新课改普通高中学业水平考试数学模拟试卷(必修1~必修5)
高中数学【必修1—必修5】学业水平考试复习题及答案
必修5综合复习一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 边长为5,7,8的三角形的最大角与最小角的和是( )A .090B .0120C .0135D .0150 2. 等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为( ) A .81 B .120 C .168 D .192 3. 若02522>-+-x x ,则221442-++-x x x 等于( )A .54-xB .3-C .3D .x 45- 4. 在△ABC 中,若,3))((bc a c b c b a =-+++则A = ( )A .090B .060C .0135D .01505. 已知一等比数列的前三项依次为33,22,++x x x ,那么2113-是此数列的第( )项 A .2 B .4 C .6 D .86. 如果实数,x y 满足221x y +=,则(1)(1)xy xy +-有 ( )A .最小值21和最大值1B .最大值1和最小值43C .最小值43而无最大值 D .最大值1而无最小值7.不等式组131y x y x ≥-⎧⎪⎨≤-+⎪⎩的区域面积是( )A .12B .32C .52D .18. 在△ABC 中,若1413cos ,8,7===C b a ,则最大角的余弦是( )A .51-B .61-C .71-D .81-9. 在等差数列{}n a 中,设n a a a S +++=...211,n n n a a a S 2212...+++=++,n n n a a a S 322123...+++=++,则,,,321S S S 关系为( )A .等差数列B .等比数列C .等差数列或等比数列D .都不对 10.二次方程22(1)20x a x a +++-=,有一个根比1大,另一个根比1-小, 则a 的取值范围是 ( )A .31a -<<B .20a -<<C .10a -<<D .02a << 题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题:本大题共5小题,每小题4分,共20分。
(完整word版)高中数学【必修1—必修5】学业水平考试复习题及答案
2函数y , x 2 2x 3的单调递减区间是 A. (- g ,1) B. (1, + g ) C. [-1, 1] I 使不等式23x 1 2 0成立的x 的取值范围是32 1A. (, )B. (> )C. (>)D.23 3log 0..5 0.49. 如图,能使不等式log 2 x x 2A. x 0B. x 210. 已知f (x)是奇函数,当x 0时f (x)0.75 0.1 0.750.1 D. lg1.6 lg1.4x 的取值范围是 D. 0x2x),当x 0时f (x)等于A. x(1 x)B. x(1 x)C. x(1 x)D. x(1 x) 题号1234 5678910答案二、填空题:本大题共 5小题,每小题4分,共20分。
11.设集合 A (x, y) x 3y 7 ,集合 B (x, y) x y 1 ,则 A B ______________________12 .在国内投寄平信,每封信不超过20克重付邮资80分,超过20克重而不超过40克重付邮资160分,将每封信的应付邮资(分)表示为信重x(0 x 40)克的函数,其表达式为:f(x)= _13. ____________________________________________________________________ 函数f(x)=x 2+2(a — 1)x+2在区间(-g ,4]上递减,则a 的取值范围是 _______________________数学学业水平考试模块复习卷(必修①)、选择题:本大题共 10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有 项是符合题目要求的。
已知集合A = 1,2,4 ,B = x x 是8的约数,则A 与B 的关系C . A 电A. A = B 集合A =B. A B x2A. $B.x 3B.已知f(x)A . 0下列幕函数中过点 1A . y x 2 B.x 5 ,B = x3x C .xx 22x ,则 f(a)-1(0,0),(1,1)D. A7 8 2x xx 5f( C. 的偶函数是a)的值是1 D.2 C. 三 U B = $则(C R A) B 等于D.D.x2 x1x 3D. [1,3]).log 0..5 0.6 C. 2x 成立的自变量x 2 x(1c.8.下列各式错误的是0.8小0.7A. 3 3B.14. _________________________________________________________________ 若函数y=f (x)的定义域是[2 , 4],则y=f ( log1x )的定义域是_________________________________215. —水池有2个进水口, 1个出水口,进出水速度如图甲、乙所示,某天0点到6点,该水池的蓄水量如图丙所示 17.函数 f(x) x 2|x 1 3(1 )函数解析式用分段函数形式可表示为 (2 )列表并画出该函数图象; (3 )指出该函数的单调区间•218. 函数f(x) 2x ax3是偶函数• (1)试确定a 的值,及此时的函数解析式 (2 )证明函数f(x)在区间(,0)上是减函数;(3)当x [ 2,0]时求函数f (x)2x ax 3的值域19. 设f(x)为定义在R 上的偶函数,当Ox 2时,y = x ;当x>2时,y = f(x)的图像是顶点在 P(3,4),且过点A(2,2)的抛物线的一部分乍 (1) 求函数f (x )在(,2)上的解析式; (2)在下面的直角坐标系中直接画出函数f (x )的图岀水量给出以(3) 3 点x 2 5小题,共40分。
安徽省2024届普通高中学业水平合格考试数学模拟试题
安徽省2024届普通高中学业水平合格考试数学模拟试题一、单选题1.设集合{}3,5,6,8A =,{}4,5,8B =,则A B =I ( ) A .{}3,6B .{}5,8C .{}4,6D .{}3,4,5,6,82.在复平面内,(3i)i +对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.某学校高一、高二、高三分别有600人、500人、700人,现采用分层随机抽样的方法从该校三个年级中抽取18人参加全市主题研学活动,则应从高三抽取( ) A .5人B .6人C .7人D .8人4.“a b >”是“ac bc >”的什么条件( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件5.已知(),4a x =r ,()2,1b =-r ,且a b ⊥r r ,则x 等于( ) A .4B .-4C .2D .-26.已知角α的始边在x 轴的非负半轴上,终边经过点()3,4-,则cos α=( ) A .45B .35C .45-D .35-7.下列关于空间几何体结构特征的描述错误的是( ) A .棱柱的侧棱互相平行B .以直角三角形的一边为轴旋转一周得到的几何体不一定是圆锥C .正三棱锥的各个面都是正三角形D .棱台各侧棱所在直线会交于一点8.某地一年之内12个月的降水量分别为:71,66,64,58,56,56,56,53,53,51,48,46,则该地区的月降水量75%分位数( ) A .61B .53C .58D .649.已知函数πsin ,1()6ln ,1x x f x x x ⎧⎛⎫≤⎪ ⎪=⎝⎭⎨⎪>⎩,则()(e)f f =( )A .1B .12CD10.抛掷两个质地均匀的骰子,则“抛掷的两个骰子的点数之和是6”的概率为( )A .17B .111C .536D .11211.在ABC V 中,13BD BC =u u u r u u u r ,设,AB a AC b ==u u u r u u u r r r ,则AD =u u u r( )A .2133a b +r rB .2133a b -+r rC .4133a b -r rD .4133a b +r r12.设0.20.10.214,,log 42a b c ⎛⎫=== ⎪⎝⎭,则( )A .a b c <<B .c b a <<C .<<c a bD .a c b <<13.在ABC V 中,下列结论正确的是( )A .若AB ≥,则cos cos A B ≥ B .若A B ≥,则tan tan A B ≥C .cos()cos +=A B CD .若sin A ≥sin B ,则A B ≥14.已知某圆锥的母线长为4,高为 )A .10πB .12πC .14πD .16π15.若函数()()2212f x x a x =+-+在区间(],4-∞-上是减函数,则实数a 的取值范围是A .[)3,-+∞B .(],3-∞-C .(],5-∞D .[)3,+∞16.已知幂函数()f x 为偶函数,且在(0,)+∞上单调递减,则()f x 的解析式可以是( )A .12()f x x = B .23()f x x = C .2()f x x -=D .3()f x x -=17.从装有2个红球和2个黑球的袋子内任取2个球,下列选项中是互斥而不对立的两个事件的是( )A .“至少有1个红球”与“都是黑球”B .“恰好有1个红球”与“恰好有1个黑球”C .“至少有1个黑球”与“至少有1个红球”D .“都是红球”与“都是黑球”18.已知函数()f x 是定义域为R 的偶函数,且在(],0-∞上单调递减,则不等式()()12f x f x +>的解集为( )A .1,03⎛⎫- ⎪⎝⎭B .1,3∞⎛⎫+ ⎪⎝⎭C .11,3⎛⎫- ⎪⎝⎭D .1,13⎛⎫- ⎪⎝⎭二、填空题19.已知i 是虚数单位,复数12iiz -=,则||z =. 20.已知()()321f x x a x =+-为奇函数,则实数a 的值为.21.已知非零向量a r ,b r 满足||2||a b =r r ,且()a b b -⊥rr r ,则a r 与b r 的夹角为.22.在对树人中学高一年级学生身高(单位:cm )调查中,抽取了男生20人,其平均数和方差分别为174和12,抽取了女生30人,其平均数和方差分别为164和30,根据这些数据计算出总样本的方差为.三、解答题23.已知函数()f x 是二次函数,且满足(0)2f =,(1)()2f x f x x +=+. (1)求函数()f x 的解析式; (2)当x >0时,求函数()f x xy x+=的最小值. 24.如图,四棱锥P —ABCD 中,P A ⊥底面ABCD ,底面ABCD 为菱形,点F 为侧棱PC 上一点.(1)若PF =FC ,求证:P A ∥平面BDF ; (2)若BF ⊥PC ,求证:平面BDF ⊥平面PBC . 25.已知()π2sin 23f x x ⎛⎫=- ⎪⎝⎭.f x的最小正周期及单调增区间;(1)求()(2)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若()f A △ABC的外接圆半径为2,求△ABC面积的最大值.。
云南省普通高中2023年学业水平考试模拟(五)数学试卷(含解析)
云南省普通高中2023年学业水平考试模拟(五)数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.设集合,,则( )A. B. C. D.2.有一个几何体的三视图及其尺寸如下(单位:),则该几何体的表面积及体积为( )A.,B.,C.,D.以上都不正确3.化简得( )A. B. C. D.4.将函数A. B. C. D.5.下边程序执行后输出的结果是( )A.-1B.0C.1D.26.已知过点和的直线与直线平行,则m 的值为( )A. B.0C.2D.107.如果奇函数在区间上是增函数且最大值为5,那么在区间上{}20A x x x =+={}20B x x x =-=A B = 0{}0∅{}1,0,1-cm 224πcm 212πcm 215πcm 212πcm 224πcm 236πcm AC BD CD AB -+-AB DABC 0πsin 3y x ⎛=- ⎝sin y x=2πsin 3y x ⎛⎫=- ⎪⎝⎭πsin 6y x ⎛⎫=- ⎪⎝⎭0b >()2,A m -(),4B m 210x y +-=8-()f x []3,7()f x []7,3--是( )A.减函数且最小值是B.增函数且最大值是C.减函数且最大值是D.增函数且最小值是8.化简的值是( )A.B.D.9.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线与圆C 相切,则圆C 的方程为( )A. B.C. D.10.如图,一只转盘,均匀标有8个数,现转动转盘,则转盘停止转动时,指针指向偶数的概率是( )11.已知函数的图象是连续不断的,且有如下对应值表:A. B. C. D.12.在中,若,则( )A. B.C. D.13.在中,若,,,则其面积等于( )A. C. D.14.先后抛掷硬币三次,则至少一次正面朝上的概率是( )5-5-5-5-sin 600︒1212-3440x y ++=22230x y x +--=2240x y x ++=22230x y x ++-=2240x y x +-=()f x (1)2,()2,3()3,4()4,5ABC △()()3a b c b c a bc +++-=A =90︒60︒135︒150︒ABC △7a =3b =8c =281215.等差数列前n 项和为,若,,则的值为( )A.9B.12C.16D.1716.若实数x 、y 满足约束条件,则的最大值为( )A.1B. C. D.17.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有( )A. B. C.D.18.已知直线l 过点,当直线l 与圆有两个交点时,其斜率k的取值范围为( )A. B. C. D.二、解答题19.某单位有甲、乙、丙三个部门,分别有职员27人、63人和81人,现按分层抽样的方法从各部门中抽取组建一个代表队参加上级部门组织的某项活动;其中乙部门抽取7人,则该单位共抽取__________人.20.如图是样本容量为200的频率分布直方图.根据此样本的频率分布直方图估计,样本数据落在内的频数为_________.的定义域是____________(用区间表示).没有公共交点,则的取值范围.(1)求函数的最小正周期;{}n a n S 41S =84S =17181920a a a a +++100x y x y +≤⎧⎪≥⎨⎪≥⎩z y x =-01-2-a b c>>b c a>>c a b>>c b a>>()2,0P -222x y x +=(-⎛ ⎝(11,88⎛⎫- ⎪⎝⎭[6,10)22210(0)y ay a +++=>2x ()f x(2)求函数的最大值及单调增区间.24.2012年7月1日,居民阶梯电价开始实行“一户一表”的城乡居民用户电量从今往后正式按照三档收费.第一档月用电量为180度及以下,用电价格0.50元/度.第二档月用电量为181度-280度,电价0.55元/度.第三档月用电量为281度及以上电价0.80元/度.(1)写出月电费y (元)与月用电量(度)的函数关系式;(2)若某户居民的电费为110元,问这户居民的用电量是多少?25.已知:如图,四棱锥,平面,四边形是平行四边形,E 为中点,.(1)求证:平面;(2)求证:.26.已知数列中,,,.(1)求的值;(2)证明:数列是等差数列;(3)求数列的通项公式.()f x P ABCD -PA ⊥ABCD ABCD PC 90CBD ∠=︒//PA BDE BC DE ⊥{}n a 12a =25a =1224(3)n n n a a a n --=-+≥3a 1{}(2)n n a a n --≥{}n a参考答案1.答案:B解析:因为,,因此,.故选:B.2.答案:A解析:由三视图知:该几何体是一个圆锥,如图所示:其中底面半径为:,母线为,则高为:所以该几何体的表面积,体积为故选:A.3.答案:D解析:.故选:D.4.答案:B解析:函数得.故选:B.5.答案:B解析:当时,满足进行循环的条件,执行循环体后,,;当时,满足进行循环的条件,执行循环体后,,;当时,满足进行循环的条件,执行循环体后,,;当时,满足进行循环的条件,执行循环体后,,;当时,满足进行循环的条件,执行循环体后,,;当时,不满足进行循环的条件,故输出n 值为0,{}{}20=1,0A x x x =+=-{}{}200,1B x x x =-=={}0A B = 3r =5l =4h =2ππ24πS rl r =+=21π12π3V r h ==AC BD CD AB -+- ()0AC CD BD AB AD AD =+-+=-=πsin 3y x ⎛=- ⎝ππ2πsin sin 333y x x ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭0S =5S =4n =5S =9S =3n =9S =12S =2n =12S =14S =1n =14S =15S =0n =15S =故选:B.6.答案:A解析:由直线可得:,所以直线的斜率等于,因为过点和的直线与直线平行,所以过点和的直线的斜率也是,,解得:,故选:A.7.答案:D解析:因为为奇函数,在上是增函数且最大值为5,所以在区间上为增函数,且最小值是,故选:D 8.答案:D解析:,故选:D.9.答案:D解析:本题考查直线与圆的位置关系由题设圆C 的标准方程为,则圆心为,因为直线与圆相切,所以圆心到直线的距离,解得,所以圆C 的标准方程为,即,故选D.10.答案:A解析:共有8个数,其中偶数的个数为4个,故故选:A.11.答案:B解析:根据零点的概念可知,当,时,函数值出现异号,因此零点在该区间,选B 12.答案:B210x y +-=21y x =-+210x y +-=2-()2,A m -(),4B m 210x y +-=()2,A m -(),4B m 2-2=-8m =-()f x []3,7()f x []7,3--5-()()sin 600sin 720120sin 120sin120︒=-︒=-︒=-︒=22()4(0)x a y a -+=>(,0)a |34|25a d +===2a =22(2)4x y -+=2240x y x +-=48P ==2x =3x =解析:,,,,选B.13.答案:A解析:方法一:由余弦定理,得,所以.所以故选A.方法二:海伦-秦九韶公式,所以故选A.14.答案:D解析:由题意,先后抛掷硬币三次,构成的基本事件为:{正正正},{正正反},{正反正},{反正正},{正反反},{反正反},{反反正},{反反反},共有8种情况,其中,至少一次正面向上所包含的基本事件为:{正正正},{正正反},{正反正},{反正正},{正反反},{反正反},{反反正},共7种情况,所以至少一次正面朝上的概率是故选:D.15.答案:A解析:,得:,故选A.16.答案:A解析:由线性约束条件画出可行域,如图所示阴影部分:()()3a b c b c a bc +++-=22()3b c a bc +-=222b c a bc +-=222cos 2b c a A bc +-==60A =︒2222227381cos 22737a b c C ab +-+-===-⨯⨯sin C ==11sin 7322S ab C ==⨯⨯=S =92a b cp ++==S =P = 481,4S S ==∴114618284a d a d +=⎧⎨+=⎩d =17181920114704664189a a a a a d a d d +++=+=++=+=将目标函数化为直线斜截式,由图可知当直线经过时在y 轴上截距最大,所以.故选:A.17.答案:D 解析:由已知得,,,则.故选D.18.答案:B解析:直线l 为,又直线l 与圆有两个交点,,19.答案:19解析:由单位有甲、乙、丙三个部门,分别有职员27人、63人和81人,按分层抽样的方法,抽取一个代表队,其中乙部门抽取7人,,所以该单位共抽取了19人.故答案为:19.20.答案:64解析:试题分析:样本数据落在内的频率为,所以样本数据落在内的频数为.21.答案:z y x =-y =x+z ()0,1M max 101z =-=1(15171410151717161412)14.710a =⨯+++++++++=1(1515)152b =⨯+=17c =c b a >>20kx y k -+=222x y x +=1∴k <<=19=[6,10)0.0840.32⨯=[6,10)2000.3264⨯=1,42⎛⎤- ⎥⎝⎦解析:由题意得,即,解得,即定义域为:.故答案为:.22.答案:解析:由直线与圆没有公共交点,即圆心到直线距离大于半径,,即,有,又,故,圆心为,半径有,解得,又,故.故答案为:.23.答案:(1),单调增区间为,解析:(1),则;(2)由,故,即函数,,,即,,()32log 210x -+≥0219x <+≤412x -<≤1,42⎛⎤- ⎥⎝⎦1,42⎛⎤- ⎥⎝⎦()1,310x y -+=22210(0)x y ay a +++=>22210(0)x y ay a +++=>()2221x y a a ++=-210a ->0a >1a >()0,a -r =d 2230a --<13a -<<1a >13a <<()1,3π1-3πππ,π88k k ⎛⎫-++ ⎪⎝⎭()k ∈Z ()()2sin 22sin sin 21cos 2f x x x x x =-=--πsin 2cos 21214x x x ⎛⎫=+-=+- ⎪⎝⎭2ππ2T ==[]πsin 21,14x ⎛⎫+∈- ⎪⎝⎭()1f x ⎡⎤∈-⎣⎦(f x 1-πππ2π22π242k x k -+<+<+()k ∈Z 3ππππ88k x k -+<<+()k ∈Z故的单调增区间为,.24.答案:(1)(2)216(度)解析:(1)由题意,设月用电量为x (度),月用电费为y (元),当时,可得;当时,可得;当时,可得,所以月用电费为y ,月用电量为的关系式为.(2)由(1)中的函数,可得当时,可得元;当时,可得元,因为某户居民的电费为110元,可得,则用户用电量在内,设用户的用电量为,可得,解得(度),即用户的用电量大约为216(度).25.答案:(1)证明见解析(2)证明见解析解析:(1)连接交于点O ,连接,因为四边形是平行四边形,所以点O 为的中点,因为E 为中点,所以,又平面,平面,所以平面;(2)因为平面,,所以平面,又平面,所以,因为,所以,()f x 3πππ,π88k k ⎛⎫-++ ⎪⎝⎭()k ∈Z 0.5,01800.559,1802800.879,280x x y x x x x <≤⎧⎪=-<≤⎨⎪->⎩0180x <≤0.5y x =180280x <≤0.51800.55(180)0.559y x x =⨯+⨯-=-280x >0.51800.55(280180)0.80(280)0.879y x x =⨯+⨯-+⨯-=-0.5,01800.559,1802800.879,280x x y x x x x <≤⎧⎪=-<≤⎨⎪->⎩180x =1800.590y =⨯=280x =0.552809145y =⨯-=90110145<<(180,280]0.559110x ⨯-=216x ≈AC BD OE ABCD AC PC //OE PA PA ⊄BDE OE ⊂BDE //PA BDE PA ⊥ABCD //OE PA OE ⊥ABCD BC ⊂ABCD OE BC ⊥90CBD ∠=︒BC BD ⊥又,平面,所以平面,又因平面,所以.26.答案:(1)(2)证明见解析(3)解析:(1)数列中,,,且,令,可得.(2)证明:由,当时,可得,则,又由,,可得,所以是公差为4的等差数列,即数列是公差为4等差数列.(3)由(2)知,数列是首项为3,公差为4的等差数列,可得,所以.即数列的通项公式为.BD OE O = ,BD OE ⊂BDE BC ⊥BDE DE ⊂BDE BC DE ⊥122233n a n n =-+{}n a 12a =25a =1224n n n a a a --=-+3n =32124252412a a a =-+=⨯-+=1224(3)n n n a a a n --=-+≥2n ≥1124n n n a a a +-=-+11()()4n n n n a a a a +----=12a =25a =213a a -={}1n n a a +-1{}(2)n n a a n --≥{}1n n a a +-13(1)441n n a a n n +-=+-⨯=-121321()()()2[3711(45)]n n n a a a a a a a a n -=+-+-++-=+++++- 2(1)(345)22332n n n n -+-=+=-+{}n a 2233n a n n =-+。
《高中数学》学业水平模拟习题(附答案)
《高中数学》学业水平模拟习题(附答案)【编号】ZSWD2023B0113 一、填空题1、函数 sin f x x 的值域为 【答案】0,12、圆2245x x y 的半径是 【答案】33、已知集合 =1,2,3,A B a ,且 2A B I ,则a 【答案】24、不等式1210x 的整数解有 个 【答案】35、若球面的面积为36 ,则球的半径为 【答案】36、若直线0x my 与直线410x y 垂直,则m 【答案】47、在△ABC 中,角,,A B C 所对的边长分别为,,a b c ,且满足222b ac ac ,则B 【答案】38、在61x x的二项展开式中,所有项的系数之和值为【答案】649、从一副混合后的扑克牌(52张,不含大小鬼)中随机抽取2张,则“抽出1张红桃、1张黑桃”的概率为____________(结果用最简分数表示) 【答案】1310210、设 f x 是定义在R 上的函数,且满足 3f x f x ,2310,41m f f m,则实数m 的取值范围是 【答案】31,211、已知偶函数 f x 在 0,2内单调递减,若 1,2a f b f , 则,a b 之间的大小关系为______________【答案】b a12、定义某种新运算:S a b 的运算原理如右流程图, 则02132420122014 L 【答案】20132014二、选择题 13、若函数 1y fx 的图像经过点 2,0 ,则函数 5y f x 的图像经过点 ( )A、 0,2 ;B、 5,2 ;C、 0,3;D、 0,5 【答案】C则样本数据落在(10,40]上的频率为 ( )A、0.13;B、0.39;C、0.52;D、0.64 【答案】C15、设四边形ABCD 中,有12DC AB u u u v u u u v 且AD BC u u u uv u u u u v ,则这个四边形是 ( )A、平行四边形;B、矩形;C、等腰梯形;D、菱形【答案】C 16、把矩阵015108变为1001x y后,与x y 对应的值是 ( ) A、3 ; B、13; C、2; D、3 【答案】D17、直线1y 与直线230x y 的夹角为 ( ) A、1arctan22; B、1arctan 2; C、1arctan 22 ; D、1arctan 2【答案】B18、三棱锥的四个面中,任两个面的位置关系是 ( ) A、相交; B、平行; C、异面; D、不确定【答案】A19、方程0x所表示的大致图像是( )xyxyxyxyDBCA 0【答案】D 20、“2”是“函数 sin y x 为偶函数的” ( )A、充分不必要条件;B、必要不充分条件;C、充要条件;D、既不充分也不必要条件 【答案】A21、下列四个函数中,在区间 0,1上是减函数的是 ( )A、1y x ;B、1y x ;C、12xy; D、13y x【答案】B22、设等差数列 n a 的公差2d ,首项是0,前n 项和为n S ,则2lim n n na S ( )A、1;B、2;C、3;D、4【答案】D23、若i 2是关于x 的实系数方程02n mx x 的一根,则抛物线2y mnx 焦点坐标( )A、 5,0;B、 5,0 ;C、 0,5 ;D、 0,5 【答案】B24、实数,x y 满足221x y ,则 11xy xy 的 ( B ) A、最小值是12,最大值是1; B、最小值是34,最大值是1;C、最小值是34,无最大值; D、最大值是1,无最小值 【答案】B解: 2222242213(1)(1)111124xy xy x y x x x x x ,设 20,1t x则 213(1)(1),0,124xy xy t t ,其最小值为34,最大值为1三、解答题25若函数22cos sin sin cos 3f x x x x x x,此函数的图像可以由sin 2y x 的图像经过怎样的变换得到 解:22cos sin sin cos 2sin 233f x x x x x x f x x先将函数sin 2y x 的图像向左平移6个单位,得函数sin 2sin 263y x x的图像 再将函数sin 23y x的图像的纵坐标伸长为原来的2倍(横坐标不变),得到函数2sin 23y x的图像即得到函数22cos sin sin cos 3f x x x x x x的图像 26如图,在三棱锥P ABC 中,PA ⊥底面ABC ,D 是PC 的中点,已知,22BAC AB,2AC PA ,求异面直线BC 与AD 所成的角的大小(结果用反三角函数值表示)解:取PB 中点E ,联结DE ,则DE BC P ,ADE (或其补角)是异面直线BC 与AD 所成的角 (2)分1,2,222BAC AB AC DE BC Q又PA ⊥底面,2ABC PA ,故2PAB PACAB DP222PB PCAE AD……5分222223cos2224ADE所以异面直线BC与AD所成的角为3arccos427 若数列{}na为等比数列,121239,27,na a a a a S为数列{}na的前n项和,求limnnS的值解:12121123229962733a a a a aa a a a a所以6lim12316nnS(求对首项16a 给2分;求对公比12q 给2分;求对lim12nnS给3分.其它解法参照给分)28 已知椭圆C以122,0,2,0F F为焦点且经过点53,22P(1)求椭圆C的方程;(2)若斜率为1的直线l和椭圆C相交于,A B两点,且以AB为直径的圆恰好过椭圆C的中心,求直线l的方程解(1)椭圆C的方程为161022yx(2)设直线l的方程为txy,由30510816102222ttxxyxtxy当0即44t时,直线l与椭圆C有两个不同的交点,A B设1122,,,A x yB x y,则212125530,48t tx x x x故22121212123308ty y x t x t x x x x t t因为以AB为直径的圆过椭圆C的中心O,所以0OA OBu u u v u u u v12120x x y y ,即22530330088t t,解得 4,42t所以直线l 的方程为0230y x29 已知函数 2210,1g x ax ax b a b 在区间 2,3上有最大值4,最小值1,设函数g x f x x(1)求,a b 的值及函数 y f x 的解析式;(2)若不等式220x x f k 在 1,1x 时有解,求实数k 的取值范围 解(1) 222111g x ax ax b g x a x b a ①0a 时, g x 在 2112,3340g a g bZ , 此时, 211,2g x x f x x x②当0a 时, g x 在 1242,33,131a g b g]舍 综上: 11,0,2,0a b f x x x x(2) 2220,1,1,1,12x xxxf f k x k x令12,22x t,则所求问题等价于 1,,22f t k t t有解 而221211111,,22f t t t t t t的最大值是1 此时12t,即 11,1x ,于是 ,1k。
2023年黑龙江省普通高中学业水平合格性考试数学模拟试卷一+答案解析(附后)
一、单选题:本题共12小题,每小题5分,共60分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,,,则中元素个数为( )A. 2 B. 3C. 4D. 52.已知命题,则为( )A. B. 2023年黑龙江省普通高中学业水平合格性考试数学模拟试卷一C.D. 3.已知复数z 满足,则( )A. 2 B. C. 5 D. 104.若,则( )A.B.C.D. 5.已知a ,b ,且,则下列不等式正确的是( )A.B. C.D. 6.某学校高一、高二、高三年级的学生人数分别为300,200,400,为了了解学生的课业负担情况,该校采用分层抽样的方法,从这三个年级中抽取18名学生进行座谈,则高一、高二、高三年级抽取人数分别是( )A. 6,4,8 B. 6,6,6C. 5,6,7D. 4,6,87.已知,,,则( )A.B. C.D.8.在“冬奥会”闭幕后,某中学社团对本校3000名学生收看比赛情况用随机抽样方式进行调查,样本容量为50,将所有数据分组整理后,绘图如下,以下结论中正确的是( )A. 图中m的数值为26B. 估计该校观看比赛不低于3场的学生约为1380人C. 估计该校学生观看比赛场数的中位数小于平均数D. 样本数据的第90百分位数为59.函数的图象大致为( )A. B.C. D.10.甲、乙二人的投篮命中率分别为、,若他们二人每人投篮一次,则至少一人命中的概率为( )A. B. C. D.11.设l、m是不同的直线,、是不同的平面,下列命题中的真命题为( )A. 若,,,则B. 若,,,则C. 若,,,则D. 若,,,则12.已知,,则( )A. 1B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
13.若,则的取值范围是__________.14.设的内角A,B,C所对的边分别为a,b,c,若,,则__________.15.已知函数若,则__________.16.为摆脱美国政府针对中国高科技企业的封锁,加强自主性,某企业计划加大对芯片研发部的投入.据了解,该企业研发部原有100名技术人员,年人均投入a万元,现把原有技术人员分成两部分:技术人员和研发人员,其中技术人员x名且,调整后研发人员的年人均投入增加,要使这名研发人员的年总投入不低于调整前100名技术人员的年总投入,求调整后的技术人员的人数最多为__________人.三、解答题:本题共4小题,共40分。
高中数学必修1、2、3、4、5综合试卷及答案详解(优秀经典测试卷)
XXX 中学数学必修1-5测试卷一、选择题(共12个,每个5分,共60分)1.若集合A={1,3,x},B={1,2x },A ∪B={1,3,x}则满足条件的实数x 的个数有( ) (A ) 1个 (B ) 2个 (C )3个 (D ) 4个2.若函数y=f (x )的定义域是[2,4],则y=f (12log x )的定义域是( )(A ) [12,1] (B ) [4,16] (C )[116,14] (D )[2,4 ] 3.设偶函数f (x )的定义域为R ,当[0,)x ∈+∞时f (x )是增函数,则(2),(),(3)f f f π--的大小关系是( )(A )()f π>(3)f ->(2)f - (B )()f π>(2)f ->(3)f - (C )()f π<(3)f -<(2)f - (D )()f π<(2)f -<(3)f - 4.0.7log 0.8a =, 1.1log 0.9b =,0.91.1c =,那么( )(A )a <b <c (B )a <c <b (C )b <a <c (D )c <a <b 5、已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x6、 两直线330x y +-=与610x my ++=平行,则它们之间的距离为( ) A .4 B .21313 C .51326 D .710207.直线3x-4y-4=0被圆(x-3)2+y 2=9截得的弦长为( )(A)22(B)4 (C)24(D)28、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b ⊂M ,a ∥b ,则a ∥M ;③若a ⊥c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有( )A 、0个B 、1个C 、2个D 、3个 9.如图是计算12+14+16+…+120的值的一个程序框图,其中在判断框中应填入的条件是( )A .i <10B .i>10C .i <20D .i >20 10.若P (A ∪B )=1,则事件A 与B 的关系是( )A .A 、B 是互斥事件 B .A 、B 是对立事件C .A 、B 不是互斥事件D .以上都不对11.、在等比数列{}n a 中,117a a ⋅=6,144a a +=5,则1020a a 等于( ) A .32B .23 C .23或32 D .﹣32或﹣2312、△ABC 中,已知()()a b c b c a bc +++-=,则A 的度数等于( )A .120B .60C .150D .30 二.填空题(共4个,每个5分,共20分)13.数列{}n a 的前n 项和*23()n n s a n N =-∈,则5a =14、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为15.已知函数()sin()cos()f x x x =+θ++θ是偶函数,且[0,]2πθ∈,则θ的值为 .16.下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a =,2k k Z π∈}. ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数3sin(2)3y x π=+的图像向右平移6π得到3sin 2y x =的图像.⑤函数sin()2y x π=-在[0]π,上是单调递减的.其中真命题的序号是 . 三、解答题(共6题,总分70分 17.已知函数213()cos sin cos 1,22f x x x x x R =++∈.(1)求函数()f x 的最小正周期;(2)求函数()f x 在[,]124ππ上的最大值和最小值,并求函数取得最大值和最小值时的自变量x 的值.18.数列{}n a 的前n 项和为n S ,23n n S a n =-(*n N ∈).(Ⅰ)证明数列{3}n a +是等比数列,求出数列{}n a 的通项公式; (Ⅱ)设3n n nb a =,求数列{}n b 的前n 项和n T ;19、△ABC 中,c b a ,,是A ,B ,C 所对的边,S 是该三角形的面积,且cos cos 2B bC a c=-+ (1)求∠B 的大小; (2)若a =4,35=S ,求b 的值。
新课标人教版必修5高中数学综合检测试卷附答案解析
解题技巧
认真审题,理解 题意
运用所学知识, 分析问题
结合实际,联系 生活
细心计算,确保 答案准确
易错点提醒
计算错误:学生可 能因为粗心或计算 能力不足而犯错
概念混淆:学生对 相关概念理解不清 晰,导致填空题答 案错误
逻辑推理错误:学生 在解题过程中,可能 因为逻辑推理不严密 而导致答案错误
审题不清:学生可能因 为审题不仔细,导致理 解题意出现偏差,从而 影响答案的准确性
难度分布:试卷难度适中,注重基础知识的考查,同时也有一定的难度和区分度。
题型设计:本试卷包括选择题、填空题、解答题等多种题型,考查学生的不同能力。
考查重点:本试卷重点考查学生的数学基础知识和应用能力,以及学生的数学思维和解题技 巧。
难度分析
基础题占比: 40%
中档题占比: 40%
难题占比:20%
题目设计注重考查 学生的数学析
题目类型:单项选择题
题目数量:10道
题目难度:中等
解析:对每道题目进行详细的 解析,包括解题思路、方法、 答案等
解题技巧
掌握基础知识:选择题通常考察基础知识点,应熟练掌握相关概念和公式。 仔细审题:读懂题目要求,找出关键信息,避免因误解而选错答案。
排除法:对于一些难以确定答案的选择题,可以采用排除法,排除明显错误的选项。
善于利用选项:有些选择题的答案可以通过代入选项进行验证,从而快速找到正确答案。
易错点提醒
选项中涉及到的知识点是否准确掌握 选项中的陷阱和迷惑性词语是否能够识别 计算和分析过程中是否有遗漏或错误 解题思路和方法是否正确且符合题意
题目类型及解析
题目类型:填空题 题目难度:中等 题目数量:10道 解析:针对每道题目给出详细的解题思路和答案解析
普通高中数学学业水平考试(新课改必修1~5全系列)
普通高中学业水平考试数 学本试卷分为第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,共2页;第Ⅱ卷为非选择题,共4页.全卷共25小题,满分100分.考试时间为90分钟.第Ⅰ卷(选择题 共54分)一、选择题(本大题共18小题,每小题3分,满分54分.每小题4个选项中,只有1个选项符合题目要求,多选不给分.)1. 已知集合{1,0,1},{1,0}A B =-=-,则A B =( )A .{1}-B .{0}C .{1,0}-D .{1,0,1}-2. 如图放置的几何体的俯视图为( )A .B .C .D .3. 一人连续投掷硬币两次,事件“至少有一次为正面”的互斥事件是( )A .至多有一次为正面B .两次均为正面C .只有一次为正面D .两次均为反面4. 下列各式:①222(log 3)2log 3=; ②222log 32log 3=;③222log 6log 3log 18+=; ④222log 6log 3log 3-=. 其中正确的有( )A .1个B .2个C .3个D .4个5. 执行程序框图如图,若输出y 的值为2,则输入x 的值应是( )A .2-B .3C .2-或2D .2-或36. 已知3sin 5α=,且角α的终边在第二象限,则cos α=( ) A .45- B .34- C .34 D . 45 7. 若,a b c d >>且0c d +<,则下列不等式一定成立的是( )A .ac bc >B .ac bc <C . ad bd >D . ad bd <8. 在2与16之间插入两个数a 、b ,使得2,,,16a b 成等比数列,则ab =( )A .4B .8C .16D .329. 正方体上的点P 、Q 、R 、S 是其所在棱的中点,则直线PQ 与直线RS 异面的图形是( )第5题图A .B .C .D .10. 已知平面向量(,3)a λ=- 与(3,2)b =- 垂直,则λ的值是( )A .-2B .2C .-3D .311. 下列函数中既是奇函数又在(0,2π)上单调递增的是( ) A .y x =- B . 2y x = C .sin y x = D .cos y x =12. 不等式组0,10x x y ≥⎧⎨-+≥⎩所表示的平面区域为( )A .B .C .D .13. 某学校共有老、中、青职工200人,其中有老年职工60人,中年职工人数与青年职工人数相等.现采用分层抽样的方法抽取部分职工进行调查,已知抽取的老年职工有12人,则抽取的青年职工应有( )A .12人B .14人C .16人D .20人14. 已知1cos 2α=-,则sin(30)sin(30)αα++- 的值为( ) A .12- B .14- C .12 D . 1415.不等式 31x x --<0的解集是( ) A . {|13}x x -<<B .{|13}x x <<C .{|13}x x x <->或D .{|13}x x x <>或 16如图,P 是△ABC 所在的平面内一点,且满足BA BC BP += ,则( ) A .BA PC = B .BC PA = C .BC CP BP += D .BA BP AP -= .17. 函数2()f x x ax =-的两零点间的距离为1,则a 的值为( )A .0B .1C .0或2D .1-或1 18.已知函数y =m ,最大值为M ,则m M的值为( ) A .14 B .12 C.2 D二、填空题(本大题共4小题,每小题4分,满分16分,把答案填在题中的横线上.)19. 函数3sin(2)3y x π=-的最小正周期是______________.20. 已知直线1:21l y x =+,2:30l kx y --=,若1l ∥2l ,则k =______________.第16题图21. 从3张100元,2张200元的上海世博会门票中任取2张,则所取2张门票价格相同的概率为______________.22. 如图,在离地面高200m 的热气球上,观测到山顶C 处的仰角为15º、山脚A 处的俯角为45º,已知∠BAC=60º,则山的高度BC 为_______ m.三、解答题(本大题共3小题,满分30分.解答题应写出文字说明及演算步骤.)23.(本小题满分10分)求圆心C 在直线2y x 上,且经过原点及点M (3,1)的圆C 的方程.【解】第22题图第23题图24.(本小题满分10分)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,E 、F 分别为BC 和PC 的中点.(1)求证:EF ∥平面PBD ;【证】(2)如果AB=PD ,求EF 与平面ABCD 所成角的正切值.【解】25.(本小题满分10分)皖星电子科技公司于2008年底已建成了太阳能电池生产线.自2009年1月份产品投产上市一年来,该公司的营销状况所反映出的每月获得的利润y (万元)与月份x 之间的函数关系式为:265621020x y x -⎧=⎨-⎩**(15,)(512,)x x N x x N ≤≤∈<≤∈ . (1)2009年第几个月该公司的月利润最大?最大值是多少万元?【解】(2)若公司前x 个月的月平均利润w (x w x=前个月的利润总和)达到最大时,公司下个月就应采取改变营销模式、拓宽销售渠道等措施,以保持盈利水平. 求w (万元)与x (月)之间的函数关系式,并指出这家公司在2009年的第几个月就应采取措施.【解】第24题图普通高中学业水平考试数学参考答案与评分标准一、选择题(本大题共18小题,每小题3分,满分54分.每小题4个选项中,只有1个选项符合题.)19. π 20. 2 21.2522. 300三、解答题(本大题共3小题,满分30分.解答题应写出文字说明及演算步骤.)23. 解:设圆心C的坐标为(,2a a),则||||OC OM=,即2222(2)(3)(21)a a a a+=-+-,解得1a=.所以圆心(1,2)C,半径r=故圆C的标准方程为:22(1)(2)5x y-+-=.24.证:(1)在△PBC中,E、F为BC和PC的中点,所以EF∥BP.因此EF PBEF PBD EF PBDPB PBD⎫⎪⊄⇒⎬⎪⊂⎭平面平面平面∥∥.(2)因为EF∥BP,PD⊥平面ABCD,所以∠PBD即为直线EF与平面ABCD所成的角.又ABCD为正方形,,所以在Rt△PBD中,tan2PBPBDBD∠==.所以EF与平面ABCD所成角的正切值为2.25. 解:(1)因为2656y x=-*(15,)x x N≤≤∈单增,当5x=时,74y=(万元);21020y x=-*(512,)x x N<≤∈单减,当6x=时,90y=(万元).所以y在6月份取最大值,且max90y=万元.(2)当*15,x x N≤≤∈时,(1)302621343x xxw xx--+⋅==-.当*512,x x N<≤∈时,(5)(6)11090(5)(20)640210200x xxw xx x--+-+⋅-==-+-.所以w=134364010200xxx-⎧⎪⎨-+-⎪⎩**(15,)(512,)x x Nx x N≤≤∈<≤∈.当15x≤≤时,w≤22;当512x<≤时,6420010()40w xx=-+≤,当且仅当8x=时取等号.从而8x=时,w达到最大.故公司在第9月份就应采取措施.。
最新高中数学新课程标准考试模拟试卷及答案(三套)
最新高中数学新课程标准考试模拟试卷及答案(三套)高中教师数学新课程标准考试模拟试卷(一)附答案一、填空题(每小题4分,共40分)1.数学教育在学校教育中占有特殊的地位,它使学生掌握数学的基本概念、基本技能、基本方法,使学生表达清晰、思考有条理,使学生具有逻辑思维能力、创新能力,使学生会用数学的思考方式分析问题、解决问题。
2.高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学性、规范性,提高提出问题、分析和解决问题的能力,形成数学思维惯,发展数学素养具有基础性的作用。
3.高中数学课程标准最突出的特点就是体现了思想性、方法性和应用性。
4.高中数学课程应力求通过各种不同形式的研究、实践,让学生体验数学探究的历程,发展他们的创新意识。
5.高中数学课程应注重提高学生的数学思维能力,这是数学教育的基本目标之一。
人们在研究数学和运用数学解决问题时,不断地经历问题意识、分析、抽象、归纳、演绎、验证、推广、创新、评价等思维过程。
6.为了适应信息时代发展的需要,高中数学课程应增加信息技术的内容,把最基本的计算机操作、数据处理等作为新的数学基础知识和基本技能;同时,应删减繁琐的计算、人为技巧化的难题和过分强调细枝末节的内容,克服“应试化”的倾向。
7.普高中数学课程的总目标是:培养学生的数学思维能力、数学素养和数学方法,使其具有独立思考、自主研究、创新探究的能力,为学生未来的研究和工作打下坚实的数学基础。
8.高中数学课程的目标是要求学生具备广阔的数学视野,逐步了解数学的基本知识、基本技能和基本思想,培养批判性思维惯,崇尚数学的科学价值和文化价值,体会数学的美学意义,从而建立起符合辩证唯物主义和历史唯物主义的世界观。
9.算法是一个全新的课题,已经成为计算机科学和数据处理的重要基础,在现代社会中起着越来越重要的作用。
10.高中数学研究的评价应该重视学生参与数学活动的兴趣和态度,以及数学研究的自信心和独立思考惯等方面,不仅要注重结果,还要注重过程。
2023-2024学年重庆市普通高中学业水平合格性考试模拟试题(一)数学模拟试题(含解析)
2023-2024学年重庆市普通高中学业水平合格性考试模拟试题(一)数学模拟试题一、单项选择题(共28小题,每小题3分,共84分)在每小题给出的三个选项中,只有一项是符合题目要求的.1.设集合{}2,3,4M =,{}3,4,5N =,则M N ⋂=()A.{}2 B.{3,4}C.{2,3,4,5}【正确答案】B【分析】根据交集运算法则即可计算得出M N ⋂.【详解】由{}2,3,4M =,{}3,4,5N =,利用交集运算可得{}3,4M N ⋂=.故选:B2.已知函数3()23f x x x =-+,那么(2)f 的值()A.3B.5C.7【正确答案】C【分析】把2x =代入解析式即可求解.【详解】3(2)22237f =-⨯+=.故选:C3.下列函数是奇函数的是()A.sin y x =B.cos y x= C.ln y x=【正确答案】A【分析】根据函数奇偶性定义判断.【详解】对()sin ,R f x x x =∈,()()sin f x x f x -=-=-,故()sin f x x =为奇函数,故A 正确;对()cos ,R g x x x =∈,()()cos g x x g x -==,故()cos g x x =为偶函数,故B 错误;对()()ln ,0,h x x x =∈+∞,因为定义域没有对称性,故()ln h x x =既不是奇函数也不是偶函数,故C 错误.故选:A4.22log l 00og 81-=()A.70B.2log 70C.3【正确答案】C【分析】根据对数运算公式求解.【详解】2322228080108231log log log log 0log ====-.故选:C5.若实数a ,b ,c 满足a b >,0c <,则()A.ac bc >B.ac bc< C.a c b c+<+【正确答案】B【分析】根据不等式性质判断.【详解】因为a b >,0c <,所以ac bc <,故A 错误,B 正确;根据不等式可加性知a c b c +>+,故C 错误.故选:B6.下列值域是[)0,∞+的是()A.y x= B.1y x=C.y =【正确答案】C【分析】分别求出各函数的值域.【详解】对A :y x =值域为R ,故A 错误;对B :1y x=值域为(),0(0,)-∞⋃+∞,故B 错误;对C :y =的定义域为1,2⎡⎫+∞⎪⎢⎣⎭-,在定义域上为增函数,故值域为[)0,∞+,故C 正确.故选:C.7.圆柱的底面直径和高都等于球的直径,则球的表面积与圆柱的侧面积的比值为()A.1:1B.1:2C.2:1【正确答案】A【分析】按圆柱侧面积和球的表面积公式计算即可.【详解】设球的半径的r ,依题意圆柱的底面半径也是r ,高是2r ,圆柱的侧面积=22π24πr r r ⋅=,球的表面积为24πr ,其比例为1:1,故选:A.8.已知圆锥的体积是3π,其侧面积是底面积的2倍,则其底面半径是()A. B.C.3【正确答案】B【分析】设底面半径为r ,高为h ,母线为l ,根据圆锥的体积公式可得29h r =,根据圆锥的侧面积公式可得2l r =,再结合h =即可求解.【详解】设底面半径为r ,高为h ,母线为l ,如图所示:则圆锥的体积21π3π3V r h ==,所以29r h =,即29h r=,又212π2π2S rl r =⋅=侧,则2l r =,又h ==39=,故r =.故选:B9.如图,在长方体1111ABCD A B C D -中,3AB AD ==,12AA =,则四棱锥11A BB D D -的体积是()A.6B.9C.18【正确答案】A【分析】根据题意证得AC ⊥平面11BDD B ,得到四棱锥11A BB D D -的高为2h =,结合体积公式,即可求解.【详解】在长方体1111ABCD A B C D -中,3AB AD ==,连接AC 交BD 于点O ,可得AC BD ⊥,又由1BB ⊥平面ABCD ,且AC ⊂面ABCD ,所以1AC BB ⊥,因为1BD BB B ⋂=,且1,BD BB ⊂平面11BDD B ,可得AC ⊥平面11BDD B ,所以四棱锥11A BB D D -的高为322h AO ==,所以11A BB D D -的体积11113226332BB D D V S h =⋅=⨯⨯=.故选:A.10.若实数a ,b 满足i i(1i)a b +=-,则a b +=()A.2B.2- C.1【正确答案】A【分析】利用复数相等求出,a b 即可.【详解】因为i i(1i)1i a b +=-=+,所以1,1a b ==,所以2a b +=,故选:A.11.点(1,1)到直线3420x y +-=的距离是()A.1B.2C.【正确答案】A【分析】直接利用点到直线的距离公式得到答案.【详解】515d ===,故选:A12.已知圆C 的一条直径的两个端点是分别是(1,1)O 和(3,3)A ,则圆的标准方程是()A.()222(2)1x y -+-=B.()222(2)2x y -++=C.()222(2)2x y -+-=【正确答案】C【分析】根据条件求出圆心与半径写出圆的方程.【详解】因为圆C 的一条直径的两个端点是分别是(1,1)O 和(3,3)A ,所以圆心为(2,2)M ,直径为2R ==,所以圆的标准方程是()222(2)2x y -+-=.故选:C.13.直线:20+-=l x y 被圆22:9C x y +=截的的弦长为()A. B. C.【正确答案】B【分析】先求出圆心到直线的距离,再利用垂径定理求出弦长.【详解】22:9C x y +=的圆心为()0,0,半径为3,则圆心到直线:20+-=l x y 的距离为d ==则:20+-=l x y 被圆22:9C x y +=截的的弦长为=故选:B14.王老师对本班40名学生报名参与课外兴趣小组(每位学生限报一个项目)的情况进行了统计,列出如下的统计表,则本班报名参加科技小组的人数是()组别数学小组写作小组体育小组音乐小组科技小组频率0.10.20.30.150.25A.10人B.9人C.8人【正确答案】A【分析】根据参加科技小组的频率,求出参加科技小组的人数.【详解】参加科技小组的频率0.25,则本班报名参加科技小组的人数是0.254010⨯=人.15.袋中有4个红球,5个白球,6个黄球,从中任取1个,则取出的球是白球的概率为()A.13B.23C.12D.15【正确答案】A【分析】根据样本空间和样本点和古典概型的概率即可求解.【详解】在任取1个球的事件中,取记i A 为取的是第i 个红球,记i B 为取的是第i 个白球,记i C 为取的是第i 个黄球,记取出的球是白球的事件为M ,所以样本空间{}123412345123456Ω,,,,,,,,,,,,,,A A A A B B B B B C C C C C C =,取出的球是白球的事件{}12345,,,,M B B B B B =,则取出的球是白球的概率为51153=,故选:A.16.函数()cos 6f x x =的最小正周期是()A.π2B.π3 C.π4【正确答案】B【分析】利用周期公式2πT ω=,即可得答案.【详解】∵函数()cos 6f x x =,∴2π2ππ63T ω===,故选:B.17.已知角α的终边位于第二象限,则点(sin ,cos )P αα位于()A.第二象限B.第三象限C.第四象限【正确答案】C【分析】根据角的终边所在象限,确定其正弦值和余弦值的符号,即可得出结果.【详解】因为角α的终边在第二象限,则sin 0α>,cos 0α<,所以点P 在第四象限.18.在平行四边形ABCD 中,AB a =,AD b =,则AC =()A.a b +B.a b-C.2a b+【正确答案】A【分析】根据向量加法的平行四边形法则求解.【详解】平行四边形ABCD 中,AC AB AD a b =+=+.故选:A19.已知向量(1,2)a = ,(3,4)b = ,则32a b -=r r()A.(3,4)B.(3,2)C.(3,2)--【正确答案】C【分析】根据向量的坐标运算,准确运算,即可求解.【详解】由向量(1,2)a = ,(3,4)b =,根据向量的坐标运算,可得32(3,2)a b -=--r r .故选:C.20.已知角α是第一象限角,3cos 5α=,则πcos 3α⎛⎫+= ⎪⎝⎭()A.310B.34310- C.310【正确答案】B【分析】利用两角和差公式和同角三角函数的基本关系即可【详解】3cos 5α=,且角α是第一象限角,4sin 5α∴==,πππ3143cos cos cos sin sin 333525210ααα-⎛⎫∴+=-=⨯-⨯=⎪⎝⎭.故选:B.21.若3cos210cos 1αα+=则cos2cos αα+=()A.49-B.﹣1C.109【正确答案】A【分析】利用二倍角公式解出cos α即可.【详解】23cos210cos 6cos 310cos 1,αααα+==-+23cos 5cos ,20αα+-=∴cos ,576α-±=且11cos α≤≤-,,57163cos α∴-+==且2cos ,25cos 3αα-=2410cos 1741,cos cos2cos 23cos 1cos cos 39ααααααα∴-+--=+==-=-+故选:A.22.在ABC 中,若21,3cos 3,BC AC C ===,则sin B =()A.6B.5C.6【正确答案】A【分析】根据余弦定理求得c =,再根据正弦定理即可求解.【详解】由题意可得1,3BC a AC b ====,AB c =,由余弦定理可得2222222cos 1321363c a b ab C =+-=+-⨯⨯⨯=,即c ,又2cos ,(0,π)3C C =∈,可得sin 3C =,利用正弦定理可知sin sin b cB C =,所以53sin 3sin 6b CB c⨯===.故选:A.23.下列数列中等差数列的是()A.31n a n =+B.31nn a =+ C.2log 1n a n =+【正确答案】A【分析】根据等差数列的定义依次分析即可.【详解】对于A ,13n n a a +-=,相邻两项的差为常数,是等差数列;对于B ,113323n n nn n a a ++-=-=⨯,相邻两项的差不为常数,不是等差数列;对于C ,()2221log log l 1og 1n n n a a n n n++-=+-=,相邻两项的差不为常数,不是等差数列;故选:A24.已知等差数列{}n a 的公差为2,前5项之和为25,则2a =()A.2B.3C.4【正确答案】B【分析】根据等差数列的性质求解.【详解】在等差数列{}n a 中,()155355252a a S a +===,所以35a =,所以23523a a d =-=-=.故选:B25.已知等比数列{}n a 的首项为2,公比为3,则5S =()A.162B.486C.242【正确答案】C【分析】根据等比数列求和公式求解即可.【详解】依题意,知等比数列{}n a 的首项为2,公比为3,所以()5552133124213S ⨯-==-=-.故选:C.26.设a ,R b ∈,则“a b >”是“33a b >”的()A.充分不必要条件B.必要不充分条件C.充分必要条件【正确答案】C【分析】根据()3f x x =单调性及充要条件的定义来判断即得.【详解】因为()3f x x =在R 上为增函数,则a b >可以推出33a b >,反之,若33a b >,则可推出a b >,所以“a b >”是“33a b >”的充分必要条件.故选:C.27.已知a >0,b >0,a +2b =4,则ab 的最大值是()A.B.2C.4【正确答案】D【分析】根据基本不等式即可求解.【详解】()211212422222a b ab a b +⎛⎫=⋅≤=⨯= ⎪⎝⎭,等号成立条件是2a b =,即244a b b +==时取等号,即当且仅当2,1a b ==时取等号,所以ab 的最大值是4.故选:D .28.已知0.12a =,0.20.5b =,0.5log 1.1c =,则()A.c<a<bB.c b a<< C.b a c<<【正确答案】B【分析】根据指数函数、对数函数的性质,将a ,b ,c 与0和1进行比较即可.【详解】由已知0.12a =,0.20.20.210.522b -⎛⎫=== ⎪⎝⎭∵指数函数()2xf x =在R 上单调递增,且值域为()0,∞+,∴()()()00.200.1f f f <-<<,∴0.200.102212-<<=<,即01b a<<<又∵对数函数()0.5log g x x =在区间()0,∞+单调递减,∴()()1.11g g <,即0.50.5log 1.1log 10<=,即0c <.综上所述,a ,b ,c 的大小关系为c b a <<.故选:B.二、判断题(共8个小题,每个题2分,共16分)判断下列各小题正误,正确的写正确,错误的写错误29.方向相同的两个向量是相等向量.()【正确答案】×【分析】根据相等向量的定义即可判断.【详解】因为方向相同且大小相等的两个向量是相等向量,所以方向相同的两个向量是相等向量是错误的.故×30.已知直线l //平面α,则直线l 平行平面内任意一条直线.()【正确答案】错误【分析】根据线面的位置关系以及直线与平面平行的性质定理判定.【详解】已知直线l //平面α,根据线面平行的性质定理,直线l 平行于过直线l 的平面与平面α的形成的交线.故错误.31.已知点(1,3),(2,9)A B ,则直线AB 的斜率为6.()【正确答案】正确【分析】根据直线的斜率公式,即可求解.【详解】由(1,3),(2,9)A B ,根据斜率公式,可得93621AB k -==-,所以是正确的.故正确32.方差反应了一组数据的离散程度.()【正确答案】√【分析】根据方差的意义即可判断.【详解】根据方差的意义可知,方差反应了一组数据的离散程度,所以方差反应了一组数据的离散程度是正确的.故√33.掷一枚骰子,事件“双数朝上”的概率为12,则掷100次,刚好有50次双数朝上.()【正确答案】错误【分析】根据概率的意义判断.【详解】掷一枚骰子,事件“双数朝上”的概率为12,当此试验重复多次后双数朝上”的概率稳定在12附近,它是一个随机事件,所以不能确定掷100次中双数朝上的次数.故错误34.对于函数1ln 1y x x =+-的定义域为{|1}x x ≠.()【正确答案】×【分析】根据对数函数和分式函数的定义域即可求解.【详解】因为1ln 1y x x =+-而ln x 中的真数0x >,分式11x -中的1x ≠,所以1ln 1y x x =+-的定义域为{|0x x >且1}x ≠,故×.35.圆锥是以直角三角形的直角边所在直线为旋转轴,其余两边旋转一周而成的曲面所围成的几何体.()【正确答案】正确【分析】根据圆锥的定义判断.【详解】以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥,故以上说法正确.故正确.36.函数y x =与函数2y =表示同一个函数.()【正确答案】×【分析】利用函数的定义进行判断即可【详解】因为y x =的定义域为R ,而2y =的定义域为[)0+∞,,所以函数y x =与函数2y =不是同一个函数.故×。
2023年上海高中学业水平合格考数学模拟试卷一(含答案详解)
2023上海普通高中学业水平合格性考试考前模拟卷01一、填空题:本大题共12小题,每小题3分,共36分1.已知集合{0,1,2}A =,{2,3}B =,则A B = ______2.函数y =_________.3.如果3πα=,那么与角α终边相同的角的集合可以表示为__________________________.4.某年某博物馆接待参观者61.3万人次.据统计,18岁以下(不含18岁)的参观人数占总参观人数的11%;18~24岁的参观人数最多,占总参观人数的62%;24岁以上(不含24岁)的参观人数占总参观人数的27%.为了解参观者对博物馆展览内容的需求及建议现采用分层抽样的方法抽取容量为200的样本进行调查,那么应抽取18~24岁的人数为___________________.5.已知sin 2α=,那么sin()πα-的值是____________.6.lg 5lg 2+=___.7.某校举行演讲比赛,五位评委对甲、乙两位选手的评分如下:甲8.17.98.07.98.1乙7.98.08.18.57.5记五位评委对甲、乙两位选手评分数据的方差分别为22,s s 甲乙,则:2s 甲______2s 乙(填“>”,“=”或“<”).8.如图,在直三棱柱111ABC A B C -中,ABC 是等腰直角三角形.若14,3AB AC AA ===,则该直三棱柱的体积为___________________.9.甲、乙两个学习小组各有5名同学,两组同学某次考试的语文、数学成绩如下图所示,其中“+”表示甲组同学,“*”表示乙组同学.从这两个学习小组数学成绩高于80分的同学中任取一人,此人恰为甲组同学的概率是________.10.已知函数()2,0x x f x x <⎧⎪=≥,则方程()1f x =的解为________.11.已知偶函数()f x 部分图象如图所示,且()30f =,则不等式()0xf x <的解集为___________.12.x 为实数,且不等式53x x m -+-<有解,则实数m 的取值范围是________________.二、选择题:本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的;13.“四边形ABCD 为矩形”是“四边形ABCD 为平行四边形”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件14.已知函数2(),f x x x =∈R ,则()A .()f x 是奇函数B .()f x 是偶函数C .()f x 既是奇函数又是偶函数D .()f x 既不是奇函数也不是偶函数15.sin cos θθ=()A .1sin 22θB .1cos 22θC .sin 2θD .cos 2θ16.某天甲地降雨的概率为0.2,乙地降雨的概率为0.3.假定这一天甲、乙两地是否降雨相互之间没有影响,则两地都降雨的概率为()A .0.24B .0.14C .0.06D .0.0117.下列函数中,在区间(0,)+∞上单调递减的是()A .()f x x=B .1()f x x=C .2()log f x x=D .()sin f x x =18.已知向量(1,0),(1,1)a b == ,则a b ⋅=()A .0B .1C .2D .319.函数2()log (3)f x x =-的定义域为()A .(3,)+∞B .(0,)+∞C .(3),-∞D .(,0)-∞20.已知函数cos y x =的部分图象如图所示,那么它的一条对称轴方程可以是()A .1x =B .2x π=C .x π=D .32x π=21.在ABC 中,1,2,60a c B ===︒,则b =()A .1B .2C D22.设m ,n 是两条不同的直线,,αβ是两个不同的平面,则下列命题中的真命题为()A .若,m n αα∥∥,则m n ∥B .若,m n αα⊥⊥,则m n ∥C .若,m m αβ∥∥,则αβ∥D .若,m m αβ⊂∥,则αβ∥23.已知a ,b 是实数,且a b >,则()A .a b-<-B .22a b <C .11a b>D .||||a b >24.已知0,0x y >>,且1xy =,则x y +的最小值为()A .1B .2C .3D .425.某班共有50名同学,班主任李老师将大家分成了5个学习小组,每组10人,在某次数学测试中,甲、乙两小组的测试成绩的茎叶图如图所示,则对该次测试的成绩,下列说法错误的是()A .甲组学生成绩的众数是78B .乙组学生成绩的中位数是79C .甲组学生的成绩更稳定D .乙组学生的平均成绩更高26.对于正整数n ,记不超过n 的正奇数的个数为()K n ,如(1)1K =,则(2022)K =()A .2022B .2020C .1011D .1010三、解答题:本大题共2小题,共22分,解答时,应写成必要的文字说明、证明过程或验算步骤27.阅读下面题目及其解答过程.如图,已知正方体1111ABCD A B C D -.(Ⅰ)求证:1AC BD ⊥;(Ⅱ)求证:直线1D D与平面1AB C 不平行.解:(Ⅰ)如图,连接11,BD B D .因为1111ABCD A B C D -为正方体,所以1D D ⊥平面ABCD .所以①___________.因为四边形ABCD 为正方形,所以②__________.因为1D D BD D ⋂=,所以③____________.所以1AC BD ⊥.(Ⅱ)如图,设AC BD O = ,连接1B O .假设1//D D 平面1AB C .因为1D D ⊂平面11D DBB ,且平面1AB C 平面11D DBB =④____________,所以⑤__________.又11//D D B B ,这样过点1B 有两条直线11,B O B B 都与1D D 平行,显然不可能.所以直线1D D与平面1AB C 不平行.以上题目的解答过程中,设置了①~⑤五个空格,如下的表格中为每个空格给出了两个选项,其中只有一个符合推理,请选出符合推理的选项,并填写在答题卡的指定位置(只需填写“A”或“B”).空格序号选项①A .1D D AC⊥B .1D D BD⊥②A .AB BC⊥B .AC BD⊥③A .1BD ⊥平面1AB CB .AC ⊥平面11D DBB ④A .1B OB .1B B⑤A .11//D D B OB .1D D与1B O 为相交直线28.给定集合(,0)(0,)D =-∞+∞ ,()f x 为定义在D 上的函数,当0x <时,24()4xf x x =+,且对任意x D ∈,都有___________.从条件①、条件②、条件③这三个条件中选择一个作为已知,补充在横线处,使()f x 存在且唯一确定.条件①:()()1f x f x -+=;条件②:()()1f x f x -⋅=;条件③:()()1f x f x --=.解答下列问题:(1)写出(1)f -和(1)f 的值;(2)写出()f x 在(0,)+∞上的单调区间;(3)设()()()g x f x m m =-∈R ,写出()g x 的零点个数.1.{2};【详解】根据集合交集的概念,合{}0,1,2A =,{}2,3B =的公共元素是2,故{2}A B ⋂=.2.[)2,∞+【解析】写出使函数有意义的表达式,求定义域.【详解】y =202x x -≥⇒≥,所以函数的定义域[)2,∞+.故答案为:[)2,∞+3.2,3k k πββπ⎧⎫=+∈⎨⎬⎩⎭Z ∣【分析】根据终边相同的角的关系,写出与角α终边相同的角的集合.【详解】因为3πα=,所以与角α终边相同的角的集合可以表示为2,3k k πββπ⎧⎫=+∈⎨⎬⎩⎭Z ∣,故答案为:2,3k k πββπ⎧⎫=+∈⎨⎬⎩⎭Z ∣.4.124【分析】由题可得抽样比为62%,据此可得答案.【详解】由题可得应抽取人数为20062124%⨯=.故答案为:1245【分析】直接通过诱导公式进行化简求值即可【详解】sin 2α=,()sin sin 2παα∴-==.6.1【分析】根据对数的运算法则计算可得;【详解】解:()lg 5lg 2lg 52lg101+=⨯==;故答案为:17.<【分析】计算出22,s s 甲乙,由此确定正确答案.【详解】甲的得分平均值为8.17.98.07.98.18.05++++=,()2210.040.1455s =⨯=甲.乙的得分平均值为7.98.08.18.57.58.05++++=,()22210.520.120.5255s =⨯+⨯=乙,所以22s s <甲乙.故答案为:<8.24【分析】根据直三棱柱的体积公式直接求解即可.【详解】因为在直三棱柱111ABC A B C -中,ABC 是等腰直角三角形,14,3AB AC AA ===,则BAC ∠为直角,故可得:11111114432422AB AB B C C C A V S AA AB AC AA -=⋅=⋅⋅=⨯⨯⨯= ,故答案为:249.12##0.5【分析】根据已知数据求得两个小组高于80分的同学的人数,再求概率即可.【详解】根据图象可知,两个小组数学成绩高于80分的同学各有2人,所以从中任取一人,此人恰为甲组同学的概率是21222=+.故答案为:12.10.1【分析】根据分段函数解析式求得正确答案.【详解】当0x <时,()20f x x =<,由于()1f x =,所以()1,1f x x ===.故答案为:111.(,3)(0,3)-∞-⋃【分析】根据()f x 为偶函数,可以补全y 轴左侧的图象,再对0x <和0x >分类讨论,确定()f x 的正负,由函数图象即可确定最后的取值范围【详解】根据函数部分图象和偶函数可以补全y 轴左侧的图象,由()0xf x <,当0x >时,()0f x <,结合图象可得03x <<;当0x <时,()0f x >,可得3x <-,所以()0xf x <的解为{3x x <-或}03x <<.故答案为:(,3)(0,3)-∞-⋃.12.()2,+∞【分析】求出53x x -+-的最小值,只需m 大于最小值即可满足题意.【详解】利用三角不等式,有53532x x x x -+-≥--+=,当35x ≤≤时等号成立因为53x x m -+-<有解,只需2m >即可,所以实数m 的取值范围是()2,+∞.故答案为:()2,+∞13.A 【分析】利用充分条件与必要条件的定义判断即可.【详解】若四边形ABCD 是矩形,则它是平行四边形,反之,若四边形ABCD 为平行四边形,四边形ABCD 不一定是矩形,所以“四边形ABCD 为矩形”是“四边形ABCD 为平行四边形”的充分不必要条件.故选:A.14.B 【分析】由函数奇偶性的定义即可判断答案.【详解】由题意,()()()22R,x f x x x f x ∈-=-==,即函数为偶函数.故选:B.15.A 【分析】利用二倍角公式即得.【详解】由二倍角公式可得,sin cos θθ=1sin 22θ.故选:A.16.C【分析】根据相互独立事件概率计算公式,计算出正确答案.【详解】依题意,两地都降雨的概率为0.20.30.06⨯=.故选:C17.B【分析】根据基本初等函数的单调性即可求解.【详解】()f x x =在(0,)+∞上单调递增,故A 不符题意;1()f x x =在(0,)+∞上单调递减,故B 符合题意;2()log f x x =在(0,)+∞上单调递增,故C 不符题意;()sin f x x =在(0,)+∞上不单调,故D 不符题意.故选:B.18.B【分析】由平面向量数量积的坐标运算即可求得答案.【详解】11011a b →→⋅=⨯+⨯=.故选:B.19.A【分析】由真数大于0可得.【详解】由30x ->,得3x >.故选:A20.C【分析】直接根据图象即可确定对称轴的方程.【详解】由图可知函数cos y x =的图像关于x π=对称,故选:C.21.D【分析】根据由余弦定理,可得2222cos b a c ac B =+-,代入数据即得.【详解】由余弦定理,得2222212cos 1221232b ac ac B =+-=+-⨯⨯⨯=,∴b =故选:D.22.B【分析】在正方体中取直线和平面可排除ACD ,由线面垂直的性质可得B 正确.【详解】在正方体ABCD EFGH -中,记底面ABCD 为α,EF 为m ,EH 为n ,显然A 不正确;记底面ABCD 为α,EF 为m ,平面CDHG 为β,故排除C ;记底面ABCD 为α,EF 为m ,平面ABFE 为β,可排除D ;由线面垂直的性质可知B 正确.故选:B23.A【分析】根据不等式的性质确定正确答案.【详解】由于a b >,所以a b -<-,A 选项正确.221,1,,a b a b a b ==-==,BD 选项错误.112,1,a b a b==<,C 选项错误.故选:A24.B【分析】由基本不等式即可求得答案.【详解】因为,0x y >,所以2x y +≥=,当且仅当1x y ==时取“=”.故选:B.25.D【分析】利用茎叶图求解.【详解】由茎叶图知甲组学生成绩的众数是78,故A 正确,乙组中位数为7781792+=,故B 正确;甲组学生的成绩更为集中,所以甲组学生的成绩更稳定,故C 正确;80x x ==甲乙,故D 错误.故选:D .26.C【分析】根据题意求出正奇数的个数即可.【详解】由题意,不超过2022的正奇数有202210112=个.故选:C.27.(Ⅰ)①A②B ③B ;(Ⅱ)④A ⑤A 【分析】结合线面垂直、线面平行的知识对“解答过程”进行分析,从而确定正确答案.【详解】要证明1AC BD ⊥,可通过证明AC ⊥平面11D DBB 来证得,要证明AC ⊥平面11D DBB ,可通过证明1,D AC A BD D C ⊥⊥来证得,所以①填A ,②填B ,③填B.平面1AB C 与平面11D DBB 的交线为1B O ,所以④填A ,由于1//D D 平面1AB C ,因为1D D ⊂平面11D DBB ,且平面1AB C 平面111D DBB B O =,根据线面平行的性质定理可知,11//D D B O ,所以⑤填A.28.答案详见解析【分析】判断条件③不合题意.选择条件①②、则先求得当0x >时,()f x 的表达式,然后结合函数的解析式、单调性、零点,对(1)(2)(3)进行分析,从而确定正确答案.【详解】依题意()f x 的定义域为(,0)(0,)D =-∞+∞ ,当0x <时,24()4x f x x =+.对于条件③,对任意x D ∈,都有()()1f x f x --=,以x -替换x ,则()()1f x f x --=,这与()()1f x f x --=矛盾,所以条件③不合题意.若选条件①,当0x >时,0x -<,()()224411144x x f x f x x x -=--=-=+++.(1)()()44491,11145145f f --==-=+=++.(2)对于函数()()2404x h x x x =≠+,任取120x x <<,()()()()()()221221121222221212444444444x x x x x x h x h x x x x x +-+-=-=⨯++++()()22121122221244444x x x x x x xx +--=⨯++()()()()12212122124444x x x x x x x x ---=⨯++()()()()122122124444x x x x x x --=⨯++,其中210x x ->,当122x x <<-时,1240x x ->,()()()()12120,h x h x h x h x ->>,所以()h x 在(),2-∞-上递减.当1220x x -<<<时,1240x x -<,()()()()12120,h x h x h x h x -<<,所以()h x 在()2,0-上递增.所以在区间(),0∞-,()()()20,10h h x h x -≤<-≤<.同理可证得:()h x 在()0,2上递增,在()2,+∞上递减,()()()02,01h x h h x <≤<≤.当0x >时,()()24114x f x h x x =+=++,由上述分析可知,()f x 在()0,2上递增,在()2,+∞上递减.且()12f x <≤.(3)()()()0,g x f x m m f x =-==,由(2)的分析可画出()f x 的大致图象如下图所示,所以,当1m <-或01m ≤≤或m>2时,()g x 的零点个数是0;当1m =-或2m =时,()g x 的零点个数是1;当10m -<<或12m <<时,()g x 的零点个数是2.若选条件②,当0x >时,0x -<,由()()1f x f x -⋅=得()()2144x f x f x x+==--,(1)()()441451,114544f f -+-==-==-+-.(2)对于函数()()2404x h x x x =<+,根据上述分析可知:()h x 在(),2-∞-上递减,在()2,0-上递增,且在区间(),0∞-,()()()20,10h h x h x -≤<-≤<.对于()()2404x f x x x+=>-,任取120x x <<,()()2222122112122144441444x x x x f x f x x x x x ⎛⎫++++-=-=- ⎪--⎝⎭()2212121212414x x x x x x x x -+-=⋅()()12212112414x x x x x x x x ---=⋅()()122112414x x x x x x --=⋅.其中210x x ->.当1202x x <<<时,()()()()12121240,0,x x f x f x f x f x -<-<<,()f x 递增;当122x x <<时,()()()()12121240,0,x x f x f x f x f x ->->>,()f x 递减.所以()f x 的增区间为()0,2,减区间为()2,+∞.且()()21f x f ≤=-.(3)()()()0,g x f x m m f x =-==,结合上述分析画出()f x 的大致图象如下图所示,所以当0m ≥时,()g x 的零点个数是0;当0m <时,()g x 的零点个数是2.【点睛】利用函数的单调性的定义求函数的单调性,主要是计算出()()12f x f x -的符号.求解函数零点问题,可利用分离参数法,结合函数图象来进行求解.。
高中数学学业水平测试检测卷2--数学必修1(提高卷)
高中数学学业水平测试检测卷2--数学必修1(提高卷)第Ⅰ卷(选择题共54分)一、选择题:本大题共18小题,每小题3分,共54分在每小题给出的四个选项中,只有一项是符合题目要求的.1、下列四个集合中,是空集的是( ) A }33|{=+x xB},,|),{(22R y x x y y x ∈-= C},01|{2R x x x x ∈=+-D}0|{2≤x x 2、设集合A={(x,y)|y=x+1},B= {(x,y)|y=1-x },则A ∩B=( ) A.{0,1 } B.{(0,1)} C.{1,0} D.{(1,0)} 3、若f(x)=x-1,x ∈{0,1,2},则函数f (x )的值域是( ) A. {0,1,2} B.{y|0﹤y ﹤2} C.{-1,0,1 } D.{y|-11≤≤y }4、某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了,再走余下的路,下图中y 轴表示离学校的距离,x 轴表示出发后的时间,则适合题意的图形是( )5、函数()()13lg 132++-=x xx x f 的定义域是( )A .⎪⎭⎫ ⎝⎛-∞-31,B .⎪⎭⎫ ⎝⎛-31,31 C .⎪⎭⎫ ⎝⎛-1,31 D .⎪⎭⎫⎝⎛∞+-,31 6、含有三个实数的集合可表示为⎭⎬⎫⎩⎨⎧1,,a b a ,也可表示为{}0,,2b a a +,则20112011b a + 的值为 ( ) A .0B .1C .1-D .1±7、若:f A B →能构成映射,下列说法正确的有 ( )(1)A 中的任一元素在B 中必须有像且唯一;(2)B 中的多个元素可以在A 中有相同的原像; (3)B 中的元素可以在A 中无原像; (4)像的集合就是集合B 。
A 、1个 B 、2个 C 、3个 D 、4个8、已知集合{}1|1242x N x x +=∈<<Z ,,{11}M =-,,则M N =( )A .{1}-B .{0}C .{11}-,D .{10}-,9、函数2()1log f x x =+与1()2x g x -+=在同一直角坐标系下的图象大致是( )A B C D10、若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <c B .c <a <bC .b <c <aD . b <a <c11、下图是指数函数○1x a y =、○2 x b y =、○3 xc y =、○4 xdy =的图象,则d c b a ,,,与1的大小关系是( ) A .b a d c <<<<1B .a b c d <<<<1C .a b d c <<<<1D .b a d c <<<<1 12、函数x y lg = ( )A .是偶函数,在区间()0,∞-上单调递增B .是偶函数,在区间()0,∞-上单调递减C .是偶函数,在区间()∞+,0上单调递增D .是偶函数,在区间()∞+,0上单调递减 13、已知集合A={x|-2≤x ≤7},B={x|m+1<x<2m -1}且B ≠∅,若A ∪B=A ,则( ) A .-3≤m≤4B .-3<m<4C .2<m<4D .2<m≤414、设()log a f x x =(a>0,a ≠1),对于任意的正实数x ,y ,都有( ) A 、f(xy)=f(x)f(y) B 、f(xy)=f(x)+f(y) C 、f(x+y)=f(x)f(y) D 、f(x+y)=f(x)+f(y)15、函数f(x)是定义在区间[-10,10]上偶函数,且f(3) <f(1). 则下列各式一定成立的是( ) A .f(-1)<f(-3) B. f(3)>f(2) C. f(-1)>f(-3) D. f(2)>f(0)16、己知函数()542+-=mx x x f 在区间[)+∞-,2上是增函数,则()1f 的范围是 ( )A .()251≥fB .()251=fC . ()251≤fD .()251>f17、己知函数()221x x x f +=,那么()()()++⋅⋅⋅+++)2011(321f f f f ⎪⎭⎫⎝⎛+⋅⋅⋅+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛201113121f f f=( ) A .200921B .201021C .201121D .201221 18、电信局为满足不同客户的需要,设有A 、B 两种优惠方案,这两种方案应付话费(元)与通话时间(分钟)之间的关系如图(MN//CD ),若通话时间为500分钟,则应选择哪种方案更优惠( ) A.方案A, B.方案B C.两种方案一样优惠 D.不能确定高中数学学业水平测试检测卷--数学必修1(提高卷)第Ⅱ卷 (非选择题 共46分)二、填空题(本大题共有4个小题,每小题4分。
高中数学必修1-必修5综合测试题(附答案)
高二数学必修1-必修5考试题一、选择题(每小题5分,共40分,在每小题的四个选项中有且只有一个是正确的,请把正确选项填涂在答题卡上。
) 1. 对于下列命题:①,1sin 1x R x ∀∈-≤≤,②22,sin cos 1x R x x ∃∈+>,下列判断正确的是A. ① 假 ② 真B. ① 真 ② 假C. ① ② 都假D. ① ② 都真2. 条件语句的一般格式是3. 某校为了了解学生的课外阅读情况,随即调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示。
根据条形图可得这50名学生这一天平均每人的课外阅读时间为A. 0.6 小时B. 0.9 小时C. 1.0 小时D. 1.5 小时4. 有一圆柱形容器,底面半径为10cm ,里面装有足够的水,水面高为12cm,有一块金属五棱锥掉进水里全被淹没,结果水面高为15cm ,若五棱锥的高为3πcm ,则五棱锥的底面积是A. 100π cm 2B. 100 cm 2C. 30π cm 2D. 300 cm 2人数(人)时间(小时)A.D. C.5. 已知数列1{}n n a pa +-为等比数列,且23n nn a =+,则p 的值为A.2B.3C.2或3D.2或3的倍数6. 若α、β表示平面,a 、b 表示直线,则a ∥α的一个充分条件是A. α⊥β且a ⊥βB. αβ=b 且a ∥bC. a ∥b 且b ∥αD. α∥β且a ⊂β7. 已知奇函数f(x)和偶函数g(x)满足f(x)+g(x)=2x x a a --+,若g(a)=a, 则f(a)的值为 A.1 B.2C.154D.1748. 已知()f x 是以2为周期的偶函数,当[0,1]x ∈时,()f x x =,那么在区间[1,3]-内,关于x 的方程()1f x kx k =++(其中k 走为不等于l 的实数)有四个不同的实根,则k 的取值范围是 A .(1,0)-B .1(,0)2-C .1(,0)3-D .1(,0)4-二、填空题(每小题5分,共30分。
2023年1月广东省普通高中学业水平考试模拟五数学试题(2)
一、单选题二、多选题1. 在中,,则( )A.B.C.D.2. 在“2,3,5,7,11,13”这6个素数中,任取2个不同的数,这两数之和仍为素数的概率是( )A.B.C.D.3. 已知实数,,,满足,则的最小值为( )A .8B .4C .2D.4.抛物线:的准线方程为( )A.B.C.D.5. 若,则( )A .1B.C.D.6. 正方体的棱长为,为的中点,为线段上靠近的一个三等分点,则过点,,的平面把正方体截得两部分,则下半部分几何体与上半部分几何体的体积之比为( )A.B.C.D.7. 已知,则“”是“”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件8. 已知函数,若存在,使得不等式成立,则实数的最小值是A .3B.C .2D.9. 已知实数m ,n满足,且,则( )A.B.C.D.10. 已知函数图像过点,且存在,当时,,则( )A.的周期为B.图像的一条对称轴方程为C.在区间上单调递减D.在区间上有且仅有4个极大值点11. 已知,则( )A.B.C.D.12. 已知向量,,满足,,,设,的夹角为,则( )A.B.C.D.2023年1月广东省普通高中学业水平考试模拟五数学试题(2)2023年1月广东省普通高中学业水平考试模拟五数学试题(2)三、填空题四、解答题13. 全国政协委员唐江澎说过:好的教育应该是培养终身运动者、责任担当者、问题解决者和优雅生活者.终身运动者,即要有敬畏生命、珍爱生命的态度,养成终身运动的习惯和健康的生活方式.某中学积极响应此项号召,大力倡导学生进行体育锻炼,为了解高三学生体育锻炼的情况,对该校高三学生的每日运动时间进行了调查,并根据调查结果制成如图所示的频率分布直方图,则该校高三学生每日运动时间的中位数约是______.14. 函数()在内不存在极值点,则a 的取值范围是_______________.15. 在30瓶饮料中,有3瓶已过了保质期.从这30瓶饮料中任取2瓶,已知所取的2瓶全在保质期内的概率为,则至少取到1瓶已过保质期的概率为_________.16. 已知函数.(1)求函数的单调区间和极值;(2)若有两个零点,求实数的范围;(3)已知函数与函数的图象关于原点对称,如果,且,证明:.17. 已知函数,.(1)若曲线在原点处的切线与曲线相交于不同的两点,,曲线在,点处的切线交于点,求的值;(2)当时,设,证明:对任意的,,成立.18. 已知A 、B两所大学联合开展大学生青年志愿者培训活动,并在培训结束后统一进行了一次考核,考核成绩在的为合格等级,成绩在的为优秀等级.为了解本次培训活动的效果,A 、B 两所大学从参加活动的学生中各随机抽取了10名学生的考核成绩,并作出茎叶图如下图所示.考核成绩考核等级合格优秀(1)分别计算A 、B 两所大学被抽取的学生考核成绩的平均值;(2)由茎叶图直接判断A 、B 两所大学参加活动的学生考核成绩的稳定性;(不需写过程)(3)现从样本考核等级为优秀的学生中任取2人,求2人来自同一所大学的概率.19. 已知数列是公差不为零的等差数列,是各项均为正数的等比数列,.(1)求数列和的通项公式;(2)设,求数列的前10项的和.注.表示不超过x的最大整数.20. 已知中,.(1)求的值;(2)若,求的面积.21. 已知正项数列的前项和满足:.(1)求数列的通项公式;(2)令,求数列的前项和.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中学业水平考试数学模拟练习卷1.设集合{}{}1,2,2,3,4A B ==则A B = ( )A .{}1,2,3,4 B .{}1,2,2,3,4 C .{}2 D .{}1,3,42. 已知全集{}{}{}()====N M C ,N M U U 则3,2,2,1,0,4,3,2,1,0( ) A. {}2 B. {}3 C. {}432,,D. {}4321,0,,, 3. 下列四个函数中,不是幂函数的是( )A .x y =B . 3x y = C . x y 2= D . 21-=x y4. 函数x x Y +-=1的定义域为( )A. (-∞,1]B. [0,1]C. (-∞,0] [1, +∞)D.[0,+∞)5.下列给出的赋值语句中正确的是( )A .4M =B .M M =-C .3B A ==D .0x y +=6.如果向量(2,1)=a ,(3,4)=-b ,那么向量34+a b 的坐标是( )A .(19,-6)B .(-6,19)C .(-1,16)D .(16,-1) 7.如图1,一个空间几何体的正视图和侧视图都是边长为1的正方形, 俯视图是一个圆,那么这个几何体的侧面积...为( ) A .4π B .54π C .π D .32π 8.已知直线21y x =-与直线30x my ++=平行,则m 的值为( )A .21 B .21- C .2- D .2 9.函数y 的定义域是( )A .[1,)+∞B .2(,)3+∞C .2[,1]3D .2(,1]3 10.33coscossin sin 510510ππππ-=( ) A .1 B .0 C .1-D .2111.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是( )A .41 B .21 C .81D .无法确定 12.在等比数列{}n a 中,若101,a a 是方程260x x --=的两根,则47a a ⋅的值为( )A .6 B .6- C .1- D . 1图113.三个数60.7,0.76,0.7log 6的大小关系为( )A . 60.70.70.7log 66<< B . 60.70.70.76log 6<<C .0.760.7log 660.7<<D . 60.70.7log 60.76<<14.下列函数f(x)与g(x)表示同一函数的是 ( )A.f(x)=x 0与g(x)=1 B 、 f(x)=2 lgx 与g(x)= lgx2C 、f(x)= |x| 与g(x)=2D 、 f(x)=x 与15.函数1()f x xx =-的图像关于( )A .y 轴对称B .直线x y -=对称C . 坐标原点对称D . 直线x y =对称16.已知函数y=f(x)存在反函数且f(3)=0,则函数)(1x f -的图象必过点( ) A .(2, 0) B .(0, 2) C .(3, 0) D .(0, 3)17.已知1)1(2-=x xxf 则)(x f =( ) A.)1(12)(2±≠-=x x x x f B.)1(1)(2±≠-=x x x x f C.)1(12)(2±≠-=x x x x f D.)1(1)(2±≠-=x x xx f18 函数()65log 221+-=x x y 的单调递增区间为( )A .(25, +∞)B .( -∞,2)C .(-∞, 25) D .(3, +∞)19 三个数a=0.32 , b=log20.3, C = 20.3之间的大小关系是( ) A .a <c <b B .a <b <c C .b <a <c D .b <c <a20. 已知函数f(n)=⎩⎨⎧<+≥-),10)](5([),10(3n n f f n n 其中n ∈N ,则f(8)等于A.2B.4C.6D.721. 函数()log 1a f x x =-在(0,1)上是减函数,那么()f x 在(1,)+∞上( )A 是减函数且无最小值B 是增函数且无最大值C 是增函数且有最大值D 是减函数且有最小值22.某县2007年底人口总数约为100万,经统计近年来该县的年人口增长率约为10%,预计到2010年底该县人口总数将达到( )万人(精确到0.1).A .121B .133.1C .133.2D .146.4二.填空题: 23.方程lg -=2x x 的零点个数 。
24.函数y=-1+1x a (a >0且a ≠1)的图像必经过定点,则这个定点的坐标 。
25.已知函数(2)f x +定义域[]-1,1是则(23)f x -的定义域是 。
26.设()f x 是R 上的奇函数,且当[)0,x ∈+∞时,)1()(+=x x x f ,则当(,0)x ∈-∞时, ()f x = 。
27.要从165个人中抽取15人进行身体检查,现采用分层抽样的方法进行抽取,若这165人中老年人的人数为22人,则老年人中被抽到参加健康检查的人数是 .28.若实数y x ,满足约束条件⎪⎩⎪⎨⎧≤+≥≥100y x y x ,则y x z +=3的最大值为 .29.已知||5=b ,15⋅=a b ,则向量a 在向量b 方向上的投影的值为_ _. 30.在ABC ∆中,A B C 、、是三角形的三内角,a b c 、、是三内角对应的三边,已知222b c a bc +-=.则A ∠= .31.若函数2()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是 .32.232021)32()833()8.7()412(-+---= ;2lg25lg2lg50(lg2)+⨯+=33.已知等差数列}{n a 的前n 项和为n S ,且311a =,324S =.求数列}{n a 的通项公式;三、解答题:本大题共5小题,共40分.解答应写出文字说明、证明过程或演算步骤.34.(本小题满分6分)下面的程序是计算某市公用电话(市话)的通话费用程序.其中x 为通话时间,y 是收取的通话费用.(1)通话时间为6分钟时,通话费用是多少?(2)写出程序中所表示的函数.INPUT x IF 3x ≤ THEN0.3y =ELSE0.30.1(3)y x =+-END IF PRINT yEND35.(本小题满分8分)如图,在棱长为1的正方体ABCD-A 1B 1C 1D 1中.(1)求证:AC ⊥平面B 1 BDD 1(2)求三棱锥B-ACB 1体积.36.(本小题满分10分) 已知圆C 经过(3,2)A 、(1,6)B 两点,且圆心在直线2y x =上.(1)求圆C 的方程;(2)若直线l 经过点(1,3)P -且与圆C 相切,求直线l 的方程.D 1C 1B 1A 1CDBA数学模拟试卷(答案与解析)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}1,2,2,3,4A B ==则A B = ( A )A .{}1,2,3,4 B .{}1,2,2,3,4 C .{}2 D .{}1,3,42.下列给出的赋值语句中正确的是( B )A .4M =B .M M =-C .3B A ==D .0x y += 3.如果向量(2,1)=a ,(3,4)=-b ,那么向量34+a b 的坐标是( B ) A .(19,-6) B .(-6,19) C .(-1,16) D .(16,-1)4.如图1,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积...为( C ) A .4π B .54π C .π D .32π 5.已知直线21y x =-与直线30x my ++=平行,则m 的值为( B )A .21 B .1- C .2- D .2 6.函数y =的定义域是( D )A .[1,)+∞B .2(,)3+∞C .2[,1]3D .2(,1]3 7.33coscossin sin 510510ππππ-=( B ) A .1 B .0 C .1-D .218.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是( B ) A .41 B .21 C .81D .无法确定 9.在等比数列{}n a 中,若101,a a 是方程260x x --=的两根,则47a a ⋅的值为( B )A .6 B .6- C .1- D . 110.三个数60.7,0.76,0.7log 6的大小关系为( D )A . 60.70.70.7log 66<<B . 60.70.70.76log 6<<C .0.760.7log 660.7<<D . 60.70.7log 60.76<<二、填空题:本大题共5小题,每小题4分,共20分.11.要从165个人中抽取15人进行身体检查,现采用分层抽样的方法进行抽取,若这165人中老年人的人数为22人,则老年人中被抽到参加健康检查的人数是 2 .图112.若实数y x ,满足约束条件⎪⎩⎪⎨⎧≤+≥≥100y x y x ,则y x z +=3的最大值为 3 .13.已知||5=b ,15⋅=a b ,则向量a 在向量b 方向上的投影的值为_ 3 _. 14.在ABC ∆中,A B C 、、是三角形的三内角,a b c 、、是三内角对应的三边,已知222b c a bc +-=.则A ∠=60 .15.若函数2()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是[0,)+∞.三、解答题:本大题共5小题,共40分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分6分)下面的程序是计算某市公用电话(市话)的通话费用程序.其中x 为通话时间,y 是收取的通话费用.(1)通话时间为6分钟时,通话费用是多少? (2)写出程序中所表示的函数. 【解】(1)通话时间6x =时,0.30.1(3)0.30.1(0.30.30.6y x =+-=+⨯-=+=……………3分(2)程序中表示的函数为:0.3(03)0.30.1(3)(3)x y x x <≤⎧=⎨+->⎩……………6分17.(本小题满分8分)已知等差数列}{n a 的前n 项和为n S ,且311a =,324S =.(1)求数列}{n a 的通项公式; (2)设1(6)5n nn a n b a ++=-,求数列{}n b 中的最小的项.【解】(1)312a a d =+ ,311323332S a d a d ⨯=+=+ ……………1分 112113324a d a d +=⎧∴⎨+=⎩ ⇒153a d =⎧⎨=⎩ ……………3分5(1)332n a n n ∴=+-⨯=+ ……………4分INPUT xIF 3x ≤ THEN0.3y =ELSE0.30.1(3)y x =+-END IF PRINT yEND(2)21(6)32012420203253333n n n a n n n b n a n n ++++===++≥=-……………6分当且仅当4n n =,即2n =时,n b 取得最小值323. …………… 7分 ∴数列{}n b 中的最小的项为323. ……………8分18.(本小题满分8分)如图,在棱长为1的正方体ABCD-A 1B 1C 1D 1中.(1)求证:AC ⊥平面B 1 BDD 1(2)求三棱锥B-ACB 1体积.【解】(1)∵DD 1⊥面ABCD ∴AC ⊥DD 1又∵BD ⊥AC ,且DD 1,BD 是平面B 1 BD 1D 上的两条相交直线 ∴AC ⊥平面B 1 BDD 1 ……………4分(2)11111113326B ACB B ABC ABC V V S BB AB BC --∆==⋅⋅=⨯⋅⋅=……………8分19.(本小题满分8分)某海滨浴场每年夏季每天的海浪高度y (米)是时间x (024x ≤≤,单位:小时)的函数,记作()y f x =,下表是每年夏季每天某些时刻的浪高数据:(1)经观察发现可以用三角函数b x A y +=ωcos 对这些数据进行拟合,求函数()f x 的表达式;(2)浴场规定,每天白天当海浪高度高于1.25米时,才对冲浪爱好者开放,求冲浪者每天白天可以在哪个时段到该浴场进行冲浪运动? 【解】(1)据图表分析,函数()f x 可以用b x A y +=ωcos 近似拟合.由表中数据可知:12T =, ……………1分maxmin0.52y y A -==,……………2分 ∴62ππω==T ,……………3分 ∴b x y +=6cos 21π,由3x =,1y =,得1b =,∴16cos 21+=x y π……………4分(2)由 1.25y >,得216cos >x π,……………5分D 1C 1B 1A1CDBA∴32632πππππ+<<-k x k ,……………7分即z k k x k ∈+<<-,212212,因为只在白天开放,所以1k =,,1410<<x 故冲浪者每天白天可在上午10点至下午14点到该浴场进行冲浪运动. ……………8分20.(本小题满分10分)已知圆C 经过(3,2)A 、(1,6)B 两点,且圆心在直线2y x =上. (1)求圆C 的方程;(2)若直线l 经过点(1,3)P -且与圆C 相切,求直线l 的方程.【解】(1)方法1:设圆C 的方程为()()222x a y b r -+-=()0r >,依题意得:222222(3)(2),(1)(6),2.a b r a b r b a ⎧-+-=⎪-+-=⎨⎪=⎩……………3分解得22,4,5a b r ===. ……………4分所以圆C 的方程为()()22245x y -+-=. ……………5分方法2:因为()3,2A、()1,6B ,所以线段AB 中点D 的坐标为()2,4,直线AB 的斜率62213AB k -==--,……………1分 因此直线AB 的垂直平分线l '的方程是()1422y x -=-,即260x y -+=.………3分圆心C 的坐标是方程组260,2x y y x-+=⎧⎨=⎩的解.解此方程组,得2,4.x y =⎧⎨=⎩即圆心C 的坐标为()2,4. ……………4分圆心为C 的圆的半径长r AC =所以圆C 的方程为()()22245x y -+-=. ……………5分(2)由于直线l 经过点()1,3P-,当直线l 的斜率不存在时,1x =-与圆C()()22245x y -+-=相离.当直线l 的斜率存在时,可设直线l 的方程为()31y kx -=+,即:30kx y k -++=. ……………7分 因为直线l 与圆C 相切,且圆C 的圆心为()2,4……………8分解得2k =或12k=-. ……………9分所以直线l 的方程为()321y x -=+或()1312y x -=-+,即:250x y -+=或250x y +-=.……………10分。