高三数学理高考模拟测试题

合集下载

2023届陕西省部分名校高三下学期高考仿真模拟理科数学试卷(word版)

2023届陕西省部分名校高三下学期高考仿真模拟理科数学试卷(word版)

2023届陕西省部分名校高三下学期高考仿真模拟理科数学试卷(word版)一、单选题(★★) 1. 已知集合,,则()A.B.C.D.(★) 2. 复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限(★★) 3. 在等差数列中,,则的公差()A.B.3C.D.4(★★★) 4. 若实数满足约束条件,则的取值范围为()A.B.C.D.(★) 5. 已知随机变量X的分布列为:m则()A.2B.C.D.1(★★★) 6. 函数在区间上的图象大致是()A.B.C.D.(★★★) 7. 在正方体中,,,分别为,,的中点,则异面直线与所成角的余弦值为()A.B.C.D.(★★) 8. 已知直线是函数()图象的一条对称轴,则在上的值域为()A.B.C.D.(★★) 9. 等比数列的各项均为正数,且,则()A.8B.6C.4D.3(★★★) 10. 设,,,则()A.B.C.D.(★★★) 11. 已知是坐标原点,是双曲线的左焦点,平面内一点满足是等边三角形,线段与双曲线交于点,且,则双曲线的离心率为()A.B.C.D.(★★★) 12. 在四棱锥P-ABCD中,底面ABCD为梯形,平面P AD⊥底面ABCD,,,,,则四棱锥P-ABCD外接球的表面积为()A.26πB.27πC.28πD.29π二、填空题(★★) 13. 已知向量,,若,则 ______ .(★★) 14. 南宋晚期的龙泉窑粉青釉刻花斗笠盏如图1所示,忽略杯盏的厚度,这只杯盏的轴截面如图2所示,其中光滑的曲线是抛物线的一部分,已知杯盏盛满茶水时茶水的深度为3cm,则该抛物线的焦点到准线的距离为 ______ cm.(★★) 15. 2023年杭州亚运会需招募志愿者,现从某高校的8名志愿者中任意选出3名,分别担任语言服务、人员引导、应急救助工作,其中甲、乙2人不能担任语言服务工作,则不同的选法共有 ___________ 种.(★★★★) 16. 已知函数,若恒成立,则的取值范围为 ______ .三、解答题(★★★) 17. 在中,内角,,所对的边分别为,,,已知,.(1)求的值;(2)若,求的面积.(★★★) 18. 赤霉素在幼芽、幼根、未成熟的种子中合成,其作用是促进细胞的生长,使得植株变高,每粒种子的赤霉素含量(单位:ng/g)直接影响该粒种子后天的生长质量.现通过生物仪器采集了赤霉素含量分别为10,20,30,40,50的种子各20粒,并跟踪每粒种子后天生长的情况,收集种子后天生长的优质数量(单位:粒),得到的数据如下表:赤霉素含量10后天生长的优2质数量(1)求关于的线性回归方程;(2)利用(1)中的回归方程,估计1000粒赤霉素含量为60ng/g的种子后天生长的优质数量. 附:回归直线的斜率和截距的最小二乘估计公式分别为,.(★★★) 19. 如图,在直三棱柱中,,,,D,E分别是棱,的中点.(1)证明:平面;(2)求二面角的余弦值.(★★★) 20. 已知函数.(1)设.①求曲线在点处的切线方程.②试问有极大值还是极小值?并求出该极值.(2)若在上恰有两个零点,求a的取值范围.(★★★) 21. 已知椭圆,斜率为2的直线l与椭圆交于A,B两点.过点B作AB的垂线交椭圆于另一点C,再过点C作斜率为-2的直线交椭圆于另一点D.(1)若坐标原点O到直线l的距离为,求△AOB的面积.(2)试问直线AD的斜率是否为定值?若是定值,求出此定值;若不是定值,说明理由.(★★★) 22. 在直角坐标系中,曲线的参数方程为(为参数).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线与极轴相交于,两点.(1)求曲线的极坐标方程及点的极坐标;(2)若直线的极坐标方程为,曲线与直线相交于,两点,求的面积. (★★) 23. 已知函数.(1)当时,求不等式的解集;(2)若不等式的解集非空,求的取值范围.。

2024届高三数学模拟检测(广东专用,2024新题型)(考试版)

2024届高三数学模拟检测(广东专用,2024新题型)(考试版)

2024年高考第三次模拟考试
高三数学(广东专用)
(考试时间:120分钟试卷满分:150分)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.
3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.
4.测试范围:高考全部内容
5.考试结束后,将本试卷和答题卡一并交回.
一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题
目要求的)
2168πcm
C.3
部选对的得6分,部分选对的得部分分,有选错的得0分)

对称


单调递减
与平面ABP夹角的余弦值.
2 21
y
b
+=的焦距为2,1F 的周长为8.。

2023届四川省南充市高三下学期高考考前数学(理)模拟训练(一)【含答案】

2023届四川省南充市高三下学期高考考前数学(理)模拟训练(一)【含答案】

2023届四川省南充市高三下学期高考考前数学(理)模拟训练(一)一、单选题1.若集合,则( ){}10,lg 01x A x B x x x +⎧⎫=≤=≤⎨⎬-⎩⎭∣∣A B = A .B .C .D .[)1,1-(]0,1[)0,1()0,1【答案】D【分析】先化简集合A ,B ,再利用交集运算求解.【详解】解:由题意得,{11},{01}A xx B x x =-≤<=<≤∣∣,()0,1A B ∴= 故选:D.2.( )sin2023cos17cos2023sin17+=A .B .C .D 1212-【答案】C【分析】根据诱导公式和正弦和角公式求解即可.【详解】解:因为3605182334020=⨯++所以,,()()4s 1in 8202n 3s 3605043sin 18s i 03i 4n 3=⨯++=+=-()()4c 1os 8202s 3c 3605043cos 18c o 03o 4s 3=⨯++=+=-所以,sin2023cos17cos2023sin17+.sin43cos17cos43sin17sin60=--=-= 故选:C.3.校园环境对学生的成长是重要的,好的校园环境离不开学校的后勤部门.学校为了评估后勤部门的工作,采用随机抽样的方法调查100名学生对校园环境的认可程度(100分制),评价标准如下:中位数m85m ≥8085m ≤<7080m ≤<70m <评价优秀良好合格不合格2023年的一次调查所得的分数频率分布直方图如图所示,则这次调查后勤部门的评价是( )A .优秀B .良好C .合格D .不合格【答案】B【分析】根据频率分布直方图求解中位数即可得答案.【详解】解:由频率分布直方图可知,前3组的频率分别为,第4组的频率为0.1,0.1,0.20.4所以,中位数,即满足,对应的评价是良好.0.1801082.50.4m =+⨯=m 8085m ≤<故选:B.4.双曲线 )2222:1(0,0)x y C a b a b -=>>A .B .2y x =±y =C .D .y x =12y x=±【答案】B【分析】根据.==ce a b a =【详解】由题意知,双曲线2222:1(0,0)x y C a b a b -=>>可得,解得,==ce a 22221()3a b b a a +=+=b a =所以双曲线的渐近线方程为.C by x a =±=故选:B.5.在平面直角坐标系中,为坐标原点,已知,,则( )O ()3,4A --()5,12B -cos OAB ∠=A .B .CD .33653365-【答案】D【分析】利用计算即得结果.cos AO ABOAB AO AB⋅∠=【详解】由题设,(3,4),(8,8)AO AB ==-所以cos AO AB OAB |AO ||AB |⋅∠== 故选:D6.一个四棱台的三视图如图所示,其中正视图和侧视图均为上底长为4,下底长为2,腰长为的等腰梯形,则该四棱台的体积为()A .BC .28D .283【答案】A4,下底长为2的正四棱台求解.因为上底长为4,下底长为2,所以该棱台的高为,1h=棱台的体积,∴(128416133V =⨯+⨯=故选:.A 7.为了激发同学们学习数学的热情,某学校开展利用数学知识设计LOGO 的比赛,其中某位同学利用函数图像的一部分设计了如图的LOGO ,那么该同学所选的函数最有可能是( )A .B .C .D .()sin x x xf -=()sin cos f x x x x=-()221f x x x =-()3sin f x x x =+【答案】B【分析】利用导数研究各函数的单调性,结合奇偶性判断函数图象,即可得答案.【详解】A :,即在定义域上递增,不符合;()1cos 0f x x '=-≥()f x B :,()cos (cos sin )sin f x x x x x x x '=--=在上,在上,在上,(2π,π)--()0f x '<(π,π)-()0f x '>(π,2π)()0f x '<所以在、上递减,上递增,符合;()f x (2π,π)--(π,2π)(π,π)-C :由且定义域为,为偶函数,222211()()()()f x x x f x x x -=--=-=-{|0}x x ≠所以题图不可能在y 轴两侧,研究上性质:,故递增,不符合;(0,)+∞32()20f x x x +'=>()f x D :由且定义域为R ,为奇函数,33()sin()()sin ()f x x x x x f x -=-+-=--=-研究上性质:,故在递增,(0,)+∞2()cos 30f x x x =+>'()f x (0,)+∞所以在R 上递增,不符合;()f x 故选:B8.将一个顶角为120°的等腰三角形(含边界和内部)的底边三等分,挖去由两个等分点和上顶点构成的等边三角形,得到与原三角形相似的两个全等三角形,再对余下的所有三角形重复这一操作.如果这个操作过程无限继续下去…,最后挖剩下的就是一条“雪花”状的Koch 曲线,如图所示已知最初等腰三角形的面积为1,则经过4次操作之后所得图形的面积是( )A .B .C .D .168120818271027【答案】A【分析】根据题意可知,每一次操作之后面积是上一次面积的,按照等比数列即可求得结果.23【详解】根据题意可知,每次挖去的三角形面积是被挖三角形面积的,13所以每一次操作之后所得图形的面积是上一次三角形面积的,23由此可得,第次操作之后所得图形的面积是,n 213nn S ⎛⎫=⨯ ⎪⎝⎭即经过4次操作之后所得图形的面积是.442161381S ⎛⎫=⨯=⎪⎝⎭故选:A9.将3个1和3个0随机排成一行,则3个0都不相邻的概率是( )A .B .C .D .1202151512【答案】C【分析】先求出总数,再由插空法,得到满足题意的情况,由古典概型的公式即可得出答案.【详解】先考虑总的情况,6个位置选3个放1,有种,36C 再考虑3个0都不相邻的情况,将3个0插入3个1形成的4个空中,有种,34C 可得.3436C 1C 5P ==故选:C .10.定义在上的函数满足,且为奇函数,则( )R ()f x ()()2=f x f x -()21f x +-()20231k f k ==∑A .B .C .2022D .20232023-2022-【答案】D【分析】利用抽象函数的轴对称与中心对称性的性质,得出函数的对称轴和中心对称点及周()f x 期,利用相关性质得出具体函数值,即可得出结果.【详解】∵,∴关于对称,()()2=f x f x -()f x 1x =∵为奇函数,∴由平移可得关于对称,且,()21f x +-()f x ()2,1()21f =,即(2)1(2)1f x f x ∴+-=--++(2)(2)2f x f x ++-=()()2=f x f x -(2)()2f x f x ∴++=(4)(2)2f x f x ∴+++=上两式比较可得()(4)f x f x =+∴函数是以4为周期的周期函数.,,()f x ()()()13222f f f +==()()421f f ==∴, ∴.()()()()12344f f f f +++=()()2023120244420234k f k f ==⨯-=∑故选:D.11.如图,在梯形ABCD 中,,,,将△ACD 沿AC 边折起,AB CD ∥4AB =2BC CD DA ===使得点D 翻折到点P ,若三棱锥P -ABC 的外接球表面积为,则( )20πPB=A .8B .4C .D .2【答案】C【分析】先找出两个三角形外接圆的圆心及外接球的球心,通过证明,可得12OO O M=12O M OO =四边形为平行四边形,进而证得BC ⊥面APC ,通过勾股定理可求得PB 的值.12OO MO【详解】如图所示,由题意知,,60ABC ︒∠=所以,AC =AC BC ⊥所以AB 的中点即为△ABC 外接圆的圆心,记为,2O 又因为,2PA PC ==所以,,120APC ︒∠=1PM =所以在中,取AC 的中点M ,连接PM ,则△APC 的外心必在PM 的延长线上,记为,APC △1O所以在中,因为,,所以为等边三角形,APC △160APO ︒∠=11O P O A =1APO △所以,12O P =(或由正弦定理得:)11242sin AC O P O P APC ===⇒=∠所以,11O M =在中,,,,ACB △2122O B AB ==2112O M BC ==2//O M BC 设外接球半径为R ,则,解得:,24π20πR =25R =设O 为三棱锥P -ABC 的外接球球心,则面ABC ,面APC .2OO ⊥1OO ⊥所以在中,,2Rt OO B △21OO =又因为在,,1Rt OO P△11OO ===所以,,121OO O M ==121O M OO ==所以四边形为平行四边形,12OO MO 所以,12//OO O M 又因为,2//O M BC 所以,1OO //BC又因为面APC ,1OO ⊥所以BC ⊥面APC ,所以,BC PC ⊥所以,即:22222228PB PC CB =+=+=PB =故选:C.12.设函数,其中,是自然对数的底数(…),则( )()e ln x f x ax x=-R a ∈e e 2.71828≈A .当时,B .当时,1a =()e f x x≥3e 4a =()0f x >C .当时,D .当时,1a =-()e f x x≥3e 4a =-()0f x >【答案】B【分析】令,结合,判断AC ;将不等式转化为()e ln e x ax x xg x =--()10g =()1g a'=-()0f x >,,再构造函数求解最值即可判断B ;借助特殊值判断D.324e ln e x x x x ⋅>()1,x ∈+∞10e f ⎛⎫< ⎪⎝⎭【详解】解:令,则,且,,()e ln e x ax x xg x =--()e ln ex a x a g x '=---()10g =()1g a'=-当,,∴存在一个较小的正数使得都有,1a =()110g '=-<ε()1,1x ε∀∈+()0g x <当时,,∴存在一个较小的正数使得都有,1a =-()110g '=>ε()1,1x ε∀∈-()0g x <故A ,C 都不正确,对于选项B ,当,则显然成立,当时,即证明,(]0,1x ∈()1,x ∈+∞3e e ln 04xx x ->也即证明,,324e ln e x x x x ⋅>()1,x ∈+∞令,则,12e ()x h x x =()312e()xx h x x -'=所以,时,,单调递增,时,,单调递减,()2,x ∈+∞1()0h x '>1()h x ()0,2x ∈1()0h x '<1()h x 所以,的最小值为,12e ()x h x x =()21e 24h =令,则,()2ln xh x x =()221ln x h x x -'=所以,时,,单调递减,时,,单调递增,()e,x ∈+∞2()0h x '<()2h x ()0,e x ∈2()0h x '>()2h x 所以,的最大值为,()2ln xh x x =()21e e h =所以,,()()()()21122323334e 444e 1ln 2e e e e e 4e x xh x h h h x x x ⋅=≥=⋅==≥=因为不同时取等,所以,,即选项B 正确,324e ln e x x x x ⋅>对于选项D ,当时,(成立),即1e x =11132243e e 2e 11e e e e ln e e 0e 16e 4e e 4416+⋅=-<-<⇔<⇔<,所以选项D 不正确.10e f ⎛⎫< ⎪⎝⎭故选:B .【点睛】关键点点睛:本题解题的关键在于根据不同选项,构造不同的函数,利用函数值的大小,特殊值等,实现大小比较.二、填空题13.设是虚数单位,复数的模长为__________.i 2i1i +【分析】先根据复数的除法化简,然后由模长公式可得.【详解】解:()()()2i 1i 2i 1i,1i 1i 1i -==+∴++-=.14.某班有48名学生,一次考试的数学成绩X (单位:分)服从正态分布,且成绩在()280,N σ上的学生人数为16,则成绩在90分以上的学生人数为____________.[]80,90【答案】8【分析】根据正态分布的对称性即可求解.【详解】由X (单位:分)服从正态分布,知正态密度曲线的对称轴为,成绩在()280,N σ80x=上的学生人数为16,[]80,90由对称性知成绩在80分上的学生人数为24人,所以90分以上的学生人数为.24168-=故答案为:815.如图,在中,.延长到点,使得,则ABCπ3AC ACB ∠==BA Dπ2,6AD CDA ∠==的面积为__________.ABC 【分析】根据正弦定理和面积公式求解即可.【详解】解:因为在中,,,ADC △π3AC ACB ∠==π2,6AD CDA ∠==所以,由正弦定理得,sin sin AD AC ACD CDA ∠∠=sin ACD ∠=π4ACD ∠=所以,,5ππ,124CAB ABC ∠∠==在中,由正弦定理可得ABC sin sin AB ACACB CBA ∠∠=AB =因为ππππππsin sin sin cos cos sin 464646CAB ⎛⎫∠=+=+=⎪⎝⎭所以,1sin 2ABC S AB AC CAB ∠=⨯⨯⨯=16.《九章算术》中记载了我国古代数学家祖暅在计算球的体积时使用的一个原理:“幂势既同,则积不容异”,此即祖暅原理,其含义为:两个同高的几何体,如在等高处的截面的面积恒相等,则它们的体积相等.已知双曲线的右焦点到渐近线的距离记为,双曲线()2222:10,0x y C a b a b -=>>d 的两条渐近线与直线,以及双曲线的右支围成的图形(如图中阴影部分所示)绕C 1y =1y =-C(其中),则双曲线的离心率为______.yπ222c a b =+C 【分析】先利用条件求出,直线与渐近线及双曲线的交点,从而求出截面积,再利题设所给d 1y =信息建立等量关系,从而求出结果.【详解】由题意知渐近线方程为,右焦点为,所以,by xa =±(),0F c 22bc d b a b ==+由,得,1y b y x a =⎧⎪⎨=⎪⎩a xb =由,得()2222110y x y x a b =⎧⎪⎨-=>⎪⎩x ==所以截面面积为,()2222221ππa b a a b b ⎛⎫+ ⎪-= ⎪⎝⎭由题知,阴影部分绕y 轴转一周所得几何体的体积等于底面积与截面面积相等,高为2的圆柱的体积,∴,22πππV a ===2bc =所以,即,()4222226a b c c a c ==-44226a c a c =-∴,解得,所以42e e 60--=2e 3=e =三、解答题17.据世界田联官方网站消息,原定于2023年5月日在中国广州举办的世界田联接力赛延期1314、至2025年4月至5月举行.据了解,甲、乙、丙三支队伍将会参加2025年4月至5月在广州举行的米接力的角逐.接力赛分为预赛、半决赛和决赛,只有预赛、半决赛都获胜才能进入决赛.已知4400⨯甲队在预赛和半决赛中获胜的概率分别为和;乙队在预赛和半决赛中获胜的概率分别为和;23343445丙队在预赛和半决赛中获胜的概率分别为和.2356(1)甲、乙、丙三队中,谁进入决赛的可能性最大;(2)设甲、乙、丙三队中进入决赛的队伍数为,求的分布列.ξξ【答案】(1)乙进入决赛的可能性最大(2)答案见解析【分析】(1)根据相互独立事件同时发生的概率公式计算得解;(2)根据(1)及相互独立事件同时发生的概率公式计算,列出分布列.【详解】(1)甲队进入决赛的概率为,231342⨯=乙队进入决赛的概率为,343455⨯=丙队进入决赛的概率为,255369⨯=显然乙队进入决赛的概率最大,所以乙进入决赛的可能性最大.(2)由(1)可知:甲、乙、丙三队进入决赛的概率分别为,135,,259的可能取值为,ξ0,1,2,3,()1354011125945P ξ⎛⎫⎛⎫⎛⎫==---=⎪⎪⎪⎝⎭⎝⎭⎝⎭,()135********2(1(1)(1)25952995290P ξ==-⨯⨯+-⨯⨯+-⨯⨯=,()135132596P ξ==⨯⨯=,()()()()43711110231459063P P P P ξξξξ==-=-=-==---=所以的分布列为:ξξ0123P4451337901618.已知分别为三个内角的对边,且.,,a b c ABC ,,A B C ()sin 2sin A B C-=(1)证明:;2222a b c =+(2)若,,,求AM 的长度.2π3A =3a =3BC BM =【答案】(1)证明见解析(2)1AM =【分析】(1)先利用三角形的内角和定理结合两角和差的正弦公式化简,再利用正弦定理和余弦定理化角为边,整理即可得证;(2)在中,由(1)结合余弦定理求出,再在中,利用余弦定理即可得解.ABC ,b c ABM 【详解】(1)由,()()sin 2sin 2sin A B C A B -==+得,sin cos cos sin 2sin cos 2cos sin A B A B A B A B -=+则,sin cos 3cos sin 0A B A B +=由正弦定理和余弦定理得,2222223022a c b b c a a b ac bc +-+-⋅+⋅=化简得;2222a b c =+(2)在中,,ABC 2229a b c bc =++=又因为,所以,所以2222a b c =+222229b c b c bc +=++=b c ==所以,π6B C ==由,得,3BC BM = 13a BM ==在中,,ABM 2222cos 313133a a AM c c B ⎛⎫=+-⨯⋅=+-= ⎪⎝⎭19.如图,正三棱柱的体积为P 是面内不同于顶点的一点,111ABC A B C -AB =111A B C 且.PAB PAC ∠=∠(1)求证:;⊥AP BC (2)经过BC 且与AP 垂直的平面交AP 于点E ,当三棱锥E -ABC 的体积最大时,求二面角平面角的余弦值.1P BC B --【答案】(1)证明见解析.【分析】(1)由线面垂直的判定定理即可证明;(2)由分析知,三棱锥E -ABC 的体积最大,等价于点E 到面ABC 的距离最大,由分析知,∠PFD为二面角的平面角,以F 为原点建立空间直角坐标系,分别求出平面和,代入1P BC B --FP FD即可得出答案.【详解】(1)设线段BC 的中点为F ,则,AF BC ⊥∵,,AP 为公共边,AB AC =PAB PAC ∠=∠∴,PAB PAC △△≌∴,PB PC =∴,又,面APF ,PF BC ⊥AF PF F = ,AF PF ⊂∴BC ⊥面APF ,面APFAP ⊂(2)设线段的中点为D ,由题意,点P 在线段上,11B C 1A D由,111ABC A B C V -=AB =12AA =∴三棱锥E -ABC 的体积最大,等价于点E 到面ABC 的距离最大,∵AP ⊥面BCE ,面BCE ,∴,EF ⊂AP EF ⊥∴点E 在以AF 为直径的圆上,如图,易知,3AF =从而,45EAF EFA ∠=∠=︒由(1)知PF ⊥BC ,DF ⊥BC ,平面,DF 平面,PF ⊂PBC ⊂1BCB 平面平面,PBC1BCB BC =∴∠PFD 为二面角的平面角,1P BC B --如图,以F 为原点建立空间直角坐标系,则,,,,()0,0,0F 330,,22E ⎛⎫⎪⎝⎭()B ()0,1,2P ,()0,0,2D于是,,从而,()0,1,2FP =()0,0,2FD =cos ,FP FD <>==∴二面角.1P BC B --20.已知,两点分别在x 轴和y 轴上运动,且,若动点G 满足()0,0M x ()00,N y 1MN =,动点G 的轨迹为E .2OG OM ON =+(1)求E 的方程;(2)已知不垂直于x 轴的直线l 与轨迹E 交于不同的A 、B 两点,总满足,Q ⎫⎪⎪⎭AQO BQO ∠=∠证明:直线l 过定点.【答案】(1);2214x y +=(2)证明见解析.【分析】(1)根据平面向量的坐标运算可得,结合和两点坐标求距离公式可得002xx y y ==、1MN =,将代入计算即可;22001x y +=002x x y y ==、(2)设直线l 的方程为:、,联立椭圆方程并消去y ,根据韦达定理表y kx m =+()()1122A x y B x y ,、,示出,利用两点求斜率公式求出,结合题意可得,列出关于k 和m1212+、x x x x AQ BQk k 、AQ BQk k =-的方程,化简计算即可.【详解】(1)因为,即,2OG OM ON =+0000(,)2(,0)(0,)(2,)x y x y x y =+=所以,则,002x x y y ==,002xx y y ==又,得,即,1MN =22001x y +=22()12x y +=所以动点G 的轨迹方程E 为:;2214x y +=(2)由题意知,设直线l 的方程为:,,y kx m =+()()1122A x y B x y ,,,则,1122y kx m y kx m=+=+,,消去y ,得,2214x y y kx m ⎧+=⎪⎨⎪=+⎩222(41)8440k x kmx m +++-=由,得,22226416(41)(1)0k m k m ∆=-+->2241m k <+,21212228444141km m x x x x k k --+==++,直线的斜率为,直线的斜率为,AQAQ k =BQ BQ k =又,所以AQO BQO ∠=AQk =BQk-=整理,得,1212120y x x y y y +=12122()()0kx x m x x ++=,2222228(1)80414141km km k mk k k --+=+++由,化简得,2410k +≠m =所以,(y kx k x ==故直线过定点.21.已知函数为的导函数.1()ln (0,0),()f x kx a x x a f x x ->'=-+>()f x (1)当时,求函数的极值;1,2a k ==()f x (2)已知,若存在,使得成立,求证:()1212,(0,)x x x x ∈+∞≠k ∈R ()()12f x f x =.()()120f x f x ''+>【答案】(1)极大值为,无极小值.3-(2)证明见解析【分析】(1),求导,利用函数的单调性及极值的定义求解;1()2ln f x x xx =--+(2)不妨设,因为,所以,结合12x x >()()12f x f x =121212ln 1x x a kx x x x +=-,得()()1222121211112f x f x a k x x x x ⎛⎫''+=+++- ⎪⎝⎭,设, 构造函数()()()2121211222121221212ln x x x x x f x f x ax xx x x x x -⎛⎫''+=+-- ⎪-⎝⎭12(1,)x t x =∈+∞,结合函数的单调性,可证得结论.1()2ln (1)t t t t tϕ=-->【详解】(1)当时,此时,1,2a k ==1()2ln f x x xx =--+则,2211(21)(1)()2x x f x x x x +-'=-+=-当时,,则在单调递增;01x <<()0f x '>()f x (0,1)当时,,则在单调递减;1x >()0f x '<()f x (1,)+∞所以的极大值为,无极小值.()f x (1)3f =-(2)不妨设,因为,12x x >()()12f x f x =则,11221211ln ln kx a x kx a x x x --+=--+即,所以,()12112122ln x x x a k x x x x x -+=-121212ln1x x a k x x x x +=-由,则,21()a f x k x x '=+-()()1222121211112f x f x a k x x x x ⎛⎫''+=+++- ⎪⎝⎭,()()12122212121212ln111112x x f x f x a ax x x x x x x x ⎛⎫ ⎪⎛⎫ ⎪''+=+++-+ ⎪- ⎪⎝⎭ ⎪⎝⎭即,()()12122212121212ln 112112x x f x f x a x x x x x x x x ⎛⎫ ⎪ ⎪''+=+-++-- ⎪ ⎪⎝⎭所以()()()222121211222121212212ln x x x x x f x f x a x x x x x x x -⎛⎫-''+=+-⎪-⎝⎭即,()()()2121211222121221212ln x x x x x f x f x ax x x x x x x -⎛⎫''+=+-- ⎪-⎝⎭设, 构造函数,12(1,)x t x =∈+∞1()2ln (1)t t t t t ϕ=-->则,2221221()10t t t t t t ϕ-+'=+-=>所以在上为增函数,()t ϕ(1,)+∞所以,()(1)0t ϕϕ>=因为,()21222121210,0,0x x a x x x x ->>>-所以.()()120f x f x ''+>【点睛】方法点睛:利用导数证明不等式常见解题策略:(1)构造差函数,根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式;(2)根据条件,寻找目标函数.一般思路为利用条件将问题逐步转化,或利用放缩、等量代换将多元函数转化为一元函数,再通过导数研究函数的性质进行证明.22.“太极图”是关于太极思想的图示,其形状如对称的阴阳两鱼互抱在一起,也被称为“阴阳鱼太极图”.在平面直角坐标系中,“太极图”是一个圆心为坐标原点,半径为的圆,其中黑、白区域xOy 4分界线,为两个圆心在轴上的半圆,在太极图内,以坐标原点为极点,轴非负半1C 2C y (2,2)P -x轴为极轴建立极坐标系.(1)求点的一个极坐标和分界线的极坐标方程;P 1C (2)过原点的直线与分界线,分别交于,两点,求面积的最大值.l 1C 2C M N PMN 【答案】(1),:3π4P ⎛⎫ ⎪⎝⎭1C 24sin 0ρρθ-=(2)4【分析】(1)由直角坐标和极坐标的互化公式转化即可;(2)由图形对称性知,,在极坐标系中,求,并求其最大值即可.2PMN POM S S = POM S 【详解】(1)设点的一个极坐标为,,,P (),P P P ρθ0P ρ>[)0,2πP θ∈则,P ρ===2tan 12P P P y x θ===--∵点在第三象限,∴,∴点的一个极坐标为.P 3π4P θ=P 3π4P ⎛⎫ ⎪⎝⎭∵“太极图”是一个圆心为坐标原点,半径为的圆,4∴分界线的圆心直角坐标为,半径为,1C ()10,2C 2r =∴的直角坐标方程为(),即(),1C ()2224x y +-=0x ≥2240x y y +-=0x ≥将,,代入上式,得,,cos x ρθ=sin y ρθ=222x y ρ+=24sin 0ρρθ-=π0,2θ⎡⎤∈⎢⎥⎣⎦化简,得分界线的极坐标方程为,.1C 4sin ρθ=π0,2θ⎡⎤∈⎢⎥⎣⎦(2)∵在上,∴设点的极坐标为,则,,M 1C M (),M M M ρθ4sin MM ρθ=π0,2M θ⎡⎤∈⎢⎥⎣⎦∴的面积POM ()11sin sin 22POM P M P M S OP OM POM ρρθθ=⋅⋅∠=⋅⋅- 13π4sin sin 24M M θθ⎛⎫=⋅- ⎪⎝⎭24sin cos 4sin M M Mθθθ=+()2sin 221cos 2M M θθ=+-2sin 22cos 22M M θθ=-+π224M θ⎛⎫=-+ ⎪⎝⎭∵,∴,π0,2M θ⎡⎤∈⎢⎥⎣⎦ππ3π2,444M θ⎡⎤-∈-⎢⎥⎣⎦∴当,即时,的面积的最大值为.ππ242M θ-=3π8M θ=POM ()max 2POM S = ∵直线过原点分别与,交于点,,∴由图形的对称性易知,,l 1C 2C M N OM ON =∴面积,PMN 2PMN POM S S =∴面积的最大值为.PMN ()()max max 24PMN POM S S == 23.已知,且,证明:0,0,1a b c >>>222422a b c c ++-=(1);24a b c ++≤(2)若,则.2a b =1131b c +≥-【答案】(1)证明见解析(2)证明见解析【分析】(1)由柯西不等式即可证明;(2)由均值的不等式可得,由(1)可得()()11112141911a b c b c b c b c ⎛⎫⎛⎫⎡⎤+++-=++-≥ ⎪ ⎪⎣⎦--⎝⎭⎝⎭,即可证明.11213a b c ≥++-1131b c +≥-【详解】(1)由,得,222422a b c c ++-=2224(1)3a b c ++-=由柯西不等式有,()2222222(2)(1)111(21)a b c a b c ⎡⎤++-++≥++-⎣⎦,当且仅当时等号成立,213a b c ∴++-≤211a b c ==-=,当且仅当时等号成立;24a b c ∴++≤11,,22a b c ===(2)由可得2a b =,()()1111412141559111b c a b c b c b c b c c b -⎛⎫⎛⎫⎡⎤+++-=++-=++≥+= ⎪ ⎪⎣⎦---⎝⎭⎝⎭当且仅当时取等,12c b -=由(1)可得,当且仅当时等号成立,11213a b c ≥++-11,,22a b c ===从而,当且仅当时等号成立.11193121b c a b c +≥⋅≥-++-11,,22a b c ===。

四川省成都外国语学校2024届高三下学期高考模拟(三)理科数学试题(含答案)

四川省成都外国语学校2024届高三下学期高考模拟(三)理科数学试题(含答案)

四川省成都外国语学校2024届高三下学期高考模拟(三)数学(理科)本试卷满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、座位号和准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上。

写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则( )A .B .C .D .2.已知为虚数单位,若复数为纯虚数,则实数( )A .B .2C .D .43.“”是“方程表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知为锐角,若,则( )ABCD5.正方形的边长为2,是的中点,是的中点,则( )A .4B .3C .D .6.已知非零实数,满足,则下列不等式不一定成立的是( )A .B .C .D .7.已知函数,,则图象为如图的函数可能是( ){}240,A x x x x =-≤∈Z {}14B x x =-≤<A B = []1,4-[)0,4{}0,1,2,3,4{}0,1,2,3i ()242i z m m =---m =2±2-13m <<22113x y m m+=--αsin 22πα⎛⎫-= ⎪⎝⎭cos α=ABCD E AD F DC ()EB EF BF +⋅=4-3-a b 1a b >+221a b >+122a b +>24a b>1ab b>+()214f x x =+()sin g x x =A .B .C .D .8.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是()A .B .C.D .9.已知甲同学从学校的2个科技类社团,4个艺术类社团,3个体育类社团中选择报名参加,若甲报名了两个社团,则在仅有一个是艺术类社团的条件下,另一个是体育类社团的概率( )A .B .C .D .10.鼎湖峰,矗立于浙江省缙云县仙都风景名胜区,状如春笋拔地而起,其峰顶镶嵌着一汪小湖,传说黄帝炼丹鼎坠积水成湖.白居易曾以诗赋之:“黄帝旌旗去不回,片云孤石独崔嵬,有时风激鼎湖浪,散作晴天雨点来”.某校开展数学建模活动,有建模课题组的学生选择测量鼎湖峰的高度,为此,他们设计了测量方案.如图,在山脚测得山顶得仰角为,沿倾斜角为的斜坡向上走了90米到达点(,,,在同一个平面内),在处测得山顶得仰角为,则鼎湖峰的山高为( )米()()14y f x g x =+-()()14y f x g x =--()()y f x g x =()()g x y f x =cm 3cm 22π8π223π163π356131234A P 45︒15︒B A B P Q B P 60︒PQA .B .C .D .11.已知正方体的棱长为4,,分别是棱,的中点,则平面截该正方体所得的截面图形周长为( )A .6B .CD12.已知,分别是双曲线:(,)的左右焦点,过的直线分别交双曲线左、右两支于、两点,点在轴上,,平分,则双曲线的离心率( )ABCD .二、填空题:本题共4小题;每小题5分,共20分。

四川省成都市石室中学2023届高三高考模拟测试数学(理科)试题

四川省成都市石室中学2023届高三高考模拟测试数学(理科)试题

四川省成都市石室中学2023届高三高考模拟测试数学
(理科)试题
学校:___________姓名:___________班级:___________考号:___________
.甲的成绩的极差小于乙的成绩的极差
.甲的成绩的方差小于乙的成绩的方差
.甲的成绩的平均数等于乙的成绩的平均数
.甲的成绩的中位数小于乙的成绩的中位数
.设zÎC,则在复平面内35
££所表示的区域的面积是()
z
.B.C.D.

13
B .
23
C .
43
二、填空题
13.“五一”假期期间,小明和小红两位同学计划去卷上的圆锥曲线大题.如图,小红在街道E 处,小明14.已知点C 的坐标为()2,0,点,A B 是圆0AC BC ×=uuu r uuu r
,设P 为线段AB 的中点,则15.已知函数()()2e R x f x ax a =-Î有两个极值点围为___________.
三、双空题
信基站核心部件,下表统计了该科技集团近几年来在A部件上的研发投入x(亿元)与收益y(亿元)的数据,结果如下:。

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。

2023-2024学年四川省成都市高三高考冲刺卷(一)数学(理)模拟试题(含解析)

2023-2024学年四川省成都市高三高考冲刺卷(一)数学(理)模拟试题(含解析)

2023-2024学年四川省成都市高三高考冲刺卷(一)数学(理)模拟试题一、单选题1.已知集合2{|60},{|4}A x x x B y y x =+-≥=≤≤,则集合()A B =R ð()A .(,0)[2,)-∞⋃+∞B .(,0)(2,)-∞+∞C .(,3][2,)-∞-+∞UD .(,3](2,)-∞-+∞ 【正确答案】A【分析】根据题意,将集合,A B 分别化简,然后结合集合的运算,即可得到结果.【详解】因为{2{|60}2A x x x x x =+-≥=≥或}3x ≤-,且{}{|4}02B y y x y x ==≤≤=≤≤,则()(),02,B =-∞+∞R ð,所以(,0)[2(),)A B -∞⋃+=∞R ð.故选:A2.走路是最简单优良的锻炼方式,它可以增强心肺功能,血管弹性,肌肉力量等,甲、乙两人利用手机记录了去年下半年每个月的走路里程(单位:公里),现将两人的数据绘制成如图所示的折线图,则下列结论中正确的是()A .甲走路里程的极差等于10B .乙走路里程的中位数是26C .甲下半年每月走路里程的平均数小于乙下半年每月走路里程的平均数D .甲下半年每月走路里程的标准差小于乙下半年每月走路里程的标准差【正确答案】C【分析】根据折线图,得到甲、乙下半年的走路历程数据,根据极差、中位数、平均数以及标准差与数据稳定性之间的关系求解.【详解】对于A 选项,712-月甲走路的里程为:31、25、21、24、20、30,甲走路里程的极差为312011-=公里,A 错;对于B 选项,712-月乙走路的里程为:29、28、26、28、25、26,由小到大排列分别为:25、26、26、28、28、29,所以,乙走路里程的中位数是2628272+=,B 对;对于C 选项,甲下半年每月走路里程的平均数31252124203015166+++++=,乙下半年每月走路里程的平均数为2928262825261622766+++++==,所以,甲下半年每月走路里程的平均数小于乙下半年每月走路里程的平均数,C 对;对于D 选项,由图可知,甲下半年走路里程数据波动性大于乙下半年走路里程数据,所以甲下半年每月走路里程的标准差大于乙下半年每月走路里程的标准差,D 错.故选:C.3.已知平面向量||2a = ,||1b = ,,a b 的夹角为60 ,)a tb t +=∈R ,则实数t ()A .1-B .1C .12D .1±【正确答案】A【分析】对a tb +=两边平方,再由数量积公式计算可得答案.【详解】因为a tb += ,所以22223a a b t t b +⋅⋅+= ,即2422cos603t t +⨯⨯+= ,解得1t =-.故选:A.4.若直线y ax =是曲线2ln 1y x =+的一条切线,则实数=a A .12e -B .122e -C .12e D .122e 【正确答案】B【分析】设出切点坐标,求出函数的导数,利用导数的几何意义求出切线方程,进行比较建立方程关系进行求解即可.【详解】数的定义域为(0,+∞),设切点为(m ,2lnm+1),则函数的导数2f x x'=(),则切线斜率2k m =,则对应的切线方程为22122y lnm x m x m m-+=-=-()(),即221y x lnm m=+-,2y ax a m=∴= ,且210lnm -=,即12lnm =,则12m e =,则121222a ee-=,故选B .本题主要考查函数的导数的几何意义的应用,求函数的导数,建立方程关系是解决本题的关键.5.函数1e ()sin 1e xxf x x -=⋅+的部分图象大致形状是()A .B .C.D.【正确答案】C【分析】先判断函数的奇偶性,结合对称性以01x <<时的函数值的正负判断可得答案.【详解】由1e ()sin 1e xxf x x -=⋅+,x ∈R ,定义域关于原点对称,得()()()()1e e 11e sin sin sin 1e e 11ex x xx x x f x x x x f x ------=⋅-=⋅-=⋅=+++,则函数()f x 是偶函数,图象关于y 轴对称,排除BD ;当01x <<时,1e 0x-<,1e 0x+>,sin 0x >,所以()1e sin 01e xxf x x -=⋅<+,排除A.故选:C.6.已知正方体1111ABCD A B C D -(如图1),点P 在棱1DD 上(包括端点).则三棱锥1B ABP -的侧视图不可能...是()A .B .C .D .【正确答案】D【分析】根据题意结合三视图逐项分析判断.【详解】对于选项A :当点P 于点D 重合,则1B ABP -的侧视图如选项A 所示,故A 正确;对于选项B :当点P 于点1D 重合,则1B ABP -的侧视图如选项B 所示,故B 正确;对于选项C :当点P 为线段1DD 的中点,则1B ABP -的侧视图如选项C 所示,故C 正确;对于选项D :因为点P 在棱1DD 上运动,则侧视图中右边的一条边与底边垂直,且右边的一条边的边长与正方体的棱长相等,所以1B ABP -的侧视图如不可能如选项D 所示,故D 错误;故选:D.7.已知抛物线24y x =的焦点和椭圆的一个焦点重合,且抛物线的准线截椭圆的弦长为3,则椭圆的标准方程为()A .22132x y +=B .22143x y +=C .22154x y +=D .22165x y +=【正确答案】B【分析】根据椭圆的焦点以及31,2⎛⎫-± ⎪⎝⎭在椭圆上,即可求解,,a b c 的值.【详解】抛物线24y x =的焦点为()1,0,准线为=1x -,设椭圆的方程为()222210x y a b a b +=>>,椭圆中,1c =,当=1x -时,32y =,故229141,a b+=又222a b c =+,所以2,a b ==,故椭圆方程为22143x y +=,故选:B8.已知()()sin f x x ωϕ=+(0,ωϕ>为常数),若()f x 在ππ,62⎛⎫⎪⎝⎭上单调,且π5ππ263f f f ⎛⎫⎛⎫⎛⎫==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则ϕ的值可以是()A .5π6-B .π6-C .π3D .2π3【正确答案】A【分析】根据()f x 在ππ,62⎛⎫⎪⎝⎭上单调,可得03ω<≤,再由π5ππ263f f f ⎛⎫⎛⎫⎛⎫==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭求得()f x 的一条对称轴和一个对称中心,进而求得2ω=,再求ϕ的值.【详解】对于函数()()sin f x x ωϕ=+,0ω>,因为()f x 在ππ,62⎛⎫⎪⎝⎭上单调,所以πππ262T ω-≤=,即03ω<≤.又π5ππ263f f f ⎛⎫⎛⎫⎛⎫==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以π5π2π2623x +==为()f x 的一条对称轴,且ππ23,02⎛⎫+ ⎪ ⎪ ⎪⎝⎭即5π,012⎛⎫⎪⎝⎭为()f x 的一个对称中心,因为2π5πππ312432T-=<≤,所以2π3x =和5π,012⎛⎫⎪⎝⎭是()f x 同一周期内相邻的对称轴和对称中心,则2π5π4312T =-,即πT =,所以(]2π20,3Tω==∈,所以()()sin 2f x x ϕ=+,又5π,012⎛⎫⎪⎝⎭为()f x 的一个对称中心,则5π2π12k ϕ⨯+=,Z k ∈,则5ππ6k ϕ=-+,Z k ∈,当0k =时,5π6ϕ=-.故选:A.9.如图,在矩形ABCD 中,E F 、分别为边AD BC 、上的点,且3AD AE =,3BC BF =,设P Q 、分别为线段AF CE 、的中点,将四边形ABFE 沿着直线EF 进行翻折,使得点A 不在平面CDEF 上,在这一过程中,下列关系不能..成立的是()A .直线//AB 直线CD B .直线AB ⊥直线PQC .直线//PQ 直线ED D .直线//PQ 平面ADE【正确答案】C【分析】画出翻折之后的立体图形,根据点线面之间的位置关系以及平行与垂直的相关定理,可以证明或证伪相关命题.【详解】翻折之后如图所示:①因为3AD AE =,3BC BF =,所以//AB EF 且//EF CD ,因此//AB CD ,故选项A 成立;②连接FD ,因为P Q 、分别为FA FD 、的中点,所以//PQ AD ,又因为AB AD ⊥,所以AB PQ ⊥,故选项B 成立;③因为//PQ AD ,⋂=ED AD D ,所以PQ 与ED 不平行,故选项C 不成立;④因为//PQ AD ,且PQ ⊄平面ADE ,AD ⊂平面ADE ,所以//PQ 平面ADE ,故选项D 成立.故选:C10.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用.明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理(图1所示).假定在水流量稳定的情况下,筒车上的每一个盛水筒都做逆时针匀速圆周运动,筒车转轮的中心O 到水面的距离h 为1.5m ,筒车的半径r 为2.5m ,筒车每秒转动rad 12π,如图2所示,盛水桶M 在0P 处距水面的距离为3m ,则2s 后盛水桶M 到水面的距离近似为()A .3.2mB .3.4mC .3.6mD .3.8m【正确答案】D设ts 后盛水桶M 到水面的距离h 关于t 的函数解析式为()()()sin 0,0h t A t b A ωϕω=++>>,根据题中信息求出函数()h t 的解析式,再令2t =即可得解.【详解】设ts 后盛水桶M 到水面的距离h 关于t 的函数解析式为()()()sin 0,0h t A t b A ωϕω=++>>,由题意可得()()max min 41.52.51h t A b h t A b ⎧=+=⎪⎨=-=-=-⎪⎩,解得 2.51.5A b =⎧⎨=⎩,由于筒车每秒转动rad 12π,所以,函数()h t 的最小正周期为()22412T s ππ==,所以,212T ππω==,则() 2.5sin 1.512t h t πϕ⎛⎫=++ ⎪⎝⎭,由于盛水桶M 在0P 处距水面的距离为3m ,则()0 2.5sin 1.53h ϕ=+=,可得3sin 5ϕ=,由于函数()h t 在0=t 附近单调递增,则ϕ为第一象限角,所以,4cos 5ϕ=,所以,()12 2.5sin 1.5 2.5cos 1.5622h πϕϕϕ⎛⎫⎛⎫=++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭()2.5 1.5 3.8m =≈.故选:D.思路点睛:建立三角函数模型解决实际问题的一般步骤:(1)审题:审清题目条件、要求、理解数学关系;(2)建模:分析题目变化趋势,选择合适的三角函数模型;(3)求解:对所建立的数学模型进行分析研究,从而得出结论.11.已知双曲线C 的方程为22221(0,0)x y a b a b -=>>l 与圆2220(0)x y mx m +-=>相切于M ,与双曲线C 的两条渐近线分别相交于A ,B ,且M 为AB中点,则双曲线C 的离心率为()A .2BCD【正确答案】B 【分析】.设出直线l 的方程,求出A ,B 的坐标,从而可得点M 的坐标,代入圆方程中即可求离心率【详解】依题意,设直线l的方程为(0)y n n =+>,圆2220(0)x y mx m +-=>的方程可化为222()x m y m -+=,即圆心坐标为(,0)m ,半径为m ,因为直线l 与圆相切于Mm =,由0n >可化简得m =,则直线l的方程为()3y x m =+,双曲线C 的两条渐近线分别为b y x a =,b y x a =-,由)y x m b y xa ⎧=+⎪⎪⎨⎪=⎪⎩得A,同理可得B ,因为M 为AB中点,由中点坐标公式可得222(3ma M b a -,M 在圆上,将M 的坐标代入圆方程可得222222())3ma m m b a -+=-,化简整理得222()0a b -=,从而可得a b =,则双曲线C 的离心率ce a==故选:B12.已知函数(),()f x g x 的定义域均为R ,且满足(1)(3)4,(1)(3)6---=++-=f x g x g x f x ,(2)g x +为奇函数,则1071()n f n ==∑()A .5350-B .5250-C .5150-D .5050-【正确答案】A【分析】由条件通过赋值,结合周期函数的定义证明()()h x f x x =+为周期为2的周期函数,再求()()0,1h h ,结合周期函数性质求1071()n h n =∑,由此可得结论.【详解】因为函数(2)g x +为奇函数,所以()()220g x g x ++-+=,在(1)(3)4f x g x ---=中将x 代换为1x +可得()(2)4f x g x --=①,在(1)(3)6g x f x ++-=中将x 代换为1x +可得(2)(2)6g x f x ++-=②,①②两式相减可得()()(2)(2)22g x f x f x g x ++--+-+=,所以()(2)2f x f x --=,即()(2)2f x x f x x -+-=+,设()()h x f x x =+,则()()2h x h x +=,所以函数()()h x f x x =+为周期为2的周期函数,由()()220g x g x ++-+=取0x =可得()20g =,由()(2)4f x g x --=取0x =可得(0)(2)4f g -=,所以(0)4f =,在()(2)2f x f x --=中取1x =可得()(1)12f f --=,在()(2)4f x g x --=中取1x =可得(1)(1)4f g -=④,在()(2)4f x g x --=中取=1x -可得(1)(3)4f g --=⑤,在()()220g x g x ++-+=中取1x =可得()()310g g +=⑥,将④⑤⑥相加可得()(1)18f f -+=,又()(1)12f f --=,所以()13f =,又(0)4f =,()()h x f x x =+,所以()()0004h f =+=,()()1114h f =+=,又函数()()h x f x x =+为周期为2的周期函数,所以()()()()1071()1231074107428n h n h h h h ==+++⋅⋅⋅+=⨯=∑,所以()()()()()1071()112210710742812107n h n n h h h =-=-+-+⋅⋅⋅+-=-++⋅⋅⋅+∑,所以()()()10711107107428428577853502n h n n =+⨯-=-=-=-∑,所以1071()5350n f n ==-∑.故选:A.知识点点睛:本题考查奇函数的性质,周期函数的定义,周期函数的性质,组合求和法,等差数列求和,考查赋值法,属于综合题,考查学生的逻辑推理能力和运算求解能力.二、填空题13.若复数z 满足(2i)12i z +=-,则z 的共轭复数z 的虚部为________.【正确答案】1【分析】根据复数的除法运算化简复数,即可由共轭复数的概念以及虚部概念求解.【详解】由(2i)12i z +=-得()()()()12i 2i 12i 2i 4i 2i 2i 2i 2i 5z ------====-++-,故i z =,且虚部为1,故114.在[]4,4-之间任取一个实数m ,使得直线0x y m ++=与圆222x y +=有公共点的概率为________.【正确答案】12/0.5【分析】利用直线与圆的位置关系求出m 的取值范围,再利用几何概型的概率公式可求得所求事件的概率.【详解】圆222x y +=因为直线0x y m ++=与圆222x y +=≤,解得22m -≤≤,因此,所求事件的概率为()()221442P --==--.故答案为.1215.已知正三棱柱111ABC A B C -所有顶点都在球O 上,若球O 的体积为32π3,则该正三棱柱体积的最大值为________.【正确答案】8【分析】由条件结合球的体积公式求球的半径,设正三棱柱的底面边长为x ,求出三棱柱的高,结合棱柱的体积求三棱柱的体积,再利用导数求其最大值.【详解】设正三棱柱111ABC A B C -的上,下底面的中心分别为12,O O ,连接12O O ,根据对称性可得,线段12O O 的中点O 即为正三棱柱111ABC A B C -的外接球的球心,线段OA 为该外接球的半径,设OA R =,由已知3432ππ33R =,所以2R =,即2OA =,设正三棱柱111ABC A B C -的底面边长为x ,设线段BC 的中点为D ,则2AD x =,1223323AO AD ==⨯=,在1Rt AO O △中,1OO ==所以12O O =,0x <<,又ABC 的面积1122S BC AD x =⋅=⨯=所以正三棱柱111ABC A B C -的体积242x V x =⨯设t ,则22123x t =-,02t <<,所以)2123V t t =-,02t <<,所以)2129V t '=-,令0V '=,可得3t =或3t =-,舍去,所以当0t <<0V '>,函数)2123V t t =-在0,3⎛⎫ ⎪ ⎪⎝⎭上单调递增,当2323t <<时,0V '<,函数()231232V t t =-在23,23⎛⎫ ⎪ ⎪⎝⎭上单调递减,所以当233t =时,()231232V t t =-取最大值,最大值为8,所以当22x =时,三棱柱111ABC A B C -的体积最大,最大体积为8.故答案为.816.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若cos cos a C c A b c -=-,且1a c +=,则当边c 取得最大值时,ABC 的周长为________.【正确答案】33/33【分析】由正弦定理结合两角和的正弦公式可求得cos A 的值,结合角A 的取值范围可得出角A 的值,利用正弦定理可求得c 的最大值及其对应的C 的值,进而可求得b 的值,由此可得出ABC 的周长.【详解】因为cos cos a C c A b c -=-,由正弦定理可得sin cos cos sin sin sin A C A C B C -=-,即()sin cos cos sin sin sin sin cos cos sin sin A C A C A C C A C A C C -=+-=+-,整理可得2cos sin sin A C C =,因为A 、()0,πC ∈,所以,sin 0C >,则1cos 2A =,故π3A =,由正弦定理可得)231sin sin 332c a c c C A =-,整理可得2332332sin 31sin 23sin Cc C C C=+++因为2π03C <<,当π2C =时,c 取最大值,且c 4323=-+,此时,(1143a c =-=--=,π6B =,所以,22c b ==因此,当边c 取得最大值时,ABC的周长为()((32423a b c ++=+-+-=-.故答案为.3三、解答题17.设等比数列{}n a 的前n 项和为n S ,且()*231n n S a n N =-∈.()1求{}n a 的通项公式;()2若()()1311nn n n b a a +=++,求{}n b 的前n 项和n T .【正确答案】(1)13n n a -=.(2)311 2231n n T ⎛⎫=- +⎝⎭.【分析】()1利用数列的递推关系式的应用求出数列的通项公式.()2利用()1的结论,进一步利用裂项相消法求出数列的和.【详解】() 1等比数列{}n a 的前n 项和为n S ,且()*231.n n S a n N =-∈①当1n =时,解得11a =.当2n ≥时11231n n S a --=-②-①②得1323n n n a a a --=,所以13(nn a a -=常数),故11133n n n a --=⋅=.()2由于13n n a -=,所以()()1133111123131n n n n n n b a a -+⎛⎫==- ⎪++++⎝⎭,所以011311113112313131312231n n n n T -⎛⎫⎛⎫=-+⋯+-=- ⎪ ⎪+-+++⎝⎭⎝⎭.本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.18.“五一黄金周”期间,某商场为吸引顾客,增加顾客流量,推出购物促销优惠活动,具体优惠方案有两种:方案一:消费金额不满300元,不予优惠;消费金额满300元减60元;方案二:消费金额满300元,可参加一次抽奖活动,活动规则为:从装有3个红球和3个白球共6个球的盒子中任取3个球(这些小球除颜色不同其余均相同),抽奖者根据抽到的红球个数不同将享受不同的优惠折扣,具体优惠如下:抽到的红球个数0123优惠折扣无折扣九折八折七折(1)现有甲乙两位顾客各获得一次抽奖活动,求这两位顾客恰好有一人获得八折优惠折扣的概率;(2)若李女士在该商场消费金额为x 元(300x >),请以李女士实付金额的期望为决策依据,对李女士选择何种优惠方案提出建议.【正确答案】(1)99200(2)答案见解析【分析】(1)先求事件抽奖的顾客获得八折优惠的概率,再根据独立重复试验的概率公式求两位顾客恰好有一人获得八折优惠折扣的概率;(2)在300x >条件下,分别求两种方案下李女士实付金额的期望,由此提出建议.【详解】(1)设事件A :抽奖的顾客获得八折优惠,则213336C C 9()C 20P A ⋅==;由于甲乙两位顾客获得八折优惠的概率均为920,设甲乙两位顾客恰好一人获得八折优惠的概率P ,则129999C (12020200P =⨯-=;所以甲乙两位顾客恰好一人获得八折优惠的概率为99200.(2)方案一:设实付金额1ξ,则160x ξ=-,(300x >).方案二:设实付金额2ξ,则2ξ的可能取值有:x ,0.9x ,0.8x ,0.7x ;(300x >).03236C 1()C 20P x ξ===;1233236C C 9(0.9)C 20P x ξ===;29(0.8)20P x ξ==;33236C 1(0.7)C 20P x ξ===;所以()219998178520201020102010100E x x x x x ξ=+⨯+⨯+⨯=.①若8560100x x -<,解得300400x <<,选择方案一;②若8560100x x -=,解得400x =,选择方案一或方案二均可;③若8560100x x ->,解得400x >,选择方案二.,所以当消费金额大于300且小于400时,选择方案一;当消费金额等于400时,选择方案一或方案二均可;当消费金额大于400时,选择方案二.19.如图,在直三棱柱111ABC A B C -中,点E ,F 分别是BC ,11AC 中点,平面11ABB A 平面AEF l =.(1)证明:l EF ∥;(2)若AB AC ==,平面11ACC A ⊥平面11ABB A ,且1AB EF ⊥,求直线l 与平面11A B E 所成角的余弦值.【正确答案】(1)证明过程见详解【分析】(1)取AB 中点G ,连接EG ,1A G ,先证明四边形1EGA F 为平行四边形,再证明EF ∥平面11ABB A ,再根据直线与平面平行的性质即可证明l EF ∥;(2)根据题意先证明11AC ,11A B ,1AA 两两垂直,从而建立空间直角坐标系,再根据1AB EF ⊥求得1AA 的值,再利用线面角的向量求法即可求解.【详解】(1)取AB 中点G ,连接EG ,1A G ,∵E ,G 分别是BC ,AB 中点,∴EG AC ∥且12EG AC =,又∵1A F AC ∥且112A F AC =,∴1A F EG ∥且1=A F EG ,∴四边形1EGA F 为平行四边形,∴1EF A G ∥,又EF ⊄平面11ABB A ,1AG ⊂平面11ABB A ,∴EF ∥平面11ABB A ,∵EF ⊂平面AEF ,平面AEF ⋂平面11ABB A l =,∴EF l ∥.(2)由三棱柱为直棱柱,∴1AA ⊥平面111A B C ,∴111AA AC ⊥,111AA A B ⊥,∵平面11ACC A ⊥平面11ABB A ,平面11ACC A 平面111ABB A AA =,11AC ⊂平面11ACC A ,∴11A C ⊥平面11ABB A ,∴1111A C A B ⊥,故以1A 为坐标原点,以11A C ,11A B ,1AA 分别为x ,y ,z 轴建立空间直角坐标系,设1AA a =,则1B ,F ,)E a ,(0,0,)A a ,所以1)AB a =- ,(0,)EF a =-,又1AB EF ⊥,则10AB EF ⋅=,解得2a =,所以2)E ,(0,0,2)A,则11A B =,12)A E =,设平面11A B E 法向量为(,,)n x y z =,所以11100n A B n A F ⎧⋅=⎪⎨⋅=⎪⎩,即020z ⎧=⎪+=,取x =,得1)n =- ,由(1)知直线EF l ∥,则l方向向量为(0,2)EF =-,设直线l 与平面11BCC B 所成角为α,则sin cos ,3n EF n EF n EF α⋅===⋅,则cos α=所以直线l 与平面11BCC B所成角的余弦值为3.20.已知抛物线C :22y x =,过(1,0)P 的直线与C 相交于A ,B 两点,其中O 为坐标原点.(1)证明:直线OA ,OB 的斜率之积为定值;(2)若线段AB 的垂直平分线交y 轴于M ,且12tan 5AMB ∠=,求直线AB 的方程.【正确答案】(1)证明见解析(2)10x -=或10x -=【分析】(1)直线与抛物线方程联立,利用韦达定理表示斜率乘积;(2)结合二倍角公式,求||4||3AB MN =,以及弦长公式求AB ,并利用韦达定理表示MN ,利用比值,即可求直线方程.【详解】(1)设1222(,),(,)A x y B x y ,设直线AB :x =my +1.联立221y x x my ⎧=⎨=+⎩化简可得:2220.y my --=由韦达定理可得:12122,2y y m y y +==-;所以1212221212124222OA OB y y y y k k y y x x y y ⋅====-⋅,所以直线OA ,OB 的斜率之积为定值2-.(2)设线段AB 的中点N ,设AMN θ∠=.则22tan 12tan tan 21tan 5AMB θθθ∠===-,解得2tan 3θ=,所以||2||3AN MN =,即||4||3AB MN =;所以12|||AB y y =-=又线段AB 的中点N ,可得122N y y y m +==,所以211N N x my m =+=+.因为MN AB ⊥,所以MN k m =-,所以2|||1)N M MN x x m =-=+.所以||4||3AB MN =,解得m =所以直线AB 的方程为:10x -=或10x +-=.21.已知()ln 1(R)f x x kx k =-+∈,()(e 2)x g x x =-.(1)求()f x 的极值;(2)若()()g x f x ≥,求实数k 的取值范围.【正确答案】(1)答案见解析(2)1k ≥【分析】(1)根据题意,求导得()f x ',然后分0k ≤与0k >讨论,即可得到结果.(2)根据题意,将问题转化为1n 2e l xx k x+≥-+在0x >恒成立,然后构造函数1ln ()e 2xx h x x+=-+,求得其最大值,即可得到结果.【详解】(1)已知1()ln 1,(),0f x x kx f x k x x'=-+=->(),当0k ≤时,()0f x '≥恒成立,()f x 无极值,当0k >时,1()kx f x x -'=,()f x 在10k ⎛⎫⎪⎝⎭,上单调递增,在1,k ⎛+∞⎫ ⎪⎝⎭单调递减,当1x k =时,()f x 有极大值,1(ln f k k=-,无极小值,综上:当0k ≤时,()f x 无极值;当0k >时,极大值为1()ln f k k=-,无极小值;(2)若()()g x f x ≥,则(e 2)ln 10x x x kx --+-≥在0x >时恒成立,l 2e 1n x x k x +∴≥-+恒成立,令()()221ln ln e e 2,xx x x x h x h x x x '+--=-+=,令2ln e x x x x φ=--(),则21(2)e 0(0)x x x x x xφ'=--+<>(),()x φ在()0+∞,单调递减,又12e 11e 0,(1)e 0e φφ-⎛⎫=->=-< ⎪⎝⎭,由零点存在定理知,存在唯一零点01,1e x ⎛⎫∈ ⎪⎝⎭,使得()00x φ=,即0001ln 20000000111ln e lne ,ln e e x x x x x x x x x x x -===,,令e (0),()(1)e 0,()x x x x x x x x ωωω'=>=+>()在()0+∞,上单调递增,000011ln(),ln x x x x ωω⎛⎫=∴= ⎪⎝⎭,即00ln x x -=∴当0(0,)x x ∈时,()h x 单调递增,0(,)x x ∈+∞单调递减,()()0000max 0001ln 11e 221x x x h x h x x x x +-==+=-+=,0()1k h x ∴≥=,即k 的取值范围为1k ≥.关键点睛:本题主要考查了用导数研究函数极值问题,难度较难,解答本题的关键在于分离参数,然后构造函数,将问题转化为最值问题.22.在直角坐标系xOy 中,已知曲线1C的参数方程为:1cos x y φφ⎧=⎪⎨⎪=⎩(φ为参数),曲线2C 的参数方程为:sin 2sin cos x ty t t =⎧⎨=+⎩(t 为参数).(1)将曲线12,C C 化为普通方程;(2)若曲线2C 与y 轴相交于,A B ,与x 轴相交于C ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,射线π:(0)6l θρ=≥与曲线2C 相交于P ,求四边形ACBP 的面积.【正确答案】(1)2212y x -=;21y x =+,[1,1]x ∈-(2)1【分析】(1)根据关系2221sin 1cos cos φφφ-=消去曲线1C 的参数可得其普通方程,根据平方关系消去参数t 可得曲线2C 的普通方程,(2)先求点,,,A B C P 的坐标,再求四边形ACBP 面积即可.【详解】(1)曲线1C的参数方程为:1cos x y φφ⎧=⎪⎨⎪=⎩(φ为参数)可得222221cos sin 2cos x y φφφ⎧=⎪⎪⎨⎪=⎪⎩(φ为参数)消去参数φ可得:2212y x -=,所以曲线1C 的普通方程为.2212y x -=曲线2C 的参数方程为sin 2sin cos x t y t t =⎧⎨=+⎩(t 为参数)可得22sin cos 12sin cos x t ty t t=⎧⎨=+⎩(t 为参数)消去参数t 可得21y x -=,又因为sin 2[1,1]t ∈-,所以[1,1]x ∈-.所以曲线2C 的普通方程为:21y x =+,[1,1]x ∈-.(2)易得曲线2C 与y 轴交于(0,1)±,与x 轴交于(1,0)-.将射线π:(0)6l θρ=≥化为直角坐标方程.(0)3y x =≥联立()22012y x y x ⎧=≥⎪⎪⎨⎪-=⎪⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩,所以四边形ACBP 的面积()112ACB ACPC P S S SAB x x =+=+=+所以四边形ACBP的面积为123.设,,x y z 均为正数,且1x y z ++=,证明:(Ⅰ)13xy yz zx ++≤(Ⅱ)22212x y z y z x z x y ++≥+++【正确答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析.【分析】(1)先由基本不等式可得222x y z xy yz xz ++≥++,再结合()2x y z ++的展开式即可证明原式成立;(2)利用柯西不等式[]2222()()()()1x y z x y y z x z x y z y z x z x y ⎛⎫+++++++≥++= ⎪+++⎝⎭证明.【详解】证明:(Ⅰ):因为()()()2222222222xy y z x z x y z xy yz xz+++++++=≥++所以22221()2223()x y z x y z xy yz xz xy yz zx =++=+++++≥++故13xy yz zx ++≤,当且仅当x y z ==时“=”成立.(Ⅱ),,x y z 均为正数,由柯西不等式得:2222[()()()]()1x y z x y y z x z x y z y z x z x y ⎛⎫+++++++≥++= ⎪+++⎝⎭即22221x y z y z x z x y ⎛⎫++≥ ⎪+++⎝⎭,故22212x y z y z x z x y ++≥+++,当且仅当x y z ==时“=”成立.本题考查利用基本不等式、柯西不等式等证明不等式,难度一般.证明时,利用整体思想,注意“1”的巧妙代换.。

2023届天津市南开中学高三高考模拟数学试题+答案解析

2023届天津市南开中学高三高考模拟数学试题+答案解析

天津市南开中学2023届高三高考模拟数学试题一、单选题:本题共9小题,每小题5分,共45分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知全集,集合,,则( )A. B.C.D.2.函数的部分图象大致为( )A. B.C. D.3.已知a ,,则“”是“函数是奇函数”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A. 1盏 B. 3盏 C. 5盏 D. 9盏5.设,,,则 ( )A. B.C.D.6.若向量,满足:,,则在上的投影向量为( )A.B.C.D.7.已知抛物线上一点到其焦点的距离为5,双曲线的左顶点为A且离心率为,若双曲线的一条渐近线与直线AM垂直,则双曲线的方程为( )A. B. C. D.8.将函数的图象向右平移个单位后得到函数的图象,若在区间上单调递增,且函数的最大负零点在区间上,则的取值范围是( )A. B. C. D.9.直线l:与x,y轴的交点分别为A,B,直线l与圆O:的交点为C,D,给出下面三个结论:,;,;,其中,所有正确结论的序号是( )A. B. C. D.二、填空题:本题共6小题,每小题5分,共30分。

10.在复平面内,复数与对应的点关于虚轴对称,且,则__________.11.某次体检,7位同学的身高单位:米分别为,,,,,,,则这组数据的第75百分位数是__________米12.的展开式的常数项为_______用数字作答13.海棠同学在参加南开中学陶艺社时,制作了一个工艺品,如图所示,该工艺品可以看成是一个球被一个棱长为32厘米的正方体的六个面所截后剩余的部分球心与正方体的中心重合,若其中一个截面圆的周长为厘米,则该球的表面积为__________平方厘米.14.已知,函数若对任意恒成立,则a 的取值范围是__________.15.某校从5名学生中选派3人参加劳动技能大赛.已知这5名学生中有高一年级学生2名,高二年级学生2名,高三年级学生1名,则所选3人分别来自不同年级的概率为__________.记所选3人中高一年级学生的人数为X,则随机变量X的数学期望__________.三、解答题:本题共5小题,共60分。

高考第三次模拟考试(数学理)

高考第三次模拟考试(数学理)

6.一
A。
动圆与两圆 抛物线
'+B卢。
〓1和 圆
'+/-C⒏。
+12〓 0都外切 双曲线的工支
,则 动圆圆心轨迹为
D,椭 圆
7.设 J,m是两条不同直线 ,α ,卩 是两个不同平面,则 下列命题中正确的是 、
A.若 J⊥ α,J∥ 卩,则 α⊥卩
m C.若 J∥ α,m∥ α,则 J∥
B。 若J∥ α,Ⅱ ⊥J,则 m⊥ α
A· (i,:冫
] B· (1,÷
⒐[i∶ :). D· 卜,:] ∵
2.复 数 z满 足(4+3j)z± 3-⒉ (j为 虚数单位),则复数 z在 复平面内对应的点位于
A.第-象 限 B,第二象限 C。 第三象限 D。 第四象限
∷ 3.若钝角三角形 ABC的 面积是÷ ,^B〓 1,:c=万 ,则 ⅡC亠
点 B是 曲线 C:与 Cz的 交点,且 A、B均 异于原点 o,丨 ABl〓 4万,求 实数 α的伍
zg.(本题满分 10分 )

已知 函数 灭历)〓 l另 +21刊 巧ˉ41,菡数 gC多 )=/rr,)-m的 定义域为 R.
(1)求 实数 m的取值范围;
(2)求解不等式rfΞ )≤ 8。
搞三三模考试数学(理科)试卷第 4页 (共 4页 )
题记分。
`
) zz。 (本题满分 10分
,

,为
|直角坐标系
巧0y中
:曲
线
9的 参犭廴
'吁
轴正半轴为极轴建立议坐标系;曲 线 C2的
衤!{;【
∶ ∶∶钅
0i参 :?:cp(rP丿
极坐标方程为 ρ 〓砒inO。

高考数学高三模拟考试试卷压轴题普通高等学校招生全国统一考试理科数学

高考数学高三模拟考试试卷压轴题普通高等学校招生全国统一考试理科数学

高考数学高三模拟考试试卷压轴题普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是复合题目要求的。

1.1212ii+=-() A .4355i --B .4355i -+C .3455i --D .3455i -+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为()A .9B .8C .5D .43.函数()2x xe ef x x --=的图象大致是()4.已知向量a b ,满足,1a =,1a b ⋅=-,则()2a a b ⋅-=()A .4B .3C .2D .05.双曲线()2222100x y a b a b-=>,>的离心力为3,则其渐近线方程为()A .2y x =±B .3y x =±C .2y x =±D .3y x =± 6.在ABC △中,5cos2C =,1BC =,5AC =,则AB =() A .42B .30 C .29 D .257.为计算11111123499100S =-+-+⋅⋅⋅+-,设计了右侧的程序框图,则在空白框中应填入()A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是() A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为()A .15BCD10.若()cos sin f x x x =-在[]a a -,是减函数,则a 的最大值是()A .4πB .2πC .43πD .π 11.已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()12350f f f f +++⋅⋅⋅+=()A .50-B .0C .2D .5012.已知1F ,2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点交点,A 是C 的左顶点,点P 在过A 且的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为() A .23B .12C .13D .14 二、填空题,本题共4小题,每小题5分,共20分.13.曲线()2ln 1y x =+在点()00,处的切线方程为__________.14.若x y ,满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤,则z x y =+的最大值为_________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________. 16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45︒.若SAB △的面积为_________.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。

高考数学理科模拟试题(附答案)

高考数学理科模拟试题(附答案)

高三年级第一次模拟考试数 学 试 题(理)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试时间120分钟。

第Ⅰ卷(选择题,共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,将答案涂在答题卡上.........。

1.复数23()1i i +-= ( )A .-3-4iB .-3+4iC .3-4iD .3+4i2.已知条件:|1|2,:,p x q x a +>>⌝⌝条件且p 是q 的充分不必要条件,则实数a 的取值范围是( ) A .1a ≥ B .1a ≤ C .1a ≥- D .3a ≤-3.函数()|2|ln f x x x =--在定义域内零点可能落在下列哪个区间内( )A .(0,1)B .(2,3)C .(3,4)D .(4,5) 4.如右图,是一程序框图,则输出结果为( )A .49B .511 C .712 D .613 5.已知n S 为等差数列{}n a 的前n 项和,若641241,4,S S S S S ==则 的值为( )A .94B .32C .54D .46.要得到函数()sin(2)3f x x π=+的导函数'()f x 的图象,只需将()f x 的图象( )A .向左平移2π个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)B .向左平移2π个单位,再把各点的纵坐标缩短到原来的12倍(横坐标不变)C .向右平移4π个单位,再把各点的纵坐标伸长到原来的12倍(横坐标不变)D .向右平移4π个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变) 7.过双曲线22221(0,0)x y a b a b-=>>的一个焦点F 引它的渐近线的垂线,垂足为M ,延长FM 交y 轴于E ,若|FM|=2|ME|,则该双曲线的离心率为( )A .3B .2C .3D .28.如图所示的每个开关都有闭合与不闭合两种可能,因此5个开关共有25种可能,在这25种可能中电路从P 到Q 接通的情况有( )A .30种B .10种C .24种D .16种第Ⅱ卷(非选择题,共110分)二、填空题:本大题共6小题,每小题5分,共30分,将答案填写在答题纸上。

高三高考理科数学模拟卷

高三高考理科数学模拟卷

2022年普通高等学校招生全国统一考试预测卷(理科数学)(考试时间:120分钟;试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合(){},02lg <+=x x A 集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤⎪⎭⎫⎝⎛≤=2211xx B ,则=⋃B A ( )A.()0,2-B.()1,2--C.(]0,2-D.()0,1- 2.若复数z 满足i i z ,33=-为虚数单位,则4-z 的最大值为( ) A. 8 B.6 C.4 D.2 3.“0>a ”是“函数()()xe a x xf -=在()+∞,0上有极值”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,若,1,1541a S a =+=则=4a ( ) A.32 B.24 C.16 D.85.函数()333x x f xx --=的图像大致为( )6.某市教育局准备举办主题为“学党史,争当新时代先锋”的党史知识竞赛,要求每个学校派出一支代表队参赛,每支代表队由3人组成,且既有男生又有女生,既有教师又有学生,已知甲校通过校内初赛选拔出8名选手,其中男、女教师各1名,男、女学生各3名,若从中选取3人组成代表队参赛,则不同的选法种数为( )A.18B.24C.30D.367.已知20242023452024log ,log 2,20232022===c b a ,则c b a ,,的大小关系是( )A.a c b <<B.a b c <<C.c a b <<D.c b a <<8.在△ABC 中,D 为边BC 上一点,且,3,2,0===⋅CD BD BC AD 则()=⋅+BC AC AB ( ) A.25 B.25- C.5- D.59.已知圆()()92:221=++-y m x O 与圆()()12222=+++y n x O :相切,则22n m +的最小值为( ) A.8 B.2 C.3 D.410.已知△ABC 中,内角C B A ,,所对的边分别为c b a ,,,且(),tan tan sin sin tan 2B A B C B +=,7=a 5=c ,则△ABC 的面积为( )A.340B.320C.315D.31011.已知抛物线()02:2>=p px y C 的焦点为()0,2F ,过点F 的直线交抛物线C 于B A ,两点,△OAB 的重心为点G ,则点G 到直线0133=+-y x 的距离的最小值为( )A.22B.2C.2D.22 12.若函数()a x x xe x f x---=ln 存在零点,则a 的取值范围为( )A.()1,0B.[)∞+,1 C.⎪⎭⎫⎢⎣⎡e e ,1 D.⎥⎦⎤ ⎝⎛1,1e二、填空题:本题欧共4小题,每小题5分,共20分.13.在正六边形内任取一点,则该点取自正六边形内切圆内的概率为 .14.已知实数y x ,满足不等式组⎪⎩⎪⎨⎧≤-+≥+≤+-,02,02,022y x y x y x 则24+-=y x z 的最小值为 .15.已知直三棱柱111C B A ABC -的底面为正三角形,,421==AB AA D 是侧棱1BB 上一点,且1DC AD ⊥,则三棱锥D C B A 11-外接球的体积为 .16.已知各项均为正数的数列{}n a 的前n 项和为n S ,且()()11,1111+=-=++n n n n a a a a a .若[]x 表示不超过x 的最大整数,()⎥⎦⎤⎢⎣⎡+=n n S n b 212,则数列{}n b 的前n 项和=2021T .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第2117-题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且满足*+∈+==N n S S a n n ,12,111(1)证明:数列{}1+n S 为等比数列; (2)设11++=n n n n S S a b ,数列{}n b 的前n 项和为n T ,证明:1<n T .18.(本小题满分12分)如图,三棱柱111C B A ABC -中,2,1,,,60111==⊥⊥︒=∠AA AC AB C A BC AC AC A . (1)求证:ABC C A 平面⊥1;(2)若直线1BA 与平面11B BCC 所成角的正弦值为43,求二面角C BB A --11的余弦值.19.(本小题满分12分)核酸检测也就是病毒DNA 和RNA 的检测,是目前病毒检测最先进的检验方法,在临床上主要用于新型冠状、乙肝、丙肝和艾滋病的病毒检测,通过核酸检测,可以检测血液中是否存在病毒核酸,以诊断机体有无病原体感染.某研究机构为了提高检测效率降低检测成本,设计了如下试验,预备12份试验用血液标本,其中2份阳性,10份阴性,从标本中随机取出n 份分为一组,将样本分成若干组,从每一组的标本中各取一部分,混合后检测,若结果为阴性,则判定该组标本均为阴性,不再逐一检测;若结果为阳性,需对该组标本逐一检测.依此类推,直到确定所有样本的结果,若每次检测费用为a 元,记检测的总费用为x 元. (1)当3=n 时,求X 的分布列和数学期望;(2)△比较3=n 与4=n 两种方案哪一个更好,说明理由.△试猜想100份标本中有2份阳性,98份阴性时,n=5和n=10两种方案哪一个更好(只需给出结论不必证明).20.(本小题满分12分)已知椭圆()012222>>=+b a by a x E :的离心率为322,E B A 是,的上,下顶点,E F F 是21,的左、右焦点,且四边形21BF AF 的面积为24. (1)求椭圆E 的方程;(2)若上是E Q P ,异于B A ,的两动点,且,2-=PAQB k k 证明:直线PQ 恒过定点.21.(本小题满分12分)已知函数()()()xe x a x x x x x g R a x a x xf --++++=∈-+=ln cos sin 1,ln 122.(1)讨论函数()x f 的单调性;(2)若函数()()(),0,>-=x x g x f x H 讨论()x H 的零点个数.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.(本小题满分10分)选修44-:坐标系与参数方程在直角坐标系xOy 中,曲线C 的参数方程为()为参数ααααα⎩⎨⎧-=++=cos 3sin 4cos 4sin 33y x ,以坐标原点O 为极点,x轴的非负半轴为极轴建立极坐标系,直线l 的极坐标方程为()R ∈=ρπθ4.(1)求曲线C 的极坐标方程;(2)设直线l 与曲线C 相交于点,,B A 求OBOA 11-.23.(本小题满分10分)选修54-:不等式选讲 已知函数()a x x f -=.(1)若()12-≥x x f 的解集为[]2,0,求实数a 的值;(2)若对于任意的R x ∈,不等式()322+>++a a x x f 恒成立,求实数a 的取值范围.。

江苏省高三下学期模拟考试(理)数学试卷-附带答案解析

江苏省高三下学期模拟考试(理)数学试卷-附带答案解析

江苏省高三下学期模拟考试(理)数学试卷-附带答案解析班级:___________姓名:___________考号:___________一、单选题1.设集合204x A x x +⎧⎫=⎨⎬-⎩⎭∣和{2,3,4,5}B =,则A B =( ) A .{}2 B .{}2,3 C .{}3,4 D .{}2,3,42.已知实数0x y >>,且111216x y +=+-,则x y -的最小值是( ) A .21B .25C .29D .333.1sin cos ,sin25ααα+=-=( )A .2425-B .2425C .1225D .1225-4.下列不等式成立的是( )A 1>B .若0m >,则1122m m +>+ C .若a b >,c d >则a c b d ->- D .若0m >,0n >且1m n +=,则2818m n+≥ 5.已知直线l :3470x y -+=圆C :()()22210x y r r -+=>若圆C 上恰有三个点到直线l 的距离为1,则r =( ) A .1B .3C .125D .46.已知向量,a b 的夹角的余弦值为23,(3)(3)a b a b -⊥+和1b =,则()?a b b -=( ) A .-4 B .-1 C .1 D .47.ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知60,1A b =︒=sin sin sin a b cA B C++++的值为( )A B C D8.已知()f x 为定义在R 上的周期函数,其周期为2,且当[1,1]x ∈-时,则πcos ,012(),101x f x x a x x ⎧≤≤⎪⎪=⎨+⎪-≤<⎪-⎩则7(2)2f f ⎛⎫+ ⎪⎝⎭的值为( ) A .52B .0C .12D .239.函数()f x 是定义在区间()0,∞+上的可导函数,其导函数为()f x ',且满足()()20f x f x x'+>,则不等式()()()202320233332023x f x f x ++<+的解集为( )A .{}2020x x >-B .{}2020x x <-C .{}20230x x -<<D .{}20232020x x -<<-二、多选题10.已知双曲线221916y x -=的左、右焦点分别为1F 和2F ,点P 在双曲线上,则下列结论正确的是( )A .该双曲线的离心率为54B .该双曲线的渐近线方程为34y x C .若12PF PF ⊥,则12PF F △的面积为9D .点P 到两渐近线的距离乘积为1442511.对于ABC ,有如下判断,其中正确的判断是( ) A .若A B >,则sin sin A B >B .若sin2sin2A B =,则ABC 为等腰三角形C .若10a =,9b =与60B =︒,则符合条件的ABC 有两个D .若222sin sin sin A B C +>,则ABC 是锐角三角形12.已知函数()()2e xf x x a =+,则( )A .函数()f x 在R 上单调递增,则1a ≥B .当1a =时,则函数()f x 的极值点为-1C .当8a <-时,则函数()f x 有一个大于2的极值点D .当0a =时,则若函数()y f x m =-有三个零点123,,x x x ,则1233x x x ++<-三、填空题13.某活动中,有42人排成6行7列,现从中选出3人进行礼仪表演,要求这3人中的任意2人不同行也不同列,则不同的选法种数为_____(用数字作答).14.已知抛物线C :26x y =的焦点为F ,直线l 与抛物线C 交于A 、B 两点,若AB 的中点的纵坐标为5,则AF BF +=______.15.已知0a >和0b >,且1ab =,则111822a b a b+++的最小值为___________.四、双空题16.如图,将正四面体每条棱三等分,截去顶角所在的小正四面体,余下的多面体就成为一个半正多面体,亦称“阿基米德体”.点A ,B ,M 是该多面体的三个顶点,点N 是该多面体外接球表面上的动点,且总满足MN AB ⊥,若4AB =,则该多面体的表面积为______;点N 轨迹的长度为______.五、解答题(1)求数列{}n a ,{}n b 的通项公式;(2)若数列(){}1nn n a b -⋅的前n 项和为n T ,求()1962n n T n ++⨯-的表达式.18.若△ABC 中,角A ,B ,C 所对的边分别记作a ,b ,c .若sin a B =,sin b C =且()c a λλ+=∈R . (1)若2λ=,求cos B ; (2)证明:3B π≤(3)求λ的范围.19.如果,在四棱柱1111ABCD A B C D -中,底面ABCD 与侧面ABB 1A 1都是菱形,AB =4,60BAD ∠=︒平面11CDD C ⊥平面ABCD ,E 、F 、M 、G 分别是1111C D BC AD BB ,,,的中点,N 是AC 上的点且AC =4AN(1)求证://MN 平面EFG ;(2)若四棱柱1111ABCD A B C D -的体积为48,求二面角A EC G --的余弦值.20.近年来,师范专业是高考考生填报志愿的热门专业.某高中随机调查了本校2022年参加高考的90位文科考生首选志愿(第一个院校专业组的第一个专业)填报情况,经统计,首选志愿填报与性别情况如下表:(单位:人)(1)根据表中数据.能否有95%的把握认为首选志愿为师范专业与性别有关?(2)用样本估计总体,用本次调研中首选志愿样本的频率代替首选志愿的概率,从2022年全国文科考生中随机抽取3人,设被抽取的3人中首选志愿为师范专业的人数为X ,求X 的分布列、数学期望()E X 和方差()D X .附:()()()()()22n ad bc a b c d a c b d χ-=++++和n a b c d =+++.21.已知抛物线()2:20C x py p =>上的点(),4t 到焦点F 的距离等于圆2224310x y x y +-+-=的半径.(1)求抛物线C 的方程;(2)过点F 作两条互相垂直的直线1l 与2l ,直线1l 交C 于M ,N 两点,直线2l 交C 于P ,Q 两点,求四边形MPNQ 面积的最小值.22.若对实数0x ,函数()f x ,()g x 满足()()00f x g x =且()()00f x g x ''=,则称()()()00,,f x x x F x g x x x ⎧<⎪=⎨≥⎪⎩为“平滑函数”,0x 为该函数的“平滑点”.已知()323122f x ax x x =-+和()ln g x bx x =.(1)若1是平滑函数()F x 的“平滑点” (ⅰ)求实数a ,b 的值;(ⅱ)若过点()2,P t 可作三条不同的直线与函数()y F x =的图象相切,求实数t 的取值范围; (2)对任意0b >,判断是否存在1a ≥,使得函数()F x 存在正的“平滑点”,并说明理由.参考答案与解析1.B【分析】先解不等式204x x +≤- ,再根据交集的定义求解即可. 【详解】由题意204x x +≤- ,解得2x -≤<4 {}2,3A B ∴= 故选:B. 2.A【分析】根据基本不等式即可求解. 【详解】∵0x y >>,等式111216x y +=+-恒成立 ∴()()111321621x y x y x y ⎛⎫-+=++-+ ⎪+-⎝⎭由于0x y >>,所以10,20y x ->+>∵()1121212242112x y x y x y y x ⎛⎫+-+++-=++≥+= ⎪+--+⎝⎭ 当且仅当21x y +=-时,则即10,11x y ==-时取等号.∴()1346x y -+≥,∴21x y -≥,故x y -的最小值为21. 故选:A 3.A【分析】把已知等式平方化简即得解. 【详解】1sin cos 5αα+=-两边平方得()21sin cos 25αα∴+= 221sin 2sin cos cos ,25αααα∴++= 112sin cos 25αα∴+=24sin225α∴=-故选:A 4.D【分析】利用作差法可判断A ,B ,利用特值法可判断C ,利用乘1法,结合基本不等式的性质可判断D .【详解】由)(()221484220-=+-==<1<A 选项错误;由1102224m m m m +-=>++,可知1122m m +>+,故B 选项错误;若故C 选项错误;由()281442252518m n m n m n m n n m ⎛⎫⎛⎫⎛⎫+=++=++≥= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.当且仅当13m =,23n =时取等号,故D 选项正确. 故选:D. 5.B【分析】由数形结合结合点线距离即可求【详解】由题意得()1,0C ,则点C 到直线l 的距离为372916d圆C 上恰有三个点到直线l 的距离为1,则如图所示,直线l 交圆于A 、B 垂直半径CP 于B ,BP=1. 故12BC d r ,故3r =.故选:B6.C【分析】可由题意设出(),a x y =,()1,0b =由(3)(3)a b a b -⊥+,根据向量垂直的性质得22(3)?(3)90a b a b x y -+=+-=,再由向量,a b 的夹角的余弦值为23,可解得2x =,再代入求解即可.【详解】由题意不妨设(),a x y = ()1,0b = 则()33,a b x y +=+ ()33,a b x y -=-由(3)(3)a b a b -⊥+,可得22(3)?(3)90a b a b x y -+=+-=,即229x y += 又由233x==,解得2x =所以()2··211a b b a b b -=-=-=. 故选:C. 7.A【分析】根据面积可求得4c =,然后根据余弦定理得到a = 【详解】∵ABC ∆60,1A b =︒=∴11sin 1sin 6022bc A c =⨯⨯⨯︒==∴4c =.由余弦定理得22212cos 116214132a b c bc A =+-=+-⨯⨯⨯=∴a =.由正弦定理得sin sin sin sin a b c a A B C A ++===++ 故选A .【点睛】正弦定理、余弦定理和三角形的面积公式都能反应三角形中的边角关系,因此这些内容常综合在一起考查,成为命题的热点.在解题是要注意公式的灵活应用,特别是在应用正弦定理时要注意公式的常用变形,如本题中所涉及的式子等. 8.D【分析】先根据周期性得到()()11f f -=,由此计算出a 的值,然后利用周期性将7(2)2f f ⎛⎫+ ⎪⎝⎭转变为()102f f ⎛⎫-+ ⎪⎝⎭,根据解析式可求得结果. 【详解】因为()f x 是定义在R 上的周期为2的周期函数,所以()()11f f -= 所以1cos 022a π-==-,所以1a = 所以[]1,1x ∈-时,则πcos ,012()1,101x f x x x x ⎧≤≤⎪⎪=⎨+⎪-≤<⎪-⎩所以()()()1171122222200cos01222312f f f f f f -+⎛⎫⎛⎫⎛⎫+=⨯-++=-+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-- 故选:D. 9.D【分析】设()()2,0g x x f x x =>,已知()()20f x f x x'+>,得出()0g x '>,则可求出函数()g x 在区间()0,∞+上为增函数,不等式()()()202320233332023x f x f x ++<+可转化为()()20233g x g +<,再根据函数()g x 的单调性即可求解.【详解】解:根据题意,设()()2,0g x x f x x =>,则导函数()()()22g x x f x xf x ''=+函数()f x 在区间()0,∞+上,满足()()20f x f x x'+>,则有()()220x f x xf x '+> 所以()0g x '>,即函数()g x 在区间()0,∞+上为增函数()()()()()()222023202333202320233332023x f x f x f x f x ++<⇒++<+所以()()20233g x g +< 则有020233x <+< 解得20232020x -<<-即此不等式的解集为{}20232020x x -<<-10.BD【分析】利用双曲线的离心率公式可判断A 选项;求出双曲线的渐近线方程可判断B 选项;利用双曲线的定义以及三角形的面积公式可判断C 选项;利用点到直线的距离公式可判断D 选项. 【详解】对于A 选项,该双曲线的离心率为53c e a ==,A 错; 对于B 选项,该双曲线的渐近线方程为34a y x xb =±=±,B 对; 对于C 选项,若12PF PF ⊥,则()1222212262100PF PF a PF PF c ⎧-==⎪⎨+==⎪⎩ 所以()()222121212264PF PF PF PF PF PF ⋅=+--=,可得1232PF PF ⋅=故12121162PF F S PF PF =⋅=△,C 错; 对于D 选项,设点()00,P x y ,则2200169144y x -=双曲线的两渐近线方程分别为340x y += 340x y -= 所以,点P 到两渐近线的距离乘积为22000000229163434144342525x y x y x y --⋅+==+,D 对.故选:BD. 11.AC【分析】根据三角函数的单调性可判断A 选项,根据正弦函数单调性和对称性可判断B 选项,利用正弦定理可判断C 选项,利用正弦定理及余弦定理可判断D 选项.【详解】对于A :由A B >,则当0,2A π⎛⎤∈ ⎥⎝⎦时,则sin sin A B >,当,2A ππ⎛⎫∈ ⎪⎝⎭时,则由A B π+<可知2B A ππ<-<,所以()sin sin sin B A A π<-=,故A 选项正确;对于B :由()0,A B π+∈得:22A B =或22A B π+=,即A B =或2A B π+=,所以ABC 为等腰三角形或直角三角形,B 选项错误;对于C :由根据正弦定理sin sin a b A B =得:sin 533sin 92a B Ab ==> 233A B πππ∴<<=- 且2A π≠,所以满足条件的三角形有两个,C 选项正确;对于D :由正弦定理可将222sin sin sin A B C +>转化为222a b c +>,则222cos 02a b c C ab+-=>,所以2C π<,但无法判断,A B 的范围,D 选项错误.12.ACD【分析】利用导数与函数单调性的关系可判断A ;利用导数与函数的极值点之间的关系判断B ,C ;对于D ,作出函数大致图象,判断123,,x x x 的范围,进而根据122212e e x x x x =,可得到21212lnx x x x -=,由此采用换元法并构造函数(),(02)n 1(1l )1t t t th t =<+<-+,从而证明1233x x x ++<-,判断D. 【详解】对于A ,由()()2e xf x x a =+可得()()2e 2x f x x x a '=++若函数()f x 在R 上单调递增,则()0f x '≥恒成立,即220x x a ++≥恒成立 故440a ∆=-≤,故1a ≥经验证1a =时,则()2e (1)0xf x x '=+≥,仅在=1x -时取等号,适合题意故函数()f x 在R 上单调递增,则1a ≥,A 正确;对于B ,当1a =时,则()()2e 1xf x x =+()2e (1)0x f x x '=+≥,仅在=1x -时取等号,()f x 在R 上单调递增 函数无极值点,B 错误;对于C ,由于()()2e 2xf x x x a '=++当8a <-时,则222(1)10x x a x a ++=++-=,则不妨取1211x x =-=-且1x x <或2x x >时,则函数220y x x a =++> 0fx当12x x x <<时,则函数220y x x a =++< ()0f x '<故21x =-()f x 的极小值点,且由于8a <-,则19a ->,则22x >,C 正确;对于D ,当0a =时,则 ()()22e ,e (2)x xf x x f x x x '=∴=+当<2x -或0x >时,则0f x,当20x -<<时,则函数()0f x '<则()f x 在(,2),(0,)-∞-+∞上单调递增,在(2,0)-上单调递减,且()0f x ≥ 故可作出其大致图像如图:函数()y f x m =-有三个零点123,,x x x ,即函数()f x 的图象与直线y m =有三个交点不妨设123x x x <<,由于()224e f --=,而()21e 4e f -=>,且234(e )f x m -=<,故301x <<由图象可知122,20x x <--<<考虑到当m 趋近于0时,则1x 会趋近于无限小,2x 趋近于0,故猜测124x x +<-下面给以证明:由题意可知122212e e x x x x =,故1222212211e ,2ln x x x x x x x x -=∴-= 设21,01x t t x =<<,则21x tx =,故1122ln 2ln (1)2ln ,,11t t t x t t x x t t-=∴==-- 则122ln 2ln 2(1)ln 111t t t t t x x t t t++=+=--- 要证明124x x +<-,即证2(1)ln 41t t t +<--,即2(1)ln 01t t t -+<+ 设(),(02)n 1(1l )1t t t th t =<+<-+,故22214(1)()0(1)(1)t h t t t t t --'=+=>++ 故()h t 在(0,1)上单调递增故()(1)0h t h <=,即2(1)ln 41t t t+<--成立,故124x x +<- 而301x <<,故1233x x x ++<-成立,D 正确故选:ACD【点睛】难点点睛:解答本题要综合应用导数与函数的单调性以及极值点之间的关系等知识,同时注意数形结合以及构造函数等方法,难点在于判断1233x x x ++<-时,则要首先判断出三者的范围,进而数形结合,合理猜测,进而利用构造函数的方法加以证明.13.4200【详解】先按顺序依次选三人共有111423020C C C再去掉顺序数:111423020334200.C C C A = 故答案为:4200.14.13【分析】根据抛物线方程求出其准线方程,再结合抛物线定义求解作答.【详解】抛物线C :26x y =的准线方程为32y =-,设()11,A x y 和()22,B x y 由抛物线定义得:132AF y =+,232BF y =+因AB 的中点的纵坐标为5,则有1210y y += 所以121233()()31322AF BF y y y y +=+++=++=. 故答案为:1315.6 【分析】将111822a b a b+++化简,然后利用基本不等式即可求出最小值. 【详解】0,0,0a b a b >>∴+> 1ab =111818222a b a b a b ab a b +∴++=+++1862a b a b +=+≥=+当且仅当6a b +=时取等号,结合1ab =,解得33a b =-=+或33a b =+=-.故答案为:6.【点睛】易错点睛:利用基本不等式求最值时,则要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,则必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.16.【分析】分别算出每一部分的面积,即可求出该多面体的表面积;首先根据题干中找出点N 的轨迹,然后代入公式即可求出长度.【详解】根据题意该正四面体的棱长为3=12AB ,点A ,B ,M 分别是正四面体的棱三等分点.该正四面体的表面积为141212sin602︒⨯⨯⨯⨯=该多面体是正四面体截去顶角所在的小正四面体每个角上小正四面体的侧面积为1344sin 602︒⨯⨯⨯⨯=每个角上小正四面体的底面积为144sin602︒⨯⨯⨯=所以该多面体的表面积为44⨯⨯=如图,设点H 为该多面体的一个顶点则8HF MF == 4BF =.在HBF 中 22212cos606416248482HB HF BF HF BF ︒=+-⋅⋅=+-⨯⨯⨯=则HB =222HB BF HF +=HB BF ∴⊥,即HB AB ⊥,同理MB AB ⊥又MB HB B =,AB ∴⊥平面MHB .点N 是该多面体外接球表面上的动点,由题可知正四面体与半正多面体的外接球的球心相同,且总满足MN AB ⊥∴点N 的轨迹是HBM △的外接圆.BH BM ==21283MH =⨯= 在HBM △中,由余弦定理得2221cos23HB MB HM HBM HB MB +-∠===⋅sin HBM ∴∠== 设HBM △的外接圆的半径为r ,由正弦定理得2sinMHrHBM===∠r∴=∴点N的轨迹长度为2πr=.故答案为:【点睛】本题的第一小空利用表面积公式即可求解,第二小空分析出正四面体与半正多面体的外接球的球心相同,才可以找出点N的轨迹.17.(1)21na n=-2nnb=(2)n为偶数时,则1196(2)22n nnT n+++⋅-=-;n为奇数时,则1196(2)22n nnT n+++⋅-=+.【分析】(1)设{}n a公差为d,设{}n b公比为q,根据已知条件列出方程求出d、1a和q即可得到两个数列的通项公式;(2)分n为偶数和奇数时,则利用错位相减法求出数列(){}1nn na b-⋅的前n项和为nT,从而求出()1962nnT n++⨯-的表达式.【详解】(1)设{}n a公差为d424S S=()()11144144222a d a d d a-⇒+=+⇒=()()2111212121110n na a a n d a n d a d⎡⎤=+⇒+-=+-+⇒-+=⎣⎦(2)令()(1)(1)212n n nn n na b n c-=--⋅=,则()21221412nn nc c n--+=+⋅当n为偶数时12n n T c c c =+++()1315292212n n T n -=⋅+⋅+++⋅,① ()()311452232212n n n T n n -+=⋅++-⋅++⋅,②①-②得:()3511352424242212n n n T n -+-=⋅+⋅+⋅++⋅-+⋅ ()()121181461223104212149n n n n n n T n T -++⎛⎫⋅- ⎪-⋅+⎝⎭-=+⋅-+⋅⇒=- 当n 为奇数时,则()()167222129n n n n n n T T c n --⋅+=+=--⋅ n ∴为偶数时()111196(2)61226222n n n n n T n n n +++++⋅-=-⋅+-⋅=-n 为奇数时()()11196(2)672292126222n n n n n n T n n n n ++++⋅-=-⋅+-⋅-⋅+⋅=+.18.(1)3cos 4B = (2)证明见解析(3)λ∈⎝⎭【分析】(1)根据正弦定理及余弦定理求解即可;(2)由余弦定理及均值不等式,利于余弦函数的单调性即可证明;(3)由B 的范围求出λ范围,再结合a b c +>,a b c -<确定λ的范围.【详解】(1)由题,可得sin sin a B b C=,由正弦定理得a b b c =,即2b ac =. 由于2c a =,且由余弦定理2222cos b a c ac B ac =+-=化简可得34cos B =,解得3cos 4B =. (2)由(1)得222cos a c ac B ac +-=,代入c a λ=,则有()222212cos a a B a λλλ+-=化简可得()212cos B λλλ+-=即211111cos 222222B λλλλλ-+==+-=≥当且仅当122λλ=即1λ=时,则等号可以取到. 因此,π3B ≤.(3)由(2),可得21111cos ,122222B λλλλλ-+⎡⎫==+-∈⎪⎢⎣⎭及0λ>,解得λ∈⎝⎭.又因为a b c +>,a b c -<><及0b ≠解得λ∈⎝⎭.综上,λ∈⎝⎭. 19.(1)证明见解析【分析】(1)根据平行四边形得线线平行即可求证(2)根据面面垂直以及体积公式可得1C H =进而建立空间直角坐标系,利用法向量的夹角即可求解.【详解】(1)连接BD 与AC 相交于O ,连接1,D O FO ,故O 是AC 中点因为F 是BC 中点,所以1//,,2=OF AB OF AB 又1111111//,2=D E A B D E A B ,故11,//=OF D E OF D E 因此四边形1OFED 为平行四边形,故1//OD FE又AC =4AN ,所以N 为AO 中点,又M 为1AD 中点所以1////,⊄MN OD EF MN 平面EFG ,EF ⊂ 平面EFG ,所以//MN 平面EFG(2)则平面11CC D D内过点1C作1C H DC⊥,垂足为H,连接HB因为平面11CC D D⊥平面ABCD,且平面ABCD平面11CC D D CD=所以1C H⊥平面ABCD易得,ABD BCD是等边三角形因此四棱柱的体积为11144sin6048ABCDV S C H C H C H=⋅=⨯⨯⋅=⇒=所以2DH CH==,即H为DC的中点BH=1,,C H BH CH两两垂直故建立如图所示的空间直角坐标系;则()(()(()14,0,0,,0,2,0,,,--A E C C B因为112=BG CC,则(-G故()()(0,4,23,23,6,0,23,,CE AC GE=-=-=--设平面ACE的法向量为(),,m x y z=则060040m AC ym CE y⎧⎧⋅=-+=⎪⎪⇒⎨⎨⋅=-+=⎪⎪⎩⎩,取y=()3,3,2m=设平面GCE的法向量为()111,,xn y z=则11111040ym GEm CE y⎧⎧--=⋅=⎪⎪⇒⎨⎨⋅=-+=⎪⎪⎩⎩,取1y=122m⎛⎫= ⎪⎝⎭设二面角A EC G--的平面角为θ,由图可知二面角A EC G--的平面角为锐角,故172cos cos,4m nm nm nθ⋅====⨯故二面角A EC G --20.(1)有95%的把握认为首选志愿为师范专业与性别有关;(2)分布列见解析()1E X = 2()3D X =.【分析】(1)求出2χ,比较临界值可得;(2)求得某个考生首选志愿为师范专业的概率301903P ==,X 的所有可能取值为0,1,2,3,由二项分布求得概率得分布列,再由二项分布的期望公式、方差公式计算期望与方差.【详解】(1)2290(2525355) 5.625 3.84160303060χ⨯-⨯==>⨯⨯⨯ ∴有95%的把握认为首选志愿为师范专业与性别有关.(2)某个考生首选志愿为师范专业的概率301903P == X 的所有可能取值为0,1,2,3和1~3,3X B ⎛⎫ ⎪⎝⎭328(0)327P X ⎛⎫=== ⎪⎝⎭ ()2131241C 339P X ⎛⎫==⋅⋅= ⎪⎝⎭ ()2231222C 339P X ⎛⎫==⋅⋅= ⎪⎝⎭ 311(3)327P X ⎛⎫=== ⎪⎝⎭ ∴X 的分布列如下:()1313E X ⨯== 112()31333D X ⎛⎫=⨯⨯-= ⎪⎝⎭. 21.(1)28x y =(2)128【分析】(1)根据圆的半径及抛物线的定义可得方程;(2)分别联立两条直线与抛物线,可得线段MN 与PQ 长度,进而可得面积,结合基本不等式可得最小值.【详解】(1)由题设知抛物线的准线方程为2p y =-由点(),4t 到焦点F 的距离等于圆2224310x y x y +-+-=的半径而2224310x y x y +-+-=可化为()()221236x y -++=,即该圆的半径为6 所以462p +=,解得4p = 所以抛物线C 的标准方程为28x y =;(2)由题意可知直线1l 与直线2l 的斜率都存在,且焦点F 坐标为()0,2因为12l l ⊥,不妨设直线1l 的方程为2y kx =+,直线2l 的方程为12y x k=-+ 联立282x y y kx ⎧=⎨=+⎩,得28160x kx --=,2Δ64640k =+>恒成立. 设()11,M x y ()22,N x y则128x x k += 1216x x =- 所以()2121248822p p MN y y k x x p k =+++=+++=+ 同理,得2218888PQ k k ⎛⎫=-+=+ ⎪⎝⎭所以四边形MPNQ 的面积()222211816488812864222S MN PQ k k k k ⎛⎫⎛⎫==++=++ ⎪ ⎪⎝⎭⎝⎭11281282⎛≥+= ⎝,(当且仅当1k =±时等号成立) 所以四边形MPNQ 的面积的最小值是128.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.22.(1)(ⅰ)1a = 12b =(ⅱ)3,ln 28⎛⎫- ⎪⎝⎭(2)存在,理由见解析【分析】(1)(ⅰ)求导列出a.b 的方程求解即可, (ⅱ)转化为方程:()()()2t F x F x x '=--有3个不同根,构造函数结合图像求解即可;(2)消参得()23ln 3122ln 1x x x a x x -+=-成立,转化为()23ln 3122ln 1x x x x x -+-≤是否恒成立,构造函数证明即可 【详解】(1)(ⅰ)由()323122f x ax x x =-+ ()lng x bx x = 则()21332f x ax x '=-+ ()()1lng x b x '=+ 由题意,1是平滑函数()F x 的“平滑点”可知10a -=,且532a b -=,解得 1a = 12b =. (ⅱ)由题意,()3231,0122ln ,12x x x x F x x x x ⎧-+<<⎪⎪=⎨⎪≥⎪⎩,过点()2,P t 作()F x 的切线 切点()(),x F x 满足方程:()()()2F x t F x x '-=-故题意等价于方程:()()()2t F x F x x '=--有3个不同根设()()()()2p x F x F x x '=--则()()()632,012,12x x x p x x x x ⎧---<<-≥'⎪=⎨⎪⎩令()0p x '>,即122x <<;令()0p x '<,即102x <<或2x > 所以函数()p x 在1,22x ⎛⎫∈ ⎪⎝⎭单调递增,在10,2⎛⎫ ⎪⎝⎭和()2,+∞上单调递减 且11113222228p F F ⎛⎫⎛⎫⎛⎫⎛⎫=--=- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭',()()()()22222ln 2p F F =--='如图所示第 21 页 共 21 页所以3,ln 28t ⎛⎫∈- ⎪⎝⎭. (2)题意等价于0b ∀>,是否1a ∃≥,使得()32231ln 221331ln 2ax x x bx x ax x b x ⎧-+=⎪⎪⎨⎪-+=+⎪⎩有解 消去a 有()312ln 12x b x -=-,3122ln 1x b x -=-其中由0b >,可得23x ⎛∈ ⎝ 故题意进一步化简23x ⎛∀∈ ⎝,是否1a ∃≥,使得()23ln 3122ln 1x x x a x x -+=-成立 23x ⎛⇔∀∈ ⎝,()23ln 3122ln 1x x x x x -+-≤是否恒成立 设()()2243ln 231q x x x x x x =--+- ()()83ln q x x x -'= 故2,13x ⎛⎫∈ ⎪⎝⎭时,则单调递减;(x ∈,()q x 单调递增 故()()10q x q ≥=得证即0b ∀>,31a ≥使得()F x 存在的“平滑点”.【点睛】方法点睛:定义函数问题,主要根据定义理解函数性质特征,结合函数求导求解即可.。

高三数学高考模拟试题及答案

高三数学高考模拟试题及答案

高三数学高考模拟试题及答案第一部分选择题1. 已知函数 $f(x) = \dfrac{x^2 - 4}{x - 2}$,则 $f(x)$ 的极限为()A. $\dfrac{1}{2}$B. $-2$C. $+\infty$D. $-\infty$2. 如图,对数函数 $y=\log_{\frac{1}{2}}(x-1)$ 的图像经过两点 $P(4,3)$,$Q(8,y)$。

则 $y=$()A. 3B. 5C. 6D. 73. 在 $\triangle ABC$ 中,$AB=3$,$BC=\dfrac{5}{2}$,$\angle C=90^\circ$,$D$ 为 $BC$ 的中点,$E$ 为 $AC$ 上一点,$BE$ 延长线交 $AD$ 于点 $F$。

则 $EF=$()A. $\dfrac{5}{3}$B. $\dfrac{25}{24}$C. $\dfrac{7}{4}$D. $\dfrac{17}{8}$4. 已知函数 $f(x)=\dfrac{2\sin x+\cos x}{\sin x-2\cos x}$,则$f\left(\dfrac{\pi}{2}+x\right)=$()A. $1+f(x)$B. $1-f(x)$C. $f(x)-1$D. $-1-f(x)$5. 已知 $x>2$,$\log_2{(2x-3)}+\log_2{(x+1)}=4$,则 $x=$()A. 3B. 5C. 7D. 9答案:1. D2. B3. B4. A5. C第二部分简答题1. 证明 $x+y\geqslant 2\sqrt{xy}$ 为二次函数 $y=\left(x-\dfrac{y}{2}\right)^2-\dfrac{y^2}{4}$ 的非负性。

2. 已知 $a^2+b^2=1$,求 $\dfrac{5a+12b}{13}$ 的最大值。

3. 在动态规划中,解决问题的一般步骤是什么?4. 概率统计中,什么是贝叶斯公式?其应用场景有哪些?5. 对于某个事件的先验概率为 $p(A)$,我们观测到了该事件发生,且得到了一个新的条件概率,那么它的后验概率为什么?答案:1. 将二次函数化为顶点式 $y=\left(x-\dfrac{y}{2}\right)^2-\dfrac{y^2}{4}$,则$y\geqslant 0$。

2023年高考数学全真模拟(全国甲卷乙卷通用)理数03

2023年高考数学全真模拟(全国甲卷乙卷通用)理数03

2023年高考数学全真模拟卷三(全国卷)理科数学(考试时间:120分钟;试卷满分:150分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合{}31A x x =-<,{B y y ==,则A B = ()A .∅B .[)4,+∞C .()2,+∞D .[)0,22.某班40人一次外语测试的成绩如下表:分数727375767880838791人数1234108642其中中位数为()A .78B .80C .79D .78和893.若复数z 满足()()1i i 4z -+=,其中i 为虚数单位,则z 的虚部为()A .2B .2-C .1D .1-4.双曲线22221(0,0)x y a b a b -=>>,焦点到渐近线的距离为1,则双曲线方程为()A .2214y x -=B .2214x y -=C .22123x y -=D .22132x y -=5.“天圆地方”观反映了中国古代科学对宇宙的认识,后来发展成为中国传统文化的重要思想.中国古人将琮、璧、圭、璋、璜、琥六种玉制礼器谓之“六瑞”,玉琮内圆外方,表示天和地,中间的穿孔表示天地之间的沟通,可以说是中国古代世界观很好的象征物.下面是一玉琮图及其三视图,设规格如图所示(单位:cm ),则三视图中A ,B 两点在实物中对应的两点在实物玉璧上的最小距离约为()(3π≈ 1.4≈)A .8.4B .9.8C .10.4D .11.26.已知定义在R 上的函数()21x mf x -=-(m 为实数)是偶函数,记0.5log 3a =,()2log 5b f =,()c f m =,则a 、b 、c 的大小关系为()A .a b c<<B .a c b<<C .c<a<bD .c b a<<7.若某一几何体的三视图如图所示,则该几何体是()A .三棱柱B .四棱柱C .五棱柱D .六棱柱8.已知,a b ∈R ,则“1ab ≥”是“222a b +≥”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.已知△ABC 满足22AB BA CA =⋅,则△ABC 的形状为()A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形10.在新型冠状病毒肺炎疫情联防联控期间,社区有5名医务人员到某学校的高一、高二、高三3个年级协助防控和宣传工作.若每个年级至少分配1名医务人员,则不同的分配方法有()A .25种B .50种C .300种D .150种11.已知函数()2tan sin tan 1xf x x x =++,则下列结论正确的是()A .()f x 在区间ππ,33⎛⎫- ⎪⎝⎭上单调递减B .()f x 在区间π0,2⎛⎫ ⎪⎝⎭上有极小值C .设()()2g x f x =-在区间ππ,22⎛⎫- ⎪⎝⎭上的最大值为M ,最小值为m ,则4M m +=D .()f x 在区间ππ,22⎛⎫- ⎪⎝⎭内有且只有一个零点12.已知函数()f x 的定义域为R ,且满足()()110f x f x -+-=,()()8f x f x +=,()11f =,()31f =-,()()21,021,24x a x f x x b x ⎧-++<≤⎪=⎨+-<≤⎪⎩,给出下列结论:①1a =-,3b =-;②()20231f =;③当[]4,6x ∈-时,()0f x <的解集为()()2,02,4- ;④若函数()f x 的图象与直线y mx m =-在y 轴右侧有3个交点,则实数m 的取值范围是111,16264⎛⎫⎛⎫--⋂- ⎪ ⎪⎝⎭⎝⎭.其中正确结论的个数为()A .4B .3C .2D .1第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.函数()12f x x x=+在1x =处切线的倾斜角为_______.14.已知平面向量(2,)a x =-,b = ,且()a b b -⊥,实数x 的值为_____.15.设1F 、2F 分别为椭圆()222210x y a b a b+=>>的左右焦点,与直线y b =相切的圆2F 交椭圆于点E ,且E 是直线1EF 与圆2F 相切的切点,则椭圆焦距与长轴长之比为________.16.已知函数()ln f x ax x x =-与函数()e 1xg x =-的图象上恰有两对关于x 轴对称的点,则实数a 的取值范围为__________.三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)(一)必考题:共60分17.已知公差不为0的等差数列{}n a 的前n 项和为n S ,2S 、4S 、55S +成等差数列,且2a 、7a 、22a 成等比数列.(1)求{}n a 的通项公式;(2)若11n n n b a a +=,数列{}n b 的前n 项和为n T ,证明:16n T <.18.为促进新能源汽车的推广,某市逐渐加大充电基础设施的建设,该市统计了近五年新能源汽车充电站的数量(单位:个),得到如下表格:年份编号x 12345年份20162017201820192020新能源汽车充电站数量y /个37104147196226(1)已知可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明;(2)求y 关于x 的线性回归方程,并预测2024年该市新能源汽车充电站的数量.参考数据:51710i i y ==∑,512600i i i x y ==∑,()521149.89i i yy =-=∑ 3.16≈.参考公式:相关系数()()niix x yyr --=∑回归方程ˆˆˆybx a =+中斜率和截距的最小二乘估计公式分别为;()()()121ˆniii nii x x y y b x x ==--=-∑∑,ˆˆay bx =-.19.如图,在四棱锥P -ABCD 中,AB CD ∥,AB ⊥BC ,122BC CD PA PD AB =====,PC =E 为AB 的中点.(1)证明:BD ⊥平面APD ;(2)求平面APD 和平面CEP 的夹角的余弦值.20.已知抛物线()2:20C x pyp =>的焦点为F ,准线为l ,点P 是直线1:2l y x =-上一动点,直线l 与直线1l 交于点Q ,QF =(1)求抛物线C 的方程;(2)过点P 作抛物线C 的两条切线,PA PB ,切点为,A B ,且95FA FB -≤⋅≤,求PAB 面积的取值范围.21.已知01a <<,函数()1x f x x a -=+,()1log a g x x x =++.(1)若()e e g =,求函数()f x 的极小值;(2)若函数()()y f x g x =-存在唯一的零点,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,直线l 的参数方程为cos sin x t y t αα⎧=⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线C 的极坐标方程为2853cos 2ρθ=-,直线l 与曲线C 相交于A ,B 两点,)M .(1)求曲线C 的直角坐标方程;(2)若2AM MB =,求直线l 的斜率.[选修4-5:不等式选讲]23.已知:()1f x x x m =+--,0m >.(1)若2m =,求不等式()2f x >的解集;(2)()()g x f x x m =--,若()g x 的图象与x 轴围成的三角形面积不大于54,求m 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二轮复习——高三数学(理)测试题
一、选择题:本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个选项符合题目要求.
1、若复数z
满足(1)i z i +=
,则在复平面内,z 对应的点位于
A .第一象限
B .第二象限
C .第三象限
D .第四象限 2、设集合2{|30},{|2}A x x x B x x =-<=>,则R A C B = A .{|23}x x -≤< B .{|02}x x <≤ C .{|20}x x -≤< D .{|23}x x ≤< 3、若将函数3cos(2)2y x π
=+
的图象向右平移
6
π
个单位长度,则平移后图象的一个对称中心是
A .(,0)6π
B .(,0)6π-
C .(,0)12π
D .(,0)12
π-
4、朱世杰是历史上最伟大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”,五问有如下问题:
“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升,共支米四百三石九斗二升,问筑堤几日”,其大意为:“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始,每天派出的人数比前一天多7人,修筑堤坝的每人每天发大米3升,共发出大米40302升,问修筑堤坝多少天”,在这个问题中,第5天应发大米( )
A .894升
B .1170升
C .1275升
D .1467升
5.已知一个简单组合体的三视图如图所示,则该几何体的体积为( )
A .
34π8- B .3π8 C .34 D .3
)
1(π4- 6、某食品厂只做了3中与“福”字有关的精美卡片,分别是“富强福”、“和
谐福”、“友善福”、每袋食品随机装入一张卡片,若只有集齐3种卡片才可获奖,则购买该食品4袋,获奖的概率为( )
A .316
B .49
C .38
D .89
7.已知不等式组0π
sin 0x y x a y ≤≤⎧⎪
≤+⎨⎪≥⎩
所对应的平面区域面积为π22+,则123++y x 的最大值为( )
(A
6+ (B
7+ (C )6 (D )7 8.等边三角形ABC 中,若+=λ,则当PC PB ⋅取得最小值时,=λ( )
(A )
41 (B )21 (C )3
2
(D )1 9、已知(2,0),(2,0)A B -,斜率为k 的直线l
上存在不同的两点,满足:MA MB -=

NA NB -=MN 的中点为(6,1),则k 的值为
A .2-
B .12-
C .1
2
D .2 10、已知函数()()1,ln x f x e ax g x x ax a =--=-+,若存在0(1,2)x ∈,使得0)()(00<x g x f ,则实数a 的取值范围是
A .21(ln 2,)2e -
B .(ln 2,1)e -
C .[1,1)e -
D .21
[1,)2
e - 二、填空题:
11、执行如图所示的程序框图,若输出的结果为80,则判断框内应填入
12、5(2)(1)x x -+的展开式中,3
x 的系数 (用数字填写答案)
13、已知函数()2(22)x x
f x x -=-,则不等式(21)(1)0f x f ++≥的解集是
14. 分别计算1153+,2253+,3353+,4453+,5553+,…,并根据计算的结果,猜想2017
201753+的末位数字为
15、已知常数 2.71828e =⋅⋅⋅,定义在[)0,+∞上的函数()f x 满足:()(
)2f x f x '+=

1()2f =,其中()f x '表示()f x 的导函数.若对任意正数a ,b 都有222311(
)432
x ab
f x a e b -≤++,则实数x 的取值范围是
三、解答题:本大题共6道小题,共75分.解答须写出文字说明、证明过程或演算步骤. 16.在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,cos2C +2cosC +2=0.
(1)求角C 的大小; (2)若b=a ,△ABC 的面积为
sinAsinB ,求sinA 及c 的值.
17.2016年上半年,股票投资人袁先生同时投资了甲、乙两只股票,其中甲股票赚钱的概率为,赔钱的概率是;乙股票赚钱的概率为,赔钱的概率为.对于甲股票,若赚钱则会赚取5万元,若赔钱则损失4万元;对于乙股票,若赚钱则会赚取6万元,若赔钱则损失5万元. (Ⅰ)求袁先生2016年上半年同时投资甲、乙两只股票赚钱的概率;
(Ⅱ)试求袁先生2016年上半年同事投资甲、乙两只股票的总收益的分布列和数学期望.
18已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1.n n n a b b +=+ (Ⅰ)求数列{}n b 的通项公式;
(Ⅱ)令1
(1)(2)
n n n n
n a c b ++=+,求数列{}n c 的前n 项和n T .
19如图1,在高为2的梯形ABCD 中,CD AB //,2=AB ,5=CD ,过A 、B 分别作CD AE ⊥,CD BF ⊥,垂足分别为E 、F .已知1=DE ,将梯形ABCD 沿AE 、BF 同侧折起,得空间几何体BCF ADE -,如图2.
(Ⅰ)若BD AF ⊥,证明:BDE △为直角三角形;
(Ⅱ)若CF DE //,3=CD ,求平面ADC 与平面ABFE 所成角的余弦值.
A
B
C
F
E
D
图2
图1
A
C
F
B
E
D
20.已知椭圆C :12
2
2=+y x 的右焦点为F ,不垂直x 轴且不过F 点的直线l 与椭圆C 相交于B
A ,两点.
(Ⅰ)若直线l 经过点)0,2(P ,则直线FA 、FB 的斜率之和是否为定值?若是,求出该定值;若不是,请说明理由;
(Ⅱ)如果FB FA ⊥,原点到直线l 的距离为d ,求d 的取值范围.
21.函数()()
()()2
,x f x x a x b e a b R =-+∈.
(Ⅰ)当0,3a b ==-时,求函数()f x 的单调区间; (Ⅱ)若x a =是()f x 极大值点. (ⅰ)当0a =时,求b 的取值范围;
(ⅱ)当a 为定值时,设123,,x x x 是()f x 的3个极值点.问:是否存在实数b ,可找到实数4x 使得1234,,,x x x x 的某种排列成等差数列?若存在,求出所有的b 的值及相应的4x ;若不存在,说明理由.。

相关文档
最新文档