七年级上学期直线射线线段习题
【数学】七年级上册直线、射线、线段、角(同步练习题三套含答案)
直线、射线、线段、角(同步练习题三套)直线、射线、线段同步练习题(一)一.选择题1.两根木条,一根长18cm,一根长22cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.2cm或20cm 2.延长线AB到C,使得BC=AB,若线段AC=8,点D为线段AC的中点,则线段BD 的长为()A.2B.3C.4D.53.如图,点C是线段BD之间的点,有下列结论①图中共有5条线段;②射线BD和射线DB是同一条射线;③直线BC和直线BD是同一条直线;④射线AB,AC,AD的端点相同,其中正确的结论是()A.②④B.③④C.②③D.①③4.下列说法中,正确的是()A.若线段AC=BC,则点C是线段AB的中点B.任何有理数的绝对值都不是负数C.角的大小与角两边的长度有关,边越长角越大D.两点之间,直线最短5.平面内不同的两点确定一条直线,不同的三点最多确定三条直线,若在平面内的不同的n个点最多可确定36条直线,则n的值为()A.6B.7C.8D.96.如图,工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖.用数学知识解释其中道理,正确的是()A.两点之间,线段最短B.射线只有一个端点C.两直线相交只有一个交点D.两点确定一条直线7.下列说法中正确的个数为()(1)如果AC=CB,则点C是线段AB的中点;(2)连结两点的线段叫做这两点间的距离;(3)两点之间所有连线中,线段最短;(4)射线比直线小一半;(5)平面内3条直线至少有一个交点.A.1个B.2个C.3个D.4个8.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.经过两点有一条直线,并且只有一条直线B.两条直线相交只有一个交点C.两点之间所有连线中,线段最短D.两点之间线段的长度,叫做这两点之间的距离9.下列语句:①不带“﹣”号的数都是正数;②如果a是正数,那么﹣a一定是负数;③射线AB和射线BA是同一条射线;④直线MN和直线NM是同一条直线,其中说法正确的有()A.1个B.2个C.3个D.4个10.如图是北京地铁的路线图,小明家住复兴门,打算趁着放假去建国门游玩,看了路线图后,小明打算乘坐①号线地铁去,认为可以节省时间,他这样做的依据是()A.垂线段最短B.两点之间,直线最短C.两点确定一条直线D.两点之间,线段最短二.填空题11.若两条直线相交,有个交点,三条直线两两相交有个交点.12.在直线上任取一点A,截取AB=16cm,再截取AC=40cm,则AB的中点D与AC的中点E之间的距离为cm.13.已知线段AB,在AB的延长线上取一点C,使AC=2BC,若在AB的反向延长线上取一点D,使DA=2AB,那么线段AC是线段DB的倍.14.已知:如图,B,C两点把线段AD分成2:4:3三部分,M是AD的中点,CD=6cm,则线段MC的长为.15.如图,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是.三.解答题16.已知线段AB,在AB的延长线上取一点C,使BC=3AB,在BA的延长线上取一点D,使DA=2AB,E为DB的中点,且EB=30cm,请画出示意图,并求DC的长.17.课间休息时小明拿着两根木棒玩,小华看到后要小明给他玩,小明说:“较短木棒AB 长40cm,较长木棒CD长60cm,将它们的一端重合,放在同一条直线上,此时两根木棒的中点分别是点E和点F,则点E和点F间的距离是多少?你说对了我就给你玩”聪明的你请帮小华求出此时两根木棒的中点E和F间的距离是多少?18.已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.19.已知点C,D在线段AB上(点C,D不与线段AB的端点重合),AC+DB=AB.(1)若AB=6,请画出示意图并求线段CD的长;(2)试问线段CD上是否存在点E,使得CE=AB,请说明理由.参考答案与试题解析一.选择题1.【解答】解:如图,设较长的木条为AB=22cm,较短的木条为BC=18cm,∵M、N分别为AB、BC的中点,∴BM=11cm,BN=9cm,∴①如图1,BC不在AB上时,MN=BM+BN=11+9=20cm,②如图2,BC在AB上时,MN=BM﹣BN=11﹣9=2cm,综上所述,两根木条的中点间的距离是2cm或20cm;故选:D.2.【解答】解:∵BC=AB,AC=8,∴BC=2,∵D为线段AC的中点,∴DC=4,∴BD=DC﹣BC=4﹣2=2;故选:A.3.【解答】解:①图中共有6条线段,错误;②射线BD和射线DB不是同一条射线,错误;③直线BC和直线BD是同一条直线,正确;④射线AB,AC,AD的端点相同,正确,故选:B.4.【解答】解:A、若线段AC=BC,则点C是线段AB的中点,错误,A、B、C三点不一定共线,故本选项错误;B、任何有理数的绝对值都不是负数,正确,故本选项正确;C、应为:角的大小与角两边的长度无关,故本选项错误;D、应为:两点之间,线段最短,故本选项错误.故选:B.5.【解答】解:∵平面内不同的两点确定1条直线,可表示为:=1;平面内不同的三点最多确定3条直线,可表示为:=3;平面内不同的四点确定6条直线,可表示为:=6;以此类推,可得:平面内不同的n点可确定(n≥2)条直线.由已知可得:=36,解得n=﹣8(舍去)或n=9.故选:D.6.【解答】解:工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖,则其中的道理是:两点确定一条直线.故选:D.7.【解答】解:(1)如果AC=CB,则点C是线段AB垂直平分线上的点,原来的说法错误;(2)连结两点的线段的长度叫做这两点间的距离,原来的说法错误;(3)两点之间所有连线中,线段最短是正确的;(4)射线与直线都是无限长的,原来的说法错误;(5)平面内互相平行的3条直线没有交点,原来的说法错误.故选:A.8.【解答】解:某同学用剪刀沿直线将一片平整的荷叶剪掉一部分(如图),发现剩下的荷叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是:两点之间所有连线中,线段最短,故选:C.9.【解答】解:①不带“﹣”号的数不一定是正数,错误;②如果a是正数,那么﹣a一定是负数,正确;③射线AB和射线BA不是同一条射线,错误;④直线MN和直线NM是同一条直线,正确;故选:B.10.【解答】解:由图可知,乘坐①号地铁走的是直线,所以节省时间的依据是两点之间线段最短.故选:D.二.填空题(共5小题)11.【解答】解:两条直线相交,有1个交点,三条直线两两相交有1或3个交点.故答案为:1,1或3.12.【解答】解:①如图1,当B在线段AC上时,∵AB=16cm,AC=40cm,D为AB中点,E为AC中点,∴AD=AB=8cm,AE=AC=20cm,∴DE=AE﹣AD=20cm﹣8cm=12cm;②如图2,当B不在线段AC上时,此时DE=AE+AD=28cm;故答案为:12或28.13.【解答】解:如下图所示:设AB=1,则DA=2,AC=2,∴可得:DB=3,AC=2,∴可得线段AC是线段DB的倍.故答案为:.14.【解答】解:∵B,C两点把线段AD分成2:4:3三部分,∴设AB=2x,BC=4x,CD=3x,∵CD=6cm,即3x=6cm,解得x=2cm,∴AD=2x+4x+3x=9x=9×2=18cm,∵M是AD的中点,∴MD=AD=×18=9cm,∴MC=MD﹣CD=9﹣6=3cm.故答案为:3cm.15.【解答】解:根据线段的性质:两点之间线段最短可得,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是两点之间线段最短.故答案为:两点之间线段最短.三.解答题(共4小题)16.【解答】解:如图:∵E为DB的中点,EB=30cm,∴BD=2EB=60cm,又∵DA=2AB,∴AB=BD=20cm,AD=BD=40cm,∴BC=3AB=60cm,∴DC=BD+BC=120cm.17.【解答】解:如图1,当AB在CD的左侧且点B和点C重合时,∵点E是AB的中点,∴BE=AB=×40=20cm,∵点F是CD的中点(或点F是BD的中点)∴CF=CD=×60=30cm(或BF=CD=×60=30cm),∴EF=BE+CF=20+30=50cm(或EF=BE+BF=20+30=50cm);如图2.当AB在CD上且点B和点C重合时,∵点E是AB的中点,∴BE=AB=×40=20cm,∵点F是CD的中点(或点F是BD的中点),∴CF=CD=×60=30cm(或BF=CD=×60=30cm),∴EF=CF﹣BE=30﹣20=10cm(或EF=BF﹣BE=30﹣20=10cm).∴此时两根木棒的中点E和F间的距离是50cm或10cm.18.【解答】解:(1)当m=4时,BC=4,又∵AB=6,∴AC=4+6=10,又M为AC中点,∴AM=MC=5,∴BM=AB﹣AM,=6﹣5=1;(2)∵AB=6,BC=m,∴AC=6+m,∵M为AC中点,∴,①当D在线段BC上,M在D的左边时,CD=n,MD=MC﹣CD==;②当D在线段BC上,M在D的右边边时,CD=n,MD=DC﹣MC=n﹣=;③当D在l上且在点C的右侧时,CD=n,MD=MC+CD=+n=.19.【解答】解:(1)如图所示:∵AC+DB=AB,AB=6,∴AC+DB=2,∴CD=AB﹣(AC+DB)=6﹣2=4;(2)线段CD上存在点E,使得CE=AB,理由是:∵AC+DB=AB角同步练习试题一、选择题(本大题共12小题,共36分)1.如图,下面四种表示角的方法,其中正确的是()。
七年级数学上册直线、射线、线段专题练习
七年级数学上册直线、射线、线段专题练习一、选择题1.如图,下列不正确的几何语句是()A.直线AB与直线BA是同一条直线B.射线OA与射线OB是同一条射线C.射线OA与射线AB是同一条射线D.线段AB与线段BA是同一条线段2.厦深铁路起点厦门北站,终点深圳北站.汕尾鲘门站、深圳坪山站在其沿线上,它们之间有惠东站、惠州南站,那么在鲘门站和坪山站之间需准备火车票的种数为(任何两站之间,往返两种车票)()A. 8种B. 10种C. 12种D. 14种3.如图所示,图中共有几个线段()A. 4B. 5C. 10D. 154.如图,已知点M是线段AB的中点,N是线段AM上的点,且满足AN:MN=1:2,若AN=2cm,则线段AB=()A. 6cmB. 8cmC. 10cmD. 12cm5.如图,在数轴上有A、B、C、D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A、D两点表示的数的分别为-5和6,点E为BD的中点,那么该数轴上上述五个点所表示的整数中,离线段BD的中点最近的整数是()A. -1B. 0C. 1D. 26.如图,工作流程线上A、B、C、D处各有一名工人,且AB=BC=CD=1,现在工作流程线上安放一个工具箱,使4个人到工具箱的距离之和为最短,则工具箱安放的位置()A.只能是A或D处B.线段BC的任意一点处C.只能是线段BC的中点E处D.线段AB或CD内的任意一点处二、填空题AD,求BC是7.如图,一条直线上顺次有A,B,C,D四点,C为AD中点,BC-AB=14AB的多少倍?8、先阅读下面材料,然后解答问题:材料一:如图(1),直线l上有A1、A2两个点,若在直线l上要确定一点P,且使点P到点A1、A2的距离之和最小,很明显点P的位置可取在A1和A2之间的任何地方,此时距离之和为A1到A2的距离.如图(2),直线l上依次有A1、A2、A3三个点,若在直线l上要确定一点P,且使点P到点A1、A2、A3的距离之和最小,不难判断,点P的位置应取在点A2处,此时距离之和为A1到A3的距离.(想一想,这是为什么)不难知道,如果直线l上依次有A1、A2、A3、A4四个点,同样要确定一点P,使它到各点的距离之和最小,则点P应取在点A2和A3之间的任何地方;如果直线l上依次有A1、A2、A3、A4、A5五个点,则相应点P的位置应取在点A3的位置.材料二:数轴上任意两点a、b之间的距离可以表示为|a-b|.问题一:若已知直线l上依次有点A1、A2、A3、…、A25共25个点,要确定一点P,使它到已知各点的距离之和最小,则点P的位置应取在____________;若已知直线l上依次有点A1、A2、A3、…、A50共50个点,要确定一点P,使它到已知各点的距离之和最小,则点P的位置应取在____________.问题二:现要求|x+1|+|x|+|x-1|+|x-2|+|x-3|+…+|x-97|的最小值,根据问题一的解答思路,可知当x值为____________时,上式有最小值为____________.9、.下列语句表示的图形是(只填序号)①三条直线两两相交,交点分别为A、B、C._________.②已知点A、B、C,画直线AB、射线AC,连接BC._________.③以线段AB上一点C为端点画射线._________.10.如图,点A1,A2,A3,A4,A5,…An在直线l上.探索:①图(1)直线l上有2个点,则图中有条线段;②图(2)直线l上有3个点,则图中有条线段;③图(3)直线l上有n个点,则图中有条线段.应用上面发现的规律解决下列问题:④某学校七年级共有6个班进行足球比赛,准备进行单循环赛,预计全部赛完共需场比赛;⑤某会议有20人参加,每两人握手一次,共握手次.三、解答题11.如图,M是线段AB的中点,点C在线段AB上,且AC=8cm,N是AC的中点,MN=6cm,求线段AB的长.12.如图所示,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长.(2)若C为线段AB上任意一点,满足AC+CB=a cm,其他条件不变,你能猜想出MN的长度吗?并说明理由.(3)若C在线段AB的延长线上,且满足AC-CB=b cm,M、N分别为AC、B C的中点,你能猜想出MN的长度吗?请画出图形,写出你的结论,并说明理由.13.如图,草原上有四口油井,位于四边形ABCD的四个顶点上,现在要建立一个维修站H,试问H建在何处,才能使它到四口油井的距离之和HA+HB+HC+HD最小,说明理由.答案解析1.【答案】C【解析】A正确,因为直线向两方无限延伸;B正确,射线的端点和方向都相同;C错误,因为射线的端点不相同;D正确.故选C.2.【答案】C【解析】鲘门站和坪山站之间有线段BC、BD、BE,CD、CE、DE,6×2=12(种),故选C.3.【答案】D【解析】线段为:AP、BP、CP、DP、EP,AB、AC、AD、AE、BC、BD、BE、CD、CE、DE,共15条.故选D.4.【答案】D【解析】∵AN:MN=1:2,且AN=2,∴2:MN=1:2,∴MN=4cm,∴AM=6cm.∵M是线段AB的中点,∴AB=2AM,∴AB=12cm,故D答案正确.故选D.5.【答案】D【解析】∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,BD=4,∴ED=12∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选D.6.【答案】B【解析】要想取到工具花费的时间最少,即到拿到工具的距离最短,据图可知,位置在A与B之间,拿到工具的距离和>AD+BC;在B与C之间,拿到工具的距离和=AD+BC;在C与D之间,拿到工具的距离和>AD+BC.则工具箱的安放位置在B与C之间,取工具所花费的总时间最少.故选B.7.【答案】;;2;2; 4;4;2AB+2BC; 4BC-4AB; 3【解析】在一条直线或线段上的线段的加减运算和倍数运算,首先明确线段间的相互关系,最好结合几何图形,再根据题意填空.8、【答案】点A13处;点A25和A26之间的任何地方;48; 2450【解析】问题一:由前面结论易得P的位置应取这些点正中间的点,25÷2=12,那么中间的点是第13个点;有50个点时,正中间有2个数,50÷2=25,应是第25和第26个点之间的任意部分;问题二,绝对值也可以表示两点间的距离,|x+1|意思是x到-1的距离,依此类推.从-1到97是99个数,99÷2=48,那么正中间的数是48.解:问题一:点A13处;点A25和A26之间的任何地方;问题二:∵|x+1|+|x|+|x-1|+|x-2|+|x-3|+…+|x-97|=|x-(-1)|+|x-0|+|x-1|+|x-2|+|x-3|+…+|x-97|,此题相当于数轴上x到点-1,0,1,…,97的距离和,∴当x=48时;有最小值为2450.故答案为:48,2450.9.【答案】(2);(1);(3)【解析】①三条直线两两相交,交点分别为A、B、C,图形(2)符合;②已知点A、B、C,画直线AB、射线AC,连接BC,图形(1)符合;③以线段AB上一点C为端点画射线,图形(3)符合.故答案为:(2),(1),(3).10.【答案】①1; ②3;③n(n−1); ④15; ⑤1902【解析】①图(1)直线l上有2个点,则图中有1条线段;②图(2)直线l上有3个点,则图中有线段:A1A2、A1A3、A2A3共3条;条线段;③图(3)图中有n(n−1)2=15场比赛.④全部赛完共需6×52=190(次).⑤某会议有20人参加,每两人握手一次,共握手:20×19211.【答案】解:由AC=8cm,N是AC的中点,得AC=4cm.AN=12由线段的和差,得AM=AN+MN=4+6=10cm.由M是线段AB的中点,得AB=2AM=20cm,线段AB的长是20cm.【解析】根据线段中点的性质,可得AN 的长,根据线段的和差,可得AM 的长,根据线段中点的性质,可得答案.12.【答案】解:(1)∵点M 、N 分别是AC 、BC 的中点,∴MC =12AC =12×8cm=4cm ,NC =12BC =12×6cm=3cm , ∴MN=MC+NC =4cm+3cm=7cm ;(2)MN =12a cm .理由如下:∵点M 、N 分别是AC 、BC 的中点,∴MC =12AC ,NC =12BC ,∴MN=MC+NC =12AC +12BC =12AB =12a cm ;(3)解:如图,∵点M 、N 分别是AC 、BC 的中点,∴MC =12AC ,NC =12BC ,∴MN=MC-NC =12AC -12BC =12(AC-BC )=12b cm .【解析】(1)根据线段中点的定义得到MC =12AC =4cm ,NC =12BC =3cm ,然后利用MN=MC+NC 进行计算;(2)根据线段中点的定义得到MC =12AC ,NC =12BC ,然后利用MN =MC +NC 得到MN=12a cm;(3)先画图,再根据线段中点的定义得MC=12AC,NC=12BC,然后利用MN=MC-NC得到MN=12b cm.13、【答案】解:如图,连接AC、BD,其交点即H的位置.根据两点之间线段最短,可知到四口油井的距离之和HA+HB+HC+HD最小,理由:如果任选H′点(如图),由三角形三边关系定理可知,HA+HB+HC+HD=AC+BD<H′A+H′B+H′C+H′D.【解析】根据两点之间线段最短找H的位置.。
七年级数学上册《第四章-几何图形初步》直线射线线段(三)练习题
直线、射线、线段(三)一、选择题1.如图,从A到B有3条路径,最短的路径是③,理由是( )A.因为③是直的 B.两点确定一条直线C.两点间距离的定义D.两点之间,线段最短2.如图,在线段AP上取三点B、C、D,则图中共有线段 ( )A.10条 B.8条 C.6条 D.4条3.如图所示,在线段BC上取三点D、E、F,在线段BC外取一点A,连接AB、AD、AE、AF、AC,则图中共有线段 ( )A.8条 B.10条 C.12条 D.15条4.如图所示,下列关系与图中不符合的是 ( )A.AB –CB=A D - BC B.AC+ CD=AB –BD C. AB - CD =AC +BD D. AD-AC= CB-DB第5题图第6题图5.如图,点C在AB上,下列表达式①AC =AB;②AB =2BC;③AC= BC;④AC+ BC =AB中,能表示C是AB中点的有 ( )A.1个 B.2个 C.3个 D.4个6.如图所示,E是AB的中点,F是AE的中点,若BF =6cm,则EF的长度是 ( )A.2cm B.3cm C.4cm D.lcm7.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用公理“两点之间,线段最短”来解决的现象是 ( )A.①② B.①③ C.②④ D.③④8.已知线段AB= 10cm,PA+ PB= 20cm,下列说法正确的是 ( )A.点P不能在直线AB上 B.点P只能在直线AB上C.点P只能在线段AB的延长线上 D.点P不能在线段AB上二、填空题9.如图,线段AB_____AC +BC,理由是_______两点之间,线段最短____________.10.如图,AC=_______+BC,BD -________=BC.11. 如图,用线段a、b表示线段AD的长,则线段AD=____________12.有四个点(其中任三点不在同一直线上),则连结任意两点,可得____条线段.13.在一条线段上添上一个点,则图中有______条线段,若添上2个点,图中有______ 条线段;添上________个点,能使线段AB上共有15条线段.第9题图第10题图第11题图N的距离是________.15.延长线段AB到C,使BC = 12AB,若AB =8cm,则AC=______第16题图第17题图第19题图16.如图,C、D、E为线段AB上的点,且AC= CD= DE=EB,那么图中有______个点是线段的中点。
人教版七年级数学上册 4.2《直线、射线、线段》 一课一练 (含答案)
4.2《直线、射线、线段》习题一、选择题1.下列说法中,正确的是( ) A .延长射线OAB .作直线AB 的延长线C .延长线段AB 到C ,使BC=ABD .画直线AB=3cm2.下列说法正确的是( )A .经过三点中的每两个,共可以画三条直线B .射线AP 和射线PA 是同一条射线C .联结两点的线段,叫做这两点间的距离D .两条直线相交,只有一个交点 3.下列画图的画法语句正确的是( ) A .画直线5MN =厘米B .画射线4OA =厘米C .在射线OA 上截取2AB =厘米D .延长线段AB 到点C ,使BC AB = 4.根据下图,下列说法中不正确的是( )A .图①中直线l 经过点AB .图②中直线a ,b 相交于点AC .图③中点C 在线段AB 上D .图④中射线CD 与线段AB 有公共点5.A 、B 、C 是平面内任意三点、经过任意两点画直线,可以画出的直线有( ) A .1条B .3条C .1条或3条D .2条或3条6.如图,点C 是线段AB 的中点,点D 是线段BC 的中点,下列等式正确的是( )A .CD =AC -DB B .CD =AB -DBC .AD = AC -DBD .AD =AB -BC7.在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是( ) ①把笔尖看成一个点,当这个点运动时便得到一条线; ②把弯曲的公路改直,就能缩短路程;③植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上. A .①B .②C .③D .②③8.如图,点C 是线段AB 的中点,点D 是线段CB 上任意一点,则下列表示线段关系的式子不正确的是( )A .AB=2ACB .AC+CD+DB=ABC .CD=AD-ABD .AD=(CD+AB) 9.如图,点C 在线段AB 上,点E 是AC 中点,点D 是BC 中点.若ED =6,则线段AB 的长为( )A .6B .9C .12D .1810.已知线段 AB ,延长 AB 到 C ,使 BC =2AB ,又延长 BA 到 D ,使DA= AB ,那么( )A .DA =BCB .DC =AB C .BD=AB D .BD=BC 11.观察下列图形,并阅读图形下面的相关文字,如图所示:两条直线相交,三条直线相交,四条直线相交,最多有一个交点,最多有三个交点;最多有6个交点,像这样,10条直线相交,最多交点的个数是( )A .40个B .45个C .50个D .55个12.数轴上点所表示的数是整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为18厘米的线段AB ,则线段AB 盖住的整点数是( ) A .17个或18个 B .17个或19个 C .18个或19个 D .18个或20个13.已知线段AB =4cm ,点C 是直线AB 上一点(不同于点A 、B ).下列说法:①若点C 为线段AB 的中点,则AC =2cm ;②若AC =1cm ,则点C 为线段AB 的四等分点;③若AC +BC =4cm ,则点C 一定在线段AB 上;④若AC +BC >4cm ,则点C 一定在线段AB 的延长线上;⑤若AC +BC =8cm ,则AC =2cm .其中正确的个数有()12121212124334A .1个B .2个C .3个D .4个14.如图,数轴上的点和点分别表示0和10,点是线段上一动点.点沿以每秒2个单位的速度往返运动1次,是线段的中点,设点运动时间为秒(不超过10秒).若点在运动过程中,当时,则运动时间的值为( )A .秒或秒B .秒或秒或或秒 C .3秒或7秒 D .3秒或或7秒或秒二、填空题15.如图所示,建筑工人砌墙时,经常在两个墙角的位置分别插一根小桩,然后拉一条直的参照线,可以这样做的数学道理_____________.16.将线段移到线段,使端点与重合,线段与叠合,如果点落在的延长线上,那么______.(填“”、“”或“”).17.如图,点A ,B ,C ,D ,E ,F 都在同一直线上,点B 是线段AD 的中点,点E 是线段CF 的中点,有下列结论:①AE =(AC +AF ),②BE =AF ,③BE =(AF ﹣CD ),④BC =(AC ﹣CD ).其中正确的结论是_____(只填相应的序号).18.点分线段为两部分,点分线段为两部分,已知,则的长为_______. 三、解答题 19.作图题(1)已知如图,平面上四点A 、B 、C 、D , ①画直线AD ;②画射线BC ,与AD 相交于O ;O A P OA P O A O →→B OA P t t P 2PB =t 32723272132172132172AB CD A C AB CD B CD AB CD ><=121212121P AB 5:72P AB 5:111210cm PP =AB cm③连接AC、BD相交于点F .(2)如图,已知线段a,b,用尺规作一条线段,使它等于2a-b .(不要求写作法,保留作图痕迹)20.小明同学对平面图形进行了自主探究;图形的顶点数A,被分成的区域数B,线段数C三者之间是否存在确定的数量关系.如图是他在探究时画出的5个图形.(1)根据图完成表格:之间的数量关系是;(3)计算:已知一个平面图形有24条线段,被分成9个区域,则这个平面图形的顶点有个.21.如图:(1)图中共有几条直线?请表示出来.(2)图中共有几条线段?写出以点B 为端点的所有线段.22.如图所示,A 、B 、C 三棵树在同一直线上,量得树A 与树B 的距离为4m ,树B 与树C 的距离为3m ,小亮正好在A 、C 两树的正中间O 处,请你计算一下小亮距离树B 多远?23.如图,点在线段上,点分别是的中点. (1)若,求线段MN 的长;(2)若为线段上任一点,满足,其它条件不变,你能求出的长度吗?请说明理由.(3)若在线段的延长线上,且满足分别为 AC 、BC 的中点,你能求出的长度吗?请画出图形,写出你的结论,并说明理由.24.如图所示,把一根细线绳对折成两条重合的线段,点在线段上,且.C AB ,M N AC BC 、9,6AC cm CB cm ==C AB AC CB acm +=MN C AB ,,AC BC bcm M N -=MN AB P AB :2:3AP BP=(l)若细线绳的长度是,求图中线段的长;(2)从点处把细线绳剪断后展开,细线绳变成三段,若三段中最长的一段为,求原来细线绳的长.25.如图,点在线段上,是线段的中点.(1)在线段上,求作点,使. (要求:尺规作图,不写作法保留作图痕迹) (2)在(1)的条件下,, ①若,求的长;②若点在线段上,且,请你判断点是哪条线段的中点,并说明理由.26.如图,线段AB 上有一点O ,AO =6㎝,BO =8㎝,圆O 的半径为1.5㎝,P 点在圆周上,且∠POB =30°.点C 从A 出发以m cm/s 的速度向B 运动,点D 从B 出发以n cm/s 的速度向A 运动,点E 从P 点出发绕O 逆时针方向在圆周上旋转一周,每秒旋转角度为60°,C 、D 、E 三点同时开始运动.(1)若m =2,n =3,则经过多少时间点C 、D 相遇;(2)在(1)的条件下,求OE 与AB 垂直时,点C 、D 之间的距离;(3)能否出现C 、D 、E 三点重合的情形?若能,求出m 、n 的值;若不能,说明理由.100cm AP P 60cm C AB OBC CO E 2CE AC =12AB =2BO EO =AC D BO 2912OD AC =-E答案一、选择题1.C.2.D.3.D.4.C.5.C.6.A.7.C.8.D.9.C.10.D11.B 12.C13.C14.B二、填空题15.两点确定一条直线16.>.17.①③④18.96.三、解答题19.解:(1)①②③作图如图所示:(2)依据分析,作图,如图所示:则线段OC=2a-b,20.(1)观察图形可知:平面图形(1)中顶点数A为4平面图形(2)中区域数B为4平面图形(3)中线段数C为15故答案为4、4、15;(2)由题(1)得到的结果,观察表格数据可知:+-=平面图形(1)中顶点数、区域数、线段数满足:4361平面图形(2)中顶点数、区域数、线段数满足: 平面图形(3)中顶点数、区域数、线段数满足:猜想:一个平面图形中顶点数A ,区域数B ,线段数C 之间的数量关系为 故答案为:;(3)已知一个平面图形有24条线段,被分成9个区域, 即,代入中 解得:则这个平面图形的顶点有16个 故答案为16.21.解:(1)图中共有4条直线;直线AB 直线AC 直线AD 直线BF ; (2)图中共有13条线段;其中以点B 为端点的线段有BA 、线段BE 、线段BF 、线段BC 、线段BD . 22.AC =AB +BC =7.设A ,C 两点的中点为O ,即AO =AC =3.5,则OB =AB ﹣AO =4﹣3.5=0.5.答:小亮与树B 的距离为0.5m .23.解:(1)点M 、N 分别是AC 、BC 的中点,∴CM=AC=4.5cm ,CN=BC=3cm , ∴MN=CM+CN=4.5+3=7.5cm . 所以线段MN 的长为7.5cm . (2)MN 的长度等于a , 根据图形和题意可得:MN=MC+CN=AC+BC=(AC+BC)=a ;(3)MN 的长度等于b , 5481+-=106151+-=1A B C +-=1A B C +-=24,9C B ==1A B C +-=16A =121212121212121212根据图形和题意可得: MN=MC-NC=AC-BC=(AC-BC)=b .24.解:(1)由题意得,所以图中线段的长为.(2)如图,当点A 为对折点时,最长的一段为PAP 段,,所以细线长为;如图,当点B 为对折点时,最长的一段为PBP 段,,所以细线长为,综合上述,原来细线绳的长为或. 25.(1)如图121212121100502AB cm =⨯=:2:3,AP BP AP BP AB =+=22023ABAP cm ∴=⨯=+AP 20cm 260,30AP cm AP cm ∴=∴=:2:3AP BP =303452BP cm ∴=⨯=304575AB AP BP cm ∴=+=+=2275150AB cm =⨯=260,30BP cm BP cm ∴=∴=:2:3AP BP =302203AP cm ∴=⨯=203050AB AP BP cm ∴=+=+=2250100AB cm =⨯=150cm 100cm(2)①∵是线段的中点 ∴∵, ∴ ∴ ∴ ∴ ∴ ②E 是线段CD 的中点,理由如下:∵ ∴ ∵ ∴ 即 ∵∴2()OD CE CE OE CE OE =-+=- ∴ 即∴E 是线段CD 的中点26.解:(1)设经过秒C 、D 相遇, 则有,, 解得:; 答:经过秒C 、D 相遇;O BC OB OC =2BO EO =2CE AC =22EO AC OE =+2EO AC =4OB OC AC ==912AB AC ==43AC=2912OD AC =-962OD AC =-12AB =9122OD AC AC OC =--4OD AC OC =-2CE AC =OD OE CE +=ED CE =x 23=14x x +14=5x 145(2)①当OE 在线段AB 上方且垂直于AB 时,运动了1秒, 此时,,②当OE 在线段AB 下方且垂直于AB 时,运动了4秒, 此时,;(3)能出现三点重合的情形;①当点E 运动到AB 上且在点O 左侧时,点E 运动的时间, ∴,; ②当点E 运动到AB 上且在点O 右侧时,点E 运动时间, ∴,.1421319CD cm =-⨯-⨯=1424346CD cm =-⨯-⨯=18030 2.560t -==6 1.592.55m -==8 1.5192.55n +==36030 5.560t -==6 1.5155.511m +==8 1.5135.511n -==。
人教版数学七年级上册《4.2 直线、射线、线段》练习
故答案为:=.
18.【答案】4; 【解析】解:如图折成 3 折,有两个拐点,而不是折叠三次, 故能得到 4 条绳子.
19.【答案】7cm; 【解析】解:∵D 是 BC 的中点,BC=6cm, ∴CD=3cm, ∴AD=AC+CD=7cm. 故答案为:7cm.
20.【答案】解:∵N 是 BP 中点,M 是 AB 中点 ∴PB=2NB=2×14=28cm ∴AP=AB-BP=80-28=52cm.; 【解析】N 为 PB 的中点,则有 PB=2NB,故 AP=AB-BP 可求.
1 2 CB=0.5cm. 故选 A.
14.【答案】C; 【解析】解:∵BC=2AB,AD=3AB ∴DC=AD+AB+BC=3AB+AB+2AB=6AB, 故选 C.
15.【答案】6;5; 【解析】解:线段:OA、OB、AB、OC、AC、BC 共 6 条, 射线:以 O 为端点的有 2 条, 以 A、B、C 为端点的射线分别有 1 条, 所以,共有射线 2+1+1+1=5 条. 故答案为:6;5.
为( )
A. 4,2
B. 10,10
C. 10,2
D. 10,5
12.如果线段 AB=5cm,BC=3cm,那么 A、C 两点间的距离是( )
A. 8cm
B. 2cm
C. 4cm
D. 不能确定
13.如图,线段 AB 长 4cm,C 为 AB 上一点,M 为 AC 中点,N 为 BC 中点,已知
AM=1.5cm,则 CN 的长为( )
A. 1 个
B. 2 个
C. 3 个
D. 4 个
2.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨
人教版数学七年级上册4.2直线 射线 线段测试带答案解析
4.2直线、射线、线段小测验007(满分60)姓名:分数:一、客观题(每题3分,共33分)1.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个2.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定3.乘特快列车从济南西站出发,沿途经过泰安站、曲阜东站、滕州东站,最后到达枣庄站,那么从济南西站到枣庄站这段线路的火车票价格最多有()A.8种B.9种C.10种D.11种4.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画直线.5.平面上有五条直线相交(没有互相平行的),则这五条直线最多有个交点,最少有个交点.6.平面上有任意三点,过其中两点画直线,共可以画条直线.7.如图1,图中共有条线段,它们是.如图2,图中共有条射线,指出其中的两条.8.要在墙上固定一根木条,至少要个钉子,根据的原理是.9.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是.10.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是.11.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有个.二、解答题(共27分)12.(8分)点O是线段AB的中点,OB=14cm,点P将线段AB分为两部分,AP:PB=5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.13.(9分)(1)如图1,在直线AB上,点P在A、B两点之间,点M为线段PB的中点,点N为线段AP的中点,若AB=n,且使关于x的方程(n﹣4)x=6﹣n无解.①求线段AB的长;②线段MN的长与点P在线段AB上的位置有关吗?请说明理由;(2)如图2,点C为线段AB的中点,点P在线段CB的延长线上,试说明的值不变.14.(10分)如图,B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动1次,C是线段BD的中点,AD=15cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,求线段AB和CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变.求出EC的长;若发生变化,请说明理由.参考答案与试题解析1.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个【分析】根据题意画出图形,根据中点的特点即可得出结论.【解答】解:如图所示:①∵AP=BP,∴点P是线段AB的中点,故本小题正确;②点P可能在AB的延长线上时不成立,故本小题错误;③P可能在BA的延长线上时不成立,故本小题错误;④∵AP+PB=AB,∴点P在线段AB上,不能说明点P是中点,故本小题错误.故选:A.【点评】本题考查的是两点间的距离,熟知中点的特点是解答此题的关键.2.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定【分析】根据比较线段的长短进行解答即可.【解答】解:由图可知,A′B′<AB;故选:C.【点评】本题主要考查了比较线段的长短,解题的关键是正确比较线段的长短.3.乘特快列车从济南西站出发,沿途经过泰安站、曲阜东站、滕州东站,最后到达枣庄站,那么从济南西站到枣庄站这段线路的火车票价格最多有()A.8种B.9种C.10种D.11种【分析】根据题意确定出数学模型,五点确定出线段条数,计算即可得到结果.【解答】解:根据题意得:从济南西站到枣庄站这段线路的火车票价格最多有==10种,故选:C.【点评】此题考查了直线、射线、线段、从实际问题中抽象出数学模型是解本题的关键.4.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画1条或4条或6条直线.【分析】分四点在同一直线上,当三点在同一直线上,另一点不在这条直线上,当没有三点共线时三种情况讨论即可.【解答】解:分三种情况:①四点在同一直线上时,只可画1条;②当三点在同一直线上,另一点不在这条直线上,可画4条;③当没有三点共线时,可画6条;故答案为:1条或4条或6条.【点评】本题考查了直线、射线、线段,在没有明确平面上四点是否在同一直线上时,需要运用分类讨论思想,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.5.平面上有五条直线相交(没有互相平行的),则这五条直线最多有10个交点,最少有1个交点.【分析】直线交点最多时,根据公式,把直线条数代入公式求解即可,直线相交于同一个点时最少,是1个交点.【解答】解:最多时=10,相交于同一个点时最少,有1个交点.【点评】中学阶段记住公式在解题时会很方便,熟记公式是解题的关键.6.平面上有任意三点,过其中两点画直线,共可以画1或3条直线.【分析】先画图,由图可直接解答.【解答】解:如图所示:三点在一条直线上时可画一条,不在一条直线上时可画三条.【点评】本题考查了过平面上两点有且只有一条直线,体现了数形结合的思想.7.如图1,图中共有3条线段,它们是线段AC、线段AB、线段BC.如图2,图中共有4条射线,指出其中的两条射线AB、射线BA.【分析】直线上有三个点,过其中任意两个可以作为线段的端点作一条线段,即可以得出有三条;直线上有两点,过每一个点都可以得到两条射线,即过两个点可以找到4条射线.【解答】解:(1)根据线段的定义,可以找到3条,分别为:线段AC、线段AB、线段BC.(2)射线有一个端点,在直线上过每个点都可以得到2条射线,即如图所示,过两个点可以找到4条,其中包括:射线AB和射线BA.故图中共有4条射线,指出两条为:射线AB、射线BA.【点评】本题考查了线段和射线的性质,结合图形可以很明白的得出结论,注意数形结合的思想.8.要在墙上固定一根木条,至少要两个钉子,根据的原理是两点确定一条直线.【分析】根据两点确定一条直线解答.【解答】解:要在墙上固定一根木条,至少要两个钉子,根据的原理是两点确定一条直线.故答案为:两;两点确定一条直线.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.9.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是两点之间线段最短.【分析】根据两点之间线段最短解答.【解答】解:把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是:两点之间线段最短.故答案为:两点之间线段最短.【点评】本题考查了线段的性质,熟记两点之间线段最短是解题的关键.10.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是8cm或2cm.【分析】分点B在线段AC上和点C在线段AB上两种情况,计算即可.【解答】解:当点B在线段AC上时,AC=AB+BC=8cm,当点C在线段AB上时,AC=AB﹣BC=2cm,故答案为:8cm或2cm.【点评】本题考查的是两点间的距离的计算,灵活运用分情况讨论思想是解题的关键.11.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有5个.【分析】点P与A,B,C,D四点中的至少两个点距离相等时,也就是点P恰好是其中一条线段中点,而图中共有六条线段,所以出现报警的次数最多六次.【解答】解:根据题意可知:当点P经过任意一条线段中点时会发出报警,∵图中共有线段DC、DB、DA、CB、CA、BA,∵BC和AD中点是同一个∴发出警报的可能最多有5个.故答案为5.【点评】本题考查了两点间的距离,利用总体思想去思考线段的总条数是解决问题最巧妙的办法,可以减去不必要的讨论与分类.12.点O是线段AB的中点,OB=14cm,点P将线段AB分为两部分,AP:PB=5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.【分析】①根据线段中点的性质,可得AB的长,根据比例分配,可得BP的长,根据线段的和差,可得答案;②分两种情况:M有P点左边和右边,分别根据线段和差进行计算便可.【解答】解:①∵点O是线段AB的中点,OB=14cm,∴AB=2OB=28cm,∵AP:PB=5:2.∴BP=cm,∴OP=OB﹣BP=14﹣8=6(cm);②如图1,当M点在P点的左边时,AM=AB﹣(PM+BP)=28﹣(4+8)=16(cm),如图2,当M点在P点的右边时,AM=AB﹣BM=AB﹣(BP﹣PM)=28﹣(8﹣4)=24(cm).综上,AM=16cm或24cm.【点评】本题考查了两点间的距离,利用了比例的性质,线段中点的性质,线段的和差.13.(1)如图1,在直线AB上,点P在A、B两点之间,点M为线段PB的中点,点N为线段AP的中点,若AB=n,且使关于x的方程(n﹣4)x=6﹣n无解.①求线段AB的长;②线段MN的长与点P在线段AB上的位置有关吗?请说明理由;(2)如图2,点C为线段AB的中点,点P在线段CB的延长线上,试说明的值不变.【分析】(1)①直接根据关于x的方程(n﹣4)x=6﹣n无解求出m的值即可;②根据题意画出图形,分别用BP,AP表示出PM与PN的值,进而可得出结论;(2)根据题意画出图形,由各线段之间的关系可得出结论.【解答】解:(1)①方程(n﹣4)x=6﹣n,∵关于x的方程(n﹣4)x=6﹣n无解,∴n﹣4=0,即n=4,∴线段AB的长为4;②如图1,∵点M为线段PB的中点,点N为线段AP的中点,AB=n,∴PM=BP,PN=AP,∴MN=MP+NP=AB=n;∴线段MN的长与点P在线段AB上的位置无关;(2)如图2,∵点C为线段AB的中点,∴AC=AB,∴P A+PB=PC﹣AC+PC+BC=2PC,∴=2,∴的值不变.【点评】本题考查的是两点间的距离,根据题意画出图形,利用数形结合求解是解答此题的关键.14.如图,B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动1次,C是线段BD的中点,AD=15cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,求线段AB和CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变.求出EC的长;若发生变化,请说明理由.【分析】(1)①根据AB=2t即可得出结论;②先求出BD的长,再根据C是线段BD的中点即可得出CD的长;(2)分类讨论;(3)直接根据中点公式即可得出结论.【解答】解:(1)①∵B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动,∴当t=2时,AB=2×3=6cm;②∵AD=15cm,AB=6cm,∴BD=15﹣6=9cm,∵C是线段BD的中点,∴CD=BD=×9=4.5cm;(2)∵B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动,∴当0≤t≤5时,AB=3t;当5<t≤10时,AB=15﹣(3t﹣15)=30﹣3t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=(AB+BD)=AD=×15=7.5cm.【点评】本题考查了两点间的距离,根据已知得出各线段之间的等量关系是解题关键.。
初一数学直线射线线段专项练习题
初一数学直线射线线段专项练习题1如图所示,直线上有4个点,A, B, C, D,问图中有几条射线,几条线段,几条直线?11读句画图(在右图中画)(1)连结BC、ADD(2)画射线AD(3)画直线AB、CD相交于E(4)延长线段BC,反向延长线段DA相交与F(5)连结AC、BD相交于O2如图所示,指出图中的直线,射线,线段。
3如图所示,平面上有三个点A,B,C,这三个点都不在同一条直线上,问,经过这三个点中的两个点作直线,一共可以作几条,分别表示出来?4平面上有四个点,经过这四个点中的两个点作直线,一共可以作几条直线?5如图所示,在同一条直线上有n个点,这时,在图中有多少条射线,有多少条线段?7已知线段AB=8cm,在直线AB 上有一点C,且BC=4cm,M为线段AC的中点,求线段AM的长?9如图所示,AB是河流L两旁的两个村庄,现在要在河边修一个饮水站,向两村供水,问饮水站修在什么地方最短,请在图上表示出饮水站P的位置,并说明理由。
(河的宽度不计)10往返与甲乙两地的客车,中途停靠三个站,问:(1)要有多少种不同的票价?(2)要准备多少种车票?12、如图,,D为AC的中点,,求AB的长.13延长线段到,使,反向延长到,使,若,则________.14如图6,线段,线段,点是的中点,在上取一点,使,求的长15、如图4,小华的家在A 处,书店在B 处,星期日小华到书店去买书, 他想尽快的赶到书店,请你帮助他选择一条最近的路线 ( ).A .A →C →D →B B .A →C →F →BC .A →C →E →F →BD .A →C →M →B16已知点A 、B 、C 都是直线l 上的点,且AB=5cm ,BC=3cm ,那么点A 与点C 之间的距离是( ).A .8cmB .2cmC .8cm 或2cmD .4cm17、下列说法中,正确的个数有( ).(1)射线AB 和射线BA 是同一条射线 (2)延长射线MN 到C(3)延长线段MN 到A 使NA==2MN (4)连结两点的线段叫做两点间的距离1、已知和之和为,这两个角的平分线所成的角( )A .一定是直角B .一定是锐角C .一定是钝角D .是直角或锐角2、若把一个平角三等分,则两旁的两个角的平分线所组成的角等于( )图4A.平角B.平角C.平角D.平角3、画一个钝角∠AOB,然后以O为顶点,以OA为一边,在角的内部画一条射线OC,使∠AOC=90°,正确的图形是()4、如图所示,下列说法正确的是()A.OA的方向是北偏东30°B.OB的方向是北偏西60°C.OC的方向是北偏西75°D.OC的方向是南偏西75°5、如图,射线OA表示的方向是()A.西北方向; B.西南方向; C.西偏南10°; D.南偏西10°;6、如图所示,C是AB的中点,D是BC的中点,下面等式不正确的是()A.CD=AC-BD B.CD=AD-BC C.CD=AB-BD D.CD=AB7、平面上有四点,过其中每两点画出一条直线,可以画直线的条数为( )A.1或4 B.1或6 C.4或6 D.1或4或68、M、N两点的距离是20厘米,有一点P,如果PM+PN=30厘米,那么下面结论正确的是( )A.点P必在线段MN上B.点P必在直线MN外C.点P必在直线MN上D.点P可能在直线MN上,也可能在直线MN外9、如图所示,直线L,线段a,射线OA,能相交的几组图形是( )10、下列语句中正确的是( )A.延长射线AB到C,使BC=AB,B.延长线段AB到C,使BC=ABC.反向延长线段AB到C,使BC=AB D.反向延长射线AB到C,使BC=AB11、平面上有三点A、B、C,如果AB=8,AC=5,BC=3,则()A、点C在线段AB上B、点B在线段AC的延长线上C、点C在直线AB外D、点C可能在直线AB上,也可能在直线AB外12、关于直线、射线、线段的有关说法正确的有( )(1)、直线AB和直线BA是同一条直线(2)、射线AB和射线BA是同一条射线(3)、线段AB和线段BA是同一条线段(4)、线段一定比直线短(5)、射线一定比直线短(6)、线段的长度能够度量,而直线、射线的长度不可能度量。
七年级数学上册数学 6.1线段、射线、直线(七大题型)(解析版)
6.1线段、射线、直线分层练习考察题型一线段、射线、直线的概念辨析1.如图中射线OA与OB表示同一条射线的是()A.B.C.D.【详解】解:A、方向相反,不是同一条射线;B、端点相同,方向相同,是同一条射线;C、端点相同,方向不同,不是同一条射线;D、方向相反,不是同一条射线.故本题选:B.2.下列说法错误的是()A.直线AB和直线BA表示同一条直线B.过一点能作无数条直线C.射线AB和射线BA表示不同射线D.射线比直线短【详解】解:直线AB和直线BA表示同一条直线,A选项正确;过一点能作无数条直线,B选项正确;射线AB和射线BA表示不同射线,C选项正确;射线、直线都是无限长的,不能比较长短,D选项错误.故本题选:D.3.线段、射线、直线的位置如图所示,图中能相交的是()A.B.C.D.【详解】解:A、图中两线段不能相交;B、图中射线与直线能相交;C、图中线段与直线不能相交;D、图中线段与射线不能相交.故本题选:B.4.如图,AB是一段高铁行驶路线图,图中字母表示的5个点表示5个车站,在这段路线上往返行车,需印制多少种车票?()A.10B.11C.18D.20【详解】解:图中线段有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE,共10条,单程要10种车票,往返就是20种,即5(51)20⨯-=.故本题选:D.考察题型二符号语言和几何图形的匹配1.如图,已知三点A、B、C,画射线AB,画直线BC,连接AC.画图正确的是()A.B.C.D.【详解】解:如图,画射线AB,画直线BC,连接AC,.故本题选:B.2.下列几何图形与相应语言描述相符的是()A.如图1所示,延长线段BA到点CB.如图2所示,射线CB不经过点AC.如图3所示,直线a和直线b相交于点AD.如图4所示,射线CD和线段AB没有交点【详解】解:A、如图1,点C在线段BA的延长线上,与语言描述不相符;B、如图2,射线BC不经过点A,与语言描述不相符;C、如图3,直线a和直线b相交于点A,与语言描述相符;D、如图4,射线CD和线段AB有交点,与语言描述不相符.故本题选:C.考察题型三两点确定一条直线1.如图,下列说法正确的是()A.点O在射线BA上B.点B是直线AB的端点C.直线AO比直线BO长D.经过A,B两点的直线有且只有一条【详解】解:A.点O在射线BA的反向延长线上,故此项错误;B.直线没有端点,故此项错误;C.直线无法比较长短,故此项错误;D.两点确定一条直线,故此项正确.故本题选:D.2.在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是() A.钟表的秒针旋转一周,形成一个圆面B.把笔尖看成一个点,当这个点运动时便得到一条线C.把弯曲的公路改直,就能缩短路程D.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两个点弹出一条墨线【详解】解:A、钟表的秒针旋转一周,形成一个圆面,说明线动成面;B、把笔尖看成一个点,当这个点运动时便得到一条线,说明点动成线;C、把弯曲的公路改直,就能缩短路程,说明两点之间,线段最短;D、木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两个点弹出一条墨线,说明两点确定一条直线.故本题选:D.3.平面上有3个点,并且这3个点不在同一直线上,经过每两点画一条直线,则共可以画()条直线.A.3B.4C.5D.6【详解】解:可以画的直线条数为3(31)32⨯-=.故本题选:A.考察题型四两点之间,线段最短1.下列说法:①经过一点有无数条直线;②两点之间线段最短;③经过两点,有且只有一条直线;④若线段AM等于线段BM,则点M是线段AB的中点,其中正确的有()A.1个B.2个C.3个D.4个【详解】解:①经过一点有无数条直线,说法正确;②两点之间线段最短,说法正确;③经过两点,有且只有一条直线,说法正确;④若线段AM等于线段BM,则当A、B、M三点共线时,点M是线段AB的中点,原说法错误;综上,说法正确的一共有3个.故本题选:C.2.如图,某同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这一现象的数学知识是()A .两点之间,直线最短B .两点确定一条直线C .两点之间,线段最短D .经过一点有无数条直线【详解】解: 两点之间线段最短,∴剩下树叶的周长比原树叶的周长小.故本题选:C .3.如图,某市汽车站A 到高铁站P 有四条不同的路线,其中路程最短的是()A .从点A 经过 BF 到点PB .从点A 经过线段BF 到点PC .从点A 经过折线BCF 到点PD .从点A 经过折线BCDF 点P 【详解】解:如图,某市汽车站A 到高铁站P 有四条不同的路线,其中路程最短的是从点A 经过线段BF 到点P .故本题选:B .4.在一条沿直线l 铺设的电缆一侧有P ,Q 两个小区,要求在直线l 上的某处选取一点M ,向P ,Q 两个小区铺设电缆,现有如下四种铺设方案,图中实线表示铺设的电缆,则所需电缆材料最短的是()A .B .C .D .【详解】解:观察四个选项中的图形发现:选项D 中,点Q 与点P 关于直线l 对称点的连线交l 于M ,根据轴对称的性质可知:PM QM +为最短,即所需电缆材料最短.故本题选:D .5.如图,3AB =,2AD =,1BC =,5CD =,则线段BD 的长度可能是()A.3.5B.4C.4.5D.5【详解】解:由“两点之间,线段最短”得:BD-<<+,15∴<<,BD3232BD∴<<,BD-<<+,465151BD∴<<.45四个选项中,只有4.5在这个范围内.故本题选:C.6.如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)(1)画直线AB;(2)画射线AC;(3)连接BC并延长BC到E,使得CE AB BC=+;(4)在线段BD上取点P,使PA PC+的值最小.【详解】解:如图所示:.考察题型五比较线段的大小1.如图,用圆规比较两条线段的长短,其中正确的是()A .A B A C ''''>B .A B A C ''''=C .A B A C ''''<D .不能确定【详解】解:如图用圆规比较两条线段的长短,A B A C ''<''.故本题选:C .2.如图,AC BD >,则AD 与BC 的大小关系是:AD BC .(填“>”或“<”或“=”)【详解】解:AC BD > ,AC CD BD CD ∴+>+,AD BC ∴>.故本题答案为:>.3.如图,下列关系式中与图不符合的式子是()A .AD CD AB BC-=+B .AC BC AD BD -=-C .AC BC AC BD -=+D .AD AC BD BC-=-【详解】解:A 、AD CD AB BC -=+,正确,B 、AC BC AD BD -=-,正确;C 、AC BC AB -=,而AC BD AB +≠,故本选项错误;D 、AD AC BD BC -=-,正确.故本题选:C .考察题型六线段的中点1.下列说法正确的个数有()①若AB BC =,则点B 是AC 中点;②两点确定一条直线;③射线MN 与射线NM 是同一条射线;④线段AB 就是点A 到点B 之间的距离.A .1B .2C .3D .4【详解】解:①没有说明A 、B 、C 在同一条直线上,故可能出现这种情况,不合题意;②两点确定一条直线,符合题意;③射线MN 是以M 为端点,射线NM 是以N 为端点,射线MN 与射线NM 不是同一条射线,不合题意;④线段AB 是指连接A 、B 两点的线段,是一条有长度的几何图形,点A 到点B 之间的距离是指点A 和点B 之间的直线距离,是线段AB 的长度,不合题意.故本题选:A .2.如图,点D 是线段AC 上一点,点C 是线段AB 的中点,则下列等式不成立的是()A .AD BD AB +=B .BD CD CB -=C .2AB AC =D .12AD AC =【详解】解:由图可知:AD BD AB +=,BD CD CB -=,故选项A 、选项B 符合题意; 点C 是线段AB 的中点,2AB AC ∴=,故选项C 符合题意;D 是不是线段AC 的中点,12AD AC ∴≠,故本题选项D 不合题意.故本题选:D .3.小亮正确完成了以下两道作图题:①“延长线段AB 到C ,使BC AB =”;②“反向延长线段DE 到F ,使点D 是线段EF 的一个三等分点”.针对小亮的作图,小莹说:“点B 是线段AC 中点”.小轩说:“2DE DF =”.下列说法正确的是()A .小莹、小轩都对B .小莹不对,小轩对C .小莹、小轩都不对D .小莹对,小轩不对【详解】解:①“延长线段AB 到C ,使BC AB =”,如图①所示,此时点B 是AC 的中点;2综上,小莹说得对,小轩说得不对.故本题选:D.考察题型七线段长度的有关计算1.平面上有三点A、B、C,如果10BC=,那么()AC=,3AB=,7A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外【详解】解: 1073==+=+,AB AC BC∴点C在线段AB上.故本题选:A.2.已知直线AB上有两点M,N,且8+=,则P点的位置()MP PN cmMN cm=,再找一点P,使10A.只在直线AB上B.只在直线AB外C.在直线AB上或在直线AB外D.不存在【详解】解: 108MP PN cm MN cm+=>=,∴分两种情况:如图,P点在直线AB上或在直线AB外.故本题选C.3.点A、B、C在同一直线上,10BC=)=,则(=,2AC cmAB cmA.12cm B.8cm C.12cm或8cm D.以上均不对【详解】解:①如图,点C在A、B中间时,=-=-=;BC AB AC cm1028()②如图,点C在点A的左边时,BC AB AC cm=+=+=;10212()综上,线段BC的长为12cm或8cm.故本题选:C.4.已知点A、B、C位于直线l上,其中线段4AB=,且23=,若点M是线段AC的中点,则线段BC ABBM的长为()A.1B.3C.5或1D.1或4综上,线段BM 的长为5或1.故本题选:C .5.如图,C 、D 是线段AB 上两点,M 、N 分别是线段AD ,BC 的中点,下列结论:①若AD BM =,则3AB BD =;②AC BD =,则AM BN =;③2()AC BD MC DN -=-;④2MN AB CD =-.其中正确的结论是()A .①②③B .③④C .①②④D .①②③④【详解】解:如图,AD BM = ,AD MD BD ∴=+,12AD AD BD ∴=+,2AD BD ∴=,2AD BD BD BD ∴+=+,即3AB BD =,故①正确;AC BD = ,AD BC ∴=,∴1122AD BC =,M 、N 分别是线段AD 、BC 的中点,AM BN ∴=,故②正确;AC BD AD BC -=- ,222()AC BD MD CN MC DN ∴-=-=-,故③正确;222MN MC CN =+ ,MC MD CD =-,22()2MN MD CD CN ∴=-+,12MD AD = ,12CN BC =,1122()22MN AD BC CD AD CD BC CD AB CD ∴=+-=-+-=-,故④正确.故本题选:D .6.已知A ,B ,C ,D 四点在同一直线上,线段8AB =,点D 在线段AB 上.(1)如图1,点C是线段AB的中点,13CD BD=,求线段AD的长度;(2)若点C是直线AB上一点,且满足:4:1AC BC=,2BD=,求线段CD的长度.:4:1AC BC=,8AB=,:4:1AC BC=,8AB=,7.(1)如图1,点C在线段AB上,M,N分别是AC,BC的中点.若12AB=,8AC=,求MN的长;(2)设AB a=,C是线段AB上任意一点(不与点A,B重合),①如图2,M,N分别是AC,BC的三等分点,即13AM AC=,13BN BC=,求MN的长;②若M,N分别是AC,BC的n等分点,即1AM ACn=,1BN BCn=,直接写出MN的值.8.如图1,已知B、C在线段AD上.(1)图1中共有条线段;(2)①若AB CD=,比较线段的长短:AC BD(填:“>”、“=”或“<”);②(图2)若18AD=,14MN=,M是AB的中点,N是CD的中点,求BC的长度.③(图3)若AB CD=,M是AB的中点,N是CD的中点,直接写出BC的长度.(用=,MN b≠,AD a含a,b的代数式表示)1.同一平面内的三条直线最多可把平面分成多少部分()A.4B.5C.6D.7【详解】解:任意画三条直线,相交的情况有四种可能:1、三直线平行,将平面分成4部分;2、三条直线相交同一点,将平面分成6部分;3、两直线平行被第三直线所截,将平面分成6部分;4、三条直线两两相交于不同的三个点,将平面分成7部分;综上,同一平面内的三条直线最多把平面分成7个部分.故本题选:D .2.如图,已知点A 、点B 是直线上的两点,12AB =厘米,点C 在线段AB 上,且8AC =厘米.点P 、点Q 是直线上的两个动点,点P 的速度为1厘米/秒,点Q 的速度为2厘米/秒.点P 、Q 分别从点C 、点B 同时出发,在直线上运动,则经过秒时线段PQ 的长为6厘米.【详解】解:12AB = 厘米,8AC =厘米,1284CB ∴=-=(厘米);①点P 、Q 都向右运动时,(64)(21)-÷-21=÷2=(秒);②点P 、Q 都向左运动时,(64)(21)+÷-101=÷10=(秒);③点P 向左运动,点Q 向右运动时,(64)(21)-÷+23=÷23=(秒);④点P 向右运动,点Q 向左运动时,(64)(21)+÷+103=÷103=(秒);综上,经过2、10、23或103秒时线段PQ 的长为6厘米.故本题答案为:2、10、23或103.3.如图,点M 在线段AN 的延长线上,且线段20MN =,第一次操作:分别取线段AM 和AN 的中点1M ,1N ;第二次操作:分别取线段1AM 和1AN 的中点2M ,2N ;第三次操作:分别取线段2AM 和2AN 的中点3M ,3N ;⋯⋯连续这样操作10次,则每次的两个中点所形成的所有线段之和11221010(M N M N M N ++⋯+=)A .910202-B .910202+C .1010202-D .1010202+【详解】解: 线段20MN =,线段AM 和AN 的中点1M ,1N ,4.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则A ,B 两点之间的距离||AB a b =-,线段AB 的中点表示的数为2a b +.【问题情境】如图,数轴上点A 表示的数为2-,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(0)t >.【综合运用】(1)填空:①A 、B 两点间的距离AB =,线段AB 的中点表示的数为;②用含t 的代数式表示:t 秒后,点P 表示的数为;点Q 表示的数为.(2)求当t 为何值时,P 、Q 两点相遇,并写出相遇点所表示的数;(3)求当t 为何值时,12PQ AB =;(4)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.。
七年级数学上册《直线、射线、线段》练习题及答案
七年级数学上册《直线、射线、线段》练习题1.下列说法错误的是( )A.两点确定一条直线;B.直线上任意两点都可以表示直线;C.过平面上三点可以画一条直线;D.过一点可以作无数条直线.2.如图,下列几何语句不正确的是()A.直线 AB 与直线 BA 是同一条直线;B.射线 OA 与射线 OB 是同一条射线;C.射线 OA 与射线 AB 是同一条射线;D.线段 AB 与线段 BA 是同一条线段.3.直线 a、b、c 是平面上任意三条直线,交点可能有( )A.1 个或 2 个或 3 个B.0 个或 1 个或 3 个C.0 个或 1 个或 2 个D.0 个或 1 个或 2 个或 3 个4.下列说法:①线段 BA 和线段 AB 是同一条线段;②射线 AC 和射线 AD 是同一条射线;③把射线 AB 反向延长可得到直线 BA;④直线比射线长,射线比线段长.其中正确的结论个数是( )A.1B.2C.3D.45.如图,已知三点 A,B,C,(1)画直线 AB;(2)画射线 AC;(3)连接 BC;6.根据图填空:(1)点 B 在直线 AD ;点 C 在直线 AD ,直线 CD 过点;(2)点 E 是直线与直线的交点,点是直线 AD 与直线CD的交点;(3)过 A 点的直线有条,分别是。
7.如图,图中共有条线段,其中以 B 为端点的线段有条,它们是;以为 A 端点的射线有条,它们是;8.过平面内四个点中的任意两点,可以画几条直线?画图说明.9.已知线段 m,求作线段 EF,使得 EF=m.10.如图,已知线段a、b,画一条线段,使它等于(1)2a+b(2)2a-b11.如图,一只蚂蚁要从正方体的一个顶点A 沿表面爬行到顶点C,怎样爬行路线最短?(画出一种即可)12.如图,DB=3cm,BC=7cm,C 是AD 的中点,求AB 的长.13. 画线段AB=10mm,延长AB 至C,使BC=15mm,再反向延长线段AB 至D,使DA=15mm,先依题意画出图形,并求出DC 的长.14. 已知线段AB=8cm,在直线AB 上有一点C,且BC=4cm,M 是线段AC 的中点,求线段AM 的长.参考答案:1.C2.C3.D4.B5.6.(1)上,外,E;(2)CD,AF,D;(3)三,AD,AE,AC.7.11,3,线段 BA,线段 BD,线段 BC;2,射线 AM,射线 AN.8. (1)一条(2)四条(3)六条9.作法:(1)用直尺画射线EC;(2)用圆规在射线EC 上截取EF = m.线段EF 就是所求作的线段.10.AB 为所求线段.AB 为所求线段.11.提示:将正方体展开,再连接A、C 两点的线段.12.解:∵DB=3cm,BC=7cm∴CD=BC-DB=7-3=4cm,∵点C 是AD 的中点,∴AC=CD=4cm,∴AB=AC+CD+DB=4+4+3=11cm13. 解:DC=DA+AB+BC=15+10+15=40mm14.解:(1)如图所示,当点C 在线段AB 上时,∵AB=8cm,BC=4cm,∴AC=AB -BC=4cm.∵M 为AC 的中点,∴AM=1/2 AC=2cm.(2)如图所示,当点C 在线段AB 的延长线上时,∵AB=8cm,BC=4cm,∴AC=AB +BC=12cm.∵M 为AC 的中点,∴AM=1/2AC=6cm.所以,AM 的长度为2cm 或6cm.。
人教版七年级上册数学 4.2直线、射线、线段 同步习题(含解析)
4.2直线、射线、线段同步习题一.选择题1.平面上有不同的三个点,经过其中任意两点画直线,一共可以画()A.1条B.2条C.3条D.1条或3条2.下列四个生产生活现象,可以用公理“两点之间,线段最短”来解释的是()A.用两个钉子可以把木条钉在墙上B.植树时,只要定出两棵树的位置,就能使同一行树坑在一条直线上C.打靶的时候,眼睛要与枪上的准星、靶心在同一直线上D.为了缩短航程把弯曲的河道改直3.图中共有线段()A.4条B.6条C.8条D.10条4.已知线段AB=12cm,点C是直线AB上一点,BC=4cm,若点P是线段AB的中点,则线段PC的长度是()A.2cm B.2cm或10cm C.10cm D.2cm或8cm 5.已知点A,B,C在同一条直线上,若线段AB=5,BC=3,AC=2,则下列判断正确的是()A.点A在线段BC上B.点B在线段AC上C.点C在线段AB上D.点A在线段CB的延长线上6.如图,已知线段AB=12cm,M是AB中点,点N在AB上,NB=2cm,那么线段MN的长为()A.2cm B.3cm C.4cm D.5cm7.如图,C为AB的中点,D是BC的中点,则下列说法错误的是()A.CD=AC﹣BD B.CD=AB﹣BD C.CD=BC D.AD=BC+CD 8.在直线l上取三点A、B、C,使线段AB=8cm,AC=3cm,则线段BC的长为()A.5cm B.8cm C.5cm或8cm D.5cm或11cm 9.如图,将线段AB延长至点C,使BC=AB,D为线段AC的中点,若BD=2,则线段AB的长为()A.4B.6C.8D.1210.如图,线段CD在线段AB上,且CD=3,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A.28B.29C.30D.31二.填空题11.两地之间弯曲的道路改直,可以缩短路程,其根据的数学道理是.12.如图,已知线段AB=8cm,M是AB的中点,P是线段MB上一点,N为PB的中点,NB=1.5cm,则线段MP=cm.13.已知,如图,在直线l的两侧有两点A,B.在直线上画出点P,使P A+PB最短..14.如图,已知CD=AD=BC,E、F分别是AC、BC的中点,且BF=40cm,则EF 的长度为cm.15.如图,点B在线段AC上,AB=4,BC=2,点M为线段AB中点,点N为线段BC中点,则线段MN的长度为.三.解答题16.如图,线段AB=20,BC=15,点M是AC的中点.(1)求线段AM的长度;(2)在CB上取一点N,使得CN:NB=2:3.求MN的长.17.如图,点C在线段AB上,线段AB=15cm,点M,N分别是AC,BC的中点,CN=3cm,求线段MC的长度.18.如图,已知线段AB=10cm,CD=2cm,点E是AC的中点,点F是BD的中点.(1)若AC=3cm,求线段EF的长度.(2)当线段CD在线段AB上从左向右或从右向左运动时,试判断线段EF的长度是否发生变化,如果不变,请求出线段EF的长度;如果变化,请说明理由.参考答案1.解:如图,经过其中任意两点画直线可以画3条直线或1条直线,故选:D.2.解:A、根据两点确定一条直线,故本选项不符合题意;B、确定树之间的距离,即得到相互的坐标关系,故本选项不符合题意;C、根据两点确定一条直线,故本选项不符合题意;D、根据两点之间,线段最短,故本选项符合题意.故选:D.3.解:图中的线段有AC、AD、AE、AB;CD、CE、CB;DE、DB;EB;共10条,故选:D.4.解:∵线段AB=12cm,点P是线段AB的中点,∴BP=AB=6(cm),如图1,线段BC不在线段AB上时,PC=BP+BC=6+4=10(cm),如图2,线段BC在线段AB上时,PC=BP﹣BC=6﹣4=2(cm),综上所述,线段PC的长度是10或2cm.故选:B.5.解:如图,∵点A,B,C在同一条直线上,线段AB=5,BC=3,AC=2,∴点A在线段BC的延长线上,故A错误;点B在线段AC延长线上,故B错误;点C在线段AB上,故C正确;点A在线段CB的反向延长线上,故D错误;故选:C.6.解:∵AB=12cm,M是AB中点,∴BM=AB=6cm,又∵NB=2cm,∴MN=BM﹣BN=6﹣2=4(cm).故选:C.7.解:∵C是AB的中点,D是BC的中点,∴AC=BC=AB,CD=BD=BC,∵CD=BC﹣BD∴CD=AC﹣BD,故A正确;∵CD=BC﹣DB,∴CD=AB﹣DB,故B正确;∴AD=AC+CD=BC+CD,故D正确;∵CD=BD=BC;故C错误;故选:C.8.解:当点C在线段AB上时,BC=AB﹣AC=8﹣3=5(cm);当点C在线段AB的延长线上时,BC=AB+AC=8+3=11(cm),所以线段AC的长为5cm或11cm.故选:D.9.解:∵BC=AB,∴BC=AC;∵D为线段AC的中点,∴CD=AC,∴BD=AC,∵BD=2,∴AC=2×6=12,∴AB=AD+BD=AC+BD=×12+2=8.故选:C.10.解:所有线段之和=AC+AD+AB+CD+CB+BD,∵CD=3,∴所有线段之和=AC+AC+3+AC+3+BD+3+3+BD+BD=12+3(AC+BD)=12+3(AB﹣CD)=12+3(AB﹣3)=3AB+3=3(AB+1),∵AB是正整数,∴所有线段之和是3的倍数,故选:C.11.解:将弯曲的公路改直,可以缩短路程,这是根据两点之间,线段最短.故答案为:两点之间,线段最短.12.解:∵M是AB的中点,AB=8cm,∴AM=BM=4cm,∵N为PB的中点,NB=1.5cm,∴PB=2NB=3cm,∴MP=BM﹣PB=4﹣3=1cm.故答案为1.13.解:如图所示:连结AB交l于P点.故答案为:连结AB交l于P点.14.解:∵点F是BC的中点,且BF=40cm,∴BC=2BF=80cm,∵CD=AD=BC,∴CD=×80=16cm,AD=64cm,∴AC=AD﹣CD=48cm,∵E、F分别是AC、BC的中点,∴CE=AC=24cm,CF=BF=40cm,∴EF的长度为CE+CF=64cm,故答案为:64.15.解:∵点M为线段AB中点,∴BM=AB,∵点N为线段BC中点,∴BN=BC,∵AB=4,BC=2,∴MN=MB+BN=AB+BC=2+1=3,故答案为3.16.解:(1)线段AB=20,BC=15,∴AC=AB﹣BC=20﹣15=5.又∵点M是AC的中点.∴AM=AC=×5=,即线段AM的长度是.(2)∵BC=15,CN:NB=2:3,∴CN=BC=×15=6.又∵点M是AC的中点,AC=5,∴MC=AC=,∴MN=MC+NC=,即MN的长度是.17.解:∵CN=3cm,点N是BC的中点;∴BC=2CN=2×3=6(cm),∵AB=15cm,∴AC=AB﹣BC=15﹣6=9(cm),又∵点M是AC的中点,∴(cm).18.解:(1)∵AC=3cm,CD=2cm,∴BD=AB﹣AC﹣CD=10﹣3﹣2=5(cm).∵点E是AC的中点,点F是BD的中点,∴,.∴.(2)线段EF的长度不发生变化.∵点E是AC的中点,点F是BD的中点,∴,,∴EF=AB﹣AE﹣BF====6(cm).11/ 11。
初中数学人教版七年级上学期_第四章_42直线、射线、线段
初中数学人教版七年级上学期第四章 4.2直线、射线、线段一、单选题(共10题;共20分)1. 下列四个生产生活现象,可以用“两点之间线段最短”来解释的现象有()A.用两个钉子将木条固定在墙上B.打靶时,眼睛要与准星、靶心在同一条直线上C.架设A,B两地的电线时,总是尽可能沿着线段AB架设D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线2. 下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.画线段CD=2cm3. 现实生活中“为何有人宁可违反交通规则翻越隔离带乱穿马路,也不愿从天桥或斑马线通过?”,请用数学知识解释这一现象,其原因为( )A.两点之间线段的长度,叫做这两点之间的距离B.过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短4. 如图,从点A到点B有3条路,其中走ADB最近,其数学依据是()A.经过两点有且只有一条直线B.两条直线相交只有一个交点C.两点之间的所有连线中,线段最短D.直线比曲线短5. 如图,点B为线段AC上一点,AB=11cm,BC=7cm,D、E分别是AB、AC的中点,则DE的长为()A.3.5cmB.4cmC.4.5cmD.5cm 6. 如图,数轴的单位长度为1,点A,B表示的数互为相反数,若数轴上有一点C到点B的距离为2个单位,则点C表示的数是( )A.−1或2B.−1或5C.1或2D.1或57. 在直线l上取三点A、B、C,使线段AB=8cm,AC=3cm,则线段BC的长为()A.5cmB.8cmC.5cm或8cmD.5cm或11cm8. A、B、C中三个不同的点,则()A.AB+BC=ACB.AB+BC>ACC.BC≥AB−ACD.BC=AB−AC9. 如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A.4cmB.2cmC.4cm或2cmD.小于或等于4cm,且大于或等于2cm10. 平面内的9条直线任两条都相交,交点数最多有m个,最少有n个,则m+n等于( )A.36B.37C.38D.39二、填空题(共5题;共7分)下列三个日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某名同学的跳远成绩.其中,可以用“两点之间线段最短”来解释的是________ .(填序号)建筑工人砌墙时,经常在两个墙角的位置分别插一根木桩,然后在两个木桩之间拉一条线,建筑工人沿着拉紧的这条直线砌墙,这个事实说明的原理是________.如图,点A、B、C、D在同一条直线上,则图中共有线段________条;直线有________条;射线有________条.点A、B、C在直线l上,AB=2BC,M、N分别为线段AB、BC的三等分点,BM=13AB,BN=13BC,则MNBC=________.一条一条直街上有5栋楼,按从左至右顺序编号为1、2、3、4、5,第k号楼恰好有k(k=1、2、3、4、5)个A厂的职工,相邻两楼之间的距离为50米.A厂打算在直街上建一车站,为使这5栋楼所有A厂职工去车站所走的路程之和最小,车站应建在距1号楼________米处.三、解答题(共5题;共26分)如图,AB=2,AC=6,延长BC到点D,使BD=4BC,求AD的长.如图,已知线段AB,请用尺规按照下列要求作图:①延长线段AB到C,使得BC=2AB;②连接PC;③作射线AP.如果AB=2cm,求AC的值如图所示,比较这两组线段的长短.已知线段AB=14,在线段AB上有点C,D,M,N四个点,且满足AC:CD:DB=1:2:4,AM=12AC,且DN=14BD,求MN的长.如图,数轴上A点表示的数是−2,B点表示的数是5,C点表示的数是10.(1)若要使A、C两点所表示的数是一对相反数,则“原点”表示的数是:________. (2)若此时恰有一只老鼠在B点,一只小猫在C点,老鼠发现小猫后立即以每秒一个单位的速度向点A方向逃跑,小猫随即以每秒两个单位的速度追击.①在小猫未抓住老鼠前,用时间t(秒)的代数式表示老鼠和小猫在移动过程中分别与点A之间的距离;参考答案与试题解析初中数学人教版七年级上学期第四章 4.2直线、射线、线段一、单选题(共10题;共20分)1.【答案】C【考点】线段的性质:两点之间线段最短直线的性质:两点确定一条直线【解析】根据线段的性质“两点确定一条直线和两点之间线段最短”逐项进行分析.【解答】解:A、B、D用“两点确定一条直线”进行解释;C可用“两点之间线段最短”进行解释.故答案为:C.2.【答案】D【考点】作图—尺规作图的定义直线、射线、线段两点间的距离【解析】A.错误.直线没有长度;B.错误.射线没有长度;C.错误.射线有无限延伸性,不需要延长;D.正确.故选D.【解答】此题暂无解答3.【答案】D【考点】线段的性质:两点之间线段最短【解析】解答此题的关键在于理解线段的基本性质的相关知识,掌握线段公理:所有连接两点的线中,线段最短.也可简单说成:两点之间线段最短;连接两点的线段的长度,叫做这两点的距离;线段的大小关系和它们的长度的大小关系是一致的.【解答】解:现实生活中有人乱穿马路,不愿从天桥或斑马线通过,其原因是两点之间,线段最短,故选D.4.【答案】C【考点】相交线直线的性质:两点确定一条直线线段的性质:两点之间线段最短【解析】根据两点之间线段最短的性质解答.【解答】从点A到点B有3条路,其中走ADB最近,其数学依据是两点之间的所有连线中,线段最短.5.【答案】A【考点】两点间的距离【解析】首先根据:AB=11cm,D是AB的中点,求出AD的长是多少;然后根据:AB=11cm,BC=7cm,求出AC的长是多少,再根据E是AC的中点,求出AE的长是多少,再用它减去AD的长,求出DE的长为多少即可.【解答】∵AB=11cm,D是AB的中点,∴AD=12AB=12×11=5.5(cm);∵AB=11cm,BC=7cm,∴AC=AB+BC=11+7=18(cm),∵E是AC的中点,∴AE=12AC=12×18=9(cm),∴DE=AE−AD=9−5.5=3.5(cm).6.【答案】D【考点】数轴相反数【解析】如图,根据点A、B表示的数互为相反数可确定原点,即可得出点B表示的数,根据两点间的距离公式即可得答案.【解答】解:如图,∵点A,B表示的数互为相反数,∴AB的中点O为原点,∴点B表示的数为3.∵点C到点B的距离为2个单位,∴点C表示的数为C1=1或C2=5.故选D.7.【答案】D【考点】两点间的距离【解析】分两种情况:点C在线段AB上,点C在线段AB的延长线上.再根据线段的和差,可得线段BC的长.【解答】当点C在线段AB上时,BC=AB−AC=8−3=5(cm);当点C在线段AB的延长线上时,BC=AB+AC=8+3=11(cm),所以线段AC的长为5cm或11cm.8.【答案】C【考点】比例线段比较线段的长短【解析】本题主要考查了线段长短的计量的相关知识点,需要掌握度量法:即用一把刻度量出两条线段的长度再比较;叠合法:从“形”的角度比较,观察点的位置才能正确解答此题.【解答】解:此题分两种情况:①当A, B, C三点没在同一条直线上时,根据三角形任意两边之和大于第三边,任意两边差小于第三边,即可排除A, D两个两个选项,②当A, B, C三点位于同一条直线上的时候,则可得出最长线段与其中一条线段的差等于第三条线段,从而排除B,得出答案,所以答案是:C。
人教版数学七年级上《4.2直线、射线、线段》同步练习(含答案)
4.2 直线射线线段2一、单选题1.已知线段AB=5,C是直线AB上一点,BC=2,则线段AC长为( )A.3 B.7 C.3或7 D.以上都不对2.A,B,C三个车站在东西方向笔直的一条公路上,现要建一个加油站使其到三个车站的距离和最小,则加油站应建在( )A.在A的左侧B.在AB之间C.在BC之间D.B处3.如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是( )A.1cm B.9cmC.1cm或9cm D.以上答案都不正确4.如果一条直线上得到10条不同的线段,那么在这条直线上至少有点( )A.20个B.10个C.7个D.5个5.下列说法错误的是( )A.两点之间的所有连线中,线段最短B.经过一点有且只有一条直线与已知直线平行C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.经过一点有且只有一条直线与已知直线垂直6.在图中,线段的条数为( )A.9B.10 C.13D.157.如图,C是AB的中点,D是BC的中点,则下列等式不成立的是()A . CD =AD-ACB . CD =AB -BDC . CD =AB D . CD=AB 2141318.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A . 171B . 190C . 210D . 3809.如图,从A 地到B 地有多条道路,一般地,为了省时人们会走中间的一条直路而不会走其它的路,其理由是( )A . 两点确定一条直线B . 垂线段最短C . 两点之间,线段最短D . 两点之间,直线最短 10.如图所示的图形表示正确的有( )A . 3个B . 4个C . 5个D . 6个11.下列说法:①两点之间的所有连线中,线段最短;②在数轴上与表示﹣1的点距离是3的点表示的数是2;③连接两点的线段叫做两点间的距离;④射线AB 和射线BA 是同一条射线;⑤若AC=BC ,则点C 是线段AB 的中点;⑥一条射线把一个角分成两个相等的角,这条射线是这个角的平分线,其中错误的有( )A . 2个B . 3个C . 4个D . 5个二、填空题12.点C 在线段AB 上,下列条件中:①AC=BC②AC=2AB③AB=2BC④AC=0.5AB。
七年级数学上册直线、射线、线段练习题
七年级数学上册直线、射线、线段练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.如图,M ,N 是线段AB 的三等分点,C 是NB 的中点,若AB =10cm ,则CM 的长度为___cm .2.如图,长度为12cm 的线段AB 的中点是点M ,点C 在线段MB 上,且:1:2MC CB =,则线段AC 的长为______.3.比较两条线段长短的方法有______和______.4.已知线段AB ,延长AB 到C ,使12BC AB =,再反向延长线段AB 至D ,使32AD AB =,则线段CD 的中点是_________.5.已知线段AB =5cm ,延长AB 到C 使得BC =2AB ,再反向延长AB 到D 使得AD =3AB ,则线段DB =_______cm ,点______是线段_______的中点. 6.如图,点C 是线段AB 上一点,AC <CB ,M 、N 分别是AB 和CB 的中点,8AC =,5NB =,则线段MN =__________.二、单选题7.如图,线段AB =12,点C 是它的中点.则AC 的长为( )A .2B .4C .6D .88.如图,点B 是线段AD 的中点,点C 在线段BD 上,且AB a ,CD b =,则下列结论中错误..的是( )A .2AD a =B .BC a b =- C .2AC a b =-D .13BC b = 9.下列语句:其中错误的个数是( )①直线AB 与直线BA 是同一条直线;①射线AB 与射线BA 是同一条射线;①两点确定一条直线;①经过一点有且只有一条直线与已知直线平行;①经过一点有且只有一条直线与已知直线垂直;①两点之间的线段叫做两点之间的距离.A .3B .4C .5D .610.已知直线AB 上有两点M ,N,且MN = 8cm,再找一点P,使MP + PN = 10cm,则P 点的位置( ) A .只能在直线AB 上B .只能在直线AB 外C .在直线上或在直线AB 外D .不存在11.如图,90ACB ∠=︒,AC=BC .AD CE ⊥,BE CE ⊥,垂足分别是点D 、E .若AD=6,BE=2,则DE 的长是( )A .2B .3C .4D .512.小亮在解方程37a x +=时,由于粗心,错把x +看成了x -,结果解得2x =,则a 的值为( )A .53a =B .3a =C .3a =-D .35a =三、解答题13.如图,在一条不完整的数轴上,从左到右的点A ,B ,C 把数轴分成①①①①四部分,点A ,B ,C 对应的数分别是a ,b ,c ,已知bc <0.(1)原点在第______部分;(2)若AC =5,BC =3,b =﹣1,求a 的值;(3)在(2)的条件下,数轴上一点D 表示的数为d ,若BD =2OC ,直接写出d 的值.14.如图,点B 在线段AC 上.按要求完成下列各小题.(1)尺规作图:在图中的线段AC 的延长线上找一点D ,使得CD AB =;(2)在(1)的基础上,图中共有______条线段,比较线段大小:AC ______BD (填“>”“<”或“=”);(3)在(1)的基础上,若2BC AB =,6BD =,求线段AD 的长度.15.已知线段15cm AB =,点C 在线段AB 上,且:3:2AC CB =.(1)求线段AC ,CB 的长;(2)点P 是线段AB 上的动点且不与点A ,B ,C 重合,线段AP 的中点为M ,设cm AP m =①请用含有m 的代数式表示线段PC ,MC 的长;①若三个点M ,P ,C 中恰有一点是其它两点所连线段的中点,则称M ,P ,C 三点为“共谐点”,请直接写出使得M ,P ,C 三点为“共谐点”的m 的值.参考答案:1.5【分析】根据已知得出AM=MN=BN,AB=3BN,BN=2CN,根据AB=10cm求出BN和CN,由CM=MN+CN 即可求出答案.【详解】解:①M、N是线段AB的三等分点,①AM=MN=BN,AB=3BN,①C是BN的中点,①BN=2CN,①AB=10cm,①BN=103cm,CN=53cm,①CM=MN+CN=103+53=5cm.故答案为:5.【点睛】本题考查了求两点之间的距离的应用,掌握中点与等分点的意义以及线段的和与差是解决问题的关键.2.8cm##8厘米【分析】先由中点的定义求出AM,BM的长,再根据MC:CB=1:2的关系,求MC的长,最后利用AC=AM+MC 得其长度.【详解】解:①线段AB的中点为M,①AM=BM=6cm,设MC=x,则CB=2x,①x+2x=6,解得x=2,即MC=2cm,①AC=AM+MC=6+2=8(cm).【点睛】利用中点性质转化线段之间的倍分关系是解题的关键,同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.3.叠合法度量法【分析】根据比较两条线段长短的方法,即可解答【详解】解:比较两条线段长短的方法有:叠合法和度量法,故答案为:叠合法,度量法.【点睛】本题考查了比较两条线段长短的方法,熟练掌握和运用比较两条线段长短的方法是解决本题的关键.4.点A【分析】利用线段的等量关系和中点的概念列式求解即可.【详解】解:如图,①12BC AB =,32AD AB =, ①AC AB BC =+=12AB AB +=32AB AD =,故线段CD 的中点是点A . 故答案为:点A【点睛】本题主要考查了线段之间的数量关系,作出图形解答是解题的关键.5. 20 A DC【分析】根据题意画出图形,由AB =5cm ,从而可求出AC 和DB 的长度,继而可得出答案.【详解】解:如图所示:①AB =5cm ,则BC =10cm ,DA =15cm ,①可得:DB =DA +AB =15+5=20(cm ),AC =AB +BC =5+10=15(cm ),①DA =AC =15(cm ),即点A 是线段DC 的中点.故答案为:20,A ,DC .【点睛】本题考查了线段的中点,线段的和差等相关知识点,重点掌握直线上两点间的距离求法. 6.4【分析】根据中点的性质可得BC 的长,根据线段的和差可得AB 的长,根据中点的性质可得BM 的长,再根据线段的和差可得MN 的长.【详解】由N 是CB 的中点,NB =5,得:BC =2NB =10.由线段的和差,得:AB =AC +BC =8+10=18.①M 是AB 的中点,①1118922MB AB==⨯=,由线段的和差,得:MN=MB-NB=9-5=4,故答案为:4.【点睛】本题主要考查了线段中点的性质和线段的和差,线段的中点分线段相等是解题的关键.7.C【分析】根据中点的性质,可知AC的长是线段AB的一半,直接求解即可.【详解】解:①线段AB=12,点C是它的中点.①1112622AC AB==⨯=,故选:C.【点睛】本题考查了线段的中点,解题关键是明确线段的中点把线段分成相等的两部分.8.D【分析】根据线段中点的定义与线段的和差逐项分析可得答案.【详解】解:①点B是线段AD的中点,AB=a,①AD=2AB=2a,故A正确,不符合题意;①BD=AB=a,①BC=BD﹣CD=a﹣b,故B正确,不符合题意;①AC=2AB=2a,CD=b,①AC=AD﹣CD=2a﹣b,故C正确,不符合题意;①点C不是CD的四等分点,①BC≠13b,故D错误,符合题意.故选:D.【点睛】本题考查线段中点的定义与线段的和与差,熟练掌握线段中点的定义与线段的和差是解题关键.9.B【分析】①根据直线的定义进行判断即可;①根据射线的定义进行判断即可;①根据两点确定一条直线进行判断即可;①点是否在该直线上进行判断即可;①根据是否在平面内这一条件进行判断即可;①根据两点间距离的定义进行判断即可.【详解】①直线AB与直线BA是同一条直线,故原题说法正确;①射线AB与射线BA不是同一条射线,因为射线有方向,故原题说法错误;①两点确定一条直线,故原题说法正确;①经过直线外一点有且只有一条直线与已知直线平行,故原题说法错误;①平面内,经过一点有且只有一条直线与已知直线垂直,故原题说法错误;①两点之间的线段长度叫做两点之间的距离,故原题说法错误.错误的说法有4个,答案:B .【点睛】本题考查了直线、射线的定义,本题错点一是在平面内才有经过一点有且只有一条直线与已知直线垂直;二是经过直线外一点有且只有一条直线与已知直线平行;三是两点间的距离不是线段而是线段的长度.10.C【详解】①MP+PN=10cm >MN=8cm ,①分两种情况(如图):在直线AB 上或在直线AB 外;故选C .11.C【分析】由一线三直角①ADC=①CEB=90º推得①ACD=①CBE ,再加上AC=BC ,易证①ACD①①CBE (AAS ) 便可求出ED=EC -CD 即可.【详解】①90ACB ∠=︒,①①ACD+①ECB=90º,①AD CE ⊥,BE CE ⊥,①①ADC=①CEB=90º,①①ECB+①CBE=90º,①①ACD=①CBE ,在①ACD 和①CBE 中,①①ADC=①CEB=90º,①ACD=①CBE ,AC=BC ,①①ACD①①CBE (AAS ),①AD=CE=6,CD=BE=2,①ED=EC -CD=6-2=4.故选择:C .【点睛】本题考查全等三角形中的线段差问题,关键掌握三角形全等的证明方法,会用差线段来解决问题. 12.B【分析】将2x =代入方程37a x -=即可得出a 的值.【详解】解:① 解方程37a x +=时把x +看成了x -,结果解得2x =,①2x =是方程37a x -=的解,将2x =代入37a x -=得:327a -=,解得:3a =.故选B .【点睛】本题考查一元一次方程的解及解一元一次方程,解题的关键是掌握方程的解的概念,即使方程左右两边相等的未知数的值,叫方程的解.13.(1)①(2)a 的值为﹣3(3)d 的值为3或﹣5【分析】(1)由bc <0可知b 、c 异号,进而问题可求解;(2)根据数轴上两点距离可进行求解;(3)根据数轴上两点距离及线段和差关系可进行求解.(1)解:①bc <0,①b ,c 异号,①原点在B ,C 之间,即第①部分,故答案为:①;(2)解:①BC =3,b =﹣1,点C 在点B 的右边,①C 表示的数为:﹣1+3=2,①AC =5,A 点在点C 的左边,①点A表示的数为:2﹣5=﹣3,①a的值为﹣3;(3)解:①C表示的数为2,①OC=2,①点B表示的数为﹣1,点D表示的数为d,BD=2OC,①|d﹣(﹣1)|=4,解得:d=3或﹣5,①d的值为3或﹣5.【点睛】本题主要考查数轴上两点距离及线段的和差关系,熟练掌握数轴上两点距离及线段的和差关系是解题的关键.14.(1)作图见解析(2)6;=AD=(3)8【分析】(1)根据要求画出图形即可;(2)根据线段的定义,判断即可;(3)利用线段和差定义解决问题即可.(1)解:如图,线段CD即为所求;(2)解:图中共有6条线段,∵AB=CD,∴AB+BC=CD+BC,即AC=BD,故答案为:6,=;(3)解:由(1)知AB=CD.因为BC=2AB,所以BC =2CD ,所以BD =BC +CD =3CD =6,所以CD =2=AB ,所以AD =2+6=8.【点睛】本题考查作图﹣复杂作图,直线,射线,线段的定义等知识,解题的关键是理解直线,射线,线段的定义.15.(1)AC =9cm ,CB =6cm(2)①(9)cm PC m =-或(9)cm m -,19cm 2MC m ⎛⎫=- ⎪⎝⎭;①6或12【分析】(1)由:3:2AC CB =可得35AC AB =,25CB AB =,从而可求得AC 、CB 的长; (2)①分点P 在线段AC 上和点P 在线段CB 上两种情况分别计算即可;①分点P 在线段AC 上和点P 在线段CB 上两种情况列方程,可求得m 的值.(1)①15cm AB =,点C 在线段AB 上,且:3:2AC CB = ①33159(cm)55AC AB ==⨯=,22156(cm)55CB AB ==⨯= (2)①M 为线段AP 的中点 ①11cm 22AM MP AP m === ①当点P 在线段AC 上时(9)cm PC AC AP m =-=-,19cm 2MC AC AM m ⎛⎫=-=- ⎪⎝⎭ 当点P 在线段CB 上时(9)cm PC AP AC m =-=-,19cm 2MC AC AM m ⎛⎫=-=- ⎪⎝⎭ ①当点P 在线段AC 上时,则MP =PC ①192m m =-解得:m =6当点P 在线段CB 上时,则MC =PC ①1992m m -=-解得:m=12综上所述,m=6或12【点睛】本题考查了求线段长度,线段中点的意义及线段的和差,掌握线段中点的意义、线段的和差是解题的关键.注意(2)小题要分类讨论.第8页共11页。
人教版数学七年级上册:4.2 直线、射线、线段 同步练习(附答案)
4.2直线、射线、线段第1课时直线、射线、线段1.可近似看作直线的是()A.绷紧的琴弦B.探照灯射出的光线C.孙悟空的金箍棒D.太阳光线2.下列对于如图所示直线的表示,其中正确的是()①直线A;②直线b;③直线AB;④直线Ab;⑤直线Bb.A.①③B.②③C.③④D.②⑤3.下列说法中,正确的是()A.点A在直线M上B.直线AB,CD相交于点MC.直线ab,cd相交于点MD.延长直线AB4.用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,这说明;用两个钉子把细木条钉在木板上,就能固定细木条,这说明 .5.如图,完成下列填空:(1)直线a经过点,但不经过点;(2)点B在直线上,在直线外;(3)点A既在直线上,又在直线上.6.生活中我们看到手电筒的光线类似于()A.点B.直线C.线段D.射线7.如图所示,A,B,C是同一直线上的三点,下面说法正确的是()A.射线AB与射线BA是同一条射线B.射线AB与射线BC是同一条射线C.射线AB与射线AC是同一条射线D.射线BA与射线BC是同一条射线8.如图,能用O,A,B,C中的两个字母表示的不同射线有条.9.如图,在直线l上有A,B,C三点,则图中线段共有()A.1条B.2条C.3条D.4条10.如图所示,下列表述正确的是()A.射线ABB.延长线段ABC.延长线段BAD.反向延长线段BA11.经过任意三点中的两点共可以画出()A.一条直线B.一条或三条直线C.两条直线D.三条直线12.如图,对于直线AB,线段CD,射线EF,其中能相交的是()13.下列关于作图的语句中,正确的是()A.画直线AB=10 cmB.画射线OB=10 cmC.已知A,B,C三点,过这三点画一条直线D.画线段OB=10 cm14.直线a上有5个不同的点A,B,C,D,E,则该直线上共有条线段.15.已知平面上四点A,B,C,D,如图:(1)画直线AB,射线CD;(2)直线AB与射线CD相交于点E;(3)画射线AD,连接BC;(4)连接AC,BD相交于点F.16.如图,已知数轴上的原点为O,点A表示3,点B表示-1,回答下列问题:(1)数轴在原点O左边的部分(包括原点)是一条什么线?怎样表示?(2)射线OB上的点表示什么数?(3)数轴上表示不大于3且不小于-1的部分的数是什么图形?怎样表示?17.往返于甲、乙两地的客车,中途有三个站.其中每两站的票价不同.问:(1)要有多少种不同的票价?(2)要准备多少种车票?18.如图:(1)试验观察:如果每过两点可以画一条直线,那么:第①组最多可以画条直线;第②组最多可以画条直线;第③组最多可以画条直线;(2)探索归纳:如果平面上有n(n≥3)个点,且任意3个点均不在一条直线上,那么最多可以画条直线;(用含n的代数式表示)(3)解决问题:某班45名同学在毕业后的一次聚会中,如果每两人握1次手问好,那么共握次手.第2课时比较线段的长短1.尺规作图的工具是()A.刻度尺和圆规B.三角板和量角器C.直尺和量角器D.没有刻度的直尺和圆规2.作图:已知线段a,b,画一条线段使它等于2a+b.(要求:不写作法,保留作图痕迹)3.为了比较线段AB,CD的大小,小明将点A与点C重合使两条线段在一条直线上,结果点B在CD的延长线上,则()A.AB<CDB.AB>CDC.AB=CDD.无法确定4.已知线段AB和点P,如果PA+PB=AB,那么()A.点P为AB中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上5.如图,C是线段AB上的一点,M是线段AC的中点,若AB=8 cm,MC=3 cm,则BC的长是( )A.2 cmB.3 cmC.4 cmD.6 cm 6.如图所示,则:(1)AC =BC + ; (2)CD =AD - ; (3)CD = -BC ; (4)AB +BC = -CD.7.在直线上顺次取A ,B ,C 三点,使得AB =5 cm ,BC =3 cm.如果O 是线段AC 的中点,那么线段OC 的长度是 .8.如图,AB =2,AC =5,延长BC 到D ,使BD =3BC ,则AD 的长为 .9.如图,已知O 是线段AB 的中点,C 是AB 的三等分点,AB =12 cm ,则OC = cm.10.如图,已知线段AB ,反向延长AB 到点C ,使AC =12AB ,D 是AC 的中点,若CD =2,求AB的长.11.已知A,B,C是直线MN上的点,若AC=8 cm,BC=6 cm,点D是AC的中点,则BD的长等于 .12.已知线段AB=2 cm,延长AB到C,使BC=AB,再延长BA到D,使BD=2AB,则线段DC 的长为()A.4 cmB.5 cmC.6 cmD.2 cm13.点A,B,C在同一条数轴上,其中点A,B表示的数分别为-3,1,若BC=2,则AC等于()A.3B.2C.3或5D.2或614.已知线段AB=10 cm,点C是直线AB上一点,BC=4 cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7 cmB.3 cmC.7 cm或3 cmD.5 cm15.如图,点C,D,E都在线段AB上,已知AD=BC,E是线段AB的中点,则CE DE.(填“>”“<”或“=”)16.如图,已知线段a,b,c,用圆规和直尺画线段,使它等于2a+b-c.17.如图所示,点C,D为线段AB的三等分点,点E为线段AC的中点,若ED=9,求线段AB 的长度.18.线段AB上有两点P,Q,点P将AB分成两部分,AP∶PB=2∶3;点Q将AB也分成两部分,AQ∶QB=4∶1,且PQ=3 cm.求AP,QB的长.19.已知:如图,点C在线段AB上,且AC=6 cm,BC=14 cm,点M,N分别是AC,BC 的中点.(1)求线段MN的长度;(2)在(1)中,如果AC=a cm,BC=b cm,其他条件不变,你能猜测出MN的长度吗?请说出你发现的结论,并说明理由.第3课时关于线段的基本事实及两点的距离1.如图,为抄近路践踏草坪是一种不文明的现象.请你用数学知识解释出现这一现象的原因: .2.如图,我们可以把弯曲的河道改直,这样做的数学依据是 .改直后A,B两地间的河道长度会 .(填“变短”“变长”或“不变”),其原因是 .3.如图,A,B是公路l两旁的两个村庄,若两村要在公路上合修一个汽车站P,使它到A,B两村的距离之和最小,试在l上标注出点P的位置,并说明理由.4.下列说法正确的是()A.连接两点的直线的长度叫做这两点的距离B.画出A,B两点间的距离C.连接点A与点B的线段,叫A,B两点间的距离D.两点之间的距离是一个数,不是指线段本身5.若数轴上点A,B分别表示数2,-2,则A,B两点之间的距离可表示为()A.2+(-2)B.2-(-2)C.(-2)+2D.(-2)-26.如图,线段AB=8 cm,延长AB到C,若线段BC的长是AB长的一半,则A,C两点的距离为()A.4 cmB.6 cmC.8 cmD.12 cm7.若A,O,B三点在同一条直线上,OA=3,OB=5,则A,B两点的距离为()A.2B.8C.3D.8或28.如图所示,从A地到达B地,最短的路线是()A.A→C→E→BB.A→F→E→BC.A→D→E→BD.A→C→G→E→B9.如图,平面上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备修建一个蓄水池,不考虑其他因素,请你画出蓄水池P的位置,使它与4个村庄的距离之和最小.10.如图,一只壁虎要从圆柱体A点沿着表面爬到B点,因为B点处有它想吃的一只蚊子,而它饿得快不行了,怎样爬行路线最短?参考答案:4.2直线、射线、线段第1课时直线、射线、线段1.D2.B3.B4. 经过一点可以画无数条直线;明两点确定一条直线.5.(1)直线a经过点A,C,但不经过点B,D;(2)点B在直线b上,在直线a外;(3)点A既在直线a上,又在直线b上.6.D7.C8. 有7条.9.C10.C11.B12.B13.D14. 10.15.解:如图所示.16.解:(1)是一条射线,表示为射线OB. (2)负数和零(非正数). (3)线段,线段AB.17.解:根据线段的定义:可知图中线段有AC ,AD ,AE ,AB ,CD ,CE ,CB ,DE ,DB ,EB ,共10条.(1)有10种不同的票价.(2)因车票需要考虑方向性,如“A→C”与“C→A”票价相同,但方向不同,故需要准备20种车票.18.(1)试验观察:如果每过两点可以画一条直线,那么: 第①组最多可以画3条直线; 第②组最多可以画6条直线; 第③组最多可以画10条直线; (2)探索归纳:如果平面上有n(n≥3)个点,且任意3个点均不在一条直线上,那么最多可以画n (n -1)2条直线;(用含n 的代数式表示) (3)解决问题:某班45名同学在毕业后的一次聚会中,如果每两人握1次手问好,那么共握990次手.第2课时比较线段的长短1.D2.解:如图,AC即为所求线段.3.B4.B5.A6.(1)AC=BC+AB;(2)CD=AD-AC;(3)CD=BD-BC;(4)AB+BC=AD-CD.7.4__cm.8.11.9.210.解:因为D是AC的中点,所以AC=2CD.因为CD=2,所以AC=4.因为AC =12AB ,所以AB =2AC. 所以AB =2×4=8. 11.10__cm 或2__cm. 12. C 13.D 14.D 15.=16.解:(1)作射线AF ;(2)在射线AF 上顺次截取AB =BC =a ,CD =b ; (3)在线段AD 上截取DE =c.线段AE 即为所求.17.解:因为C ,D 为线段AB 的三等分点, 所以AC =CD =DB. 又因为点E 为AC 的中点, 所以AE =EC =12AC.所以CD +EC =DB +AE. 因为ED =EC +CD =9, 所以DB +AE =EC +CD =ED =9. 所以AB =2ED =18.18.解:画出图形,如图:设AP =2x cm ,PB =3x cm ,则AB =5x cm. 因为AQ∶QB=4∶1, 所以AQ =4x cm ,QB =x cm. 所以PQ =PB -QB =2x cm. 因为PQ =3 cm , 所以2x =3. 所以x =1.5.所以AP =3 cm ,QB =1.5 cm.19.解:(1)因为AC =6 cm ,BC =14 cm ,点M ,N 分别是AC ,BC 的中点, 所以MC =3 cm ,CN =7 cm. 所以MN =MC +CN =10 cm. (2)MN =12(a +b)cm.理由:因为AC =a cm ,BC =b cm ,点M ,N 分别是AC ,BC 的中点, 所以MC =12a cm ,CN =12b cm.所以MN =MC +CN =12(a +b)cm.第3课时 关于线段的基本事实及两点的距离1.两点之间,线段最短.2.两点确定一条直线. 变短. 两点之间,线段最短.3.解:点P的位置如图所示.作法:连接AB交l于点P,则P点即为汽车站位置.理由:两点之间,线段最短.4.D5.B6.D7.D8.B9.解:连接AC,BD,AC与BD的交点即为P点的位置,图略.10.解:将圆柱体的侧面展开,如图所示,连接AB,则线段AB是壁虎爬行的最短路线.。
七年级上册数学直线、射线、线段课时练习含答案
4.2直线、射线、线段第1课时直线、射线、线段能力提升1.下列说法中错误的是()A.过一点可以作无数条直线B.过已知三点可以画一条直线C.一条直线通过无数个点D.两点确定一条直线2.射线OA,射线OB表示同一条射线,下面正确的是()3.图中共有条线段.4.看图填空:(1)点C在直线AB;(2)点O在直线BD,点O是直线与直线的交点;(3)过点A的直线共有条,它们是.5.如图所示,在线段AB上任取D,E,C三个点,则这个图中共有条线段.6.木工检验木条的边线是否是直的,常常用眼睛从木条的一端向另一端望去,如果看到两个端点及这条边线中的各点都重合于一点,那么这条边线就是直的,你可以同伙伴试一试这种方法,并说一说其中的道理.7.按下列语句画出图形.(1)直线l经过A,B,C三点,点C在点A与点B之间;(2)经过点O的三条直线a,b,c;(3)两条直线AB与CD相交于点P;(4)P是直线a外一点,经过点P有一条直线b与直线a相交于点Q.★8.阅读下表:解答下列问题:(1)根据表中规律猜测线段总数N与线段上的点数n(包括线段两个端点)有什么关系?(2)根据上述关系解决如下实际问题:有一辆客车往返于A,B两地,中途停靠三个站点,如果任意两站间的票价都不同,问:①有多少种不同的票价?②要准备多少种车票?创新应用★9.如图,l1与l2是同一平面内的两条相交直线,它们有一个交点.如果在这个平面内再画第三条直线l3,那么这3条直线最多可有个交点;如果在这个平面内再画第4条直线l4,那么这4条直线最多可有个交点.由此,我们可以猜想:在同一平面内,n(n为大于1的整数)条直线最多可有个交点.(用含n的式子表示)参考答案能力提升1.B过三点画直线,要看这三点在不在一条直线上,若不在,则无法画出.2.B射线自端点向一方无限延伸,因为表示射线时字母有顺序性,即端点字母写在前面,所以点A、点B应在点O的同侧且三点在同一条直线上.3.104.(1)外(2)上AC BD(3)3直线AD、直线AB、直线AC这类题,必须认真观察图形,弄清各元素的位置关系,用精练、准确的语言表达.5.10只要有一个端点不相同,就是不同的线段.6.解:经过两点有且只有一条直线.7.解:(1)(2)(3)(4)8.解:(1)N=1+2+3+…+(n-1)=.(2)①A,B两地之间有三个站点,说明在这条线段上有5个点,则共有=10条线段,即有10种票价;②由于从A到B和从B到A的车票不同,则要准备10×2=20种车票.创新应用9.36通过作图发现:3条直线最多有交点1+2=3(个);4条直线最多有交点1+2+3=6(个);5条直线最多有交点1+2+3+4=10(个)……n条直线最多有交点1+2+3+…+(n-1)=(个).。
人教版七年级上册直线、射线、线段练习题70
人教版七年级上册直线、射线、线段练习题70一、选择题(共8小题;共40分)1. 木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为A. 两点之间,线段最短B. 两点确定一条直线C. 过一点,有无数条直线D. 连接两点之间的线段叫做两点间的距离2. 经过任意三点中的两点共可以画出的直线条数是A. 一条或三条B. 三条C. 两条D. 一条3. 已知、、,依次是直线上的个不同点,则下列说法正确的是A. 线段与线段是两条相同线段B. 直线与直线是两条不同直线C. 射线与射线是两条相同射线D. 射线与射线是两条不同射线4. 如果线段,,且,,在同一条直线上,那么,两点间的距离是或 D.5. 在所有连接两点的线中A. 直线最短B. 线段最短C. 弧线最短D. 射线最短6. 将一块木板钉在墙上,我们至少需要个钉子将它固定,这是因为A. 两点确定一条直线B. 两点确定一条线段C. 两点之间,直线最短D. 两点之间,线段最短7. 下列说法中正确的是A. 任何条线段都有中点B. 射线和射线是同一射线C. 延长线段就得到直线D. 连接点就得到的距离8. 已知线段,,,如果将移动到的位置,使点与点重合,与叠合,这时点的位置必定是A. 点在线段上(,之间)B. 点与点重合C. 点在线段的延长线上D. 点在线段的延长线上二、填空题(共4小题;共20分)9. 如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是.10. 用刻度尺测量的方法比较,,,四条线段的大小..11. 如下图,从小华家去学校共有条路,第条路最近,理由是.12. 如图所示,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是.三、解答题(共4小题;共52分)13. 按要求回答:(1)有不在同一直线上的三点,,,每两点连一条线段,则可以连几条线段?(2)有四个点,,,,且每三点都不在同一直线上,每两点连一条线段,则可以连几条线段?(3)用上面图形中的原理解决:学校举行庆元旦新生篮球比赛,七年级参加比赛的有个班,如果按单个比赛积分的方式进行,则需要举行几场比赛?14. 如图,比较图中线段与的大小.15. 七年级五班同学在操场上整队,要站成笔直的一列,可先确定两个同学的位置,这一列的位置就确定下来了.请说明理由.16. 如图,已知线段和的公共部分为,且,线段、的中点、之间距离是,求、的长.答案第一部分1. B 【解析】在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.2. A3. C4. C5. B6. A7. A8. A 【解析】将移动到的位置,使点与点重合,与叠合,如图,所以点在线段上(,之间).第二部分9. 两点之间,线段最短10. ,,,11. ③;两点之间,线段最短【解析】从小华家去学校共有条路,第③条路最近,理由是两点之间,线段最短.12. 两点确定一条直线第三部分13. (1)有不在同一直线上的三点,,,每两点连一条线段,则可以连条线段.(2)有四个点,,,,且每三点都不在同一直线上,每两点连一条线段,则可以连条线段.(3)(场).答:需要举行场比赛.14. 略15. 两点确定一条直线.16. 设,则,,.点、点分别为、的中点,,.,,解得.,.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.如图所示,从A地到达B地,最短的路线是().
A.A→C→E→B B.A→F→E→B C.A→D→E→B D.A→C→G→E→B
8.如右图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,
则线段AD的长是()
A. B. C. D.
11.如果AB=8,AC=5,BC=3,则()
A.点C在线段AB上B.点c在线段AB的延长线上
C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外
12.下列说法中错误的是().
A.A、B两点之间的距离为3cmB.A、B两点之间的距离为线段AB的长度
C.线段AB的中点C到A、B两点的距离相等D.A、B两点之间的距离是线段AB
二、填空题
1.若线段AB=a,C是线段AB上的任意一点,M、N分别是AC和CB的中点,则MN=_______.
2.经过1点可作________条直线;如果有3个点,经过其中任意两点作直线,可以作______条直线;
经过四点最多能确定条直线。
3.图中共有线段________条。
4.如图,学生要去博物馆参观,从学校A处到博物馆B处的路径共有⑴、⑵、⑶三条,为了节约时间,尽快从A处赶到B处,假设行走的速度不变,你认为应该走第________条线路(只填序号)最快,理由是___________________。
4.观察图①,由点A和点B可确定条直线;
观察图②,由不在同一直线上的三点A、B和C最多能确定条直线;
(1)动手画一画图③中经过A、B、C、D四点的所有直线,最多共可作条直线;
(2)在同一平面内任三点不在同一直线的五个点最多能确定条直线、n个点(n≥2)最多能确定条直线。
5.如图,在同一条公路旁,住着五个人,他们在同一家公司上班,如图3,不妨设这五个人的家分别住在点ABDEF位置,公司在C点,若AB=4km,BC=2km,CD=3km,DE=3km,EF=1km,他们全部乘出租车上班,车费单位报销.出租车收费标准是:起步价3元(3km以内,包括3km),以后每千米1.5元(不足1km,以1km计算),每辆车能容纳3人.
9.如图,下面由火柴杆拼出的一列图形中,第n个图形由几根火柴组成.(4分)
通过观察可以发现:第4个图形中,火柴杆有_______根,第n个图形中,火柴杆有________根.
10.已知:A、B、C三点在一条直线上,且线段AB=15cm,BC=5cm,则线段AC=_______。
12.如图,AC=DB,写出图中另外两条相等的线段_____________________.
13.如图所示,线段AB的长为8cm,点C为线段AB上任意一点,若M为线段AC的中点,N为线段CB的中点,则线段MN的长是_______________.
14.已知线段AB及一点P,若AP+PB>AB,则点P在.
15.已知线段AB=10,直线AB上有一点C,且BC=4,M是线段AC的中点,则AM的长为.
9.在直线 上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,那么线段OB的长度是()
A.2㎝B.0.5㎝C.1.5㎝D.1㎝
10.在直线 上取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,那么线段OB的长度是()
A.4㎝B.1㎝C.1cm或4cmD.2㎝
4.2直线、射ቤተ መጻሕፍቲ ባይዱ、线段练习题
一、选择题
1.下列说法错误的是()
A.两点之间的所有连线中,线段最短
B.经过两点有且只有一条直线
2.平面上的三条直线最多可将平面分成()部分A.3 B.6 C.7 D.9
3.如果A、B、C三点在同一直线上,且线段AB=4CM,BC=2CM,那么AC两点之间的距离为()
A.2CMB.6CMC.2或6CMD.无法确定
(1)连结A,D,并以cm为单位,度量其长度;
(2)线段AC和线段DB相交于点O;
(3)做射线CD;
(4)反向延长线段BC至E,使BE=BC.
2.如图2,C为线段AB的中点,N为线段CB的中点,CN=1cm.求图中所有线段的长度的和.
3.如图所示一只蚂蚁在A处,想到C处的最短路线是请画出简图,并说明理由。
4.下列说法正确的是()
A.延长直线AB到C;B.延长射线OA到C;
C.延长线段AB到C;D.射线AB和射线BA是同一条射线
5.如果你想将一根细木条固定在墙上,至少需要几个钉子()
A.一个B.两个C.三个D.无数个
6.点P在线段EF上,现有四个等式①PE=PF;②PE= EF;③ EF=2PE;④2PE=EF。其中能表示点P是EF中点的有()
16.下列说法中不正确的有
①一条直线上只有两个点;②射线没有端点;③如图,点 是直线 的中点;
④射线OA与射线AO是同一条射线;⑤延长线段AB到C,使AB=BC;⑥延长直线CD到E,使DE=CD.
8.如图,给出的分别有射线,直线,线段,其中能相交的图形是第组.
三、解答题
1.如图1,四点A、B、C、D,按照下列语句画出图形:
(3)若C在线段AB的延长线上,且满足AC-CB=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由。
5.如图,若AB=BC=CD那么AD=AB AC=AD
6.直线上8点可以形成_______条线段;若n个点可以形成_____________________条线段。
7.如图,点C是线段AB上一点,点D、E分别是线段AC、BC的中点.如果AB=a,AD=b,
其中 ,那么CE=。
8.如图,若CB =4 cm,DB =7 cm,且D是AC的中点,则AC =_________________.
(1)若他们分别乘出租车去上班,公司在支付车费多少元?
(2)如果你是公司经理,你对他们有没有什么建议?
6.如图,点C在线段AB上,AC =8 cm,CB =6 cm,点M、N分别是AC、BC的中点。
(1)求线段MN的长;
(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由。