全国各地2016年中考数学试题分类汇编专题 一元一次方程及其应用 含答案

合集下载

2017年全国中考数学真题《一元一次方程及其应用》分类汇编解析

2017年全国中考数学真题《一元一次方程及其应用》分类汇编解析

一元一次方程及其应用考点一、一元一次方程的概念(6分)1、方程含有未知数的等式叫做方程。

2、方程的解能使方程两边相等的未知数的值叫做方程的解。

3、等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。

(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。

4、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程0≠=ax叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项。

x+b)为未知数,(0a一.选择题1.(2017·广西桂林·3分)如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣32.(2017广西南宁3分)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90C.90﹣0.8x=10 D.x﹣0.8x﹣10=903.(2017海南3分)若代数式x+2的值为1,则x等于()A.1 B.﹣1 C.3 D.﹣34.(2017·湖北荆州·3分)互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元5.(2017·内蒙古包头·3分)若2(a+3)的值与4互为相反数,则a的值为()A.﹣1 B.﹣C.﹣5 D.二.填空题1. (2017·浙江省绍兴市·5分)书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是元.2.(2017·黑龙江龙东·3分)一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是180元.3.(2017·湖北荆门·3分)为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的还少5台,则购置的笔记本电脑有台.三、解答题1. (2017·湖北武汉·8分)解方程:5x+2=3(x+2) .2. (2017·江西·8分)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.3.(2017·广西桂林·8分)五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?4.(2017海南)世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.答案一元一次方程及其应用一.选择题1.(2017·广西桂林·3分)如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣3【考点】一次函数与一元一次方程.【分析】所求方程的解,即为函数y=ax+b图象与x轴交点横坐标,确定出解即可.【解答】解:方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,∵直线y=ax+b过B(﹣3,0),∴方程ax+b=0的解是x=﹣3,故选D2.(2017广西南宁3分)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90C.90﹣0.8x=10 D.x﹣0.8x﹣10=90【考点】由实际问题抽象出一元一次方程.【分析】设某种书包原价每个x元,根据题意列出方程解答即可.【解答】解:设某种书包原价每个x元,可得:0.8x﹣10=90,故选A【点评】本题考查一元一次方程,解题的关键是明确题意,能列出每次降价后的售价.3.(2017海南3分)若代数式x+2的值为1,则x等于()A.1 B.﹣1 C.3 D.﹣3【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:x+2=1,解得:x=﹣1,故选B【点评】此题考查了解一元一次方程方程,根据题意列出方程是解本题的关键.4.(2017·湖北荆州·3分)互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元【分析】设该商品的进价为x元/件,根据“标价=(进价+利润)÷折扣”即可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设该商品的进价为x元/件,依题意得:(x+20)÷=200,解得:x=80.∴该商品的进价为80元/件.故选C.【点评】本题考查了一元一次方程的应用,解题的关键是列出方程(x+20)÷=200.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.5.(2017·内蒙古包头·3分)若2(a+3)的值与4互为相反数,则a的值为()A.﹣1 B.﹣C.﹣5 D.【考点】解一元一次方程;相反数.【分析】先根据相反数的意义列出方程,解方程即可.【解答】解:∵2(a+3)的值与4互为相反数,∴2(a+3)+4=0,∴a=﹣5,故选C.二.填空题1. (2017·浙江省绍兴市·5分)书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是248或296元.【考点】一元一次方程的应用.【分析】设第一次购书的原价为x元,则第二次购书的原价为3x元.根据x的取值范围分段考虑,根据“付款金额=第一次付款金额+第二次付款金额”即可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设第一次购书的原价为x元,则第二次购书的原价为3x元,依题意得:①当0<x≤时,x+3x=229.4,解得:x=57.35(舍去);②当<x≤时,x+×3x=229.4,解得:x=62,此时两次购书原价总和为:4x=4×62=248;③当<x≤100时,x+×3x=229.4,解得:x=74,此时两次购书原价总和为:4x=4×74=296.综上可知:小丽这两次购书原价的总和是248或296元.故答案为:248或296.2.(2017·黑龙江龙东·3分)一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是180元.【考点】一元一次方程的应用.【分析】设该件服装的成本价是x元.根据“利润=标价×折扣﹣进价”即可得出关于x的一元一次方程,解方程即可得出结论.【解答】解:设该件服装的成本价是x元,依题意得:300×﹣x=60,解得:x=180.∴该件服装的成本价是180元.故答案为:180.3.(2017·湖北荆门·3分)为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的还少5台,则购置的笔记本电脑有16台.【考点】一元一次方程的应用.【分析】设购置的笔记本电脑有x台,则购置的台式电脑为台.根据笔记本电脑的台数比台式电脑的台数的还少5台,可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设购置的笔记本电脑有x台,则购置的台式电脑为台,依题意得:x=﹣5,即20﹣x=0,解得:x=16.∴购置的笔记本电脑有16台.故答案为:16.三、解答题1. (2017·湖北武汉·8分)解方程:5x+2=3(x+2) .【考点】解一元一次方程【答案】x=2【解析】解:去括号得5x+2=3x+6,移项合并得2x=4,∴x=2.2. (2017·江西·8分)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.【考点】一元一次方程的应用.【分析】(1)根据“第n节套管的长度=第1节套管的长度﹣4×(n﹣1)”,代入数据即可得出结论;(2)同(1)的方法求出第10节套管重叠的长度,设每相邻两节套管间的长度为xcm,根据“鱼竿长度=每节套管长度相加﹣(10﹣1)×相邻两节套管间的长度”,得出关于x的一元一次方程,解方程即可得出结论.【解答】解:(1)第5节套管的长度为:50﹣4×(5﹣1)=34(cm).(2)第10节套管的长度为:50﹣4×(10﹣1)=14(cm),设每相邻两节套管间重叠的长度为xcm,根据题意得:(50+46+42+…+14)﹣9x=311,即:320﹣9x=311,解得:x=1.答:每相邻两节套管间重叠的长度为1cm.3.(2017·广西桂林·8分)五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?【考点】分式方程的应用;一元一次方程的应用.【分析】(1)设每件乙种物品的价格是x 元,则每件甲种物品的价格是(x +10)元,根据用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同列出方程,求解即可;(2)设甲种物品件数为m 件,则乙种物品件数为3m 件,根据该爱心组织按照此需求的比例购买这2000件物品列出方程,求解即可.【解答】解:(1)设每件乙种物品的价格是x 元,则每件甲种物品的价格是(x +10)元,根据题意得, xx 30010350=+ 解得:x =60.经检验,x =60是原方程的解.答:甲、乙两种救灾物品每件的价格各是70元、60元;(2)设甲种物品件数为m 件,则乙种物品件数为3m 件,根据题意得,m +3m =2000,解得m =500,即甲种物品件数为500件,则乙种物品件数为1500件,此时需筹集资金:70×500+60×1500=125000(元).答:若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金125000元.4.(2017海南)世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.【考点】一元一次方程的应用.【分析】设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150﹣x )元.根据“购书价格=《汉语成语大词典》的标价×折率+《中华上下五千年》的标价×折率”可列出关于x 的一元一次方程,解方程即可得出结论.【解答】解:设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150﹣x )元,依题意得:50%x +60%(150﹣x )=80,解得:x =100,150﹣100=50(元).答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.【点评】本题考查了一元一次方程的应用,解题的关键是列出50%x+60%(150﹣x)=80.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.。

中考数学专题《一元一次方程的应用》专题讲练原卷

中考数学专题《一元一次方程的应用》专题讲练原卷

专题07 一元一次方程的应用(12大考点) 专题讲练一元一次方程的应用题属于人教版七年级上期期末必考题,需要完全掌握各个类型的应用题,该专题将应用题分为分段计费、行程问题、工程问题、方案优化选择、商品销售问题、比赛积分问题、日历问题(数字问题)、配套问题、调配问题、和差倍分问题(比例问题)、几何图形问题、动态问题等共进行方法总结与经典题型进行分类。

1、知识储备2、经典基础题考点1. 分段计费问题考点2. 行程问题考点3. 工程问题考点4. 方案优化问题考点5. 商品销售问题考点6. 比赛积分问题考点7. 配套问题考点8. 调配问题考点9. 数字与日历问题考点10.和、差、倍、分(比例)问题考点11. 几何问题(等积问题)考点12. 动态问题3、优选提升题1.用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类题的一般步骤为:审、设、列、解、检验、答. 2 .建立书写模型常见的数量关系1)公式形数量关系:生活中许多数学应用情景涉及如周长、面积、体积等公式。

在解决这类问题时,必须通过情景中的信息,准确联想有关的公式,利用有关公式直接建立等式方程。

长方形面积=长×宽长方形周长=2(长+宽) 正方形面积=边长×边长正方形周长=4边长2)约定型数量关系:利息问题,利润问题,质量分数问题,比例尺问题等涉及的数量关系,像数学中的公式,但常常又不算数学公式。

我们称这类关系为约定型数量关系。

3)基本数量关系:在简单应用情景中,与其他数量关系没有什么差别,但在较复杂的应用情景中,应用方法就不同了。

我么把这类数量关系称为基本数量关系。

单价×数量=总价速度×时间=路程工作效率×时间=总工作量等。

3.分析数量关系的常用方法1)直译法分析数量关系:将题中关键性的数量关系的语句译成含有未知数的代数式,并找出没有公国的等量关系,翻译成含有未知数的等式。

中考数学一轮复习专题解析—一元一次方程及其应用

中考数学一轮复习专题解析—一元一次方程及其应用

中考数学一轮复习专题解析—一元一次方程及其应用复习目标1.了解方程、一元一次方程的概念,会解一元一次方程;2.能够根据具体问题中的数量关系,列出一元一次方程解决实际问题,能根据具体问题的实际意义,检验结果是否合理。

考点梳理1.等式及其性质:⑴ 等式:用等号“=”来表示相等关系的式子叫等式.⑵ 性质:① 如果b a =,那么=±c a c b ±;② 如果b a =,那么=ac bc ;如果b a =()0≠c ,那么=c a cb . 2.方程、一元一次方程的概念:⑴ 方程:含有未知数的等式叫做方程;使方程左右两边值相等的未知数,叫做方程的解;求方程解的 叫做解方程. 方程的解与解方程不同.⑵ 一元一次方程:在整式方程中,只含有1个未知数,并且未知数的次数是1,系数不等于0的方程叫做一元一次方程;它的一般形式为b ax =()0≠a .3.解一元一次方程的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.4.一元一次方程的应用:列方程解应用题的步骤:审→设→列→解→验→答即:(1)审题:弄清题意和题目中的数量关系;(2)设未知数:用字母表示题目中的一个未知数,可直接设也可间接地设;(3)列方程:找出适当的数量关系,列出方程;(4)解:选择适当的方法解方程;(5)检验:检验解是否符合实际意义;(6)答。

综合训练1.(2022·湖南株洲·中考真题)方程122x-=的解是( )A .2x =B .3x =C .5x =D .6x =【答案】D【分析】通过移项、合并同类项、系数化为1三个步骤即可完成求解.【详解】 解:122x-=,32x=,6x =;故选:D .2.(2022·无锡市天一实验学校九年级月考)方程2132x x -=-的解为( ) A .1x = B .1x =- C .3x = D .3x =-【答案】A【分析】按照解一元一次方程的步骤求解即可.【详解】解:移项可得:2321x x -=-+,合并同类项得:1-=-x系数化为1得:1x=故选:A.3.(2022·四川绵阳·中考真题)近年来,网购的蓬勃发展方便了人们的生活.某快递分派站现有包裹若干件需快递员派送,若每个快递员派送10件,还剩6件;若每个快递员派送12件,还差6件,那么该分派站现有包裹()A.60件B.66件C.68件D.72件【答案】B【分析】设该分派站有x个快递员,根据“若每个快递员派送10件,还剩6件;若每个快递员派送12件,还差6件”,即可得出关于x的一元一次方程,解之即可得出x 的值,再将其代入(10x+6)中即可求出该分派站现有包裹数.【详解】解:设该分派站有x个快递员,依题意得:10x+6=12x−6,解得:x=6,∴10x+6=10×6+6=66,即该分派站现有包裹66件.故选:B.4.(2022·黑龙江牡丹江·中考真题)已知某商店有两件进价不同的运动衫都卖了160元,其中一件盈利60%,另一件亏损20%,在这次买卖中这家商店()A.不盈不亏B.盈利20元C.盈利10元D.亏损20元【分析】设分别设两件运动衫的进价分别是a元,b元,根据售价=成本±利润,列方程求得两件运动衫的进价,再计算亏盈.【详解】解:设盈利60%的运动衫的进价是a元,亏本20%的运动衫的进价是b元.则有(1)a(1+60%)=160,a=100;(2)b(1-20%)=160,b=200.总售价是160+160=320(元),总进价是100+200=300(元),320-300=20(元),所以这次买卖中商家赚了20元.故选:B.5.(2022·浙江九年级二模)学校组织植树活动,已知在甲处植树的有48人,在乙处植树的有42人,由于甲处植树任务较重,需调配部分乙处的人员去甲处支援,使在甲处植树的人数是乙处植树人数的2倍,设从乙处调配x人去甲处,则()A.48=2(42﹣x)B.48+x=2×42C.48﹣x=2(42+x)D.48+x=2(42﹣x)【答案】D设从乙处调配x 人去甲处,根据”调配部分乙处的人员去甲处支援,使在甲处植树的人数是乙处植树人数的2倍“列方程即可得到结论.【详解】解:设从乙处调配x 人去甲处,根据题意得,48+x =2(42-x ),故选:D .6.(2022·浙江)某商铺促销,单价80元的衬衫按照8折销售仍可获利10元,若这款衬衫的成本价为x 元/件,则( )A .800.810x ⨯-=B .()800.810x x --=C .800.810x ⨯=-D .()800.810x x -⨯=-【答案】A【分析】利用利润=标价⨯折扣率-成本价,即可得出关于x 的一元一次方程.【详解】解:依题意得:800.810x ⨯-=,故选:A .7.(2022·山东九年级二模)已知x =3是关于x 的方程23mx nx =-的解,则24n m -的值是( )A .2B .-2C .1D .﹣1 【答案】A【分析】把x =3代入方程23mx nx =-,可得n -2m =1,进而即可求解.【详解】解:∵x =3是关于x 的方程23mx nx =-的解,∴6m =3n -3,即:n -2m =1,∴24n m -=2,故选A .8.(2022·浙江)《孙子算经》是中国古代重要的数学著作,书中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,则可列方程为( ) A .()33100100x x +-=B .()3100100x x +-=C .()131001003x x +-=D .()3100100x x +-= 【答案】C【分析】根据“大马拉瓦+小马拉瓦=100”可以列出方程 .【详解】解:设大马有 x 匹,则由题意可得:()131001003x x +-=, 故选C .9.(2022·广西梧州·中考真题)运用方程或方程组解决实际问题:若干学生分若干支铅笔,如果每人5支,那么多余3支;如果每人7支,那么缺5支.试问有多少名学生?共有多少支铅笔?【答案】学生有4人,铅笔23支设学生有x人,则铅笔数表示为5x+3或7x−5,由此利用铅笔数相等联立方程求得答案即可.【详解】解:设学生有x人,由题意得5x+3=7x−5,解得:x=4,经检验,符合题意则6x+3=23.答:学生有4人,铅笔23支.10.(2022·广西桂林·中考真题)解一元一次方程:4x﹣1=2x+5.【答案】x =3.【分析】先把方程化移项,合并同类项,系数化1法即可.【详解】解:4 x﹣1=2x+5,移项得:4 x﹣2x=5+1合并同类项得:2 x=6,∴系数化1得:x =3.11.(2022·全国九年级专题练习)解下列方程:(1)36156x x-=--(2)1.5 1.51 0.62x x--=【答案】(1)1x=-;(2)7 =12 x(1)根据解方程步骤,移项,合并同类项,把x 系数化为1,即可求出解; (1)根据解方程步骤,方程去分母,去括号,移项,合并同类项,把x 系数化为1,即可求出解.【详解】解:(1)移项得:36156x x +=-+,合并同类项得:99x =-,解得:1x =-;(2)去分母得:2?1.50.6(1.5) 1.2x x --=,去括号得:30.90.6 1.2x x -+=,移项得:30.6 1.20.9x x +=+,合并同类项得:3.6 2.1x =, 解得:7=12x . 12.(2022·陕西西北工业大学附属中学九年级模拟预测)解方程:1123xx ++=. 【答案】45【分析】 按照去分母、去括号、移项、合并同类项、系数化为1的步骤解答即可.【详解】 解:1123xx ++= 去分母得:3x +2(x +1)=6,去括号得:3x +2x +2=6,移项合并得:5x=4,系数化为1得:x=45.。

中考专题复习-一元一次方程(组)含答案

中考专题复习-一元一次方程(组)含答案

中考数学总复习-方程与不等式一次方程(组)【基础知识回顾】一、等式的概念及性质:1、等式:用“=”连接表示关系的式子叫做等式2、等式的性质:①、性质1:等式两边都加(减)所得结果仍是等式,即:若a=b,那么a±c=②、性质2:等式两边都乘以或除以(除数不为0)所得结果仍是等式即:若a=b,那么a c= ,若a=b(c≠o)那么a c =【名师提醒:①用等式性质进行等式变形,必须注意“都",不能漏项②等式两边都除以一个数或式时必须保证它的值】二、方程的有关概念:1、含有未知数的叫做方程2、使方程左右两边相等的的值,叫做方程的组3、叫做解方程4、一个方程两边都是关于未知数的,这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是的方程叫做一元一次方程,一元一次方程一般可以化成的形式。

2、解一元一次方程的一般步骤:1。

2。

3。

4。

5。

【名师提醒:1、一元一次方程的解法的各个步骤的依据分别是等式的性质和合并同类法则,要注意灵活准确运用;2、特别提醒:去分母时应注意不要漏乘项,移项时要注意.】四、二元一次方程组及解法:1、二元一次方程的一般形式:ax+by+c=0(a.b 。

c 是常数,a≠0,b≠0);2、由几个含有相同未知数的 合在一起,叫做二元一次方程组;3、 二元一次方程组中两个方程的 叫做二元一次方程组的解;4、 解二元一次方程组的基本思路是: ;5、 二元一次方程组的解法:① 消元法 ② 消元法【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解2、二元一次方程组的解应写成五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出答案(包括单位名称)【名师提醒:1、列方程(组)解应用题的关键是: 2、几个常用的等量关系:①路程= × ②工作效率= 】 【重点考点例析】考点一:二元一次方程组的解法对应训练 1.(2016•湘西州)解方程组: 213211x y x y +=⎧⎨-=⎩①②. .x=a y=b 的形式考点二:一(二)元一次方程的应用例2 (2016•齐齐哈尔)假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案()A.5种B.4种C.3种D.2种故选:C.例3 (2016•张家界)为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2。

中考数学专题题库∶一元二次方程的综合题附答案

中考数学专题题库∶一元二次方程的综合题附答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.在等腰三角形△ABC 中,三边分别为a 、b 、c ,其中ɑ=4,若b 、c 是关于x 的方程x 2﹣(2k +1)x +4(k ﹣12)=0的两个实数根,求△ABC 的周长. 【答案】△ABC 的周长为10.【解析】【分析】 分a 为腰长及底边长两种情况考虑:当a=4为腰长时,将x=4代入原方程可求出k 值,将k 值代入原方程可求出底边长,再利用三角形的周长公式可求出△ABC 的周长;当a=4为底边长时,由根的判别式△=0可求出k 值,将其代入原方程利用根与系数的关系可求出b+c 的值,由b+c=a 可得出此种情况不存在.综上即可得出结论.【详解】当a =4为腰长时,将x =4代入原方程,得:()214421402k k ⎛⎫-++-= ⎪⎝⎭解得:52k =当52k =时,原方程为x 2﹣6x +8=0, 解得:x 1=2,x 2=4,∴此时△ABC 的周长为4+4+2=10;当a =4为底长时,△=[﹣(2k +1)]2﹣4×1×4(k ﹣12)=(2k ﹣3)2=0, 解得:k =32, ∴b +c =2k +1=4.∵b +c =4=a ,∴此时,边长为a ,b ,c 的三条线段不能围成三角形.∴△ABC 的周长为10.【点睛】本题考查了根的判别式、根与系数的关系、一元二次方程的解、等腰三角形的性质以及三角形的三边关系,分a 为腰长及底边长两种情况考虑是解题的关键.2.已知关于x 的方程24832x nx n --=和()223220x n x n -+-+=,是否存在这样的n 值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?若存在,请求出这样的n 值;若不存在,请说明理由?【答案】存在,n=0.【解析】【分析】在方程①中,由一元二次方程的根与系数的关系,用含n 的式子表示出两个实数根的差的平方,把方程②分解因式,建立方程求n ,要注意n 的值要使方程②的根是整数.【详解】若存在n 满足题意.设x1,x2是方程①的两个根,则x 1+x 2=2n ,x 1x 2=324n +-,所以(x 1-x 2)2=4n 2+3n+2, 由方程②得,(x+n-1)[x-2(n+1)]=0, ①若4n 2+3n+2=-n+1,解得n=-12,但1-n=32不是整数,舍. ②若4n 2+3n+2=2(n+2),解得n=0或n=-14(舍), 综上所述,n=0.3.解下列方程:(1)2x 2-4x -1=0(配方法);(2)(x +1)2=6x +6.【答案】(1)x 1=1+2x 2=1-21=-1,x 2=5. 【解析】试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可. 试题解析:(1)由题可得,x 2-2x =12,∴x 2-2x +1=32. ∴(x -1)2=32.∴x -1=±2.∴x 1=1+2,x 2=1-2. (2)由题可得,(x +1)2-6(x +1)=0,∴(x +1)(x +1-6)=0.∴x +1=0或x +1-6=0.∴x 1=-1,x 2=5.4.已知两条线段长分别是一元二次方程28120x x -+=的两根,(1)解方程求两条线段的长。

人教版九年级数学中考一元一次方程及其应用专项练习及参考答案

人教版九年级数学中考一元一次方程及其应用专项练习及参考答案

人教版九年级数学中考一元一次方程及其应用专项练习专题知识回顾知识点1:一元一次方程的概念1.一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。

要点诠释:一元一次方程须满足下列三个条件:(1)只含有一个未知数;(2)未知数的次数是1次;(3)整式方程.注意:方程要化为最简形式,且一次项系数不能为零。

2.方程的解:判断一个数是否是某方程的解,将其代入方程两边,看两边是否相等.知识点2:一元一次方程的解法1.方程的同解原理(也叫等式的基本性质)性质1:等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。

性质2:等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。

要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。

2.解一元一次方程的一般步骤:(1)去分母在方程两边都乘以各分母的最小公倍数,依据等式基本性质2,注意防止漏乘(尤其整数项),注意添括号。

(2)去括号一般先去小括号,再去中括号,最后去大括号,依据去括号法则、分配律,注意变号,防止漏乘。

(3)移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号),依据等式基本性质1,移项要变号,不移不变号。

(4)合并同类项把方程化成ax =b(a≠0)的形式,依据合并同类项法则,计算要仔细,不要出差错。

(5)系数化为1在方程两边都除以未知数的系数a ,得到方程的解x =b/a ,依据等式基本性质2,计算要仔细,分子分母勿颠倒。

要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用: ①a≠0时,方程有唯一解x =b/a ; ②a=0,b=0时,方程有无数个解; ③a=0,b≠0时,方程无解。

知识点3:列一元一次方程解应用题 1.列一元一次方程解应用题的一般步骤:(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系。

2016年全国中考数学真题分类 分式方程及其应用(习题解析)

2016年全国中考数学真题分类 分式方程及其应用(习题解析)

2016年全国中考数学真题分类分式方程及其应用一、选择题1.(2016安徽,5,4分)方程=3的解是()A.﹣ B.C.﹣4 D.4【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+1=3x﹣3,解得:x=4,经检验x=4是分式方程的解,故选D.2.(2016甘肃定西,8,3分)某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A. =B. =C. =D. =【分析】根据题意可知现在每天生产x+50台机器,而现在生产800台所需时间和原计划生产600台机器所用时间相等,从而列出方程即可.【解答】解:设原计划平均每天生产x台机器,根据题意得: =,故选:A.【点评】此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.3.(2016广东深圳,9,3分)施工队要铺设一段全长2000米,的管道,因在中考期间需停工两天,实际每天施工需比原来计划多50米,才能按时完成任务,求原计划每天施工多少米。

设原计划每天施工x米,则根据题意所列方程正确的是()A.25020002000=+-x x B.22000502000=-+x x C.25020002000=--x x D.22000502000=--xx 【答案】A4.(2016广西贺州,8,3分)若关于x 的分式方程2x -a x -2=12的解为非负数,则a 的取值范围是( )A .a ≥1B .a >1C .a ≥1且a ≠4D .a >1且a ≠4 【答案】C5.(2016河北,12,2分)在求3x 的倒数的值时,嘉淇同学将3x 看成了8x ,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( ) A .11538x x =- B .11538x x =+ C .1853x x =- D .1853x x =+答案:B解析:根据题意,3X 的倒数比8X 的倒数大5,故选B 项。

中考数学所有类型应用题汇总含答案

中考数学所有类型应用题汇总含答案

中考应用题列方程(组)解应用题是中考的必考内容,必是中考的热点考题之一,列方程(组)解应用题的关键与难点是如何找到能够表示题目全部含义的相等关系,所谓“能表示全部含义”就是指在相等关系中,题目所给出的全部条件(包括所求的量)都要给予充分利用,不能漏掉,但也不能把同一条件重复使用,应用题中的相等关系通常有两种,一种是通过题目的一些关键词语表现出来的明显的相等关系,如“多”、“少”、“增加”、“减少”、“快”、“慢”等,另一种是题目中没有明显给出而题意中又包含着的隐含相等关系,这也是中考的重点和难点,此时需全面深入的理解题意,结合日常生活常识和自然科学知识才能做到.解应用题的一般步骤:解应用题的一般步骤可以归结为:“审、设、列、解、验、答”.1、“审”是指读懂题目,弄清题意,明确题目中的已知量,未知量,以及它们之间的关系,审题时也可以利用图示法,列表法来帮助理解题意.2、“设”是指设元,也就是未知数.包括设直接未知数和设间接未知数以及设辅助未知数(较难的题目).3、“列”就是列方程,这是非常重要的关键步骤,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程.4、“解”就是解方程,求出未知数的值.5、“验”就是验解,即检验方程的解能否保证实际问题有意义.6、“答”就是写出答案(包括单位名称).应用题类型:近年全国各地的中考题中涉及的应用题类型主要有:行程问题,工程问题,增产率问题,百分比浓度问题,和差倍分问题,与函数综合类问题,市场经济问题等.几种常见类型和等量关系如下:1、行程问题:s .基本量之间的关系:路程=速度×时间,即:vt常见等量关系:(1)相遇问题:甲走的路程+乙走的路程=原来甲、乙相距的路程.(2)追及问题(设甲速度快):①同时不同地:甲用的时间=乙用的时间;甲走的路程-乙走的路程=原来甲、乙相距的路程.②同地不同时:甲用的时间=乙用的时间-时间差;甲走的路程=乙走的路程.2、工程问题:基本量之间的关系:工作量=工作效率×工作时间.常见等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量.3、增长率问题:基本量之间的关系:现产量=原产量×(1+增长率).4、百分比浓度问题:基本量之间的关系:溶质=溶液×浓度.5、水中航行问题:基本量之间的关系:顺流速度=船在静水中速度+水流速度;逆流速度=船在静水中速度-水流速度.6、市场经济问题:基本量之间的关系:商品利润=售价-进价;商品利润率=利润÷进价;利息=本金×利率×期数;本息和=本金+本金×利率×期数.一元一次方程方程应用题归类分析列方程解应用题,是初中数学的重要内容之一。

全国各地中考数学试题分类汇编(第1期)一元一次方程及其应用(含解析)

全国各地中考数学试题分类汇编(第1期)一元一次方程及其应用(含解析)

一元一次方程及其应用一、选择题1.(2016山东省聊城市,3分)在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.72【考点】一元一次方程的应用.【分析】设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.【解答】解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是72.故选:D.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.(2016大连,3,3分)方程2x+3=7的解是()A.x=5 B.x=4 C.x=3.5 D.x=2【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】方程移项合并,把x系数化为1,即可求出解.【解答】解:2x+3=7,移项合并得:2x=4,解得:x=2,故选D【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.二、填空题1.(2016湖北襄阳,14,3分)王经理到襄阳出差带回襄阳特产﹣﹣孔明菜若干袋,分给朋友们品尝,如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜33 袋.【考点】一元一次方程的应用.【分析】可设有x个朋友,根据“如果每人分5袋,还余3袋;如果每人分6袋,还差3袋”可列出一元一次方程,求解即可.【解答】解:设有x 个朋友,则5x+3=6x ﹣3解得x=6∴5x+3=33(袋)故答案为:33【点评】本题主要考查了一元一次方程的应用,解题的关键是根据总袋数相等这一等量关系列方程求解.本题也可以直接设总袋数为x 进行列方程求解.2.(2016·广东梅州)用一条长40cm 的绳子围成一个面积为64cm 2的矩形.设矩形的一边长为x cm ,则可列方程为 _____________.答案:64)20(=-x x考点:矩形的面积,列方程解应用题。

中考数学-一元一次方程专题练习(含答案)

中考数学-一元一次方程专题练习(含答案)

中考数学-一元一次方程专题练习(含答案)一、单选题1.下列方程为一元一次方程的是()A.+y=2B.x+2=3yC.x2=2xD.y+1=22.已知一个多边形的内角和是外角和的4倍,则这个多边形是()A.八边形B.十二边形C.十边形D.九边形3.太平洋服装超市某种服装的标价为120元,元旦期间以九折降价出售,仍获利20%,该服装的进货价为()A.80元B.85元C.90元D.95元4.某商店换季促销,将一件标价为240元的T恤8折售出,仍获利20%,则这件T恤的成本为( )A.144元B.160元C.192元D.200元5.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好用去14元.如果设水性笔的单价为x元,那么下列所列方程正确的是()A.5(x﹣2)+3x=14B.5(x+2)+3x=14C.5x+3(x+2)=14D.5x+3(x﹣2)=146.下列式子中,是一元一次方程的有()A.x+5=2xB.x2﹣8=x2+7C.5x﹣3D.x﹣y=47.下列运用等式的性质,变形不正确的是()A.若x=y,则x+5=y+5B.若a=b,则ac=bcC.若= ,则a=bD.若x=y,则8.文具店老板以每个96元的价格卖出两个计算器,其中一个赚了20%,另一个亏了20%,则卖这两个计算器总的是()A.不赚不赔B.亏8元C.盈利3元D.亏损3元9.若关于y的方程2m+y=1与3y﹣3=2y﹣1的解相同,则m的值为()A.2B. -C. -2D.010.商场将某种商品按标价的八折出售,仍可获利90元,若这种商品的标价为300元,则该商品的进价为()A.330元B.210元C.180元D.150元11.已知关于x的方程1 + 3(3-4x) = 2(4x-3) ,若4x-3 = a,则a等于()A.-1B.C.D. -12.已知x=2是关于x的方程3x+a=0的一个解,则a的值是( )A.– 6B.–3C.– 4D.–513.小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A.+=-B.-=+C.-=-D.+10=-514.x=1是方程3x—m+1=0的解,则m的值是()A.-4B.4C.2D.-215.方程3x+6=0的解的相反数是()A.2B.-2C.3D.-3二、填空题16.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=________.17.若是关于的方程的解,则________;18.某商品货物进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出售,保证利润为5%,则该店应降价________元出售.19.某公司承担了制作600个道路交通指引标志的任务,在实际操作时比原计划平均每天多制作了10个,因此提前了5天完成任务,如果设原计划x天完成,那么根据题意,可以列出的方程是:________.20.已知方程(a﹣2)x|a|﹣1+4=0是关于x的一元一次方程.则a的值为________三、解答题21.已知:如图,BD平分∠ABC,BE分∠ABC为2:5两部分,∠DBE=24°,求∠ABC的度数.22.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.23.毕业在即,九年级(一)班为纪念师生情谊,班委决定花800元班费买两种不同单价的留念册,分别给50位同学和10位任课老师每人一本留做纪念.其中送给老师的留念册的单价比给同学的单价多8元.请问这两种不同留念册的单价分别为多少元?四、计算题24.解方程(1)2(x+8)=3(x﹣1)(2)4x+3(2x﹣3)=12﹣(x+4)(3)x﹣6= x(4)3x+ =3﹣.25.解方程:(1)0.5x+0.6=6﹣1.3x26.(2)1+=.答案解析部分一、单选题1.下列方程为一元一次方程的是()A.+y=2B.x+2=3yC.x2=2xD.y+1=2【答案】D【考点】一元一次方程的定义【解析】【解答】A.分母中含有字母,是分式方程,A不符合题意;B.方程中含有两个未知数,是二元一次方程,B不符合题意;C.方程中未知数的最高次数为2,是一元二次方程,C不符合题意;D.方程中含有一个未知数,且未知数的最高次数为1,是一元一次方程,D符合题意;故答案为:D.【分析】根据一元一次方程定义:指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。

中考数学试题分类解析汇编:一元一次方程

中考数学试题分类解析汇编:一元一次方程

中考数学试题分类解析汇编一元一次方程及其应用一、选择题1.(2012铜仁)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A .5(211)6(1)x x +-=-B .5(21)6(1)x x +=-C .5(211)6x x +-=D .5(21)6x x +=考点:由实际问题抽象出一元一次方程。

解答:解:设原有树苗x 棵,由题意得5(211)6(1)x x +-=-.故选A .2.(2012•重庆)已知关于x 的方程2x+a ﹣9=0的解是x=2,则a 的值为( )A .2B .3C .4D .5考点: 一元一次方程的解。

专题: 常规题型。

分析: 根据方程的解的定义,把x=2代入方程,解关于a 的一元一次方程即可.解答: 解;∵方程2x+a ﹣9=0的解是x=2,∴2×2+a ﹣9=0,解得a=5.故选D .点评: 本题考查了一元一次方程的解,把解代入方程求解即可,比较简单.二、填空题1.(2012•湘潭)湖南省2011年赴台旅游人数达7.6万人.我市某九年级一学生家长准备中考后全家3人去台湾旅游,计划花费20000元.设每人向旅行社缴纳x 元费用后,共剩5000元用于购物和品尝台湾美食.根据题意,列出方程为 20000﹣3x=5000 .考点: 由实际问题抽象出一元一次方程。

分析: 根据设每人向旅行社缴纳x 元费用后,共剩5000元用于购物和品尝台湾美食,得出等式方程即可.解答: 解:设每人向旅行社缴纳x 元费用,根据题意得出:20000﹣3x=5000,故答案为:20000﹣3x=5000.点评: 此题主要考查了由实际问题抽象出一元一次方程,根据全家3人去台湾旅游,计划花费20000元得出等式方程是解题关键.2.(2012山西)图1是边长为30的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm 3.考点:一元一次方程的应用。

2016年全国各地中考数学试题分类解析汇编 专题3 一元一次方程

2016年全国各地中考数学试题分类解析汇编  专题3 一元一次方程

2016年全国各地中考数学试题分类解析汇编专题3 一元一次方程1.(2016•济宁)已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.92.(2016•安徽)2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)3.(2016•菏泽)当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣34.(2016•威海)若x2﹣3y﹣5=0,则6y﹣2x2﹣6的值为()A.4 B.﹣4 C.16 D.﹣165.(2016•重庆)若m=﹣2,则代数式m2﹣2m﹣1的值是()A.9 B.7 C.﹣1 D.﹣96.(2016•雅安)已知a2+3a=1,则代数式2a2+6a﹣1的值为()A.0 B.1 C.2 D.37.(2016•淮安)已知a﹣b=2,则代数式2a﹣2b﹣3的值是()A.1 B.2 C.5 D.78.(2016•重庆)若a=2,b=﹣1,则a+2b+3的值为()A.﹣1 B.3 C.6 D.59.(2016•海南)若代数式x+2的值为1,则x等于()A.1 B.﹣1 C.3 D.﹣310.(2016•大连)方程2x+3=7的解是()A.x=5 B.x=4 C.x=3.5 D.x=211.(2016•株洲)在解方程时,方程两边同时乘以6,去分母后,正确的是()A.2x﹣1+6x=3(3x+1)B.2(x﹣1)+6x=3(3x+1)C.2(x﹣1)+x=3(3x+1)D.(x﹣1)+x=3(x+1)12.(2016•杭州)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为()A.518=2(106+x)B.518﹣x=2×106 C.518﹣x=2(106+x)D.518+x=2(106﹣x)13.(2016•南宁)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=9014.(2016•绥化)一个长方形的周长为30cm,若这个长方形的长减少1cm,宽增加2cm就可成为一个正方形,设长方形的长为xcm,可列方程为()A.x+1=(30﹣x)﹣2 B.x+1=(15﹣x)﹣2 C.x﹣1=(30﹣x)+2 D.x ﹣1=(15﹣x)+215.(2016•荆州)互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元16.(2016•哈尔滨)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x17.(2016•聊城)在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.722016年全国各地中考数学试题分类解析汇编专题3 一元一次方程参考答案与试题解析1.(2016•济宁)已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.9【解析】将3﹣2x+4y变形为3﹣2(x﹣2y),然后代入数值进行计算即可.【解答】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选:A.【点评】本题主要考查的是求代数式的值,将x﹣2y=3整体代入是解题的关键.2.(2016•安徽)2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)【解析】根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b亿元,即可得出a、b之间的关系式.【解答】解:∵2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,∴2014年我省财政收入为a(1+8.9%)亿元,∵2015年比2014年增长9.5%,2015年我省财政收为b亿元,∴2015年我省财政收为b=a(1+8.9%)(1+9.5%);故选C.【点评】此题考查了列代数式,关键是根据题意求出2014年我省财政的收入,是一道基础题.3.(2016•菏泽)当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣3【解析】根据a的取值范围,先去绝对值符号,再计算求值.【解答】解:当1<a<2时,|a﹣2|+|1﹣a|=2﹣a+a﹣1=1.故选:B.【点评】此题考查的知识点是代数式求值及绝对值,关键是根据a的取值,先去绝对值符号.4.(2016•威海)若x2﹣3y﹣5=0,则6y﹣2x2﹣6的值为()A.4 B.﹣4C.16 D.﹣16【解析】把(x2﹣3y)看作一个整体并求出其值,然后代入代数式进行计算即可得解.【解答】解:∵x2﹣3y﹣5=0,∴x2﹣3y=5,则6y﹣2x2﹣6=﹣2(x2﹣3y)﹣6=﹣2×5﹣6=﹣16,故选:D.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.5.(2016•重庆)若m=﹣2,则代数式m2﹣2m﹣1的值是()A.9 B.7 C.﹣1 D.﹣9【解析】把m=﹣2代入代数式m2﹣2m﹣1,即可得到结论.【解答】解:当m=﹣2时,原式=(﹣2)2﹣2×(﹣2)﹣1=4+4﹣1=7,故选B.【点评】本题考查了代数式求值,也考查了有理数的计算,正确的进行有理数的计算是解题的关键.6.(2016•雅安)已知a2+3a=1,则代数式2a2+6a﹣1的值为()A.0 B.1 C.2 D.3【解析】直接利用已知将原式变形,进而代入代数式求出答案.【解答】解:∵a2+3a=1,∴2a2+6a﹣1=2(a2+3a)﹣1=2×1﹣1=1.故选:B.【点评】此题主要考查了代数式求值,正确将原式变形是解题关键.7.(2016•淮安)已知a﹣b=2,则代数式2a﹣2b﹣3的值是()A.1 B.2 C.5 D.7【解析】直接利用已知a﹣b=2,再将原式变形代入a﹣b=2求出答案.【解答】解:∵a﹣b=2,∴2a﹣2b﹣3=2(a﹣b)﹣3=2×2﹣3=1.故选:A.【点评】此题主要考查了代数式求值,利用整体思想代入求出是解题关键.8.(2016•重庆)若a=2,b=﹣1,则a+2b+3的值为()A.﹣1 B.3 C.6 D.5【解析】把a与b代入原式计算即可得到结果.【解答】解:当a=2,b=﹣1时,原式=2﹣2+3=3,故选B【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.9.(2016•海南)若代数式x+2的值为1,则x等于()A.1 B.﹣1 C.3 D.﹣3【解析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:x+2=1,解得:x=﹣1,故选B【点评】此题考查了解一元一次方程方程,根据题意列出方程是解本题的关键.10.(2016•大连)方程2x+3=7的解是()A.x=5 B.x=4 C.x=3.5 D.x=2【解析】方程移项合并,把x系数化为1,即可求出解.【解答】解:2x+3=7,移项合并得:2x=4,解得:x=2,故选D【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.11.(2016•株洲)在解方程时,方程两边同时乘以6,去分母后,正确的是()A.2x﹣1+6x=3(3x+1)B.2(x﹣1)+6x=3(3x+1)C.2(x﹣1)+x=3(3x+1)D.(x﹣1)+x=3(x+1)【解析】方程两边同时乘以6,化简得到结果,即可作出判断.【解答】解:方程两边同时乘以6得:2(x﹣1)+6x=3(3x+1),故选B.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.12.(2016•杭州)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为()A.518=2(106+x)B.518﹣x=2×106 C.518﹣x=2(106+x)D.518+x=2(106﹣x)【解析】设从甲煤场运煤x吨到乙煤场,根据题意列出方程解答即可.【解答】解:设从甲煤场运煤x吨到乙煤场,可得:518﹣x=2(106+x),故选C.【点评】考查了由实际问题抽象出一元一次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.13.(2016•南宁)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90 【解析】设某种书包原价每个x元,根据题意列出方程解答即可.【解答】解:设某种书包原价每个x元,可得:0.8x﹣10=90,故选A【点评】本题考查一元一次方程,解题的关键是明确题意,能列出每次降价后的售价.14.(2016•绥化)一个长方形的周长为30cm,若这个长方形的长减少1cm,宽增加2cm就可成为一个正方形,设长方形的长为xcm,可列方程为()A.x+1=(30﹣x)﹣2 B.x+1=(15﹣x)﹣2 C.x﹣1=(30﹣x)+2 D.x ﹣1=(15﹣x)+2【解析】根据长方形的周长公式,表示出长方形的宽,再由正方形的四条边都相等得出等式即可.【解答】解:∵长方形的长为xcm,长方形的周长为30cm,∴长方形的宽为(15﹣x)cm,∵这个长方形的长减少1cm,宽增加2cm就可成为一个正方形,∴x﹣1=15﹣x+2,故选D.【点评】本题考查了有实际问题抽象出一元一次方程,解题的关键是表示出长方形的宽.15.(2016•荆州)互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元【解析】设该商品的进价为x元/件,根据“标价=(进价+利润)÷折扣”即可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设该商品的进价为x元/件,依题意得:(x+20)÷=200,解得:x=80.∴该商品的进价为80元/件.故选C.【点评】本题考查了一元一次方程的应用,解题的关键是列出方程(x+20)÷=200.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.16.(2016•哈尔滨)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x【解析】题目已经设出安排x名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选C【点评】本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.17.(2016•聊城)在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.72【解析】设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.【解答】解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是72.故选:D.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。

初中数学中考复习专题:一元一次方程练习题1(含答案)

初中数学中考复习专题:一元一次方程练习题1(含答案)

一元一次方程测试题一、填一填!1、若3x+6=17,移项得_____, x=____。

2、代数式5m +14与5(m -14)的值互为相反数,则m 的值等于______。

3、如果x=5是方程ax+5=10-4a 的解,那么a=______4、在解方程123123x x -+-=时,去分母得 。

5、若(a -1)x |a|+3=-6是关于x 的一元一次方程,则a =__;x =___。

6、当x=___时,单项式5a2x+1b 2 与8a x+3b 2是同类项。

7、方程5x 4x 123-+-=,去分母可变形为______。

8、如果2a+4=a -3,那么代数式2a+1的值是________。

9、从1999年11月1日起,全国储蓄存款需征收利息税,利息税的税率是20%,张老师于2003年5月1日在银行存入人民币4万元,定期一年,年利率为1.98%,存款到期后,张老师净得本息和共计______元。

10、当x 的值为-3时,代数式-3x 2+ a x -7的值是-25,则当x =-1时,这个代数式的值为 。

11、若()022=-+-y y x ,则x+y=___________ 12、某学校为保护环境,绿化家园,每年组织学生参加植树活动,去年植树x 棵,今年比去年增加20%,则今年植树___________棵.二、慧眼识真!1. 1、下列各题中正确的是( )A. 由347-=x x 移项得347=-x xB. 由231312-+=-x x 去分母得)3(31)12(2-+=-x x C. 由1)3(3)12(2=---x x 去括号得19324=---x xD. 由7)1(2+=+x x 移项、合并同类项得x =52、方程2-2x 4x 7312--=-去分母得___。

A 、2-2(2x -4)=-(x -7) B 、12-2(2x -4)=-x -7C 、24-4(2x -4)=-(x -7)D 、12-4x +4=-x +73、一批宿舍,若每间住1人,则有10人无法安排;若每间住3人,则有10间无人住。

全国中考数学一元二次方程组的综合中考真题分类汇总含详细答案

全国中考数学一元二次方程组的综合中考真题分类汇总含详细答案

全国中考数学一元二次方程组的综合中考真题分类汇总含详细答案一、一元二次方程1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2. (1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值. 【答案】(1)12k ≤;(2)3k = 【解析】试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值.试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2, ∴k 1=1,k 2=-3. ∵k ≤12,∴k =-3.2.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点. 己知函数222(3)y x mx m =--+(m m 为常数).(1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点; (3)设函数的两个零点分别为1x 和2x ,且121114x x +=-,此时函数图象与x 轴的交点分 别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM 的函数解析式.【答案】(1)当m =0和 (2)见解析,(3)AM 的解析式为112y x =--. 【解析】 【分析】(1)根据题中给出的函数的零点的定义,将m=0代入y=x 2-2mx-2(m+3),然后令y=0即可解得函数的零点;(2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可; (3)根据题中条件求出函数解析式进而求得A 、B 两点坐标,个、作点B 关于直线y=x-10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB 最小时,直线AM 的函数解析式 【详解】(1)当m =0时,该函数的零点为6和6-.(2)令y=0,得△=∴无论m 取何值,方程总有两个不相等的实数根.即无论m 取何值,该函数总有两个零点. (3)依题意有,由解得.∴函数的解析式为.令y=0,解得∴A(),B(4,0)作点B 关于直线10y x =-的对称点B’,连结AB’, 则AB’与直线10y x =-的交点就是满足条件的M 点.易求得直线10y x =-与x 轴、y 轴的交点分别为C (10,0),D (0,10). 连结CB’,则∠BCD=45° ∴BC=CB’=6,∠B’CD=∠BCD=45° ∴∠BCB’=90° 即B’(106-,)设直线AB’的解析式为y kx b =+,则20{106k b k b -+=+=-,解得112k b =-=-, ∴直线AB’的解析式为112y x =--, 即AM 的解析式为112y x =--.3.某建材销售公司在2019年第一季度销售,A B 两种品牌的建材共126件,A 种品牌的建材售价为每件6000元,B 种品牌的建材售价为每件9000元.(1)若该销售公司在第一季度售完两种建材后总销售额不低于96.6万元,求至多销售A 种品牌的建材多少件?(2)该销售公司决定在2019年第二季度调整价格,将A 种品牌的建材在上一个季度的基础上下调%a ,B 种品牌的建材在上一个季度的基础上上涨%a ;同时,与(1)问中最低销售额的销售量相比,A 种品牌的建材的销售量增加了1%2a ,B 种品牌的建材的销售量减少了2%3a ,结果2019年第二季度的销售额比(1)问中最低销售额增加2%23a ,求a 的值.【答案】(1)至多销售A 品牌的建材56件;(2)a 的值是30. 【解析】 【分析】(1)设销售A 品牌的建材x 件,根据售完两种建材后总销售额不低于96.6万元,列不等式求解;(2)根据题意列出方程求解即可. 【详解】(1)设销售A 品牌的建材x 件.根据题意,得()60009000126966000x x +-≥, 解这个不等式,得56x ≤, 答:至多销售A 品牌的建材56件.(2)在(1)中销售额最低时,B 品牌的建材70件, 根据题意,得()()()12260001%561%90001%701%6000569000701%2323a a a a a ⎛⎫⎛⎫⎛⎫-⨯+++⨯-=⨯+⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令%a y =,整理这个方程,得21030y y -=,解这个方程,得1230,10y y ==, ∴10a =(舍去),230a =, 即a 的值是30. 【点睛】本题考查了一元二次方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.4.解方程:(x+1)(x ﹣3)=﹣1.【答案】x 1x 2=1【解析】试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可. 试题解析:整理得:x 2﹣2x=2,配方得:x 2﹣2x+1=3,即(x ﹣1)2=3,解得:x 1,x 2=15.已知:关于x 的方程x 2-4mx +4m 2-1=0. (1)不解方程,判断方程的根的情况;(2)若△ABC 为等腰三角形,BC =5,另外两条边是方程的根,求此三角形的周长.2 【答案】(1) 有两个不相等的实数根(2)周长为13或17 【解析】试题分析:(1)根据方程的系数结合根的判别式,可得出△=4>0,由此可得出:无论m 为何值,该方程总有两个不相等的实数根;(2)根据等腰三角形的性质及△>0,可得出5是方程x 2﹣4mx +4m 2﹣1=0的根,将x =5代入原方程可求出m 值,通过解方程可得出方程的解,在利用三角形的周长公式即可求出结论.试题解析:解:(1)∵△=(﹣4m )2﹣4(4m 2﹣1)=4>0,∴无论m 为何值,该方程总有两个不相等的实数根.(2)∵△>0,△ABC 为等腰三角形,另外两条边是方程的根,∴5是方程x 2﹣4mx +4m 2﹣1=0的根.将x =5代入原方程,得:25﹣20m +4m 2﹣1=0,解得:m 1=2,m 2=3.当m =2时,原方程为x 2﹣8x +15=0,解得:x 1=3,x 2=5.∵3、5、5能够组成三角形,∴该三角形的周长为3+5+5=13;当m =3时,原方程为x 2﹣12x +35=0,解得:x 1=5,x 2=7.∵5、5、7能够组成三角形,∴该三角形的周长为5+5+7=17. 综上所述:此三角形的周长为13或17.点睛:本题考查了根的判别式、等腰三角形的性质、三角形的三边关系以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)代入x =5求出m 值.6.已知关于x 的一元二次方程x 2﹣x+a ﹣1=0. (1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值. 【答案】(1)123,4x x =-=(2)54a ≤(3)-4 【解析】分析:(1)根据一元二次方程的解法即可求出答案; (2)根据判别式即可求出a 的范围; (3)根据根与系数的关系即可求出答案.详解:(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣4=0,∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得54a ≤:;(3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,.∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦,把22112211x x a x x a -=--=-, 代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9,解得:a =﹣4,a =2(舍去),所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.7.解方程:2332302121x x x x ⎛⎫⎛⎫--= ⎪ ⎪--⎝⎭⎝⎭.【答案】x=15或x=1 【解析】 【分析】设321xy x =-,则原方程变形为y 2-2y-3=0, 解这个一元二次方程求y ,再求x . 【详解】解:设321xy x =-,则原方程变形为y 2-2y-3=0. 解这个方程,得y 1=-1,y 2=3,∴3121x x =--或3321xx =-. 解得x=15或x=1. 经检验:x=15或x=1都是原方程的解. ∴原方程的解是x=15或x=1. 【点睛】考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.8.关于x 的方程(k -1)x 2+2kx+2=0(1)求证:无论k 为何值,方程总有实数根. (2)设x 1,x 2是方程(k -1)x 2+2kx+2=0的两个根,记S=++ x 1+x 2,S 的值能为2吗?若能,求出此时k 的值.若不能,请说明理由.【答案】(1)详见解析;(2)S 的值能为2,此时k 的值为2. 【解析】试题分析:(1)本题二次项系数为(k-1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,x=有一个解;②当k-1≠0即k≠1时,方程为一元二次方程,△=(2k)²-4×2(k-1)=4k²-8k+8="4(k-1)" ²+4>0方程有两不等根综合①②得不论k为何值,方程总有实根(2)∵x ₁+x ₂=,x ₁ x ₂=∴S=++ x1+x2=====2k-2=2,解得k=2,∴当k=2时,S的值为2∴S的值能为2,此时k的值为2.考点:一元二次方程根的判别式;根与系数的关系.9.沙坪坝区各街道居民积极响应“创文明城区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A,B两个社区,B社区居民人口数量不超过A社区居民人口数量的2倍.(1)求A社区居民人口至少有多少万人?(2)街道工作人员调查A,B两个社区居民对“社会主义核心价值观”知晓情况发现:A社区有1.2万人知晓,B社区有1.5万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A社区的知晓人数平均月增长率为m%,B社区的知晓人数第一个月增长了4m%,第二月在第一个月的基础上又增长了2m%,两个月后,街道居民的知晓率达到592%,求m的值.【答案】(1)A 社区居民人口至少有2.5万人;(2)m 的值为50. 【解析】 【分析】(1)设A 社区居民人口有x 万人,根据“B 社区居民人口数量不超过A 社区居民人口数量的2倍”列出不等式求解即可;(2)A 社区的知晓人数+B 社区的知晓人数=7.5×92%,据此列出关于m 的方程并解答. 【详解】解:(1)设A 社区居民人口有x 万人,则B 社区有(7.5-x )万人, 依题意得:7.5-x ≤2x , 解得x ≥2.5.即A 社区居民人口至少有2.5万人; (2)依题意得:1.2(1+m %)2+1.5×(1+45m %)+1.5×(1+45m %)(1+2m %)=7.5×92%, 解得m =50 答:m 的值为50. 【点睛】本题考查了一元二次方程和一元一次不等式的应用,解题的关键是读懂题意,找到题中相关数据的数量关系,列出不等式或方程.10.关于x 的方程()2204kkx k x +++=有两个不相等的实数根. ()1求实数k 的取值范围;()2是否存在实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出k 的值;若不存在,说明理由.【答案】(1)1k >-且0k ≠;(2)不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根. 【解析】 【分析】()1由于方程有两个不相等的实数根,所以它的判别式0>,由此可以得到关于k 的不等式,解不等式即可求出k 的取值范围.()2首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于k 的等式,解出k 值,然后判断k 值是否在()1中的取值范围内.【详解】解:()1依题意得2(2)404kk k =+-⋅>, 1k ∴>-,又0k ≠,k ∴的取值范围是1k >-且0k ≠;()2解:不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根,理由是:设方程()2204kkx k x +++=的两根分别为1x ,2x , 由根与系数的关系有:1212214k x x kx x +⎧+=-⎪⎪⎨⎪=⎪⎩,又因为方程的两个实数根之和等于两实数根之积的算术平方根,212k k +∴-=, 43k ∴=-,由()1知,1k >-,且0k ≠,43k ∴=-不符合题意,因此不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根. 【点睛】本题重点考查了一元二次方程的根的判别式和根与系数的关系。

中考数学试题分项版解析(第03期)专题15 应用题-人教版初中九年级全册数学试题

中考数学试题分项版解析(第03期)专题15 应用题-人教版初中九年级全册数学试题

专题15 应用题1.(2016某某省某某市第22题)“六一”期间,小X购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:型号进价(元/只)售价(元/只)A型10 12B型15 23(1)小X如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小X设计一个进货方案,并求出其所获利润的最大值.【答案】(1)A文具为40只,B文具60只;(2)各进50只,最大利润为500元.【解析】试题分析:(1)设A文具为x只,则B文具为(100﹣x)只,根据题意列出方程解答即可;(12﹣10)x+(23﹣15)(100﹣x)≤40%[10x+15(100﹣x)],解得:x≥50,设利润为y,则可得:y=(12﹣10)x+(23﹣15)(100﹣x)=2x+800﹣8x=﹣6x+800,因为是减函数,所以当x=50时,利润最大,即最大利润=﹣50×6+800=500元.考点:1.一次函数的应用;2.一元一次方程的应用;3.一元一次不等式的应用.2.(2016某某省某某市第23题)某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:“读书节”活动计划书书本类别A类B类进价(单位:元)18 12备注1、用不超过16800元购进A、B两类图书共1000本;2、A类图书不少于600本;…(1)陈经理查看计划数时发现:A类图书的标价是B类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本,请求出A、B两类图书的标价;(2)经市场调查后,陈经理发现他们高估了“读书节”对图书销售的影响,便调整了销售方案,A类图书每本标价降低a元(0<a<5)销售,B类图书价格不变,那么书店应如何进货才能获得最大利润?【答案】(1)、A类图书的标价为27元,B类图书的标价为18元;(2)、当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.【解析】试题解析:(1)、设B类图书的标价为x元,则A类图书的标价为1.5x元,根据题意可得﹣10=,化简得:540﹣10x=360,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,×18=27(元),答:A类图书的标价为27元,B类图书的标价为18元;(2)、设购进A类图书t本,总利润为w元,A类图书的标价为(27﹣a)元(0<a<5),由题意得,,解得:600≤t≤800,则总利润w=(27﹣a﹣18)t+(18﹣12)(1000﹣t)=(9﹣a)t+6(1000﹣t)=6000+(3﹣a)t,故当0<a<3时,3﹣a>0,t=800时,总利润最大;当3≤a<5时,3﹣a<0,t=600时,总利润最大;答:当A 类图书每本降价少于3元时,A 类图书购进800本,B 类图书购进200本时,利润最大;当A 类图书每本降价大于等于3元,小于5元时,A 类图书购进600本,B 类图书购进400本时,利润最大. 考点:(1)、一次函数的应用;(2)、分式方程的应用;(3)、一元一次不等式组的应用3.(2016某某省某某市第21题)(8分)荔枝是某某特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)、求桂味和糯米糍的售价分别是每千克多少元;(2)、如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的两倍,请设计一种购买方案,使所需总费用最低.【答案】(1)、桂味售价为每千克15元,糯米味售价为每千克20元;(2)、购买桂味4千克,糯米味8千克是,总费用最少.试题解析:(1)、设桂味售价为每千克x 元,糯米味售价为每千克y 元,根据题意得:⎩⎨⎧=+=+5529032y x y x解得:⎩⎨⎧==2015y x答:桂味售价为每千克15元,糯米味售价为每千克20元。

2016年上海市中考数学试卷(含答案解析)

2016年上海市中考数学试卷(含答案解析)

2016年上海市中考数学试卷一、选择题:本大题共6小题,每小题4分,共24分1.(4 分)如果a与3 互为倒数,那么 a 是()A.﹣3 B.3 C.﹣D.2.(4 分)下列单项式中,与a2b 是同类项的是()A.2a2bB.a2b2 C.ab2 D.3ab2+2 向下平移 1 个单位,那么所得新抛物线的表达式3.(4 分)如果将抛物线y=x是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+34.(4 分)某校调查了20 名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20 名男生该周参加篮球运动次数的平均数是()次数 2 3 4 5人数 2 2 10 6A.3 次B.3.5 次C.4 次D.4.5 次5.(4 分)已知在△ABC中,AB=AC,AD是角平分线,点D 在边BC上,设= ,= ,那么向量用向量、表示为()A.+ B.﹣C.﹣+ D.﹣﹣6.(4 分)如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D 在边BC上,CD=3,⊙A的半径长为3,⊙D 与⊙A 相交,且点B在⊙D 外,那么⊙D 的半径长r 的取值范围是()A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8第1页(共24页)二、填空题:本大题共12小题,每小题4分,共48分3÷a=.7.(4分)计算:a8.(4分)函数y=的定义域是.9.(4分)方程=2的解是.10.(4分)如果a=,b=﹣3,那么代数式2a+b的值为.11.(4分)不等式组的解集是.2﹣3x+k=0有两个相等的实数根,那么实数k的12.(4分)如果关于x的方程x值是.13.(4分)已知反比例函数y=(k≠0),如果在这个函数图象所在的每一个象是.限内,y的值随着x的值增大而减小,那么k的取值范围14.(4分)有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、⋯6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.15.(4分)在△ABC中,点D、E分别是边A B、AC的中点,那么△ADE的面积与△ABC的面积的比是.16.(4分)今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的人数是.的信息,那么本次调查的对象中选择公交前往17.(4分)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得离AD为90米,那么60°,此时航拍无人机与该建筑物的水平距底部C的俯角为为米.(精确到1米,参考数据:≈ 1.73)该建筑物的高度B C约第2页(共24页)18.(4分)如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.三、解答题:本大题共7小题,共78分19.(10分)计算:|﹣1|﹣﹣+.20.(10分)解方程:﹣=1.21.(10分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=,3点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余切值.22.(10分)某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(千克)与时间x(时)的函数图象,线段EF表示B种机器人的搬运量y B(千克)与时间x (时)的函数图象.根据图象提供的信息,解答下列问题:第3页(共24页)(1)求y B关于x的函数解析式;(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?23.(12分)已知:如图,⊙O是△ABC的外接圆,=,点D在边BC上,AE∥BC,AE=BD.(1)求证:AD=CE;(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE 是平行四边形.2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的24.(12分)如图,抛物线y=ax负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.(1)求这条抛物线的表达式;(2)连结AB、BC、CD、DA,求四边形ABCD的面积;(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.第4页(共24页)25.(14分)如图所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.(1)求线段CD的长;(2)如果△AEG是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.第5页(共24页)2016年上海市中考数学试卷参考答案与试题解析一、选择题:本大题共6小题,每小题4分,共24分1.(4 分)如果a与3 互为倒数,那么 a 是()A.﹣3 B.3 C.﹣D.【分析】根据乘积为 1 的两个数互为倒数,可得答案.【解答】解:由a 与3 互为倒数,得a 是,故选:D.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(4 分)下列单项式中,与a2b 是同类项的是()A.2a2bB.a2b2 C.ab2 D.3ab【分析】根据同类项的概念:所含字母相同,并且相同字母的指数也相同,结合选项解答即可.【解答】解:A、2a2b 与a2b 所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;B、a2b2 与a2b 所含字母相同,但相同字母 b 的指数不相同,不是同类项,故本选项错误;2 与a2b 所含字母相同,但相同字母 a 的指数不相同,不是同类项,本选项C、ab错误;D、3ab 与a2b 所含字母相同,但相同字母 a 的指数不相同,不是同类项,本选项错误.故选A.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项中相同字母的指数相同的概念.第6页(共24页)2+2 向下平移 1 个单位,那么所得新抛物线的表达式3.(4 分)如果将抛物线y=x是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+3.【分析】根据向下平移,纵坐标相减,即可得到答案【解答】解:∵抛物线y=x2+2 向下平移1 个单位,∴抛物线的解析式为y=x2+2﹣1,即y=x2+1.C.故选【点评】本题考查了二次函数的图象与几何变换,向下平移| a| 个单位长度纵坐标要减| a| .4.(4 分)某校调查了20 名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20 名男生该周参加篮球运动次数的平均数是()次数 2 3 4 5人数 2 2 10 6A.3 次B.3.5 次C.4 次D.4.5 次n个数x1,x2,x3,⋯,x n 的权分别是w1,w2,w3,⋯,【分析】加权平均数:若w n,则(x1w1+x2w2+⋯+x n w n)÷(w1+w2+⋯+w n)叫做这n 个数的加权平均数,依此列式计算即可求解.【解答】解:(2×2+3×2+4×10+5×6)÷20=(4+6+40+30)÷20=80÷20=4(次).答:这20 名男生该周参加篮球运动次数的平均数是 4 次.误是求2,3,4,5错【点评】本题考查的是加权平均数的求法.本题易出的现.这四个数的平均数,对平均数的理解不正确5.(4 分)已知在△ABC中,AB=AC,AD是角平分线,点D 在边B C上,设=,= ,那么向量用向量、表示为()A.+ B.﹣C.﹣+ D.﹣﹣【分析】由△ABC中,AD 是角平分线,结合等腰三角形的性质得出BD=DC,可求得的值,然后利用三角形法则,求得答案.【解答】解:如图所示:∵在△ABC中,AB=AC,AD是角平分线,∴BD=DC,∵= ,∴= ,∵= ,∴= + = + .故选:A.【点评】此题考查了平面向量的知识,注意掌握三角形法则的应用是解题关键.6.(4 分)如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D 在边BC上,CD=3,⊙A的半径长为3,⊙D 与⊙A 相交,且点B在⊙D 外,那么⊙D 的半径长r 的取值范围是()A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8【分析】连接AD,根据勾股定理得到AD=5,根据圆与圆的位置关系得到r>5﹣3=2,由点B在⊙D外,于是得到r<4,即可得到结论.【解答】解:连接AD,∵AC=4,CD=3,∠C=90°,∴AD=5,∵⊙A的半径长为3,⊙D与⊙A相交,∴r>5﹣3=2,∵BC=7,∴BD=4,∵点B在⊙D外,∴r<4,∴⊙D的半径长r的取值范围是2<r<4,故选B.【点评】本题考查了圆与圆的位置关系,点与圆的位置关系,设点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内.二、填空题:本大题共12小题,每小题4分,共48分3÷a=a2.7.(4分)计算:a【分析】根据同底数幂相除,底数不变指数相减进行计算即可求解.【解答】解:a3÷a=a3﹣1=a2.故答案为:a2.8.(4分)函数y=的定义域是x≠2.【分析】直接利用分式有意义的条件得出答案.【解答】解:函数y=的定义域是:x≠2.故答案为:x≠2.【点评】此题主要考查了函数自变量的取值范围,正确把握相关性质是解题关键.9.(4分)方程=2的解是x=5.【分析】利用两边平方的方法解出方程,检验即可.【解答】解:方程两边平方得,x﹣1=4,解得,x=5,把x=5代入方程,左边=2,右边=2,左边=右边,则x=5是原方程的解,故答案为:x=5.【点评】本题考查的是无理方程的解法,正确利用两边平方的方法解出方程,并正确进行验根是解题的关键.10.(4分)如果a=,b=﹣3,那么代数式2a+b的值为﹣2.【分析】把a与b的值代入原式计算即可得到结果.【解答】解:当a=,b=﹣3时,2a+b=1﹣3=﹣2,故答案为:﹣2【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.11.(4分)不等式组的解集是x<1.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x<,解②得x<1,则不等式组的解集是x<1.故答案是:x<1.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2﹣3x+k=0有两个相等的实数根,那么实数k的12.(4分)如果关于x的方程x值是.【分析】根据方程有两个相等的实数根结合根的判别式,即可得出关于k的一元一次方程,解方程即可得出结论.【解答】解:∵关于x的方程x2﹣3x+k=0有两个相等的实数根,∴△=(﹣3)2﹣4×1×k=9﹣4k=0,解得:k=.故答案为:.【点评】本题考查了根的判别式以及解一元一次方程,解题的关键是找出9﹣4k=0.本题属于基础题,难度不大,解决该题型题目时,根据方程解的情况结合根的判别式得出方程(不等式或不等式组)是关键.13.(4分)已知反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,那么k的取值范围是k>0.【分析】直接利用当k>0,双曲线的两支分别位于第一、第三象限,在每一象每一象限内y随x的增大而增大,进而得出答案.第11页(共24页)【解答】解:∵反比例函数y=(k≠0),如果在这个函数图象所在的每一个象x的值增大而减小,限内,y的值随着∴k的取值范围是:k>0.故答案为:k>0..【点评】此题主要考查了反比例函数的性质,正确记忆增减性是解题关键14.(4分)有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、⋯6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的概率==.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.15.(4分)在△ABC中,点D、E分别是边A B、AC的中点,那么△ADE的面积与△ABC的面积的比是.D E∥BC,推出△ADE∽△ABC,所以=【分析】构建三角形中位线定理得()2,由此即可证明.【解答】解:如图,∵AD=DB,AE=EC,∴DE∥BC.DE=BC,∴△ADE∽△ABC,∴=()2=,故答案为.【点评】本题考查三角形中位线定理,相似三角形的判定和性质,解题的关键是.记住相似三角形的面积比等于相似比的平方,属于中考常考题型16.(4分)今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的人数是6000.的信息,那么本次调查的对象中选择公交前往【分析】根据自驾车人数除以百分比,可得答案.【解答】解:由题意,得4800÷40%=12000,公交12000×50%=6000,故答案为:6000.【点评】本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解项目的数据.决问题的关键.条形统计图能清楚地表示出每个17.(4分)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么为208米.(精确到1米,参考数据:≈ 1.73)B C约该建筑物的高度【分析】分别利用锐角三角函数关系得出BD,DC的长,进而求出该建筑物的高度.【解答】解:由题意可得:tan30°===,解得:BD=30,tan60°===,解得:DC=90,故该建筑物的高度为:BC=BD+DC=120≈208(m),故答案为:208.【点评】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.18.(4分)如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.义A B=x,根据平行线的性质列出比例式求出x的值,根据正切的定【分析】设求出tan∠BA′,C根据∠ABA′=∠BA′C解答即可.C D=x,A′C=+x2,【解答】解:设A B=x,则∵AD∥BC,∴=,即=,解得,x1=﹣1,x2=﹣1(舍去),∵AB∥CD,∴∠ABA′∠=BA′,Ctan∠BA′C===,∴tan∠ABA′=,故答案为:.【点评】本题考查的是旋转的性质、矩形的性质以及锐角三角函数的定义,掌握旋转前、后的图形全等以及锐角三角函数的定义是解题的关键.三、解答题:本大题共7小题,共78分19.(10分)计算:|﹣1|﹣﹣+.【分析】利用绝对值的求法、分数指数幂、负整数指数幂分别化简后再加减即可求解.【解答】解:原式=﹣1﹣2﹣2+9=6﹣【点评】本题考查了实数的运算及负整数指数幂的知识,解题的关键是了解相关的运算性质及运算法则,难度不大.20.(10分)解方程:﹣=1.【分析】根据解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1进行计算即可.【解答】解:去分母得,x+2﹣4=x2﹣4,移项、合并同类项得,x2﹣x﹣2=0,解得x1=2,x2=﹣1,经检验x=2是增根,舍去;x=﹣1是原方程的根,所以原方程的根是x=﹣1.【点评】本题考查了解分式方程,熟记解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1是解题的关键,注意验根.21.(10分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=,3点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余切值.【分析】(1)由等腰直角三角形的性质得出∠A=∠B=45°,由勾股定理求出AB=3,求出∠ADE=∠A=45°,由三角函数得出AE=,即可得出BE的长;(2)过点E作EH⊥BC,垂足为点H,由三角函数求出EH=BH=BE?cos4°5=,2得出CH=1,在Rt△CHE中,由三角函数求出cot∠ECB==即可.【解答】解:(1)∵AD=2CD,AC=3,∴AD=2,∵在Rt△ABC中,∠ACB=9°0,AC=BC=3,∴∠A=∠B=45°,AB===3,∵DE⊥AB,∴∠AED=9°0,∠ADE=∠A=45°,∴AE=AD?cos4°5=×2=,∴BE=AB﹣AE=3﹣=2,即线段BE的长为2;(2)过点E作EH⊥BC,垂足为点H,如图所示:∵在Rt△BEH中,∠EHB=9°0,∠B=45°,∴EH=BH=BE?cos4°5=2×=2,∵BC=3,∴CH=1,在Rt△CHE中,cot∠ECB==,即∠ECB的余切值为.【点评】本题考查了解直角三角形、勾股定理、等腰直角三角形的性质、三角函数;熟练掌握等腰直角三角形的性质,通过作辅助线求出CH是解决问题(2)的关键.22.(10分)某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(千克)与时间x(时)的函数图象,线段EF表示B种机器人的搬运量y B(千克)与时间x (时)的函数图象.根据图象提供的信息,解答下列问题:(1)求y B关于x的函数解析式;(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?【分析】(1)设y B关于x的函数解析式为y B=kx+b(k≠0),将点(1,0)、(3,180)代入一次函数函数的解析式得到关于k,b的方程组,从而可求得函数的解析式;(2)设y A 关于 x 的解析式为y A =k 1x .将(3,180)代入可求得 y A 关于 x 的解析 式,然后将 x=6,x=5 代入一次函数和正比例函数的解析式求得 y A ,y B 的值,最后求得 y A 与 y B 的差即可.【解答】 解:(1)设y B 关于 x 的函数解析式为y B = k x +b (k ≠0). 将点( 1,0)、(3,180)代入得: ,解得: k=90,b=﹣90.所以 y B 关于 x 的函数解析式为y B =90x ﹣90(1≤ x ≤ 6). (2)设y A 关于 x 的解析式为y A =k 1x . 根据题意得: 3k 1=180. 解得: k 1=60. 所以 y A =60x .当 x=5时, y A =60×5=300(千克); x=6 时,y B =90×6﹣90=450(千克). 450﹣300=150(千克).答:如果 A 、B 两种机器人各连续搬运 5 小时, B 种机器人比 A 种机器人多搬运 了 150 千克.【点评】本题主要考查的是一次函数的应用, 依据待定系数法求得一次函数的解析式是解题的关键.23.(12 分)已知:如图,⊙O 是△ ABC 的外接圆, = ,点 D 在边 BC 上,AE ∥BC ,AE=BD . (1)求证: AD=CE ;(2)如果点 G 在线段D C 上(不与点 D 重合),且 AG=AD ,求证:四边形 AGCE 是平行四边形.【分析】(1)根据等弧所对的圆周角相等,得出∠B=∠ACB,再根据全等三角形的判定得△ABD≌△CAE,即可得出AD=CE;A O并延长,交边BC于点H,由等腰三角形的性质和外心的性质得出(2)连接AH⊥BC,再由垂径定理得BH=CH,得出CG与AE平行且相等.(1)在⊙O中,【解答】证明:∵=,∴AB=AC,∴∠B=∠ACB,∵AE∥BC,∴∠EAC=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE(SAS),∴AD=CE;边BC于点H,(2)连接A O并延长,交∵=,OA为半径,∴AH⊥BC,∴BH=CH,∵AD=AG,∴DH=HG,∴BH﹣D H=CH﹣G H,即BD=CG,∵BD=AE,∴CG=AE,∵CG∥AE,∴四边形AGCE是平行四边形.【点评】本题考查了三角形的外接圆与外心以及全等三角形的判定和性质,平行四边形的判定,圆心角、弧、弦之间的关系,把这几个知识点综合运用是解题的关键.2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的24.(12分)如图,抛物线y=ax负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.(1)求这条抛物线的表达式;(2)连结AB、BC、CD、DA,求四边形ABCD的面积;(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.【分析】(1)先得出C点坐标,再由OC=5BO,得出B点坐标,将A、B两点坐标代入解析式求出a,b;(2)分别算出△ABC和△ACD的面积,相加即得四边形ABCD的面积;用等面积法求出CH,从而算出tan∠ABC,而BO是已知的,从而利用tan∠BEO=tan ∠ABC可求出EO长度,也就求出了E点坐标.第20页(共24页)【解答】解:(1)∵抛物线y=ax2+bx﹣5与y轴交于点C,∴C(0,﹣5),∴OC=5.∵OC=5OB,∴OB=1,又点B在x轴的负半轴上,∴B(﹣1,0).∵抛物线经过点A(4,﹣5)和点B(﹣1,0),∴,解得,∴这条抛物线的表达式为y=x2﹣4x﹣5.(2)由y=x2﹣4x﹣5,得顶点D的坐标为(2,﹣9).连接AC,∵点A的坐标是(4,﹣5),点C的坐标是(0,﹣5),又S△ABC=×4×5=10,S△ACD=×4×4=8,∴S四边形ABCD=S△ABC+S△ACD=18.(3)过点C作CH⊥AB,垂足为点H.∵S△ABC=×AB×CH=10,AB==5,∴CH=2,在RT△BCH中,∠BHC=9°0,BC=,BH==3,∴tan∠CBH==.∵在RT△BOE中,∠BOE=9°0,tan∠BEO=,∵∠BEO=∠ABC,∴,得EO=,∴点E的坐标为(0,).【点评】本题为二次函数综合题,主要考查了待定系数法求二次函数解析式、三中.第(3)角形面积求法、等积变换、勾股定理、正切函数等知识点,难度适.问,将角度相等转化为对应的正切函数值相等是解答关键25.(14分)如图所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.C D的长;(1)求线段(2)如果△AEG是以EG为腰的等腰三角形,求线段A E的长;A E=x,DF=y,求y关于x的(3)如果点F在边CD上(不与点C、D重合),设函数解析式,并写出x的取值范围.【分析】(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,则DH=BC=12,CD=BH,再利用勾股定理计算出AH,从而得到BH和CD的长;G点与D点重合,即ED=EA,当EA=EG时,则∠AGE=∠GAE,则判断论:(2)分类讨作EM⊥AD于M,如图1,则AM=AD=,通过证明Rt△AME∽Rt△AHD,利当GA=GE时,则∠AGE=∠AEG,可证明AE=AD=15,用相似比可计算出此时的AE长;(3)作DH⊥AB于H,如图2,则AH=9,HE=|x﹣9|,先利用勾股定理表示出DE=,再证明△EAG∽△EDA,则利用相似比可表示出EG=,则可表示出DG,然后证明△DGF∽△EGA,于是利用相似比可表示出x和y的关系.【解答】解:(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,∴DH=BC=1,2CD=BH,在Rt△ADH中,AH===9,∴BH=AB﹣A H=16﹣9=7,∴CD=7;(2)①EA=EG时,则∠AGE=∠GAE,∵∠AGE=∠DAB,∴∠GAE=∠DAB,∴G点与D点重合,即ED=EA,1,则AM=AD=,作EM⊥AD于M,如图∵∠MAE=∠HAD,∴Rt△AME∽Rt△AHD,∴AE:AD=AM:AH,即AE:15=:9,解得AE=;②GA=GE时,则∠GAE=∠AEG,∵∠AGE=∠DAB,而∠AGE=∠ADG+∠DAG,∠DAB=∠GAE+∠DAG,∴∠GAE=∠ADG,∴∠AEG=∠ADG,∴AE=AD=15.段AE的长为或15;综上所述,△AEC是以EG为腰的等腰三角形时,线9|,(3)作DH⊥AB于H,如图2,则AH=9,HE=|x﹣在Rt△HDE中,DE==,∵∠AGE=∠DAB,∠AEG=∠DEA,∴△EAG∽△EDA,∴EG:AE=AE:ED,即EG:x=x:,∴EG=,∴DG=DE﹣E G=﹣,∵DF∥AE,∴△DGF∽△EGA,∴DF:AE=DG:EG,即y:x=(﹣):,∴y=(0<x<).本题考查了四边形的综合题:熟练掌握梯形的性质等等腰三角形的性质;【点评】题;会利用勾股定理和相似常把直角梯形化为一个直角三角形和一个矩形解决问题.比计算线段的长;会运用分类讨论的思想解决数学问。

2016年上海市中考数学试卷-含答案详解

2016年上海市中考数学试卷-含答案详解

2016年上海市中考数学试卷一、选择题(本大题共6小题,共24.0分。

在每小题列出的选项中,选出符合题目的一项)1. 如果a与3互为倒数,那么a是( )A. −3B. 3C. −13D. 132. 下列单项式中,与a2b是同类项的是( )A. 2a2bB. a2b2C. ab2D. 3ab3. 如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是( )A. y=(x−1)2+2B. y=(x+1)2+2C. y=x2+1D. y=x2+34. 某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是( )次数2345人数22106A. 3次B. 3.5次C. 4次D. 4.5次5. 已知在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设BC⃗⃗⃗⃗⃗ =a⃗,AD⃗⃗⃗⃗⃗⃗ =b⃗ ,那么向量AC⃗⃗⃗⃗⃗ 用向量a⃗、b⃗ 表示为( )A. 12a⃗+b⃗ B. 12a⃗−b⃗ C. −12a⃗+b⃗ D. −12a⃗−b⃗6. 如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是( )A. 1<r<4B. 2<r<4C. 1<r<8D. 2<r<8二、填空题(本大题共12小题,共48.0分)7. 计算:a3÷a=______ .8. 函数y=3x−2的定义域是______ .9. 方程√x−1=2的解是______.10. 如果a=1,b=−3,那么代数式2a+b的值为______ .211. 不等式组{2x<5x−1<0的解集是______.12. 如果关于x的方程x2−3x+k=0有两个相等的实数根,那么实数k的值是______ .13. 已知反比例函数y=k(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着xx的值增大而减小,那么k的取值范围是______ .14. 有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是______.15. 在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是______ .16. 今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是______.17. 如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为______米.(精确到1米,参考数据:√3≈1.73)18. 如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为______.三、计算题(本大题共1小题,共10.0分)19. 解方程:1x−2−4x2−4=1.四、解答题(本大题共6小题,共68.0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程及其应用一.选择题1.(2016·广西桂林·3分)如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣3【考点】一次函数与一元一次方程.【分析】所求方程的解,即为函数y=ax+b图象与x轴交点横坐标,确定出解即可.【解答】解:方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,∵直线y=ax+b过B(﹣3,0),∴方程ax+b=0的解是x=﹣3,故选D2.(2016广西南宁3分)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90【考点】由实际问题抽象出一元一次方程.【分析】设某种书包原价每个x元,根据题意列出方程解答即可.【解答】解:设某种书包原价每个x元,可得:0.8x﹣10=90,故选A【点评】本题考查一元一次方程,解题的关键是明确题意,能列出每次降价后的售价.3.(2016海南3分)若代数式x+2的值为1,则x等于()A.1 B.﹣1 C.3 D.﹣3【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:x+2=1,解得:x=﹣1,故选B【点评】此题考查了解一元一次方程方程,根据题意列出方程是解本题的关键.4.(2016·湖北荆州·3分)互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元 B.100元 C.80元 D.60元【分析】设该商品的进价为x元/件,根据“标价=(进价+利润)÷折扣”即可列出关于x 的一元一次方程,解方程即可得出结论.【解答】解:设该商品的进价为x元/件,依题意得:(x+20)÷=200,解得:x=80.∴该商品的进价为80元/件.故选C.【点评】本题考查了一元一次方程的应用,解题的关键是列出方程(x+20)÷=200.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.5.(2016·内蒙古包头·3分)若2(a+3)的值与4互为相反数,则a的值为()A.﹣1 B.﹣C.﹣5 D.【考点】解一元一次方程;相反数.【分析】先根据相反数的意义列出方程,解方程即可.【解答】解:∵2(a+3)的值与4互为相反数,∴2(a+3)+4=0,∴a=﹣5,故选C.二.填空题1. (2016·浙江省绍兴市·5分)书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是248或296 元.【考点】一元一次方程的应用.【分析】设第一次购书的原价为x元,则第二次购书的原价为3x元.根据x的取值范围分段考虑,根据“付款金额=第一次付款金额+第二次付款金额”即可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设第一次购书的原价为x元,则第二次购书的原价为3x元,依题意得:①当0<x≤时,x+3x=229.4,解得:x=57.35(舍去);②当<x≤时,x+×3x=229.4,解得:x=62,此时两次购书原价总和为:4x=4×62=248;③当<x≤100时,x+×3x=229.4,解得:x=74,此时两次购书原价总和为:4x=4×74=296.综上可知:小丽这两次购书原价的总和是248或296元.故答案为:248或296.2.(2016·黑龙江龙东·3分)一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是180 元.【考点】一元一次方程的应用.【分析】设该件服装的成本价是x元.根据“利润=标价×折扣﹣进价”即可得出关于x的一元一次方程,解方程即可得出结论.【解答】解:设该件服装的成本价是x元,依题意得:300×﹣x=60,解得:x=180.∴该件服装的成本价是180元.故答案为:180.3.(2016·湖北荆门·3分)为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的还少5台,则购置的笔记本电脑有16 台.【考点】一元一次方程的应用.【分析】设购置的笔记本电脑有x台,则购置的台式电脑为台.根据笔记本电脑的台数比台式电脑的台数的还少5台,可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设购置的笔记本电脑有x台,则购置的台式电脑为台,依题意得:x=﹣5,即20﹣x=0,解得:x=16.∴购置的笔记本电脑有16台.故答案为:16.三、解答题1. (2016·湖北武汉·8分)解方程:5x+2=3(x+2) .【考点】解一元一次方程【答案】x=2【解析】解:去括号得5x+2=3x+6,移项合并得2x=4,∴x=2.2. (2016·江西·8分)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.【考点】一元一次方程的应用.【分析】(1)根据“第n 节套管的长度=第1节套管的长度﹣4×(n ﹣1)”,代入数据即可得出结论;(2)同(1)的方法求出第10节套管重叠的长度,设每相邻两节套管间的长度为xcm ,根据“鱼竿长度=每节套管长度相加﹣(10﹣1)×相邻两节套管间的长度”,得出关于x 的一元一次方程,解方程即可得出结论.【解答】解:(1)第5节套管的长度为:50﹣4×(5﹣1)=34(cm ).(2)第10节套管的长度为:50﹣4×(10﹣1)=14(cm ),设每相邻两节套管间重叠的长度为xcm ,根据题意得:(50+46+42+…+14)﹣9x=311, 即:320﹣9x=311,解得:x=1.答:每相邻两节套管间重叠的长度为1cm .3.(2016·广西桂林·8分)五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?【考点】分式方程的应用;一元一次方程的应用.【分析】(1)设每件乙种物品的价格是x 元,则每件甲种物品的价格是(x+10)元,根据用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同列出方程,求解即可;(2)设甲种物品件数为m 件,则乙种物品件数为3m 件,根据该爱心组织按照此需求的比例购买这2000件物品列出方程,求解即可.【解答】解:(1)设每件乙种物品的价格是x 元,则每件甲种物品的价格是(x+10)元,根据题意得, x x 30010350=+解得:x=60.经检验,x=60是原方程的解.答:甲、乙两种救灾物品每件的价格各是70元、60元; (2)设甲种物品件数为m 件,则乙种物品件数为3m 件,根据题意得,m+3m=2000,解得m=500,即甲种物品件数为500件,则乙种物品件数为1500件,此时需筹集资金:70×500+60×1500=125000(元).答:若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金125000元.4.(2016海南)世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元. 【考点】一元一次方程的应用.【分析】设《汉语成语大词典》的标价为x 元,则《中华上下五千年》的标价为(150﹣x )元.根据“购书价格=《汉语成语大词典》的标价×折率+《中华上下五千年》的标价×折率”可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元,依题意得:50%x+60%(150﹣x)=80,解得:x=100,150﹣100=50(元).答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.【点评】本题考查了一元一次方程的应用,解题的关键是列出50%x+60%(150﹣x)=80.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.。

相关文档
最新文档