为2的函数,可求得()0=0F ,102F ⎛⎫= ⎪⎝⎭,()10F =,利用周期性即可求出零点个数.【详解】()f x 是定义在R 上的奇函数,()1f x +也是奇函数,()00f ∴=,()()()111f x f x f x +=--+=-, ()f x ∴是周期为2的函数,sin y x π=的周期为2,∴()()sin F x f x x π=+是周期为2的函数,()()00sin00=F f ∴+=,11sin 0222F f π⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,()()11sin 0F f π=+=,则在区间[]1949,2021上,()()()111949194919501950202122F F F F F ⎛⎫⎛⎫=+==+== ⎪ ⎪⎝⎭⎝⎭,则()F x 在区间[]1949,2021上的零点个数是()2021194921145-⨯+=个. 故选:D.【点睛】本题考查函数奇偶性和周期性的应用,解题的关键是判断出()F x 是周期为2的函数,根据函数的周期性即可判断出零点的个数.10.C解析:C 【分析】由平方关系化为sin x 的函数,换元后利用二次函数性质得最小值. 【详解】由已知2()1sin sin f x x x =-+,令sin t x =,则[1,1]t ∈-,2()()1f x g t t t ==-++215()24t =--+,∵[1,1]t ∈-,∴1t =-时,min ()1g t =-. 故选:C . 【点睛】本题考查与三角函数有关的复合函数的最值.求三角函数的最值有两种类型:(1)利用三角恒等变换公式化函数为()sin()f x A x k ωϕ=++形式,然后由正弦函数性质得最值或值域.(2)转化为关于sin x (或cos x )的函数,用换元法,设sin t x =(或cos t x =)变成关于t 的二次函数,利用二次函数的性质求得最值或值域.11.A解析:A 【分析】首先求解命题p 表示的集合,再根据集合关系表示充分不必要条件,判断选项. 【详解】:sin 2sin 13p x x x π⎛⎫+=+> ⎪⎝⎭,即1sin 32x π⎛⎫+> ⎪⎝⎭,解得:522,636k x k k Z πππππ+<+<+∈, 得22,62k x k k Z ππππ-+<<+∈,设22,62M x k x k k Z ππππ⎧⎫=-+<<+∈⎨⎬⎩⎭经分析,只有选项A 的集合是集合M 的真子集, 故选:A 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.12.B解析:B 【分析】先判断游客进仓后第一次到达最高点时摩天轮旋转半周,大约需要10min ,结合摩天轮最高点距离地面高度为120m ,可得10t =时,120H =,再利用排除法可得答案. 【详解】因为游客在座舱转到距离地面最近的位置进舱,转一周大约需要20min , 所以游客进仓后第一次到达最高点时摩天轮旋转半周,大约需要10min , 又因为摩天轮最高点距离地面高度为120m , 所以10t =时,120H =,对于A ,10t =时,55cos 106555cos 65651022H πππ⎛⎫=⨯-+=+= ⎪⎝⎭,不合题意;对于B ,10t =时,55sin 106555sin 651201022H πππ⎛⎫=⨯-+=+= ⎪⎝⎭,符合题意;对于C ,10t =时,355cos 106555cos65651022H πππ⎛⎫=⨯++=+= ⎪⎝⎭,不合题意; 对于D ,10t =时,355sin 106555sin65101022H πππ⎛⎫=⨯++=+= ⎪⎝⎭,不合题意; 故选:B. 【点睛】方法点睛:特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型: (1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前n 项和公式问题等等.二、填空题13.②③④【分析】根据函数的图象与性质分析函数的对称性奇偶性与单调性即可得出结论【详解】解:①由得令直线为函数图象的对称轴故图象C 关于直线对称故①正确;由得令得函数在区间内是增函数故②错误;故函数不是奇解析:②③④ 【分析】根据函数()3sin 23f x x π⎛⎫=-⎪⎝⎭的图象与性质,分析函数的对称性,奇偶性与单调性,即可得出结论. 【详解】 解:①由232x k πππ-=+,Z k ∈,得25121x k ππ=+,Z k ∈, 令1k =,直线1112π=x 为函数图象的对称轴, 故图象C 关于直线1112π=x 对称,故①正确; 由222232k x k πππππ-+≤-≤+,k Z ∈,得5,1212x k k ππππ⎡⎤∈-++⎢⎥⎣⎦,k Z ∈, 令0k =,得函数()f x 在区间5,1212ππ⎛⎫-⎪⎝⎭内是增函数,故②错误; ()00f ≠,故函数()f x 不是奇函数,故③错误;由23x k ππ-=,k Z ∈,得612x k ππ=+,k Z ∈,图象C 不关于点,03π⎛⎫ ⎪⎝⎭对称,故④错误.故答案为:②③④. 【点睛】本题考查正弦函数的图象与性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.14.【分析】根据图象的平移得出函数再由已知得或要使最大则最大最小可求得取得的最大值【详解】将函数的图象向左平移个单位可得的图象再向上平移1个单位得到的图象则因为所以当得或∵∴要使最大则最大最小则当最大最 解析:5512π【分析】根据图象的平移得出函数()2sin 213g x x π⎛⎫=++ ⎪⎝⎭,再由已知得()()123g x g x ==或()()123g x g x ==-.要使122x x -最大,则123x π+最大,223x π+最小.可求得122x x -取得的最大值. 【详解】将函数()2sin 26f x x π⎛⎫=+⎪⎝⎭的图象向左平移12π个单位,可得2sin 2+2sin 21263y x x πππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,再向上平移1个单位,得到()2sin 213g x x π⎛⎫=++ ⎪⎝⎭的图象.则()33g x -≤≤, 因为[]12,2,2x x ππ∈-,所以当()()129g x g x =,得()()123g x g x ==或()()123g x g x ==-.∵[]12,2,2x x ππ∈-,∴1211132,2,3333x x ππππ⎡⎤++∈-⎢⎥⎣⎦, 要使122x x -最大,则123x π+最大,223x π+最小.则当17232x ππ+=最大,25232x ππ+=-最小时,即11912x π=,2176x π=-时,122x x -取得最大值为5512π. 故答案为:5512π. 【点睛】本题考查三角函数的图象平移,正弦型函数的最值,属于中档题.15.【分析】根据扇形的周长求出扇形半径再根据扇形面积公式计算即可【详解】设该扇形的半径为r 根据题意有故答案为【点睛】本题主要考查了扇形的面积公式弧长公式属于中档题 解析:916【分析】根据扇形的周长求出扇形半径,再根据扇形面积公式计算即可. 【详解】设该扇形的半径为r ,根据题意,有2l r r α=+,322r r ∴=+,34r ∴=,211992221616S r α∴==⨯⨯=扇形.故答案为916. 【点睛】本题主要考查了扇形的面积公式,弧长公式,属于中档题.16.【分析】先利用两角和的正弦公式化简的解析式然后再利用图象平移变换的规律求平移后的解析式最后由奇偶性可得的最小值【详解】将其图象向左平移个单位长度后得的图象由图象为偶函数图象可得所以令得故答案为:【点 解析:6π【分析】先利用两角和的正弦公式化简()f x 的解析式,然后再利用图象平移变换的规律求平移后的解析式,最后由奇偶性可得ϕ的最小值.【详解】1()sin 2sin 2sin 2sin 2cos 2322f x x x x x x π⎛⎫=++=++ ⎪⎝⎭3sin 22226x x x π⎛⎫==+ ⎪⎝⎭ , 将其图象向左平移(0)ϕϕ>个单位长度后,得()22266y x x ππϕϕ⎡⎤⎛⎫=++=++ ⎪⎢⎥⎣⎦⎝⎭的图象,由图象为偶函数图象可得262k ππϕπ+=+()k Z ∈所以62k ϕππ=+ ()k Z ∈ 令0k =,得6π=ϕ. 故答案为:6π 【点睛】本题主要考查了三角函数图象的平移变换,以及三角函数的奇偶性,属于中档题.17.①④【分析】根据正切函数的周期判断①是否正确正切函数的奇偶性判断②是否正确由判断③是否正确由正切函数的单调性判断④是否正确由正切函数的图象判断⑤是否正确【详解】由于f(x)=tanx 的周期为π故①正解析:①④ 【分析】根据正切函数()tan f x x =的周期判断①是否正确,正切函数的奇偶性判断②是否正确,由tan 00=判断③是否正确,由正切函数的单调性判断④是否正确,由正切函数的图象判断⑤是否正确. 【详解】由于f (x )=tan x 的周期为π,故①正确; 函数f (x )=tan x 为奇函数,故②不正确; f (0)=tan 0=0,故③不正确;④表明函数为增函数,而f (x )=tan x 为区间,22ππ⎛⎫- ⎪⎝⎭上的增函数,故④正确;⑤由函数f (x )=tan x 的图象可知,设A =12()()2f x f x +,B =122x x f +⎛⎫⎪⎝⎭故函数在区间,02π⎛⎫- ⎪⎝⎭上有1212()()22x x f x f x f ++⎛⎫> ⎪⎝⎭, 在区间0,2π⎛⎫⎪⎝⎭上有1212()()22x x f x f x f ++⎛⎫<⎪⎝⎭,故⑤不正确. 故答案为:①④ 【点睛】本题考查了正切函数的图象和性质,属于中档题.18.=2=【分析】由图像可得其周期;由特值再结合可得【详解】由图可得:周期所以:由可得:因为所以故答案为:2【点睛】本题考查了利用三角函数的图像求三角函数的参数值考查了三角函数的周期公式考查了数形结合属解析:ω=2 φ=6π【分析】由图像可得其周期11()1212T πππ=--=,2=2T πω=;由特值()26f π=,再结合2πφ<,可得=6πφ. 【详解】 由图可得:周期11()1212T πππ=--=, 所以:22==2T ππωπ=, 由()26f π=,可得:2sin(2)=26πφ⋅+,因为2πφ<,所以=6πφ. 故答案为: 2 ,6π. 【点睛】本题考查了利用三角函数的图像求三角函数的参数值,考查了三角函数的周期公式,考查了数形结合,属于中档题.19.【分析】根据题意分析可得有即函数是周期为6的周期函数进而可得结合函数的奇偶性分析可得答案【详解】根据题意函数满足则有则函数是周期为6的周期函数则又由为偶函数则故;故答案为:【点睛】本题主要考查函数的 解析:2019-【分析】根据题意,分析可得有()()()63f x f x f x +=-+=,即函数()f x 是周期为6的周期函数,进而可得()()()2020202222f f f =-=-,结合函数的奇偶性分析可得答案. 【详解】根据题意,函数()f x 满足()()3f x f x +=-, 则有()()()63f x f x f x +=-+=, 则函数()f x 是周期为6的周期函数, 则()()()2020202222f f f =-=-,又由()f x 为偶函数,则()()()2212019f f f -==--=-, 故()20202019f =-; 故答案为:2019-. 【点睛】本题主要考查函数的奇偶性与周期性的应用,注意分析函数的周期性,属于中档题.20.【分析】利用辅助角公式化简根据正弦型函数为奇函数可构造方程求得进而得到解析式代入即可求得结果【详解】为上的奇函数解得:又故答案为:【点睛】本题考查根据正弦型函数的奇偶性求解参数值已知解析式求解三角函解析:【分析】利用辅助角公式化简()f x ,根据正弦型函数为奇函数可构造方程求得ϕ,进而得到()f x 解析式,代入8x π=-即可求得结果.【详解】()()()2cos 22sin 26f x x x x πϕϕϕ⎛⎫=+-+=-+ ⎪⎝⎭,()f x 为R 上的奇函数,()6k k Z πϕπ∴-=∈,解得:()6k k Z πϕπ=+∈,又0ϕπ<<,6πϕ∴=,()2sin 2f x x ∴=,2sin 84f ππ⎛⎫⎛⎫∴-=-= ⎪ ⎪⎝⎭⎝⎭故答案为:. 【点睛】本题考查根据正弦型函数的奇偶性求解参数值、已知解析式求解三角函数值的问题;关键是能够通过辅助角公式将函数化简为正弦型函数,进而利用奇偶性构造方程求得参数.三、解答题21.(1)函数()f x 为奇函数,证明见解析;(2)(),0-∞. 【分析】(1)求出函数()f x 的定义域,计算得出()f x -与()f x 之间的关系,由此可得出结论; (2)由,04x π⎛⎫∈-⎪⎝⎭可得出1tan 0x -<<,1tan 0x ->,利用()0g x =可得出tan 1tan x a x =+,求出函数tan 1tan x y x =+在,04π⎛⎫- ⎪⎝⎭上的值域,由此可得出实数a 的取值范围.【详解】(1)对于函数()1tan ln1tan x f x x -=+,有1tan 01tan xx->+,即tan 10tan 1x x -<+,解得1tan 1x -<<,解得()44k x k k Z ππππ-<<+∈,所以,函数()f x 的定义域为(),44k k k ππππ⎛⎫-+∈ ⎪⎝⎭Z , ()()()()11tan 1tan 1tan 1tan ln ln ln ln 1tan 1tan 1tan 1tan x x x x f x f x x x x x ---+--⎛⎫-====-=- ⎪+--++⎝⎭, 所以,函数()f x 为奇函数; (2)()()()()1tan 1tan 1tan tan 1tan tan f x a x a x x g x e x x x---=-=-+, 04x π-<<,则1tan 0x -<<,1tan 0x ->,所以,0tan 11x <+<,令()0g x =,可得()tan 11tan 1101tan tan 1tan 1x xa x x x +-===-<+++, 所以,实数a 的取值范围是(),0-∞. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.22.(1)()2sin 213f x x π⎛⎫=++ ⎪⎝⎭;(2)2,1a b ==或2,7a b =-=. 【分析】(1)由表中数据可得周期及A 、B 、ϕ的值; (2)()2sin 23g x a x a b π⎛⎫=+++ ⎪⎝⎭,讨论a 的正负,根据()g x 的最大值、最小值可得答案. 【详解】(1)由题,函数()f x 的周期5263T πππ⎛⎫=⨯-= ⎪⎝⎭, 所以22Tπω==, 由31A B A B +=⎧⎨-+=-⎩,得21A B =⎧⎨=⎩,故()2sin(2)1f x x ϕ=++, 由表可知,23πϕπ⨯+=,得3πϕ=,所以()2sin 213f x x π⎛⎫=++ ⎪⎝⎭. (2)由(1)可知()2sin 23g x a x a b π⎛⎫=+++ ⎪⎝⎭, 由44x ππ-≤≤,得52636x πππ-≤+≤,所以1sin 2123x π⎛⎫-≤+≤ ⎪⎝⎭;当0a >时,()g x 的最大值是37a b +=,最小值是1b =, 解得2,1a b ==;当0a <时,()g x 的最大值是7b =,最小值是31a b +=, 解得2,7a b =-=,综上,2,1a b ==;或2,7a b =-=. 【点睛】本题考查了由三角函数图象上的点求解析式及利用单调性参数的问题,要正确分析表中数据,熟练掌握三角函数的性质是解题的关键,考查了学生的计算能力. 23.(1)()cos 2f x x =;(2)42,2,33k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . 【分析】(1)根据函数()sin()f x x ωϕ=+为偶函数求出ϕ,根据()y f x =图像的两相邻对称中心点间的距离求出ω,则可得()f x 的解析式;(2)根据图象变换规律求出()g x ,再根据余弦函数的递减区间列式可解得结果. 【详解】(1)由于函数()sin()f x x ωϕ=+为偶函数,则,2k k πϕπ=+∈Z .又0ϕπ<<,则2ϕπ=.又函数()f x 图象的两相邻对称中心点间的距离为2π,从而22T T ππ=⇒=,故22Tπω==. 故()sin 2cos 22f x x x π⎛⎫=+= ⎪⎝⎭. (2)函数()y f x =图象向右平移6π个单位得()cos 2cos 2663h x f x x x πππ⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;再由伸缩变换可得:()cos 3g x x π⎛⎫=- ⎪⎝⎭. 由223k x k ππππ-+.得4223k x k πππ≤≤+,k Z ∈, 故()g x 的单调递减区间为:42,2,33k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . 【点睛】关键点点睛:掌握三角函数的图象变换规律以及余弦函数的递减区间是解题关键. 24.(1)满足①③,理由见解析;(2)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭;(3)23π. 【分析】(1)根据条件②得出函数()f x 的最大值以及该函数图象的相邻对称轴之间的距离,进而可得出结论;(2)根据条件①求得A 的值,根据条件②可求得ω的值,由此可确定函数()f x 的解析式;(3)由x ππ-≤≤,可得11132666x πππ-≤+≤,再由()10f x +=可得出1sin 262x π⎛⎫+=- ⎪⎝⎭,可解得该方程在区间[],ππ-上的所有解,由此可得出结果.【详解】(1)若满足条件②,则函数()f x ,①不满足, 函数()f x 图象的相邻两条对称轴之间的距离为22ππ=,②不满足. 因此,函数()f x 满足条件的序号为①③;(2)由(1)可知,()max 2A f x ==,函数()f x 的最小正周期为22T ππ=⨯=,22Tπω∴==, 所以,()2sin 26f x x π⎛⎫=+⎪⎝⎭; (3)由()12sin 2106f x x π⎛⎫+=++= ⎪⎝⎭,可得1sin 262x π⎛⎫+=- ⎪⎝⎭. x ππ-≤≤,则11132666x πππ-≤+≤, 所以,5266x ππ+=-或ππ266x 或7266x ππ+=或11266x ππ+=,解得2x π=-或6x π=-或2x π=或56x π=,因此,方程()10f x +=在区间[],ππ-上所有解的和为5226263πππππ--++=. 【点睛】方法点睛:通过求所求角的某种三角函数值来求角,关键点在选取函数,常遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是0,2π⎛⎫⎪⎝⎭,选正、余弦皆可;若角的范围是()0,π,选余弦较好;若角的范围为,22ππ⎛⎫- ⎪⎝⎭,选正弦较好.25.(1)225,,312312k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)3,⎡-⎢⎣⎦. 【分析】(1)根据()f x 的最小正周期求解出ω的值,再采用整体替换的方法结合正弦函数的单调递减区间的公式求解出()f x 的单调递减区间;(2)先求解出t x ωϕ=+的范围,然后根据3sin y t =的单调性求解出()f x 的最值,从而()f x 的值域可求. 【详解】 (1)因为2T πω=,所以22323T ππωπ===,所以()3sin 34f x x π⎛⎫=+ ⎪⎝⎭, 令3232,242k x k k Z πππππ+≤+≤+∈,所以225,312312k x k k Z ππππ+≤≤+∈,所以()f x 的单调递减区间为:225,,312312k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (2)因为()3sin 34f x x π⎛⎫=+⎪⎝⎭且,32x ππ⎡⎤∈⎢⎥⎣⎦,所以令573,444t x πππ⎡⎤=+∈⎢⎥⎣⎦, 又因为3sin y t =在5342ππ⎡⎫⎪⎢⎣⎭,上单调递减,在37,24ππ⎛⎤⎥⎝⎦上单调递增, 所以()min 33sin 32f x π==-,此时512x π=,又57sinsin 44ππ==()max53sin 4f x π==,此时3x π=或2π,所以()f x 的值域为:3,2⎡--⎢⎣⎦. 【点睛】思路点睛:求解形如()sin y A ωx φ=+的函数在指定区间上的值域或最值的一般步骤如下:(1)先确定t x ωϕ=+这个整体的范围; (2)分析sin y A t =在(1)中范围下的取值情况;(3)根据取值情况确定出值域或最值,并分析对应的x 的取值. 26.(1)12T =,0.5cos 16y t π=+;(2)从上午7时至晚上19时之间,共8个小时向冲浪爱好者开放. 【分析】(1)根据表格中数据规律确定T ,由2Tπω=,y 的最大值和最小值可确定,A b ,由此可得函数表达式;(2)利用余弦函数值域可求得t 的范围,进而确定所要求的时间段内的结果. 【详解】(1)由表中数据可知:18612T =-=,26T ωππ∴==, 1.50.50.52A -==, 1.50.512b +==,0.5cos 16y t π∴=+. (2)由(1)可得:0.5cos 10.756t π+≥,cos0.56t π∴≥-,即()2222363k t k k Z πππππ-≤≤+∈,解得:()124124k t k k Z -≤≤+∈, ∴从上午7时至晚上19时之间,当[]8,16t ∈时,可对冲浪爱好者开放,即从上午7时至晚上19时之间,共8个小时向冲浪爱好者开放.【点睛】方法点睛:根据余弦型函数()cos y A x ωϕ=+的值域求解定义域的问题,采用整体对应的方式,将x ωϕ+整体对应余弦函数中的x 的范围,解不等式求得所求的定义域.。

三角函数培优题

三角函数培优题

必修四第一章三角函数高考题一、角的概念和同角关系: 1、已知α是第三象限角,则2α所在的象限为( )A 第一,二象限B 第二,三象限C 第一,三象限D 第二,四象限 2、已知cos θtan θ<0,那么角θ是( )A 第一,二象限B 第二,三象限C 第三,四象限D 第一,四象限3、如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则( ) A .111A B C ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形4、若cos θ>0且sin2θ<0,则角的终边所在象限是( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限5、α是第四象限角,cos α=1312,则sin α=( ) A 135 B -135 C 125 D -1256、已知sin α=552,2π<α<π,则tan α=( ) 7、α是第四象限角,tan α=-125则sin α=( ) A 51 B -51 C 135 D -1358、已知sin α=55则sin 4α- cos 4α的值是( ) A -53 B -51 C 51 D 53 9、已知α是第二象限的角,tan α=1/2,则cos α=__________二、三角函数图像与性质:1、函数y=1+cosx 的图象( )A 关于x 轴对称B 关于y 轴对称C 关于原点对称D 关于直线x=2π对称 2、已知a ∈R ,函数y= sinx-∣a ∣(x ∈R )为奇函数,则a=( ) A 0 B 1 C -1 D 1±3、函数y=cos2x 在下列哪个区间上是减函数( ) A [-4π,4π] B [4π,43π] C [0,2π] D [2π,π]4、已知函数y=sin (πx-2π)-1,则下列命题正确的是( ) A f (x )是周期为1的奇函数 B f (x )是周期为2的偶函数C f (x )是周期为1的非奇非偶函数D f (x )是周期为2的非奇非偶函数5、已知)(x f 的定义在(0,3)上的函数,)(x f 的图象如图所示,那么不等式0cos )(<x x f 的解集是( )A .(0,1)∪(2,3)B .)3,2()2,1(ππC .)3,2()1,0(πD .)3,1()1,0( 6、已知)(x f 是定义在)3,3(-上的奇函数,当30<<x 时,)(x f 的图象如图所示,那么不等式0cos )(<x x f 的解集是( )(A ))3,2()1,0()2,3(ππ-- (B ) )3,2()1,0()1,2(ππ --(C ))3,1()1,0()1,3( -- (D ) )3,1()1,0()2,3( π--7、下列函数中周期2π为的是( ) A y=sin2x B y=sin2x C y=cos 4xD y=cos4x 8、设f (x )=sin3x+∣sin3x ∣,则f (x )为( )A 周期函数,最小正周期为3πB 周期函数,最小正周期为32πC 周期函数,最小正周期为 2πD 非周期函数9、函数y=5tan (2x+1)的最小正周期为( )A4π B 2πC πD 2π 10、(6)下列函数中,周期为π,且在[,]42ππ上为减函数的是(A )sin(2)2y x π=+ (B )cos(2)2y x π=+(C )sin()2y x π=+ (D )cos()2y x π=+11、函数y=∣sinx ∣的一个单调增区间是( ) A (-4π, 4π ) B (4π,43π) C (π,23π) D (23π,2π)12、已知函数y=∣sin (x+3π)∣(x ∈R ),则f (x )( ) A 在区间[32π,67π]上 是增函数 B 在区间[-π,-2π]上 减函数C 在区间[4π,3π]上 增函数D 在区间[3π,65π]上减函数13、定义在R 上的偶函数满足f (x )= f (x+2),当x ∈[3,4] 时,f (x )=x-2则( ) A f (sin21) <f (cos 21) B f (sin 3π)>f (cos 3π)O xyππ-π-πO xy ππ-π-πO xy ππ-π-πO xy ππ-π-πABC D C f (sin1)< f (cos1) D f (sin 23)>f (cos 23) 14、已知函数y=tan (x+4π),则( ) A f (0)> f (-1)>f (1) B f (0)>f (1)>f (-1) C f (1)>f (0)>f (-1) D f (-1)>f (0)>f (1)15、若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( )A .1B .2C .3D .216、10、定义在区间⎪⎭⎫⎝⎛20π,上的函数y=6cosx 的图像与y=5tanx 的图像的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y=sinx 的图像交于点P 2,则线段P 1P 2的长为________________________。

高中数学必修4_三角函数上经典提升培优题组(含答案)

高中数学必修4_三角函数上经典提升培优题组(含答案)
数学4(必修)第一章 三角函数(上) [基 础训练A组]
一、选择题 1.C
当时,在第一象限;当时,在第三象限; 而,在第三象限; 2.C ; ; 3.B 4.A 5.C ,若是第四象限的角,则是第一象限的角,再逆时针旋转 6.A 二、填空题 1.四、三、二 当是第二象限角时,;当是第三象限角时,;当是第四象限
4.如果且那么的终边在第
象限。
5.若集合,,
则=_______________________________________。
三、解答题
1.角的终边上的点与关于轴对称,角的终边上的点与关于直线对
称,求之值.
2.一个扇形的周长为,求扇形的半径,圆心角各取何值时, 此扇形的面积最大?
3.求的值。
4.已知其中为锐角,求证:
①;②; ③;④, 其中正确的是_____________________________。 3.若角与角的终边关于轴对称,则与的关系是___________。 4.设扇形的周长为,面积为,则扇形的圆心角的弧度数是 。 5.与终边相同的最小正角是_______________。
三、解答题
1.已知是关于的方程的两个实根,
且,求的值.
2.已知,求的值。 3.化简:
4.已知, 求(1);(2)的值。
(数学4必修)第一章 三角函数(上)
[综合训练B组]
一、选择题
1.若角的终边上有一点,则的值是( )
A. B. C. D.
2.函数的值域是( )
A. B. C.
D.
3.若为第二象限角,那么,,,中,
其值必为正的有( )
A.个 B.个 C.个 D.个
2.若,,则
的值是( )
A. B. C. D. 3.若,则等于( )

(必考题)高中数学必修四第一章《三角函数》测试(有答案解析)

(必考题)高中数学必修四第一章《三角函数》测试(有答案解析)

一、选择题1.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,2πϕ<)的部分图像如图所示,则()f x 的解析式为( )A .()2sin 26f x x π⎛⎫=- ⎪⎝⎭B .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭C .()3sin 26f x x π⎛⎫=-⎪⎝⎭D .1()3sin 26f x x π⎛⎫=-⎪⎝⎭ 2.已知关于x 的方程2cos ||2sin ||20(0)+-+=≠a x x a a 在(2,2)x ππ∈-有四个不同的实数解,则实数a 的取值范围为( ) A .(,0)(2,)-∞+∞B .(4,)+∞C .(0,2)D .(0,4)3.已知角α顶点在坐标原点,始边与x 轴非负半轴重合,终边过点()3,4P -,将α的终边逆时针旋转180︒,这时终边所对应的角是β,则cos β=( ) A .45-B .35C .35D .454.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积12=(弦⨯矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有弧AB 长为83π,半径等于4米的弧田,按照上述经验公式计算所得弧田面积约是( )3 1.73≈)A .6平方米B .9平方米C .12平方米D .15平方米5.函数1sin3y x =-的图像与直线3x π=,53x π=及x 轴所围成的图形的面积是( ) A .23π B .πC .43π D .53π 6.已知奇函数()f x 满足()(2)f x f x =+,当(0,1)x ∈时,函数()2x f x =,则12log 23f ⎛⎫= ⎪⎝⎭( ) A .1623-B .2316-C .1623D .23167.《九章算术》中《方田》章有弧田面积计算问题,术日:以弦乘矢,矢又自乘,并之,二而一.其大意是弧田面积计算公式为:弧田面积12=(弦×矢+矢×矢).弧田是由圆弧(弧田弧)及圆弧两端点的弦(弧田弦)围成的平面图形,公式中的“弦”指的是弧田弦的长,“矢”指的是弧田所在圆的半径与圆心到孤田弦的距离之差,现有一弧田,其矢长等于8米,若用上述弧田面积计算公式算得该弧田的面积为128平方米,则其弧田弧所对圆心角的正弦值为( ) A .60169B .120169C .119169D .591698.已知函数()[][]sin cos cos sin f x x x =+,其中[]x 表示不超过实数x 的最大整数,则( )A .()f x 是奇函数B .π2π33f f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭C .()f x 的一个周期是πD .()f x 的最小值小于09.下列函数中,既是偶函数,又在(),0-∞上是增函数的是( ) A .()22xxf x -=- B .()23f x x =-C .()2ln =-f x xD .()cos3=f x x x10.现有四个函数:①y =x |sin x |,②y =x 2cos x ,③y =x ·e x ;④1y x x=+的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是( )A .①②③④B .①③②④C .②①③④D .③②①④11.若函数()22()sin 23cos sin f x x x x =+-的图像为E ,则下列结论正确的是( ) A .()f x 的最小正周期为2π B .对任意的x ∈R ,都有()()3f x f x π=-C .()f x 在7(,)1212ππ上是减函数D .由2sin 2y x =的图像向左平移3π个单位长度可以得到图像E 12.函数22y cos x sinx =- 的最大值与最小值分别为( ) A .3,-1 B .3,-2 C .2,-1D .2,-2二、填空题13.下列判断正确的是___________(将你认为所有正确的情况的代号填入横线上). ①函数1tan 21tan 2xy x+=-的最小正周期为π;②若函数()lg f x x =,且()()f a f b =,则1ab =; ③若22tan 3tan 2αβ=+,则223sin sin 2αβ-=;④若函数()2221sin 41x xy x ++=+的最大值为M ,最小值为N ,则2M N +=.14.函数()()sin f x x ωϕ=+的部分图象如图所示,则()f x 的单调递增区间为___________.15.sin 75=______.16.如图,从气球A 上测得正前方的B ,C 两点的俯角分别为75︒,30,此时气球的高是60m ,则BC 的距离等于__________m .17.如图,游乐场所的摩天轮匀速旋转,每转一周需要l2min ,其中心O 离地面45米,半径40米.如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,请问:当你第六次距离地面65米时,用了________分钟?18.函数251612()sin (0)236x x f x x x x ππ-+⎛⎫=--> ⎪⎝⎭的最小值为_______. 19.关于函数()4sin(2)(),3f x x x R π=+∈有下列命题:①由12()()0f x f x ==可得12x x -必是π的整数倍;②()y f x =的图象关于点(,0)6π-对称;③()y f x =的表达式可改写为4cos(2);6y x π=-④()y f x =的图象关于直线6x π=-对称.其中正确命题的序号是_________. 20.给出下列命题: ①函数()4cos 23f x x π⎛⎫=+⎪⎝⎭的一个对称中心为5,012π⎛⎫-⎪⎝⎭; ②若α,β为第一象限角,且αβ>,则tan tan αβ>;③在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若40a =,20b =,25B =︒,则ABC ∆必有两解.④函数sin 2y x =的图象向左平移4π个单位长度,得到sin 24y x π⎛⎫=+ ⎪⎝⎭的图象.其中正确命题的序号是 _________(把你认为正确的序号都填上).三、解答题21.已知函数()()1sin 226f x x x R π⎛⎫=+∈ ⎪⎝⎭. (1)填写下表,并用“五点法”画出()f x 在[0,]π上的图象;26x π+6π 136πxπ ()f x(2)将()y f x =的图象向上平移1个单位,横坐标缩短为原来的2,再将得到的图象上所有点向右平移4π个单位后,得到()g x 的图象,求()g x 的对称轴方程. 22.现给出以下三个条件:①()f x 的图象与x 轴的交点中,相邻两个交点之间的距离为2π;②()f x 的图象上的一个最低点为2,23A π⎛⎫- ⎪⎝⎭; ③()01f =.请从上述三个条件中任选两个,补充到下面试题中的横线上,并解答该试题. 已知函数()()2sin 05,02f x x πωϕωϕ⎛⎫=+<<<< ⎪⎝⎭,满足________,________. (1)根据你所选的条件,求()f x 的解析式; (2)将()f x 的图象向左平移6π个单位长度,得到()g x 的图象求函数()()1y f x g x =-的单调递增区间.23.函数()cos()0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭的部分图象如图所示.(1)写出()f x 的解析式; (2)将函数()f x 的图象向右平移12π个单位后得到函数()g x 的图象,讨论关于x 的方程()3()0f x g x m -=(11)m -<≤在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数.24.已知函数π()3sin 26f x x ⎛⎫=+⎪⎝⎭. (1)用“五点法”画出函数()y f x =在一个周期内的简图;(2)说明函数()y f x =的图像可以通过sin y x =的图像经过怎样的变换得到?(3)若003()[2π3π]2f x x =∈,,,写出0x 的值. 25.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭,,28M π⎛⎫⎪⎝⎭、5,28N π⎛⎫- ⎪⎝⎭分别为其图象上相邻的最高点、最低点. (1)求函数()f x 的解析式; (2)求函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的单调区间和值域. 26.已知函数()2sin(2)(0)6f x x πωω=+>.(1)若点5(,0)8π是函数()f x 图像的一个对称中心,且(0,1)ω∈,求函数()f x 在3[0,]4π上的值域; (2)若函数()f x 在(,)33π2π上单调递增,求实数ω的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C解析:C 【分析】 本题首先可根据33π44T 求出ω,然后根据当43x π=时函数()f x 取最大值求出ϕ,最后代入30,2⎛⎫- ⎪⎝⎭,即可求出A 的值. 【详解】因为4π7π3π3124,所以33π44T ,T π=,因为2T πω=,所以2ω=,()sin(2)f x A x ϕ=+,因为当43x π=时函数()sin(2)f x A x ϕ=+取最大值, 所以()42232k k Z ππϕπ⨯+=+∈,()26k k Z πϕπ=-+∈,因为2πϕ<,所以6πϕ=-,()sin 26f x A x π⎛⎫=-⎪⎝⎭, 代入30,2⎛⎫- ⎪⎝⎭,3sin 26A π⎛⎫-=- ⎪⎝⎭,解得3A =,()3sin 26f x x π⎛⎫=- ⎪⎝⎭, 故选:C. 【点睛】关键点点睛:本题考查根据函数图像求函数解析式,对于()sin()f x A x ωϕ=+,可通过周期求出ω,通过最值求出A ,通过代入点坐标求出ϕ,考查数形结合思想,是中档题.2.D解析:D 【分析】令2()cos ||2sin ||2(0)=+-+≠f x a x x a a ,易知函数()f x 是偶函数,将问题转化为研究当(0,2)x π∈时,2()cos 2sin 2=+-+f x a x x a 有两个零点,令sin t x =,则转化为2()22(0)=--≠h t at t a 有一个根(1,1)t ∈-求解.【详解】当(2,2)x ππ∈-,2()cos ||2sin ||2(0)=+-+≠f x a x x a a ,则()()f x f x -=,函数()f x 是偶函数,由偶函数的对称性,只需研究当(0,2)x π∈时,2()cos 2sin 2=+-+f x a x x a 有两个零点,设sin t x =,则2()22(0)=--≠h t at t a 有一个根(1,1)t ∈- ①当0a <时,2()22=--h t at t 是开口向下,对称轴为10t a=<的二次函数,(0)20h =-<则(1)0->=h a ,这与0a <矛盾,舍去;②当0a >时,2()22=--h t at t 是开口向上,对称轴为10t a=>的二次函数, 因为(0)20h =-<,(1)220-=+->=h a a , 则存在(1,0)t ∈-,只需(1)220=--<h a ,解得4a <, 所以04a <<.综上,非零实数a 的取值范围为04a <<. 故选:D . 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解3.B解析:B 【分析】先根据已知条件求解出cos α的值,然后根据,αβ之间的关系结合诱导公式求解出cos β的值. 【详解】 因为3cos 5α==,且180βα=+︒, 所以()3cos cos 180cos 5βαα=+︒=-=-, 故选:B. 【点睛】结论点睛:三角函数定义有如下推广:设点(),P x y 为角α终边上任意一点且不与原点重合,r OP =,则()sin ,cos ,tan 0y x yx r r xααα===≠. 4.B解析:B 【分析】根据已知求出矢2=,弦2AD ==. 【详解】由题意可得:823=43AOB ππ∠=,4OA =,在Rt AOD 中,可得:3AOD π∠=,6DAO π∠=,114222OD AO ==⨯=, 可得:矢422=-=, 由3sin4233AD AO π==⨯=, 可得:弦243AD ==, 所以:弧田面积12=(弦⨯矢+矢221)(4322)43292=⨯+=+≈平方米.故选:B 【点睛】方法点睛:有关扇形的计算,一般是利用弧长公式l r α=、扇形面积公式12S lr =及直角三角函数求解.5.C解析:C 【分析】作出函数1sin3y x =-的图像,利用割补法,补成长方形,计算面积即可. 【详解】作出函数1sin3y x =-的图象,如图所示,利用割补法,将23π到π部分的图象与x 轴围成的图形补到图中3π到23π处阴影部分,凑成一个长为3π,宽为2的长方形,后面π到53π,同理;∴1sin3y x =-的图象与直线3x π=,53x π=及x 轴所围成的面积为24233ππ⨯=,故选:C. 【点睛】用“五点法”作()sin y A ωx φ=+的简图,主要是通过变量代换,设z x ωϕ=+,由z 取0,2π,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象. 6.B解析:B【分析】由已知得到(2)()f x f x +=,即得函数的周期是2,把12(log 23)f 进行变形得到223()16f log -, 由223(0,1)16log ∈满足()2x f x =,求出即可. 【详解】(2)()f x f x +=,所以函数的周期是2.根据对数函数的图象可知12log 230<,且122log 23log 23=-;奇函数()f x 满足(2)()f x f x +=和()()f x f x -=-则2312222223(log 23)(log )(log 23)(log 234)()16f f f f f log =-=-=--=-, 因为223(0,1)16log ∈ 2231622323()21616log f log ∴-=-=-,故选:B . 【点睛】考查学生应用函数奇偶性的能力,函数的周期性的掌握能力,以及运用对数的运算性质能力.7.B解析:B 【分析】求出弦长,再求出圆的半径,然后利用三角形面积求解. 【详解】如图,由题意8CD =,弓琖ACB 的面积为128,1(8)81282AB ⨯+⨯=,24AB =, 设所在圆半径为R ,即OA OB R ==,则22224(8)2R R ⎛⎫=-+ ⎪⎝⎭,解得13R =, 5OD =,由211sin 22AB OD OA AOB ⨯=∠得 2245120sin 13169AOB ⨯∠==. 故选:B .【点睛】关键点点睛:本题考查扇形与弓形的的有关计算问题,解题关键是读懂题意,在读懂题意基础上求出弦长AB ,然后求得半径R ,从而可解决扇形中的所有问题.8.D解析:D 【分析】利用奇函数的性质判断A ,分别求3f π⎛⎫⎪⎝⎭和23f π⎛⎫⎪⎝⎭判断大小,取特殊值验证的方法判断C ,分区间计算一个周期内的最小值,判断选项D 。

(完整word)高中数学必修4三角函数综合测试题及答案详解,推荐文档

(完整word)高中数学必修4三角函数综合测试题及答案详解,推荐文档

必修4三角函数综合测试题及答案详解、选择题1 •下列说法中,正确的是()A •第二象限的角是钝角B. 第三象限的角必大于第二象限的角C. —831°是第二象限角D. —95° 20 , 984° 40 , 264° 40是终边相同的角a n2. 若点(a,9)在函数y= 3x的图象上,贝U tan^的值为()A. 0B.^C. 1D. 3g3. 若|cos g= cosg, |tan g= —tang,则2的终边在( )A. 第一、三象限B. 第二、四象限C. 第一、三象限或x轴上D. 第二、四象限或x轴上4. 如果函数f(x)= sin(册g)(0< g<2 n的最小正周期是T,且当x= 2时取得最大值,那么()nA. T = 2,g= 2 B . T= 1, g=nC. T = 2,n An D. T = 1, 0= 25 .若sin扌—x =—舌',且n<<2n,贝U x 等于47A.3 nB/6n511C~ n D —冗6 .已知a是实数,而函数f(x)= 1 + asinax的图象不可能是()A .奇函数 B. 偶函数C. 既是奇函数又是偶函数D. 既不是奇函数也不是偶函数 10.函数 f(x)= x — cosx 在(0,+x )内()A .没有零点B. 有且仅有一个零点C. 有且仅有两个零点D. 有无穷多个零点7.将函数y = sinx 的图象向左平移(K0<杯2 n )单位长度后,得到 y =nsin x — 6的图象,则.nA ・6 _ 5 nB W 7n C.百11 n D .T8.若 tan 0= 2,…2sin 0—B . 13 C.45 D.59. 函数f(x)= 忌的奇偶性是(111. 已知 A 为锐角,lg(1 + cosA)= m, lg^—COsA= n,则IgsinA 的值是()B . m — n1D.2(m — n )n12. 函数f (x )= 3sin 2x —3的图象为C , 11① 图象C 关于直线x = 12 n 对称;n 5 n② 函数f (x )在区间—12, 12内是增函数;冗③ 由y = 3sin2x 的图象向右平移3个单位长度可以得到图象C ,其中正确命题 的个数是()A . 0B . 1C . 2D . 3二、填空题(本大题共4小题,每题5分,共20分.将答案填在题中横线上) ,.,n 1 n _ M .13. 已知 sin a+ 2 — 3, a€ — 2, 0,则 tan a= ________ .14. 函数y — 3cosx (0W x < n 的图象与直线y — — 3及y 轴围成的图形的面积 为 ________ .15. ________________________________________________________ 已知函数f (x ) — sin (3x+©)(CD >0)的图象如图所示,贝U 3— ________ .16. 给出下列命题:① 函数y — cos |x +才是奇函数; ② 存在实数X ,使sinx + cosx — 2;③ 若a, B 是第一象限角且a < B,则tan a <tan B;八1 A- m + ni i Cim+n④x—81是函数y—sin 2x+于的一条对称轴;n n⑤函数y—sin 2x+ 3的图象关于点衫,0成中心对称. 其中正确命题的序号为__________ .三、解答题17. (10 分)已知方程 sin (a — 3 n 2cos (a — 4n )sin n — a + 5cos 2 n — a 3n2sin ~2 — a — sin — a18. (12 分)在厶 ABC 中,sinA + cosA ^#,求 tanA 的值.n 319. (12分)已知 f(x) = sin 2x + 6 + 2, x € R. (1) 求函数f(x)的最小正周期; (2) 求函数f(x)的单调减区间;⑶函数f(x)的图象可以由函数y = sin2x(x € R)的图象经过怎样变换得到?n20. (12分)已知函数y = Asin@x+©)(A>0,心>0)的图象过点P ^, 0,图象n与P 点最近的一个最高点坐标为 3,5 .的值.(1) 求函数解析式;(2) 求函数的最大值,并写出相应的x的值;(3) 求使y w 0时,x的取值范围.21. (12 分)已知cos _a = . 2cos 3n+ p,_ 3sin 号―a =—慣sin 扌+ B,且0< a<n,0< 仟n,求a, p的值.n n 22. (12 分)已知函数f(x) = x2+2xtan B— 1,x€ [ —1, 3],其中氏一2, 2 .⑴当皓—塾寸,求函数的最大值和最小值;(2)求B的取值范围,使y=f(x)在区间[—1, 3]上是单调函数(在指定区间为增函数或减函数称为该区间上的单调函数).必修4三角函数综合测试题答案、选择题1. D;2. D;3.D; 4. A; 5. B6. D;7. D;8. C;9.A; 10. B11 .D;12.C二_ 、填空题13 .—22;14. 3 n 15.32 16. ①④三、解答题17.解〔Sin( a—3n^2cos(a—4 n,•'•—si n(3 — a = 2cos(4 n a).•••-sin( — M = 2cos(—a).•'si n a= — 2cos a 可知 COS aM 0. sin a+ 5cos a• • •原式= '——2cos a+ sin a—2cosa+ 5cos a3cos a—2cos a — 2cos a — 4coS a18 •解・.sinA + cosA =¥,①1两边平方,得2sinAcosA = — 2,n从而知 cosA<0,.・.jA €2, n .•'sinA — cosA = " ■' sinA + cosA 2 — 4sinAcosA由①②,得 sinA =4 , cosA =4sinAl•anA=cosA= — 2—3.2 n19. 解(1)T =~2 =冗.. 冗小 冗〜3 n⑵由 2k 卄 2= 2x + 6< 2k n+~2, k^Z ,n , 2 n得 k n+ 6= x < k n+_3, kZ所以所求的单调减区间为. n , 2 n k n+ 6,k n+~3 (k@).n334.1+1# ②(3) 把y= sin2x的图象上所有点向左平移石个单位,再向上平移2个单位,即得函n 3 数 f(x) = sin 2x + 6 + 2的图象.T n n n 20. 解(1)由题意知 4 = 3— 12= ~4,'T =n.2 n n n •••3= T = 2, 由 w 12 +©= 0, 得 R — 6,又 A = 5,n•'y = 5sin 2x —召. n n (2)函数的最大值为5,此时2x —6= 2k n+ 2(k®).n•'x = k n+ 3(k^Z). n n⑶-5sin 2x — 6 w 0 ,• 2k n — 2x —©w 2k n k ^Z).5 n , n •兀―12 w x w k n+ ^(k .n 321. 解 cos a = , 2cos 2 n+ B,即卩 sin a= , 2sin 辽3si 门号冗一a = — 2sin 2+ B ,即.3cos a= 2cos 迄①2+②2得,2= sin 2 a+ 3cos a.2 2 2又 sin a+ cos a= 1 ,「COS a=又Taq O , n n•B= 6. cos a=— 2 , a=3•a=4,或 4冗. ⑵当 a= ¥时,十5冗/宀「n n 亠 3 n 5 n又R0, n , •/= -Q.综上,a4, A6,或尸N, ^~Q.22. 解⑴当皓—訥寸,f(x) = x2—爭—1= X—尹—4・••xq —1,. 3],•当x=¥时,f(x)的最小值为一3,当x= —1时,f(x)的最大值为(2)f(x) = (x+tan®2— 1 —tan20是关于x的二次函数.它的图象的对称轴为x=—tan 0••y=f(x)在区间[—1,. 3]上是单调函数,• —an (X —1,或一tan 0》一3,即卩tan0》1,或tan (X —3.n n .…n n n n2,2,••的取值范围是—2,—3 u4,2 .。

必修四三角函数及诱导公式检测题(含答案)

必修四三角函数及诱导公式检测题(含答案)

2017-2018 学年高一数学必修四三角函数及诱导公式检测题一、选择题:1、的值是()A. B. C. D.2、下列与角终边相同的角是()A.-315 °B.475 °C.735 °D.-705 °3、已知角α终边上一点P的坐标为(a,3a) (a≠0),则的值是()A.2B.-2C.0.5D.-0.54、在直角坐标系中,若α与β的终边关于y 轴对称,则下列各式成立的是( )A.sin α=sin βB.cos α=cos βC.tan α=tan βD.以上都不对5、若α是第三象限角,则下列各式中不成立的是( )A.sin α+cos α<0B.tan α-sin α<0C.cos α-tan α<0D.tan αsin α<06、的值等于( )A. B. C. D.7、下列各式中,其值为的是()A. B. C.D.8、已知为第四象限角,,则的值为()A. B. C. D.9、已知sin( +α)= ,则sin( - α) 值为()A. B.— C. D.—10、函数的定义域是()A. B.C. D.11、函数f(x)=2x +sin x 的部分图像可能是()12、设f(tanx)=tan2x ,则f(2) 等于( )A.4B.0.8C. -2D. -3 4 313、已知α+β= 34,则(1-tan α)(1-tan β) 等于( )A.2B. -2C.1D. -114、已知,则()315、已知tan( α-π)=0.75 ,且α∈( ) ,则), sin( 等于( )2 2 2A.0.8B. -0.8C.0.6D. -0.6二、填空题:16、的值为17、若=2,则t an (α﹣)= .18、19、若,则.20、若角的终边经过点,则____________.21、已知,则22、已知,,则的值为.共 2 页第2页23、函数在上的最小值和最大值之和为三、解答题:24、已知;(1)求的值;(2)求的值.25、已知.(1) 化简;(2) 若是第三象限角,且,求的值.26、已知一扇形的圆心角为,所在圆的半径为R,若扇形的周长为40cm,当它的圆心角为多少弧度时,该扇形的面积最大?最大面积为多少?参考答案1、D2、C3、D4、A5、B.6、A7、B8、C9、C10、D11、A12、D13、A;解析:∵-1=tan( α+β)= ,∴tan α+tan β=-1+tan αtan β.∴(1 -tan α)(1 -tan β)=1 -tan α-tan β+tan αtan β=2.14、B15、B16、答案为:17、答案为: 2.18、答案为:019、答案为:20、答案为:1;21、答案为:0.5.22、答案为:23、答案为: 424、(1)0.2 ;(2)2.25、(1)(2)由得即,因为是第三象限角,所以,所以.26、WORD格式。

必修4三角函数测试卷(附答案)

必修4三角函数测试卷(附答案)

必修4三角函数测试卷一、选择题(本大题共10小题,每小题3分,共30分) 1.已知下列各角(1)787°,(2)-957°,(3)-289°,(4)1711°,其中在第一象限的角是( ) A.(1)(2) B.(2)(3) C.(1)(3) D.(2)(4)2.已知点P (tan α,cos α)在第三象限,则角α的终边在 ( )A.第一象限B.第二象限C.第三象限D.第四象限 3.[]1cos (0,2 )y x x π=+∈的图象与直线32y =的交点的个数为( )A.0B.1C.2D.3 4.集合M ={x |x =kπ2 ±π4 ,k ∈Z }与N ={x |x =kπ4 ,k ∈Z }之间的关系是 ( )A.M NB.N MC.M =ND.M ∩N =∅ 5.设a <0,角α的终边经过点P (-3a ,4a ),那么sin α+2cos α的值等于 ( )A. 25B.-25C. 15D.-156.若cos(π+α)=-12 ,32π<α<2π,则sin(2π-α)等于 ( )A.-32B.32 C. 12D.±327.函数y =2sin(3x -π4)图象的两条相邻对称轴之间的距离是 ( )A. π3B.2π3C.πD.4π38.函数y =sin (π4-2x )的单调增区间是 ( )A.[kπ-3π8 ,kπ+π8 ](k ∈Z )B.[kπ+π8 ,kπ+5π8 ](k ∈Z )C.[kπ-π8 ,kπ+3π8 ](k ∈Z )D.[kπ+3π8 ,kπ+7π8](k ∈Z )9.如果sin x +cos x =15 ,且0<x <π,那么1tan x的值是 ( )A.-43B.-43 或-34C.-34D. 43 或-3410.已知0≤x ≤π,且-12 <a <0,那么函数f (x )=cos 2x -2a sin x -1的最小值是 ( )A.2a +1B.2a -1C.2aD.-2a -1 二、填空题(本大题共7小题,每小题3分,共21分) 11.若α是第四象限角,则π-α是第 象限角12.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是____________.13.已知函数y =2cos x ,x ∈[0,2π]和y =2,则它们的图象所围成的一个封闭的平面图形的面积是_____________14.若sin α+cos αsin α-cos α =2,则sin αcos α的值是_____________.15.若cos130°=a ,则tan50°=_____________. 16. 函数()12cos f x x =-的定义域是___________________________17.关于函数f (x )=4sin(2x +π3 )(x ∈R )有下列命题:①由f (x 1)=f (x 2)=0可得x 1-x 2必是π的整数倍;②y =f (x )的表达式可改为y =4cos(2x -π6 );③y =f (x )的图象关于点(-π6 ,0)对称;④y =f (x )的图象关于直线x =-π6对称.其中正确的命题的序号是_____________.三、解答题(本大题共5小题,共49分.解答应写出文字说明、证明过程或演算步骤) 18.(8分)化简(1)sin 0cos tan cos23a b c d πππ+++(2)9cos()sin(3)sin()sin()211sin(2)cos()cos()cos()22ππαπαπααπππαπααα----+-++-19.(8分)设90°<α<180°,角α的终边上一点为 P (x , 5 ),且cos α=24x ,求sin α与tan α的值.20. (10分)求函数tan()23y x ππ=+的定义域、周期和单调区间.21.(10分)设一扇形的周长为C (C >0),当扇形中心角为多大时,它有最大面积?最大面积是多少?22.(13分)已知函数f (x )=21log (sin x -cos x )(1)求它的定义域和值域;(2)求它的单调减区间; (3)判断它的奇偶性;(4)判断它的周期性,如果是周期函数,求出它的一个周期. (参考公式:sin cos 2sin()4x x x π-=-)参考答案一、选择题(本大题共10小题,每小题3分,共30分)1.C 2.B 3. C 4.A 5.A 6.B 7.A 8.D 9.C 10.D二、填空题(本大题共7小题,每小题3分,共21分) 11.三 12.2sin113.4π 14.310 15.21a a --16. 5[2,2]()33k k k Z ππππ++∈ 17.(2)(3) 三、解答题(本大题共5小题,共49分.解答应写出文字说明、证明过程或演算步骤) 18. 【解】(1)原式=2d(2)原式=cos sin x x -19. 【解】 由三角函数的定义得:cos α=52+x x又cos α=24x ,∴x x 2+5 =24x ,解得x =±3 . 由已知可得:x <0,∴x =- 3 . 故cos α=-64,sin α=104,tan α=-153. 20. 【解】定义域1{|2})()3x x k k Z ≠+∈, 周期2T =,单调增区间51(2,2)()33k k k Z -+∈21.【解】 设扇形的中心角为α,半径为r ,面积为S ,弧长为l ,则l +2r =C 即l =C -2r .∴S =12 lr =12 (C -2r )·r =-(r -C 4 )2+C 216.故当r =C 4 时S max =C 216 , 此时,α=lr =C -2r r =C -C2Cr=2.∴当α=2时,S max =C 216 .22.【解】 (1)由题意得sin x -cos x >0,即 2 sin(x -π4)>0从而得2kπ<x -π4 <2kπ+π,所以函数的定义域为(2kπ+π4 ,2kπ+5π4 )(k ∈Z )∵0<sin(x -π4 )≤1,∴0<sin x -cos x ≤ 2即有21log (sin x -cos x )≥21log 2 =-12 .故函数的值域是[-12,+∞).(2)∵sin x -cos x = 2 sin (x -π4 )在f (x )的定义域上的单调递增区间为(2kπ+π4 ,2kπ+3π4 )(k ∈Z ),函数f (x )的递减区间为(2kπ+π4 ,2kπ+3π4)(k ∈Z ).(3)∵f (x )的定义域在数轴上对应的点不关于原点对称,∴函数f (x )是非奇非偶函数.(4)f (x +2π)=21log [sin(x +2π)-cos(x +2π)]=21log (sin x -cos x )=f (x ).∴函数f (x )是周期函数,2π是它的一个周期.。

高一数学必修四三角函数综合训练(培优提高)(2021年整理)

高一数学必修四三角函数综合训练(培优提高)(2021年整理)

高一数学必修四三角函数综合训练(培优提高)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一数学必修四三角函数综合训练(培优提高)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一数学必修四三角函数综合训练(培优提高)(word版可编辑修改)的全部内容。

高一数学必修四--—--——-三角函数综合练习(培优提高卷)1。

【2012高考安徽文7】要得到函数)12cos(+=x y 的图象,只要将函数x y 2cos =的图象 (A ) 向左平移1个单位 (B ) 向右平移1个单位(C ) 向左平移 12个单位 (D ) 向右平移12个单位【答案】C 【解析】 cos 2cos(21)y x y x =→=+左+1,平移12。

2。

【2012高考新课标文9】已知ω〉0,πϕ<<0,直线4π=x 和45π=x 是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=(A)错误! (B )错误! (C )错误! (D )错误! 【答案】A 【解析】因为4π=x 和45π=x 是函数图象中相邻的对称轴,所以2445T=-ππ,即ππ2,2==T T 。

又πωπ22==T ,所以1=ω,所以)sin()(ϕ+=x x f ,因为4π=x 是函数的对称轴所以ππϕπk +=+24,所以ππϕk +=4,因为πϕ<<0,所以4πϕ=,检验知此时45π=x 也为对称轴,所以选A.3。

【2012高考山东文8】函数2sin (09)63x y x ππ⎛⎫=-≤≤⎪⎝⎭的最大值与最小值之和为(A)2 (B )0 (C)-1 (D )1-【答案】A 【解析】因为90≤≤x ,所以6960ππ≤≤x ,369363πππππ-≤-≤-x ,即67363ππππ≤-≤-x ,所以当336πππ-=-x 时,最小值为3)3sin(2-=-π,当236πππ=-x 时,最大值为22sin2=π,所以最大值与最小值之和为32-,选A 。

必修四三角函数的诱导公式培优学案

必修四三角函数的诱导公式培优学案

第03讲三角函数的诱导公式三角函数在各象限符号:在记忆上述三角函数值在各象限的符号时,有以下口诀:一全正,二正弦,三正切,四余弦。

下面室友神回复:“你是在说‘高数’吧?我也看一次,哭一次。

”诱导二诱导三诱导四典例分析考点一:利用诱导公式求值例1.求下列各三角函数的值:(1)10sin3π⎛⎫-⎪⎝⎭;(2)31cos6π;(3)tan(-855°).(4)252525sin cos tan()634πππ++-;(5)()()cos585tan300---例2.已知3sin()2παπβ⎛⎫-=+⎪⎝⎭))απβ-=+,且0<α<π,0<β<π,求α和β的值.举一反三1.求sin(―1200°)·cos1290°+cos(―1020°)·sin(―1050°)+tan945°的值.考点二:利用诱导公式化简求值典例分析例1.(1)sin(180)sin()tan(360) tan(180)cos()cos(180)αααααα-++--+++-+-;学霸说:对任意角求三角函数值,一般遵循“化负为正,化大为小”的化归方向。

(2)cos sin(5)cos(8)2cos(3)sin(3)sin(4)πθθππθπθθπθπ⎛⎫- ⎪--⎝⎭⋅⋅----.例2.已知tan(π+α)=-12,求下列各式的值.(1) 2cos (π-α)-3sin (π+α)4cos (α-2π)+sin (4π-α)(2)sin(α-7π)·cos(α+5π).例3.设8tan 7m πα⎛⎫+= ⎪⎝⎭,求证:1513sin 3cos 37720221sin cos 77m m ππααππαα⎛⎫⎛⎫++- ⎪ ⎪+⎝⎭⎝⎭=+⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭举一反三1.(1)sin cos(3)tan()2cos cos()2παπαπαπααπ⎛⎫+-+ ⎪⎝⎭⎛⎫--- ⎪⎝⎭; (2;2.若,则3.已知tanα=﹣,则=______.4.设A .B .C 为ABC ∆的三个内角,求证: (1)()sin sin A B C +=; (2)sin cos22A B C+=;典例分析考点三:诱导公式的综合应用例1.已知3sin(3)cos(2)sin 2()cos()sin()f παππαααπαπα⎛⎫---+⎪⎝⎭=----.(1)化简()f α;(2)若α是第三象限的角,且31cos 25πα⎛⎫-= ⎪⎝⎭,求()f α的值. (3)若313πα=-,求()f α的值.例2.已知α.β均为锐角,cos()sin()αβαβ+=-, 若()sin cos 44f ππααα⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,求2f πα⎛⎫- ⎪⎝⎭的值.举一反三1.已知α为第三象限角,且sin()cos(2)tan()()sin()tan()f παπααπαπααπ----=--+.(1)化简()f α; (2)若31cos()25πα-=,求()f α的值; (3)若o 1860α=-,求()f α的值.课堂闯关初出茅庐建议用时:10分钟 1.(1)16sin()3π-; (2)o cos(945)-.(3)()()cos 585tan 300---2.化简cos()2sin()cos(2)5sin()2παπαπαπα-⋅-⋅-+.优学学霸建议用时:15分钟1.求证:232sin cos 1tan(9)12212sin ()tan()1ππθθπθπθπθ⎛⎫⎛⎫-+- ⎪ ⎪++⎝⎭⎝⎭=-++-.2.已知tan α,1tan α是关于x 的方程x 2―kx+k 2―3=0的两实根,且732ππα<<。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数(3) 1. 函数2
cos()3
5
y x π
=-
的最小正周期是 ( ) A.
5π B.5
2
π C .2π D .5π 2.如果α在第三象限,则2
α
必定在 (

A .第一或第二象限
B .第一或第三象限
C .第三或第四象限
D .第二或第四象
3.在函数x y sin =、x y sin =、)322sin(π+=x y 、)3
22cos(π
+=x y 中,最小正周期为π的函数的个数为( )
A .1个
B .2个
C .3个
D .4个 4.下列四个函数中,既是(0,
)2
π
上的增函数,又是以π为周期的偶函数的是( )
A .sin y x =
B .|sin |y x =
C .cos y x =
D .|cos |y x =
DDCB
5.已知函数)(x f y =的图象上的每一点的纵坐标扩大到原来的4倍,横坐标扩大到原来的
2倍,然后把所得的图象沿x 轴向左平移
2
π
,这样得到的曲线和x y sin 2=的图象相同,则已知函数)(x f y =的解析式为x y x y 2cos 2
1
)22sin(21=-=或π.
6.用图像解不等式。

①21sin ≥x ②2
32cos ≤x
解:(1)
由图可
知:原
不等式的解集为Z k k ∈⎥⎦

⎢⎣

+
+
,652,6
k 2πππ
π
(2)
由图可知:z k k x k ∈+
≤≤+
,611226
2πππ
π得z k k x k ∈+≤≤+,12
1112π
πππ 因此,原不等式的解集为Z k k ∈⎥⎦

⎢⎣

+
+
,1211,12
k πππ
π 7.已知角α
终边上一点P (-4,3),求233sin sin tan (2)
22cos cos cot()22αππαπαππααπα⎛⎫⎛⎫
--⋅-⋅- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫
-⋅+⋅- ⎪ ⎪⎝⎭⎝⎭
的值. 解: 原式=)tan 1()sin (sin tan )cos (cos 2αααααα-⨯-⨯⨯-⨯ =α
ααααα222222
sin cos sin cos sin cos ⨯
⨯- =α
αα
cos sin sin 2⨯-=-tan α
角α终边上一点P (-4,3) ∴tan α=4
3-
即所求式子的值为 4
3
8.已知函数)631sin(2π
-
=x y ,(1)求它的单调区间;(2)当x 为何值时,使1>y ?
解:(1)由z k k x k ∈+≤-≤-,2
263122π
ππππ,得z k k x k ∈+≤≤-,266ππππ
∴此函数的单调递增区间是z k k k ∈+-],26,6[ππππ 由z k k x k ∈+≤-≤
+
,2
326312

πππ
π,得z k k x k ∈+≤≤+,5626ππππ ∴此函数的单调递增区间是z k k k ∈++],56,26[ππππ
(2)由1)63
1sin(2>-
π
x 得2
1)631sin(>-πx z k k x k ∈+
≤-≤+∴,6
5263162π
ππππ z k k x k ∈+≤≤+∴,366ππππ
即z k k k x ∈++∈),36,6(ππππ时,1>y
9.已知函数y=)sin(φω+x A (A >0,ω >0,πφ〈)的最小正周期为3

,最小值为-2,图像过(
9

,0),求该函数的解析式。

解:32π函数的最小正周期为 , 33
22===
∴ωπ
ωπ即T ------------3分 又2-函数的最小值为 , 2=∴A ------------6分 所以函数解析式可写为)3sin(2y ϕ+=x
又因为函数图像过点(9

,0), 所以有:0)953(sin 2=+⨯
ϕπ 解得35ππϕ-=k ---------9分 3
23,π
πϕπϕ-=∴≤或 ------------11分
所以,函数解析式为:)323sin(2y )33sin(2y π
π-
=+=x x 或 -------------12分 10利用“五点法”画出函数)6
21sin(π
+=x y 在长度为一个周期的闭区间的简图
(2)并说明该函数图象可由y=sinx (x ∈R )的图象经过怎样平移和伸缩变换得到的。

(8分)
解:方法一:将)(sin R x x
y ∈=的图象上所有点向左平移
6
π
个单位就得到
)(6
sin R x )
(x y ∈+=π
的图象,再将所得图象上所有点的横坐标伸长到原来的2倍(纵
坐标不变)就得到)(6
21sin
R x )x (y ∈+=π的图象。

方法二:将)(sin R x x y ∈=的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)就得到)(21
s i n R x x
y ∈=的图象,再将所得图象向左平移12
π
个单位就得到)(6
21s i n
R x )x (y ∈+=π的图象。

相关文档
最新文档