1 分数乘法
六年级上册数学教案《1 分数乘法 》人教版
六年级上册数学教案《1 分数乘法》人教版一. 教材分析分数乘法是小学数学中的重要内容,也是学生理解数学的基础。
本节课的内容是在学生掌握了分数的意义、分数与整数的乘法的基础上进行的。
通过本节课的学习,让学生理解分数乘法的意义,掌握分数乘法的计算法则,并能够灵活运用分数乘法解决实际问题。
二. 学情分析六年级的学生已经掌握了分数的基本概念和分数与整数的乘法,因此对于分数乘法的学习有一定的基础。
但是,学生在分数乘法的计算过程中,容易出错,对于分数乘法的应用也有一定的困难。
因此,在教学过程中,需要教师引导学生理解分数乘法的意义,通过大量的练习,让学生熟练掌握分数乘法的计算法则,并能够灵活运用。
三. 教学目标1.理解分数乘法的意义,掌握分数乘法的计算法则。
2.能够运用分数乘法解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.分数乘法的计算法则。
2.分数乘法在实际问题中的应用。
五. 教学方法采用情境教学法、问题教学法、合作学习法等,引导学生通过自主学习、合作交流,掌握分数乘法的计算法则,并能够灵活运用。
六. 教学准备1.教学课件。
2.练习题。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入分数乘法的概念。
例如:妈妈买了2个苹果,每个苹果的重量是1/2千克,请问妈妈一共买了多少千克的苹果?2.呈现(10分钟)教师通过讲解,呈现分数乘法的计算法则。
分数乘法的计算法则:分子相乘的积做分子,分母相乘的积做分母。
3.操练(10分钟)学生进行分数乘法的计算练习。
教师给予个别辅导,纠正学生的错误。
4.巩固(10分钟)学生进行一些分数乘法的应用题练习,巩固所学知识。
5.拓展(10分钟)教师提出一些分数乘法的综合问题,引导学生进行思考和解答。
例如:已知一个长方形的长是1/2米,宽是1/3米,求长方形的面积。
6.小结(5分钟)教师引导学生总结本节课所学的内容,强化学生对分数乘法的理解和掌握。
7.家庭作业(5分钟)教师布置一些分数乘法的练习题,让学生回家进行巩固练习。
人教版数学六年级上册教案-第1单元 分数乘法-教材分析
人教版数学六年级上册教案-第1单元分数乘法-教材分析一. 教材分析分数乘法是小学数学的重要内容,本节课主要让学生掌握分数乘法的计算法则,并能够灵活运用解决实际问题。
人教版数学六年级上册第1单元分数乘法,通过丰富的实例和具有挑战性的练习,激发学生的学习兴趣,培养学生解决问题的能力。
二. 学情分析六年级的学生已经掌握了分数的基本知识,对分数的加减法有了一定的了解。
但是,学生在解决实际问题时,往往不能灵活运用分数乘法。
因此,在教学过程中,教师需要关注学生的学习需求,引导学生将理论知识与实际问题相结合。
三. 教学目标1.知识与技能:掌握分数乘法的计算法则,能够正确进行分数乘法运算。
2.过程与方法:通过实例分析,培养学生解决问题的能力,提高学生的数学思维。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.分数乘法的计算法则。
2.如何将分数乘法应用于实际问题。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解分数乘法的意义。
2.启发式教学法:教师提问,学生思考,激发学生的学习兴趣。
3.小组合作学习:培养学生团队合作,共同解决问题的能力。
六. 教学准备1.教学课件:制作与教学内容相关的课件,辅助教学。
2.练习题:准备具有代表性的练习题,巩固所学知识。
3.教学道具:准备与实例相关的道具,方便学生直观理解。
七. 教学过程1.导入(5分钟)利用生活实例,如做披萨,引入分数乘法的概念。
提问:“如果一个披萨分成8份,每份是1/8,现在有2个同学,如何分配这个披萨?”引导学生思考,激发学习兴趣。
2.呈现(10分钟)讲解分数乘法的计算法则,如a/b × c/d = (ac)/(bd)。
通过例题演示,让学生理解分数乘法的步骤。
3.操练(10分钟)让学生进行分数乘法的练习,教师巡回指导。
选取一些具有代表性的题目,让学生独立完成,并及时给予反馈。
4.巩固(10分钟)小组合作,解决实际问题。
北师大版小学数学五年级下册第三单元《分数乘法(一)》教学建议
分数乘法(一)(分数乘整数)学习目标1.经历分数乘法计算方法的探索过程,理解分数乘法的意义,体验直观模型与“转化”思想的运用。
2.掌握分数乘法的计算方法,能正确进行分数的乘法运算。
3.会解决有关的应用问题,体会分数乘法在生活中的应用。
编写说明本节内容是分数乘法的意义、计算方法与应用,是分数乘法单元的基础。
主情境是画有一个松树图案的五连方长方形纸,呈现了三个问题。
第一个问题是探究整数乘分数单位的乘法的意义(单位量是分数单位,单位数是整数,即表示某个分数单位的几倍)及其计算方法;第二个问题是探究整数乘分数的乘法的意义(即表示某个分数的整数倍)及其计算方法;第三个问题在交流算法的过程中归纳分数与整数相乘的计算方法。
有教师问,在以往的教学中,分数的意义很明确,几个几分之几就用分数乘整数,一个数的几分之几则用整数乘分数,但在教科书的“分数乘法(一)”中,3个15是多少,是用整数乘分数来列式,这样是不是表明整数乘分数与分数乘整数的意义相同呢?这实际上是乘法算式是否要区分“被乘数”和“乘数”的问题。
根据课程标准的精神,本套教科书中没有区分乘数和被乘数。
例如,在整数乘法的运算中,算式“4×6”既可以表示6个4相加,又可以表示4个6相加,即在不涉及具体问题情境下,可以代表两个意义,4×6=6+6+6+6或4×6=4+4+4+4+4+4都是对的。
反过来,6+6+6+6既可以写成4×6,也可以写成6×4;4+4+4+4+4+4既可以用4×6表示,也可以用6×4表示。
也就是一种意义可以用两种方式表示。
但在具体应用问题的情境中,不同的算式有时表示不同的含义,比如“有6个小朋友,每人有4支铅笔,一共有多少支铅笔”,4×6只代表6个4相加,当然这个实际问题也可以列出算式“6×4”。
在解决实际问题教学过程时,教师要注意让学生理解每个数的意义,鼓励他们用自己的语言表达算式的具体含义,但列成算式不要区分“被乘数”和“乘数”,即不要强调“被乘数”和“乘数”书写位置上的人为规定。
第一讲 分数的乘法及简单的应用
第一讲 分数的乘法及简单的应用一、分数乘法的意义:1.分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: 8 ×5 表示求 5 个 8 的和是多少? 也表示 8 的 5 倍是多少?9995× 8 表示求 5 的 8 是多少?992.分数乘分数是求一个数的几分之几是多少。
例如: 8 × 3 表示求 8 的 3 是多少?9494二、分数乘法的计算法则:1.分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2.分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3.为了计算简便,能约分的要先约分,再计算。
▲(注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
)4.分数连乘的计算方法:先约分,就是把所有的分子中可与分母相约的数先约分,再用分子乘分子作积的分子,分母乘分母作积的分母。
三、规律:(乘法中比较大小时)一个数(0 除外)乘大于 1 的数,积大于这个数。
一个数(0 除外)乘小于 1 的数(0 除外),积小于这个数。
一个数(0 除外)乘 1,积等于这个数。
四、分数混合运算的运算顺序依据:分数混合运算的运算顺序和整数的运算顺序相同。
没有括号的混合运算:同级运算从左往右一次运算;两级运算先算乘、除法,后算加减法。
有括号的混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的。
▲注:加法和减法叫做第一级运算;乘法和除法叫做第二级运算。
五、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a×b=b×a乘法结合律:a×b×c=(a×b)×c=a×(b×c)=(a×c)×b乘法分配律:a×(b+c)=a×b+a×c a×b+a×c= a×(b+c)1知识回顾1、整数乘法的意义:求几个的简便运算。
1单元 分数乘法
1/9×4 3/7×2 2/11×3 3/8×2
5/8×8 3/4×12 7/9×1 5/12×0
4、看谁能全对。
3/8×2 5/12×4 7/9×2 3/4×8
4/15×3 3/10×14 5/8×10 2/5×15
画图列式
讨论如何计算。
(画图解释算理)
算一算:
7/18×4 2/13×8
(5)归纳法则:观察这几道题的计算,想一想,分数乘整数应怎样计算呢?
课后札记
课题
整数乘分数
课时
1
课型
新授
教学
目标
1、使学生理解一个数乘分数的意义,掌握整数乘分数的计算法则,并理解算理。
2、通过推倒整数乘分数的计算法则,培养学生的推理能力。
3、在教学中培养学生认真计算,仔细检验的良好学习习惯。
目标调整
教学重难点
一个数乘分数的意义和整数乘分数计算法则的推导过程。
教师发展目标
练一练:
(7/9+5/6)×72
24×(3/4+7/12)
出示:计算
5/6×4/15×9/11
1、指名读题。
2、讨论:这道题应怎样计算?
3、比较一下,哪种方法简便?
你有什么体会?
练一练:
2/3×5/8×6/25
1/4×2/7×14/15
小结:要关注算式的运算特征;分数的简算避免通分,追求约分。
简便计算。
2、列式计算。
(1)4/5的3/4是多少?
(2)3/8吨的5/6是多少吨?
3、找出下面各题中的错误,并改正。
⑴3/5×2/5=6/5=1 1/5
⑵8/9×3/7=8/9×3/7=8/10=4/5
六年级上册数学课件 - 第1课时 分数乘法(一) 人教新课标(共49页PPT)
2021/11/29
【答案】
1 ;2 33
【解析】
(1)要求3天看了全书的几分之几,也就是求3个 1 9
用乘法计算;
是多少,
(2 )要求还剩全书的几分之几没有看,就用1减去3天看了全
书的几分之几即可。
3.涂一涂,算一算(先用颜色表示结果,再算一算)。
2021/11/29
【答案】
【解析】
13
13
1 ,×, 3 ,求1 的 3 是多少。
3
4 34
【解析】
左图是把这个正方形看作单位“1”,平均分成3份,涂色部分占了
1
1
其中的1份,用分数表示为 3
;再把这个正方形的
13
3
平均分成4份,
涂色部分占了其中的3份,也就相当于是求 3 的 4 是多少;根据一
个数乘分数的意义,用乘法计算。
5
1
3.
一块地有
(dm)
方法二
分数化成小数
2.1
×
3 4
= 2.1 × 0 .75
= 1.575(dm)
松鼠乐乐的尾巴有多长?你能列出算式吗?
方法一:小数化成分数
2.4 × 3
3 4
=
12 5
×
3 4
1
=
9 5
= 1 4 (dm) 5
方法二:分数化成小数
2.4 ×
3 4
=2.4 × 0.75
=1.8 (dm)
方法三:先约分再算
× D.
小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个,
再把这个正方形的 平均分成4份,涂色部分占了其中的3份,也就相当于是求 的 是多少;
左图是把这个正方形看作单位“1”,平均分成3份,涂色部分占了其中的1份,用分数表示为 ;
《分数乘法(一)》七要素
《分数乘法(一)》七要素全文共四篇示例,供读者参考第一篇示例:《分数乘法(一)》七要素分数是数学中一个非常重要的概念,它与整数一样,在我们的日常生活和学习中都有着广泛的应用。
在分数中,乘法是一个常见的运算方式,分数乘法也是我们经常需要用到的一种计算方法。
在这篇文章中,我们将介绍有关《分数乘法(一)》的七个要素,希望能帮助大家更好地理解和掌握分数乘法的知识。
第一要素:分数的乘法规则在分数的乘法中,我们需要牢记一个基本的规则:两个分数相乘,就是将它们的分子相乘得到新的分子,分母相乘得到新的分母。
两个分数相乘时,a/b * c/d = ac/bd。
这个规则是分数乘法的基础,只有掌握了这个规则,我们才能正确地进行分数的乘法运算。
第二要素:如何化简分数在进行分数乘法运算时,我们经常需要化简分数,使得最终的结果更加简洁和方便阅读。
化简分数的方法就是找到这个分数的最大公约数,并将分子和分母都除以这个最大公约数。
对于分数6/8来说,它的最大公约数是2,所以可以化简为3/4。
化简分数可以帮助我们更清晰地理解分数的大小和比较不同分数之间的大小关系。
练习是掌握任何知识的关键,分数乘法也不例外。
通过大量的练习,我们可以更加熟练地掌握分数乘法的规则和方法。
在练习过程中,我们可以尝试不同难度的题目,逐步提高我们的分数乘法能力。
不断地练习,才能让我们在实际应用中更加得心应手。
第四要素:应用实例分析分数乘法在我们的日常生活和学习中有着广泛的应用。
我们在做菜时需要按比例调整食材的数量,这就需要用到分数乘法;在做化学实验时需要计算物质的浓度,也需要用到分数乘法。
通过实际应用实例的分析,我们可以更好地理解分数乘法的作用和重要性。
分数乘法和整数乘法有着一定的联系,我们可以将整数看作是分母为1的分数来进行乘法运算。
整数5可以看作是5/1,那么分数5/1和整数5相乘的结果就是25/1=25。
了解和掌握分数与整数的联系,可以帮助我们更好地理解分数乘法的规则和运算过程。
西师大版六年级数学上册第一单元《分数乘法》优质课件
乘法算式:( )×(5)=( )
2.计算。
2
12
6=
7
7
5
20
12=
9
3
3 3
4 =
8 2
2
9 = 6
3
3
8 = 6
4
1 1
5 =
10 2
3
6
2=
5
5
5
5
3=
6
2
3
3.小货车每次运 吨货物,6次运多少吨货物?
4
3
9
6= (吨)
4
2
9
答:6次运 吨货物。
2
11
20
× = × =80(个)
1
答: 时加工零件80个。
下面的计算对吗?
1
7
1
× = ×
=1
没有理解约
分的含义。
1
计算整数乘分数时,整数只能
与分母进行约分。
7
× = ×
=49
1
9 5
5
63 × = 63 × =45
7
71
整数乘分数,用分数的分子与整
=
4
4
4
2 5 2 10
5 =
=
9
9
9
议一议
分数乘整数怎样计算?
分数乘整数,用分数的分子与整数相乘的积
作分子,分母不变。
例 2
算一算: ×
方法一: 用加法计算:
+
+ =
第一单元:分数乘法(讲义)-2024-2025学年人教版六年级数学上册
分数乘法(思维导图+知识梳理+典例分析+高频真题+答案解析)【分数乘法-知识点归纳】1、分数乘法的意义:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算.2、乘积是1的两个数叫做互为倒数.3、分数乘法法则:(1)带分数乘法:先把带分数化成假分数,然后再乘.结果是假分数时,要把假分数化成带分数或整数.(2)(2)分数乘以分数:用分子相乘的积作为分子,用分母相乘的积作为分母.为了使计算简便,在计算的过程中,能够约分的,要约分.(3)分数乘以整数或整数乘以分数:由于任何整数(0除外)都可以化成分母是1的假分数,分数乘以整数或整数乘以分数,都可以转化成分数乘以分数的形式.因此,在计算中,是用分数的分子和整数相乘的积作为分子,分母不变.在乘的过程中,如果有可以约分的数,可以先约分,这样,可以使计算的数字缩小,从而使计算变得简便.【分数乘整数-知识点归纳】1、分子乘整数,可以求出一共有多少个这样的分数单位,而分数单位的个数其实就是分子乘整数的积,因此整数乘分子作分子。
求几个分数单位的和,分数单位不变,也就是分母不变。
2、分数乘整数的意义:分数乘整数,也是表示几个相同加数相加,与整数乘法的意义相同。
3、分数乘整数的计算方法:分数乘整数,用分子乘整数的积作分子,分母不变。
其实就是计算分数单位的个数。
【整数乘分数-知识点归纳】1、一个数乘分数的意义就是求一个数的几分之几是多少。
2、“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)3、方法总结;(1)、整数与分数相乘,用分数的分子与整数相乘,分母不变;(2)、计算时能约分的可以先约分再计算出结果。
【分数乘分数-知识点归纳】分数乘法的计算法则1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
【典例1】在“世界无烟日”健康知识竞赛中,小星答对了50道题,小铭答对的题数比小星少15。
六年级上册第一单元分数乘法的讲解人教版
第一单元:分数乘法一、分数乘法的概念分数乘法是指在乘法运算中,其中有一个或两个乘数是分数,通过乘法运算规则,计算出分数的乘积。
分数乘法涉及到分数的乘法运算法则,要求掌握分数相乘的方法和技巧。
二、分数乘法的基本原理1. 分数乘法的定义分数乘法是指两个分数相乘的运算。
示例:1/2 × 3/4 = 3/82. 分数乘法的规则分数相乘时,先将两个分数的分子和分母分别相乘,得到的结果即为分数的乘积。
示例:1/3 × 2/5 = (1×2) / (3×5) = 2/153. 分数乘法的方法分数相乘时,可以先化简分数,然后再进行乘法运算得到最简分数,也可以先进行分子相乘和分母相乘,再进行化简得到最简分数。
示例:4/6 × 5/3 = 20/18 = 10/9三、分数乘法的实际应用1. 分数乘法在日常生活中的运用分数乘法在日常生活中有着广泛的应用,比如在烹饪中需要按照食谱中的比例计算食材的用量,就需要进行分数乘法的运算来得到准确的结果。
示例:如果食谱中需要用1/2杯的面粉,而需要一倍的食谱,则需要1/2 × 1 = 1/2杯的面粉。
2. 分数乘法在数学问题中的应用在解决数学问题中,也会遇到分数相乘的情况,需要根据题目要求进行分数乘法的运算。
示例:假设一个长方形的长为2/3米,宽为1/4米,求其面积。
解:长方形的面积为长乘以宽,即(2/3) × (1/4) = 2/12 = 1/6平方米。
四、分数乘法中的注意事项1. 分数乘法的注意事项在进行分数乘法运算时,需要注意分子相乘、分母相乘的顺序,并且最终的结果需要进行化简,得到最简分数形式。
示例:5/6 × 2/3 = (5×2) / (6×3) = 10/18 = 5/92. 分数乘法中的常见错误在分数乘法中,常见的错误包括忽略化简、分子错乘、分母错乘等,需要学生在练习分数乘法时要注意避免这些错误。
第1讲 分数乘法(学生版)(知识梳理+典例分析+举一反三+巩固提升)人教版
第1讲分数乘法知识点一:分数乘整数1. 分数乘整数的意义分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
2. 分数乘整数的计算方法分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
3. 分数乘整数的简便算法能约分的可以先约分,再计算,这样可以简便些。
知识点二:分数乘分数1. 分数乘分数的意义分数乘分数,表示求这个数的几分之几是多少。
2. 分数乘分数的计算方法用分子相乘的积作分子,用分母相乘的积作分母。
3. 分数乘法的简便运算能约分的要先约分,后计算,计算结果必须是最简分数或整数。
知识点三:小数乘分数1. 能约分的先约分再计算比较简便。
2. 可以把小数转化成分数来计算;如果分数能化成有限小数,也可以把分数化成小数来计算。
知识点四:分数乘法运算定律1. 应用乘法的运算定律时要做到:一看符号:看运算符号是不是符合运算定律的要求;二看数:看参与计算的数是否符合简便计算;三选定律:根据参与运算的数和符号,选择合适的运算定律;四计算:运用运算定律进行计算。
2. 连续求一个数的几分之几是多少的实际问题有两种解法:(1)用已知量(原始单位“1”的量)依次乘已知分率。
(2)先把各分率按顺序相乘,求出所求问题占原始单位“1”的量的分率,再用原始单位“1”的量乘这个分率。
(2.1)解题关键是明确每一步中谁是单位“1”。
(2.2)每一步中的数量关系是:单位“1”的量×比较量占单位“1”的几分之几=比较量。
3. 求比一个数多(或少)几分之几的数是多少的问题;已知一个部分量是总量的几分之几,求另一个部分量的问题。
两类问题都可以用以下两种解法:(1)单位“1”的量+单位“1”的量×这个数量比单位“1”的量多(或少)几分之几=这个数量(2)单位“1”的量× (1+这个数量比单位“1”的量多(或少)几分之几)=这个数量考点一:分数乘整数【例1】(2019秋•新泰市校级期中)12千克的是千克;24米的是米.1.(2019•岳阳模拟)与×3结果相同的算式是.2.(2019•益阳模拟)填空=5×=6×=3.(2019•长沙模拟)120米用去,还剩米.考点二:分数乘分数【例2】(2019•怀化模拟)看图写出下面算式的得数.×=.1.(2019•重庆模拟)×表示求的是.2.(2019•重庆模拟)小时的是小时.3.(2019•河南模拟)在横线上填上>、<或=.×××考点三:分数乘法运算定律及解决问题【例3】列式计算(1)36吨的是多少?(2)千克的是多少?1.5个是多少?的是多少?2.李叔叔在一块公顷的地里种菜,种黄瓜,种黄瓜的面积可以列式为你能在下图中表示出来吗?3.算一算,画一画.(1)如下图,将这些圆片的寻涂上蓝色,那么需要涂个圆片.(2)如果下面的长方形表示40,请在图中表示出40×.一.选择题(共6小题)1.下面各式中,计算结果最大的是()A.B.C.2.一辆汽车每小时行54千米,小时行驶的路程()54千米.A.大于B.小于C.等于3.×6和6×的()A.积不相等,意义不相同B.积相等,意义相同C.积相等,意义不相同4.(2020春•隆回县期末)两根铁丝的长都是4米,第一根用去,第二根用去米,则()剩下的长.A.无法判断B.第一根C.第二根5.(2019春•镇康县期中)比24千克多的是()千克.A.24+24×B.24+C.24×6.(2020•无锡)下面的大长方形都表示“1”,()的涂色部分可以表示×的积.A.B.C.二.填空题(共6小题)7.30个是,45千克的是千克.8.求16的是多少?方法一:可以先把16平均分成份,即可以求出其中的份是多少,然后再乘以,即可求出结果.算式:方法二可以直接用乘法算式:.9.计算:34×=×14=.10.赵老师给每位同学都发了一瓶350mL的矿泉水.圆圆喝了这瓶矿泉水的,乐乐喝了这瓶矿泉水的,圆圆喝了mL,乐乐喝了mL.11.①5的是,②4个是.12.甲数是18,乙数比甲数多,乙数是.三.判断题(共5小题)13.(2020春•宝鸡期末)1吨的和4吨的一样重.(判断对错).14.(2020•大同)两个假分数的积一定大于1..(判断对错)15.(2019•湖南模拟)×4=.(判断对错)16.(2019春•长春月考)8×==.(判断对错)17.(2020•旬阳县)商店有牛奶180箱,卖出后,还剩100箱.(判断对错)四.计算题(共1小题)18.计算51×=×25=×=12×=×=500×=×=1×2=五.应用题(共2小题)19.(2020春•雁塔区期末)笑笑有24本故事书,奇思故事书的本数是笑笑的,奇思的故事书本数是淘气故事书本数的.(1)奇思有多少本故事书?(2)淘气有多少本故事书?20.一个蔬菜大棚的面积是480m,其中一半种萝卜,种红萝卜的面积占整块萝卜地的.种红萝卜的面积占整个蔬菜大棚面积的几分之几?六.操作题(共1小题)21.(2019秋•洪泽区期中)在下面的长方形中画图,表示算式×.七.解答题(共4小题)22.120千米的是多少千米?23.5的是多少?4个是多少?的是多少?8个是多少?24.一瓶果汁重千克,20瓶果汁重多少千克?25.一杯牛奶重千克,那么杯牛奶重多少千克?。
六年级上册数学教案-一《分数乘法》整理和复习
六年级上册数学教案-一主题:分数乘法一、教学目标1.知识与技能:掌握分数乘法的基本概念和运算规则。
2.过程与方法:培养学生观察、总结、分析和解决问题的能力。
3.情感态度与价值观:培养学生认真对待数学学习的态度,培养学生团结合作、独立思考的品质。
二、教学重点与难点1.教学重点:分数乘法的概念及运算规则。
2.教学难点:复杂情境下的分数乘法运算。
三、教学准备1.教学工具:黑板、彩色粉笔、教学PPT。
2.教学资源:课件、习题。
四、教学过程第一步:导入1.通过一个生活中的例子引入分数乘法的概念,让学生了解分数之间的乘法关系。
第二步:讲解1.讲解分数乘法的运算规则,包括同分母分数相乘、异分母分数相乘和分数乘整数的情况。
2.结合具体例子,引导学生掌握分数乘法的运算方法。
第三步:实践练习1.学生进行课堂练习,巩固分数乘法的运算技巧。
2.布置一定量的课后习题,让学生自主复习和巩固所学内容。
五、教学拓展1.教师引导学生思考分数乘法在实际生活中的应用场景,培养学生将数学知识和生活实践相结合的能力。
2.给予学生一些挑战性的分数乘法问题,激发学生的学习兴趣和求知欲。
六、教学总结1.教师对本节课的教学内容进行总结,强调分数乘法的重要性和实际应用。
2.对学生的表现进行肯定和指导,引导学生对学习进行反思和总结。
七、作业布置1.布置一定量的分数乘法习题,学生完成后及时批改,查漏补缺。
2.鼓励学生开展分数乘法应用题的探究,提高解决问题的能力。
八、课后反思1.教师及时总结和反思本节课的教学过程,发现问题并及时调整教学策略。
2.学生可以根据自己的理解情况和学习感受对教学反馈,促进教学过程的优化和改进。
九、延伸拓展1.学生可以根据自己的兴趣和能力深入学习分数乘法的相关知识,拓展数学知识。
2.结合其他学科知识,进行跨学科融合学习,培养学生综合素质。
十、如何进行评价1.考核学生对分数乘法概念的掌握程度和分数乘法运算的技术水平。
2.评价学生的课堂表现、作业完成情况以及对分数乘法应用的掌握能力。
1分数乘法知识点总结
知识点1:分数乘法的意义分数乘整数的意义(即整数分数⨯):求一个分数的几倍是多少,或者求几个相同分数的和是多少。
例如:332⨯,表示3个32相加是多少,还表示32的3倍是多少。
一个数乘分数的意义:就是求一个数的几分之几是多少。
例如: 5×98表示5的98是多少。
例 看图列示计算。
()()+()()=()()×( )=()() 21×()()=103练 (1)203+203+203+203=( )×( ) (2)103×2表示( )。
(3) 103×53表示( )(4) 12个65是( );24的32是( ),103的4倍是( )。
(5) 先在长方形中涂色表示它的34,再画出斜线表示34与25的积,并完成填空34×25=__________。
知识点2:分数乘整数分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
如:112×5=1152⨯=1110例 填空题。
(1)54平方米=( )平方分米 12511千克=( )克; (2)23升=( )毫升 43千米=( )分米。
练 1、计算下面各题。
2417×42 4152⨯ 8125⨯20× 34 8×732、3、判断下列各题计算是否正确,若不正确则找出原因并改正。
(1)(2)知识点3:分数乘分数计算方法:分子相乘的积作分子,分母相乘的积作分母。
用字母表示为a b ×c d =ca db ⨯⨯(a ≠0,b ≠0) 其中分数为带分数时,先将带分数化为假分数,再按“分子相乘的积作分子,分母相乘的积作分母”进行计算。
例如:157513751312=⨯=⨯。
小数乘分数:小数与分子直接相乘然后约分,或者先把小数转化成分数再进行运算。
例 5375⨯ = 2914×23 0.8×51练 67 ×78 = 59 ×815 = 87×74=56 ×1.2= 4.5 × 35 = 167 ×78=43×95= 16×27= 53×610=0×99100= 37×37= 522×1110=2、计算。
五年级数学分数乘法1
第一单元 分数乘法课题分数乘法(一)课型新授课教1. 结合详尽情境,在操作活动中,研究并理解分数乘整数的意义。
学 目2.研究并掌握分数乘整数的计算方法,能正确计算。
标3.能解决简单的分数乘整数的实责问题, 领悟数学与生活的亲近 联系。
授课重点会用分数乘整数的计算法规真确进行计算。
授课难点解析和解决分数乘整数的实责问题。
教师指导与授课过程 学生学习活动过程一,复习整数乘法的意义1. 什么叫整数乘法? 学生回忆整数乘法,并回答什就是求几个相同加数的和 么叫整数乘法。
的简略运算。
2. 出示题目,学生进 行计算(1)6+6+6=6×3 二、新授:1、出示题卡1、学生仔细阅读题卡,理解 1 个图案占一张彩纸的 题意否,列式计算。
1/5 ,3 个图案占这张彩纸 2、学生交流各自计算的方法。
的几分之几?3、全班进行交流。
2、引导学生用涂一涂加法1 1 1 1+1+13 计算,乘法计算三种分式 5+5+5=5= 5来解决问题。
3×1 31111 3×5 =5 +5 +5 =5 = 5设计妄图经过复习整数乘法的意义,过渡到分数乘法的意义,学习易于理解。
在交流各自的语言地理学的过程中,让学生领悟分数乘整数的意义与整数乘法的意义是相同的,即求几个相同加数的和的简略运算。
教师指导与授课过程 学生学习活动过程 设计妄图三、涂一涂,算一算 学生打开教科书,选涂一涂, (1)2 个 3/7 的和是多再列式计算。
少?学生审题后,涂一涂,再列式 计算。
33×25 (2)3 个 5/16 的和是多 7×2= 7 7 少?全班交流5/16 ×3=5× 3/16=15/16四、练习牢固学生独立完成在作业本上1、 5 个 3/8 是多少?2、 4 个 2/17 是多少?3、 6 个 3/25 是多少?板书设计:分数乘法分数乘整数例题:意义: 法规:授课反思:帮助学生进一步领悟分数乘整数的定义,同时还可以够帮助学生寸步领悟“分数乘整数,分子和整数相乘,分母不变”的道理。
最新人教版六年级上册数学第一章《分数乘法》精品教学课件及课后练习讲解(208页)
2000×
500
=
1
= 500(只)
答:我国约有500只。
儿童的负重最好不要超过体重的 。如果长期背负过 重物体,会导致腰痛及背痛,严重的甚至会妨碍骨骼成 长。王明的书包超重吗?为什么?
30× = 4.5(kg) 4.5kg<5kg
答:王明的书包超重了。
体重30kg 书包重5kg 王明
已知a和b都是不为0的整数,如果
答: 这个人身高 米。
课堂小结
这节课你们都学会了哪些知识?
分数乘法的简便算法 分数乘分数在计算过程中,也可以先约分再相乘, 这样可以使计算简便。 约分后的结果要写在整数的上面、下面,还是分子与 分子相乘,分母与分母相乘。
人教版 数学 六年级 上册
1 分数乘法
练习一
复习旧知 课堂小结
巩固练习 课后作业
3
分数乘整数,用分数的分子和整数 相乘的积作分子,分母不变。
能约分要先 约分再计算
小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个,3人
一共吃多少个?
1
×3 =
= (个) 3
答:3人一共吃 个。
课堂练习
一袋面包重 kg。
×3 =
= (kg)
3袋重?kg
答:3袋面包重 kg。
改写算式
++ +
=
×4
=3
分数乘小数
情境导入
探究新知
课堂练习
课堂小结
课后作业
情境导入
× = =
计算下面各题
×2
1 = ×2
25 =
×
1
1
=×
35
=
松鼠的尾巴长度约占身体
我身体长2.1dm
第一单元分数乘法
第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a(b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
《分数乘法一》ppt课件
01
分数乘法在科学中也有着广泛 的应用,例如在化学反应速率 、生物繁殖和物理学中的波动 等方面。通过学习分数乘法, 学生可以更好地理解和解决科
学问题。
02
在化学反应速率方面,学生可 以利用分数乘法来计算化学反 应在不同条件下的速率。例如 ,计算温度升高后化学反应速 率的增加量时,学生需要使用 分数乘法来计算温度指数的倒
分数乘法的结合律
总结词
分数乘法的结合律是指三个分数 相乘时,改变因数的组合方式, 其积不变。
详细描述
例如,(a/b)×(c/d)×(e/f)
=
(a/b)×[(c×e)/(d×f)],改变因数
的组合顺序,其乘积不变。
分数乘法的分配律
总结词
分数乘法的分配律是指一个数与两个 分数相乘时,可以分别与这两个分数 相乘,然后将所得的积相加。
数。
03
在生物学中,学生可以利用分 数乘法来理解生物种群的繁殖 和增长。例如,在研究种群增 长时,学生需要使用分数乘法 来计算繁殖一代后种群数量的
变化。
04
在物理学中的波动方面,学生 可以利用分数乘法来理解波的 传播和干涉现象。例如,在研 究声波的干涉时,学生需要使 用分数乘法来计算不同波源产
生的波的叠加效应。
具。
分数乘法的应用
在日常生活和工作中,常常会遇到需要使用分数乘法来解决的问题。例如,在计算 物品的折旧、计投资回报率等场景中,都需要使用分数乘法。
在数学问题中,分数乘法可以用于解决一些复杂的数学问题,如求解分数的加减法 、求解分数的方程等。
在物理和化学实验中,分数乘法可以用于计算实验结果的不确定度、误差传递等。
生活中的问题。
01
例如,在食品分配方面,学 生可以运用分数乘法来计算 每个人应该得到的食品数量
1 分数乘法 一等奖创新教案
1 分数乘法一等奖创新教案教学设计年级五年级科目数学设计者课题分数乘法三——分数乘分数教材简析本内容是北师大版五年级数学下册第三单元的内容。
该单元是在学习异分母分数加减法和整数乘分数的基础上展开教学的。
同时又是学习分数除法和百分数的重要基础。
本节课的教学要依托“求一个数的几分之几用乘法计算”进行教学,在引导学生列出分数乘分数的算式后,引导学生用折纸的方法理解分数乘分数的计算方法。
数形结合的思想在帮助图谱难点上有很重要的作用。
教学目标1、使学生懂得分数乘分数的算理,并能运用算理正确解决实际问题。
2、通过在具体情境中动手操作(折纸),自主探究的基础上理解分数乘分数的计算方法。
3、发展学生的观察、推理能力,培养数形结合意识。
教学重点难点通过对整数乘分数意义的复习,帮助学生理解分数乘分数的意义,通过动手操作使学生明白分数乘分数的算理,掌握分数乘分数的计算方法,能够解决简单的分数乘分数问题。
导学方法激趣导入复习迁移实验探究教学准备课件、长方形纸、彩笔、纸条(4张)一、谈话激趣引入,理解分数乘分数的意义1、师:同学们,你们想不想每天都没有家庭作业?只要完成老师的任务你就可以每天不用做家庭作业,让我们来看一看是什么样的任务?(课件出示:有4张纸条,每天去掉它的1/2,什么时候去完什么时候就不用做家庭作业。
)2、师:这个任务好实现吗?能实现吗?让我们一起来试一试。
(1)我这里有4张纸条,第一次去掉它的1/2剩下几分之几?(对,去掉二分之一还剩二分之一。
)(板书:一些纸每次剩下二分之一剩下几张纸)(2)第一次拿走二分之一,剩下几分之几?谁的二分之一?4的二分之一如何列式?4乘1/2,为什么用乘法计算?4乘1/2等于多少?(课件出示:求一个数的几分之几是多少,用乘法计算。
)(3)第二次拿走谁的几分之几?剩下谁的几分之几?如何列式?等于多少?(第二次拿走2的1/2?剩下2的1/2,列式为2乘1/2等于1)(4)第三次拿走谁的几分之几?剩下谁的几分之几?如何列式?等于多少?(第三次拿走1的1/2?剩下1的1/2,列式为1乘1/2等于1/2)(5)第四次拿走谁的几分之几?剩下谁的几分之几?如何列式?等于多少?师:刚才我们求4的1/2,2的1/2,1的1/2时都用乘法计算,现在求1/2的1/2你认为应该用什么方法计算?3、我们回过头来在读这句话,大家想一想求一个数的几分之几用乘法计算,这个数既可以是整数也可以是分数,所以不论求什么数的几分之几是多少都用乘法计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学例4 一、引入情境,探究新知
(三)巩固练习,提升认识
1. 计算下面各题
1 1 4 = × 7 4 7
3 4 8 = × 10 15 9
3 9 = 6× 5 10
二、巩固练习,提升认识
计算下面各题。
3 2 2 = × 5 15 9 7 2 6 = × 3 9 7 1 4 5 = × 2 5 8
直接说出得数。
2 8 ×4 = 15 15
5 10 ×8 = 3 12 3 3 = 2× 4 2
2 ×0 =0 3
2 2 = ×1 7 7
2 8 ×4 = 9 9
问题:直接说出得数,并说说你是怎样想的。
四、布置作业
作业:第6页练习一,
第1题、第2题、第3题。
分数乘法
例2 一个数的几分之几是多少
例3 分数乘分数的计算 例4 分数乘法的简便计算
教学例3 一、引入情境,探究新知
(二)解决问题,提炼方法
3. 怎样列式呢?你是怎样想到的? 1 1 1 1 (求 公顷的 是多少,可以用 表示。) × 2 5 2 5 1 4. 请你用一张纸动手折一折、画一画,用阴影表示出 × 2 1 1 的意思。 公顷的 ?公顷
1 公顷 2 2 5
1 5
5. 怎样计算呢?请你写出计算过程。 1 预设: × 2
2 ×0 =0 9
7 7 ×1 = 9 9
3 ×3 =1 9
问题:直接说出得数,并说说你是怎样想的。
二、引入情境,探究新知
(一)出示信息,明确问题
教学例5,出示信息: 松鼠的尾巴长度约占身体的长度的 我身体长2.1dm。 3 。 4
我身体长2.4dm。
乐乐
欢欢 (1)松鼠欢欢的尾巴有多长? (2)松鼠乐乐的尾巴有多长?
一、引入情境,探究新知
(二)解决问题,提炼方法
问题:1. 观察每组的两个算式,看看它们有什么关系。 1 1 1 1 × × 2 3 3 2
1 2 ( × )× 4 3 1 1 ( + )× 2 3 3 5 1 5 1 2 3 ×( × ) 4 3 5 1 × 2 1 + 5 1 × 3 1 5
2. 从这些算式中,你发现了什么规律?(左右两边的结果相同。)
教学例4 一、引入情境,探究新知
(二)解决问题,提炼方法
9 1. 要求乌贼30分钟可以游多少千米,怎样列式?( ×30 ) 10 2. 请你独立计算。
预设1: 解决问题(2)乌贼30分钟可以游多少千米?
9 9×30 270 = ×30= 10 10 10
研讨问题:这个结果是不是最简 分数?
27 9 9×30 270 = 预设2: =27 ×30= 10 10 10 研讨问题:方法2和方法3的约分 1 3 9 9 方法你更喜欢哪个? 预设3: ×30 =27 ×30= 10 10 1 小结:你觉得分数乘法该怎样计算呢?(分数乘分数,用分子相乘的积作 分子,用分母相乘的积作分母。为了计算简便,可以先约分再乘。)
观察1:上面两个问题它们都是求什么呢? (求一个数的几分之几是多少。) 观察2:上面两个算式的计算过程有什么相同之处? (分子相乘的积做分子,分母相乘的积做分母。)
教学例3 一、引入情境,探究新知
(三)巩固练习,提升认识
只列式,不计算。 1 3 ( 1) kg的 是多少千克? 2 5 7 4 ( 2) kg的 是多少千克? 12 7 1 3 × 2 5 7 12 × 4 7
三、巩固练习 提高认识
1. 做一做 3 1 = 1.2 × 5 2 3 3 = 2.5 × 2 5 7 5 = 1.4 × 6 6
5 =2 2.4 × 6
3 3 = 0.8 × 5 4
3 6 × 3.2 = 5 8
四、布置作业
作业:第10页练习二,
第1题、第3题、第4题。
分数乘法
例6 分数混合运算 例7 利用运算定律计 算分数混合运算
教学例4 一、引入情境,探究新知
(二)解决问题,提炼方法
4 9 预设1: × 45 10 4 9 预设2: × 45 10 2 9×4 2 36 = = = (km) 10×45 450 25 25 1 2 2 9× 4 = = (km) 10×45 25 5 5
2 1 4 9 4 9 2 预设3: = × × = (km) 45 10 45 10 25 5 5 比较三种约分的过程有什么不同,你喜欢哪个?说说你的想法。
小结:整数乘法的交换律、结合律和分配律,对于分数乘法也适用。
二、运用定律 简便计算
例7 3 1 ×( ×5) 5 6 5 1 ( + )×12 6 4
5 3 9 = × 21 38 20
5 6 =2 × 3 5
1 3 3 = × 2 22 11
问题:说说你是怎样想的。
三、布置作业
作业:第6页练习一,
第4题、第5题、第6题。
分数乘法
分数乘小数
一、复习导入
直接说出得数。
3 3 = 4× 2 8 2 2 ×3 = 5 15 5 5 = ×6 2 12
教学例4 一、引入情境,探究新知
(一)出示信息,明确问题
例4:无脊椎动物中游泳最快的是乌贼, 9 它每分钟可游 km。 10 4 (1)李叔叔每分钟游的距离是乌贼的 。李叔叔每分钟游多少千米? 45 (2)乌贼30分钟可以游多少千米? 解决问题(1)李叔叔每分钟游多少千米? 问题:1. 你知道了什么? 4 2. 你是怎样理解“李叔叔的游泳速度是乌贼的 ”这句话的? 45 (把乌贼的速度平均分成45份,李叔叔的游泳速度有这样的4份。)
பைடு நூலகம்
研讨问题:你是怎样想的?(把2.1转成分数进行计算) 预设2:2.1×0.75=1.575(dm)
研讨问题:你是怎样想的?(把
3 转成小数进行计算) 4
二、引入情境,探究新知
(二)解决问题,提炼方法
4. 要求“松鼠乐乐的尾巴有多长”怎样列式?你是怎样想的? 3 (求“松鼠乐乐的尾巴有多长”列式:2.4× ) 4 5. 怎样计算呢?请你试一试。 24 预设1: × 10 3 9 = (dm) 4 5
1 1×1 1 = = (公顷) 10 2 × 5 5
教学例3 一、引入情境,探究新知
(二)解决问题,提炼方法
解决问题(2)种玉米的面积是多少公顷? 3 1. 你是怎样理解“种玉米的面积占 ”这句话?(把这块地 5 平均分成5份,种玉米的面积占3份。) 1 3 3 1 2. 怎样列式呢?(求 公顷的 是多少,可以用 表示。) × 2 5 5 2
问题:1. 你知道了什么? 2. 要求“松鼠欢欢的尾巴有多长”怎样列式?你是怎样想的?(求“松鼠 3 3 欢欢的尾巴有多长”列式:2.1× 就是求2.4的 是多少。) 4 4
二、引入情境,探究新知
(二)解决问题,提炼方法
3. 怎样计算呢?请你试一试。 21 × 预设1: 10 3 63 = (dm) 4 40
问题:1. 你知道了什么? 1 1 桶是多少升”怎样列式?(12 × 2. 要求“ ) 2 2 3. 你是根据什么列算式的?(每桶的体积×桶数=总体积)
1 ( ) 4. 12 × 表示求半桶水的体积,就是求12L的一半,也就是求12L的( ) 。 2
教学例2 一、引入情境,探究新知
(一)出示信息,明确问题
1 4 预设1: ( + )×2 2 5
1 预设2: ×2 + 2 1 m 2
4 m 5 问题:1. 分数混合运算的顺序和整数的相同,请你计算出上面两道题的结果。 2. 通过计算你有什么发现? 1 4 ( + )×2 2 5 1 = ×2 + 2 4 ×2 5
4 ×2 5
小结:两种方法的计算结果相同;分数混合运算的顺序与整数混合运算的 顺序相同。)
分数乘法
分数乘整数
一、引入情境,探究新知
(一)出示信息,明确问题
例1:小新、爸爸、妈妈一起吃一个蛋糕,每 2 人吃 9 个,3人一共吃多少个? 问题:1. 你知道了什么? 2. 你能试着用图表示出题意吗?
二、引入情境,探究新知
(二)探究意义,感悟方法 1. 画示意图表示题意
?个
2. 画线段图表示题意
三、巩固练习,提升认识
3 一袋面包重 kg。 10
3袋重?kg
问题:1. 你知道了什么? 2. 解决“3袋重多少千克”这个问题,请你列出算式并计算。 3 9 3 9 = 预设1: 预设2:3 × ×3 = 10 10 10 10
小结:观察上面两道题的计算过程,说说分数与整数相乘是怎样计算的。
三、巩固练习,提升认识
一、引入情境,探究新知
(一)出示信息,明确问题
教学例6,出示信息: 一个画框的尺寸如右图,做这个 画框需要多长的木条? 1 m 2 4 m 5
问题:1. 你知道了什么? 2. 要求做这个画框需要多长的木条也就是求什么? (求这个长方形的周长。)
3. 可以怎样列式?
一、引入情境,探究新知
(二)解决问题,提炼方法
教学例4 一、引入情境,探究新知
(二)解决问题,提炼方法
例4:无脊椎动物中游泳最快的是乌贼, 9 它每分钟可游 km。 10
3. 求李叔叔每分钟游多少千米怎样列式?你是怎样想的?(求李叔叔 9 4 4 9 每分钟游多少千米就是求 的 是多少,列式: ) × 10 45 45 10 4. 怎样计算呢?请你试着做一做。
教学例3 一、引入情境,探究新知
(一)出示信息,明确问题
1 李伯伯家有一块 公顷的地。 2
种土豆的面积占这块地的 3 种玉米的面积占 。 5
(1)种土豆的面积是多少公顷? (2)种玉米的面积是多少公顷?
1 , 5
解决问题(1)种土豆的面积是多少公顷? 问题:1. 你知道了什么? 1 2. 你是怎样理解“种土豆的面积占这块地的 ”这句话的意思的? 5 (把这块地平均分成5份,种土豆的面积占1份。)