用二分法求方程的近似解
用二分法求方程的近似解(带练习)
4.5.2用二分法求方程的近似解1.二分法的概念对于在区间[a,b]上图象连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.2.用二分法求函数零点近似值的步骤给定精确度ε,用二分法求函数y=f(x)零点x0的近似值的一般步骤如下:(1)确定零点x0的初始区间[a,b],验证f(a)f(b)<0.(2)求区间(a,b)的中点__c__.(3)计算f(c),并进一步确定零点所在的区间:①若f(c)=0(此时x0=c),则__c__就是函数的零点;②若f(a)f(c)<0(此时x0∈(a,c)),则令b=c;③若f(c)f(b)<0(此时零点x0∈(c,b)),则令a=c.(4)判断是否达到精确度ε:若|a-b|<ε,则得到零点近似值a(或b);否则重复步骤(2)~(4).以上步骤可借助口诀记忆:定区间,找中点,中值计算两边看;同号去,异号算,零点落在异号间;周而复始怎么办?精确度上来判断.1.已知函数f(x)的图象如图,其中零点的个数与可以用二分法求解的零点的个数分别为()A.4,4 B.3,4C.5,4 D.4,3D解析:图象与x轴有4个交点,所以零点的个数为4;左右函数值异号的零点有3个,所以可以用二分法求解的零点个数为3,故选D.2.若函数f(x)在(1,2)内有1个零点,要使零点的近似值满足精确度为0.01,则对区间(1,2)至少二等分( )A .5次B .6次C .7次D .8次C 解析:设对区间(1,2)至少二等分n 次,初始区间长为1. 第1次二等分后区间长为12;第2次二等分后区间长为122;第3次二等分后区间长为123;…第n 次二等分后区间长为12n .根据题意,得12n <0.01,∴n >log 2100. ∵6<log 2100<7, ∴n ≥7.故对区间(1,2)至少二等分7次.【例1】下面关于二分法的叙述中,正确的是( ) A .用二分法可求所有函数零点的近似值B .用二分法求方程的近似解时,可以精确到小数点后的任一位C .二分法无规律可循,无法在计算机上完成D .只能用二分法求函数的零点B 解析:用二分法求函数零点的近似值,需要有端点函数值符号相反的区间,故选项A 错误;二分法是一种程序化的运算,可以在计算机上完成,故选项C 错误;求函数的零点的方法还有方程法、函数图象法等,故选项D 错误.故选B.运用二分法求函数的零点应具备的条件(1)函数图象在零点附近连续不断.(2)在该零点左右函数值异号.只有满足上述两个条件,才可用二分法求函数的零点.1.下列关于函数f(x),x∈[a,b]的命题中,正确的是()A.若x0∈[a,b]且满足f(x0)=0,则x0是f(x)的一个零点B.若x0是f(x)在[a,b]上的零点,则可以用二分法求x0的近似值C.函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点D.用二分法求方程的根时,得到的都是近似解A解析:使用二分法必须满足二分法的使用条件,B不正确;f(x)=0的根也一定是函数f(x)的零点,C不正确;用二分法求方程的根时,得到的也可能是精确解,D不正确,只有A正确.2.已知下列四个函数图象,其中能用二分法求出函数零点的是()A解析:由二分法的定义与原理知A选项正确.【例2】利用二分法求方程x2-x-1=0的近似解(精确度为0.3).解:令f(x)=x2-x-1,由于f(0)=-1<0,f(1)=-1<0,f(2)=1>0,故可取区间(1,2)作为计算的初始区间.用二分法逐次计算,列表如下:零点所在区间中点的值中点函数值(1,2) 1.5 -0.25(1.5,2) 1.75 0.312 5(1.5,1.75) 1.625 0.015 625∵|1.75-1.5|=0.25<0.3,∴方程x2-x-1=0的近似解可取1.5或1.75.二分法的步骤证明函数f(x)=2x+3x-6在区间(1,2)内有唯一一个零点,并求出这个零点.(精确度为0.1)证明:∵函数f(x)=2x+3x-6,∴f(1)=-1<0,f(2)=4>0.∴f(x)在区间(1,2)内有零点.又∵f(x)是增函数,∴函数f(x)=2x+3x-6在区间(1,2)内有唯一的零点.设该零点为x0,则x0∈(1,2),取x1=1.5,f(1.5)≈1.33>0,f(1)·f(1.5)<0,∴x0∈(1,1.5).取x2=1.25,f(1.25)≈0.128>0,f(1)·f(1.25)<0,∴x0∈(1,1.25).取x3=1.125,f(1.125)≈-0.44<0,f(1.125)·f(1.25)<0,∴x0∈(1.125,1.25).取x4=1.187 5,f(1.187 5)≈-0.16<0,f(1.187 5)·f(1.25)<0,∴x0∈(1.187 5,1.25).∵|1.25-1.187 5|=0.062 5<0.1,∴可取x0=1.25,则该函数的零点近似解为1.25.探究题1某方程在区间D=(2,4)内有一无理根,若用二分法求此根的近似值,要使所得的近似值的精确度达到0.1,则应将区间D等分的次数至少是________次.5解析:第一次等分,则根在区间(2,3)内或(3,4)内,此时精确度ε>0.1;不妨设根在(2,3)内,第二次等分,则根在区间(2,2.5)内或(2.5,3)内,此时精确度ε>0.1;不妨设根在(2,2.5)内,第三次等分,则根在区间(2,2.25)内或(2.25,2.5)内,此时精确度ε>0.1;不妨设根在(2,2.25)内,第四次等分,则根在区间(2,2.125)内或(2.125,2.25)内,此时精确度ε>0.1;不妨设根在(2,2.125)内,第五次等分,则根在区间(2,2.062 5)内或(2.062 5,2.125)内,此时精确度ε<0.1.满足题目要求,故至少要等分5次.探究题2在用二分法求函数f(x)的一个正实数零点时,经计算,f(0.64)<0,f(0.72)>0,f(0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为()A.0.68 B.0.72 C.0.7 D.0.6C解析:已知f(0.64)<0,f(0.72)>0,则函数f(x)的零点的初始区间为[0.64,0.72],又0.68=12×(0.64+0.72),且f(0.68)<0,所以零点在区间[0.68,0.72],且该区间的左、右端点精确到0.1所取的近似值都是0.7.因此,0.7就是所求函数的一个正实数零点的近似值.1.根据函数的零点与相应方程的解的关系,求函数的零点与求相应方程的解是等价的.求方程f(x)=0的近似解,即按照用二分法求函数零点近似值的步骤求解.2.区分好“精确度”与“精确到”.3.现实生活中,有很多问题可以用二分法来解决,例如线路断路、地下管道的堵塞、水管的泄漏等.在26枚崭新的金币中,有一枚外表与真金币完全相同的假币(质量轻一点),现在只有一台天平,应用适当的方法最多称几次就可以发现这枚假币?将26枚金币平均分成两份,放在天平上,假币在轻的那13枚金币里面;将这13枚金币拿出1枚,将剩下的12枚平均分成两份,若天平平衡,则假币一定是拿出的那一枚,若不平衡,则假币一定在轻的那6枚金币里面;将这6枚金币平均分成两份,则假币一定在轻的那3枚金币里面;将这3枚金币任意拿出2枚放在天平上,若平衡,则剩下的那一枚是假币,若不平衡,则轻的那一枚是假币.依据上述分析,最多称4次就可以发现这枚假币.用二分法求方程的近似解练习(30分钟60分)1.(5分)定义在R上的函数f(x)的图象是连续不断的曲线,已知函数f(x)在区间(a,b)上有一个零点x0,且f(a)f(b)<0,用二分法求x0时,当fa+b2=0时,函数f(x)的零点是() A.(a,b)外的点B.a+b2C.区间a,a+b2或a+b2,b内的任意一个实数D.x=a或bB解析:由fa+b2=0知a+b2是零点,且在(a,b)内.2.(5分)为了求函数f(x)=2x+3x-7的一个零点,某同学利用计算器得到自变量x和函数f(x)的部分对应值,如表所示.x 1.25 1.312 5 1.375 1.437 5 1.51.562 5f(x) -0.871 6 -0.578 8 -0.281 30.021 01 0.328 43 0.641 15则方程2x+3x=7的近似解(精确到0.1)可取为()A.1.32 B.1.39 C.1.4 D.1.3C解析:由题意可知f(x)为增函数.由f(1.375)•f(1.437 5)<0,可知方程2x+3x=7的近似解可取为1.4.故选C.3.(5分)若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,其参考数据如下.f(1)≈-2 f(1.5)≈0.625 f(1.25)≈-0.984f(1.375)≈-0.260 f(1.437 5)≈0.162 f(1.406 25)≈-0.054那么方程x3+x2-2x-2=0的一个近似根(精确度为0.05)可以是()A.1.25 B.1.375 C.1.42 D.1.5C解析:由表格可得,函数f(x)=x3+x2-2x-2的零点在(1.406 25,1.437 5)之间,且1.437 5-1.406 25<0.05.结合选项可知,方程x3+x2-2x-2=0的一个近似根(精确度为0.05)可以是1.42.故选C.4.(5分)用二分法求方程ln x-2+x=0在区间[1,2]上零点的近似值时,先取区间中点c=32,则下一个含根的区间是32,2.5.(5分)某同学在借助计算器求“方程lg x=2-x的近似解(精确到0.1)”时,设f(x)=lg x+x-2,算得f(1)<0,f(2)>0;在后面的过程中,他用二分法又取了4个x的值,计算了其函数值的正负,并得出判断,方程的近似解是x≈1.8.那么他再取的x的4个值依次是________.1.5,1.75,1.875,1.812 5解析:第一次用二分法计算得区间(1.5,2),第二次得区间(1.75,2),第三次得区间(1.75,1.875),第四次得区间(1.75,1.812 5).6.(5分)利用计算器,列出部分自变量和函数值的对应值如表:x -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0y=2x 0.329 9 0.378 9 0.435 3 0.5 0.574 30.659 8 0.757 9 0.870 6 1y=x2 2.56 1.96 1.44 1 0.64 0.36 0.16 0.04 0 若方程2x=x2有一个根位于区间(a,a+0.4)(a在表格中第一行里的数据中取值),则a 的值为________.-1或-0.8解析:令f(x)=2x-x2,由表中的数据可得f(-1)<0,f(-0.6)>0,f(-0.8)<0, f(-0.4)>0,∴方程的根在区间(-1,-0.6)与(-0.8,-0.4)内.∴a=-1或a=-0.8.7.(5分)用二分法求方程x2=2的正实根的近似解(精确度为0.001)时,如果选取初始区间是[1.4,1.5],则达到精确度要求至少需要计算________次.7解析:设至少需要计算n次,则n满足0.12n<0.001,即2n>100,因为n∈N*,且27=128,故要达到精确度要求至少需要计算7次.8.(12分)以下是用二分法求方程x3+3x-5=0的一个近似解(精确度为0.1)的不完整的过程,请补充完整,并写出结论.设函数f(x)=x3+3x-5,其图象在(-∞,+∞)上是连续不断的一条曲线.先求值,f(0)=________,f(1)=________,f(2)=________,f(3)=________.所以f(x)在区间________内存在零点x0,填表:区间中点m f(m)的符号区间长度解:f(0)=-5,f(1)=-1,f(2)=9,f(3)=31,f(x)在区间(1,2)内存在零点x0,填表为区间中点m f(m)的符号区间长度(1,2) 1.5 + 1(1,1.5) 1.25 +0.5(1,1.25) 1.125 -0.25(1,125,1.25) 1.187 5 +0.125(1.125,1.187 5) 0.062 5因为|1.187 5-1.125|=0.062 5<0.1,所以原方程的近似解可取为1.187 5.9.(13分)求方程x2-2x-1=0的一个大于零的近似解(精确度为0.1).解:设f(x)=x2-2x-1,先画出函数图象的草图,如图所示.因为f(2)=-1<0,f(3)=2>0,所以在区间(2,3)上,方程x2-2x-1=0有一解,记为x1,取2和3的中间数2.5,因为f(2.5)=0.25>0,所以x1∈(2,2.5),再取2与2.5的中间数2.25,因为f(2.25)=-0.437 5<0,所以x1∈(2.25,2.5),如此继续下去,得f(2.375)<0,f(2.437 5)>0,则x1∈(2.375,2.4375),因为|2.437 5-2.375|=0.062 5<0.1.所以此方程大于零的近似解为2.437 5.。
2022-2023高一上期末复习重难点函数的应用(二)(解析版)
2022-2023高一上期末复习重难点函数的应用(二)一、单选题1.关于用二分法求方程的近似解,下列说法正确的是( )A .用二分法求方程的近似解一定可以得到()0f x =在[],a b 内的所有根B .用二分法求方程的近似解有可能得到()0f x =在[],a b 内的重根C .用二分法求方程的近似解有可能得出()0f x =在[],a b 内没有根D .用二分法求方程的近似解有可能得到()0f x =在[],a b 内的精确解 【答案】D【分析】根据二分法求近似解的定义,可得答案.【解析】利用二分法求方程()0f x =在[],a b 内的近似解,即在区间[],a b 内肯定有根存在,而对于重根无法求解出来,且所得的近似解可能是[],a b 内的精确解. 故选:D.2.函数f (x )=x 2﹣4x +4的零点是( ) A .(0,2) B .(2,0)C .2D .4【答案】C【分析】由函数零点的定义列出方程x 2﹣4x +4=0,求出方程的根是函数的零点. 【解析】由f (x )=x 2﹣4x +4=0得,x =2, 所以函数f (x )=x 2﹣4x +4的零点是2, 故选:C .3.若函数()f x 在区间[]1,1-上的图像是连续不断的曲线,且()f x 在()1,1-内有一个零点,则()()11f f -⋅的值( ) A .大于零 B .小于零C .等于零D .不能确定【答案】D【分析】由题意,分类讨论()()1,1f f -不同情况下的正负,从而得出不同的结论.【解析】因为()f x 在区间[]1,1-上的图像是连续不断的曲线,且()f x 在()1,1-内有一个零点,若()()10,10-<>f f (或()()10,10-><f f ),此时()()110f f -⋅<;若()10f -=(或()10f =),此时()()110-⋅=f f ;若()()10,10->>f f (或()()10,10-<<f f ),此时()()110f f -⋅>,所以()()11f f -⋅的值不能确定. 故选:D4.函数()()ln 1f x x x=+-的零点所在的大致区间是( )A .()0,1B .()1,2C .()2,3D .()3,4【答案】B【分析】计算区间端点处函数值,根据零点存在定理确定.【解析】()()21ln 11ln 2201f =+-=-<,()()2ln 21ln 31022f =+-=->由()21201f x x x'=+>+,则()f x 在()0,∞+上单调递增. 所以函数()()2ln 1f x x x=+-的零点所在的大致区间是()1,2故选:B5.函数()22xf x x =+的零点所在的区间为( )A .0,1B .1,0C .1,2D .()2,3【答案】B【分析】根据函数解析式,判断()1f -、()0f 等函数值的符号,由零点存在性定理即可确定零点所在的区间.【解析】()3102f -=-<,()010f =>,且函数为增函数,由函数零点存在定理,()f x 的零点所在的区间是1,0.故选:B.6.已知函数221,0()2,0x x f x x x x ⎧->=⎨--≤⎩,若函数()()g x f x m =-有3个零点,则实数m 的取值范围( )A .()1,0-B .[]1,0-C .(0,1)D .[]0,1【答案】C【分析】作出f (x )图像,判断y =m 与y =f (x )图像有3个交点时m 的范围即可.【解析】∵()()g x f x m =-有3个零点, ∴()()0g x f x m =-=有三个实根,即直线y m =与()y f x =的图像有三个交点. 作出()y f x =图像,由图可知,实数m 的取值范围是(0,1). 故选:C.R (2,2)-内的零点个数至少为( )A .1B .2C .3D .4【答案】C【分析】根据奇函数()f x 的定义域为R 可得(0)0f =,由(2)(1)0f f -=≠和奇函数的性质可得(2)(1)0f f <、(2)(1)0f f --<,利用零点的存在性定理即可得出结果.【解析】奇函数()f x 的定义域为R ,其图象为一条连续不断的曲线, 得(0)0f =,由(2)(1)0f f -=≠得(2)(1)0f f -=≠, 所以(2)(1)0f f <,故函数在(12),之间至少存在一个零点,由奇函数的性质可知函数在(21)--,之间至少存在一个零点, 所以函数在(22)-,之间至少存在3个零点. 故选:C8.已知定义在R 上的函数()f x 的图像连续不断,若存在常数R λ∈,使得()()0f x f x λλ++=对于任意的实数x 恒成立,则称()f x 是“回旋函数”.若函数()f x 是“回旋函数”,且2λ=,则()f x 在[]0,2022上( ) A .至多有2022个零点 B .至多有1011个零点 C .至少有2022个零点 D .至少有1011个零点 【答案】D【分析】根据已知可得:()()2200f f +=,当()00f ≠时利用零点存在定理,可以判定区间()0,2内至少有一个零点,进而判定()2,4,()4,6,…,()2020,2022上均至少有一个零点,得到()f x 在[]0,2022上至少有1011个零点.可以构造“回旋函数”,使之恰好有1011个零点;当()00f =时,可以得到()()()0220220f f f ==⋅⋅⋅==,此时()f x 在[]0,2022上至少有1012个零点.从而排除BC,判定D 正确;举特例函数()0f x =,或者构造函数()(1),022(2),222()x x x f x f x k x k k Z -≤<⎧=⎨--≤<+∈⎩,可以排除A .【解析】因为()()220f x f x ++=对任意的实数x 恒成立,令0x =,得()()2200f f +=.若()00f ≠,则()2f 与()0f 异号,即()()200f f ⋅<,由零点存在定理得()f x 在()0,2上至少存在一个零点.由于()()220f k f k ++=,得到()20()f k k Z ≠∈,进而()()()220f k f k f k +=-<⎡⎤⎣⎦,所以()f x 在区间()2,4,()4,6,…,()2020,2022内均至少有一个零点,所以()f x 在[]0,2022上至少有1011个零点.构造函数()1,022(2),222()x x f x f x k x k k Z -≤<⎧=⎨--≤<+∈⎩,满足()()220f x f x ++=对任意的实数x 恒成立,是“回旋函数”,在[]0,2022上恰好有1011个零点.若()00f =,则()()()()()024620220f f f f f ====⋅⋅⋅==,此时()f x 在[]0,2022上至少有1012个零点. 综上所述,()f x 在[]0,2022上至少有1011个零点,且可能有1011个零点,故C 错误,D 正确; 可能零点各数个数至少1012,大于1011,故B 错误;对于A,[解法一]取函数()0f x =,满足()()220f x f x ++=,但()f x 在[]0,2022上处处是零点,故A 错误.[解法二] 构造函数()(1),022(2),222()x x x f x f x k x k k Z -≤<⎧=⎨--≤<+∈⎩,满足()()220f x f x ++=对任意的实数x 恒成立,是“回旋函数”,在[]0,2022上恰好有2023个零点,故A 错误. 故选:D .9.对于函数()f x ,若()00f x x =,则称0x 为函数()f x 的“不动点”;若()()00f f x x =,则称0x 为函数()f x 的“稳定点”.如果函数()()2R f x x a a =+∈的“稳定点”恰是它的“不动点”,那么实数a 的取值范围是( )A .14⎛⎤-∞ ⎥⎝⎦,B .34∞⎛⎫-+ ⎪⎝⎭, C .3144⎛⎤- ⎥⎝⎦,D .3144⎡⎤-⎢⎥⎣⎦,【答案】D【分析】函数的“不动点”一定是“稳定点”,而函数的“稳定点”恰是它的“不动点”,即不存在非“不动点”的“稳定点”,所以()f x x =有解,但方程组()()()121221f x x x x f x x ⎧=⎪≠⎨=⎪⎩无解,然后利用判别式即得. 【解析】因为函数的“不动点”一定是“稳定点”,而函数的“稳定点”恰是它的“不动点”,即不存在非“不动点”的“稳定点”,所以()f x x =有解,但方程组()()()121221f x x x x f x x ⎧=⎪≠⎨=⎪⎩无解, 由()f x x =,得20x x a -+=有解,所以140a -≥,解得14a ≤. 由()()1221f x x f x x ⎧=⎪⎨=⎪⎩,,得212221x a x x a x ⎧+=⎨+=⎩,,两式相减,得()()121221x x x x x x -+=-,因为12x x ≠,所以211x x =--,消去2x ,得21110x x a +++=,因为方程21110x x a +++=无解或仅有两个相等的实根,所以()1410a -+≤,解得34a ≥-,故a 的取值范围是3144⎡⎤-⎢⎥⎣⎦,.故选:D.10.已知()313log f x x x =-时,当0a b c <<<时,满足()()()0f a f b f c ⋅⋅<,则关于以下两个结论正确的判断是( )①函数()y f x =只有一个零点;②函数()y f x =的零点必定在区间(a ,b )内. A .①②均对 B .①对,②错 C .①错,②对 D .①②均错 【答案】B【分析】由题可得函数在()0,∞+上为增函数,且()10f >,103f ⎛⎫< ⎪⎝⎭,再结合零点存在定理及符号法则即可判断.【解析】因为13y x =和13log y x=-均为区间()0,∞+上的严格增函数,因此函数1313log y x x =-也是区间()0,∞+上的严格增函数,且()10f >,103f ⎛⎫< ⎪⎝⎭.所以()y f x =只有一个零点,①对.因为()()()0f a f b f c ⋅⋅<, 所以()()(),,f a f b f c 的符号为两正一负或者全负,又因为0a b c <<<, 所以必有()0f a <,()0f b <,()0f c <或者()0f a <,()0f b >,()0f c >.当()0f a <,()0f b <,()0f c <时,零点在区间(),c +∞内;当()0f a <,()0f b >,()0f c >时,零点在区间(a ,b )内,所以②错. 故选:B .11.函数()21,25,2xx f x x x ⎧-≤⎪=⎨-+>⎪⎩,若函数()()()g x f x t t R =-∈有3个不同的零点a ,b ,c ,则222a b c ++的取值范围是( ) A .[)16,32 B .[)16,34C .(]18,32D .()18,34【答案】D【分析】作出函数()y f x =的图象和直线y t =,它们的交点的横坐标即为()g x 的零点,利用图象得出,,a b c 的性质、范围,从而可求得结论.【解析】作出函数()y f x =的图象和直线y t =,它们的交点的横坐标即为()g x 的零点,如图,则1221a b -=-,45c <<,222a b +=,2(16,32)c∈,所以1822234a b c <++<. 故选:D .【点睛】关键点点睛:本题考查函数零点问题,解题关键是把函数零点转化为函数图象与直线的交点的横坐标,从而可通过作出函数图象与直线,得出零点的性质与范围.12.已知函数()2log ,01,0x x f x x x ⎧>⎪=⎨+≤⎪⎩若()()()()1234f x f x f x f x ===(1234,,,x x x x 互不相等),则1234x x x x +++的取值范围是( )A .1,02⎛⎫- ⎪⎝⎭B .1,02⎡⎤-⎢⎥⎣⎦C .10,2⎡⎫⎪⎢⎣⎭D .10,2⎛⎤⎥⎝⎦【答案】D【分析】先画函数图象,再进行数形结合得到122x x +=-和2324log log x x =,结合对勾函数单调性解得441x x +的范围,即得结果. 【解析】作出函数()y f x =的图象,如图所示:设1234x x x x <<<,则()12212x x +=⨯-=-.因为2324log log x x =,所以2324log log x x -=, 所以()2324234log log log 0x x x x +==,所以341x x =,即341x x=.当2log 1x =时,解得12x =或2x =,所以412x <≤.设34441t x x x x =+=+, 因为函数1y x x =+在()1,+∞上单调递增,所以441111212x x +<+≤+,即34522x x <+≤, 所以1234102x x x x <+++≤. 故选:D.二、多选题13.用二分法求函数()()ln 11f x x x =++-在区间[]0,1上的零点,要求精确到0.01时,所需二分区间的次数可以为( ) A .5 B .6C .7D .8【答案】CD【分析】由原来区间的长度等于1 ,每经过一次操作,区间长度变为原来的一半,经过n 此操作后,区间长度变为12n,由10.012n ≤即可求解. 【解析】由题意,知区间[]0,1的长度等于1,每经过一次操作,区间长度变为原来的一半, 经过n 此操作后,区间长度变为12n, 用二分法求函数()()ln 11f x x x =++-在区间()0,1上近似解,要求精确到0.01, ∴10.012n≤,解得7n ≥, 故选:CD .A .已知方程8x e x =-的解在()(),1k k k Z +∈内,则1k =B .函数()223f x x x =--的零点是()1,0-,()3,0C .函数3x y =,3log y x =的图像关于y x =对称D .用二分法求方程3380x x +-=在()1,2x ∈内的近似解的过程中得到()10f <,()1.50f >,()1.250f <,则方程的根落在区间()1.25,1.5上 【答案】ACD【解析】由函数零点的概念判断选项B ,由函数零点存在性定理判断选项AD ,由函数3x y =与函数3log y x =互为反函数判断选项C.【解析】对于选项A ,令()=8xf x e x +-,因为()f x 在R 上是增函数,且()()2170,260f e f e =-<=->,所以方程8x e x =-的解在()1,2,所以1k =,故A 正确;对于选项B ,令2230x x --=得=1x -或3x =,故函数()f x 的零点为1-和3,故B 错误; 对于选项C ,函数3x y =与函数3log y x =互为反函数,所以它们的图像关于y x =对称,故C 正确; 对于选项D ,由于()()()()1.2550,1 1.250f f f f ⋅<⋅>,所以由零点存在性定理可得方程的根落在区间()1.25,1.5上,故D 正确.故选:ACD15.(多选)已知函数f x 在区间[],a b 上的图象是一条连续不断的曲线,若0f a f b ⋅<,则在区间[],a b 上( )A .方程()0f x =没有实数根B .方程()0f x =至多有一个实数根C .若函数()f x 单调,则()0f x =必有唯一的实数根D .若函数()f x 不单调,则()0f x =至少有一个实数根【答案】CD【分析】根据零点存在定理可得答案.【解析】由函数零点存在定理,知函数()f x 在区间[],a b 上至少有一个零点, 所以若函数()f x 不单调,则()0f x =至少有一个实数根,若函数()f x 单调,则函数()f x 有唯一的零点,即()0f x =必有唯一的实数根, 故选:CD .16.已知函数()223,02ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩,令()()h x f x k =-,则下列说法正确的是( )A .函数()f x 的单调递增区间为()0,+∞B .当(]43k ,∈--时,()h x 有3个零点C .当2k =-时,()h x 的所有零点之和为-1D .当(),4k ∈-∞-时,()h x 有1个零点 【答案】BD【分析】画出()f x 的图象,然后逐一判断即可. 【解析】()f x 的图象如下:由图象可知,()f x 的增区间为()()1,0,0,-+∞,故A 错误当(]43k ,∈--时,()y f x =与y k =有3个交点,即()h x 有3个零点,故B 正确; 当2k =-时,由2232x x +-=-可得12x =-±,由2ln 2x -+=-可得1x = 所以()h x 的所有零点之和为1212--+=-,故C 错误;当(),4k ∈-∞-时,()y f x =与y k =有1个交点,即()h x 有1个零点,故D 正确; 故选:BD三、填空题17.函数223,(0)y ax ax a =++≠的一个零点为1,则其另一个零点为______. 【答案】3-【分析】由函数零点解出a 的值后再计算另一个零点,或利用韦达定理计算即可. 【解析】解法一:因为函数223,(0)y ax ax a =++≠的一个零点为1, 将(1,0)代入得230a a ++=,解得1a =-. 所以223y x x =--+.令2x 2x 30--+=,解得11x =,23x =-, 所以函数的另一个零点为3-.解法二:由函数223,(0)y ax ax a =++≠的一个零点为1,可得方程2230,(0)ax ax a ++=≠的一个根为1,根据根与系数的关系可得1222ax x a+=-=-,所以另一个根为3-.故函数的另一个零点为3-. 故答案为:3-.R ③当12,(0,)x x ∈+∞且12x x ≠,1212()()0f x f x x x ->-;④()f x 恰有两个零点,请写出函数()f x 的一个解析式________【答案】2()1f x x =- (答案不唯一)【分析】由题意可得函数()f x 是偶函数,且在(0,)+∞上为增函数,函数图象与x 轴只有2个交点,由此可得函数解析式【解析】因为x ∀∈R ,()()f x f x =-,所以()f x 是偶函数,因为当12,(0,)x x ∈+∞且12x x ≠,1212()()0f x f x x x ->-, 所以()f x 在(0,)+∞上为增函数, 因为()f x 恰有两个零点,所以()f x 图象与x 轴只有2个交点,所以函数()f x 的一个解析式可以为2()1f x x =-, 故答案为:2()1f x x =- (答案不唯一) 19.已知()f x 是定义域为()(),00,∞-+∞的奇函数,函数()()g x f x x=+,()11f =-,当210x x >>时,()()12111222x x f x x x x f x x ->-恒成立.现有下列四个结论:①()g x 在()0,∞+上单调递增;②()g x 的图象与x 轴有2个交点;③()()1326f f +-<;④不等式()0g x >的解集为()()1,00,1-.___________【答案】②③【分析】根据给定条件,探讨函数()g x 的性质,再逐一分析各个命题即可判断作答. 【解析】因当210x x >>时,()()12111222x x f x x x x f x x ->-恒成立,则()()122111f x f x x x ->-恒成立, 即()()121211f x f x x x +>+恒成立,因此()()12g x g x >恒成立,则()g x 在()0,∞+上单调递减, 而()f x 是()(),00,∞-+∞上的奇函数,1y x=是()(),00,∞-+∞上的奇函数,则()g x 是()(),00,∞-+∞上的奇函数,因此函数()g x 是()(),00,∞-+∞上的奇函数,且在()0,∞+上单调递减,命题①不正确;因()11f =-,即()()11101g f =+=,()10g -=,显然()g x 在(),0∞-上单调递减,于是得()g x 的图象与x 轴有2个交点,命题②正确;显然()()32g g <,即()()113232f f +<+,则()()1326f f -<,因此()()1326f f +-<,命题③正确;因奇函数()g x 在(),0∞-,()0,∞+上单调递减,且()1(1)0g g -==,则当()0,1x ∈时,()0g x >,当(),1x ∈-∞-时,()0g x >,不等式()0g x >的解集为()(),10,1-∞-⋃,命题④不正确. 故答案为:②③20.中国古代近似计算方法源远流长,早在八世纪,我国著名数学家、天文学家张隧(法号:一行)为编制《大衍历》发明了一种近似计算的方法——二次插值算法(又称一行算法,牛顿也创造了此算法,但是比我国张隧晚了上千年):对于函数()y f x =在()123123,,x x x x x x <<处的函数值分别为()11y f x =,()22y f x =,()33y f x =,则在区间[]13,x x 上()f x 可以用二次函数()()()()111212f x y k x x k x x x x =+-+--来近似代替,其中21121y y k x x -=-,3232y y k x x -=-,1231k k k x x -=-.若令10x =,22x π=,3x π=,请依据上述算法,估算2sin 5π的近似值是_______. 【答案】2425##0.96【分析】根据题意先求出123,,y y y ,进而求出12,,k k k ,然后求得()f x ,最后求得2sin 5π的近似值. 【解析】函数()sin y f x x ==在10x =,22x π=,3x π=处的函数值分别为()100y f ==,212y f π⎛⎫== ⎪⎝⎭,()30y f π==,故211212y y k x x π-==-,32322y y k x x π-==--,122314k k k x x π-==--, 故()22224442f x x x x x x πππππ⎛⎫=--=-+ ⎪⎝⎭, 即2244sin x x x ππ≈-+,所以2224242sin 555πππππ⎛⎫≈-⨯+⨯= ⎪⎝⎭2425. 故答案为:2425.四、解答题21.已知函数()()()ln 3ln 3f x x x =++-.(1)证明:函数()f x 是偶函数;(2)求函数()f x 的零点. 【答案】(1)证明见解析; (2)22-和22【分析】(1)先证明函数()f x 的定义域关于原点对称,再证明()()f x f x -=即可;(2)利用对数运算对函数()f x 的解析式进行化简,求解方程()0f x =即可得到函数()f x 的零点. (1)证明:由3030x x +>⎧⎨->⎩,解得33x -<<,∴函数的定义域为{}33x x -<<,且定义域关于原点对称, 又∵()()()()ln 3ln 3f x x x f x -=-++=,∴()f x 是偶函数. (2)解:()()()()2ln 3ln 3ln 9f x x x x =-++=-,令()()2ln 90f x x =-=,∴291x -=,解得22x =±. ∴函数()f x 的零点为22-和22.22.已知函数3f x a =-(0a >且1a ≠),若函数y f x =的图象过点(2,24).(1)求a 的值及函数()y f x =的零点;(2)求()6f x ≥的解集. 【答案】(1)3,零点是0(2)[1,+∞)【分析】(1)代值求出函数的表达式,再根据零点的定义求解即可; (2)解不等式即可求出解集.【解析】(1)因为函数f (x )=ax +1﹣3(a >0且a ≠1),图象过点(2,24), 所以24=a 2+1﹣3,a 3=27,a =3.函数f (x )=3x +1﹣3=0,得x +1=1,x =0. 所以函数的零点是0.(2)由f (x )≥6得3x +1﹣3≥6,即3x +1≥32, 所以x ≥1.则f (x )≥6的解集为[1,+∞).23.由历年市场行情知,从11月1日起的30天内,某商品每件的销售价格P (元)与时间t (天)的函数关系是()()20025,,452530,,t t t N P t t N ⎧+<<∈⎪=⎨≤≤∈⎪⎩日销售量Q (件)与时间t (天)的函数关系是()40030,Q t t t =-+<≤∈N . (1)设该商品的日销售额为y 元,请写出y 与t 的函数关系式(商品的日销售额=该商品每件的销售价格×日销售量);(2)求该商品的日销售额的最大值,并指出哪一天的销售额最大.【答案】(1)()()220800025,,1800452530,.t t t t N y t t t N ⎧-++<<∈⎪=⎨-≤≤∈⎪⎩(2)日销售额的最大值为900元,且11月10日销售额最大.【分析】(1)根据题目条件中给出的公式,直接计算,可得答案; (2)根据二次函数的性质,结合取值范围,可得答案. (1)由题意知()()()()()2040025,,45402530,,t t t t N y P Q t t t N ⎧+-<<∈⎪=⋅=⎨⨯-≤≤∈⎪⎩即()()220800025,,1800452530,.t t t t N y t t t N ⎧-++<<∈⎪=⎨-≤≤∈⎪⎩(2)当025t <<,t ∈N 时,()222080010900y t t t =-++=--+, 所以当10t =时,max 900y =;当2530t ≤≤,t ∈N 时,180045y t =-,所以当25t =时,max 675y =. 因为900675>,所以日销售额的最大值为900元,且11月10日销售额最大.24.已知函数f x 是定义在R 上的偶函数,且当0x ≤时,f x x mx =+,函数f x 在轴左侧的图象如图所示.(1)求函数()f x 的解析式;(2)若关于x 的方程()0f x a -=有4个不相等的实数根,求实数a 的取值范围.【答案】(1)()222,02,0x x x f x x x x ⎧+≤=⎨->⎩ (2)()1,0-【分析】(1)利用()20f -=可求0x ≤时()f x 的解析式,当0x >时,利用奇偶性()()=f x f x -可求得0x >时的()f x 的解析式,由此可得结果;(2)作出()f x 图象,将问题转化为()f x 与y a =有4个交点,数形结合可得结果. (1)由图象知:()20f -=,即420m -=,解得:2m =,∴当0x ≤时,()22f x x x =+;当0x >时,0x -<,()()2222f x x x x x ∴-=--=-,()f x 为R 上的偶函数,∴当0x >时,()()22f x f x x x =-=-;综上所述:()222,02,0x x x f x x x x ⎧+≤=⎨->⎩;(2)()f x 为偶函数,f x 图象关于y 轴对称,可得()f x 图象如下图所示,()0f x a -=有4个不相等的实数根,等价于()f x 与y a =有4个不同的交点, 由图象可知:10a -<<,即实数a 的取值范围为()1,0-. 25.已知函数()()20f x ax bx c a =++>,且()12a f =-.(1)求证:函数()f x 有两个不同的零点;(2)设1x ,2x 是函数()f x 的两个不同的零点,求12x x -的取值范围.【答案】(1)证明见解析 (2))2,⎡+∞⎣【分析】(1)根据()12a f =-可得32ac b =--,再代入证明判别式大于0即可;(2)根据韦达定理化简可得21222b x x a ⎛⎫-=++ ⎪⎝⎭,进而求得范围即可.(1)∵()12a f abc =++=-,∴32ac b =--.∴()232a f x ax bx b =+--.对于方程()0f x =,()222223464222a b a b b a ab a b a ⎛⎫∆=---=++=++ ⎪⎝⎭,∴0∆>恒成立.又0a >,∴函数()f x 有两个不同的零点. (2)由1x ,2x 是函数()f x 的两个不同的零点,得1x ,2x 是方程()0f x =的两个根.∴12b x x a+=-,1232b x x a =--.∴()2221212123442222b b b x x x x x x a a a ⎛⎫⎛⎫⎛⎫-=+-=----=++≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴12x x -的取值范围是)2,⎡+∞⎣.26.已知函数33f x a =+⋅为偶函数.(1)求实数a 的值;(2)设函数()()33x g x f x x -=+--的零点为0x ,求证:()0529210f x <<.【答案】(1)1a = (2)证明见解析【分析】(1)由()()f x f x -=可得答案;(2)求出()g x ,利用函数()g x 在R 上单调性得3030log 2log 2.51x <<<<. 再利用单调性定义判断出()f x 在()0,+∞上单调递增,利用单调性可得答案. (1)由()()f x f x -=,得3333x x x x a a --+⋅=+⋅,()223131-=⋅-x xa ,所以1a =,此时()33-=+x x f x ,x R ∈时,()()33--=+=x xf x f x ,()f x 为偶函数,所以1a =; (2) 由(1)得()33x x f x -=+,所以()333333xx x x g x x x --=++--=+-,因为函数()g x 在R 上单调递增,且()3log 2g 32log 230=+-<,()3log 2.5g 332.5log 2.53log 30.50=+->-=,所以3030log 2log 2.51x <<<<,又对任意120x x <<,()()1211221212123333333333x x x x x x x x x x f x f x ----=+--=--⋅()12121331033x x x x⎛⎫=--< ⎪⋅⎝⎭,所以()()12f x f x <,即()f x 在()0,+∞上单调递增, 所以()()()303log 2log 2.5f f x f <<, 即()0529210f x <<. 27.给出下面两个条件:①函数()的图象与直线只有一个交点;②函数()的两个零点的差的绝对值为2.在这两个条件中选择一个,将下面问题补充完整,使函数()f x 的解析式确定.已知二次函数()2f x ax bx c =++满足()()121f x f x x +-=-,且______.(1)求()f x 的解析式;(2)若对任意1,279x ⎡⎤∈⎢⎥⎣⎦,()32log 0f x m +≤恒成立,求实数m 的取值范围;(3)若函数()()()213232x xg x t f =--⨯-有且仅有一个零点,求实数t 的取值范围.【答案】(1)选①()22f x x x =-,选②()22f x x x =-(2)(],16-∞-(3)311,22⎧⎫+⎪⎪⎛⎫-+∞⎨⎬ ⎪⎝⎭⎪⎪⎩⎭【分析】(1)利用已知条件求出a 、b 的值,可得出()22f x x x c =-+.选①,由题意可得出()11f =-,可得出c 的值,即可得出函数()f x 的解析式; 选②,由根与系数的关系求出c 的值,即可得出函数()f x 的解析式;(2)3log h x =,[]2,3h ∈-,由参变量分离法可得出()min 2m f h ≤-⎡⎤⎣⎦,结合二次函数的基本性质可求得实数m 的取值范围;(3)令30x n =>,所以关于n 的方程()()21220t f n n ---=有且仅有一个正实根,对实数t 的取值进行分类讨论,结合二次函数的零点分布可得出关于实数n 的不等式组,综合可解得实数t 的取值范围. (1)解:因为二次函数()2f x ax bx c =++满足()()121f x f x x +-=-,()()()()22111221f x f x a x b x c ax bx c ax a b x +-=++++---=++=-,所以221a a b =⎧⎨+=-⎩,解得12a b =⎧⎨=-⎩,所以()22f x x x c =-+.选①,因为函数()f x 的图象与直线1y =-只有一个交点,所以()1121f c =-+=-,解得0c ,所以()f x 的解析式为()22f x x x =-.选②,设1x 、2x 是函数()f x 的两个零点,则122x x -=,且440c ∆=->,可得1c <, 由根与系数的关系可知122x x +=,12x x c =, 所以()21212124442x x x x x x c -=+-=-=,解得0c ,所以()f x 的解析式为()22f x x x =-.(2)解:由()32log 0f x m +≤,得()32log m f x ≤-,当1,279x ⎡⎤∈⎢⎥⎣⎦时,[]3log 2,3x ∈-,令3log h x =,则[]2,3h ∈-,所以对任意1,279x ⎡⎤∈⎢⎥⎣⎦,()32log 0f x m +≤恒成立,等价于()2m f h ≤-在[]2,3h ∈-上恒成立,所以()()min 22216m f h f ≤-=--=-⎡⎤⎣⎦,所以实数m 的取值范围为(],16-∞-. (3)解:因为函数()()()213232x xg x t f =--⨯-有且仅有一个零点,令30x n =>,所以关于n 的方程()()21220t f n n ---=有且仅有一个正实根,因为()22f x x x =-,所以()221420t n tn ---=有且仅有一个正实根,当210t -=,即12t =时,方程可化为220n --=,解得1n =-,不符合题意; 当210t ->,即12t >时,函数()22142y t x tx =---的图象是开口向上的抛物线,且恒过点()0,2-,所以方程()221420t n tn ---=恒有一个正实根;当210t -<,即12t时,要使得()221420t n tn ---=有且仅有一个正实根, ()21682102021t t tt ⎧=+-=⎪⎨>⎪-⎩,解得312t +=-. 综上,实数t 的取值范围为311,22⎧⎫+⎪⎪⎛⎫-+∞⎨⎬ ⎪⎝⎭⎪⎪⎩⎭.28.已知函数10f x ax bx a =++≠的图象关于直线x =1对称,且函数2y f x x =+为偶函数,函数()12x g x =-.(1)求函数()f x 的表达式;(2)求证:方程()()0f x g x +=在区间[]0,1上有唯一实数根; (3)若存在实数m ,使得()()f m g n =,求实数n 的取值范围. 【答案】(1)()()21f x x =- (2)证明见解析 (3)(],0-∞【分析】(1)根据二次函数的对称轴以及奇偶性即可求解,a b ,进而可求解析式, (2)根据函数的单调性以及零点存在性定理即可判断, (3)将条件转化为函数值域,即可求解. (1)∵()21f x ax bx =++的图象关于直线x =1对称,∴122bb a a-=⇒=-. 又()()2221y f x x ax b x =+=+++为偶函数,∴=2b -,=1a .∴()()22211f x x x x =-+=-. (2)设()()()()2112x h x f x g x x =+=-+-,∵()010h =>,()110h =-<,∴()()0?10h h <. 又()()21f x x =-,()12xg x =-在区间[]0,1上均单调递减,∴()h x 在区间[]0,1上单调递减,∴()h x 在区间[]0,1上存在唯一零点. ∴方程()()0f x g x +=在区间[]0,1上有唯一实数根. (3)由题可知()()210f x x =-≥,()121xg x =-<,若存在实数m ,使得()()f m g n =,则()[)0,1g n ∈, 即120n -≥,解得0n ≤.∴n 的取值范围是(],0-∞. 29.若函数()y f x =同时满足:①函数在整个定义域是严格增函数或严格减函数;②存在区间[],a b ,使得函数在区间[],a b 上的值域为22,a b ⎡⎤⎣⎦,则称函数()f x 是该定义域上的“闭函数”.(1)判断()2f x x =-是不是R 上的“闭函数”?若是,求出区间[],a b ;若不是,说明理由; (2)若()()211f x x t x =-≥是“闭函数”,求实数t 的取值范围;(3)若()()2222f x x kx k =-+≤在1,33⎡⎤⎢⎥⎣⎦上的最小值()g k 是“闭函数”,求a 、b 满足的条件.【答案】(1)不是,理由见解析;(2)3,14⎛⎤ ⎥⎝⎦;(3)222a b +=且11733a b ≤<≤. 【分析】(1)利用“闭函数”的定义判断函数()2f x x =-是否满足①②,由此可得出结论;(2)分析可知函数()21h m m m t =-+-在[)0,m ∈+∞有两个零点,利用二次函数的零点分布可得出关于实数t 的不等式组,由此可解得实数t 的取值范围;(3)利用二次函数的基本性质求得()21921,93312,23kk g k k k ⎧-<⎪⎪=⎨⎪-≤≤⎪⎩,然后分13a b <≤、123a b <≤≤、123a b ≤<≤三种情况讨论,分析函数()g k 的单调性,结合“闭函数”的定义可得出关于a 、b 的等式,由此可得出a 、b 满足的条件.【解析】(1)函数()2f x x =-为R 上的增函数,若函数()2f x x =-为“闭函数”,则存在a 、()b a b <,使得函数()f x 在[],a b 上的值域为22,a b ⎡⎤⎣⎦,则()()2222f a a a f b b b⎧=-=⎪⎨=-=⎪⎩,则关于x 的方程220x x -+=至少有两个不等的实根, 因为180∆=-<,故方程220x x -+=无实根,因此,函数()f x 不是“闭函数”; (2)因为函数()21f x x t =-+为[)1,+∞上的增函数, 若函数()21f x x t =-+为[)1,+∞上的“闭函数”,则存在a 、[)()1,b a b ∈+∞<,使得函数()f x 在[],a b 上的值域为22,a b ⎡⎤⎣⎦,则()()222211f a a t a f b b t b⎧=-+=⎪⎨=-+=⎪⎩,所以,关于x 的方程221x t x -+=在[)1,+∞上有两个不等的实根,令210m x =-≥,设()21h m m m t =-+-,则函数()h m 在[)0,m ∈+∞有两个零点,所以,()()1410010t h t ⎧∆=-->⎪⎨=-≥⎪⎩,解得314t <≤,因此,实数t 的取值范围是3,14⎛⎤⎥⎝⎦;(3)因为()()222f x x k k =-+-.当13k <时,函数()f x 在1,33⎡⎤⎢⎥⎣⎦上单调递增,则()1192393k g k f ⎛⎫==- ⎪⎝⎭;当123k ≤≤时,()()22g k f k k ==-.综上所述,()21921,93312,23kk g k k k ⎧-<⎪⎪=⎨⎪-≤≤⎪⎩. 所以,函数()g k 在1,3⎛⎫-∞ ⎪⎝⎭上为减函数,在1,23⎡⎤⎢⎥⎣⎦上也为减函数.①当13a b <≤时,则()()221929319293a g a b b g b a⎧=-=⎪⎪⎨⎪=-=⎪⎩,上述两式作差得()()()23a b a b a b -=-+,因为a b <,故23a b +=,因为13a b <<,则23a b +<,矛盾;②当123a b <≤≤时,则有222192932ab b a⎧-=⎪⎨⎪-=⎩,消去2b 可得29610a a -+=,解得13a =,不合乎题意;③当123a b ≤<≤时,则()()222222g a a b g b b a⎧=-=⎪⎨=-=⎪⎩,可得222a b +=.因此,a 、b 满足的条件为222a b +=且11733a b ≤<≤. 【点睛】方法点睛:“动轴定区间”型二次函数最值的方法: (1)根据对称轴与区间的位置关系进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析;(3)将分类讨论的结果整合得到最终结果.。
二分法求方程近似解
(2)若f(a)f(b) < 0 ,则令b=0(此零点 x0 (a,c)); (3)若f(c)f(b) < 0,则令a=0(此时零点x0 (c,b)).
4.判断是否达到精确度 ε :即若a - b < ε ,则得
到零点 近似值a(或b);否则重复步骤2-4.
取x=-0.875,计算f(-0.875)≈0.39>0 取x=-0.9375,计算f(-0.9375)≈-0.28<0
此时 | (0.9375) (0.875) | 0.0625 0.1
∴ 原方程的近似解取为-0.9375
课堂小结
1.二分法 对于在区间[a,b]上连续不断、且f(a)f(b)<0
对于区间[a,b]上连续不断且f(a) ·f(b)<0的函数 y=f(x),通过不断地把函数f(x)的零点所在的区间一 分为二,使区间的两个端点逐步逼近零点,进而得 到零点近似值的方法叫做二分法(bisection).
二分法的实质就是将函数零点所在的区间 不断地一分为二,使新得到的区间不断变小, 两个端点逐步逼近零点.
同理可得
x0 (2.5, 2.625), x0 (2.5625, 2.625) x0 (2.5625, 2.59375), x0 (2.578125, 2.59375) x0 (2.5859375, 2.59375).由于 2.5859375 - 2.59375 = 0.0078125 < 0.01.
从学校教学楼到学校食堂的电缆有5个接点. 现在某处发生故障,需及时修理.为了尽快把故 障缩小在两个接点之间,一般至少需要检查多 少__2_次.
1
2
3
4
5
用二分法求方程的近似解(高中数学)
[解] 因为 f(-1)>0,f(-2)<0,且函数 f(x)=x3-3x2-9x+1 的图象 是连续的曲线,根据函数零点的存在性定理可知,它在区间[-2,-1]内 有零点,用二分法逐步计算,列表如下:
22
端点(中点)
________.
11
合作探究 提素养
12
二分法的概念 【例 1】 已知函数 f(x)的图象如图所示,其中零点的个数与可以用 二分法求解的个数分别为( )
A.4,4
B.3,4
C.5,4
D.4,3
D [图象与 x 轴有 4 个交点,所以零点的个数为 4;左右函数值异号
的零点有 3 个,所以用二分法求解的个数为 3,故选 D.]
内的唯一零点时,精确度为 0.001, 长度|b-a|小于精确度ε时,便可结束
则结束计算的条件是( )
计算.]
A.|a-b|<0.1
B.|a-b|<0.001
C.|a-b|>0.001
D.|a-b|=0.001
3.已知函数 y =f(x)的图象如图所 示,则不能利用二分 法求解的零点是 ________.
由于|1.75-1.687 5|=0.062 5<0.1,所以函数的正数
零点的近似值可取为1.687 5.
26
利用二分法求方程近似解的过程图示
27
1.二分法就是通过不断地将所选区间一分为二,使区间的两个端点 逐步逼近零点,直至找到零点附近足够小的区间,根据所要求的精确度, 用此区间的某个数值近似地表示真正的零点.
2.并非所有函数都可以用二分法求其零点,只有满足: (1)在区间[a,b]上连续不断; (2)f(a)·f(b)<0, 上述两条的函数方可采用二分法求得零点的近似值.
用二分法求方程的近似解-经典例题及答案
例1:利用计算器,求方程0122=--x x 的一个近似解(精确到0.1).【解】设2()21f x x x =--,先画出函数图象的简图.(如右图所示)因为 (2)10,(3)20f f =-<=>,所以在区间(2,3)内,方程2210x x --=有一解,记为1x .取2与3的平均数2.5,因为(2.5)0.250f =>,所以 12 2.5x <<.再取2与2.5的平均数2.25,因为(2.25)0.43750f =-<,所以 12.25 2.5x <<.如此继续下去,得1(2)0,(3)0(2,3)f f x <>⇒∈1(2)0,(2.5)0(2,2.5)f f x <>⇒∈1(2.25)0,(2.5)0(2.25,2.5)f f x <>⇒∈1(2.375)0,(2.5)0(2.375,2.5)f f x <>⇒∈1(2.375)0,(2.4375)0(2.375,f f x <>⇒∈ 2.4375),因为2.375与2.4375精确到0.1的近似值都为2.4,所以此方程的近似解为1 2.4x ≈.利用同样的方法,还可以求出方程的另一个近似解.点评:①第一步确定零点所在的大致区间),(b a ,可利用函数性质,也可借助计算机或计算器,但尽量取端点为整数的区间,尽量缩短区间长度,通常可确定一个长度为1的区间; 零点所在区间 区间中点函数值 区间长度]3,2[ 0)5.2(>f 1]5.2,2[ 0)25.2(<f 0.5]5.2,25.2[ 0)375.2(<f 0.25]5.2,375.2[ 0)4375.2(>f0.125 如此列表的优势:计算步数明确,区间长度小于精度时,即为计算的最后一步.例2:利用计算器,求方程x x -=3lg 的近似解(精确到0.1).分析:分别画函数lg y x =和3y x =-的图象,在两个函数图象的交点处,函数值相等.因此,这个程x x -=3lg 的解.由函数lg y x =与点的横坐标就是方3y x =-的图象可以发现,方程x x -=3lg 有惟一解,记为1x ,并且这个解在区间(2,3)内. 【解】设()lg 3f x x x =+-,利用计算器计算得1(2)0,(3)0(2,3)f f x <>⇒∈1(2.5)0,(3)0(2.5,3)f f x <>⇒∈1(2.5)0,(2.75)0(2.5,2.75)f f x <>⇒∈1(2.5)0,(2.625)0(2.5,2.625)f f x <>⇒∈(2.5625)0,(2.625)0f f <>1x ⇒∈(2.5625,2.625)因为2.5625与2.625精确到0.1的近似值都为2.6,所以此方程的近似解为1 2.6x ≈.思考:发现计算的结果约稳定在2.58717.这实际上是求方程近似解的另一种方法——迭代法.除了二分法、迭代法,求方程近似解的方法还有牛顿切线法、弦切法等.例3:利用计算器,求方程24x x +=的近似解(精确到0.1).【解】方程24x x +=可以化为24xx =-.分别画函数2x y =与4y x =-的图象,由图象可以知道,方程24x x +=的解在区间(1,2)内,那么对于区间(1,2),利用二分法就可以求得它的近似解为 1.4x ≈.追踪训练一1. 设0x 是方程ln 4x x =-+的解,则0x 所在的区间为 ( B )A .(3,4)B .(2,3)C .(1,2)D .(0,1)2. 估算方程25710x x --=的正根所在的区间是 ( B )A .(0,1)B .(1,2)C .(2,3)D .(3,4)3.计算器求得方程25710x x --=的负根所在的区间是( A )A .(1-,0)B .()2,1--C .()2.5,2--D .()3, 2.5--4.利用计算器,求下列方程的近似解(精确到0.1)(1)lg 21x x =-+ (2)34xx =+答案: (1)0.8(2)1 3.9x ≈-,2 1.6x ≈ 一、含字母系数的二次函数问题例4:二次函数2()f x px qx r =++中实数p 、q 、r 满足021p q r m m m++=++,其中0m >,求证:(1)()01m pf m <+); (2)方程()0f x =在(0,1)内恒有解. 分析:本题的巧妙之处在于,第一小题提供了有益的依据:1m m +是区间(0,1) 内的数,且()01m pf m <+,这就启发我们把区间(0,1) 划分为(0,1m m +)和(1m m +,1)来处理. 【解】(1)2()[()()]111m m m pf p p q r m m m =+++++ 2[](1)1pm q r pm m m m=++++ 2[](1)2pm p pm m m =-++222(2)(1)[](1)(2)m m m p m m m +-+=++ 22(1)(2)p m m m =-++, 由于()f x 是二次函数,故0p ≠,又0m >,所以,()01m pf m <+. ⑵ 由题意,得(0)f r =, (1)f p q r =++. ①当0p >时,由(1)知()01m f m <+ 若0r >,则(0)0f >,又()01m f m <+, 所以()f x 在(0,1m m +)内有解. 若0r ≤,则(1)f p q r =++=(1)p m ++()2p r r m m =--++=02p r m m ->+,又()01m f m <+,所以()0f x =在(1m m +,1)内有解.②当0p <时同理可证.点评:(1)题目点明是“二次函数”,这就暗示着二次项系数0p ≠.若将题中的“二次”两个字去掉,所证结论相应更改.(2)对字母p 、r 分类时先对哪个分类是有一定讲究的,本题的证明中,先对p 分类,然后对r 分类显然是比较好.追踪训练二1.若方程2210ax x --=在(0,1)内恰有一则实数a 的取值范围是 (B )A .1[,)8-+∞B .(1,)+∞C .(,1)-∞D .1[,1)8-2.方程22210x x k -+-=的两个根分别在区间(0,1)和(1,2)内,则k 的取值范围是112k <<; 3.已知函数()24f x mx =+,在[2,1]-上存在0x ,使0()0f x =,则实数m 的取值范围是____12m m ≥≤-或_____________.4.已知函数()3f x x x =+⑴试求函数()y f x =的零点;⑵是否存在自然数n ,使()1000f n =?若存在,求出n ,若不存在,请说明理由.答案:(1)函数()y f x =的零点为0x =;(2)计算得(9)738f =,(10)1010f =,由函数的单调性,可知不存在自然数n ,使()1000f n =成立.。
高考数学复习点拨 用二分法求方程的近似解例析
用二分法求方程的近似解例析二分法的解题原理是利用前面的中间值定理,是一种求方程根近似值的具体方法.下面举例说明二分法的解题思路.例1 证明方程x 3-3x +1= 0在区间(1,2)内必有一根,并求出这个根的近似值(精确到0.01).解:令()f x = x 3-3x +1,则()f x 在区间[1,2]上的图象是一条连续不断的曲线. ∵(1)f =1-3+1=-1<0,(2)f = 8-6+1 = 3>0,∴(1)f ·(2)f <0,∴函数()f x 在区间(1,2)内必有一零点,∴方程x 3-3x +1= 0在区间(1,2)内必有一根x 0.取区间(1,2)的中点x 1= 1.5,用计算器算得(1.5)f =-0.125.因为(1.5)f ·(2)f <0,所以x 0∈(1.5,2).再取(1.5,2)的中点x 2= 1.75,用计算器算得(1.75)f =1.109375.因为(1.5)f ·(1.75)f <0,所以x 0∈(1.5,1.75).又取(1.5,1.75) 的中点x 3= 1.625,用计算器算得(1.625)f =0.416015625.因为(1.5)f ·(1.625)f <0,所以x 0∈(1.5,1.625).取(1.5,1.625)的中点x 4= 1.5625,用计算器算得(1.5625)f = 0.127197265625.因为(1.5)f ·(1.5625)f <0,所以x 0∈(1.5,1.5625).取(1.5,1.5625)的中点x 5=1.53125时,用计算器算得(1.53125)f =-0.003387451171875.因为(1.53125)f ·(1.5625)f <0,所x 0∈(1.53125,1.5625). 取(1.53125,1.5625)的中点x 6=1.546875时,用计算器算得(1.546875)f =0.060771942138671875.因为(1.53125)f ·(1.546875)f <0,所x 0∈(1.53125,1.546875).同理,可算得(1.53125)f ·(1.5390625)f <0,x 0∈(1.53125,1.5390625); (1.53125)f ·(1.53515625)f <0,x 0∈(1.53125,1.53515625);又当取(1.53125, 1.53515625)的中点x 9=1.533203125时,(1.53125)f ·(1.533203125)f <0,即x 0∈(1.53125,1.533203125).由于|1.53125-1.533203125| = 0.001953125<0.01,此时区间(1.53125,1.533203125)的两个端点精确到0.01的近似值都是1.53,所以原方程精确到0.01的近似解为1.53.说明一:虽然|1.53125-1.5390625| = 0.0078125<0.01,但是,在区间(1.53125,1.5390625)的两个端点精确到0.01的近似值是两个,即1.53和1.54,与一个近似根不符.因此,类似于此种情况要一边分析探索,一边求解讨论,直到求出符合题意的唯一解为止.说明二:为能够将零点所在的范围尽量缩小,在一定的精度下,还可以采用逐步分割含根区间使成许多小区间,并以次确定()f x 的分点处的符号,即可以任意地缩小含根区间而实现根的近似计算.还以此例说明如下:将[1,2]分成10等份,各分点为1.1;1.2;1.3;…;1.9,并逐个计算: (1.1)f =-0.969;(1.2)f =-0.872;(1.3)f =-0.703,(1.4)f =-0.456;(1.5)f =-0.125;(1.6)f = 0.296.由(1.5)f ·(1.6)f <0,可知方程的根位于(1.5,1.6)内.再将[1.5,1.6]分成10等份,求出:(1.51)f =-0.87049;(1.52)f =-0.048192;(1.53)f =-0.008423;(1.54)f = 0.52264. 由于(1.53)f ·(1.54)f <0,所以方程的根位于(1.53,1.54)内,取x = 1.53,其精确度已达0.01.显然,此种分割法与二分法其解题原理完全相同,只不过划分区间有所差异. 例2 借助计算器求方程0.8x -1= lnx 的近似解(精确到0.01).解:令y 1= 0.8x -1,y 2= lnx ,画出两个函数的图象,从图象中可以找到,方程0.8x -1= lnx 在区间(0,1)内必有一根x 0.设()f x =0.8x -1-lnx , 由于(0)f 没有意义,且(0.5)f = 0.5876>0,(1)f =-0.2<0,∴(0.5)f ·(1)f <0,∴方程0.8x -1= lnx 在区间(0.5,1)内必有一根x 0.取区间(0.5,1)的中点x 1= 0.75,用计算器算得(0.75)f = 0.1336>0,因为(0.75)f ·(1)f <0,所以x 0∈(0.75,1).再取(0.75,1)的中点x 2= 0.875,用计算器算得(0.875)f =-0.0438<0,因为(0.75)f ·(0.875)f <0,所以x 0∈(0.75,0.875).又取(0.75,0.875)的中点x 3= 0.8125,用计算器算得(0.8125)f = 0.0418>0,因为(0.8125)f ·(0.875)f <0,所以x 0∈(0.8125,0.875).取(0.8125,0.875)的中点x 4= 0.84375,用计算器算得(0.84375)f =-0.0017<0,因为(0.8125)f ·(0.84375)f <0,所以x 0∈(0.8125,0.84375).取(0.8125,0.84375)的中点x 5= 0.828125时,用计算器算得(0.828125)f = 0.0199>0,因为(0.828125)f ·(0.84375)f <0,所以x 0∈(0.828125,0.84375).y 1=0.8x取(0.828125,0.84375)的中点x 6= 0.8359375时,用计算器算得(0.8359375)f = 0.009>0,因为(0.8359375)f ·(0.84375)f <0,所x 0 (0.8359375,0.84375). 由于|0.84375-0.8359375| = 0.0078125<0.01,此时区间(0.8359375,0.84375)的两个端点精确到0.01的近似值都是0.84,所以原方程精确到0.01的近似解为0.84.说明:二分法的第一步可以结合函数的图象来初步判断根的分布区间;在解题过程中,只有区间端点的函数值异号才能使用二分法算下去.最终视函数值的绝对值的大小尽快逼近满足精确度要求的零点.。
4.5.2 用二分法求方程的近似解-【题型分类归纳】2022-2023学年高一数学上学期同步讲与练(
4.5.2 用二分法求方程的近似解一、二分法1、二分法的定义:对于区间[],a b 上图象连续不断且()()0⋅<f a f b 的函数()f x ,通过不断把它的零点所在区间一分为二,使所得区间的两个端点逐渐逼近零点,进而得到近似值的方法。
2、注意点:(1)二分法的求解原理是函数零点存在定理;(2)函数图象在零点附近连续不断;(3)用二分法只能求变号零点,即零点在左右两侧的函数值的符号相反,比如2=y x ,该函数有零点0,但不能用二分法求解。
二、用二分法求函数零点1、给定精确度ε,用二分法求函数()=y f x 零点0x 的近似值的步骤(1)确定零点0x 的初始区间[],a b ,验证()()0⋅<f a f b ;(2)求区间(),a b 的中点c ;(3)计算()f c ,进一步确定零点所在的区间:①若()0=f c (此时0=x c ),则c 就是函数的零点;②若()()0⋅<f a f c (此时()0,∈x a c ),则令=b c ;③若()()0⋅<f c f b (此时()0,∈x c b ),则令=a c .(4)判断是否达到精确度ε:若-<a b ε,则得到零点近似值a (或b );否则重复(2)~(4)【注意】初始区间的确定要包含函数的变号零点;2、关于精确度(1)“精确度”与“精确到”不是一回事,这里的“精确度”是指区间的长度达到某个确定的数值ε,即-<a b ε; “精确到”是指某讴歌数的数位达到某个规定的数位,如计算2-,精确到0.01,即0.3313(2)精确度ε表示当区间的长度小于ε时停止二分;此时除可用区间的端点代替近似值外,还可选用该区间内的任意一个数值作零点近似值。
题型一二分法的概念理解【例1】下列关于二分法的叙述,正确的是()A.用二分法可求所有函数零点的近似值B.用二分法求方程的近似解时,可以精确到小数点后的任一位C.二分法无规律可循,无法在计算机上完成D.只有求函数零点时才用二分法【答案】B【解析】根据二分法的概念可知,只有函数的图象在零点附近是连续不断且在该零点左右两侧函数值异号,才可以用二分法求函数的零点的近似值,故A错;用二分法求方程的近似解时,可以精确到小数点后的任一位,故B正确;二分法有规律可循,可以通过计算机来进行,故C 错;求方程的近似解也可以用二分法,故D 错.故选:B.【变式1-1】用二分法求函数()lg 2f x x x =+-的零点,可以取的初始区间是( ) A .()0,1 B .()1,2 C .()2,3 D .()3,4【答案】B【解析】因为,lg y x y x ==是单调增函数,故()f x 是单调增函数,其零点至多有一个;又()()11,2lg20f f =-=>,故用二分法求其零点,可以取得初始区间是()1,2.故选:B.【变式1-2】观察下列函数的图象,判断能用二分法求其零点的是( ) A . B . C .D .【答案】A【解析】由图象可知,BD 选项中函数无零点,AC 选项中函数有零点,C 选项中函数零点两侧函数值符号相同,A 选项中函数零点两侧函数值符号相反,故A 选项中函数零点可以用二分法求近似值,C 选项不能用二分法求零点.故选:A【变式1-3】下列函数图象中,不能用二分法求零点的是( )A .B .C .D .【答案】B【解析】观察图象与x 轴的交点,若交点附近的函数图象连续,且在交点两侧的函数值符号相异,则可用二分法求零点,故B 不能用二分法求零点.故选:B.【变式1-4】下列函数中不能用二分法求零点的是( )A .()43f x x =-B .()ln 28f x x x =+-C .()sin 1f x x =+D .()231=-+f x x x【答案】C【解析】选项C sin 10y x =+≥恒成立,不存在区间(),a b 使()()0f a f b ⋅<,所以sin 1y x =+不能用二分法求零点.故选:C题型二 用二分法求方程的近似解【例2】方程322360x x x -+-=在区间[]2,4-上的根必定在( )A .[]2,1-上B .5,42⎡⎤⎢⎥⎣⎦上C .71,4⎡⎤⎢⎥⎣⎦上D .75,42⎡⎤⎢⎥⎣⎦上 【答案】D【解析】设32()236f x x x x =-+-, 则(2)8866280f -=----=-<,(4)6432126380f =-+-=>,因为2412且(1)123640f =-+-=-<,所以函数()f x 在[]1,4上必有零点. 又因为14522+=且5125251537()6028228f =-+-=>,所以函数()f x 在51,2⎡⎤⎢⎥⎣⎦上必有零点.又因为517224+=且32777797()()2()360444464f =-⨯+⨯-=-<,所以函数()f x 在75,42⎡⎤⎢⎥⎣⎦上必有零点. 即方程的根必在75,42⎡⎤⎢⎥⎣⎦上.故选:D【变式2-1】若函数()31f x xx =--在区间[1,1.5]内的一个零点附近函数值用二分法逐次计算,列表如下: x 1 1.5 1.25 1.375 1.3125 f (x ) -1 0.875 -0.2969 0.2246 -0.05151310x x --=的一个近似根(精确度为0.1)可以为( )A .1.3B .1.32C .1.4375D .1.25【答案】B【解析】由()1.31250f <,()1.3750f >,且()f x 为连续函数,由零点存在性定理知:区间()1.3125,1.375内存在零点,故方程310x x --=的一个近似根可以为1.32,B 选项正确,其他选项均不可.故选:B【变式2-2】若函数32()22f x x x x =+--的一个正零点附近的函数值用二分法计算,其参考数据如下: (1)2f =- (1.5)0.625f = (1.25)0.984f =-(1.375)0.260f =- (1.4375)0.162f = (1.40625)0.054f =-那么方程32220x x x +--=的一个近似根(精确度0.1)为( ).A .1.2B .1.4C .1.3D .1.5【答案】B【解析】因为(1)0,(1.5)0f f <>,所以(1)(1.5)0f f <,所以函数在(1,1.5)内有零点,因为1.510.50.1-=>,所以不满足精确度0.1;因为(1.25)0f <,所以(1.25)(1.5)0f f <,所以函数在(1.25,1.5)内有零点,因为1.5 1.250.250.1-=>,所以不满足精确度0.1;因为(1.375)0f <,所以(1.375)(1.5)0f f <,所以函数在(1.375,1.5)内有零点,因为1.5 1.3750.1250.1-=>,所以不满足精确度0.1;因为(1.4375)0f >,所以(1.4375)(1.375)0f f <,所以函数在(1.375,1.4375)内有零点,因为1.4375 1.3750.06250.1-=<,所以满足精确度0.1;所以方程32220x x x +--=的一个近似根(精确度0.05)是区间(1.375,1.4375)内的任意一个值(包括端点值),根据四个选项可知选B .【变式2-3】求方程221x x =+的一个近似解(精确度0.1)【答案】2.4375【解析】设2()21f x x x =--.因为(2)10,(3)20f f =-<=>()f x 在区间()2,3内单调递增,所以在区间()2,3内,方程2210x x --=有唯一的实数根为0x 取2与3的平均数2.5因为(2.5)0.250f =>,所以02 2.5x <<,再取2与2.5的平均数2.25,因为(2.25)0.43750f =-<,所以02.25 2.5x <<;如此继续下去,有(2.375)0,(2.5)0f f <>,所以()0 2.375,2.5x ∈;(2.375)0,(2.4375)0f f <>,所以()0 2.375,2.4375x ∈;因为|2.375 2.4375|0.06250.1-=<,所以方程221x x =+的一个精确度为0.1的近似解可取为2.4375题型三 用二分法求函数的零点【例3】用二分法研究函数()5381f x x x =+-的零点时,第一次经过计算得()00f <,()0.50f >,则其中一个零点所在区间和第二次应计算的函数值分别为( ) A .()0,0.5,()0.125f B .()0,0.5,()0.375fC .()0.5,1,()0.75fD .()0,0.5,()0.25f【答案】D【解析】因为(0)(0.5)0f f <,由零点存在性知:零点()00,0.5x ∈,根据二分法,第二次应计算00.52f +⎛⎫⎪⎝⎭,即()0.25f ,故选:D.【变式3-1】已知函数()22log 6f x x x =--,用二分法求()f x 的零点时,则其中一个零点的初始区间可以为( )A .()1,2B .()2,2.5C .()2.5,3D .()3,3.5【答案】C【解析】因为函数()22log 6f x x x =--在()0,∞+上显然是连续函数,2y x 和2log 6y x =+在()0,∞+上都是增函数,当()1,2x ∈时,2222246log 16log 6x x <=<=+<+,所以()22log 60f x x x =--<在()1,2x ∈上恒成立;当()2,2.5x ∈时,22222.5 6.257log 26log 6x x <=<=+<+,所以()22log 60f x x x =--<在()2,2.5x ∈上也恒成立;当()3,3.5x ∈时,222239log 3.56log 6x x >=>+>+,所以()22log 60f x x x =-->在()3,3.5x ∈上恒成立,又22(2.5) 2.5log 2.560f =--<,2(3)9log 360f =-->,根据函数零点存在性定理,可得()f x 的其中一个零点的初始区间可为()2.5,3.故选:C.【变式3-2】已知函数()329f x x x =+-在()1,2内有一个零点,且求得()f x 的部分函数值数据如下表所示: x 1 2 1.5 1.75 1.7656 1.7578 1.7617()f x -6 3 -2.625 -0.14063 0.035181 -0.05304 -0.0088要使()零点的近似值精确度为,则对区间()的最少等分次数和近似解分别为( )A .6次1.75B .6次1.76C .7次1.75D .7次1.76【答案】D【解析】由表格数据,零点区间变化如下:(1,2)→(1.5,2)→(1.75,2)→(1.75,1.875)→(1.75,1.8125)→(1.75,1.78125)→(1.75,1.7656)→(1.7578,1.7656),此时区间长度小于0.01,在此区间内取近似值,等分了7次,近似解取1.76.故选:D .【变式3-3】用二分法求函数()ln(1)1f x x x =++-在区间[]0,1上的零点,要求精确度为0.01时,所需二分区间的次数最少为( )A .5B .6C .7D .8【答案】C【解析】开区间()0,1的长度等于1 ,每经过一次操作,区间长度变为原来的一半,经过n 此操作后,区间长度变为12n, 用二分法求函数()()ln 11f x x x =++-在区间()0,1上近似解,要求精确度为0.01,10.012n∴≤,解得7n ≥,故选:C.【变式3-4】用二分法求函数()f x 的一个正实数零点时,经计算,()0.540f <,()0.720f >,()0.680f <,则函数的一个精确到0.1的正实数零点的近似值为( ) A .0.68 B .0.72 C .0.7 D .0.6【答案】C【解析】由题意根据函数零点的判定定理可得,函数零点所在的区间为()0.68,0.72,则函数的一个精确度为0.1的正实数零点的近似值可以为0.7,故选:C .。
3.1.2用二分法求方程的近似解(s必修一 数学 优秀课件)
f (2.75) 0.512 0
f (2.5) f (2.75) 0 所以零点在区间(2.5,2.75)内.
结论:由于 (2,3) (2.5,3) (2.5, 2.75) 所以零点所在的范围确实越来越小
用二分法求方程的近似解:
口 诀
定区间,找中点, 中值计算两边看. 同号去,异号算, 零点落在异号间. 周而复始怎么办? 精确度上来判断.
x 2 bx c, x 0 5.设函数 f ( x) ,若f (– 4) = f (0), x0 2,
f (– 2) = – 2,则关于x的方程f (x) = x的解的个数为( (B ) 2 (C )3 (D )4
)
(A )1
6.若直线y = 2a与函数y = | a x– 1 |(a > 0且a ≠ 1)的
函数f(x)的一个零点在(-1,0)内,另一个零点在(2,3)内
y
如何进一步有效缩小根所在的区间? 第一步:得到初始区间(2,3) 第二步:取2与3的平均数2.5 第三步:再取2与2.5的平均数2.25 如此继续取下去: 若要求结精确度为0.1,则何时停 止操作?
y=x2-2x-1
-1 0 1 2 3 2.25 2
15
10
y
-
(2,3)
+
2.5 2.75 2.625
-0.084
0.512
-20
1
5
(2.5,3) +
0.5
-10 0.25
-(2.5,2.75)+
0.215
o
5
10
x
-(2.5,2.625)+ 2.5625
(2.5,2.5625)
用二分法求方程的近似解
解:设平均年收益率为 x,由题意, 得 令
x49 x x49 17 4401+2 · =68,即1+2 · x-55=0. 2 x49 17 f(x)=1+2 · x-55,
149 17 17 ∵f(0)=-55<0,f(1)=1+2 -55>0, x49 17 1 + ∴f(x)= x-55在区间[0,1] 上有唯一的零点, 利用 2 ·
束. (2)初始区间的选定一般在两个整数间,不同的初始区间结 果是相同的,但二分的次数却相差较大,零点所在区间的选取 要尽可能小.
(3) 在二分法的第四步,由|a-b|<ε,便可判断零点近似值
为a或b.
典例剖析
题型一 用二分法求函数的零点 【例1】 用二分法求函数f(x)=x3-x-1在区间[1,1.5]上的 一个零点(精确度0.01).
因为f(2.2)·f(2.3)<0,所以x0∈(2.2,2.3),
再取区间(2.2,2.3)的中点x2=2.25,f(2.25)=0.062 5>0,
因为f(2.2)·f(2.25)<0,所以x0∈(2.2,2.25),
同理可得x0∈(2.225,2.25),(2.225,2.237 5), 又f(2.225)≈-0.049 4,f(2.237 5)≈0.006 4, 且|0.006 4-(-0.049 4)|=0.055 8<0.1, 所以原方程的非负近似解可取为2.225.
(3)计算f(x1).
x1就是函数的零点 ①若f(x1)=0,则_________________ ; (a,x1) ; ②若f(a)·f(x1)<0,则令b=x1(此时零点x0∈_______) (x1,b) . ③若f(x1)·f(b)<0,则令a=x1(此时零点x0∈_______)
用二分法求方程的近似解
用二分法求方程的近似解(1)【教学目标】1.使学生理解利用二分法求方程的近似解的思想方法,会用二分法求某些方程的近似解2.通过本节内容的学习,让学生体会到在现实世界中,等是相对的,而不等是绝对的,这样可以加深对数学的理解.【学习指导】我们已经学过一元一次方程、一元二次方程等方程的解法,并掌握了一些方程的求根公式.实际上,大部分方程没有求根公式,那么,这些方程怎么解?学完这一课,你就会知道利用方程的根与函数的零点的关系求方程的实数解(近似解)了.本节的重点就是利用二分法求方程的近似解,所谓二分法就是:对于在区间[a,b]上连续不断、且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而和到零点近似值的方法.【例题精析】例1.借助计算机或计算器,用二分法求函数f(x)= x3-5x2-4x+2的一个零点,精确到0.05.【分析】先用大范围法寻找零点所在的区间,然后不断使用二分法,逐步缩小区间,直至达到精度的要求.【解法】先作出x与f(x)的对应值表,并试图找出一个根所在的区间:通过举值,发现函数在(0,1)与(5,6)内都至少有一个零点,现不妨求(0,1)内的一个零点.令x1=0.5,f(0.5)= -1.125.因为f(0)·f(0.5)<0,所以零点x0∈(0,0.5).令x2=0.25,f(0.25)≈0.7.因为f(0.25)·f(0.5)<0,所以零点x0∈(0.25,0.5).令x3=0.375,f(0.375)≈-0.15.因为f(0.375)·f(0.25)<0,所以零点x0∈(0.25,0.375).令x4=0.3125,f(0.3125)≈0.29.因为f(0.375)·f(0. 3125)<0,所以零点x0∈(0.3125,0.375).令x5=0.359375,f(0.359375)≈-0.04.因为f(0.359375)·f(0.3125)<0,所以零点x0∈(0.3125,0.359375).由于|0.359375-0.3125|=0.047<0.05,此时区间(0.3125,0.359375)的两个端点精确到0.05的近似值都是0.336,所以函数的一个零点为0.336.【评注】①选好初定区间是使用二分法求近似解的关键.选取初定区间的方法有多种,常用方法有试验估计法,数形结合法,函数单调性法,函数增长速度差异法等等.②本题还有两个零点,你能把它独立求解出来吗?(答案为-1,5.646.)例2.(师生共同探究)概括用二分法求方程的近似解的基本程序.【分析】通过对例1的研究,希望能够对解决问题的方法进行提炼,而这一点切不可以由老师包办代替,要通过师生的合作探究解决问题.【解法】(1)在同一坐标系中分别作出两个简单函数的图象,注意两个图象与x轴的交点坐标;(2)估算出第一个解的区间(x1,x2),(x1<x2);(3)计算f (221x x +)的值,若f (221x x +)<0,则第二个解区间为(221x x +,x 2);若f (221x x +)>0,则第二个解区间为(x 1,221x x +);若f (221x x +)=0,则近似解为x =221x x +; (4)重复第(3)步的操作,直至给出的解区间(x i ,y i )满足精确度要求为止;(5)写出原方程的近似解.【评注】利用二分法求方程的实数解的过程亦可以用下图表示.例3.利用计算器,求方程18lg 3=+x x 的近似解(精确到0.1).【分析】作一张草图,找好解所在的大致区间.【解法】分别画出函数x y lg =和318x y -=的图象,在两个函数图象的交点处,函数值相等.因此,这个点的横坐标就是方程18lg 3=+x x 的解,由图象可以发现,方程18lg 3=+x x 有唯一解,并且这个解在区间(2,3)内,记为0x设 x x x f lg 18)(3--=,用计算器计算,得f (2)>0 , f (3)<0 则 )3,2(0∈xf (2.5)>0 , f (2.75)<0 则 )75.2,52(0.∈xf (2. 5)>0 , f (2.625)<0 则 )625.2,52(0.∈x f (2. 5625)>0 , f (2.625)<0 则 )625.2,56252(0.∈x 因为2.5625与2.625精确到0.1的近似值的为2.6,所以原方程的近似解为6.20=x .【评注】由本题进一步熟悉用二分法求方程的近似解.【本课练习】1.函数f (x )=x 2+4x +4在区间[-4,-1]上( ).A 、没有零点B .有无数个零点C .有两个零点D .有一个零点2.方程ln x +2x =6在区间上的根必定属于区间( )A .(-2,1)B .5,42⎛⎫ ⎪⎝⎭C .71,4⎛⎫ ⎪⎝⎭D .75,42⎛⎫ ⎪⎝⎭ 3.下列函数图像与x 轴均有交点,但不宜用二分法求交点横坐标的是( )A .B .C .D .4.函数f (x )=5-x 2的负数零点的近似值(精确到0.1)是() A .-2.1 B .-0.2 C .-2.2 D .-2.35.求方程2x +x =4的近似解(精确到0.1) ( )。
用二分法求方程的近似解48447
用二分法求方程近似解
不解方程,如何求方程x2-2x-1=0的一个正的近似 解 .(精确到0.1)
-
2
+
3
f(2)<0,f(3)>0 2<x1<3
-
+
f(2)<0,f(2.5)>0 2<x1<2.5
2
2.5
3
-+
2 2.25 2.5
3 f(2.25)<0,f(2.5)>0 2.25<x1<2.5
-+
在计算器或计算机中安装一个方程数值解法 的程序,当我们输入相应的方程,并给出精确 度(有效数字)后,计算器或计算机就会依据 程序进行运算了.
二分法例题分析
例 借助计算器或计算机用二分法求方程
2x+3x=7的近似解(精确到0.1).
解 原方程即2x+3x-7 =0,令f(x)=2x+3x-7 ,
借助计算器或计算机作出该函数的图象与对应值 表.
0.0625 2.53125
0.03125 2.546875
0.015625 2.5390625
0.0078125 2.53515625
中点函数 近似值 -0.084 0.512 0.215 0.066 -0.009 0.029 0.010 0.001
探索零点
当精确度为0.01时,由于: |2.5390625-2.53125|=0.0078125<0.01,
区间(2,3)内有零点.现在问题的关键是如何找 出这个零点?
如果给你三次机会将零点所在的范围尽量缩小, 那么你会采取什么方法?
“取中点”
探索零点
第一次:取区间(2,3)的中点,算得:
用二分法求方程的近似解__刘武平
(2,3)
逐渐缩小函数f ( x ) ln x 2 x 6的零点所在范围
在区间(2,3)内零点的近似值.
区间 (2,3) 中点 的值 2.5 中点函数 近似值 -0.084 0.512 0.215 0.066 -0.009 区间长度 1 0.5 0.25 0.125 0.0625
2.5 2.75 2.625 2.5625 2.53125 2.546875 2.5390625
1 0.5 0.25 0.125 0.0625 0.03125 0.015625
2.53515625
0.0078125
a x0 b.
如图
设函数的零点为 0 , a =2.53125, . .
x
b
问题5: 你能归纳出“给定精确度ε,用二 分法求函数零点近似值的步骤”吗?
1.确定区间 a, b ,验证 f a f b 0 ,给定精确度 2.求区间 a, b 的中点 c ; 3.计算 f c ; (1)若 f c 0 ,则 c 就是函数的零点; (2)若 f a f c 0
(2.5,3) 2.75 (2.5,2.75) 2.625 (2.5,2.625) 2.5625 (2.5,2.5625) 2.53125 (?,?) …
思考: 通过这种方法,是否可以得到任 意精确度的近似值? (如精确度 为0.01)
精确度为0.01,即零点值与近 似值的差的绝对值要小于或等于 0.01
零点的近似值。 思考:如何缩小零点所在的区间?
模拟实验室
16枚金币中有 一枚略轻,是假 币
模拟实验室
模拟实验室
我在这里
模拟实验室
高中数学 3.1.2《用二分法求方程的近似解》课件 新人教A版必修1
(1.375,1.5) 1.438
(1.375,1.43
|a-b| 1 0.5
0.25 0.125
第十六页,共24页。
由上表计算可知区间(1.375,1.438)长度小于0.1,故可在 (1.438,1.5)内取1.406 5作为函数f(x)正数的零点的近似值.
第十七页,共24页。
1.准确理解“二分法”的含义 顾名思义,二分就是平均分成两部分.二分法就是通过不 断地将所选区间一分为二,逐步逼近零点的方法,找到零点附 近足够小的区间,根据所要求的精确度,用此区间的某个数值 近似地表示真正的零点.
图象可以作出,由图象确定根的大致区间,再用二分法求解.
第九页,共24页。
【解析】 作出y=lg x,y=3-x的图象可以发现,方程lgx=3-x有 唯一解,记为x0,并且解在区间(2,3)内.
设f(x)=lgx+x-3,用计算器计算,得
f(2)<0,f(3)>0,
∴x0∈(2,3); f(2.5)<0,f(3)>0⇒x0∈(2.5,3); f(2.5)<0,f(2.75)>0⇒x0∈(2.5,2.75); f(2.5)<0,f(2.625)>0⇒x0∈(2.5,2.625); f(2.562)<0,f(2.625)>0⇒x0∈(2.562,2.625). ∵|2.625-2.562|=0.063<0.1 ∴方程的近似解可取为2.625(不唯一).
第四页,共24页。
下列函数图象与x轴均有交点,其中不能用二分法求图中函数零点的 是( )
【思路点拨】 由题目可获取以下主要信息: ①题中给出了函数的图象;
②二分法的概念. 解答本题可结合二分法的概念,判断是否具备使用二分法的条件.
4.1.2利用二分法求方程的近似解
4.1.2教学分析求方程的解是常见的数学问题, 这之前我们学过解一元一次、 一元二次方程,但有些方 程求精确解较难.本节从另一个角度来求方程的近似解, 这是一种崭新的思维方式,在现实生活中也有着广泛的应用. 用二分法求方程近似解的特点是: 运算量大,且重复相同的步骤,因此适合用计算器或计算机进行运算. 在教学过程中要让学生体会到人类在方程求解中的不断进步.三维目标1 •让学生学会用二分法求方程的近似解,知道二分法是科学的数学方法.2•了解用二分法求方程的近似解特点,学会用计算器或计算机求方程的近似解,初步 了解算法思想. 3•回忆解方程的历史,了解人类解方程的进步历程,激发学习的热情和学习的兴趣. 重点难点用二分法求方程的近似解. 课时安排 1课时教学过程导入新课师:(手拿一款手机)如果让你来猜这件商品的价格,你如何猜? 生1 :先初步估算一个价格,如果高了再每隔 10元降低报价.生2 :这样太慢了,先初步估算一个价格,如果高了每隔 100元降低报价•如果低了, 每隔50元上升报价;如果再高了,每隔20元降低报价;如果低了,每隔10元上升报价……生3:先初步估算一个价格,如果高了,再报一个价格;如果低了,就报两个价格和的 一半;如果高了,再把报的低价与一半价相加再求其半,报出价格;如果低了,就把刚刚报 出的价格与前面的价格结合起来取其和的半价……师:在现实生活中我们也常常利用这种方法. 譬如,一天,我们华庄校区与锡南校区的线路出了故障(相距大约3 500米)•电工是怎样检测的呢?是按照生 1那样每隔10米或者 按照生2那样每隔100米来检测,还是按照生 3那样来检测呢?生:(齐答)按照生3那样来检测.师:生3的回答,我们可以用一个动态过程来展示一下 新知探究 提出问题① 解方程 ② 解方程 ③ 解方程 ④ 解方程 ⑤ 我们知道,函数f 如何找出这个零点的近似值?⑥ “取中点”后,怎样判断所在零点的区间? ⑦ 什么叫二分法?⑧ 试求函数f X = In x + 2x — 6在区间 2 , 3 ⑨ 总结用二分法求函数零点近似值的步骤 . ⑩ 思考用二分法求函数零点近似值的特点 . 讨论结果: ① x = 8.② x =— 1, X = 2.③ x =— 1, X = 1, x = 2.④ x=-^f 2, x = ^2, x = 1, x = 2.⑤ 如果能够将零点所在的范围尽量缩小, 那么在一定精确度的要求下, 我们可以得到零 点的近似值.为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围. 〔“取中点”,利用二分法求方程的近似解(展示多媒体课件,区间逼近法)• 2x — 16= 0. x 2— x — 2= 0. x 3— 2x 2— x + 2= 0.X 2-2 x 2— 3x +2 = 0. x = In x + 2x — 6 在区间2, 3内有零点.进一步的问题是, 内零点的近似值.4° a + b一般地,我们把x =—盯称为区间(a , b )的中点〕⑥ 比如取区间(2,3)的中点2.5,用计算器算得f (2.5) < 0,因为f (2.5) - f (3) < 0,所 以零点在区间(2.5,3)内.⑦ 对于在区间[a , b ]上连续不断且f (a ) • f (b ) < 0的函数y = f (x ),通过不断地把函数 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值.像这样每次取区间的中点, 将区间一分为二,再经比较,按需要留下其中一个小区间的 方法称为二分法.⑧ 因为函数f (x ) = ln x + 2x — 6,用计算器或计算机作出函数 f (x ) = ln x + 2x — 6的对 应值表.由表可知,f (2) < 0, f (3) > 0,则f (2) • f (3) < 0,这说明f (x )在区间(2,3)内有零点 X 0,取区间(2,3)的中点X 1= 2.5,用计算器算得f (2.5) — 0.084,因为f (2.5) - f (3) < 0, 所以 X o € (2.5,3). 同理,可得表(下表)与图像(如图1).由于(2約(2.礼:劝(2. 5, 2.⑸,所以零点所在的范围确实越来越小了.如果重复上述步骤,那么零点所在的范围会越来越小 (见上表).这样,在一定的精确度下,我们可以在 有限次重复相同步骤后, 将所得的零点所在区间内的任意一点作为函数零点的近似值. 特别 地,可以将区间端点作为函数零点的近似值. 例如,当精确度为0.01时,由于12.539 062 5 —2.531 25| = 0.007 812 5 <0.01 ,所以,我们可以将 x = 2.531 25 作为函数 f (x ) = In x + 2x — 6零点的近似值.⑨给定精度£,用二分法求函数f (x )的零点近似值的步骤如下:确定区间[a, b ],验证f (a ) • f (b ) <0,给定精度£ . 求区间(a , b )的中点c . 计算f (c ): 若f (c ) = 0,则c 就是函数的零点; 若 f (a ) • f (c ) < 0,则令 b = c 〔此时零点 X 0€ (a , c )〕; 若 f (c ) • f (b ) < 0,则令 a = c 〔此时零点 X 0€ ( c , b )〕. 判断是否达到精度 £,即若|a — b | < £ ,则得到零点值a (或b );否则重复步骤2°1°2°3°4°.⑩由函数的零点与相应方程的关系, 我们可用二分法来求方程的近似解. 由于计算量较 大,而且是重复相同的步骤,因此, 我们可以通过设计一定的计算程序,借助计算器或计算 机完成计算.应用示例例1求方程2x 3+ 3x — 3= 0的一个实数解,精确到 0.01.3解:考察函数f (x ) = 2x + 3x — 3,从一个两端函数值反号的区间开始, 应用二分法逐步 缩小方程实数解所在区间.经试算,f (0) =— 3< 0, f (2) = 19> 0,所以函数 f (x ) = 2x 3+ 3x — 3 在[0,2]内存在零 点,即方程2x 3+ 3x — 3= 0在[0,2]内有解.取[0,2]的中点1 ,经计算,f (1) = 2> 0,又f (0) < 0,所以方程2x 3+ 3x — 3 = 0在[0,1] 内有解.3如此下去,得到方程 2x + 3x — 3 = 0的实数解所在区间的表如下.左端点右端点 第1次 0 2 第2次 0 1 第3次 0.5 1 第4次 0.5 0.75 第5次 0.625 0.75 第6次 0.687 5 0.75 第7次 0.718 75 0.75 第8次 0.734 375 0.75 第9次 0.742 187 5 0.75 第10次 0.742 187 5 0.746 093 75 第11次0.742 187 50.744 140 625至此,可以看出,区间 [0.742 187 5,0.744 140 625] 是0.74.所以0.74是方程2x 3+ 3x — 3 = 0精确到0.01点评:利用二分法求方程近似解的步骤:① 确定函数f (x )的零点所在区间(a , b ),通常令 ② 利用二分法求近似解. 变式训练利用计算器,求方程 x 2— 2x — 1 = 0的一个近似解. 活动:教师帮助学生分析:2 , .画出函数f (x ) = x — 2x — 1的图像,如图2所示.从图像上可以发现, 方程x 2— 2x — 1 = 0的一个根X 1在区间(2,3)内,另一个根X 2在区间 (—1,0)内.根据图像,我们发现f (2) =— 1< 0, f (3) = 2 > 0,这表明此函数图像在区间 (2,3)上穿过x 轴一次,即方程+ 3、1计算得f I —厂4> 0,发现X 1€ (2,2.5)( 解:设f (x ) = x 2— 2x — 1,先画出函数图像的简图,如图 2.内的所有值,若精确到 0.01,都 的实数解.b —a =1; (精确到0.1) 如图2),这样可以进一步缩小 x i 所在的区间.因为f(2) =— 1< 0, f (3) = 2> 0,所以在区间(2,3)内,方程x2— 2x— 1 = 0有一解,记为X1.取2与3的平均数2.5,因为f(2.5) = 0.25 > 0,所以2< X i< 2.5.再取2与2.5的平均数2.25,因为f(2.25) =— 0.437 5 < 0, 所以 2.25 < X i < 2.5.如此继续下去,得 f (2) < 0, f (3) > 0= X i € (2,3),f(2) < 0, f(2.5) > 0= x i€ (2,2.5),f(2.25) < 0, f(2.5) >0=x i€ (2.25,2.5),f (2.375) < 0, f(2.5) > 0=x i€ (2.375,2.5),f (2.375) < 0 , f (2.437 5) > 0= X i € (2.375,2.437 5).因为2.375与2.437 5精确到0.i的近似值都为2.4 ,所以此方程的一个近似解为 2.4.点评:利用同样的方法,还可以求出方程的另一个近似解.例2利用计算器,求方程Ig X = 3—X的近似解.(精确到0.i) 活动:学生先思考或讨论后再回答,教师点拨、提示并及时评价学生.分别画出y = Ig X和y = 3—x的图像,如图3所示.在两个函数图像的交点处,函数值相等.因此,这个点的横坐标就是方程Ig x= 3—X的解.由函数y = Ig x与y = 3 —x的图像可以发现,方程Ig X = 3 —X有唯一解,记为X i,并且这个解在区间(2,3)内.解:设f(X)= Ig x+ x — 3,设x i为函数的零点即方程Ig x = 3 —x的解. 用计算器计算,得f(2) < 0, f(3) > 0= x i € (2,3),f(2.5) < 0, f (3) >0=X i€ (2.5,3),f(2.5) < 0, f (2.75) >0=X i€ (2.5,2.75),f(2.5) < 0, f (2.625) >0=x i€ (2.5,2.625),f (2.562 5) < 0, f (2.625) > 0= X i € (2.562 5,2.625).因为2.562 5与2.625精确到0.i的近似值都为2.6,所以原方程的近似解为 2.6.例3 求方程In x — 2x+ 3 = 0在区间[i,2]内的根.(精确到0.i)解:设f(x) = In x— 2x+3,则原方程的根为函数f(x)的零点.设x i为函数的零点即方程In x — 2x+ 3 = 0的解.因为f(i) = i, f (2) = — 0.306 852 8i9 ,所以f (i) f(2) < 0,即函数f (x)在[i,2]内有一个零点.根据二分法,用计算器得出以F表格:(步长为0.25)0.062 5)由上述表格可以得到下表与图像(图4):因为 f (1.75) = 0.059 615 787 >0, f (1.812 5) 所以区间[1.75,1.812 5] 内的所有值若精确到 所以1.8是方程In X — 2x + 3= 0精确到0.1的实数解.点评:①先设出方程对应的函数, 画出函数的图像,初步确定解所在的区间,再用二分法求方程近似解.② 二分法,即逐渐逼近的方法.③ 计算量较大,而且是重复相同的步骤,借助计算器或计算机完成计算比较容易. 知能训练根据下表中的数据,可以断定方程e X— X — 2= 0的一个根所在的区间为( ).X—1 0 1 2 3 X e0.37 1 2.72 7.39 20.0 X + 21 23 45A. ( —1,0)B. (0,1)C. (1,2)D. (2,3)分析:设 f (x ) = e x—x — 2, f (1) < 0, f (2) > 0,即 f (1) f (2) < 0,A X € (1,2).答案:C 课堂小结活动:学生先思考或讨论,再回答.教师提示、点拨,及时评价. 引导方法:从基本知识基本技能和思想方法两方面来总结.① 掌握用二分法求方程的近似解,及二分法的其他应用.=—0.030 292 892 < 0,0.1,都是 1.8.②思想方法:函数方程思想、数形结合思想. 课后作业:P119习题4— 1 A组1,3.。
用二分法求方程的近似解
用二分法求方程的近似解一、二分法的定义对于区间[]b a ,上的连续不断且0b f a f )<()(∙的函数)(x f y =,通过不断地把它的零点所在区间一分为二,使得区间的两个端点逐步逼近零点,进而得到近似解的方法叫做二分法二、用二分法求函数)(x f y =零点x 0的近似值的一般步骤1、确定零点x 0的初始区间[]b a ,,验证0b f a f )<()(∙.2.求区间),(b a 中点c .3.计算)(c f ,并进一步确定零点所在区间:(1)若0c f =)((此时,c x 0=),则c 就是函数零点;(2)若0c f a f )<()(∙(此时,),(c a x 0∈),则令c b =(3)若0b f c f )<()(∙(此时,),(b c x 0∈),则令c a =.4.判断是否达到精确度ε:若ε<b a -,则得到零点的近似值为a(或b );否则重复步骤2~4三、总结通过不断地把函数的零点所在区间一分为二,使得区间的两个端点逐步逼近零点,得到零点近似值.对于在某一区间上函数图象连续不断,且区间端点的函数值的乘积符号为负的函数,都可以利用这种方法来求零点的近似值四、题型二分法的定义与应用例1若函数y=f(x)的一个正零点附近的函数值用二分法计算,其参考数据如下:f(1)=-2,f(1.25)=-0.984,f(1.375)=-0.260,f(1.40625)=-0.054,f(1.4375)=0.162,f(1.5)=0.625,那么方程f(x)=0的一个近似根(精确度0.1)为()A.1.2B.1.3C.1.4D.1.5解:因为f(1)<0,f(1.5)>0,所以f(1)f(1.5)<0,所以函数在(1,1.5)内有零点,因为1.5-1=0.5>0.1;因为f(1.25)<0,所以f(1.25)f(1.5)<0,所以函数在(1.25,1.5)内有零点,因为1.5-1.25=0.25>0.1;因为f(1.375)<0,所以f(1.375)f(1.5)<0,所以函数在(1.375,1.5)内有零点,因为1.5-1.375=0.125>0.1;因为f(1.4375)>0,所以f(1.4375)f(1.375)<0,所以函数在(1.375,1.4375)内有零点,因为1.4375-1.375=0.0625<0.1;所以方程f(x)=0的一个近似根(精确度0.1)是区间(1.375,1.4375)内的任意一个值(包括端点值).故选:C.例2已知函数x e x x f --=)(的部分函数值如表所示:例3若函数f(x)=x³+x²-2x-2的一个正数零点附近的函数值用二分法计算,其参考数据如下:f(1)=—2f(1.5)=0.625f(1.25)=—0.984f(1.375)=—0.260f(1.4375)=0.162f(1.40625)=—0.054那么方程x³+x²-2x-2=0的一个近似根(精确度为0.05)可以是()A.1.25B.1.375C.1.42D.1.5解:由表格可得,函数f(x)=x³+x²-2x-2的零点在(1.40625,1.4375)之间;结合选项可知,方程x³+x²-2x-2=0的一个近似根(精确度为0.05)可以是1.42;故选:C.例4设函数f(x)=x ²-2,用二分法求f(x)=0的一个近似解时,第1步确定了一个区间为),(231,到第3步时,求得的近似解所在的区间应该是()A 、),(231B 、,(2345C 、),(23811D 、,(1623811解:令(x)=x ²-2,则f(1)=-1<0,则023f >(,016745f <-=)(;所以到第二步求得的近似解所在的区间应该是,(2345;0647811f <-=)(,由023f 811f <((知到第3步时,求得的近似解所在的区间应该是在),(23811故选:C.例5已知图象连续不断的函数y=f(x)在区间(a,b)(b-a=1)上有唯一零点,如果用二分法求这个零点(精确度为0.1)的近似值,那么将区间(a,b)等分的次数至少是().解:设至少需要将区间(a,b)等分n 次,则1.02ab n ≤-,即10121n ≤所以n ≥4,即将区间(a,b)等分的次数至少是4次.故答案为:4.例6用二分法求函数f(x)=x³+5的零点可以取的初始区间是()A.[-2,1]B.[-1,0]C.[0,1]D.[1,2]解:二分法求变号零点时所取初始区间[a,b],应满足使f(a)·f(b)<0.由于本题中函数f(x)=x³+5,由于f(-2)=-3,f(1)=6,显然满足f(-2)f(1)<0,故函数f(x)=x³+5的零点可以取的初始区间是[-2,1],故选:A.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、教材分析
1、教材的地位与作用
“二分法”的理论依据是“函数零点的存在性(定 理)”,本节课是上节学习内容《方程的根与函数的 零点》的自然延伸,是数学必修3算法教学的一个前 奏和准备,同时渗透数形结合思想、近似思想、逼近 思想和算法思想等。
一、教材分析
2、内容分析
本节课的主要任务是探究二分法基本原理,给出用 二分法求方程近似解的基本步骤,使学生学会借助 计算器用二分法求给定精确度的方程的近似解。通 过探究让学生体验从特殊到一般的认识过程,渗透 逐步逼近和无限逼近思想(极限思想),体会“近 似是普遍的、精确则是特殊的”辩证唯物主义观点。 引导学生用联系的观点理解有关内容,通过求方程 的近似解感受函数、方程、不等式以及算法等内容 的有机结合,使学生体会知识之间的联系。 所以本节课的本质是让学生体会函数与方程的数形 结合思想、近似的思想、逼近的思想和初步感受程 序化地处理问题的算法思想。
一、教材分析
3、教学目标分析
根据教材内容和学生的实际情况,本节课的教学目 标设定如下: 1、通过具体实例理解二分法的概念及其适用条件, 了解二分法是求方程近似解的一种方法,会用二分 法求某些具体方程的近似解,从中体会函数与方程 之间的联系,体会程序化解决问题的思想。 2、借助计算器用二分法求方程的近似解,让学生 充分体验数形结合的思想、近似的思想、逼近的思 想和程序化地处理问题的算法的思想,并为下一步 学习算法做知识准备. 3、通过探究、展示、交流,养成良好的学习品质, 增强合作意识。
三、教学过程设计分析
问题6:方程x3+2x2+3=0的初始区间如何去选取呢? 老师介绍:利用几何画板作出函数图象.
f(x)=x3+2x2+3
从图形中发现,初始区间可以取[-3,0]. 设计意图: 从实际问题引入,引导学生去选用数形结合的思想求解 方程的解.
三、教学过程计分析
3、利用一分为二的思想,将区间逐步缩小. 问题7:我们刚刚得到的初始区间只是一个很粗略的范围, 只有将范围进一步缩小,才能得到更加准确的值.那我们如 何去缩小呢? 老师小故事引导:在一个风雨交加的夜里,从某水库闸房 到防洪指挥部的电话线路发生了故障.这是一条10km长的 线路,若每隔50米就有一根电线杆,如何迅速查出故障所 在? 如果沿着线路一小段一小段查找,困难很多.每查一 个点要爬一次电线杆子.10km长,大约有200多根电线杆 子呢. 想一想,维修线路的工人师傅怎样工作最合理?
课内比教学 课外访万家
3.1
3.1.2
函 数
用二分法求方程的近似解
与
说课人:周正
方
程
本节内容:普通高中课程标准实 验教科书(人教A版)《数学必 修1》第三章《函数的应用》的 第一节“函数与方程”的第二课 时---用二分法求方程的近似解.
教材分析
教法学法分析
教学过程设计分析
一、教材分析
1、教材的地位与作用 2、内容分析 3、教学目标分析 4、教材的重点和难点 5、学生情况分析
一、教材分析
本节课的教学难点: 对二分法原理的探究,对精确度、近似值的理解; 突破难点的方法:借助几何画板等计算机软件绘出 函数的图像,利用数形结合将抽象变为直观。
一、教材分析
5、学生情况分析
学生已初步理解了函数图象与方程的根之间的关系, 具备一定的用数形结合思想解决问题的能力,这为 理解函数零点附近的函数值符号提供了知识准备。 但学生仅是比较熟悉一元二次方程解与函数零点的 关系,对于高次方程、超越方程与对应函数零点之 间的联系的认识比较模糊,计算器的使用不够熟练, 这些都给学生学习本节内容造成一定困难。
一、教材分析
4、教材的重点和难点
本节课的教学重点: ①二分法原理及其探究过程; 突出重点的方法:通过生活中的实例,让学生经历 知识的形成过程,并通过数学中的应用加深对概念的 理解。
②用二分法求方程的近似解; 突出重点的方法:借助几何画板等计算机软件绘出 函数的图像,利用数形结合及其代数运算,列表格求 解方程的近似解。
三、教学过程设计分析
2、实际问题启发,寻求方程解法. 问题5:方程x3+2x2+3=0,我们将采取什么方法来求解呢? 老师做引导:在生活中,这样的思想我们应用的是比较 多.例如:公安人员在侦查一个案件的时候,首先要锁定 一个范围内的嫌疑人,再将范围缩小,最后确定目标. 设计意图: 通过生活中的实际问题,激发学生对解方程方法的思考, 找到二分法的雏形.
二、教法、学法分析
1、教学方法 “问题驱动”和启发探究式教学方法
2、学法指导 分组合作、互动探究、搭建平台、分散难点
3、教学手段 为了更直观,形象的突出重点,突破难点,增大
教学容量,优化课堂教学,提高教学效率,激发学 生的学习兴趣。采用生活中实例引入,并借助电脑、 投影仪、计算器等多媒体手段来辅助教学。
三、教学过程设计分析
2、复习方程的解与函数零点的关系和零点存在性定理 问题2:大多数一元方程没有公式可以求解,那我们可以用 什么方法来求解一元方程呢? 问题3:函数的零点,我们学过什么方法来寻求呢? 设计意图: ① 使学生知道方程的解可以转化到函数图形上求解(也即
数形结合的思想); ② 使学生知道方程的近似解是借助零点存在性定理求解的.
三、教学过程设计分析
(二)举例讨论,深化概念.
1、让学生自己举例,激发学生的求知热情. 问题4:大家有什么觉得不会解的方程吗?举一个实例一 起来讨论. 例如:方程x3+2x2+3=0的近似解(学生可能会举出一个能 求出精确解的方程,并加以说明不用求近似解). 设计意图: 将举例的主动权交给学生,让学生对知识点学习更有兴趣.
三、教学过程设计分析
(一)创设情境,感知概念 (二)举例讨论,深化概念
(三)实例探究,归纳定理 (四)综合应用,拓展思维
(五)总结整理,提高认识 (六)布置作业,独立探究
(七)板书设计 (八)过程分析
三、教学过程设计分析
(一)创设情境,感知概念
1、数学史引入 问题1:你会求哪些类型一元方程的解呢?你知道哪些 类型一元方程的求解公式呢? 数学史背景介绍: 9世纪,阿拉伯学者默罕默德.花拉子米发现了一元二次 方程的解.1545年,意大利数学家卡尔达诺(卡尔丹)在 《大法》一书给出了一元三次方程的求根公式. 后来,卡尔达诺的学生费拉里也提出一元四次方程的求 根公式.1824年,挪威数学家阿贝尔证实了n(n>4)次 方程公式没有可以求解方程的解. 设计意图: 通过对数学史的了解,引出本节课的学习内容,并引起 学生对认知冲突的思考,激起探求的热情.