初三春季班第1讲锐角三角函数作业

合集下载

锐角三角函数练习题及答案

锐角三角函数练习题及答案

锐角三角函数(一)1.把Rt△ABC各边的长度都扩大3倍得Rt△A′B′C′,那么锐角A,A′的余弦值的关系为()A.cosA=cosA′ B.cosA=3cosA′ C.3cosA=cosA′ D.不能确定2.如图1,已知P是射线OB上的任意一点,PM⊥OA于M,且PM:OM=3:4,则cosα的值等于()A.34 B.43 C.45 D .35图 1 图 2 图3 图4图53.在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,b,c,则下列各项中正确的是()A.a=c·sinB B.a=c·cosB C.a=c·tanB D.以上均不正确4.在Rt△ABC中,∠C=90°,cosA=23,则tanB等于()A.35 B.53 C.255 D.525.在Rt△ABC中,∠C=90°,AC=5,AB=13,则sinA=______,cosA=______,•tanA=_______.6.如图2,在△ABC中,∠C=90°,BC:AC=1:2,则sinA=_______,cosA=______,tanB=______.7.如图3,在Rt△ABC中,∠C=90°,b=20,c=202,则∠B的度数为_______.8.如图4,在△CDE中,∠E=90°,DE=6,CD=10,求∠D的三个三角函数值.9.已知:α是锐角,tanα=724,则sinα=_____,cosα=_______.10.在Rt△ABC中,两边的长分别为3和4,求最小角的正弦值为10.如图5,角α的顶点在直角坐标系的原点,一边在x轴上,•另一边经过点P(2,23),求角α的三个三角函数值.12.如图,在△ABC中,∠ABC=90°,BD⊥AC于D,∠CBD=α,AB=3,•BC=4,•求sinα,cosα,tanα的值.解直角三角形一、填空题1. 已知cosA=23,且∠B=900-∠A ,则sinB=__________.2. 在Rt △ABC 中,∠C 为直角,cot(900-A)=1.524,则tan(900-B)=_________.3. ∠A 为锐角,已知sinA=135,那么cos (900-A)=___________.4. 已知sinA=21(∠A 为锐角),则∠A=_________,cosA_______,tanA=__________.5. 用不等号连结右面的式子:cos400_______cos200,sin370_______sin420.6. 若cot α=0.3027,cot β=0.3206,则锐角α、β的大小关系是______________. 7. 计算: 2sin450-3tan600=____________. 8. 计算: (sin300+tan450)·cos600=______________.9. 计算: tan450·sin450-4sin300·cos450+6cot600=__________.10. 计算: tan 2300+2sin600-tan450·sin900-tan600+cos 2300=____________. 二、选择题:1. 在Rt △ABC 中,∠C 为直角,AC=4,BC=3,则sinA=( )A . 43;B . 34;C .53;D . 54.2. 在Rt △ABC 中,∠C 为直角,sinA=22,则cosB 的值是( )A .21;B .23;C .1;D .223. 在Rt △ABC 中,∠C 为直角,∠A=300,则sinA+sinB=( )A .1;B .231+;C .221+;D .414. 当锐角A>450时,sinA 的值( )A .小于22; B .大于22; C .小于23; D .大于235. 若∠A 是锐角,且sinA=43,则( )A .00<∠A<300; B .300<∠A<450;C .450<∠A<600;D . 600<∠A<9006. 当∠A 为锐角,且tanA 的值大于33时, ∠A( )A .小于300; B .大于300; C .小于600; D .大于6007. 如图,在Rt △ABC 中,∠C 为直角,CD ⊥AB 于D ,已知AC=3,AB=5,则tan ∠BCD 等于( )A .43;B .34;C .53;D .548. Rt △ABC 中,∠C 为直角,AC=5,BC=12,那么下列∠A 的四个三角函数中正确的是( )A . sinA=135; B .cosA=1312; C . tanA=1213;D . cotA=1259. 已知α为锐角,且21<cos α<22,则α的取值范围是( )A .00<α<300;B .600<α<900;C .450<α<600;D .300<α<450.三、解答题1、 在△ABC 中,∠C 为直角,已知AB=23,BC=3,求∠B 和AC .2、在△ABC 中,∠C 为直角,直角边a=3cm ,b=4cm ,求sinA+sinB+sinC 的值.3、在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,已知b=3, c=14. 求∠A 的四个三角函数.4、在△ABC 中,∠C 为直角,不查表解下列问题: (1)已知a=5,∠B=600.求b ; (2)已知a=52,b=56,求∠A .5、在△ABC 中,∠C 为直角, ∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,已知a=25,b=215,求c 、∠A 、∠B .6、在Rt △ABC 中,∠C =90°,由下列条件解直角三角形: (1) 已知a =156, b =56,求c; (2) 已知a =20, c =220,求∠B ; (3) 已知c =30, ∠A =60°,求a ;(4) 已知b =15, ∠A =30°,求a .7、已知:如图,在ΔABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,若∠B =30°,CD =6,求AB 的长.8、已知:如图,在山脚的C 处测得山顶A 的仰角为︒45,沿着坡度为︒30︒=∠30DCB ,400=CD 米),测得A 的仰角为︒60,求山的高度DCAB9、会堂里竖直挂一条幅AB,如图5,小刚从与B成水平的C点观察,视角∠C=30°,当他沿CB方向前进2米到达到D时,视角∠ADB=45°,求条幅AB的长度。

(完整版)初三锐角三角函数知识点与典型例题(可编辑修改word版)

(完整版)初三锐角三角函数知识点与典型例题(可编辑修改word版)

锐角三角函数:知识点一:锐角三角函数的定义:一、锐角三角函数定义:在Rt△ABC 中,∠C=900, ∠A、∠B、∠C 的对边分别为a、b、c,则∠A 的正弦可表示为:sinA= ,∠A 的余弦可表示为cosA=∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数【特别提醒:1、sinA、∠cosA、tanA 表示的是一个整体,是两条线段的比,没有,这些比值只与有关,与直角三角形的无关2、取值范围<sinA< cosA< tanA> 】例1.如图所示,在Rt△ABC 中,∠C=90°.①sin A =(②cos A =()=,对对)=,对对第 1 题图sin B =(cos B =()=;对对)=;对对③tan A =( )=,∠A对对对例2. 锐角三角函数求值:tan B =∠B对对对=.( )在Rt△ABC 中,∠C=90°,若a=9,b=12,则c=,sin A=,cos A=,tan A=,sin B=,cos B=,tan B=.例3.已知:如图,Rt△TNM 中,∠TMN=90°,MR⊥TN 于R 点,TN=4,MN=3.求:sin∠TMR、cos∠TMR、tan∠TMR.典型例题:类型一:直角三角形求值5 1. 已知 Rt △ABC 中, ∠C = 90︒, tan A = 3, BC = 12, 4求AC 、AB 和 cos B .2. 已知:如图,⊙O 的半径 OA =16cm ,OC ⊥AB 于 C 点, sin ∠AOC = 3⋅4求:AB 及 OC 的长.3. 已知:⊙O 中,OC ⊥AB 于 C 点,AB =16cm , sin ∠AOC = 3⋅5(1) 求⊙O 的半径 OA 的长及弦心距 OC ; (2) 求 cos ∠AOC 及 tan ∠AOC .4. 已知∠A 是锐角, sin A = 8 17,求cos A , tan A 的值对应训练:(西城北)3.在 Rt △ABC 中,∠ C =90°,若 BC =1,AB = ,则 tan A 的值为A.55B. 2 55C.12D .2(房ft )5.在△ABC 中,∠C =90°,sin A= 3,那么 tan A 的值等于().5A. 3 5B. 4 5C. 3 4D.4 3类型二. 利用角度转化求值:1. 已知:如图,Rt △ABC 中,∠C =90°.D 是 AC 边上一点,DE ⊥AB 于 E 点.DE ∶AE =1∶2.求:sin B 、cos B 、tan B .32.如图,直径为10的⊙A 经过点C(0对5) 和点O(0对0) ,与x 轴的正半轴交于点D,B 是y 轴右侧圆弧上一点,则cos∠OBC 的值为()1 3A.B.2 2C.3D.45 5yCAO D xB图 8图图3.(2009·孝感中考)如图,角的顶点为O,它的一边在x 轴的正半轴上,另一边OA 上有一点P(3,4),则sin=.4.(2009·庆阳中考)如图,菱形ABCD 的边长为10cm,DE⊥AB,sin A =,则这个菱形5 的面积= cm2.5.(2009·齐齐哈尔中考)如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的3半径为2,AC = 2 ,则sin B 的值是()2 3 3 4A.B.C.D.3 24 3F2 3 6. 如图 4,沿 AE 折叠矩形纸片 ABCD ,使点 D 落在 BC 边的点 F 处.已知 AB = 8 , BC = 10 ,AB=8,则 tan ∠EFC 的值为 ( )ADE 3 4 34 BCA.B.C.D.43557. 如图 6,在等腰直角三角形∆ABC 中, ∠C = 90︒ , AC = 6 , D 为 AC 上一点,若tan ∠DBA = 15,则 AD 的长为()A.B . 2C.1 D . 28. 如图 6,在 Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线 AD = 1633求 ∠B 的度数及边 BC 、AB 的长.ACDB图 6类型三. 化斜三角形为直角三角形例 1 (2012•安徽)如图,在△ABC 中,∠A=30°,∠B=45°,AC=2 ,求 AB 的长.例 2.已知:如图,△ABC 中,AC =12cm ,AB =16cm , sin A = 1⋅3(1)求 AB 边上的高 CD ; (2)求△ABC 的面积 S ; (3)求 tan B .23 33例3.已知:如图,在△ABC 中,∠BAC=120°,AB=10,AC=5.求:sin∠ABC 的值.对应训练1.(2012•重庆)如图,在Rt△ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号)2.已知:如图,△ABC 中,AB=9,BC=6,△ABC 的面积等于9,求sin B.3.ABC 中,∠A=60°,AB=6 cm,AC=4 cm,则△ABC 的面积是A.2 cm2B.4 cm2C.6 cm2D.12 cm2类型四:利用网格构造直角三角形例1 (2012•内江)如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为()1 5A.B.2 5C.1010D.2 55对应练习:1.如图,△ABC 的顶点都在方格纸的格点上,则sin A = .CA B2.如图,A、B、C 三点在正方形网络线的交点处,若将∆ABC 绕着点A 逆时针旋转得到∆AC' B',则tan B' 的值为1 1 1A. B. C.4 3 2D. 13.正方形网格中,∠AOB 如图放置,则tan∠AOB 的值是()A.52B.51C. D. 22特殊角的三角函数值锐角30°45°60°sincostan当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而例1.求下列各式的值.(昌平)1).计算:2 cos 30︒+ 2 sin 45︒- tan 60︒.(朝阳)2)计算:tan 60︒+ sin2 45︒- 2 cos 30︒.(2009·黄石中考)计算:3-1+(2π-1)0-3tan30°-tan45°3AO B33(石景ft)4.计算:⎛+ 2 cos 60︒+ sin 45︒-⎝⎫0tan 30︒⎪.2 ⎭tan 45︒+ sin 30︒ (通县)5.计算:;1- cos 60︒例2.求适合下列条件的锐角.(1)cos=12 (2)tan=3(3) s in 2=22(4) 6 cos(- 16 ) = 3(5)已知为锐角,且tan(+300)=,求tan的值(6)在∆ABC 中,若cos A -+(sin B -2)2= 0 ,∠A,∠B 都是锐角,求∠C 的度数.2例3. 三角函数的增减性1.已知∠A 为锐角,且sin A < 1,那么∠A 的取值范围是2A. 0°< A < 30°B. 30°< A <60°C. 60°< A < 90°D. 30°< A < 90°2.已知A 为锐角,且cos A < sin 300,则()A. 0°< A < 60°B. 30°< A < 60°C. 60°< A < 90°D. 30°< A < 90°例4. 三角函数在几何中的应用1.已知:如图,在菱形ABCD 中,DE⊥AB 于E,BE=16cm,sin A =12⋅ 13123123求此菱形的周长.2. 已知:如图,Rt △ABC 中,∠C =90°, AC = BC=于 D 点,求:(1) ∠BAD ;(2) sin ∠BAD 、cos ∠BAD 和 tan ∠BAD .,作∠DAC =30°,AD 交 CB3. 已知:如图△ABC 中,D 为 BC 中点,且∠BAD =90°, tan ∠B =CAD 、tan ∠CAD .1 ,求:sin ∠CAD 、cos ∠34. 如图,在 Rt △ABC 中,∠C=90°, sin B = 3,点 D 在 BC 边上,DC= AC = 6,求 tan ∠BAD5的值.ABDC5.(本小题5 分)如图,△ABC 中,∠A=30°, tan B =2C, AC = 4 .求 AB 的长.AB解直角三角形:3 333 1.在解直角三角形的过程中,一般要用的主要关系如下(如图所示):在 Rt △ABC 中,∠C =90°,AC =b ,BC =a ,AB =c ,①三边之间的等量关系: . ②两锐角之间的关系: .③边与角之间的关系:sin A = cos B =; cos A = sin B = ; tan A =1 =tan B1;tan A= tan B =.④直角三角形中成比例的线段(如图所示). 在 Rt △ABC 中,∠C =90°,CD ⊥AB 于 D . CD 2= ;AC 2= ; BC 2= ;AC ·BC = .类型一例 1.在 Rt △ABC 中,∠C =90°.(1)已知:a =35, c = 35 ,求∠A 、∠B ,b ;(2)已知: a = 2 , b = 2 ,求∠A 、∠B ,c ;(3)已知: sin A =2 , c = 6 ,求 a 、b ;3(4)已知: tan B = 3, b = 9, 2求 a 、c ;(5)已知:∠A =60°,△ABC 的面积 S = 12 3, 求 a 、b 、c 及∠B .2例2.已知:如图,△ABC 中,∠A=30°,∠B=60°,AC=10cm.求AB 及BC 的长.例3.已知:如图,Rt△ABC 中,∠D=90°,∠B=45°,∠ACD=60°.BC=10cm.求AD 的长.例4.已知:如图,△ABC 中,∠A=30°,∠B=135°,AC=10cm.求AB 及BC 的长.类型二:解直角三角形的实际应用仰角与俯角:例1.(2012•福州)如图,从热气球C 处测得地面A、B 两点的俯角分别是30°、45°,如果此时热气球C 处的高度CD 为100 米,点A、D、B 在同一直线上,则AB 两点的距离是()A.200 米B.200 米C.220 米D.100()米例2.已知:如图,在两面墙之间有一个底端在A 点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D 点.已知∠BAC=60°,∠DAE=45 °.点D 到地面的垂直距离DE 3 2m ,求点 B 到地面的垂直距离BC.例3(昌平)19.如图,一风力发电装置竖立在小ft顶上,小ft的高BD=30m.从水平面上一点C 测得风力发电装置的顶端A 的仰角∠DCA=60°,测得ft顶B 的仰角∠DCB=30°,求风力发电装置的高AB 的长.ADB E例4 .如图,小聪用一块有一个锐角为30 的直角三角板测量树C高,已知小聪和树都与地面垂直,且相距3AB 为1.7 米,求这棵树的高度.米,小聪身高例5.已知:如图,河旁有一座小ft,从ft顶A 处测得河对岸点C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽CD 为50m.现需从ft顶A 到河对岸点C 拉一条笔直的缆绳AC,求ft的高度及缆绳AC 的长(答案可带根号).例5.(2012•泰安)如图,为测量某物体AB 的高度,在D 点测得A 点的仰角为30°,朝物体AB 方向前进20 米,到达点C,再次测得点A 的仰角为60°,则物体AB 的高度为()C.20 米D.米例6.(2012•益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC)为30 米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8 秒,∠BAC=75°.(1)求B、C 两点的距离;(2)请判断此车是否超过了益阳大道60 千米/小时的限制速度?(计算时距离精确到1 米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,≈1.732,60 千米/小时≈16.7 米/秒)3A.10 米B.10 米33 3 3类型四. 坡度与坡角例.(2012•广安)如图,某水库堤坝横断面迎水坡 AB 的坡比是 1: ,堤坝高 BC=50m ,则应水坡面 AB 的长度是( ) A .100mB .100 mC .150mD .50 m类型五. 方位角1. 已知:如图,一艘货轮向正北方向航行,在点 A 处测得灯塔 M 在北偏西 30°,货轮以每小时 20 海里的速度航行,1 小时后到达 B 处,测得灯塔 M 在北偏西 45°,问该货轮 继续向北航行时,与灯塔 M 之间的最短距离是多少?(精确到 0.1 海里,1.732 )2.(2012•恩施州)新闻链接,据[侨报网讯]外国炮艇在南海追袭中国渔船被中国渔政逼退2012 年 5 月 18 日,某国 3 艘炮艇追袭 5 条中国渔船.刚刚完成黄岩岛护渔任务的“中国渔政 310” 船人船未歇立即追往北纬 11 度 22 分、东经 110 度 45 分附近海域护渔,保护 100 多名中国 渔民免受财产损失和人身伤害.某国炮艇发现中国目前最先进的渔政船正在疾速驰救中国渔船,立即掉头离去.(见图 1)324解决问题如图 2,已知“中国渔政 310”船(A )接到陆地指挥中心(B )命令时,渔船(C )位于陆地指挥中心正南方向,位于“中国渔政 310”船西南方向,“中国渔政 310”船位于陆地指挥中心南偏东 60°方向,AB=海里,“中国渔政 310”船最大航速 20 海里/时.根据以上信息,请你求出“中国渔政 310”船赶往出事地点需要多少时间.综合题:三角函数与四边形:(西城二模)1.如图,四边形 ABCD 中,∠BAD=135°,∠BCD=90°,AB=BC=2,6tan ∠BDC= 3.(1) 求 BD 的长; (2) 求 AD 的长.(2011 东一)18.如图,在平行四边形 ABCD 中,过点 A 分别作 AE ⊥BC 于点 E ,AF ⊥CD 于点 F .(1) 求证: ∠BAE =∠DAF ;(2) 若 AE =4,AF =,s in ∠BAE = 53 ,求 CF 的长.5三角函数与圆:1. 如图,直径为 10 的⊙A 经过点C (0对5) 和点O (0对0) ,与 x 轴的正半轴交于点 D ,B 是 y轴右侧圆弧上一点,则 cos ∠OBC 的值为()1 3 A.B .22C .3D . 45 5yC AOD xB图 8图图5 DO4(延庆)19. 已知:在⊙O 中,AB 是直径,CB 是⊙O 的切线,连接 AC 与⊙O 交于点 D, (1) 求证:∠AOD=2∠CC4 (2) 若 AD=8,tanC= ,求⊙O 的半径。

《28.1锐角三角函数》作业设计方案-初中数学人教版12九年级下册

《28.1锐角三角函数》作业设计方案-初中数学人教版12九年级下册

《锐角三角函数》作业设计方案(第一课时)一、作业目标本课时作业的目标是让学生通过练习,初步理解锐角三角函数的定义和性质,掌握正弦、余弦、正切等基本概念,并能够运用这些概念解决简单的实际问题。

二、作业内容本课时的作业内容主要包括以下几个方面:1. 基础概念练习:包括锐角三角函数的定义、正弦、余弦、正切等基本概念的练习题。

通过填空、选择题等形式,让学生熟练掌握这些基本概念。

2. 计算题:包括已知角度求三角函数值和已知三角函数值求角度的题目。

通过大量的计算练习,让学生熟悉三角函数的计算方法。

3. 实际应用题:结合生活实际,设置一些与锐角三角函数相关的实际问题,如测量高度、计算坡度等。

通过解决这些问题,让学生了解三角函数在实际生活中的应用。

4. 拓展提高题:设置一些难度较大的题目,如综合运用正弦、余弦、正切等概念解决复杂问题的题目。

这些题目旨在培养学生的综合运用能力和思维能力。

三、作业要求1. 学生在完成作业时,应认真审题,明确题目要求,避免因理解不清而导致错误。

2. 学生应熟练掌握三角函数的基本概念和计算方法,能够正确运用正弦、余弦、正切等概念进行计算。

3. 在解决实际问题时,学生应结合生活实际,运用所学知识进行分析和解决。

4. 学生在完成作业后,应进行检查和核对,确保答案的准确性。

四、作业评价教师应对学生的作业进行认真评价,根据学生的掌握情况和作业质量给出相应的分数和评语。

评价时应注意以下几点:1. 评价学生是否熟练掌握了锐角三角函数的基本概念和计算方法。

2. 评价学生在解决实际问题时的能力和思路是否正确。

3. 评价学生的作业态度和完成情况,如是否认真审题、是否按时完成等。

五、作业反馈教师应对学生的作业进行反馈,针对学生的不足之处进行指导和帮助。

反馈时应注意以下几点:1. 对学生的错误进行指正,并给出正确的解题方法和思路。

2. 对学生的优点和进步进行表扬和鼓励,激发学生的学习兴趣和自信心。

3. 根据学生的实际情况,给出适当的拓展和提高题目,帮助学生进一步提高自己的学习能力。

初三数学锐角三角函数测试题及答案

初三数学锐角三角函数测试题及答案

ACOP D B图3锐角三角函数(一)测试题一、 选择题(每小题3分,共30分)1、在Rt △ABC 中,∠C=90°,CD ⊥AB 于点D ,已知AC=5,BC=2,那么sin ∠ACD=( )A 、35B 、32C 、552D 、252、如图1,某飞机于空中A 处探测到地平面目标B ,此时从飞机上看目标B 的俯角α=30°,飞行高度AC=1200米,则飞机到目标B 的距离AB 为( ) A 、1200m B 、2400m C 、4003m D 、12003m3、(08)在正方形网格中,△ABC 的位置如图所示,则cos ∠B 的值为( )A .12B .22C .32D .334、在Rt △ABC 中,∠C=90°,若tanA=43,则sinA=( )A 、34B 、43C 、35D 、535、如图2,CD 是平面镜,光线从A 点射出,经CD 上点E 反射后照射到B 点,若入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为C 、D ,且AC=3,BD=6,CD=11,则tan α的值为( )A 、311B 、113C 、119D 、9116、在△ABC 中,∠A 、∠B 都是锐角,且sinA=21,cosB=22ABC 三个角的大小关系是( )A 、∠C >∠A >∠B B 、∠B >∠C >∠A C 、∠A >∠B >∠CD 、∠C >∠B >∠A7、若关于x 的方程x 2-2x+cos α=0有两个相等的实数根,则锐角α为( )A 、30°B 、45°C 、60°D 、0°8、如图3,∠AOB=30°,OP 平分∠AOB ,PC ∥OB ,PD ⊥DB , 如果PC=6,那么PD 等于( ) A 、4 B 、3 C 、2 D 、19、已知∠A 为锐角,且cosA ≤21,则( )A 、 0°≤A ≤60°B 、60°≤A <90°C 、0°<A ≤30°D 、30°≤A ≤90°10、如图4,在矩形ABCD 中,CE ⊥BD 于点E ,BE=2,DE=8,设∠ACE=α,则 tan α的值为( )ABC( α 图1CEDAB图2(αA 、21B 、34C 、43D 、2二、 填空题(每小题3分,共30分)11、直线y=kx-4与y 轴相交所成的锐角的正切值为21,则k 的值为。

九年级数学锐角三角函数的专项培优 易错 难题练习题(含答案)及详细答案

九年级数学锐角三角函数的专项培优 易错 难题练习题(含答案)及详细答案

九年级数学锐角三角函数的专项培优 易错 难题练习题(含答案)及详细答案一、锐角三角函数1.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60︒︒,此时无人机的飞行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处.(1)求之间的距离(2)求从无人机'A 上看目标的俯角的正切值. 【答案】(1)120米;(2)35. 【解析】 【分析】(1)解直角三角形即可得到结论;(2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==,'30CE AA ==3Rt △ABC 中,求得DC=333,然后根据三角函数的定义即可得到结论. 【详解】解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m ,∴AB=sin 30AC︒=6012=120(m )(2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30CE AA ==3在Rt △ABC 中, AC=60m ,∠ADC=60°,∴DC=333∴3∴tan ∠A 'A D= tan ∠'A DC='A E DE 503235答:从无人机'A 上看目标D 235【点睛】本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键.2.如图,在平行四边形ABCD中,平分,交于点,平分,交于点,与交于点,连接,.(1)求证:四边形是菱形;(2)若,,,求的值.【答案】(1)证明见解析(2)【解析】试题分析:(1)根据AE平分∠BAD、BF平分∠ABC及平行四边形的性质可得AF=AB=BE,从而可知ABEF为平行四边形,又邻边相等,可知为菱形(2)由菱形的性质可知AP的长及∠PAF=60°,过点P作PH⊥AD于H,即可得到PH、DH 的长,从而可求tan∠ADP试题解析:(1)∵AE平分∠BAD BF平分∠ABC∴∠BAE=∠EAF ∠ABF=∠EBF∵AD//BC∴∠EAF=∠AEB ∠AFB=∠EBF∴∠BAE=∠AEB ∠AFB=∠ABF∴AB=BE AB=AF∴AF=AB=BE∵AD//BC∴ABEF为平行四边形又AB=BE∴ABEF为菱形(2)作PH⊥AD于H由∠ABC=60°而已(1)可知∠PAF=60°,PA=2,则有PH=,AH=1,∴DH=AD-AH=5∴tan ∠ADP=考点:1、平行四边形;2、菱形;3、直角三角形;4、三角函数3.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4cos 5AOC ∠=.设OP x =,CPF ∆的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域; (3)当OPE ∆是直角三角形时,求线段OP 的长.【答案】(1)证明见解析;(2)236030050(10)13x x y x x -+=<<;(3)8OP =【解析】 【分析】(1)证明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP DQ =,联结OD 后还有OA DO =,再结合要证明的结论AP OQ =,则可肯定需证明三角形全等,寻找已知对应边的夹角,即POA QDO ∠=∠即可;(2)根据PFC ∆∽PAO ∆,将面积转化为相似三角形对应边之比的平方来求;(3)分成三种情况讨论,充分利用已知条件4cos 5AOC ∠=、以及(1)(2)中已证的结论,注意要对不符合(2)中定义域的答案舍去. 【详解】(1)联结OD ,∵OC OD =, ∴OCD ODC ∠=∠, ∵//CD AB , ∴OCD COA ∠=∠, ∴POA QDO ∠=∠. 在AOP ∆和ODQ ∆中,{OP DQPOA QDO OA DO=∠=∠=, ∴AOP ∆≌ODQ ∆, ∴AP OQ =;(2)作PH OA ⊥,交OA 于H , ∵4cos 5AOC ∠=, ∴4455OH OP x ==,35PH x =, ∴132AOP S AO PH x ∆=⋅=. ∵//CD AB , ∴PFC ∆∽PAO ∆, ∴2210()()AOPy CP x S OP x∆-==, ∴2360300x x y x-+=,当F 与点D 重合时,∵42cos 210165CD OC OCD =⋅∠=⨯⨯=, ∴101016x x =-,解得5013x =, ∴2360300x x y x-+=50(10)13x <<; (3)①当90OPE ∠=o 时,90OPA ∠=o , ∴4cos 1085OP OA AOC =⋅∠=⨯=;②当90POE ∠=o 时,1010254cos cos 25OC CQ QCO AOC ====∠∠,∴252OP DQ CD CQ CD ==-=-2571622=-=, ∵501013OP <<, ∴72OP =(舍去); ③当90PEO ∠=o 时,∵//CD AB , ∴AOQ DQO ∠=∠, ∵AOP ∆≌ODQ ∆, ∴DQO APO ∠=∠, ∴AOQ APO ∠=∠,∴90AEO AOP ∠=∠=o ,此时弦CD 不存在,故这种情况不符合题意,舍去; 综上,线段OP 的长为8.4.如图,已知正方形在直角坐标系中,点分别在轴、轴的正半轴上,点在坐标原点.等腰直角三角板的直角顶点在原点,分别在上,且将三角板绕点逆时针旋转至的位置,连结(1)求证:(2)若三角板绕点逆时针旋转一周,是否存在某一位置,使得若存在,请求出此时点的坐标;若不存在,请说明理由. 【答案】(1)证明见解析(2)存在,或【解析】(1)证明:∵四边形为正方形,∴∵三角板是等腰直角三角形,∴又三角板绕点逆时针旋转至的位置时,∴···························· 3分(2)存在.································· 4分∵∴过点与平行的直线有且只有一条,并与垂直,又当三角板绕点逆时针旋转一周时,则点在以为圆心,以为半径的圆上,························ 5分∴过点与垂直的直线必是圆的切线,又点是圆外一点,过点与圆相切的直线有且只有2条,不妨设为和此时,点分别在点和点,满足·························· 7分当切点在第二象限时,点在第一象限,在直角三角形中,∴∴∴点的横坐标为:点的纵坐标为:∴点的坐标为··························· 9分当切点在第一象限时,点在第四象限,同理可求:点的坐标为综上所述,三角板绕点逆时针旋转一周,存在两个位置,使得此时点的坐标为或································ 11分(1)根据旋转的性质找到相等的线段,根据SAS定理证明;(2)由于△OEF是等腰Rt△,若OE∥CF,那么CF必与OF垂直;在旋转过程中,E、F的轨迹是以O为圆心,OE(或OF)长为半径的圆,若CF⊥OF,那么CF必为⊙O的切线,且切点为F;可过C作⊙O的切线,那么这两个切点都符合F点的要求,因此对应的E点也有两个;在Rt△OFC中,OF=2,OC=OA=4,可证得∠FCO=30°,即∠EOC=30°,已知了OE 的长,通过解直角三角形,不难得到E点的坐标,由此得解.5.2018年12月10日,郑州市城乡规划局网站挂出《郑州都市区主城区停车场专项规划》,将停车纳入城市综合交通体系,计划到2030年,在主城区新建停车泊位33.04万个,2019年初,某小区拟修建地下停车库,如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度为1:3,DE =3米,点C在DE上,CD=0.5米,CD是限高标志屏的高度(标志牌上写有:限高米),如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据2≈1.41,3≈1.73)【答案】该停车库限高约为2.2米.【解析】【分析】据题意得出3tan B=,即可得出tan A,在Rt△ADE中,根据勾股定理可求得DE,即可得出∠1的正切值,再在Rt△CEF中,设EF=x,即可求出x,从而得出CF3的长.【详解】解:由题意得,3 tan3B=∵MN∥AD,∴∠A=∠B,∴tan A3,∵DE⊥AD,∴在Rt△ADE中,tan A=DEAD,∵DE=3,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=33.在Rt △CEF 中,设EF =x ,CF =3x (x >0),CE =2.5,代入得(52)2=x 2+3x 2, 解得x =1.25,∴CF =3x ≈2.2,∴该停车库限高约为2.2米. 【点睛】本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.6.如图,直线y =12x +2与x 轴交于点A ,与y 轴交于点B ,抛物线y =﹣12x 2+bx +c 经过A 、B 两点,与x 轴的另一个交点为 C . (1)求抛物线的解析式;(2)根据图象,直接写出满足12x +2≥﹣12x 2+bx +c 的x 的取值范围; (3)设点D 为该抛物线上的一点、连结AD ,若∠DAC =∠CBO ,求点D 的坐标.【答案】(1)213222y x x =--+;(2)当x ≥0或x ≤﹣4;(3)D 点坐标为(0,2)或(2,﹣3). 【解析】 【分析】 (1)由直线y =12x +2求得A 、B 的坐标,然后根据待定系数法即可求得抛物线的解析式;(2)观察图象,找出直线在抛物线上方的x 的取值范围;(3)如图,过D 点作x 轴的垂线,交x 轴于点E ,先求出CO =1,AO =4,再由∠DAC =∠CBO ,得出tan ∠DAC =tan ∠CBO ,从而有,DE COAE BO=,最后分类讨论确定点D 的坐标. 【详解】 解:(1)由y =12x +2可得:当x=0时,y=2;当y=0时,x=﹣4,∴A(﹣4,0),B(0,2),把A、B的坐标代入y=﹣12x2+bx+c得:322bc⎧=-⎪⎨⎪=⎩,,∴抛物线的解析式为:213222y x x=--+(2)当x≥0或x≤﹣4时,12x+2≥﹣12x2+bx+c(3)如图,过D点作x轴的垂线,交x轴于点E,由213222y x x=-+令y=0,解得:x1=1,x2=﹣4,∴CO=1,AO=4,设点D的坐标为(m,213222m m--+),∵∠DAC=∠CBO,∴tan∠DAC=tan∠CBO,∴在Rt△ADE和Rt△BOC中有DE COAE BO=,当D在x轴上方时,213212242--+=+m mm解得:m1=0,m2=﹣4(不合题意,舍去),∴点D的坐标为(0,2).当D在x轴下方时,213(2)12242---+=+m mm解得:m1=2,m2=﹣4(不合题意,舍去),∴点D的坐标为(2,﹣3),故满足条件的D点坐标为(0,2)或(2,﹣3).【点睛】本题是二次函数综合题型,主要考查了一次函数图象上点的坐标特征,待定系数法求二次函数解析式.解题的关键是能够熟练掌握一次函数和二次函数的有关知识解决问题,分类讨论是第(3)题的难点.7.如图①,抛物线y =ax 2+bx+c 经过点A (﹣2,0)、B (4,0)、C (0,3)三点.(1)试求抛物线的解析式;(2)点P 是y 轴上的一个动点,连接PA ,试求5PA+4PC 的最小值;(3)如图②,若直线l 经过点T (﹣4,0),Q 为直线l 上的动点,当以A 、B 、Q 为顶点所作的直角三角形有且仅有三个时,试求直线l 的解析式. 【答案】(1)233384y x x =-++;(2)5PA+4PC 的最小值为18;(3)直线l 的解析式为334y x =+或334y x =--.【解析】 【分析】(1)设出交点式,代入C 点计算即可 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ,易证△CDP ∽△COB ,得到比例式PC PD BC OB =,得到PD=45PC ,所以5PA+4PC =5(PA+45PC )=5(PA+PD ),当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小,利用等面积法求出AE=185,即最小值为18 (3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆, 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,所以只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90°,即∠AQB =90°时,只有一个满足条件的点Q ,∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个;此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ,利用cos ∠QFT 求出QG ,分出情况Q 在x 轴上方和x 轴下方时,分别代入直接l 得到解析式即可 【详解】解:(1)∵抛物线与x 轴交点为A (﹣2,0)、B (4,0) ∴y =a (x+2)(x ﹣4) 把点C (0,3)代入得:﹣8a =3 ∴a =﹣38∴抛物线解析式为y =﹣38(x+2)(x ﹣4)=﹣38x 2+34x+3 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D∴∠CDP =∠COB =90°∵∠DCP =∠OCB∴△CDP ∽△COB ∴PC PD BC OB= ∵B (4,0),C (0,3)∴OB =4,OC =3,BC∴PD =45PC ∴5PA+4PC =5(PA+45PC )=5(PA+PD ) ∴当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小∵A (﹣2,0),OC ⊥AB ,AE ⊥BC∴S △ABC =12AB•OC =12BC•AE ∴AE =631855AB OC BC ⨯==n ∴5AE =18∴5PA+4PC 的最小值为18.(3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,∴只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90° ∴∠AQB =90°时,只有一个满足条件的点Q∵当Q 在⊙F 上运动时(不与A 、B 重合),∠AQB =90°∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个此时,连接FQ ,过点Q 作QG ⊥x 轴于点G∴∠FQT =90°∵F 为A (﹣2,0)、B (4,0)的中点∴F (1,0),FQ =FA =3∵T (﹣4,0)∴TF =5,cos ∠QFT =35FQ TF = ∵Rt △FGQ 中,cos ∠QFT =35FG FQ = ∴FG =35FQ =95∴x Q =1﹣9455=-,QG=2222912FQ 355FG ⎛⎫-=-= ⎪⎝⎭①若点Q 在x 轴上方,则Q (41255-,)设直线l 解析式为:y =kx+b ∴4041255k b k b -+=⎧⎪⎨-+=⎪⎩ 解得:343k b ⎧=⎪⎨⎪=⎩ ∴直线l :334y x =+ ②若点Q 在x 轴下方,则Q (41255--,) ∴直线l :334y x =-- 综上所述,直线l 的解析式为334y x =+或334y x =--【点睛】本题是二次函数与圆的综合题,同时涉及到三角函数、勾股定理等知识点,综合度比较高,需要很强的综合能力,第三问能够找到满足条件的Q 点是关键,同时不要忘记需要分情况讨论8.如图所示的是一个地球仪及它的平面图,在平面图中,点A 、B 分别为地球仪的南、北极点,直线AB 与放置地球仪的平面交于点D ,所夹的角度约为67°,半径OC 所在的直线与放置它的平面垂直,垂足为点E ,DE =15cm ,AD =14cm .(1)求半径OA 的长(结果精确到0.1cm ,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)(2)求扇形BOC 的面积(π取3.14,结果精确到1cm )【答案】(1)半径OA 的长约为24.5cm ;(2)扇形BOC 的面积约为2822cm .【解析】【分析】(1)在Rt △ODE 中,DE=15,∠ODE=67°,根据∠ODE 的余弦值,即可求得OD 长,减去AD 即为OA .(2)用扇形面积公式即可求得.【详解】(1)在Rt △ODE 中,15cm DE =,67ODE ∠=︒. ∵cos DE ODE DO ∠=, ∴150.39OD ≈, ∴()384614245cm OA OD AD =-≈-≈.., 答:半径OA 的长约为24.5cm .(2)∵67ODE ∠=︒,∴157BOC ∠=︒, ∴2360BOC n r S π=扇形 2157 3.1424.52360⨯⨯≈ ()2822cm ≈.答:扇形BOC 的面积约为2822cm .【点睛】此题主要考查了解直角三角形的应用,本题把实际问题转化成数学问题,利用三角函数中余弦定义来解题是解题关键.9.如图,在平面直角坐标系中,菱形ABCD 的边AB 在x 轴上,点B 坐标(﹣6,0),点C 在y 轴正半轴上,且cos B =35,动点P 从点C 出发,以每秒一个单位长度的速度向D 点移动(P 点到达D 点时停止运动),移动时间为t 秒,过点P 作平行于y 轴的直线l 与菱形的其它边交于点Q .(1)求点D 坐标;(2)求△OPQ 的面积S 关于t 的函数关系式,并求出S 的最大值;(3)在直线l 移动过程中,是否存在t 值,使S=320ABCD S 菱形?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)点D 的坐标为(10,8).(2)S 关于t 的函数关系式为S =24(04)220(410)33t t t t t ⎧⎪⎨-+<⎪⎩剟…,S 的最大值为503.(3)3或7. 【解析】【分析】(1)在Rt △BOC 中,求BC,OC,根据菱形性质再求D 的坐标;(2)分两种情况分析:①当0≤t ≤4时和②当4<t ≤10时,根据面积公式列出解析式,再求函数的最值;(3)分两种情况分析:当0≤t ≤4时,4t =12,;当4<t ≤10时,22201233t t -+= 【详解】解:(1)在Rt △BOC 中,∠BOC =90°,OB =6,cos B =35, 10cos OB BC B∴== 228OC BC OB ∴=-=∵四边形ABCD 为菱形,CD ∥x 轴,∴点D 的坐标为(10,8).(2)∵AB =BC =10,点B 的坐标为(﹣6,0),∴点A 的坐标为(4,0).分两种情况考虑,如图1所示.①当0≤t ≤4时,PQ =OC =8,OQ =t ,∴S =12PQ •OQ =4t , ∵4>0,∴当t =4时,S 取得最大值,最大值为16;②当4<t ≤10时,设直线AD 的解析式为y =kx +b (k ≠0),将A (4,0),D (10,8)代入y =kx +b ,得:4k b 010k b 8+=⎧⎨+=⎩,解得:4k 316b 3⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线AD 的解析式为41633y x =-. 当x =t 时,41633y t =-, 41648(10)333PQ t t ⎛⎫∴=--=- ⎪⎝⎭ 21220233S PQ OP t t ∴=⋅=-+ 22202502(5),033333S t t t =-+=--+-<Q ∴当t =5时,S 取得最大值,最大值为503. 综上所述:S 关于t 的函数关系式为S =24(04)220(410)33t t t t t ⎧⎪⎨-+<⎪⎩剟…,S 的最大值为503. (3)S 菱形ABCD =AB •OC =80.当0≤t ≤4时,4t =12,解得:t =3;当4<t ≤10时,222033t t -+=12, 解得:t 1=5﹣7(舍去),t 2=5+ 7. 综上所述:在直线l 移动过程中,存在t 值,使S =320ABCD S 菱形,t 的值为3或5+7.【点睛】考核知识点:一次函数和二次函数的最值问题.数形结合,分类讨论是关键.10.超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到万丰路(直线AO)的距离为120米的点P处.这时,一辆小轿车由西向东匀速行驶,测得此车从A处行驶到B处所用的时间为5秒且∠APO=60°,∠BPO=45°.(1)求A、B之间的路程;(2)请判断此车是否超过了万丰路每小时65千米的限制速度?请说明理由.(参考数据:2 1.414,3 1.73≈≈).【答案】【小题1】73.2【小题2】超过限制速度.【解析】解:(1)100(31)AB=-73.2 (米).…6分(2) 此车制速度v==18.3米/秒11.3米/秒 =65.88千米/小时>60千米/小时.∴此车超过限制速度.…4分12.如图,AB为⊙O的直径,P是BA延长线上一点,CG是⊙O的弦∠PCA=∠ABC,CG⊥AB,垂足为D(1)求证:PC是⊙O的切线;(2)求证:PA AD PC CD=;(3)过点A作AE∥PC交⊙O于点E,交CD于点F,连接BE,若sin∠P=35,CF=5,求BE的长.【答案】(1)见解析;(2)BE=12.【解析】【分析】(1)连接OC,由PC切⊙O于点C,得到OC⊥PC,于是得到∠PCA+∠OCA=90°,由AB为⊙O的直径,得到∠ABC+∠OAC=90°,由于OC=OA,证得∠OCA=∠OAC,于是得到结论;(2)由AE∥PC,得到∠PCA=∠CAF根据垂径定理得到弧AC=弧AG,于是得到∠ACF=∠ABC,由于∠PCA=∠ABC,推出∠ACF=∠CAF,根据等腰三角形的性质得到CF=AF,在R t△AFD中,AF=5,sin∠FAD=35,求得FD=3,AD=4,CD=8,在R t△OCD中,设OC=r,根据勾股定理得到方程r2=(r-4)2+82,解得r=10,得到AB=2r=20,由于AB为⊙O的直径,得到∠AEB=90°,在R t△ABE中,由sin∠EAD=35,得到BEAB=35,于是求得结论.【详解】(1)证明:连接OC,∵PC切⊙O于点C,∴OC⊥PC,∴∠PCO=90°,∴∠PCA+∠OCA=90°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ABC+∠OAC=90°,∵OC=OA,∴∠OCA=∠OAC,∴∠PCA=∠ABC;(2)解:∵AE∥PC,∴∠PCA=∠CAF,∵AB⊥CG,∴弧AC=弧AG,∴∠ACF=∠ABC,∵∠PCA=∠ABC,∴∠ACF=∠CAF,∴CF=AF,∵CF=5,∴AF=5,∵AE∥PC,∴∠FAD=∠P,∵sin∠P=35,∴sin∠FAD=35,在R t△AFD中,AF=5,sin∠FAD=35,∴FD=3,AD=4,∴CD=8,在R t△OCD中,设OC=r,∴r2=(r﹣4)2+82,∴r=10,∴AB=2r=20,∵AB为⊙O的直径,∴∠AEB=90°,在R t△ABE中,∵sin∠EAD=35,∴35BEAB,∵AB=20,∴BE=12.【点睛】本题考查切线的性质,锐角三角函数,圆周角定理,等腰三角形的性质,解题关键是连接OC构造直角三角形.13.如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P 处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:12.(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈43,tan63.4°≈2)【答案】(1)此人所在P的铅直高度约为14.3米;(2)从P到点B的路程约为127.1米【解析】分析:(1)过P作PF⊥BD于F,作PE⊥AB于E,设PF=5x,在Rt△ABC中求出AB,用含x 的式子表示出AE,EP,由tan∠APE,求得x即可;(2)在Rt△CPF中,求出CP的长.详解:过P作PF⊥BD于F,作PE⊥AB于E,∵斜坡的坡度i=5:12,设PF=5x,CF=12x,∵四边形BFPE为矩形,∴BF=PEPF=BE.在RT△ABC中,BC=90,tan∠ACB=AB BC,∴AB=tan63.4°×BC≈2×90=180,∴AE=AB-BE=AB-PF=180-5x,EP=BC+CF≈90+120x.在RT△AEP中,tan∠APE=1805490123 AE xEP x-≈=+,∴x=207,∴PF=5x=10014.37≈.答:此人所在P的铅直高度约为14.3米.由(1)得CP=13x,∴CP=13×207≈37.1,BC+CP=90+37.1=127.1.答:从P到点B的路程约为127.1米.点睛:本题考查了解直角三角形的应用,关键是正确的画出与实际问题相符合的几何图形,找出图形中的相关线段或角的实际意义及所要解决的问题,构造直角三角形,用勾股定理或三角函数求相应的线段长.14.如图,某次中俄“海上联合”反潜演习中,我军舰A测得潜艇C的俯角为30°.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为68°.试根据以上数据求出潜艇C 离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,3≈1.7)【答案】潜艇C离开海平面的下潜深度约为308米【解析】试题分析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,用锐角三角函数分别在Rt△ACD中表示出CD和在Rt△BCD中表示出BD,利用BD=AD+AB二者之间的关系列出方程求解.试题解析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:∠ACD=30°,∠BCD=68°,设AD=x,则BD=BA+AD=1000+x,在Rt△ACD中,CD=tan AD ACD=tan30x= 3x在Rt△BCD中,BD=CD•tan68°,∴325+x=3x•tan68°解得:x≈100米,∴潜艇C离开海平面的下潜深度为100米.点睛:本题考查了解直角三角形的应用,解题的关键是作出辅助线,从题目中找出直角三角形并选择合适的边角关系求解.视频15.小明坐于堤边垂钓,如图①,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离(如图②).【答案】1.5米.【解析】试题分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出在Rt△ACD中,米,CD=2AD=3米,再证明△BOD是等边三角形,得到米,然后根据BC=BD−CD即可求出浮漂B与河堤下端C之间的距离.试题解析:延长OA交BC于点D.∵AO的倾斜角是,∴∵在Rt△ACD中, (米),∴CD=2AD=3米,又∴△BOD是等边三角形,∴(米),∴BC=BD−CD=4.5−3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.。

中考数学《锐角三角函数的综合》专项训练含详细答案

中考数学《锐角三角函数的综合》专项训练含详细答案

中考数学《锐角三角函数的综合》专项训练含详细答案一、锐角三角函数1.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,【答案】(1)∠BPQ=30°;(2)该电线杆PQ的高度约为9m.【解析】试题分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;(2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.试题解析:延长PQ交直线AB于点E,(1)∠BPQ=90°-60°=30°;(2)设PE=x米.在直角△APE中,∠A=45°,则AE=PE=x米;∵∠PBE=60°∴∠BPE=30°在直角△BPE中,33米,∵AB=AE-BE=6米,则3,解得:3则BE=(33+3)米.在直角△BEQ中,QE=33BE=33(33+3)=(3+3)米.∴PQ=PE-QE=9+33-(3+3)=6+23≈9(米).答:电线杆PQ的高度约9米.考点:解直角三角形的应用-仰角俯角问题.2.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).【答案】.【解析】试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案.试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==,∴BC=.故该船与B港口之间的距离CB的长为海里.考点:解直角三角形的应用-方向角问题.3.在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P 作PF∥BC,交对角线BD于点F.(1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E.求证:△DEF是等腰三角形;(2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时tan∠DBF'的值,如果不能,请说明理由.【答案】(1)证明见解析;(2)①证明见解析;②12或33.【解析】【分析】(1)根据翻折的性质以及平行线的性质可知∠DFQ=∠ADF,所以△DEF是等腰三角形;(2)①由于PF∥BC,所以△DPF∽△DCB,从而易证△DP′F′∽△DCB;②由于△DF'B是直角三角形,但不知道哪个的角是直角,故需要对该三角形的内角进行分类讨论.【详解】(1)由翻折可知:∠DFP=∠DFQ,∵PF∥BC,∴∠DFP=∠ADF,∴∠DFQ=∠ADF,∴△DEF是等腰三角形;(2)①若0°<α<∠BDC,即DF'在∠BDC的内部时,∵∠P′DF′=∠PDF,∴∠P′DF′﹣∠F′DC=∠PDF﹣∠F′DC,∴∠P′DC=∠F′DB,由旋转的性质可知:△DP′F′≌△DPF,∵PF∥BC,∴△DPF∽△DCB,∴△DP′F′∽△DCB∴''DC DP DB DF = , ∴△DP'C ∽△DF'B ;②当∠F′DB=90°时,如图所示,∵DF′=DF=12BD , ∴'12DF BD =, ∴tan ∠DBF′='12DF BD =;当∠DBF′=90°,此时DF′是斜边,即DF′>DB ,不符合题意;当∠DF′B=90°时,如图所示,∵DF′=DF=12BD , ∴∠DBF′=30°, ∴tan ∠DBF′=33.【点睛】本题考查了相似三角形的综合问题,涉及旋转的性质,锐角三角函数的定义,相似三角形的性质以及判定等知识,综合性较强,有一定的难度,熟练掌握相关的性质与定理、运用分类思想进行讨论是解题的关键.4.如图,矩形OABC 中,A(6,0)、C(0,3、D(0,3),射线l 过点D 且与x 轴平行,点P 、Q 分别是l 和x 轴的正半轴上的动点,满足∠PQO =60º.(1)点B的坐标是,∠CAO= º,当点Q与点A重合时,点P的坐标为;(2)设点P的横坐标为x,△OPQ与矩形OABC重叠部分的面积为S,试求S与x的函数关系式和相应的自变量x的取值范围.【答案】(1)(6,23). 30.(3,33)(2)()()()()243x430x3331333x x3x5S{23x1235x93543x9+≤≤-+-<≤=-+<≤>【解析】解:(1)(6,23). 30.(3,33).(2)当0≤x≤3时,如图1,OI=x,IQ=PI•tan60°=3,OQ=OI+IQ=3+x;由题意可知直线l∥BC∥OA,可得EF PE DC31==OQ PO DO333==,∴EF=13(3+x),此时重叠部分是梯形,其面积为:EFQO14343S S EF OQ OC 3x x 43233==+⋅=+=+梯形()() 当3<x≤5时,如图2,()HAQ EFQO EFQO 221S S S S AH AQ 243331333 x 43x 3=x x 32232∆=-=-⋅⋅=+---+-梯形梯形。

初中锐角三角函数习题及详细答案

初中锐角三角函数习题及详细答案

锐角三角函数一、选择题1. sin30°的值为〔 〕 A .32B .22C .12D .332.如图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,则下列结论正确的是〔 〕 A . 3sin 2A =B .1tan 2A = C .3cos 2B = D .tan 3B =3.三角形在方格纸中的位置如图所示,则tan α的值是〔 〕 A .34B .43 C .35 D .454.如图,在平地上种植树木时,要求株距〔相邻两树间的水平距离〕为4m .如果在坡度为0.75的山坡上种树,也要求株距为4m ,那么相邻两树间的坡面距离为〔 〕 A .5m B .6m C .7m D .8m5.菱形OABC 在平面直角坐标系中的位置如图所示,452AOC OC ∠==°,,则点B 的坐标为〔 〕A .(21),B .(12),C .(211)+,D .(121)+,6.如图,直线AB 与⊙O 相切于点A ,⊙O 的半径为2,若∠OBA = 30°,则OB 的长为〔 〕 A .43.4C .23.27.图是某商场一楼与二楼之间的手扶电梯示意图.其中AB .CD 分别表示一楼.二楼地面的水平线,∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点C 上升的高度h 是〔 〕A 833m B .4 mC .43 mD .8 m8)如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为〔 〕米.A .25B .253C .10033D .253+9.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为32,2AC =,则sin B 的值是〔〕A .23 B .32C .34D .4310.将宽为2cm 的长方形纸条折叠成如图所示的形状,那么折痕PQ 的长是〔〕A .233cmB .433cmC .5cmD .2cm 11.如图,在矩形ABCD 中,DE ⊥AC 于E ,∠EDC ∶∠EDA=1∶3,且AC=10,则DE 的长度是〔〕 A .3B .5C .25D .225 12.如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是〔 〕A .172B .52C .24D .713.如图4,在Rt ABC △中, 90=∠ACB ,86AC BC ==,,将ABC △绕AC 所在的直线k 旋转一周得到一个旋转体,则该旋转体的侧面积为〔 〕 A .30π B .40πC .50π D .60π14.在一次夏令营活动中,小亮从位于A 点的营地出发,沿北偏东60°方向走了5km 到达B 地,然后再沿北偏西30°方向走了若干千米到达C 地,测得A 地在C 地南偏西30°方向,则A .C 两地的距离为〔 〕 〔A 〕km 3310 〔B 〕km 335〔C 〕km 25 〔D 〕km 35 15.如图,在梯形ABCD 中,AD//BC ,AC ⊥AB ,AD =CD ,cos ∠DCA=54,BC =10,则AB 的值是〔 〕 A .3B .6C .8D .916.如图,AB 是O ⊙的直径,弦CD AB ⊥于点E ,连结OC ,若5OC =,8CD =,则tan COE ∠=〔 〕A .35 B .45 C .34 D .4317.为测量如图所示上山坡道的倾斜度,小明测得图中所示的数据(单位:米),则该坡道倾斜角α的正切值是〔 〕 A .14B .4C .117D .41718.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为〔 〕 A. αcos 5 B.αcos 5 C. αsin 5 D. αsin 519. 如图,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E ,54A cos =,则下列结论中正确的个数为〔 〕 ①DE=3cm ; ②EB=1cm ; ③2ABCD 15S cm =菱形.A .3个B .2个C .1个D .0个20.已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ〔如图所示〕,则sinθ的值为〔 〕 〔A 〕125 〔B 〕135 〔C 〕1310 〔D 〕131221.如图,已知RtΔABC 中,∠ACB =90°,AC = 4,BC=3,以AB 边所在的直线为轴,将ΔABC 旋转一周,则所得几何体的表面积是〔 〕. A .π5168 B .π24C .π584D .π12 22.如图,在ABC △中,C ∠9060B D =∠=°,°,是AC 上一点,DE AB ⊥于E ,且21CD DE ==,,则BC 的长为〔 〕A .2B .433C .23D .4323.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角〔梯子与地面的夹角〕不能大于60°,否则就有危险,那么梯子的长至少为〔 〕 A .8米B.CD.3米 24.〕已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为〔 〕 A .43B .45C .54D .3425. 2sin 30°的值等于〔 〕A .1 BCD .2 26.已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为〔 〕 A .43B .45C .54D .3427.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角〔梯子与地面的夹角〕不能大于60°,否则就有危险,那么梯子的长至少为〔 〕 A .8米B.CD米 28.一根电线杆的接线柱部分AB 在阳光下的投影CD 的长为1米,太阳光线与地面的夹角60ACD ∠=°,则AB 的长为〔 〕 A .12米B米C.2米 D.3米 二、计算题〔每小题3分,共12分〕 1.计算:()1200911sin 602-⎛⎫-+-- ⎪⎝⎭°2.10120094sin 3022⎛⎫--+-- ⎪⎝⎭-(3.计算:0200912sin 603tan 30(1)3⎛⎫-++- ⎪⎝⎭°°.4.先化简.再求值.22 ()2111a a a a a ++÷+-- 其中a =tan60°-2sin30°.三、解答题1.〕如图,AC 是O ⊙的直径,PA ,PB 是O ⊙的切线,A ,B 为切点,AB =6,PA =5.求〔1〕O ⊙的半径;〔2〕sin BAC ∠的值.2.〔4分〕〔20XXXX 〕如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A 处测得灯塔C 在北偏西30°方向,轮船航行2小时后到达B 处,在B 处测得灯塔C 在北偏西60°方向.当轮船到达灯塔C 的正东方向的D 处时,求此时轮船与灯塔C 的距离.〔结果保留根号〕CDBA北60°30°CCAB60° 45°北北3.〕为打击索马里海盗,保护各国商船的顺利通行,我海军某部奉命前往该海域执行护航任务.某天我护航舰正在某小岛A 北偏西45︒并距该岛20海里的B 处待命.位于该岛正西方向C 处的某外国商船遭到海盗袭击,船长发现在其北偏东60︒的方向有我军护航舰〔如图9所示〕,便发出紧急求救信号.我护航舰接警后,立即沿BC 航线以每小时60海里的速度前去救援.问我护航舰需多少分钟可以到达该据:2 1.43 1.7≈,≈〕商船所在的位置C 处?〔结果精确到个位.参考数4.如图,某飞机于空中A 处探测到地平面目标B ,此时从飞机上看目标B 的俯角为α,若测得飞机到目标B 的距离AB 约为2400米,已知sin 0.52α=,求飞机飞行的高度AC 约为多少米?5.如图,热气球的探测器显示,从热气球看一栋高楼顶部的仰角为︒60,看这栋高楼底部的俯角为︒30,热气球与高楼的水平距离为66 m ,这栋高楼有多高?〔结果精确到0.1 m ,参考数据:73.13≈〕BC AαC AB1.C 2. D 3。

初三锐角三角函数练习题

初三锐角三角函数练习题

初三锐角三角函数练习题[正文]在初三数学学习的过程中,锐角三角函数是一个非常重要的知识点。

它与三角函数、三角比、单位圆等相关概念密切相关。

为了帮助同学们更好地掌握锐角三角函数的运用,下面给大家提供一些练习题,希望能够帮助大家巩固所学知识,提高解决问题的能力。

1. 已知直角三角形的两条直角边分别为3cm和4cm,求其中一锐角的正弦值、余弦值和正切值。

解答:首先,我们根据勾股定理可以得出直角三角形的斜边长为5cm。

根据定义,正弦值是斜边与对应锐角边的比值,即sinθ=对边/斜边=3/5。

余弦值是斜边与邻边的比值,即cosθ=邻边/斜边=4/5。

正切值是对边与邻边的比值,即tanθ=对边/邻边=3/4。

所以,这个直角三角形中,该锐角的正弦值为3/5,余弦值为4/5,正切值为3/4。

2. 计算sin(45°)+cos(30°)的值。

解答:根据特殊角的数值,sin(45°)=√2/2,cos(30°)=√3/2。

将这两个值代入公式求和,得到sin(45°)+cos(30°)=(√2/2)+(√3/2)=√2/2+√3/2=(√2+√3)/2。

所以,sin(45°)+cos(30°)的值为(√2+√3)/2。

3. 已知ΔABC中,∠B=30°,BC=5cm,AC=10cm,求∠A的正切值。

解答:根据勾股定理,可以求得AB的长度为√(AC²-BC²)=√(10²-5²)=√75=5√3 cm。

则tan∠A=BC/AB=5/(5√3)=1/√3=√3/3。

所以,∠A的正切值为√3/3。

4. 已知tanθ=3/4,且θ为锐角,求sinθ和cosθ的值。

解答:根据定义,tanθ=对边/邻边=3/4。

可以得出对边为3k,邻边为4k,斜边为5k,其中k为正整数。

由勾股定理可得斜边长度为5k,那么sinθ=对边/斜边=3k/5k=3/5,cosθ=邻边/斜边=4k/5k=4/5。

初三锐角三角函数复习练习题

初三锐角三角函数复习练习题

初三锐角三角函数复习练习题XXX提供个性化辅导资料,旨在启迪学生的思维,点拨研究方法,开发学生的潜能,帮助学生直线提分。

XXX的数学(一)课程经过精心设计,包括以下练题:1.在直角三角形中,各边都扩大2倍,则锐角A的正弦值与余弦值会发生什么变化?A。

缩小2倍 B。

扩大2倍 C。

不变 D。

不能确定2.在直角三角形ABC中,∠C=90度,BC=4,sinA=5,则AC等于多少?A。

3 B。

4 C。

5 D。

63.若∠A是锐角,且sinA=3,则∠A的范围是?A。

<∠A<30 B。

30<∠A<45 C。

45<∠A<60 D。

60<∠A<904.若cosA=3,则4sinA+2tanA等于多少?A。

7 B。

3 C。

2 D。

11/35.在三角形ABC中,∠A:∠B:∠C=1:1:2,则a:b:c等于多少?A。

1:1:2 B。

1:1:3 C。

1:2:3 D。

1:2:26.在直角三角形ABC中,∠C=90,则下列式子成立的是?A。

XXX7.已知直角三角形ABC中,∠C=90度,AC=2,BC=3,则下列各式中,正确的是?A。

sinB=3 B。

cosB=3 C。

tanB=3 D。

tanB=2/38.点(-sin60度,cos60度)关于y轴对称的点的坐标是?A。

(2,2)B。

(-2,2)C。

(-2,-2)D。

(2,-2)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣。

某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30度。

若这位同学的目高1.6米,则旗杆的高度约为多少?A。

6.9米 B。

8.5米 C。

10.3米 D。

12.0米10.XXX同学从A地沿北偏西60度方向走100米到B地,再从B地向XXX方向走200米到C地,此时XXX同学离A地多远?A。

503米 B。

100米 C。

150米 D。

1003米11.如图1,在高楼前D点测得楼顶的仰角为30度,向高楼前进60米到C点,又测得仰角为45度,则该高楼的高度大约为多少?A。

初三数学锐角三角形练习题

初三数学锐角三角形练习题

初三数学锐角三角形练习题1. 已知三角形ABC,∠B = 60°,AC = 5 cm,BC = 6 cm。

求∠A和∠C的大小。

解析:由于∠B = 60°,所以∠A + ∠C = 180° - 60° = 120°。

又因为三角形ABC为锐角三角形,所以∠A和∠C都小于90°。

解方程组得∠A = ∠C = 60°。

答案:∠A = ∠C = 60°。

2. 在三角形DEF中,∠D = 45°,DE = 8 cm,DF = 10 cm。

求∠F 和∠E的大小。

解析:由于∠D = 45°,所以∠E + ∠F = 180° - 45° = 135°。

又因为三角形DEF为锐角三角形,所以∠E和∠F都小于90°。

解方程组得∠E = 67.5°,∠F = 67.5°。

答案:∠E ≈ ∠F ≈ 67.5°。

3. 已知三角形GHI,∠H = 30°,GI = 5 cm,GH = 3 cm。

求∠G和∠I的大小。

解析:由于∠H = 30°,所以∠G + ∠I = 180° - 30° = 150°。

又因为三角形GHI为锐角三角形,所以∠G和∠I都小于90°。

解方程组得∠G = 75°,∠I = 75°。

答案:∠G = ∠I = 75°。

4. 在三角形JKL中,∠J = 75°,JK = 6 cm,JL = 8 cm。

求∠K和∠L的大小。

解析:由于∠J = 75°,所以∠K + ∠L = 180° - 75° = 105°。

又因为三角形JKL为锐角三角形,所以∠K和∠L都小于90°。

解方程组得∠K ≈ 52.5°,∠L ≈ 52.5°。

初三数学第章《锐角三角函数》习题(含标准答案)

初三数学第章《锐角三角函数》习题(含标准答案)

初三数学第章《锐角三角函数》习题(含答案)————————————————————————————————作者:————————————————————————————————日期:23九年级数学 班级 姓名第28章 《锐角三角函数》测试题一、选择题(30)分1. 4sin tan 5ααα=若为锐角,且,则为 ( )933425543A B C D . . . . 2.在Rt △ABC 中,∠C = 90°,下列式子不一定成立的是( ) A .sinA = sinB B .cosA=sinB C .sinA=cosB D .∠A+∠B=90° 3.直角三角形的两边长分别是6,8,则第三边的长为( )A .10B .22C .10或27D .无法确定4.在Rt △ABC 中,∠C=90°,当已知∠A 和a 时,求c ,应选择的关系式是( )A .c =sin a AB .c =cos a AC .c = a ·tanAD .c = tan aA5、οο45cos 45sin +的值等于( )A.2B.213+ C. 3 D. 16.在Rt △ABC 中,∠C=90°,tan A=3,AC 等于10,则S △ABC 等于( ) A. 3 B. 300 C.503D. 15 7.当锐角α>30°时,则cos α的值是( )A .大于12B .小于12 C .大于32 D .小于328.小明沿着坡角为30°的坡面向下走了2米,那么他下降( ) A .1米 B .3米 C .23 D .2339.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,则AB=( )4(A )4 (B )5 (C )23 (D )83310.已知Rt △ABC 中,∠C=90°,tanA=43,BC=8,则AC 等于( ) A .6 B .323C .10D .12 二、填空题(21分)11.计算2sin30°+2cos60°+3tan45°=_______. 12.若sin28°=cos α,则α=________.13.已知△ABC 中,∠C=90°,AB=13,AC=5,则tanA=______.14.某坡面的坡度为1:3,则坡角是_______度. 15.在△ABC 中,∠C =90°,AB =10cm ,sinA =54,则BC 的长为_______cm . 16.如图,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为A.82米B.163米C.52米D.70米17.如图,小鸣将测倾器安放在与旗杆AB 底部相距6m 的C 处,量出测倾器的高度CD =1m ,测得旗杆顶端B 的仰角α=60°,则旗杆AB 的高度为 .(计算结果保留根号)(16题) (17题) 三、解答题18.由下列条件解直角三角形:在Rt △ABC 中,∠C=90°:(1)已知a=4,b=8, (2)已知b=10,∠B=60°.(45︒30︒BAD C(3)已知c=20,∠A=60°. (4) (2)已知a=5,∠B=35°19.计算下列各题.(1)s in230°+cos245°+2sin60°·tan45°;(2)22cos30cos60tan60tan30︒+︒︒⨯︒+ sin45°四、解下列各题20.如图所示,平地上一棵树高为5米,两次观察地面上的影子,•第一次是当阳光与地面成45°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长多少米?521.如图,AB是江北岸滨江路一段,长为3千米,C为南岸一渡口,•为了解决两岸交通困难,拟在渡口C处架桥.经测量得A在C北偏西30°方向,B在C的东北方向,从C处连接两岸的最短的桥长多少?(精确到0.1)22. 如图,点A是一个半径为300米的圆形森林公园的中心,在森林公园附近有B、C两个村庄,现要在B、C两村庄之间修一条长为1000米的笔直公路将两村连通,经测得∠ABC=45o,∠ACB=30o,问此公路是否会穿过该森林公园?请通过计算进行说明。

九年级数学锐角三角函数作业设计

九年级数学锐角三角函数作业设计

九年级数学锐角三角函数作业设计
作业设计示例:
一、基础知识回顾:
1. 请定义并解释正弦(sin)、余弦(cos)和正切(tan)在直角三角形中的含义,分别用公式表示出来。

2. 在一个直角三角形ABC中,∠A为锐角,BC为斜边,AB=3,AC=4,请计算sinA、cosA和tanA的值。

二、计算题:
3. 已知锐角α的正弦值为0.6,求其余弦值和正切值。

4. 在Rt△ABC中,∠B=90°,AB=5,BC=12,求sinA,cosA,tanA,sinC,cosC,tanC的值。

三、应用题:
5. 一座电视塔高100米,山坡坡面与水平地面的夹角为30°,如果测得电视塔在山坡上的影子长为80米,那么山坡的实际高度是多少?(请用锐角三角函数解答)
6. 某建筑物顶部有一信号塔,从地面上一点P测得塔顶A的仰角为45°,然后向塔的方向前进20米到达Q点,此时测得塔顶A的仰角变为60°,求信号塔的高度。

(利用锐角三角函数求解)
四、拓展思考题:
7. 在ΔABC中,若已知sinA:sinB:sinC=2:3:4,且∠A是锐角,试判断此三角形的形状,并说明理由。

五、复习总结:
8. 根据你对锐角三角函数的理解,总结一下它们在实际生活中的应用实例,并尝试提出一个新的应用场景。

2024春九年级数学下册第一章直角三角形的边角关系小专题一求锐角的三角函数值课时作业新版北师大版

2024春九年级数学下册第一章直角三角形的边角关系小专题一求锐角的三角函数值课时作业新版北师大版

小专题(一) 求锐角的三角函数值求锐角三角函数值的方法许多,且方法敏捷,是中考中常见的题型,可以依据已知条件结合图形选用敏捷的求解方法.现将求锐角三角函数值的常用方法总结如下:①干脆依据定义求三角函数值,首先求出相应边的长度,然后代入三角函数公式计算即可;②若已知两边的比值或一个三角函数值,而不能干脆求出对应边的长,则可采纳设元的方法求解;③利用互余两角的三角函数关系式,改求其余角的三角函数值;④当干脆用三角函数定义求某锐角的三角函数值较为困难时,可通过相等角进行转换求解.类型1 运用定义求三角函数值1.在Rt △ABC 中,CD 是斜边AB 上的高线,已知∠ACD 的正弦值是23,则AAAA的值是 (D )A.25B.35C.√52D.232.如图,在Rt △ABC 中,CD 是斜边AB 上的高,则下列线段的比等于sin A 的是 (A )A.AAAA B.AAAA C.AA AAD.AAAA3.一个等腰三角形的腰是10,底边是12,求这个三角形顶角的正弦值、余弦值和正切值. 解:设三角形顶角为∠A ,底角为∠B ,∠C.则有AB=AC=10,BC=12,作AD ⊥BC 于点D ,作CE ⊥AB 于点E.∵AB=AC ,AD ⊥BC ,∴BD=CD=6.在Rt △ABD 中,AD=√AA 2-AA 2=√102-62=8,又∵S △ABC =12AB ·CE=12BC ·AD ,∴CE=9.6.在Rt△ACE中,AE=√AA2-AA2=√102-9.62=2.8,∴sin ∠BAC=AAAA =9.610=0.96,cos ∠BAC=AAAA=2.810=0.28,tan ∠BAC=AAAA=9.62.8=247.类型2巧设参数求三角函数值4.若a,b,c是△ABC中∠A,∠B,∠C的对边,且a∶b∶c=1∶√2∶√3,则cos B的值为(B)A.√63B.√33C.√22D.√245.如图,在△ABC中,∠B=90°,C是BD上一点,DC=10,∠ADB=45°,∠ACB=60°,求AB的长.解:设AB=x,在△ABD中,∵∠ADB=45°,∠B=90°,∴AB=BD=x.∵∠B=90°,∠ACB=60°,∴BC=Atan60°=√33x.又∵BD=BC+DC,∴x=√33x+10,∴x=15+5√3,∴AB的长为15+5√3.6.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点E,EF⊥AB于点F,F恰好是AB的一个三等分点(AF>BF).(1)求证:AC=AF;(2)求tan ∠CAE的值.解:(1)∵∠C=90°,∴EC⊥AC.∵AE平分∠BAC,EF⊥AB,∴EC=EF.在Rt△ACE和Rt△AFE中,EC=EF,AE=AE,∴Rt△ACE≌Rt△AFE,∴AC=AF.(2)∵F是AB的一个三等分点(AF>BF),∴设BF=x,AF=2x,则AC=2x,AB=3x.在Rt△ACB中,由勾股定理得BC=√(3A)2-(2A)2=√5x.∵tan B=AAAA =√5A=√5,∴在Rt△EFB中,EF=BF·tan B=√5,∴CE=EF=√5,∴tan ∠CAE=AAAA=√55.类型3利用互余的两角的三角函数关系求锐角三角函数值7.在△ABC中,∠C=90°,则下列式子成立的是(A)A.sin A=cos BB.sin A·tan A=cos AC.sin A·cos B=1D.sin A=sin (90°-A)8.在△ABC中,∠A,∠B为锐角,且有sin A=cos B,则这个三角形是(B)A.等腰三角形B.直角三角形C.钝角三角形D.锐角三角形类型4等角代换求三角函数值9.在△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,那么c等于(B)A.a·cos A+b·sin BB.a·sin A+b·sin BC.Asin A +Asin AD.Acos A+Asin A10.(咸宁中考)如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,假如正方形ABCD的四个顶点分别在四条直线上,则sin α=√55.11.请你画出一个以BC为底边的等腰△ABC,使底边上的高AD=BC.(1)求tan ∠ABC和sin ∠ABC的值;(2)在你所画的等腰△ABC中,假设底边BC=5,求腰上的高BE.解:图略.(1)tan ∠ABC=2,sin ∠ABC=2√55.(2)BE=2√5.类型5构造法求三角函数值12.如图,在平面直角坐标系中,点A的坐标为(3,4),那么sin α的值是(C)A.35B.34C.45D.4313.如图,在△ABC中,∠B=135°,tan A=25,BC=6√2.(1)求AC的长;(2)求△ABC 的面积.解:(1)过点C 作CD ⊥AB 交AB 的延长线于点D.∵在△ABC 中,∠ABC=135°, ∴∠CBD=45°,∴BD=CD. ∵BC=6√2,∴BD=CD=6. ∵tan A=25,∴AD=AAtan A =15,∴AB=AD-BD=9.∴AC=√152+62=3√29.(2)S △ABC =12·AB ·CD=12×9×6=27.14.学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC 中,AB=AC ,顶角A 的正对记作sad A ,这时sad A=底边腰=AAAA.简单知道一个角的大小与这个角的正对值也是相互唯一确定的.依据上述对角的正对的定义,解下列问题: (1)sad 60°的值为 (B )A.12B.1C.√32D.2(2)对于0°<∠A<180°,∠A 的正对值sad A 的取值范围是 0<sad A<2 . (3)已知sin α=35,其中α为锐角,试求sad α的值. 解:(3)如图,在△ABC 中,∠ACB=90°,sin A=35.在AB 上取点D ,使AD=AC ,作DH ⊥AC ,H 为垂足,令BC=3k ,AB=5k ,则AD=AC=√(5A )2-(3A )2=4k ,又∵在△ADH 中,∠AHD=90°,sin A=35.∴DH=AD ·sin A=125k ,AH=√AA 2-AA 2=165k.则在△CDH 中,CH=AC-AH=45k ,CD=√AA 2+AA 2=4√105k.于是在△ACD 中,AD=AC=4k ,CD=4√105k.由正对的定义可得,sad A=AA AA=√105,即sad α=√105.。

九年级28.1 锐角三角函数(专题课时练含答案)-

九年级28.1 锐角三角函数(专题课时练含答案)-

b c aCBAE D CBA28.1 锐角三角函数(一)◆知识技能:1、在△ABC 中,∠C=90°,cosA=23,b=3,则a 等于( )。

A 、3 B 、1 C 、2 D 、32、在Rt △ABC 中,∠C=90°,AB=13,BC=12,则下列关系式中正确的是( )。

A 、sinA>cosB B 、cosA>sinB C 、cosA< cosB D 、sinA <sinB3、△ABC 中,∠C=90°,AB=15,sinA=13,则BC 等于( ) A 、45 B 、5 C 、15 D 、1454、在△ABC 中,∠C=90°,AC=4,BC=3,则sinA= ,cosA= 。

5、在Rt △ABC 中,∠C=90°,如果b :a=1,那么cosB= ,sinA= 。

6、已知α为锐角,且sin α=12,则α= 度。

◆实践应用:7、我们知道,如果两个锐角的和等于一直角,那么这两个角互为余角,简称互余。

如图,∠A 与∠B 互余,且有: sinA=c aA =∠斜边的对边,cosB=B a c∠=的邻边斜边,因此知sinA=cosB ,注意到在△ABC 中,∠A+∠B=90°,即∠B=90°-∠A ,∠A=90°-∠B ,于是有:sin(90°-A)=cosA,cos(90°-A)=sinA 。

试完成下列选择题: 如果α是锐角,且cos α=45,那么sin (90°-α)的值等于( )。

A 、259 B 、54 C 、53 D 、25168、已知△ABC 中,D 为AB 的中点,DC ⊥AC ,且∠BCD=30°,求∠CDA 的正弦、余弦的值。

28.1 锐角三角函数(二)◆知识技能 1、在△ABC ,∠C=90°,∠A 、∠B 、∠C 的对边分别a 、b 、c ,下列式子中必成立的是( )。

九年级数学上册 第24章 解直角三角形24.3 锐角三角函数第1课时 锐角三角函数作业课件

九年级数学上册 第24章 解直角三角形24.3 锐角三角函数第1课时 锐角三角函数作业课件

C
24 A. 7
B.
7 3
C.274
D.13
第十三页,共二十五页。
12.(荆州中考)如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点(zhōnɡ
diǎn),DE⊥BC于点E,连结BD,则tan ∠DBC的值为( )
A
A.13
B. 2 -1 C.2- 3
D.14
第十四页,共二十五页。
10.已知 α 为锐角,tan α=2,则
3sin α+cos α 5cos α-2sin α
的值是_7__.
第十一页,共二十五页。
第十二页,共二十五页。
11.如图,直角三角形纸片的两直角边长分别为6,8,现将△ABC如图进行折叠(zhédié),
使点A与点B重合,折痕为DE,则tan ∠CBE的值是( )
13.已知方程 x2-4x+3=0 的两根为直角三角形的两直角边 长,则其最小角的余弦值_3__1_0.
10
14.(2019·杭州)在直角三角形 ABC 中,若 2AB=AC,则 cos C=_2_3_或_.2 5 5
第十五页,共二十五页。
15.已知关于 x 的方程 x2-5x·sin α+1=0 的一 个根为 2+ 3 ,且 α 为锐角,求 tan α. 解:设方程的另一个根为 x2,则(2+ 3 )x2=1, ∴x2=2- 3 ,∴5sin α=(2+ 3 )+(2- 3 ), 解得 sin α=45 .设锐角 α 所在的直角三角形的对 边长为 4k(k>0),则斜边长为 5k,邻边长为 3k, ∴tan α=43kk =43
第九页,共二十五页。
知识点❷:同角三角函数之间的关系
8.(南阳月考)在 Rt△ABC 中,∠C=90°,sin A =153 ,则 tan B 的值为( D )

九年级28.1 锐角三角函数(1)(专题课时练含答案)-

九年级28.1 锐角三角函数(1)(专题课时练含答案)-

28.1 锐角三角函数(1)(正弦和余弦)1.的值是( )A .2B .-2C .2D .-22.在Rt △ABC 中,∠C=90°,BC=4,sinA=23,则AB 的长为( ) A .83B .6C .12D .8 3.已知A 为锐角且cosA ≤12,那么( ) A .0°≤A ≤60° B .60°≤A<90° C .0°<A ≤30° D .30°≤A<90°4.在Rt △ABC 中,∠ACB=90°,CD 是斜边AB 上的高,BC=8,AC=15,•设∠BCD=α,•则cos α的值为( )A .87B .78C .815.1717D 5.如图,P 是OA 上一点,且P 的坐标为(4,3),则sina 和cosa 的值分别是( )A .43,53B .45,35C .35,45 D .43,34 6.在△ABC 中,∠C=90°,AC=3,BC=4, 则sinA=______,cosA=______.7.在Rt △ABC 中,∠C=90°,a ,b ,c 分别是∠A ,∠B ,∠C 的对边.(1)若c=2,sinA=______,sinB=_______;(2)若a :b=5:12,则∠B 的余弦值是______.8.│sin45°-cos30°│=_______.9.若cos (30°+β)=12,则锐角β=______.10.计算:sin230°+cos230°=_______.11.在Rt△ABC中,∠C=90°,a=6,c=10,求∠A和∠B的正弦,余弦值.12.在△ABC中,∠ACB=90°,CD是斜边上的高,分别写出等于∠B的正弦,•余弦的线段的比,这样的比例线段有几对?答案:1.D 点拨:=2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学春季班第一讲作业 布置时间:2014年__月___日
1. 在图1和图2中,已知OA=OB ,AB=24,⊙O 的直径为10.
(1)如图1,AB 与⊙O 相切于点C ,试求OA 的值;
(2)如图2,若AB 与⊙O 相交于D 、E 两点,且D 、E 均为AB 的三等分点,试求tanA 的值.
2.已知在Rt△ABC 中,∠C=90°,AD 是∠BAC 的角平分线,以AB 上一点O 为圆心,AD 为弦
作⊙O.
(1)在图中作出⊙O;(不写作法,保留作图痕迹)
(2)求证:BC 为⊙O 的切线;
(3)若AC=3,tanB=3
4,求⊙O 的半径长.
3. 已知:如图:BC 是半圆O 的直径,D 、E 是半圆O 上两点,⋂⋂=CE ED ,CE 的延长线与BD 的延
长线交于点A ,过点E 作EF ⊥BC 于点F ,交CD 与点G 。

(1)求证:AE=DE
(2)若52=AE ,3
4tan =∠ABC ,求DG ;
4. 已知:如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,点E 、F 分别在AB 、AC 的延长线上,EF 交⊙
O 于点M 、N ,交AD 于点H ,H 是OD 的中点,D 是弧MN 的中点,EH -HF=2,设∠ACB=α,tan α=4
3,EH 和HF 是方程x 2-(k+2)x+4k=0的两个实数根。

(1)求EH 和HF 的长;
(2)求BC 的长。

相关文档
最新文档