北师大版九年级数学上册 第三章 概率的进一步认识 单元检测试题

合集下载

北师大版九年级数学上册 第三章《概率的进一步认识》 单元测试卷 附答案

北师大版九年级数学上册  第三章《概率的进一步认识》  单元测试卷 附答案

北师版数学九年级上册第三章 概率的进一步认识 单元测试卷(时间90分钟,满分120分)第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1. 一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是( ) A.13 B.49 C.12 D.592. 下列说法正确的是( )A .“明天降雨的概率为50%”,意味着明天一定有半天都在降雨B .了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C .掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件D .一组数据的方差越大,则这组数据的波动也越大3.东东和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( ) A.16 B.13 C.12 D.234.质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是( )A .点数都是偶数B .点数的和为奇数C .点数的和小于13D .点数的和小于25.用频率估计概率,可以发现某种幼树在一定条件下移植成活的概率为0.9,则下列说法正确的是( )A .种植10棵幼树,结果一定有9棵幼树成活B .种植100棵幼树,结果一定有90棵幼树成活和10棵幼树不成活C .种植10n 棵幼树,恰好有n 棵幼树不成活D .种植n 棵幼树,当n 越来越大时,种植成活幼树的频率会越来越稳定于0.96.小红上学要经过两个十字路口,每个路口遇到红、黄、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是( ) A.19 B.13 C.59 D.347.合作小组的4位同学坐在课桌旁讨论问题,学生A 的座位如图所示,学生B ,C ,D 随机坐到其他三个座位上,则学生B 坐在学生A 的对面的概率是( )A.13B.12C.16D.1128. 同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为( ) A.14 B.13 C.12 D.349. 小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( ) A.16 B.13 C.12 D.2310.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色,下列说法正确的是( ) A .两个转盘转出蓝色的概率一样大B .如果A 转盘转出了蓝色,那么B 转盘转出蓝色的可能性变小了C .先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率不同D .游戏者配成紫色的概率为16第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.一个不透明的口袋中装有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于6的概率为_______. 12.从口袋中随机摸出一球,再放回,不断重复上述过程,共摸了150次,其中有50次摸到黑球,已知口袋中有黑球10个和若干个白球,由此估计口袋中大约有白球_______.13. 2018年某市初中学业水平实验操作考试,要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是_________.14. 小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我嬴.”小红赢的概率是14,据此判断该游戏__________.(填“公平”或“不公平”)15.在四边形ABCD 中,①AB ∥CD ;②AD ∥BC ;③AB =CD ;④AD =BC ,在这四个条件中任选两个作为已知条件,能判定四边形ABCD 是平行四边形的概率是_________.16.如图是两个可以自由转动的转盘,转盘均被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字,如果同时转动两个转盘各一次(指针落在等分线上重转),则转盘停止后指针指向的数字之和为偶数的概率是________.17. 有一位新娘去商场买新婚衣服,购买了不同款式的上衣2件,不同颜色的裤子3条,则搭配衣服的所有可能出现的结果有_____种.18.一家公司招考员工,每位考生要在A,B,C,D,E这5道试题中随机抽出2道题回答,规定答对其中1题即为合格,已知某位考生会答A,B两题,则这位考生合格的概率为________.三.解答题(共8小题,66分)19.(6分) )若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.20.(6分) 如图有A,B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.(1)请用列表或画树状图的方法写出所有的可能;(2)求一次函数y=kx+b的图象经过第一、二、四象限的概率.21.(8分) 在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是______;(2)从A 、D 、E 、F 四个点中先后任意取两个不同的点,以所取的这两点及点B 、C 为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表法求解).22.(8分) 某批彩色弹力球的质量检验结果如下表:(1)请在图中完成这批彩色弹力球“优等品”频率的折线统计图;(2)这批彩色弹力球“优等品”概率的估计值大约是多少?(直接写出结果,精确到0.01)(3)从这批彩色弹力球中选择5个黄球、13个黑球、22个红球,它们除了颜色外都相同,将它们放入一个不透明的袋子中,求从袋子中摸出一个球是黄球的概率;(4)现从第(3)问所说的袋子中取出若干个黑球,并放入相同数量的黄球,搅拌均匀,使从袋子中摸出一个黄球的概率为14,求取出了多少个黑球?23.(8分) 分别把带有指针的圆形转盘A ,B 分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘. (1)试用列表或画树状图的方法,求欢欢获胜的概率; (2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.24.(8分) 有三张正面分别写有数字-2,-1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为x 的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y 的值,两次结果记为(x ,y). (1)用列表法表示(x ,y)所有可能出现的结果;(2)求使分式x 2-3xy x 2-y 2+yx -y有意义的(x ,y)出现的概率;(3)化简分式x 2-3xy x 2-y 2+yx -y ,并求使分式的值为整数的(x ,y)出现的概率.25. (10分)为进一步深化基础教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A 书法,B 阅读,C 足球,D 器乐四门本校选修课程供学生选择,每门课程被选到的机会均等. (1)学生小红计划选修两门课程,请写出她所有可能的选法;(2)若学生小明和小刚各计划选修一门课程,则他们两人恰好选修同一门课程的概率为多少?26.(12分) 一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为12.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;(3)现规定:摸到红球得5分,摸到黄球得3分,摸到蓝球得2分(每次摸后放回),乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,若随机再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率.参考答案1-5DDDCD 6-10AAADD 11. 1612. 20个13. 1914. 不公平15. 23 16. 4917. 618. 71019. 解:(1)根据题意所有个位数字是5的“两位递增数”是15、25、35、45这4个(2)画树状图为:共有15种等可能的结果数,其中个位数字与十位数字之积能被10整除的结果数为3,所以个位数字与十位数字之积能被10整除的概率=315=1520. 解:(1)列表略,所有等可能的情况有(-1,-1),(-2,-1),(3,-1),(-1,-2),(-2,-2),(3,-2),(-1,3),(-2,3),(3,3),(-1,4),(-2,4),(3,4),共12种 (2)一次函数y =kx +b 的图象经过第一、二、四象限的情况有4种,∴其概率为412=1321. 解:(1)14(2)用树状图列出所有可能的结果:∵以点A 、E 、B 、C 为顶点及以D 、F 、B 、C 为顶点所画的四边形是平行四边形, ∴所画的四边形是平行四边形的概率P =412=1322. 解:(1)如图(2)0.95 (3)18(4)设取出了x 个黑球,则放入了x 个黄球, 则5+x 5+13+22=14,解得x =5.答:取出了5个黑球23. 解:(1)画树状图如图:由树状图可知共有12种等可能的情况,其中积为奇数的情况有6种,∴欢欢胜的概率是612=12(2)由(1)得乐乐胜的概率为1-12=12,两人获胜的概率相同,∴游戏公平24. 解:(1)列表略;所有(x ,y)可能的结果共有9种,分别是(-2,-2),(-2,-1),(-2,1),(-1,-2),(-1,-1),(-1,1),(1,-2),(1,-1),(1,1)(2)由题意知,要使分式有意义,则x 2-y 2≠0,即(x +y)(x -y)≠0,即x≠y ,且x≠-y.上述9种可能的结果中,共4种能使分式有意义,分别是(-2,-1),(-2,1),(-1,-2),(1,-2),所以,使分式y 2-3xy x 2-y 2+y x -y有意义的(x ,y)出现的概率是49(3)化简略,使分式x 2-3xy x 2-y 2+y x -y的值为整数的(x ,y)出现的概率是2925. 解:(1)共有6种选法:AB ,AC ,AD ,BC ,BD ,CD(2) 画树状图如下:由图可知共有16种等可能的结果,其中他们两人恰好选修同一门课程的结果有4种,∴他们两人恰好选修同一门课程的概率为416=1426. 解:(1)设口袋中黄球的个数为x 个,根据题意得:22+1+x =12,解得:x =1,经检验:x =1是原分式方程的解,∴口袋中黄球的个数为1个 (2)画树状图得:∵共有12种等可能的结果,两次摸出都是红球的有2种情况,∴两次摸出都是红球的概率为:212=16(3)∵摸到红球得5分,摸到蓝球得2分,摸到黄球得3分,而乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,∴乙同学已经得了7分,∴若随机再摸一次,乙同学三次摸球所得分数之和不低于10分的有3种情况,且共有4种等可能的结果;∴若随机再摸一次,乙同学三次摸球所得分数之和不低于10分的概率为:34。

北师大新版数学九年级上学期《第3章概率的进一步认识》单元测试

北师大新版数学九年级上学期《第3章概率的进一步认识》单元测试

北师大新版数学九年级上学期《第 3 章概率的进一步认识》单元测试一.选择题(共12 小题)1.在某校运动会 4×400m 接力赛中,甲乙两名同学都是第一棒,参赛同学随机从四个赛道中抽取赛道,则甲乙两名同学恰巧抽中相邻赛道的概率为()A.B.C.D.2.有大小、形状、颜色完好同样的 3 个乒乓球,每个球上分别标有数字1,2,3 中的一个,将这 3 个球放入不透明的袋中搅匀,假如不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是()A.B.C.D.3.小茜课间活动中,上午大课间活动时能够先从跳绳、乒乓球、健美操中随机选择一项运动,下午课外活动再从篮球、武术、太极拳中随机选择一项运动.则小茜上、下午都选中球类运动的概率是()A.B.C.D.4.在一个不透明的袋子里共有 2 个黄球和 3 个白球,每个球除颜色外都同样,小亮从袋子中随意摸出一个球,结果是白球,则下边对于小亮从袋中摸出白球的概率和频次的说明正确的选项是()A.小亮从袋中随意摸出一个球,摸出白球的概率是 1B.小亮从袋中随意摸出一个球,摸出白球的概率是0C.在此次实验中,小亮摸出白球的频次是 1D.由此次实验的频次去预计小亮从袋中随意摸出一个球,摸出白球的概率是 1 5.点 P 的坐标是( x,y),从﹣ 3、﹣ 2、0、2、3 这五个数中任取一个数作为x 的值,再从余下的四个数中任取一个数作为y 的值,则点 P(x,y)在平面直角坐标系中第四象限内的概率是()A.B.C.D.6.同时转动以下图的两个转盘,则转盘停止转动后,指针同时落在红色地区的概率为()A.B.C.D.7.从﹣ 2,﹣1,2 这三个数中任取两个不一样的数相乘,积为正数的概率是()A.B.C.D.8.从 3、1、﹣ 2 这三个数中任取两个不一样的数作为P 点的坐标,则 P 点恰巧落在第四象限的概率是()A.B.C.D.9.某中学初三年级四个班,四个数学老师分别任教不一样的班.期末考试时,学校安排一致监考,要求同年级数学老师互换监考,那么安排初三年级数学考试时可选择的监考方案有()种.A.8B.9C.10D.1210.已知 | a| =2,| b| =3,则 | a﹣ b| =5 的概率为()A.0B.C.D.11.从 2 种不一样样式的衬衣和 2 种不一样样式的裙子中分别取一件衬衣和一条裙子搭配,有()种可能.A.1B.2C.3D.412.不透明的袋子里装有 2 个红球和 1 个白球,这些球除了颜色外都同样.从中随意摸一个,放回摇匀,再从中摸一个,则两次摸到球的颜色同样的概率是()A.B.C.D.二.填空题(共7 小题)13.甲、乙、丙 3 名学生随机排成一排摄影,此中甲排在中间的概率是.14.在一个不透明的布袋中装有标着数字2,3,4,5 的 4 个小球,这 4 个小球的材质、大小和形状完好同样,现从中随机摸出两个小球,这两个小球上的数字之积大于 9 的概率为15.从 2019 年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,能够依据高校有关专业的选课要乞降自己兴趣、理想、优势,从思想政治、历史、地理、物理、化学、生物 6 个科目中,自主选择3 个科目参加等级考试.学生 A 已选物理,还从思想政治、历史、地理 3 个文科科目中选 1能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为.16.从﹣ 2,﹣ 8,5 中任取两个不一样的数作为点的横纵坐标,该点在第三象限的概率为.17.同时掷两个质地均匀的六面体骰子,两个骰子向上一面点数同样的概率是.18.某批足球的质量查验结果以下:抽取的蓝球数 n 100 200 400 600 800 1000 1200优等品频数 m 93 192 380 561 752 941 1128优等品频次从这批足球中,随意抽取的一只足球是优等品的概率的预计值是.bx c( a≠ 0)与 x 轴有两个交点,那么以该抛物线的219.假如一条抛物线 y=ax + +极点和这两个交点为极点的三角形称为这条抛物线的“抛物线三角形”.在抛物线y=ax2+bx+c 中,系数 a、b、c 为绝对值不大于 1 的整数,则该抛物线的“抛物线三角形”是等腰直角三角形的概率为.三.解答题(共9 小题)20.一个不透明的口袋里装有分别标有汉字“书”、“香”、“历”、“城”的四个小球,除汉字不一样以外,小球没有任何差别,每次摸球前先搅拌均匀.( 1)若从中任取一个球,球上的汉字恰巧是“书”的概率为.(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求拿出的两个球上的汉字能构成“历城”的概率.21.“食品安全”遇到全社会的宽泛关注,济南市某中学对部分学生就食品安全知识的认识程度,采纳随机抽样检查的方式,并依据采集到的信息进行统计,绘制了下边两幅尚不完好的统计图.请你依据统计图中所供给的信息解答以下问题:( 1)接受问卷检查的学生共有人,扇形统计图中“基本认识”部分所对应扇形的圆心角为;(2)请补全条形统计图;(3)若该中学共有学生 900 人,请依据上述检查结果,预计该中学学生中对食品安全知识达到“认识”和“基本认识”程度的总人数;( 4)若从对食品安全知识达到“认识”程度的2个女生和2个男生中随机抽取 2人参加食品安全知识比赛,请用树状图或列表法求出恰巧抽到 1 个男生和 1 个女生的概率.22.为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”,比赛项目为: A.唐诗; B.宋词; C.论语; D.三字经.比赛形式为两人抗衡赛,即把四种比赛项目写在 4 张完好同样的卡片上,比赛时,比赛的两人从中随机抽取1张卡片作为自己的比赛项目(不放回,且每人只好抽取一次)比赛时,小红和小明分到一组.( 1)小明先抽取,那么小明抽到唐诗的概率是多少?(2)小红善于唐诗,小红想:“小明先抽取,我后抽取”抽到唐诗的概率是不一样的,且小明抽到唐诗的概率更大,若小红后抽取,小红抽中唐诗的概率是多少?小红的想法对吗?23.小明手中有一根长为5cm 的细木棒,桌上有四个完好同样的密封的信封.里面各装有一根细木棒,长度分别为:2、3、 4、5(单位: cm).小明从中随意抽取两个信封,而后把这 3 根细木棒首尾按序相接,求它们能搭成三角形的概率.(请用“画树状图”或“列表”等方法写出剖析过程)24.如图,有一个能够自由转动的转盘被均匀分红 3 个扇形,分别标有 1、2、3 三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束获得一组数(若指针指在分界限时重转).(1)请你用树状图或列表的方法表示出每次游戏可能出现的全部结果;(2)求每次游戏结束获得的一组数恰巧是方程 x2﹣3x+2=0 的解的概率.25.某工厂甲、乙两个部门各有职工200 人,为认识这两个部门职工的生产技术状况,有关部门进行了抽样检查,过程以下.从甲、乙两个部门各随机抽取20 名职工,进行了生产技术测试,测试成绩(百分制,单位:分)以下:甲: 78 86 74 81 75 76 87 70 75 9075 79 81 70 75 80 85 70 83 77乙: 92 71 83 81 72 81 91 83 75 8280 81 69 81 73 74 82 80 70 59整理、描绘数据按以下分数段整理、描绘这两组样本数据:成绩 x 50≤x≤59 60≤x≤69 70≤x≤ 79 80≤x≤89 90≤ x≤ 100 人数部门甲0 0 12 7 1乙 1 1 6(说明:成绩 80 分及以上为生产技术优异, 70﹣﹣ 79 分为生产技术优异, 60﹣﹣69 分为生产技术合格)依据上述表格绘制甲、乙两部门职工成绩的频数散布图.剖析数据两组样本数据的均匀数、中位数、众数以下表所示:部门均匀数中位数众数甲 78.35 77.5 75乙7881(1)请将上述不完好的统计表和统计图增补完好;(2)请依据以上统计过程进行以下推测;①预计乙部弟子产技术优异的职工人数是多少;②你以为甲、乙哪个部门职工的生产技术水平较高,说明原因.(起码从两个不一样的角度说明推测的合理性)26.某商场在端午节时期展开优惠活动,凡购物者能够经过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向 A 地区时,所购置物件享受 9 折优惠、指针指向其余地区无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个地区的字母同样,所购置物件享受8 折优惠,其余状况无优惠.在每个转盘中,指针指向每个区城的可能性同样(若指针指向分界限,则从头转动转盘)( 1)若顾客选择方式一,则享受9 折优惠的概率为;( 2)若顾客选择方式二,请用树状图或列表法列出全部可能,并求顾客享受8折优惠的概率.27.合肥地铁一号线的开通运转给合肥市民出行方式带来了一些变化,小朱和小张准备利用课余时间,以问卷的分式对合肥市民的出行方式进行检查,如图是合肥地铁一号线图(部分),小朱和小张分别从塘西河公园站(用 A 表示)、金斗公园站(用 B 表示)、云谷路站(用 C 表示)、万达城站(用 D 表示)这四站中,随机选用一站作为检查的站点.(1)在这四站中,小朱选用问卷检查的站点是万达城站的概率是多少?(2)求小朱选用问卷检查的站点与小张选用问卷检查的站点相邻的概率.28.张三同学扔掷一枚骰子两次,两次所扔掷的点数分别用字母m、 n 表示(1)求使对于 x 的方程 x2﹣ mx+2n=0 有实数根的概率;(2)求使对于 x 的方程 mx2+nx+1=0 有两个相等实根的概率.参照答案一.选择题1.D.2.C.3.A.4.C.5.A.6.A.7.C.8.B.9.B.10.B.11.D.12.B.二.填空题13.14..15..16..17.18..19..三.解答题20.解:( 1)若从中任取一个球,球上的汉字恰巧是“书”的概率为,故答案为:;( 2)列表以下:书香历城书(书,香)(书,历)(书,城)香(香,书)(香,历)(香,城)历(历,书)(历,香)(历,城)城(城,书)(城,香)(城,历)共有 12 种等可能的结果数,此中拿出的两个球上的汉字能构成“历城”的结果数为 2,因此拿出的两个球上的汉字能构成“历城”的概率═=.21.解:( 1)30÷50%=60,因此接受问卷检查的学生共有60 人;扇形统计图中“基本认识”部分所对应扇形的圆心角的度数为×360°=90°;故答案为 60;90°;(2)“认识”部分的人数 =60﹣15﹣ 30﹣10=5,条形统计图为:(3) 900×=300,因此预计该中学学生中对食品安全知识达到“认识”和“基本认识”程度的总人数为 300 人;( 4)画树状图为:(分别用A、B 表示两名女生,用C、D 表示两名男生)共有 12 种等可能的结果数,此中恰巧抽到 1 个男生和 1 个女生的结果数为8,因此恰巧抽到 1 个男生和 1 个女生的概率 = =.22.解:( 1)小明先抽取,那么小明抽到唐诗的概率为;( 2)小红的想法不对.原因以下:画树状图为:共有 12 种等可能的结果数,此中红明抽到唐诗的结果数为3,因此小红抽中唐诗的概率= =,因此小明抽到唐诗的概率和小红抽到唐诗的概率同样大.23.解:画树状图以下:由树状图可知,共有12 种等可能结果,此中能围成三角形的结果共有10 种,因此能搭成三角形的概率为=.24.解:( 1)列表以下:1 2 31 (1,1)(2,1)(3,1)2 (1,2)(2,2)(3,2)3 (1,3)(2,3)(3,3)( 2)全部等可能的状况数为 9 种,此中是 x2﹣3x+2=0 的解的为( 1,2),( 2,1)共 2 种,则 P是方程解= .25.解:( 1)补全图表以下:成绩 x50≤ x≤59 60≤x≤69 70≤x≤ 79 80≤x≤8990≤ x≤ 100 人数部门甲0 0 12 7 1乙 1 1 6 10 2( 2)①预计乙部弟子产技术优异的职工人数是200×=120 人;②甲或乙,1°、甲部弟子产技术测试中,均匀分较高,表示甲部门职工的生产技术水平较高;2°、甲部弟子产技术测试中,没有技术不合格的职工,表示甲部门职工的生产技能水平较高;或 1°、乙部弟子产技术测试中,中位数较高,表示乙部门职工的生产技术水平较高;2°、乙部弟子产技术测试中,众数较高,表示乙部门职工的生产技术水平较高.26.解:( 1)若选择方式一,转动转盘甲一次共有四种等可能结果,此中指针指向 A 地区只有 1 种状况,∴享受 9 折优惠的概率为,故答案为:;( 2)画树状图以下:由树状图可知共有12 种等可能结果,此中指针指向每个地区的字母同样的有 2 种结果,因此指针指向每个地区的字母同样的概率,即顾客享受8折优惠的概率为=.27.解:( 1)小朱选用问卷检查的站点是万达城站的概率=;( 2)画树状图为:共有 16 种等可能的结果数,此中小朱选用问卷检查的站点与小张选用问卷检查的站点相邻的结果数为6,因此小朱选用问卷检查的站点与小张选用问卷检查的站点相邻的概率= =.28.解:( 1)画树状图为:共有 36 种等可能的结果数,此中知足△ =m2﹣ 8n≥0 的结果数为 10,因此使对于 x 的方程 x2﹣ mx+2n=0 有实数根的概率 = = ;( 2)知足△=n2﹣ 4m=0 的结果数为 2,因此使对于 x 的方程 mx2+nx+1=0 有两个相等实根的概率 = =.。

第3章 概率的进一步认识 北师大版数学九年级上册单元测试卷(含答案)

第3章 概率的进一步认识 北师大版数学九年级上册单元测试卷(含答案)

第三章 概率的进一步认识时间:90分钟 满分:100分一、选择题(共8小题,每小题3分,共24分.每小题有四个选项,其中只有一个选项符合题意)1.用频率估计概率,可以发现抛掷硬币“正面向上”的概率为0.5,那么掷一枚质地均匀的硬币10次,下列说法正确的是( )A.每两次必有1次正面向上B.可能有5次正面向上C.必有5次正面向上D.不可能有10次正面向上2.[教材变式P 61练习](2021·辽宁阜新中考)小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是( )A.12 B.23 C.56 D.163.(2022·山东济南历城区期末)一个不透明的袋子里装有白棋子、黑棋子共20个,这些棋子除颜色外都相同.小明从中随机摸出一颗棋子,记下颜色后放回,通过多次重复试验发现,摸出白棋子的频率稳定在0.6,则袋子中白棋子的个数最有可能是( )A.5B.8C.12D.154.(2022·安徽宿州期中)2022年冬奥会吉祥物为“冰墩墩”,冬残奥会吉祥物为“雪容融”.现有三张正面印有吉祥物的不透明卡片,卡片除正面图案不同外,其余均相同,其中两张正面印有“冰墩墩”图案,一张正面印有“雪容融”图案,将三张卡片正面向下洗匀,从中随机一次性抽取两张卡片,则抽出的两张卡片正面都印有“冰墩墩”图案的概率是( )A.13 B.12 C.49 D.235.(2021·重庆期末)一个不透明的袋子中装有3个白球,2个黑球,它们除颜色外都相同.将球摇匀后,从中随机摸出一个球,记下颜色后不放回,再随机摸出一个球.两次摸到的球颜色相同的概率是( )A.23 B.25 C.1325 D.13206.(2022·河南许昌一中月考)某市教委部门高度重视自然灾害中的安全教育,要求各级各类学校从认识安全警示标志入手开展安全教育活动.某数学兴趣小组准备了4张印有安全警示标志的卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张卡片,则这两张卡片上的正面图案中有一张是轴对称图形的概率是( )A.12B.13C.14D.167.(2021·辽宁铁岭期末)若从1,2,3,4这四个数字中任选一个记为a ,再从这四个数字中任选一个记为c ,则关于x 的一元二次方程ax 2+4x+c=0没有实数根的概率为( )A.14B.13C.12D.238.(2022·江苏南京鼓楼区期中)如图是用画树状图的方法画出的某个试验的所有可能发生的结果,则这个试验不可能是( )A.在一个不透明的袋中有3个除颜色外完全相同的小球,其中2个黑球,1个白球,从中随机取出2个球B.小明,小王两个人分别去买一个盲盒,在三款盲盒中买到同一款盲盒C.从某学习小组的两名男生和一名女生中随机选取两名学生进行竞答D.体育测试中,随机从足球、篮球、排球三个项目中选择两个项目二、填空题(共5小题,每小题4分,共20分)9.(2022·北京期末)经过某个十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,那么甲汽车经过这个十字路口时,向右转的概率是 .10.为积极响应“无偿献血,传递温暖”的号召,某高校一寝室的4个同学参与到爱心献血的活动中,他们其中有2个A 型血,1个B 型血,还有1个O 型血,现从该寝室随机抽取2个同学参与第一批次献血,则2个同学都是A 型血的概率为 .11.(2021·广东汕头潮阳区模拟)在如图所示的电路图中,随机闭合开关S 1,S 2,S 3中的两个,能让灯泡L 1发光的概率是 .12.(2022·辽宁锦州期中)一张纸片上有一个不规则的图案,小雅想了解该图案的面积是多少,她采取了以下的试验办法:用一个长为5 cm,宽为3 cm的长方形,将不规则图案围起来如图(1)所示,然后在适当位置随机地向长方形区域扔小球,并记录小球落在不规则图案内的次数(球落在界线上或长方形区域外不计入试验结果),她将若干次有效试验的结果绘制成了图(2)所示的折线统计图,由此她估计此不规则图案的面积为 cm2.(结果保留整数)图(1)图(2)13.(2021·江苏镇江中考)一只不透明的袋子中装有1个黄球,现放若干个红球进去,它们与黄球除颜色外都相同,搅匀后从中任意摸出两个球,若使得P(摸出一红一黄)=P(摸出两红),则放入的红球个数为 .三、解答题(共6小题,共56分)14.(8分)近几年,各式各样的共享经济模式在各个领域迅速普及应用,如图是某同学收集的四个共享经济领域的图标,将收集到的图标制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同),背面朝上,洗匀放好.(1)从中随机抽取一张,抽到的卡片上的图标恰好是“共享知识”的概率为 ;(2)从中随机抽取一张卡片,放回后洗匀,再从中随机抽取一张卡片,请用列表或画树状图的方法求抽到的两张卡片上的图标恰好是“共享出行”和“共享知识”的概率.15.(8分)某商场在“五一”促销活动中规定,顾客每消费100元就能获得一次抽奖机会.为了活跃气氛,设计了两种抽奖方案.方案一:转动转盘A一次,指针指向红的部分可领取一份奖品.方案二:转动转盘B两次,两次指针都指向红的部分可领取一份奖品.(两个转盘都被平均分成3份,若指针指向分界线,则重转)(1)转动一次转盘A,获得奖品的概率是 ;(2)如果你获得一次抽奖机会,你会选择哪种方案?请用列表法或画树状图法说明理由.16.(9分)(2022·辽宁抚顺新抚区期末)一个黑箱子里装有红、白两种颜色的球共4只,它们除颜色外,其他都相同.小明将球搅匀后从箱子中随机摸出一个球,记下颜色,再把它放回,不断重复试验,根据多次试验结果画出如下的折线统计图.(1)当试验次数很大时,摸到白球的频率将会接近 (精确到0.01),从箱子中摸一次球,摸到红球的概率是 ;(2)从该箱子里随机摸出一个球,不放回,再摸出一个球.用画树状图法或列表法求摸到一个红球和一个白球的概率.17.(10分)甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.(1)请用画树状图法或列表法求出恰好选中甲、乙两位同学的概率;(2)请利用若干个除颜色外其他都相同的球,设计一个摸球试验(至少摸两次),并根据该试验写出一个发生概率与(1)中所求概率相同的事件.18.(10分)(2021·黑龙江大庆期中)如图(1),一枚质地均匀的正四面体骰子,它有四个面,每个面上分别以1,2,3,4标号;如图(2),等边三角形ABC的三个顶点处各有一个圆圈.明明和亮亮想玩跳圈游戏,游戏的规则为:游戏者从圈A起跳,每投掷一次骰子,骰子着地的一面点数是几,就沿着三角形的边逆时针方向连续跳跃几个边长.如:若第一次掷得点数为2,就逆时针连续跳2个边长,落到圈C;若第二次掷得点数为4,就从圈C继续逆时针连续跳4个边长,落到圈A.(1)明明随机掷一次骰子,她跳跃后落到圈A的概率为 ;(2)明明和亮亮一起玩跳圈游戏:明明随机投掷一次骰子,亮亮随机投掷两次骰子,以最终落到圈A为胜者.这个游戏公平吗?请说明理由. 图(1) 图(2)19.(11分)(2021·辽宁本溪期末)为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A:非常了解,B:了解,C:了解较少,D:不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:(1)此次共调查了 名学生;扇形统计图中D所在扇形的圆心角为 ;(2)将上面的条形统计图补充完整;(3)若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数;(4)现有“非常了解”的男生2名,女生2名,从这4名学生中随机抽取2名学生进行座谈,刚好抽到同性别学生的概率是多少?第三章 概率的进一步认识12345678BD C A B A C B9.1310.1611.1312.613.31.B 抛掷硬币“正面向上”的概率为0.5,那么掷一枚质地均匀的硬币10次,可能有5次正面向上.2.D 画树状图如图所示,可知共有6种等可能的结果,恰好拿到红色帽子和红色围巾的结果有1种,∴恰好拿到红色帽子和红色围巾的概率为16.3.C 设袋子中白棋子有x 个,根据题意,得x20=0.6,解得x=12,∴袋子中白棋子的个数最有可能是12.4.A 把两张正面印有“冰墩墩”图案的卡片分别记为A 1,A 2,正面印有“雪容融”图案的卡片记为B,根据题意画树状图如下:从树状图可知,共有6种等可能的结果,其中抽出的两张卡片正面都印有“冰墩墩”图案的结果有2种,故P (抽出的两张卡片正面都印有“冰墩墩”图案)=26=13.5.B 画树状图如图:由树状图可知,共有20种等可能的结果,两次摸到的球颜色相同的结果有8种,∴两次摸到的球颜色相同的概率为820=25.6.A 把4张卡片从左到右依次标记为A,B,C,D,画树状图如图所示:由树状图可知,共有12种等可能的结果,因为只有C 卡片上的正面图案是轴对称图形,所以这两张卡片上的正面图案中有一张是轴对称图形的结果有6种,故P (这两张卡片上的正面图案中有一张是轴对称图形)=612=12.7.C 画树状图如图:由树状图可知,共有16种等可能的结果,其中使Δ=42-4ac<0,即ac>4的结果有8种,∴关于x 的一元二次方程ax 2+4x+c=0没有实数根的概率为816=12.8.B 在一个不透明的袋中有3个除颜色外完全相同的小球,其中2个黑球,1个白球,从中随机取出2个球,设A ,B 表示黑球,C 表示白球,则可画出题中的树状图;从某学习小组的两名男生和一名女生中随机选取两名学生进行竞答,设A ,B 表示男生,C 表示女生,则可画出题中的树状图;体育测试中,随机从足球、篮球、排球三个项目中选择两个项目,设A 表示足球,B 表示篮球,C 表示排球,则可画出题中的树状图;而小明,小王两个人分别去买一个盲盒,在三款盲盒中买到同一款盲盒,设A ,B ,C 分别表示三款盲盒,树状图为:9.1310.16 列表如下:AA B O A(A,A)(A,B)(A,O)A(A,A)(A,B)(A,O)B(B,A)(B,A)(B,O)O (O,A)(O,A)(O,B)由表可知共有12种等可能的结果,其中2个同学都是A 型血的结果有2种,∴P (2个同学都是A 型血)=212=16.11.13 根据题意画出树状图如下.由树状图可知,共有6种等可能的情况,其中能让灯泡L 1发光的情况有2种,即S 1S 2,S 2S 1,所以能让灯泡L 1发光的概率为26=13.12.6 假设不规则图案的面积为x cm 2,由题意得长方形的面积为15 cm 2,当事件A 试验次数足够多,即样本足够大时,其频率可估计事件A 发生的概率,故由题中折线统计图可知,小球落在不规则图案内的概率大约为0.4,所以x 15=0.4,解得x=6,所以估计此不规则图案的面积为6 cm 2.13.3 假设袋中的红球个数为1,此时袋中有1个黄球、1个红球,搅匀后从中任意摸出两个球,P (摸出一红一黄)=1,P (摸出两红)=0,不符合题意;假设袋中的红球个数为2,画树状图如下:由树状图可知,共有6种等可能的结果,其中两次摸到红球的结果有2种,摸出一红一黄的结果有4种,∴P (摸出一红一黄)=46=23,P (摸出两红)=26=13,不符合题意;假设袋中的红球个数为3,画树状图如下:由树状图可知,共有12种等可能的结果,其中两次摸到红球的结果有6种,摸出一红一黄的结果有6种,∴P (摸出一红一黄)=P (摸出两红)=612=12,符合题意,∴放入的红球个数为3.14.【参考答案】(1)14(3分)(2)根据题意画出如图所示的树状图:由树状图可知,共有16种等可能的结果,其中抽到的两张卡片上的图标是“共享出行”和“共享知识”的结果有2种,所以抽到的两张卡片上的图标是“共享出行”和“共享知识”的概率是216=18.(8分)15.【参考答案】(1)13(3分)(2)选择方案二.(4分)理由:画树状图如下.由树状图可知,共有9种等可能的结果,其中两次指针都指向红的部分的结果有4种,所以P (转动转盘B 两次,领取一份奖品)=49.(6分)由(1)知转动转盘A 一次,领取一份奖品的概率是13,因为13<49,所以选择方案二.(8分)16.【解题思路】(1)当试验次数达到1 500次时,摸到白球的频率接近于0.75,由此可估计摸到红球的概率;(2)先根据(1)的结论求出白球的个数和红球的个数,再列表得出所有等可能的结果,从中找到符合条件的结果,进而可求得概率.【参考答案】(1)0.75 14(4分)解法提示:由折线统计图可知,当试验次数很大时,摸到白球的频率将会接近0.75,从箱子中摸一次球,摸到红球的概率为1-0.75=0.25=14.(2)由(1)知,箱中白球的个数为4×0.75=3,则红球的个数为4-3=1,列表如下:白白白红白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)白(白,白)(白,白)(红,白)红(白,红)(白,红)(白,红)由表知,共有12种等可能的结果,其中摸到一个红球和一个白球的结果有6种,∴摸到一个红球和一个白球的概率为612=12.(9分)17.【参考答案】(1)根据题意,画树状图如下: (3分)由树状图,可知共有12种等可能的结果,其中恰好选中甲、乙两位同学的结果有2种,所以P (恰好选中甲、乙两位同学)=212=16.(5分)(2)答案不唯一.如:在一个不透明的袋子中,放入四个除颜色外其他都相同的球,它们的颜色分别为白、黄、粉、橙,从袋中随机摸出一个球记下颜色,不放回,再从袋中随机摸出一个球,记下颜色.事件:两次摸出的球一个是白球,一个是粉球.(10分)18.【参考答案】(1)14(3分)(2)这个游戏不公平.(4分)理由:画树状图如图,共有16种等可能的结果,其中亮亮随机投掷两次骰子,最终落到圈A 的结果数为5,即共跳3个边长或6个边长,所以P (亮亮随机投掷两次骰子,最终落回到圈A )=516.(8分)因为14<516,所以这个游戏不公平.(10分)19.【参考答案】(1)120 54°(2分)解法提示:(25+23)÷40%=120(名),360°×10+8120=54°.(2)D 所占的百分比为(10+8)÷120×100%=15%,A 中的人数为120×(1-40%-20%-15%)=30(名),其中男生有30-16=14(名),C 中的人数为120×20%=24(名),其中女生有24-12=12(名).补全条形统计图如图所示:(4分)(3)800×(1-40%-20%-15%)=200(名),答:估计对食品安全知识“非常了解”的学生的人数为200.(7分)(4)画树状图:由树状图可知,共有12种等可能的结果,抽到同性别学生的结果有4种,所以P (刚好抽到同性别学生)=412=13.(11分)。

北师大版九年级数学上册第三章概率的进一步认识单元测试题(含答案)

北师大版九年级数学上册第三章概率的进一步认识单元测试题(含答案)
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
北师大版九年级数学上册第三章概率的进一步认识单元测试题
(时间:120 分钟 满分:120 分)
一、选择题(每小题 3 分,共 30 分)
1.在一个不透明的盒子中装有 12 个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一 个球是白球的概率是13,则黄球的个数为( )
随机摸出另一个小球,其数字记为 q,则满足关于 x 的方程 x2+px+q=0 有实数根的概率是(
)
1
1
1
2
A.4
B.3
C.2
D.3
二、填空题(每小题 3 分,共 24 分)
11.有两辆车按 1,2 编号,舟舟和嘉嘉两人可任意选坐一辆车 . 则两人同坐 2 号车的概率为
12.一个盒子内装有大小、形状相同的四个球,其中红球 1 个,绿球 1 个,白球 2 个,小明摸出一个球不放回, 再摸出一个球,则两次都摸到白球的概率是______.
1
1
2
3
A.3
B.2
C.3
D.4
8.从长度分别为 1、3、5、7 的四条线段中任选三条作边,能构成三角形的概率为( C )
1
1
1
1
A.2
B.3
C.4
D.5
9.掷两枚普通正六面体骰子,所得点数之和为 11 的概率为( A )
1
1
1
1
A.18
B.36
C.12
D.15
10.一个盒子里有完全相同的三个小球,球上分别标有数字-2,1,4.随机摸出一个小球(不放回),其数字为 p, 随机摸出另一个小球,其数字记为 q,则满足关于 x 的方程 x2+px+q=0 有实数根的概率是( D )

北师大版数学九年级上册第三章概率的进一步认识单元测试卷(有答案)

北师大版数学九年级上册第三章概率的进一步认识单元测试卷(有答案)

概率的进一步认识单元测试卷(满分100分,时间60分钟) 一、选择题(每小题3分,共30分)1. 有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为a 的值,然后再从剩余的两张卡片中随机抽取一张,以其正面的数字作为b 的值,则点(a ,b )在第二象限的概率是( ) A.61 B.31 C.21 D.32 2. 下列说法正确的是( )A .在一次抽奖活动中,“中奖的概率是1001”表示抽奖100次就一定会中奖 B .随机抛一枚硬币,落地后正面一定朝上 C .同时掷两枚均匀的骰子,朝上一面的点数和为6D .在一副没有大、小王的扑克牌中任意抽一张,抽到的牌是6的概率是131 3. 在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为32,则黄球的个数为( )A.2B.4C.12D.16 4. 让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域, 则这两个数的和是2的倍数或是3的倍数的概率等于( ) A.163B.83C.85D.1613 5. 在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法来估算正面朝上的概率,其试验次数分别为10次,50次,100次,200次,其中试验相对科学的是( ) A .甲组 B .乙组 C .丙组 D .丁组 6. 某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码锁的概率是( ) A.101B.91C.31D.217. 在一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为了估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400 次,其中88次摸到黑球,估计盒中大约有白球( )A. 28个B. 30个C. 36个D. 42个 8. 某市民政部门五一期间举行“即开式福利彩票”的销售活动,发行彩票10万张(每张彩票2元),在这次彩票销售活动中,设置如下奖项:A.20001 B.5001 C. 5003 D.20019. 青青的袋中有红、黄、蓝、白球若干个,晓晓又放入5个黑球,通过多次摸球试验,发现摸到红球、黄 球、蓝球、白球的频率依次为30%、15%、40%、10%,则青青的袋中大约有黄球( )A.5个B.10个C.15个D.30个 10. 一天晚上,小伟帮妈妈清洗茶杯,三个茶杯只有颜色不同,其中一个无盖.突然停电了,小伟只好把 杯盖与茶杯随机地搭配在一起,则花色完全搭配正确的概率是( ) A.31 B.21 C. 61 D.121二、填空题(每小题3分,共18分)11. 某长途汽车站的显示屏,每隔五分钟显示某班次汽车的信息,显示时间持续1分钟,某人到达该车站时,显示屏上正好显示该班次信息的概率是 .12. 一个不透明的袋子中只装有2个红球和2个蓝球,它们除颜色外其余都相同.现随机从袋中摸出两个球,颜色能配成紫色的概率是 .13. 林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组统计数据:成活的棵数m8651365222035007056131701758026430成活的频率nm0.865 0.904 0.888 0.875 0.882 0.878 0.879 0.881估计该种幼树在此条件下移植成活的概率为__________.14. 现有两个不透明的盒子,其中一个装有标号分别为1,2的两张卡片,另一个装有标号分别为1,2,3的三张卡片,卡片除标号外其他均相同.若从两个盒子中各随机抽取一张卡片,则两张卡片标号恰好相 同的概率是 .15. 若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是__________.16. 为了估计湖里有多少条鱼,我们从湖里捕上100条做上标记,然后放回湖里,经过一段时间待带标记 的鱼完全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,通过这种调查方式,我们可以估计出这个湖里有______条鱼.三、解答题(4小题,共52分)17. (12分) 在一个不透明的盒子里装有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是“摸到白色球”的频率折线统计图.(1)请估计:当n 很大时,摸到白球的频率将会接近 (精确到0.01),假如你摸一次,你摸到白 球的概率为 ;(2)试估算盒子里白、黑两种颜色的球各有多少个?(3)在(2)条件下如果要使摸到白球的概率为35,需要往盒子里再放入多少个白球?18. (11分)新年联欢会,班里组织同学们进行才艺展示如图所示的转盘被等分成四个扇形,每个扇形区域代表一项才艺:1-唱歌;2-舞蹈;3-朗诵;4-演奏,每名同学要随机转动转盘两次,转盘停止后,根据指针指向的区域确定要展示的两项内容(若两次转到同一区域或分割线上,则重新转动,直至得出不同结果).求小明恰好展示“唱歌”和“演奏”两项才艺的概率.19. (14分) 小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色,此时小刚得1分,否则小明得1分.(1)用列表(或树状图)法分别求出小明和小刚的得分;(2)这个游戏公平吗?请说明理由;如果不公平,如何修改规则才能使游戏双方公平?20.(15分)为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传球三次. (1)请利用树状图列举出三次传球的所有可能情况; (2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大.答案一、1-5 BDBCD 6-10 ABCCC二、11、61 12、32 13、 0.881 14、31 15 、65 16、 800 三、解答题.17. (1)根据题意得:当n 很大时,摸到白球的概率将会接近0.50;假如你摸一次,你摸到白球的 概率为0.5;(2)40×0.5=20,40﹣20=20;答:盒子里白、黑两种颜色的球分别有20个、20个; (2)设需要往盒子里再放入x 个白球;根据题意得:534020=++x x ,解得:10=x ;经检验,10=x 是原方程的解. 答:需要往盒子里再放入10个白球.18. 解:转动转盘两次所有可能出现的结果列表如下:(树状图同样得分)。

北师大版数学九年级上册第三章《概率的进一步认识》单元检测卷含答案

北师大版数学九年级上册第三章《概率的进一步认识》单元检测卷含答案

北师大版数学九年级上册第三章《概率的进一步认识》单元检测卷[检测内容:第三章 满分:120分 时间:120分钟]一、选择题(每小题3分,共30分)1. 在一个不透明的布袋中,红色、黑色、白色的球共有120个,这些球除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在15%和45%,则布袋中白色球的个数很可能是( )A. 48个B. 60个C. 18个D. 54个2. 在0,1,2三个数字中任取两个,组成两位数,则组成的两位数是奇数的概率为( )A. B. C. D. 141612343. 在用摸球试验来模拟6人中有2人生肖相同的概率的过程中,有如下不同的观点,其中正确的是( )A. 摸出的球不能放回B. 摸出的球一定放回C. 可放回,可不放回D. 不能用摸球试验来模拟此事件4. 如图所示,有以下3个条件:①AC =AB ,②AB ∥CD ,③∠1=∠2.从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是( )A. 0B.C.D. 11323第4题第5题5. 让如图所示的两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是2的倍数或是3的倍数的概率等于( )A.B.C.D. 316385813166. 在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.B.C.D. 121314167. 小明与小刚一起玩抛掷两枚硬币的游戏,游戏规则:抛出两个正面,小明赢1分,抛出其他结果,小刚赢1分,谁先到10分,谁就获胜.这是一个不公平的游戏规则,要把它修改成公平的游戏,下列做法中错误的是( )A. 把“抛出两个正面”改为“抛出两个同面”B. 把“抛出其他结果”改为“抛出两个反面”C. 把“小明赢1分”改为“小明赢3分”D. 把“小刚赢1分”改为“小刚赢3分”8. 如图,一个质地均匀的正四面体上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a ,b ,将其作为M 点的横、纵坐标,则点M (a ,b )落在以A (-2,0),B (2,0),C (0,2)为顶点的三角形内(包含边界)的概率是( )A. B.C.D. 38716129169.在平面直角坐标系中,作△OAB ,其中三个顶点分别是O (0,0),B (1,1),A (x ,y )(-2≤x ≤2,-2≤y ≤2,x ,y 均为整数),则所作△OAB 为直角三角形的概率是( )A.B.C.D. 2535151210. 如图所示,有一电路AB 由图示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是( )A.B.C.D. 25353412二、填空题(每小题3分,共24分)11. 在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是  .12. 向一个装有很多黄豆的袋子里放入100粒绿豆,每次倒出10粒记下所倒出的绿豆的数目,再把它们放回去,做相同的试验100次,共倒出绿豆240粒,则袋中原有黄豆约粒.13. 在分别写有数字-1,0,1,2的四张卡片中,随机抽取一张后放回,再随机抽取一张,以第一次抽取的数字作为横坐标,第二次抽取的数字作为纵坐标的点落在第一象限的概率是 .14. 有四条线段,长度分别为3,5,7,9,从中任取三条,能构成三角形的概率为 .15. 有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意一把锁,一次打开锁的概率是 .16. 某人设摊“摸彩”,只见他手持一袋,内装大小、质地完全相同的3个红球、2个白球,每次让顾客“免费”从袋中摸出两球,若两球的颜色相同,则顾客获得10元钱,否则顾客付给这个人10元钱.请你判断一下,该活动对顾客(填“合算”或“不合算”).17. 对于平面内任意一个凸四边形ABCD,现从以下四个关系式①AB=CD;②AD=BC;③AB∥CD;④∠A=∠C中任取两个作为条件,能够得出这个四边形ABCD是平行四边形的概率是 .18. 如图,小华和小明做转盘游戏,当两个转盘所转到的数字之积为奇数时,小华得2分,当两个转盘所转到的数字之积为偶数时,小明得1分,这个游戏.(填“公平”或“不公平”)三、解答题(共66分)19. (8分)某校九年级(1)、(2)班联合举行毕业晚会,组织者为了使气氛热烈、有趣,策划时计划整场晚会以转盘游戏的方式进行,每个节目开始时,两班各派一人先进行转盘游戏,胜者获得一件奖品,负责表演一个节目,(1)班和(2)班的文娱委员利用分别标着数字1,2,3和4,5,6,7的两个转盘(如图)设计一种游戏方案,两人同时各转动一个转盘一次,将转到的数字相加,和为偶数时,(1)班代表胜,否则(2)班代表胜,你认为该方案对双方是否公平?为什么?20. (8分)在一个不透明的口袋里装有只有颜色不同的黑白两种颜色的球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m68109136345568701摸到白球的频率0.680.730.680.690.710.70(1)请估计:当n很大时,摸到白球的频率将会接近;(2)假如你去摸一次,摸到白球的概率是,摸到黑球的概率是;(3)试估算口袋中黑、白两种颜色的球各有多少个.21. (9分)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)请用画树状图法或列表法,求恰好选中甲、乙两位同学的概率;(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.22. (9分)大课间活动时,有两个同学做了一个数字游戏:有三张正面写有数字-1,0,1的卡片,它们背面完全相同,将这三张卡片背面朝上洗匀后,其中一个同学随机抽取一张,将其正面的数字作为p的值,然后将卡片放回并洗匀,另一个同学再从这三张卡片中随机抽取一张,将其正面的数字作为q的值,两次结果记为(p,q).(1)请你帮他们用画树状图或列表的方法表示(p,q)所有可能出现的结果;(2)求满足关于x的方程x2+px+q=0没有实数解的概率.23. (10分)试验探究:有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有整数1和2.B布袋中有三个完全相同的小球,分别标有整数-1,-2和-3.平平从A布袋中随机取出一个小球,记录其标有的整数为x,再从B布袋中随机取出一个小球,记录其标有的整数为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=x-3上的概率.24. (10分)如图,有四张背面相同的纸牌A,B,C,D,其正面分别是红心、方块、黑桃、梅花,其中红心、方块为红色,黑桃、梅花为黑色,小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张.A B C D(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D表示);(2)求摸出的两张牌同为红色的概率.25. (12分)珊珊与静静设计了A,B两种游戏:游戏A的规则:用3张数字分别是2,3,4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字.若抽出的两张牌上的数字之和为偶数,则珊珊获胜;若两数字之和为奇数,则静静获胜.游戏B的规则:用4张数字分别是5,6,8,8的扑克牌,将牌洗匀后背面朝上放置在桌面上,珊珊先随机抽出一张牌,抽出的牌不放回,静静从剩下的牌中再随机抽出一张牌.若珊珊抽出的牌面上的数字比静静抽出的牌面上的数字大,则珊珊获胜;否则静静获胜.请你帮静静选择其中一种游戏,使她获胜的可能性较大,并说明理由.参考答案1. A2. A3. B4. D5. C6. A7. D8. B9. A 10. B11. Error!12. 31713. Error!14. Error!15. Error!16. 不合算17. Error!18. 公平19. 解:公平.理由:利用树状图法得出所有可能结果如下:所有可能结果有12种,其中数字之和为偶数的有6种,数学之和为奇数的也有6种.所以(1)班代表胜的概率为Error!,(2)班代表胜的概率也为Error!,所以该游戏方案对双方是公平的.20. 解:(1)0.70(2)0.700.30(3)白球有20×0.70=14(个),黑球有20-14=6(个).21. 解:(1)方法1:画树状图,如图所示.共有12种等可能的结果,其中满足条件的结果有2种.∴P(恰好选中甲、乙两位同学)=Error!.方法2:列表格如下:甲乙丙丁甲甲、乙甲、丙甲、丁乙乙、甲乙、丙乙、丁丙丙、甲丙、乙丙、丁丁丁、甲丁、乙丁、丙共有12种等可能的结果,其中满足条件的结果有2种.∴P(恰好选中甲、乙两位同学)=Error!. (2)P(恰好选中乙同学)=Error!.22. 解:(1)画树状图如下:由图可知共有9种等可能的结果.(2)若方程x2+px+q=0没有实数解,则Δ=p2-4q<0.由(1)可得满足Δ=p2-4q<0的有(-1,1),(0,1),(1,1),∴满足关于x的方程x2+px+q=0没有实数解的概率为Error!=Error!.23. 解:(1)列表为:y-1-2-3x1(1,-1)(1,-2)(1,-3)2(2,-1)(2,-2)(2,-3)∴点Q的坐标有(1,-1),(1,-2),(1,-3),(2,-1),(2,-2),(2,-3)六种可能情况. (2)“点Q落在直线y=x-3上”记为事件A,则有(1,-2)和(2,-1)两点满足条件,∴P(A)=Error!=Error!,即点Q落在直线y=x-3上的概率为Error!.24. 解:(1)画树状图如图所示:列表法:第二次A B C D第一次A AB AC ADB BA BC BDC CA CB CDD DA DB DC(2)P(摸出的两张牌同为红色)=Error!=Error!.25. 解:对游戏A:画树状图如图所示:或用列表法:第二次234第一次2(2,2)(2,3)(2,4)3(3,2)(3,3)(3,4)4(4,2)(4,3)(4,4)所有可能出现的结果共有9种,其中两数字之和为偶数的有5种,所以游戏A珊珊获胜的概率为Error!,而静静获胜的概率为Error!.即游戏A对珊珊有利,获胜的可能性大于静静.对游戏B:画树状图如图所示:或用列表法:静静5688珊珊5-(5,6)(5,8)(5,8)6(6,5)-(6,8)(6,8)8(8,5)(8,6)-(8,8)8(8,5)(8,6)(8,8)-所有可能出现的结果共有12种,其中珊珊抽出的牌面上的数字比静静大的有5种:根据游戏B的规则,当静静抽出的牌面上的数字与珊珊抽到的数字相同或比珊珊抽到的数字大时,则静静获胜.所以游戏B珊珊获胜的概率为Error!,而静静获胜的概率为Error!.即游戏B对静静有利,获胜的可能性大于珊珊.综上所述,静静应选择游戏B.。

北师大版九年级数学上册第三章概率的进一步认识测评卷含答案

北师大版九年级数学上册第三章概率的进一步认识测评卷含答案

第三章测评卷(时间:45分钟,满分:100分)一、选择题(本大题共7小题,每小题5分,共35分.下列各题给出的四个选项中,只有一项符合题意)1.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( ).A.16B.13C.12D.232.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黄球的概率是( ).A.49B.13C.29D.193.在一个不透明的袋中,装有若干个除颜色不同外其余都相同的球.如果袋中有3个红球且摸到红球的概率为14,那么袋中球的总个数为( ).A .15B .12C .9D .3 4.现有4条线段,长度依次是2,4,6,7,从中任选三条,能组成三角形的概率是( ).A.14B.12C.35D.34 5. 将右面两个转盘各随意转动一次(若指针恰好指在等分线上,当作指向右边的扇形),则得到的数字之和为3的概率是( ).A.16B.17C.19D.112 6.甲、乙两个不透明的布袋都装有红、白两种小球,两袋球总数相同,两种小球仅颜色不同,甲袋中,红球个数是白球个数的2倍,乙袋中,红球个数是白球个数的3倍,将乙袋中的球全部倒入甲袋,随机从甲袋中摸出一个球,摸出红球的概率是( ).A .512B .712C .1724D .257.假设你班有男生24名,女生26名,班主任要从班里任选一名红十字会的志愿者,则你被选中的概率是( ).A.1225B.1325C.12D.150 二、填空题(每小题4分,共16分)8.在一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有 颗.9.在四边形ABCD 中,①AB ∥CD ;②AD ∥BC ;③AB=CD ;④AD=BC ,在这四个条件中任选两个作为已知条件,能判定四边形ABCD 是平行四边形的概率是 .10.在一个不透明的袋中装有3个红球、1个白球,它们除了颜色以外都相同,随机从中摸出一球,记下颜色后放回袋中,充分摇匀后再随机摸出一球,两次都摸到红球的概率是 .11.在一个不透明的布袋中装有两个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率是45,则n= .三、解答题(共49分)12.(12分)端午节放假期间,小明和小华准备到景点A 、景点B 、景点C 、景点D 中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点都被选中的可能性相同.(1)小明选择去景点A 游玩的概率为 ;(2)用画树状图或列表的方法求小明和小华都选择去景点B 游玩的概率.13.(12分)共享经济已经进入人们的生活.小沈收集了自己感兴趣的4个共享经济领域的图标,共享出行、共享服务、共享物品、共享知识,制成编号分别为A,B,C,D 的四张卡片(除字母和内容外,其余完全相同).现将这四张卡片背面朝上,洗匀放好.(1)小沈从中随机抽取一张卡片是“共享服务”的概率是 ;(2)小沈从中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请你用画树状图或列表的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D 表示).14.(12分)在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有两个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则如下:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用画树状图法或列表法说明理由.15.(13分)在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同.小强从布袋里随机取出一个小球,记下数字为x,小芳在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点M的坐标(x,y).(1)利用画树状图或列表的方法,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=x+1的图象上的概率.第三章测评卷一、选择题1.D2.A3.B4.B5.A6.C7.D二、填空题8.149.2310.91611.8三、解答题12.(1)14(2)画树状图或列表略.小明和小华都选择去景点B游玩的概率为116.13.(1)14(2)画树状图或列表略,16.14.此游戏规则对双方不公平.理由略.15.(1)画树状图或列表略,点M(x,y)所有可能的坐标为(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).(2)14.。

北师大九年级上《第三章概率的进一步认识》单元测试题(含答案)

北师大九年级上《第三章概率的进一步认识》单元测试题(含答案)

第三章概率的进一步认识第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.三张外观相同的卡片上分别标有数字1,2,3,从中随机一次性抽出两张,这两张卡片上的数字恰好都小于3的概率是( )A.13B.23C.16D.192.某学校在八年级开设了数学史、诗词赏析、陶艺三门课程,若小波和小睿两名同学每人随机选择其中一门课程,则小波和小睿选到同一门课程的概率是( )A.12B.13C.16D.193.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是( )A.16B.29C.13D.234.有3个整式x,x+1,2,先随机取一个整式作为分子,再从余下的整式中随机取一个作为分母,恰能组成分式的概率是( )A.13B.12C.23D.565.在物理课上,某实验的电路图如图1所示,其中S1,S2,S3表示电路的开关,L表示小灯泡,R为保护电阻.若闭合开关S1,S2,S3中的任意两个,则小灯泡L发光的概率为( )图1A.16B.13C.12D.236.如图2,两个转盘分别自由转动一次,当它们都停止转动时,两个转盘的指针都指向2的概率为( )图2A.12B.14C.18D.1167.在一个不透明的口袋里装了只有颜色不同的黄球、白球若干只.某小组做摸球试验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复这一过程.下表是活动中的一组数据,则摸到黄球的概率约是( )A.0.4 B.0.5 C.0.6 D.0.78.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下表格,则符合这一结果的试验最有可能的是( )A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率9.为了估计不透明的袋子里装有多少个球,先从袋中摸出10个球都做上标记,然后放回袋中去,充分摇匀后再摸出10个球,发现其中有一个球有标记,那么你估计袋中大约有球( )A.10个 B.20个 C.100个 D.121个10.有A,B两粒质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6),小王掷骰子A,朝上的数字记作x;小张掷骰子B,朝上的数字记作y.在平面直角坐标系中有一矩形,四个点的坐标分别为(0,0),(6,0),(6,4)和(0,4),小王、小张各掷一次所确定的点P (x ,y )落在矩形内(不含矩形的边)的概率是( )A.23B.512C.12D.712请将选择题答案填入下表:第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共18分)11.一个不透明的袋子中装有2个红球,1个绿球,这些球除颜色不同外其余都相同,从袋子中随机摸出一个小球记下颜色后放回,再随机摸出一个小球,则一次摸到红球一次摸到绿球的概率为________.12.从-1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为________.13.小明和小亮做游戏,先是各自背着对方在纸上写一个自然数,然后同时呈现出来.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;否则,小亮获胜.这个游戏对双方________.(填“公平”或“不公平”).14.点P 的坐标是(a ,b),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P(a ,b)在平面直角坐标系中第二象限内的概率是________.15.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取到白色棋子的概率是25.若再往盒中放进3颗黑色棋子,则取到白色棋子的概率变为14,原来围棋盒中有白色棋子______颗.16.如果任意选择一对有序整数(m ,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x 的方程x 2+nx +m =0有两个相等实数根的概率是________.三、解答题(共72分)17.(6分)不透明的文具袋中装有规格相同的红、黑两种颜色的通用中性笔芯,其中红色的有3支,黑色的有2支.(1)从文具袋中随机抽取1支笔芯,求恰好抽到的是红色笔芯的概率;(2)从文具袋中随机抽取2支笔芯,求恰好抽到的都是黑色笔芯的概率.(请用画树状图法或列表法求解)18.(6分)研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球和黄球.怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验.摸球试验的要求:先搅拌均匀,每次摸出1个球,放回盒中再继续.活动结果:摸球试验活动一共做了50次,统计结果如下表:由上述摸球试验可推算:(1)盒中红球、黄球占总球数的百分比分别是多少?(2)盒中有红球多少个?19.(8分)甲、乙、丙三名同学站成一排进行毕业合影留念,请用列表或画树状图的方法列出所有可能的情形,并求出甲、乙两人相邻的概率是多少.20.(8分)九年级某班组织全班活动,班委会准备买一些奖品.班长王倩拿15元钱去商店全部用来购买圆珠笔和铅笔两种奖品,已知圆珠笔的价格为2元/支,铅笔的价格为1元/支,且每种笔至少买一支.(1)有多少种购买方案?请列举所有可能的结果;(2)从上述方案中任选一种方案购买,求买到的圆珠笔与铅笔数量相等的概率.21.(10分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是________;(2)如果小明将“求助”留在第二题使用,请用画树状图或者列表的方法来分析小明顺利通关的概率;(3)从概率的角度分析,你建议小明在第几题使用“求助”?22.(10分)小明、小芳做一个“配色”的游戏.如图3是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其他情况下不分胜负.(1)利用列表或画树状图的方法表示此游戏所有可能出现的结果;(2)此游戏规则对小明、小芳公平吗?试说明理由.图323.(12分)一个暗箱中有大小相同的1个黑球和n个白球(记为白1、白2、…、白n),每次从中取出一个球,取到白球得1分,取到黑球得2分,甲从暗箱中有放回地依次取出2个球,而乙从暗箱中一次性取出2个球.(1)若n=2,分别求甲取得3分的概率和乙取得3分的概率;(请用“画树状图”或“列表”等方式给出分析过程)(2)若乙取得3分的概率小于120,则白球至少有多少个?(请直接写出结果)24.(12分)五一假期,某公司组织部分员工分别到A,B,C,D四地旅游,公司按定额购买了前往各地的车票.图4是未制作完的车票种类和数量的条形统计图,根据统计图回答下列问题:(1)若去D地的车票占全部车票的10%,求去D地车票的数量,并补全条形统计图;(2)若公司采用随机抽取的方式分发车票,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),则员工小胡抽到去A地的车票的概率是多少?(3)若有一张车票,小王、小李都想要,最后决定采取抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小王掷得着地一面的数字比小李掷得着地一面的数字小,车票给小王,否则给小李”.试用列表或画树状图的方法分析这个规则对双方是否公平.图4详解详析1.A [解析] 列表如下:3的情况有2种,∴P(两张卡片上的数字都小于3)=26=13.解题突破从m(m >2)张卡片中一次性抽出两张卡片,可以理解为先抽出一张,再从剩下的里面抽出一张,即属于“抽出不放回”试验问题,可见为两步试验问题,可用列表法求解.2.B [解析] 列表如下:共有9所以其概率为39=13.故选B . 3.C [解析] 画树状图如下:一共有6种情况,“一红一黄”的情况有2种,∴P(一红一黄)=26=13.故选C .4.C [解析] 画树状图如下:共有6种等可能的结果,其中恰能组成分式的结果数为4种, 所以恰能组成分式的概率为46=23.5.B [解析] 列表如下:共有613L 发光的概率是26=13.故选B . 6.D [解析] 列表如下:∵共有指针都指向2的概率为116.故选D .7.B [解析] 观察表格得:通过多次摸球试验后发现摸到黄球的频率稳定在0.5左右,则P(摸到黄球)=0.5.8.B [解析] A .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为14,不符合题意;B .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是13,符合题意;C .抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为16,不符合题意;D .抛一枚硬币,出现反面的概率为12,不符合题意.故选B .9.C10.B [解析] 画树状图如下:∵共有36种等可能的结果,小王、小张各掷一次所确定的点P(x ,y)落在矩形内(不含矩形的边)的有15种情况,∴小王、小张各掷一次所确定的点P(x ,y)落在矩形内(不含矩形的边)的概率是1536=512.故选B .11.49[解析] 画树状图如下:∵共有9种等可能的结果,一次摸到红球一次摸到绿球的有4种情况,∴一次摸到红球一次摸到绿球的概率是49.12.16[解析] 画树状图如下:∵共有12种等可能的结果,点落在第一象限的可能是(1,2),(2,1)两种情形, ∴该点在第一象限的概率为212=16. 13.公平 [解析] 两人写的数共有奇偶、偶奇、偶偶、奇奇四种情况,因此同为奇数或同为偶数的概率为24=12,一奇一偶的概率也为24=12,所以这个游戏对双方公平.14.15[解析] 画树状图如下:共有20种等可能的结果,其中点P(a ,b)在平面直角坐标系中第二象限内的结果数为4,所以点P(a ,b)在平面直角坐标系中第二象限内的概率=420=15.15.216.17 [解析] 依题意知m =0,±1,n =0,±1,±2,±3,∴有序整数(m ,n)共有3×7=21(种).∵方程x 2+nx +m =0有两个相等的实数根,∴Δ=n 2-4m =0,有(0,0),(1,2),(1,-2)三种可能,∴关于x 的方程x 2+nx +m =0有两个相等实数根的概率是321=17.17.[解析] (1)由不透明的文具袋中装有规格相同的红、黑两种颜色的通用中性笔芯,其中红色的有3支,黑色的有2支,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到的都是黑色笔芯的情况,再利用概率公式即可求得答案.解:(1)∵不透明的文具袋中装有规格相同的红、黑两种颜色的通用中性笔芯,其中红色的有3支,黑色的有2支,∴恰好抽到的是红色笔芯的概率为33+2=35.(2)画树状图如下:∵共有20种等可能的结果,恰好抽到的都是黑色笔芯的只有2种情况, ∴恰好抽到的都是黑色笔芯的概率为220=110.18.解:(1)由题意可知,50次摸球试验活动中,出现红球20次,黄球30次, 所以红球所占百分比为20÷50×100%=40%,黄球所占百分比为30÷50×100%=60%.答:盒中红球占总球数的40%,黄球占总球数的60%.(2)由题意可知,50次摸球试验活动中,出现有记号的球4次,所以总球数为8÷450=100,所以红球有40%×100=40(个).答:盒中有红球40个. 19.解:用树状图分析如下:∵一共有6种等可能的情况,甲、乙两人相邻的有4种情况, ∴甲、乙两人相邻的概率是46=23.20.解:(1)设买圆珠笔x 支,铅笔y 支, 则2x +y =15,所以y =15-2x. 当x =1时,y =13; 当x =2时,y =11; 当x =3时,y =9; 当x =4时,y =7; 当x =5时,y =5; 当x =6时,y =3; 当x =7时,y =1. 所以共有7种购买方案.(2)在这7种方案中,买到的圆珠笔与铅笔数量相等的只有1种,所以P(买到的圆珠笔与铅笔数量相等)=17.21.解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是13.故答案为:13.(2)分别用A ,B ,C 表示第一道单选题的3个选项,a ,b ,c 表示第二道单选题剩下的3个选项.画树状图如下:∵共有9种等可能的结果,小明顺利通关的只有1种情况, ∴小明顺利通关的概率为19.(3)∵如果在第一题使用“求助”,小明顺利通关的概率为18,如果在第二题使用“求助”,小明顺利通关的概率为19,∴建议小明在第一题使用“求助”. 解题突破(1)直接利用概率公式求解;(2)此问属于两次试验概率问题,注意第二次试验时只有三种可能;(3)比较第一题使用“求助”小明顺利通关的概率与第二题使用“求助”小明顺利通关的概率的大小,把“求助”用在通关概率大的那一次上.22.解:(1)用列表法将所有可能出现的结果表示如下:(2)不公平.理由:上面等可能出现的12种结果中,有3种情况能配成紫色,故配成紫色的概率是312,即小芳获胜的概率是14;但只有2种情况能配成绿色,故配成绿色的概率是212,即小明获胜的概率是16.而14>16,故小芳获胜的可能性大,这个“配色”游戏规则对双方是不公平的.23.解:(1)得3分,即为取到黑球、白球各1个. 甲从暗箱中有放回地依次取出2个球,画树状图如下:∴甲取得3分的概率为49;乙从暗箱中一次性取出2个球,画树状图如下:∴乙取得3分的概率=46=23.(2)若乙取得3分的概率小于120,则2n +1<120,∴n >39,∴白球至少有40个. 24.解:(1)设去D 地的车票有x 张,则x =(x +20+40+30)×10%,解得x =10. 答:去D 地的车票有10张. 补全条形统计图如图所示.(2)小胡抽到去A 地的车票的概率为2020+40+30+10=15.答:员工小胡抽到去A 地的车票的概率是15.(3)列表如下:小的有6种:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),∴小王掷得着地一面的数字比小李掷得的着地一面数字小的概率为616=38.则小王掷得着地一面的数字不小于小李掷得的着地一面数字的概率为1-38=58.∵58≠38,∴这个规则对双方不公平.。

北师大版九年级数学上册第三章概率的进一步认识单元测试题(有答案)

北师大版九年级数学上册第三章概率的进一步认识单元测试题(有答案)

北师大版九年级数学上册第三章概率的进一步认识单元测试题一•选择题(共10小题,每小题3分,共30分)1 .下列说法正确的是( )A .为了解一批灯泡的使用寿命,宜采用普查方式B .掷两枚质地均匀的硬币,两枚硬币都是正面朝上这一事件发生的概率为C .掷一枚质地均匀的正方体骰子,骰子停止转动后, 5点朝上是必然事件D .甲乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S 甲2= 0.4, S 乙2=0.6,则甲的射击成绩较稳定2.“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是(C .3 .如图,4 X 2的正方形网格中,在 A ,B ,C ,D 四个点中任选三个点,能够组成等腰三角形的概C .4.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1, 2, 3, 4.若一次性摸出两个球,则一次性取出的两个小球标号的和不小于 4的概率是( )A.-C .5.消费者在网店购物后,将从“好评、中评、差评”中选择一种作为对卖家的评价,假设这三种评价是等可能的,若小明、小亮在某网店购买了同一商品,且都给出了评价,则两人中至少有一个 给“好评”的概率为(6.将一枚均匀的硬币连续抛掷两次,则两次都是正面朝上的概率等于(A . 0.5B . 0.25C . 0.75率为() A B7. 某小组在“用频率估计概率”的实验中,统计了某种频率结果出现的频率,绘制了如图所示的折A •掷一枚质地均匀的硬币,落地时结果是“正面向上” B.掷一个质地均匀的正六面体骰子,落地时朝上的面点数是 6C. 在“石头剪刀、和”的游戏中,小明随机出的是“剪刀”D •袋子中有1个红球和2个黄球,只有颜色上的区别,从中随机取出一个球是黄球 8•在做抛硬币试验时,甲、乙两个小组画出折线统计图后发现频率的稳定值分别是50.00%和50.02%,则下列说法错误是()A •乙同学的试验结果是错误的B •这两种试验结果都是正确的C .增加试验次数可以减小稳定值的差异D .同一个试验的稳定值不是唯一的9 •如图所示,分别用两个质地均匀的转盘转得一个数,120°,②号转盘表示数字3的扇形对应的圆心角也是120°,则转得的两个数之积为偶数的概率两个转盘中指针落在每个数字的机会均等•现在同时自由转动甲、乙两个转盘,转盘停止后,指针各自指向一个数字,用所指的两个数字作乘法运算所得的积为奇数的概率为(①号转盘表示数字2的扇形对应的圆心角为3D • ■'10.如图,二•填空题(共8小题,每小题3分,共24分)11. 一个口袋中装有6个红球和4个白球,这些球除颜色外完全相同,充分搅匀后随机摸出一球发现是白球,如果这个白球不放回,再摸出一球,它是白球的概率是_______ .12. 一枚材质均匀的骰子,六个面的点数分别是1, 2,3, 4,5, 6,投这个骰子,掷的点数大于4的概率是 ________ .13. 从分别写有-1, - 2, 1, 2的四张卡片中随机抽取两张,把第一张卡片上的数字作为a,第二张卡片上的数字作为b,则a, b之和大于0的概率是_______________ .14. 在一个不透明的箱子里有四张外形相同的卡片?卡片上分别标有数字-1, 1, 3, 5.摸出一张后,记下数字,再放回,摇匀后再摸出一张,记下数字.以第一次得到的放字为横坐标,第二次得到的数字为纵坐标,得到一个点则这个点.恰好在直线y=- x+4上的概率是___________ .15. 在两个暗盒中,各自装有编号为1, 2, 3的三个球,球除编号外无其它区别,则在两个暗盒中各取一个球,两球上的编号的积为偶数的概率为_______________ .16. 某校春季运动会,小红参加100米和200米的比赛,每组六人分别在1-- 6号跑道同时进行比赛,问小红两次都抽到3号跑道的概率是_____________ .17. 在一个不透明的袋子中装有3个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有__________ 个.18. 如图,一个转盘的盘面被等分成四个扇形区域,并分别标有数字- 1、0、1、2若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字的和等于0的概率为____________ ..解答题(共7小题,共66 分)19. “五一”期间,某商场推出“购物满额即可抽奖”活动.商场在抽奖箱中装有1个红球、2个黄球、3个白球、8个黑球,每个球除颜色外都相同,红球、黄球、白球分别代表一、奖,黑球代表谢谢参与.获得抽奖杋会的顾客每次从箱子中摸出一个球,按相应颜色对应等级兑(2) 求出小明抽到一等奖的概率;(3) 在这个活动中,中奖和没中奖的机会相等吗?为什么?如果不相等,可以如何改变球的个 数,使中奖和没中奖的机会相等?(只写一种即可)20.如图,把一个转盘分成六等份,依次标上数字 1、2、3、4、5、6,小明和小芳分别只转动一次转盘,小明同学先转动转盘,结果指针指向2,接下来小芳转动转盘、若把小明和小芳转动转盘指针指向的数字分别记作 x 、y ,把x 、y 作为点A 的横、纵坐标.换奖品,每次所摸得球再放回抽奖箱,摇匀后由下一位顾客抽奖•已知小明获得 1次抽奖机会.(1)小明是否一定能中奖:(填是、否)(1)写出点A (x , y )所有可能的坐标;21. 2018年12月16日,西安市地铁4号线带着华美的外表和深厚的文化开通试运营,列车车厢的Tiffany蓝与车厢的顶部及脚面的科技感十足的银色互相搭配,被首批试乘的旅客称为“仙女专列” •小华和小丽利用元旦放假期间进行了西安市民对地铁4号线的满意度的调查,如图是西安地铁四号线南端的五站路线图,小华和小丽分别在飞天路、东长安街、神舟大道这三站中随机选取一站作为调查的站点.(1) ________________________________________ 小华选取的站点的飞天路的概率为;(2)请用列表或画树状图的方法,求小华和小丽选取的站点相邻的概率.22 •小红和小丁玩纸牌优秀,如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌面上,小红先从中抽出一张,小丁从剩余的3张牌中也在、抽出一张,比较两人抽取的牌面上的数字,数字大者获胜,请用树状图或列表法求小红获胜的概率.23. 下表是一名同学在罚球线上投篮的实验结果,根据表中数据,回答问题:(1) 将表格补充完成;(精确到0.01)(2) 估计这名同学投篮一次,投中的概率约是多少(精确到0.1)?(3) 根据此概率,估计这名同学投篮622次,投中的次数约是多少?24. 国家为了实现2020年全面脱贫目标,实施“精准扶贫”战略,采取异地搬迁,产业扶持等措施.使贫困户的生活条件得到改善,生活质量明显提高.某旗县为了解贫困县对扶贫工作的满意度情况,进行随机抽样调查,分四个类别 A •非常满意;B.满意;C •基本满意;D •不满意•依据调查数据绘制成条形统计图和扇形统计图(不完整).根据以上信息,解答下列问题:(1) D类别在扇形统计图中对应的圆心角度数是 _____________(2) 将条形统计图补充完整;(3) 市扶贫办从该旗县甲乡镇3户和乙乡镇2户共5户贫困户中,随机抽取两户进行满度回访,求这两户贫困户恰好都是同一乡镇的概率.25. 现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整),请根据以上信息,解答下列问题;(1)写出a, b, c, d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行步数超过12000步(包含12000步) 的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步)的两名教师与大家分享心得,求被选取的两名教师恰好都在20000 (包含20000)以上的概率.频数(人〉5.解:画树状图为:•选择题1 •解:A 、为了解一批灯泡的使用寿命,宜采用抽样调查的方式,所以A 选项错误;B 、禾U 用树状图得到共有正正、正反、反正、反反四种可能的结果数,所以两枚硬币都是正面朝上这一事件发生的概率为,所以B 选项错误;4C 、 掷一枚质地均匀的正方体骰子,骰子停止转动后, 5点朝上是随机事件,所以 C 选项错误;D 、 因为S 甲2= 0.4, S 乙2= 0.6,所以甲的方差小于乙的方差,所以甲的射击成绩较稳定,所以D选项正确.故选:D .A 、B 、C 分别表示“图书馆,博物馆,科技馆”三个场馆)共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为 3,所以两人恰好选择同一场馆的概率=〔「• 故选:A .3•解:在A , B , C , D 四个点中任选三个点,有如下四种情况: ABC 、ABD 、ACD 、BCD ,其中能够组成等腰三角形的有 ACD 、BCD 两种情况,91•••能够组成等腰三角形的概率为 =,42故选:B .4.解:画树状图为:1 2 3 Zl\ 1 2 3 434 4共有6种等可能的结果数,其中一次性取出的两个小球标号的和不小于 4的结果数为5,所以一次性取出的两个小球标号的和不小于 4的概率=二6故选:D .参考答案2.解:画树状图为:(用AB/T\ /T\ ABC ABCC ABC5,好差差中 差 好 中 差共有9种等可能的结果数,两人中至少有一个给“好评”的结果数为所以两人中至少有一个给“好评”的概率=' 故选:C . 6.解:画树状图为: 反正 反共有4种等可能的结果数,两次都是正面朝上的结果数为 1,所以两次都是正面朝上的概率’ “ 故选:B . 7.解:A 、掷一枚质地均匀的硬币,落地时结果是“正面向上” 的概率为B 、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是C 、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率为=,不符合题意;6的概率为.,符合题意;o,不符合题意;D 、袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球的概故选:B . 8.解:A 、两试验结果虽然不完全相等,但都是正确的,故错误; B 、两种试验结果都正确,正确; C 、增加试验次数可以减小稳定值的差异,正确; D 、同一个试验的稳定值不是唯一的,正确, 故选:A . 9.解:列表如下12 53 3 615448 20由表知,共有9种等可能结果,其中转得的两个数之积为偶数的有7种结果,所以转得的两个数之积为偶数的概率为',故选:C.10. 解:列表法:由表知,指的两个数字作乘法运算所得的积为奇数的有2种结果,所以指的两个数字作乘法运算所得的积为奇数的概率为[=一,6 3故选:B.二.填空题11. 解:如果先摸出一白球,这个白球不放回,31那么第二次摸球时,有3个白球和6个红球,再摸出一球它是白球的概率是 | =.一,故答案为:下.12. 解:•••在这6种情况中,掷的点数大于4的有2种结果,21•••掷的点数大于4的概率为 =,6 3故答案为:..13. 解:画树状图为:-1 -2 1 2/\ /N /1\ /4\-2 j 2 -1 1 2 -1-2 2 -1 -2 1共有12种等可能的结果数,其中a, b之和大于0的结果数为4,41所以a, b之和大于0的概率=—=—故答案为.14.解:画树状图为:J1彳bx/V. /TV- /TV- xTV 11 3…1 3 5 -113 5 -li 35共有16种等可能的结果数,其中以第一次得到的放字为横坐标,第二次得到的数字为纵坐标得 到的恰好在直线 y =- X+4上的结果数为4,所以以第一次得到的放字为横坐标,第二次得到的数字为纵坐标,得到一个点则这个点•恰好在直线y =- x+4上的概率=■=.故答案为厂15.解:画树状图为:木入/k2 31 2 3 J 2 3共有9种等可能的结果数,其中两球上的编号的积为偶数的结果数为 5,所以两球上的编号的积为偶数的概率='.故答案为.16.解:画树状图为:共有36种等可能的结果数,其中小红两次都抽到3号跑道的结果数为1 ,所以小红两次都抽到 3号跑道的概率=丿.故答案为--.17 .解:设袋中红球有 x 个,解得:x = 7,经检验:x = 7是分式方程的解, 所以袋中红球有7个, 故答案为:7.16418.解:画树状图得:•••共有16种等可能的结果,记录的两个数字的和等于 0的由3种结果,3•••记录的两个数字的和等于 0的概率为,16故答案为: 16三•解答题19. 解:(1)小明不一定能中奖,故答案为:否;(2)球的个数有1+2+3+8 = 14 (个),而红球有 1个 所以小明抽到一等奖的概率是1.14(3)因为黑球的个数有 8个,g 4所以没有中奖的概率是—=.;,A 3则中奖的概率是1 -”,因为::* ”,所以中奖和没中奖的机会不相等,可以减少2个黑球使中奖和没中奖的机会相等(答案不唯一).20. 解:(1)点A 所有可能的坐标为(2, 1 )、( 2, 2)、( 2, 3)、( 2 6);(2)v 在所列的6种等可能结果中,点 A 落在y = x+1上的有1种结果, .••点A (x , y )在直线y = x+1上的概率为匚21.解:1)小华选取的站点的飞天路的概率为.;幵皓4)、( 2, 5)、( 2,故答案为.;(2) 画树状图为:(用 A 、B 、C 分别表示飞天路、东长安街、神舟大道这三站)A B c /1\ /T\ /T\ A B C A B C ABC共有9种等可能的结果数,其中小华和小丽选取的站点相邻的结果数为 4,小华和小丽选取的站点相邻的概率=空922. 解:画树状图为:3 6 S /N /N/1\& S 103 s 10 儿 10共有12种等可能的结果数,其中小红获胜的结果数为 6,所以小红获胜的概率==.12 223 .解:(1) 153- 300= 0.51 ,252 - 500~ 0.50 ;故答案为:0.51 , 0.50;(2) 估计这名同学投篮一次,投中的概率约是 0.5;(3) 622X 0.5 = 311 (次).所以估计这名同学投篮 622次,投中的次数约是 311次.24 •解:(1)v 被调查的总户数为 50十25% = 200 (户),••• D 类别在扇形统计图中对应的圆心角度数是360°^— = 18故答案为:18 ° ;(2) B 满意度的户数为 200-( 50+20+10 )= 120 (户), 补全图形如下:10 /|\<占S由树状图知共有20种等可能结果,其中这两户贫困户恰好都是同一乡镇的有8种结果,所以这两户贫困户恰好都是同一乡镇的概率为=,25.解: (1) a = 8 — 50= 0.16, b = 12— 50= 0.24, c = 50X 0.2= 10, d = 50X 0.04 = 2, (2) 37800X( 0.2+0.06+0.04)= 11340, 答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3) 设16000 < x v 20000的3名教师分别为 A 、B 、C ,20000 < x v 24000的2名教师分别为 X 、Y ,画树状图如下:(3)画树状图如下:补全频数分布直方图如下:由树状图可知,被选取的两名教师恰好都在 20000步(包含20000步)以上的概率为 2=丄20 10A B C X Y B C A B X Y X Y A B C Y A B C X。

北师大版九年级数学上册第三章《概率的进一步认识》测试题

北师大版九年级数学上册第三章《概率的进一步认识》测试题

不要慌张,要仔细做题 呦!《概率的进一步认识》检测题黑神庙中学九年级( )班 姓名 学号 得分 一.选择题(每小题3分,共30分)1.“任意买一张电影票,座位号是3的倍数”,此事件是( ) A.不可能事件 B.不确定事件 C.必然事件 D.以上都不是2.下列说法中正确的是 ( )A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定会发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生3.下列事件为确定事件的是( )A.掷一枚质地均匀的骰子,骰子停止转动后偶数点朝上B.从一副扑克牌中任意抽取一张牌,抽到的牌是红桃C.任意选择电视的某一频道,正在播放动画片D.在同一年出生的367名学生中,至少有两人的生日在同一天4.一个袋子中有4个珠子,其中2个是红色,2个蓝色,除颜色外其余特征均相同,若在这个袋中任取2个珠子,都是红色的概率是 ( ) A . B . C . D .5.掷两枚硬币,正面都朝上的概率为( )A.21 B.31 C.41 D.51213141616.有木条4根,分别为10cm ,8cm ,4cm ,2cm,从中任取三根能组成三角形的概率是( )A.21B.31C.41D.51 7.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同。

小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是( ) A.6 B.16 C.18 D.248.如图是从一副扑克牌中取出的两组牌,分别是黑桃1、2、3、4和方块1、2、3、4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,则摸出的两张牌的牌面数字之和等于5的概率是( ) A.21 B.31 C.41 D.53 9.如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是( )A. 25B. 310C.320D.1510.一个均匀的立方体六个面上分别标有1,2,3,4,5,6,如图是这个立方体表面的展开图,抛掷这个立方体,则朝上一面的数恰好等于朝下一面的数的2倍的概率是( )A .61B .C .D .312132二.填空题(每题4分,共20分)11.如果当一次试验要涉与两个因素(例如掷两骰子)并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,我们通常采用 求概率;当一次试验要涉与3个或3个以上的因素(例如从3个口袋中取球)时,为了不重不漏地列出所有可能结果,通常采用 求概率.12.不透明的袋子中有五个球,三红二白,从中摸一个球,记下颜色,放回去再摸一个球,则摸到二红的机会是 .13.小王手里拿着黑桃1和黑桃2两张牌,小亮手里拿着梅花1和梅花2两张牌,他们各出一张,共有 种不同的出牌方式,其中牌面数之和为4的概率是 .14.密码锁的密码是一个5位密码,每个密码的数字都可以从0到9的任何一个.某人忘了后2位号码,随意拨动后2位号码正好能开锁的概率是 .15.为了估计湖里有多少条鱼,有如下方案:从湖里捕上100条做上标记,然后放回湖里,经过一段时间,第二次再捕上200条,若其中有标记的鱼有32条,则估计湖里大约有 条鱼. 三.解答题(共50分)12345348916.(6分)小明和小亮用如图的同一个转盘进行“配紫色”游戏.游戏规则如下:连续转动两次转盘,如果两次转盘转出的颜色相同或配成紫色(若其中一次转盘转出蓝色,另一次转出红色,则可配成紫色),则小明胜,否则小亮胜.你认为这个游戏对双方公平吗?请说明理由.17.(6分)某人有红、白、蓝三件衬衫,红、白、蓝三条长裤,该人任意拿一件衬衫和一条长裤,正好是一套白的概率为多少?18.(8分)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球2个,黄球1个,蓝球1个,第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.19.(10分)分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.20.(10分)掷两枚质地均匀的骰子,用列表法求下列事件的概率:(1)两枚骰子点数和不小于9的概率;(2)两枚骰子点数和是4的倍数的概率.21.(10分)我校安排两辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小明、小强与小军都可以从这两辆车中任选一辆搭乘,用画树状图求小明与小强同车的概率.。

北师大版九年级数学上册 第3章 《概率的进一步认识》 单元测试卷 含答案

北师大版九年级数学上册  第3章 《概率的进一步认识》 单元测试卷 含答案

北师版数学九年级上册第三章概率的进一步认识 单元测试卷(时间90分钟,满分120分)第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( ) A.19 B.16 C.13 D.232. 如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是( ) A.112 B.110 C.16 D.253. 如图所示的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是( )A.1925B.1025C.625D.5254. 小明有2件上衣,分别为红色和蓝色;有3条裤子,其中2条为蓝色,1条为棕色.小明任意拿出1件上衣和1条裤子穿上,则小明穿的上衣和裤子恰好都是蓝色的概率是( ) A.13 B.12 C.23 D.345. 三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a ,b ,c ,则以a ,b ,c 为边长正好构成等边三角形的概率是( ) A.19 B.127 C.59 D.136. 用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是( ) A.12 B.13 C.59 D.497. 如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以A 1,A 2,B 1,B 2其中的任意两点与点O 为顶点作三角形,所作三角形是等腰三角形的概率是( ) A.34 B.13 C.23 D.128.一个盒子里有完全相同的三个小球,球上分别标有数-1,1,2.随机摸出一个小球(不放回),其数记为p ,再随机摸出另一个小球,其数记为q ,则满足关于x 的方程x 2-px +q =0有实数根的概率是( )A.12B.13C.23D.569.小兰和小潭分别用掷A ,B 两枚正六面体骰子的方法来确定P(x ,y)的位置,她们规定:小兰掷得的点数为x ,小潭掷得的点数为y ,那么,她们各掷一次所确定的点落在已知直线y =-2x +6上的概率为( )A.16B.118C.112D.1910. 如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为4的概率是( ) A.12 B.13 C.14 D.15第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是________.12. 有两个不透明的盒子,第一个盒子中有3张卡片,上面的数字分别为1,2,2;第二个盒子中有5张卡片,上面的数字分别为1,2,2,3,3.这些卡片除了数字不同外,其它都相同,从每个盒子中各抽出一张,都抽到卡片数字是2的概率为________.13. 如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”,“2”,“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为_________.14. 在一个不透明的盒子中装有n个球,它们除了颜色之外其他都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是_______.15.2018年10月14日,韵动中国·2018广安国际红色马拉松赛激情开跑.上万名跑友在小平故里展开激烈的角逐.某校从两名男生和三名女生中选出两名同学作为红色马拉松赛的志愿者,则选出一男一女的概率是_______.16.从如图所示的四个带圆圈的数字中,任取两个数字(既可以是相邻也可以是相对的两个数字)相互交换它们的位置,交换一次后能使①,②两数在相对位置上的概率是_______.17.如图所示的两个圆盘中,指针落在每一个数所在的区域上的机会均等,则两个指针同时落在数“1”所在的区域上的概率是_________18.小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同的概率是________三.解答题(共8小题,66分)19.(6分) 一个不透明的口袋中有一个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从口袋中随机摸出一个小球记下字母.用画树状图(或列表)的方法,求小园同学两次摸出的小球上的字母相同的概率.20.(6分) 某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用画树状图或列表的方法给出分析过程)21.(8分)在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2,3,4,5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙同学的方案公平吗?(只回答,不用说明理由).22.(8分)有2部不同的电影A ,B ,甲、乙、丙3人分别从中任意选择1部观看. (1)求甲选择A 部电影的概率;(2)求甲、乙、丙3人选择同1部电影的概率(请用画树状图的方法给出分析过程,并求出结果).23.(8分) 随机抛掷图中均匀的正四面体(正四面体的各面依次标有1,2,3,4四个数字),并且自由转动图中的转盘(转盘被分成面积相等的五个扇形区域).(1)求正四面体着地的数字与转盘指针所指区域的数字之积为4的概率;(2)设正四面体着地的数字为a ,转盘指针所指区域内的数字为b ,求关于x 的方程ax 2+3x +b4=0有实数根的概率.24.(8分) 在四张背面完全相同的纸牌A ,B ,C ,D 中,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张(不放回),再从余下的3张纸牌中摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A,B,C,D表示);(2)求摸出两张纸牌牌面上所画几何图形既是轴对称图形又是中心对称图形的概率.25.(10分) 甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为________;(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.26.(12分) 小明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为14.(1)求袋中黄球的个数;(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有哪几种摸法?参考答案:1-5CACAA 6-10DDABB11. 2312.41513. 4914. 100 15. 3516. 1317.12518. 2919. 解:列表如下:所有等可能的情况有9种,其中两次摸出的小球的标号相同的情况有3种,则P =39=1320. 解:列表如下:由表可知共有4种等可能的结果,其中恰好抽到由男生甲、女生丙和这位班主任一起上场比赛的情况只有1种,∴其概率为1421. 解:(1)甲同学的方案不公平.理由:列表如下:所有出现的等可能结果共有12种,其中抽出的牌面上的数字之和为奇数的有8种,故小明获胜的概率为812=23,则小刚获胜的概率为13,故此游戏两人获胜的概率不相同,即甲同学的方案不公平(2)不公平22. 解:(1)甲选择A 部电影的概率=12(2)画树状图为:共有8种等可能的结果,其中甲、乙、丙3人选择同1部电影的结果有2种,所以甲、乙、丙3人选择同1部电影的概率为28=1423. 解:(1)画树状图略,总共有20种结果,每种结果出现的可能性相同,正四面体着地的数字与转盘指针所指区域的数字之积为4的有3种情况,故正四面体着地的数字与转盘指针所指区域的数字之积为4的概率为:320(2)∵方程ax 2+3x +b4=0有实数根的条件为:9-ab≥0,∴满足ab≤9的结果共有14种:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2),∴关于x 的方程ax 2+3x +b4=0有实数根的概率为:1420=71024. 解:(1)画树状图如图所示:则共有12种等可能的结果(2)∵既是轴对称图形又是中心对称图形的只有B ,C ,∴既是轴对称图形又是中心对称图形的有2种情况,∴既是轴对称图形又是中心对称图形的概率为212=1625. 解:(1)12(2)画树状图得:则共有12种等可能的结果.列表得:∴乙获胜的概率为51226. 解:(1)1个(2)画树状图如图,所以两次摸到不同颜色球的概率为:P =1012=56(3)设小明摸到红球x 次,摸到黄球y 次,则摸到红球有(6-x -y)次,由题意得5x +3y +(6-x -y)=20,即2x +y =7,y =7-2x.因为x 、y 、(6-x -y)均为自然数,所以当x =1时,y =5,6-x -y =0;当x =2时,y =3,6-x -y =1;当x =3时,y =1,6-x -y =2;综上:小明共有三种摸法:摸到红、黄、蓝三种球分别为1次、5次、0次;或2次、2次、1次;或3次、1次、2次。

北师大版九年级数学上册第三单元概率的进一步认识 检测试题 含答案

北师大版九年级数学上册第三单元概率的进一步认识 检测试题  含答案

单元测试(三) 概率的进一步认识(满分:150分,考试用时120分钟)一、选择题(本大题共15个小题,每小题3分,共45分)1.将一枚质地均匀的硬币抛掷两次,则两次都是正面向上的概率为( )A.12B.13C.23D.142.在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④.随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( )A.116B.316C.14D.5163.中考体育男生抽测项目规则是:从立定跳远、实心球、引体向上中随机抽一项,从50米、50×2米、100米中随机抽一项,恰好抽中实心球和50米的概率是( )A.13B.16C.23D.194.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A.12B.14C.16D.1125.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为( )A.12 B.15 C.18 D.216.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( )A.14B.34C.13D.127.假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,那么三只雏鸟中有两只雌鸟的概率是( )A.16B.38C.58D.238.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )A.49B.13C.16D.199.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是( )A.19B.16C.13D.1210.有一箱子装有3张分别标示为4,5,6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,若先后取出2张牌组成两位数的每一种结果发生的机会都相同,则组成的两位数为6的倍数的概率为( )A.16B.14C.13D.1211.小明和小亮做游戏,先是各自背着对方在纸上写一个不大于100的正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏( )A.对小明有利 B.对小亮有利C.是公平的D.无法确定对谁有利12.如图,随机闭合开关S1,S2,S3中的两个,则灯泡发光的概率是( )A.34B.23C.13D.1213.从1,2,3,4中任取两个不同的数,其乘积大于4的概率是( )A.16B.13C.12D.2314.如图,直线a∥b,直线c与直线a、b都相交,从所标识的∠1、∠2、∠3、∠4、∠5这五个角中任意选取两个角,则所选取的两个角互为补角的概率是( )A.35B.25C.15D.2315.某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜.则当x=________时,游戏对甲、乙双方公平( ) A.3 B.4 C.5 D.6二、填空题(本大题共5小题,每小题5分,共25分)16.学校要从小明、小红与小华三人中随机选取两人作为升旗手,则小明和小红同时入选的概率是________.17.小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球共3 000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是________.18.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是________.19.“服务社会,提升自我”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队.若从该小分队任选两名同学进行交通秩序维护,则恰是一男一女的概率是________.20.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于________.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)一只不透明的袋子中,装有分别标有数字1,2,3的三个球,这些球除所标的数字外都相同,搅匀后从中摸出1个球,记录下数字后放回袋中并搅匀,再从中任意摸出1个球,记录下数字,请用列表方法,求出两次摸出的球上的数字之和为偶数的概率.22.(8分)如图的方格地面上,标有编号A、B、C的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的鸟,将随意地落在图中的方格地面上,则小鸟落在草坪上的概率是________;(2)现从3个小方格空地中任意选取2个种植草坪,则刚好选取A和B的2个小方格空地种植草坪的概率是多少?(用树形图或列表法求解)23.(10分)在四边形ABCD中,①AB∥CD;②AD∥BC;③AB=CD;④AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是多少?24.(12分)“石头、剪子、布”是小朋友都熟悉的游戏,游戏时小聪、小明两人同时做“石头、剪子、布”三种手势中的一种,规定“石头”(记为A)胜“剪子”,“剪子”(记为B)胜“布”,“布”(记为C)胜“石头”,同种手势不分胜负,继续比赛.(1)请用树状图或表格列举出同一回合中所有可能的对阵情况;(2)假定小聪、小明两人每次都等可能地做这三种手势,那么同一回合中两人“不谋而合”(即同种手势)的概率是多少?25.(12分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3、4、5、x,甲、乙两人每次同时从袋中各随机摸出1个小球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验,试验数据如表:摸球总10 20 30 60 90 120 180 240 330 450(1)如果试验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x 的值可以取7吗?请用列表法或画树状图说明理由;如果x 的值不可以取7,请写出一个符合要求的x 值.26.(14分)某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1、2、3、4、5、6个小圆点的小正方体)27.(16分)为决定谁获得仅有的一张电影票,甲和乙设计了如下游戏:在三张完全相同的卡片上,分别写上字母A,B,B,背面朝上,每次活动洗均匀.甲说:我随机抽取一张,若抽到字母B,电影票归我;乙说:我随机抽取一张后放回,再随机抽取一张,若两次抽取的字母相同电影票归我.(1)求甲获得电影票的概率;(2)求乙获得电影票的概率;(3)此游戏对谁有利?参考答案1.D 2.C 3.D 4.C 5.B 6.D 7.B 8.D 9.C10.A 11.C 12.B 13.C 14.A 15.B 16.13 17.2 100个 18.12 19.35 20.5821.1 2 3 1 2 3 4 2 3 4 5 3456∴两次摸出的球上的数字之和为偶数的概率为59. 22.(1)23(2)P(编号为A 、B 的2个小方格空地种植草坪)=26=13.23.画树状图如下:由树状图可知,所有等可能的结果共12种,满足条件的结果有8种.所以能判定四边形ABCD 是平行四边形的概率是812=23. 24.(1)略.(2)P(不谋而合)=13.,3,4,5,7 3,,7,8,10 4,7,,9,11 5,8,9,,12 7,10,11,12, 25.(1)0.33 (2)不可以取7.∵当x =7时,列表如下(也可以画树状图):∴两个小球上数字之和为9的概率是212=16≠13,当x =5时,两个小球上数字之和为9的概率是13.(答案不唯一,也可以是4). 26.(1)P =36=12.(2)游戏公平.理由如下:小亮 小丽1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)5 (5,1) (5,2) (5,3) (5,4) (5,5)(5,6) 6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果. ∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的. 27.(1)P(甲获得电影票)=23.(2)可能出现的结果如下(列表 A B B A (A ,A) (A ,B) (A ,B) B (B ,A) (B ,B) (B ,B) B(B ,A)(B ,B)(B ,B)共有9种等可能结果,其中两次抽取字母相同的结果有5种.∴P(乙获得电影票)=59.(3) ∵23>59, ∴此游戏对甲更有利.。

北师大新版九年级数学上册第三章概率进一步认识检测题含解析

北师大新版九年级数学上册第三章概率进一步认识检测题含解析

第三章概率的进一步认识检测题( 本检测题总分值: 120 分,时间: 120 分钟 )一、选择题〔每题 3分,共 30分〕1.〔 2021·四川南充中考〕如图是一个能够自由转动的正六边形转盘,此中三个正三角形涂有暗影.转动指针,指针落在有暗影的地区内的概率为a;假如扔掷一枚硬币,正面向上的概率为b.对于 a, b 大小的正确判断是〔〕A. a> b= b< b D. 不可以判断2.以下说法正确的选项是〔〕第1题图A .在一次抽奖活动中,“中奖的概率是1〞表示抽奖 100 次就必定会中奖100B.随机抛一枚硬币,落地后正面必定向上C.同时掷两枚平均的骰子,向上一面的点数和为6D .在一副没有大、小王的扑克牌中随意抽一张,抽到的牌是 6 的概率是1 133.在一个不透明的盒子中装有8 个白球,假定干个黄球,它们除颜色不一样外,其余均同样.假定从中随机2摸出一个球,它是白球的概率为,那么黄球的个数为〔〕34.〔杭州中考〕让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的地区,那么这两个数的和是 2 的倍数或是 3 的倍数的概率等于〔〕A. 3B.3C.5第 4题图1688D.13165.〔 2021·湖北宜昌中考〕在课外实践活动中,甲、乙、丙、丁四个小组用扔掷一元硬币的方法来估量正面向上的概率,其试验次数分别为10 次, 50 次, 100 次, 200 次,此中试验相对科学的是〔〕A .甲组B .乙组C.丙组 D .丁组6.〔 2021·广州中考〕某个密码锁的密码由三个数字构成,每个数字都是0-9 这十个数字中的一个,只有当三个数字与所设定的密码及次序完好同样,才能将锁打开,假如仅忘掉了所设密码的最后那个数字,那么一次就能打开该密码锁的概率是〔〕A.1B.1C.1D.1 109327.10 名学生的身高以下〔单位:cm〕:159169163170166164156172163162从中任选一名学生,其身高明过165 cm 的概率是〔〕A .1B .2C .11 255D .108.某市民政部门五一时期举行“即开式福利彩票〞的销售活动,刊行彩票10 万张〔每张彩票 2 元〕,在此次彩票销售活动中,设置以下奖项:奖金〔元〕 1 00050010050102数目〔个〕1040150400 1 00010 000假如花 2 元钱买 1 张彩票,那么所得奖金许多于50 元的概率是〔〕A. B. C. D.9.青青的袋中有红、黄、蓝、白球假定干个,晓晓又放入 5 个黑球,经过频频摸球试验,发现摸到红球、黄球、蓝球、白球的频次挨次为30% 、 15%、 40% 、 10% ,那么青青的袋中大概有黄球〔〕A.5 个B.10 个C.15 个D.30 个10.航空兵空投救灾物质到指定的地区〔大圆〕以下列图,假定要使空投物资落在中心地区〔小圆〕的概率为,那么小圆与大圆半径的比值为〔〕A. C.二、填空题〔每题 3 分,共 24 分〕11.随意扔掷一枚质地平均的正方体骰子 1 次,骰子的六个面上分别刻有 1 到 6 的点数,掷得向上一面的点数大于 4 的概率为.12.〔 2021·浙江温州中考〕一个不透明的袋子中只装有 1 个红球和 2 个蓝球,它们除颜色外其余都同样 .现随机从袋中摸出两个球,颜色是一红一蓝的概率是.13〔 2021·长沙中考〕假定同时扔掷两枚质地平均的骰子,那么事件“两枚骰子向上的点数互不同样〞的概率是 __________.14.在一个不透明的袋中装有除颜色外其余都同样的 3 个小球,此中一个红色球、两个黄色球.如果第一次先从袋中摸出一个球后不再放回,第二次再从袋中摸出一个,那么两次都摸到黄色球的概率是.15.〔 2021·北京中考〕林业部门要观察某种幼树在必定条件下的移植成活率,下表是这类幼树在移植过程中的一组统计数据:移植的棵数n成活的棵数mm成活的频次n预计该种幼树在此条件下移植成活的概率为__________.16. (2021·山西中考 )现有两个不透明的盒子,此中一个装有标号分别为1, 2 的两张卡片,另一个装有标号分别为1,2, 3 的三张卡片,卡片除标号外其余均同样.假定从两个盒子中各随机抽取一张卡片,那么两张卡片标号恰巧同样的概率是.17.(重庆中考 ) 从- 1, 1, 2这三个数字中,随机抽取一个数,记为 a .那么,使对于x 的一次函数 y2x a 的图象与x 轴、 y 轴围成的三角形面积为1,且使对于x 的不等式组4x 2,.有解的概率为1 x 2a18.〔 2021·呼和浩特中考〕在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数以下甲组 :9,9,11,10; 乙组 :9,8,9,10 ,分别从甲、乙两组中随机选用一名同学,那么这两名同学的植树总棵数为 19 的概率为.,三、解答题〔共 66 分〕19.〔 8分〕有两组卡片,第一组三张卡片上各写着、B、B,第二组五张卡片上各写着A、B、、A BD 、F .试用列表法求出从每组卡片中各抽取一张,两张都是B的概率.20.〔 8 分〕一个不透明袋子中有1 个红球, 1 个绿球和 n 个白球,这些球除颜色外无其余差别 .(1)当 n=1 时,从袋子中随机摸出 1 个球,摸到红球和摸到白球的可能性能否同样?(2)从袋中随机摸出 1 个球,记录其颜色,而后放回.大批重复该试验,发现摸到绿球的频率稳固于,那么 n 的值是 ________ ;(3)在一个摸球游戏中,全部可能出现的结果以下:依据树状图体现的结果,求两次摸出的球颜色不一样的概率21.〔 8 分〕 (武汉中考〕袋中装有大小同样的 2 个红球和.2个绿球.(1) 先从袋中摸出 1 个球后放回,混淆平均后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有 1 个绿球和 1 个红球的概率.(2) 先从袋中摸出 1 个球后不放回,再摸出 1 个球,那么两次摸到的球中有1 个绿球和1个红球的概率是多少?请直接写出结果.22.〔 8 分〕 (2021·湖北宜昌中考)901 班的全体同学依据自己的兴趣喜好参加了六个学生社团〔每个学生一定参加且只参加一个〕.为认识学生参加社团的状况,学生会对该班参加各个社团的人数进行了统计,绘制成以下不完好的扇形统计图.参加“念书社〞的学生有15 人 .请解答以下问题:(1〕该班的学生共有 ____________ 名;(2〕假定该班参加“吉他社〞与“街舞社〞的人数同样,请你计算“吉他社〞对应扇形的圆心角的度数;(3〕901 班学生甲、乙、丙是“爱心社〞的优异成员,现要从这三名学生中随机选两名学生参加“社区义工〞活动,请你用画树状图或列表的方法求出恰巧选中甲和乙的概率 .第22题图23.〔 8 分〕如图,有两个能够自由转动的转盘A、 B ,转盘 A 被平均分红 4 等份,每份标上1、 2、 3、 4 四个数字;转盘 B 被平均分红 6 等份,每份标上1、 2、 3、 4、 5、 6 六个数字 .有人为甲、乙两人设计了一个游戏,其规那么以下:( 1〕同时转动转盘 A 与 B.( 2〕转盘停止后,指针各指向一个数字〔假如指针恰巧指在切割线上,那么重转一次,直到指针指向一个数字为止〕,用所指的两个数字作积,假如所得的积是偶数,那么甲胜;假如所得的积是奇数,那么乙胜.你以为这样的规那么能否公正?请你说明原因;假如不公平,请你设计一个公正的规那么,并说明原因.24.〔 8 分〕甲、乙两个盒子中装有质地、大小同样的小球,甲盒中有 2 个白球, 1 个黄球和 1 个蓝球;乙盒中有 1 个白球, 2 个黄球和假定干个蓝球 .从乙盒中随意摸取一球为蓝球的概率是从甲盒中随意摸取一球为蓝球的概率的 2 倍 .( 1〕求乙盒中蓝球的个数;( 2〕从甲、乙两盒中分别随意摸取一球,求这两球均为蓝球的概率. 25.〔 8 分〕〔 2021·兰州中考〕为了参加中考体育测试.甲、乙、丙三位同学进行足球传球训练 .球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机遇是均等的,由甲开始传球,共传球三次.( 1〕请利用树状图列举出三次传球的全部可能状况; ( 2〕求三次传球后,球回到甲脚下的概率;( 3〕三次传球后,球回到甲脚下的概率大仍是传到乙脚下的概率大.26.(10 分 )长城企业为希望小学捐献甲、乙两种品牌的体育器械,甲品牌有 A 、 B 、 C 三种型号,乙品牌有 D 、 E 两种型号,现要从甲、乙两种品牌的器械中各选购一种型号进行捐献 .〔 1〕写出全部的选购方案〔用列表法或树状图法〕 .〔 2〕假如在上述选购方案中,每种方案被选中的可能性同样,那么A 型器械被选中的概率是多少?第三章 概率的进一步认识检测题参照答案1. B 分析:由题意得,在正六边形转盘中,有暗影的地区与空白地区面积相等,所以指针1落在有暗影地区内的可能性与落在空白地区内的可能性相等,所以a;扔掷一枚硬币,2正面向上与反面向上的可能性都相等,所以1,所以 a b ,应选项 B 正确 .b22. D分析:设黄球的个数为 ,那么由题意,得,解得 .分析:两个指针分别落在某两个数所表示的地区,两个数的和的各样可能状况列表以下:两数第和一2341第 二 个个1 2 3 4 5 2 3 4 5 6 34 5 6 7 45678由表格知共有 16 种等可能的结果,此中两个数的和是2 的倍数的结果有 8 种;两个数的和是3 的倍数的结果有 5 种;既是 2 的倍数,又是 3 的倍数的结果有 3 种,故两个数的和是 2 的倍数或是 3 的倍数的结果有10 种 .所以 P(两个数的和是2 的倍数或是3 的倍数 )=105 .168分析 : 用试验频次预计概率,一定进行大批重复试验,试验次数越多,频次越靠近 概率,故试验次数最多的那组相对科学,应选 D.分析:所设密码的最后那个数字可能是0、 1、 2、 3、 4、 5、 6、 7、 8、 9 中的随意一 个 ,所以该事件中有 10 种等可能的结果发生,而打开锁的状况只有一种,所以 P 〔打开密 码锁〕 = 1,应选 A.102 .分析: 10 名学生中有4 名学生的身高明过165 cm ,所以概率为5分析: 10 万张彩票中设置了10个 1000元, 40 个 500 元, 150 个 100 元, 400 个 50 元的奖项,所以所得奖金许多于50 元的概率为 .分析:因为知道有5 个黑球,又摸到黑球的频次为 1- 30%― 15%― 40%― 10%= 5%,所以袋中球的总数为5÷5% = 100 〔个〕,进而黄球的数目为 100×15%= 15〔个〕 .分析:由题意可知小圆的面积是大圆面积的,进而小圆的半径是大圆半径的 . 11.分析 :扔掷一枚质地平均的正方体骰子,共有6 种状况 .掷得向上一面的点数大于4 的有5 和6 两种状况,所以掷得向上一面的点数大于 4 的概率是 = .2 12.分析 :画树状图,以下列图 .3由图能够看出共有 6 种等可能的状况,此中结果为一红一蓝的状况有 4 种, 所以 P 〔一红一蓝〕==.5分析: 由题意作出树状图以下:第 12 题答图13.6一共有第 13 题答图36 种状况,“两枚骰子向上的点数互不同样〞有30 种状况,所以,P(两枚骰子向上的点数互不同样)==.14.分析:画出树状图以下:所以 P〔两次都摸到黄色球〕21.6 315.0.881 分析:用频次预计概率,数据越大,预计越正确,所以,移植幼树棵数越多,估量成活的概率越正确,所以0.881 可作为预计值.116.分析 1: 列表法:3第一盒12第二盒1(1,1)(1,2)2(2,1)(2,2)3(3,1)(3,2)共有 6 种状况,两张卡片标号恰巧同样的状况有 2 种,所以P(两张卡片标号恰巧相同 ).分析 2:画树状图以下列图:共有 6 种状况,两张卡片标号恰巧同样的状况有 2 种,所以P(两张卡片标号恰巧同样).17.1分析:①当 a1时,函数 y 2 x 1 ,它的图象与两坐标轴的交点坐标分别为1 , 、32 0〔 0,- 1〕,它的图象与两坐标轴围成的三角形的面积为1,不等式组x 2 1,无解;41 x2②当 a1时,函数 y2x 1,它的图象与两坐标轴的交点坐标分别为1 , 、2 01,不等式组〔 0, 1〕,它的图象与两坐标轴围成的三角形的面积为x 21,的解是41 x 2x1 ;③当 a2 时,函数 y2x 2 ,它的图象与两坐标轴的交点坐标分别为〔-1, 0〕、〔 0,2〕,它的图象与两坐标轴围成的三角形的面积为1,不等式组x22,的解集为1 x 43 x 0 .综上,使对于x 的一次函数 y= 2x+a 的图象与 x 轴、 y 轴围成的三角形的面积为 1和对于 x 的不等式组418.分析:画出树状图如图:x 2a ,有解同时建立的 a 值只有 1,概率为1.1 x 2a3第 18 题答图或许列表以下:乙组和 98910甲组9 18 17 18 19 9 18 17 18 19 11 20 19 20 21 1019181920用树状图法或列表法表示出全部等可能的结果数是 16,再找出两名同学植树总棵树为 19 的结果数是 5,所以 P 〔两名同学植树总棵树为 19〕 =.19.解:列出表格以下:第二组ABBD F第一组A 〔A,A 〕 〔 A,B 〕 〔A,B 〕 〔A,D 〕 〔A,F 〕 B 〔B,A 〕 〔 B,B 〕 〔B,B 〕 〔B,D 〕 〔B,F 〕 B〔B,A 〕〔 B,B 〕〔B,B 〕〔B,D 〕〔B,F 〕全部可能出现的状况有 15 种,此中两张都是B 的状况有 4 种,故从每组卡片中各抽取一张,两张都是 B 的概率为 .20. 解: (1) 同样;(2)2 ;(3) 由树状图可知:共有12 种结果,且每种结果出现的可能性同样 .此中两次摸出的球颜色不一样 (记为事件 A)的结果共有 10 种,∴ P(A) .点拨 :〔 1〕当 n = 1 时,此时袋子中有 1 个红球、 1 个绿球、 1 个白球,所以此时摸到红球和白球 的概率都是,所以摸到红球和摸到白球的可能性是同样的;〔 2〕由摸到绿球的频次稳固于 0.25 可 预计摸到绿球的概率为,可得=,即=,解得n=2;〔 3〕由树状图可知,找出全部等可能的结果和两次摸出的球颜色不一样的结果利用概率公式求解.21. 解:〔 1〕分别用 R 1 , R 2 表示 2 个红球, G 1 , G 2 表示 2 个绿球,列表以下:第二次RR2 G1G2第一次1R 1 〔 R 1,R 1〕 〔 R 1,R 2〕 〔 R 1,G 1〕 〔 R 1,G 2〕R 2〔 R 2,R 1〕 〔 R 2,R 2〕 〔 R 2,G 1〕 〔 R 2,G 2〕 G 1〔 G 1,R 1〕 〔 G 1,R 2〕 〔 G 1,G 1〕 〔 G 1,G 2〕221〕〔G 22 〕 〔G 2 ,G 1〕〔G 2 2 〕G〔G ,R,R,G由上表可知,有放回地摸2 个球共有 16 种等可能结果 .①此中第一次摸到绿球,第二次摸到红球的结果有 4 种,∴ P(第一次摸到绿球,第二次摸到红球)=4= 1 .16 4②此中两次摸到的球中有 1 个绿球和 1 个红球的结果有 8 种,∴P(两次摸到的球中有 1 个绿球和 1 个红球 )= 8 = 1.16 2( 2〕 2.322. 解:〔 1〕 60〔2 〕参加“吉他社〞的学生在全班学生中所占比率为=,所以,“吉他社〞对应扇形的圆心角的度数为:360°× 10%=36 ° . 〔3 〕画树状图以下:第 22 题答图或列表以下:另一名甲乙丙一名甲〔甲,乙〕〔甲,丙〕乙〔乙,甲〕〔乙,丙〕丙〔丙,甲〕〔丙,乙〕由树状图〔或表格〕可知,共有 6 种等可能的状况,此中恰巧选中甲和乙的状况有 2 种,故 P(恰巧选中甲和乙 )== .点拨:〔 1〕由题意知参加“念书社〞的学生有 15 人,从扇形统计图中能够看出参加“念书社〞的占25%,故该班的学生共有:=.〔2〕该班参加“吉他社〞与“街舞社〞的学生共占学生总数的〔1-25%-20%-20%-15% 〕 =20% ,而参加“吉他社〞与“街舞社〞的学生人数同样,所以参加“吉他社〞的学生占学生总数的20%÷ 2=10% ,也就是“吉他社〞对应的扇形的圆心角占整个圆的10%,所以“吉他社〞对应的扇形的圆心角的度数为:360°×10%=36° .〔3〕由树状图或列表可知,从甲、乙、丙三人中选两人,共有 6 种等可能的结果,此中恰巧选中甲和乙的状况有 2 种,所以 P〔恰巧选中甲和乙〕==23.解:游戏不公正.列出表格以下:积B123456A1123456 224681012 3369121518 44812162024全部可能结果共24 种,此中积为奇数的结果有 6 种,积为偶数的结果有18 种,所以P〔奇〕=,P〔偶〕= ,所以P〔偶〕>P〔奇〕,所以不公正.新规那么:⑴同时自由转动转盘A 和B;⑵转盘停止后,指针各指向一个数字,用所指的两个数字作和,假如获得的和是偶数,那么甲胜;假如获得的和是奇数,那么乙胜.原因:因为P〔奇〕 =; P〔偶〕 = ,所以 P〔偶〕 =P〔奇〕,所以规那么公正.24.解:〔 1〕设乙盒中有x个蓝球,那么从乙盒中随意摸取一球,1x;P 〔摸到蓝球〕x3从甲盒中随意摸取一球,P2〔摸到蓝球〕1.依据题意,得x21,解得 x 3 ,3个蓝球 .4x34所以乙盒中有〔 2〕方法一:列表以下:乙黄 1黄 2蓝 1蓝 2蓝 3甲白白 1〔白 1,(白 1,黄 1)(白 1,黄 2)(白 1,蓝 1)(白 1,蓝2)(白 1,蓝 3)白〕白 2〔白 2,〔白 2,黄(白 2,黄 2)(白 2,蓝 1)(白 2,蓝2)(白 2,蓝 3)白〕1〕黄〔黄,白〕〔黄,黄(黄,黄 2)(黄,蓝 1)(黄,蓝2)(黄,蓝 3) 1〕蓝〔蓝,白〕〔蓝,黄(蓝,黄 2)(蓝,蓝 1)(蓝,蓝2)(蓝,蓝 3) 1〕由表格能够看出,可能的结果有24 种,此中两球均为蓝球的有 3 种,所以从甲、乙两盒中各摸取一球,两球均为蓝球的概率〔也能够用画树状图法或列举法〕3 1 P. 24 8方法二:从甲盒中随意摸取一球,摸到蓝球的概率为 1 ,14 .从乙盒中随意摸取一球,摸到蓝球的概率为2那么从甲、乙两盒中各摸取一球,两球均为蓝球的概率为25.解:〔 1〕如图 .111 P2.48第 25 题答图(2〕 P〔“三次传球后,球回到甲脚下〞〕==.(3〕 P〔“三次传球后,球回到甲脚下〞〕=,P〔“三次传球后,球传到乙脚下〞〕=,所以球传到乙脚下的概率大.26.剖析:用列表法或画树状图法能够获得全部的选购方案,从中找出选中 A 型器械的方案的个数,利用概率的计算公式求出 A 型器械被选中的概率.解:〔 1〕列表以下:甲品牌乙ABC品牌北师大新版九年级数学上册第三章概率进一步认识检测题含分析D〔A,D〕〔B,D〕〔C,D〕E〔A,E〕〔B,E〕〔C,E〕全部选购方案为A, D;A, E ;B,D;B,E; C,D; C,E.〔2 〕∵全部可能出现的结果共有6种,每种结果出现的可能性都同样,A型器械被选中的结果有两种,∴ P〔选中 A 型器械〕== .。

北师大版九年级数学上册数学_第三章_概率的进一步认识_单元检测试题

北师大版九年级数学上册数学_第三章_概率的进一步认识_单元检测试题

北师大版九年级数学上册数学第三章概率的进一步认识单元检测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题〔共 10 小题,每题 3 分,共 30 分〕1.将分别写有数字2,3,4的三张卡片〔除数字外,其余均一样〕洗匀后反面朝上摆放,然后从中任意抽取两张,那么抽到的两张卡片上的数字之和为偶数的概率是〔〕A.2 3B.12C.13D.162.在一个不透明的纸箱中放入m个除颜色外其他都完全一样的球,这些球中有4个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在15,因此可以估算出m的值大约是〔〕A.8B.12C.16D.203.在一个不透明的布袋中,红色、黑色的球共有10个,它们除颜色外其他完全一样.张宏通过屡次摸球试验后发现其中摸到红球的频率稳定在20%附近,那么口袋中红球的个数很可能是〔〕A.2个B.5个C.8个D.10个4.一个不透明的口袋里装有除颜色外都一样的10个白球和假设干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为〔〕A.60个B.50个C.40个D.30个5.某一部三册的小说,任意排放在书架的同一层上,那么各册自左到右或自右到左的顺序恰好为第1,2,3册的概率为〔〕A.1 3B.12C.16D.1126.在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共20只,某学习小组作摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回A.8B.9C.12D.137.同时掷两个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,那么两个骰子向上的一面的点数和为8的概率为〔〕A.19B.536C.16D.7368.一个口袋中有8个黑球和假设干个白球,从口袋中随机摸出一球,记下颜色,再放回口袋,不断重复上述过程,共做了200次,其中有50次摸到黑球,因此估计袋中白球有〔〕A.23个B.24个C.25个D.26个第 1 页9.从−1、1、2三个数中随机取一个数为k,再随机取一个数〔可重复〕为b,那么直线y=kx+b与x轴的交点在x轴正半轴的概率是〔〕A.49B.23C.12D.1310.图示的两个圆盘中,指针落在每一个数字所在的扇形区域上的时机是相等的,那么两个指针同时落在偶数所在的扇形区域上的概率是〔〕A.5 25B.625C.1025D.1925二、填空题〔共 10 小题,每题 3 分,共 30 分〕11.李教师想从小明、小红、小丽和小亮四个人中用抽签的方式抽取两个人做流动值周生,那么小红和小丽同时被抽中的概率是________.12.如下图,一只蚂蚁从A点出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都可能的随机选择一条向左下或右下的途径〔比方A岔路口可以向左下到达B 处,也可以向右下到达C处,其中A,B,C都是岔路口〕.那么,蚂蚁从A出发到达E处的概率是________.13.口袋中有红色、黄色、蓝色的玻璃球共80个,小华通过屡次试验后,发现摸到红球、黄球的频率依次是45%、25%,那么估计口袋中篮球的个数约为________个.14.小李和小王准备到古隆中、水镜庄、黄家湾三个景点去玩耍,假如他们各自在这三个景点中任选一个作为玩耍的第一站〔每个景点被选为第一站的可能性一样〕,那么他们都选古隆中为第一站的概率是________.15.分别从数−5,−2,1,3中,任取两个不同的数,那么所取两数的和为正数的概率为________.16.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,那么颜色搭配正确的概率是________.17.一个袋子中装有6个球,其中4个黑球2个白球,这些球除颜色外,形状、大小、质地等完全一样.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为白球的概率是________.18.一水塘里有鲤鱼、鲫鱼、鲢鱼共10 000尾,一渔民通过屡次捕捞实验后发现,鲤鱼、鲫鱼出现的频率分别是31%和42%,那么这个水塘里大约有鲢鱼________尾.19.有红黄蓝三种颜色的小球各一个,它们除颜色外完全一样,将这三个小球随机放入编号为①②③的盒子中,假设每个盒子放入一个小球,且只放入一个小球,那么黄球恰好被放入③号盒子的概率为________.20.两个不透明的袋子,一个装有两个球〔1个白球,一个红球〕,另一个装有3个球〔1个白球,1个红球,1个绿球〕,小球除颜色不同外,其余完全一样.现从两个袋子中各随机摸出1个小球,两球颜色恰好一样的概率是________.三、解答题〔共 6 小题,每题 10 分,共 60 分〕21.在四张反面完全一样的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形〔如图〕,小华将这4张纸牌反面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图〔或列表法〕表示两次摸牌所有可能出现的结果〔纸牌可用A、B、C、D表示〕;(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.22.甲、乙两人用如下图的两个分格均匀的转盘做游戏:分别转动两个转盘,假设转盘停顿后,指针指向一个数字〔假设指针恰好停在分格线上,那么重转一次〕,用所指的两个数字作乘积,假如积大于10,那么甲获胜;假如积不大于10,那么乙获胜.请你解决以下问题:(1)利用树状图〔或列表〕的方法表示游戏所有可能出现的结果;(2)求甲、乙两人获胜的概率.23.“学雷锋活动日〞这天,阳光中学安排七、八、九年级局部学生代表走出校园参与活动,活动内容有:A.清扫街道卫生;B.慰问孤寡老人;C.到社区进展义务文艺演出.学校要求一个年级的学生代表只负责一项活动内容.(1)假设随机选一个年级的学生代表和一项活动内容,请你用列表法〔或画树状图〕表示所有可能出现的结果;(2)求九年级学生代表到社区进展义务文艺演出的概率.24.一个不透明的盒中装有假设干个只有颜色不同的红球与白球.(1)假设盒中有2个红球和2个白球,从中任意摸出两个球恰好是一红一白的概率是多少?请用画树状图或列表的方式说明;(2)假设先从盒中摸出8个球,画上记号放回盒中,再进展摸球实验.摸球实验的要求:每次摸球前先搅拌均匀,摸出一个球,记录颜色后放回盒中,再继续,(3)在(2)的条件下估算盒中红球的个数.25.“端午〞节前,第一次爸爸去超市购置了大小、质量都一样的火腿粽子和豆;妈妈发沙粽子假设干,放入不透明的盒中,此时随机取出火腿粽子的概率为13现小亮喜欢吃的火腿粽子偏少,第二次妈妈又去买了同样的5只火腿粽子和1只豆沙粽子放入同一盒中,这时随机取出火腿粽子的概率为1.2(1)请计算出第一次爸爸买的火腿粽子和豆沙粽子各有多少只?(2)假设妈妈从盒中取出火腿粽子4只、豆沙粽子6只送爷爷和奶奶后,再让小亮从盒中不放回地任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?〔用字母和数字表示豆沙粽子和火腿粽子,用列清法计算〕26.某校数学兴趣小组成员小华对本班上学期期末考试数学成绩〔成绩取整数,总分值为100分〕作了统计分析,请你根据图表提供的信息,解答以下问题:(2)根据学校规定将有40%的学生参加校级数学冬令营活动,试确定参赛学生的最低资格线?第 3 页(3)数学教师准备从不低于90分的学生中选2人介绍学习经历,其中符合条件的小华、小丽同时被选中的概率是多少?答案1.B2.D3.A4.C5.A6.C7.B8.B9.A10.B11.1612.1213.2414.1915.1316.1217.11518.270019.1320.1321.解(1)画树状图得:那么共有16种等可能的结果;(2)∵既是中心对称又是轴对称图形的只有B、C,∴既是轴对称图形又是中心对称图形的有4种情况,∴既是轴对称图形又是中心对称图形的概率为:416=14.22.解:(1)树状图法:或列表法:(2)根据列出的表,P(甲)=26=13,P(乙)=46=23.23.解:(1)由题意可画出树状图:(2)由树状图可知共有6种可能,九年级学生代表到社区进展义务文艺演出的有2种,所以概率是九年级学生代表到社区进展义务文艺演出的概率为26=13.24.红球占40%,白球占60%;(3)由题意可知,50次摸球实验活动中,出现有记号的球4次,∴总球数为8÷450=100,∴红球数为100×40%=40,答:盒中红球有40个.25.第一次爸爸买了4只火腿粽子,8只豆沙粽子.(2)如今有火腿粽子9只,豆沙粽子9只,送给爷爷,奶奶后,还有火腿粽子5只,豆沙粽子3只.记豆沙粽子a,b,c;火腿粽子1,2,3,4,5.恰好火腿粽子、豆沙粽子各1只的概率为3056=1528.80分;(3)设四人分别为甲〔小华〕、乙〔小丽〕、丙、丁,根据题意,列表可得,∴小华、小丽两同学同时被选中的概率=212=16.第 5 页。

北师大版九年级数学上册 第三章 概率的进一步认识 单元测试题

北师大版九年级数学上册 第三章 概率的进一步认识 单元测试题

2019—2019学年度第一学期北师大版九年级数学上册第三章概率的进一步认识单元测试题考试总分:120 分考试时间: 120分钟学校:__________班级:__________姓名:__________考号:__________一、选择题(共 10 小题 ,每小题 3分,共 30分 )1。

在一个不透明的布袋中,红色、黑色、白色的球共有120个,除颜色外,形状、大小、质地等完全相同、小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数特别估计是( )个。

A。

48B、60C。

18D、542。

下列说法不正确的是( )A。

增加几次实验,事件发生的频率与这一事件发生的概率的差距估计扩大B、增加几次实验,事件发生的频率越来越接近这一事件发生的概率的差距估计缩小C。

实验次数特别大时,事件发生的频率稳定在这一事件发生的概率附近D、实验次数增大时,事件发生的频率越来越接近这一事件发生的概率3。

某校安排三辆车运送九年级学生团员去某社区参加学雷锋活动,其中小王和小张都能够从这三辆车中任选一辆搭乘,则小王与小张同车的概率为( )A。

19B、13C、12D、234。

已知一口袋中放有红、白、黑三种颜色的球共50个,它们除颜色外其他都一样,一位同学通过多次试验后发现摸到红、白色的频率基本稳定是45%和15%,则袋中黑球的个数估计是()A、16B。

18C、20D。

225、学生甲与学生乙玩一种转盘游戏、如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”、“2”、“3”、“4"表示、固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则都重转一次、在该游戏中乙获胜的概率是( )ﻫA。

14B、12C、34D、566、准备两张大小一样,分别画有不同图案的正方形纸片,把每张纸都对折、剪开,将四张纸片放在盒子里,然后混合,随意抽出两张正好能拼成原图的概率是( )A、13B、14C、15D、167。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章概率的进一步认识单元检测试题题号一二三总分得分一、选择题(本大题共10小题,共30分)1.不透明的黑袋子里放有3个黑球和若干个白球(黑白两球仅有颜色不同),老师将全班学生分成10个小组,进行摸球试验,在经过大量重复摸球试验中,统计显示,从中摸出白球的频率稳定在0.4附近,则袋子里放了()个白球。

A. 5B. 4C. 3D. 22.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A. 13B. 23C. 16D. 193.有一个质地均匀的骰子,6个面上分别写有1,1,2,2,3,3这6个数字.连续投掷两次,第一次向上一面的数字作为十位数字,第二次向上一面的数字作为个位数字,这个两位数是奇数的概率为A. B. C. D.4.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A. 12B. 14C. 16D. 1125.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是A. B. C. D.6.小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是()A. 23B. 12C. 13D. 197.如图,在平面直角坐标系中,点A 1,A 2在x轴上,点B 1,B 2在y轴上,其坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),分别以A 1、A 2、B 1、B 2其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是()A. B. C. D.8.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是A. B. C. D.第1页,共5页9.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是()A. 14B. 34C. 13D. 1210.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A. 20B. 24C. 28D. 30二、填空题(本大题共9小题,共27分)11.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球______个.12.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球个.13.如图,有四张卡片(形状、大小和质地都相同),正面分别写有字母A、B、C、D和一个不同的算式,将这四张卡片背面向上洗匀,从中随机抽取两张卡片,这两张卡片上的算式只有一个正确的概率是______ .14.一不透明的口袋里装有白球和红球共20个,这些球除颜色外完全相同,小明通过多次摸球试验后发现,其中摸到白色球的频率稳定在0.2左右,则口袋中红色球可能有_____个.15.从1,2,3,4中任意取出两个不同的数,其和为5的概率是______ .16.第45届世界体操锦标赛将于2014年10月3日至12日在南宁市隆重举行,届时某校将从小记者团内负责体育赛事报道的3名同学(2男1女)中任选2名前往采访,那么选出的2名同学恰好是1男1女的概率是.17.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则可估计袋中白色球的个数是.18.已知a、b可以取−2、−1、1、2中任意一个值(a≠b),则直线y=ax+b的图象不经过第四象限的概率是____________.19.林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组统计数据:移植的棵数n1000 1500 2500 4000 8000 15000 20000 30000成活的棵数m865 1356 2220 3500 7056 13170 17580 26430成活的频率mn0.8650.9040.8880.8750.8820.8780.8790.881估计该种幼树在此条件下移植成活的概率为________(结果精确到0.01).三、解答题(本大题共7小题,共63分)20.(8分)如图,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x,乙转盘中指针所指区域内的数字为y(当指针指在边界线上时,重转一次,直到指针指向一个区域为止).(1)请你用画树状图或列表格的方法,求出点(x,y)落在第二象限内的概率;(2)直接写出点(x,y)落在函数y=−1x图象上的概率.21.九年级(1)班现要从A、B两位男生和D、E两位女生中,选派学生代表本班参加全校“中华好诗词”大赛.(1)如果选派一位学生代表参赛,那么选派到的代表是A的概率是;(2)如果选派两位学生代表参赛,用画树状图或列表法求恰好选派一男一女两位同学参赛的概率.第3页,共5页22.(本题9分)某班毕业联欢会设计了即兴表演节目的摸球游戏.游戏采用了一个不透明的盒子,里面装有五个分别标有数字1、2、3、4、5的乒乓球.这些球除数字外,其它完全相同.游戏规则是:参加联欢会的50名同学,每人将盒子里的五个乒乓球摇匀后,闭上眼睛从中随机地一次摸出两个球(每位同学必须且只能摸一次).若两个球上的数字之和为偶数,就给大家即兴表演一个节目;否则,下一个同学接着做摸球游戏,依次进行.(1)用列表法或画树状图法求参加联欢会的某位同学即兴表演节目的概率;(2)估计本次联欢会上有多少名同学即兴表演节目?23.在一次数学文化课题活动中,把一副数学文化创意扑克牌中的4张扑克牌(如图所示)洗匀后正面向下放在桌面上,从中随机抽取2张牌,请你用列表或画树状图的方法,求抽取的2张牌的数字之和为偶数的概率.24.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之积能被2整除的概率.第5页,共5页25. 在一个口袋里有四个完全相同的小球,把它们分别标号为1,2,3,4,小明和小强采取的摸取方法分别是:小明:随机摸取一个小球记下标号,然后放回,再随机摸取一个小球,记下标号;小强:随机摸取一个小球记下标号,不放回,再随机摸取一个小球,记下标号.(1)用画树状图(或列表法)分别表示小明和小强摸球的所有可能出现的结果;(2)分别求出小明和小强两次摸球的标号之和等于5的概率.在一个口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.小明和小强采取了不同的摸取方法,分别是:小明:随机抽取一个小球记下标号,然后放回,再随机地摸取一个小球,记下标号; 小强:随机摸取一个小球记下标号,不放回,再随机地抽取一个小球,记下标号.(1)用画树状图(或列表法)分别表示小明和小强摸球的所有可能出现的结果;(2)分别求出小明和小强两次摸球的标号之和等于5的概率.26.1、在最软入的时候,你会想起谁。

20.9.59.5.202015:5015:50:31Sep -2015:502、人心是不待风吹儿自落得花。

二〇二〇年九月五日2020年9月5日星期六3、有勇气承担命运这才是英雄好汉。

15:509.5.202015:509.5.202015:5015:50:319.5.202015:509.5.20204、与肝胆人共事,无字句处读书。

9.5.20209.5.202015:5015:5015:50:3115:50:315、若注定是过客,没何必去惊扰一盏灯。

Saturday, September 5, 2020September 20Saturday, September 5, 20209/5/20206、生的光荣,活着重要。

3时50分3时50分5-Sep -209.5.20207、永远叫不醒一个装睡的人。

20.9.520.9.520.9.5。

2020年9月5日星期六二〇二〇年九月五日8、人生能有几回搏。

15:5015:50:319.5.2020Saturday, September 5, 2020 亲爱的用户:相识是花结成蕾。

在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,感谢你的阅读。

相关文档
最新文档