计算机组成实验1
计算机组成原理实验(接线、实验步骤)
计算机组成原理实验(接线、实验步骤)实验⼀运算器[实验⽬的]1.掌握算术逻辑运算加、减、乘、与的⼯作原理;2.熟悉简单运算器的数据传送通路;3.验证实验台运算器的8位加、减、与、直通功能;4.验证实验台4位乘4位功能。
[接线]功能开关:DB=0 DZ=0 DP=1 IR/DBUS=DBUS接线:LRW:GND(接地)IAR-BUS# 、M1、M2、RS-BUS#:接+5V控制开关:K0:SW-BUS# K1:ALU-BUSK2:S0 K3:S1 K4:S2K5:LDDR1 K6:LDDR2[实验步骤]⼀、(81)H与(82)H运算1.K0=0:SW开关与数据总线接通K1=0:ALU输出与数据总线断开2.开电源,按CLR#复位3.置数(81)H:在SW7—SW0输⼊10000001→LDDR2=1,LDDR1=0→按QD:数据送DR2置数(82)H:在SW7—SW0输⼊10000010→LDDR2=0,LDDR1=1→按QD:数据送DR1 4.K0=1:SW开关与数据总线断开K1=1:ALU输出与数据总线接通5. S2S1S0=010:运算器做加法(观察结果在显⽰灯的显⽰与进位结果C的显⽰)6.改变S2S1S0的值,对同⼀组数做不同的运算,观察显⽰灯的结果。
⼆、乘法、减法、直通等运算1.K0K1=002.按CLR#复位3.分别给DR1和DR2置数4.K0K1=115. S2S1S0取不同的值,执⾏不同的运算[思考]M1、M2控制信号的作⽤是什么?运算器运算类型选择表选择操作S2 S1 S00 0 0 A&B0 0 1 A&A(直通)0 1 0 A+B0 1 1 A-B1 0 0 A(低位)ΧB(低位)完成以下表格ALU-BUS SW-BUS# 存储器内容S2S1S0 DBUS C输⼊时:计算时:DR1:01100011DR2:10110100(与)DR1:10110100DR2:01100011(直通)DR1:01100011DR2:01100011(加)DR1:01001100DR2:10110011(减)DR1:11111111DR2:11111111(乘)实验⼆双端⼝存储器[实验⽬的]1.了解双端⼝存储器的读写;2.了解双端⼝存储器的读写并⾏读写及产⽣冲突的情况。
计算机组成原理数据通路实验报告
计算机组成原理数据通路实验报告计算机组成原理实验报告计算机组成原理实验报告实验一基本运算器实验一、实验目的1. 了解运算器的组成结构2. 掌握运算器的工作原理3. 深刻理解运算器的控制信号二、实验设备PC机一台、TD-CMA实验系统一套三、实验原理1. (思考题)运算器的组成包括算数逻辑运算单元ALU(Arithmetic and Logic Unit)、浮点运算单元FPU(Floating Point Unit)、通用寄存器组、专用寄存器组。
①算术逻辑运算单元ALU (Arithmetic and Logic Unit)ALU主要完成对二进制数据的定点算术运算(加减乘除)、逻辑运算(与或非异或)以及移位操作。
在某些CPU中还有专门用于处理移位操作的移位器。
通常ALU由两个输入端和一个输出端。
整数单元有时也称为IEU(IntegerExecution Unit)。
我们通常所说的“CPU 是XX位的”就是指ALU所能处理的数据的位数。
②浮点运算单元FPU(Floating Point Unit)FPU主要负责浮点运算和高精度整数运算。
有些FPU还具有向量运算的功能,另外一些则有专门的向量处理单元。
③通用寄存器组通用寄存器组是一组最快的存储器,用来保存参加运算的操作数和中间结果。
④专用寄存器专用寄存器通常是一些状态寄存器,不能通过程序改变,由CPU自己控制,表明某种状态。
而运算器内部有三个独立运算部件,分别为算术、逻辑和移位运算部件,逻辑运算部件由逻辑门构成,而后面又有专门的算术运算部件设计实验。
下图为运算器内部原理构造图2. 运算器的控制信号实验箱中所有单元的T1、T2、T3、T4都连接至控制总线单元的T1、T2、T3、T4,CLR都连接至CON单元的CLR按钮。
T4由时序单元的TS4提供(脉冲信号),其余控制信号均由CON单元的二进制数据开关模拟给出。
控制信号中除T4为脉冲信号外,其余均为电平信号,其中ALU_B为低有效,其余为高有效。
计算机组成实验报告
计算机组成实验报告计算机组成实验报告(共3篇)篇一:《计算机组成与结构》实验报告11 .实验目的:1).学习和了解TEC-2000 十六位机监控命令的用法;2).学习和了解TEC-2000 十六位机的指令系统;3).学习简单的TEC-2000 十六位机汇编程序设计;2.实验内容:1).使用监控程序的R 命令显示/修改寄存器内容、D 命令显示存储器内容、E 命令修改存储器内容;2).使用 A 命令写一小段汇编程序,U 命令反汇编刚输入的程序,用G 命令连续运行该程序,用T、P 命令单步运行并观察程序单步执行情况;3、实验步骤1).关闭电源,将大板上的COM1 口与PC 机的串口相连;2).接通电源,在PC 机上运行PCEC.EXE 文件,设置所用PC 机的串口为“1”或“2”, 其它的设置一般不用改动,直接回车即可;3).置控制开关为00101(连续、内存读指令、组合逻辑、16 位、联机),开关拨向上方表示“1”,拨向下方表示“0”,“X”表示任意。
其它实验相同;4).按一下“RESET”按键,再按一下“START”按键,主机上显示:TEC-2000 CRT MONITOR Version 1.0 April 2001Computer Architectur Lab.,Tsinghua University Programmed by He Jia >5).用R 命令查看寄存器内容或修改寄存器的内容a.在命令行提示符状态下输入:R↙;显示寄存器的内容图片已关闭显示,点此查看图片已关闭显示,点此查看b.在命令行提示符状态下输入:R R0↙;修改寄存器R0 的内容,被修改的寄存器与所赋值之间可以无空格,也可有一个或数个空格主机显示:寄存器原值:_在该提示符下输入新的值,再用R 命令显示寄存器内容,则R0 的内容变为0036。
图片已关闭显示,点此查看6).用D 命令显示存储器内容在命令行提示符状态下输入:D 2000↙会显示从2000H 地址开始的连续128 个字的内容;连续使用不带参数的 D 命令,起始地址会自动加128(即80H)。
计算机组成原理实验1-运算器
《计算机组成原理》实验报告实验一运算器实验一、实验目的1.掌握运算器的组成及工作原理;2.了解4位函数发生器74LS181的组合功能,熟悉运算器执行算术操作和逻辑操作的具体实现过程;3.验证带进位控制的74LS181的功能。
二、实验环境EL-JY-II型计算机组成原理实验系统一套,排线若干。
三、实验内容与实验过程及分析(写出详细的实验步骤,并分析实验结果)实验步骤:开关控制操作方式实验1、按图1-7接线图接线:连线时应注意:为了使连线统一,对于横排座,应使排线插头上的箭头面向自己插在横排座上;对于竖排座,应使排线插头上的箭头面向左边插在竖排座上。
图1-1 实验一开关实验接线图2、通过数据输入电路的拨开关开关向两个数据暂存器中置数:1)拨动清零开关CLR,使其指示灯。
再拨动CLR,使其指示灯亮。
置ALU-G =1:关闭ALU的三态门;再置C-G=0:打开数据输入电路的三态门;2)向数据暂存器LT1(U3、U4)中置数:(1)设置数据输入电路的数据开关“D15……D0”为要输入的数值;(2)置LDR1=1:使数据暂存器LT1(U3、U4)的控制信号有效,置LDR2=0:使数据暂存器LT2(U5、U6)的控制信号无效;(3)按一下脉冲源及时序电路的【单脉冲】按钮,给暂存器LT1送时钟,上升沿有效,把数据存在LT1中。
3)向数据暂存器LT2(U5、U6)中置数:(1)设置数据输入电路的数据开关“D15……D0”为想要输入的数值;(2)置LDR1=0:数据暂存器LT1的控制信号无效;置LDR2=1:使数据暂存器LT2的控制信号有效。
(3)按一下脉冲源及时序电路的“单脉冲”按钮,给暂存器LT2送时钟,上升沿有效,把数据存在LT2中。
(4)置LDR1=0、LDR2=0,使数据暂存器LT1、LT2的控制信号无效。
4)检验两个数据暂存器LT1和LT2中的数据是否正确:(1)置C-G=1,关闭数据输入电路的三态门,然后再置ALU-G=0,打开ALU 的三态门;(2)置“S3S2S1S0M”为“F1”,数据总线显示灯显示数据暂存器LT1中的数,表示往暂存器LT1置数正确;(3)置“S3S2S1S0M”为“15”,数据总线显示灯显示数据暂存器LT2中的数,表示往暂存器LT2置数正确。
实验1 认识计算机
1.5.3 光盘驱动器
1.5.3.1 光驱的主要技术指标 1.5.3.2 光驱的接口 1.5.3.3 光驱的其他产品
1.5.3.1 光驱的主要技术指标
1.寻迹和聚焦 . 准确地将光盘中的数据读出, 准确地将光盘中的数据读出,直接决定的因素有激光头 的寻迹是否准确,发射的光能否聚焦。 的寻迹是否准确,发射的光能否聚焦。 2.速度 . 现有光驱的主流是40X以上的光驱。 现有光驱的主流是 以上的光驱。 以上的光驱 3.数据传输率 . 数据传输率直接决定光驱的速度。 数据传输率直接决定光驱的速度。 4.平均搜寻时间 . 这也是衡量光驱速度的另一重要标准,它是指激光头定 这也是衡量光驱速度的另一重要标准, 位并读取数据所需的平均时间。 位并读取数据所需的平均时间。
1.5.3.2 光驱的接口
1.专用接口 . 早期,一些光驱的生产商,如索尼、美上美、松下等, 早期,一些光驱的生产商,如索尼、美上美、松下等, 都开发了本公司专用的光驱接口。 都开发了本公司专用的光驱接口。 2.SCSI接口 . 接口 SCSI接口的好处在于可以连接多个不同设备,并且占 接口的好处在于可以连接多个不同设备, 接口的好处在于可以连接多个不同设备 用较少的CPU资源。3.IDE接口 资源。 . 用较少的 资源 接口 IDE已成为目前光驱的主流接口。 已成为目前光驱的主流接口。 已成为目前光驱的主流接口 以上的系统, 接口已集成在主板上, 在586以上的系统,IDE接口已集成在主板上,不少的 以上的系统 接口已集成在主板上 声卡也提供IDE接口,这使得光驱的安装更为简单。 接口, 声卡也提供 接口 这使得光驱的安装更为简单。
实验1-认识计算机 实验 认识计算机
1.1 计算机系统硬件组成 1.2 微处理器 1.3 主板 1.4 内存 1.5 外存储器 1.6 输入系统设备 1.7 显示系统设备 1.8 声卡和音箱 1.9 机箱与电源
计算机组成原理实验1
实验一基础汇编语言程序设计一、实验目的:1、学习和了解TEC-XP16教学实验系统监控命令的用法。
2、学习和了解TEC-XP16教学实验系统的指令系统。
3、学习简单的TEC-XP16教学实验系统汇编程序设计。
二、预习要求:1、学习TEC-XP16机监控命令的用法。
2、学习TEC-XP16机的指令系统、汇编程序设计及监控程序中子程序调用。
3、学习TEC-XP16机的使用,包括开关、指示灯、按键等。
4、了解实验内容、实验步骤和要求。
三、实验步骤:在教学计算机硬件系统上建立与调试汇编程序有几种操作办法。
第一种办法,是使用监控程序的A命令,逐行输入并直接汇编单条的汇编语句,之后使用G命令运行这个程序。
缺点是不支持汇编伪指令,修改已有程序源代码相对麻烦一些,适用于建立与运行短小的汇编程序。
第二种办法,是使用增强型的监控程序中的W命令建立完整的汇编程序,然后用M命令对建立起来的汇编程序执行汇编操作,接下来用G命令运行这个程序。
适用于比较短小的程序。
此时可以支持汇编伪指令,修改已经在内存中的汇编程序源代码的操作更方便一些。
第三种办法,是使用交叉汇编程序ASEC,首先在PC机上,用PC机的编辑程序建立完整的汇编程序,然后用ASEC对建立起来的汇编程序执行汇编操作,接下来把汇编操作产生的二进制的机器指令代码文件内容传送到教学机的内存中,就可以运行这个程序了。
适用于规模任意大小的程序。
在这里我们只采用第一种方法。
在TEC-XP16机终端上调试汇编程序要经过以下几步:1、使教学计算机处于正常运行状态(具体步骤见附录联机通讯指南)。
2、使用监控命令输入程序并调试。
⑴用监控命令A输入汇编程序>A 或>A 主存地址如:在命令行提示符状态下输入:A 2000↙;表示该程序从2000H(内存RAM区的起始地址)地址开始屏幕将显示:2000:输入如下形式的程序:2000: MVRD R0,AAAA ;MVRD 与R0 之间有且只有一个空格,其他指令相同2002: MVRD R1,55552004: ADD R0,R12005: AND R0,R12006: RET ;程序的最后一个语句,必须为RET 指令2007:(直接敲回车键,结束A 命令输入程序的操作过程)若输入有误,系统会给出提示并显示出错地址,用户只需在该地址重新输入正确的指令即可。
《计算机组成原理》实验一 TEC-XP汇编语言程序设计参考答案
实验一 TEC-XP汇编语言程序设计(1)设计一个小程序,从键盘上接收一个字符并在屏幕上输出显示该字符。
A 2000 ↙输入如下形式的程序:2000: IN 812001: SHR R02002: SHR R02003: JRNC 20002004: IN 802005: OUT 802006:RET ↙2007:↙(2)设计一个小程序,用次数控制在终端显示器屏幕上输出‘0’到‘9’十个数字符。
提示:假设用R2存储字符个数,R0放第一个字符“0”,输出一个字符则R2减1,完成输出后R0加1 ,以准备下一个字符。
A 2020 ↙2020 : MVRD R2 , 0AMVRD R0 , 302024 : OUT 80DEC R2JRZ , 202EPUSH R02028 : IN 812029 : SHR R0202A : JRNC 2028POP R0INC R0jr 2024202E : RET202F:↙(3)从键盘上连续打入多个属于‘0’到‘9’的数字符并在屏幕上显示,遇到非数字字符结束输入过程。
验证:本程序中是否需要判别串行口输出完成否?为什么?A 2040 ↙2000 : MVRD R2 , 302002 : MVRD R3 , 392004 : IN 81 ;判断键盘上是否按了一个键2005 : SHR R02006 : SHR R02007 : JRNC 2004 ;没有输入则循环测试2008 : IN 80 ;输入字符放入R0的低8位2009 : MVRD R1 , 00FF200B : AND R0 , R1 ;清空R0的高八位200C : CMP R0 , R2 ;输入字符>=‘0’200D : JRNC 2013 ;否则,转到结束处200E : CMP R3 , R0 ;输入字符<=‘9’2010 : JRNC 2013 ;否则,转到结束处2011 : OUT 80 ;输出字符2012 : JMPA 20042013 : RET(4)计算1到10的累加和。
计算机组成原理实验1-汇编语言实验
微处理器与接口技术实验指导实验一监控程序与汇编语言程序设计实验一、实验要求1、实验之前认真预习,明确实验的目的和具体实验内容,设计好主要的待实验的程序,做好实验之前的必要准备。
2、想好实验的操作步骤,明确通过实验到底可以学习哪些知识,想一想怎么样有意识地提高教学实验的真正效果。
3、在教学实验过程中,要爱护教学实验设备,认真记录和仔细分析遇到的现象与问题,找出解决问题的办法,有意识地提高自己创新思维能力。
4、实验之后认真写出实验报告,重点在于预习时准备的内容,实验数据,实验过程、遇到的现象和解决问题的办法,自己的收获体会,对改进教学实验安排的建议等。
善于总结和发现问题,写好实验报告是培养实际工作能力非常重要的一个环节,应给以足够的重视。
二、实验目的【1】学习和了解TEC-XP16教学实验系统监控命令的用法;【2】学习和了解TEC-XP16教学实验系统的指令系统;【3】学习简单的TEC-XP16教学实验系统汇编程序设计。
三、实验注意事项(一)实验箱检查【1】连接电源线和通讯线前TEC-XP16实验系统的电源开关一定要处于断开状态,否则可能会对TEC-XP16实验系统上的芯片和PC机的串口造成损害。
【2】五位控制开关的功能示意图如下:【3】几种常用的工作方式【开关拨到上方表示为1,拨到下方为0】(二)软件操作注意事项【1】用户在选择串口时,选定的是PC机的串口1或串口2,而不是TEC-XP16实验系统上的串口。
即选定的是用户实验时通讯线接的PC机的端口;【2】如果在运行到第五步时没有出现应该出现的界面,用户需要检查是不是打开了两个软件界面,若是,关掉其中一个再试;【3】有时若TEC-XP16实验系统不通讯,也可以重新启动软件或是重新启动PC再试;【4】在打开该应用软件时,其它的同样会用到该串口的应用软件要先关掉。
(三)联机通讯失败自检如果上述的硬件和软件的操作都正确,联机却依旧失败,可以进行如下测试:【1】测试PC机的串口是否能正常工作,或是换一台PC或换同一台PC的另一个串口再试,在换串口时要将TEC-XP16实验系统断电,换完后重新启动实验系统和软件;【2】检查机器上的元器件插接是否正确(建议用户对照能够正常通讯的实验系统进行详细检查),有没有被学生动过,尤其是扩展内存和扩展I/O接口时,芯片方向是否插对,片选信号有没有连接;【3】检查相应的短路子是否连接正确;【4】建议教师预留一台运行正常的TEC-XP16实验系统备用,机器出问题后可以对照检查。
计算机组成原理第一次实验报告
K20
K19
K18
K17
K16
0
1
0
1
0
1
0
1
置控制信号:
K11(RRD)
K10(RWR)
K1(SB)
K0(SA)
1
0
1
1
给出CLOCK脉冲上升沿。
(2) R?的读出
自己设置RRD、RWR、SB及SA信号,观察R?的红色指示灯及液晶显示内容。
读R0:
置控制信号:
K11(RRD)
K10(RWR)
数据输出选择器原理图
X2 X1 X0
输出寄存器
0 0 0
IN-OE外部中断
0 0 1
IA-OE中断向量
0 1 0
ST-OE堆栈寄存器
0 1 1
PC-OE PC寄存器
1 0 0
D-OE直通门
1 0 1
R-OE右移门
1 1 0
L-OE左移门
1 1 1
没有输出
三、实验内容
1、A、W的写入
按下表连线
连接
信号孔
µPC原理图
当RES=0时,µPC被清0;
当IREN=0时,在CK的上升沿,预置数据被打入µPC。指令总线(IBUS)上的数据可来自一片74HC245。
当IREN=1时,在CK的上升沿,µPC加1。
(二)程序计数器PC
程序计数器PC由2片74HC161组成,能完成加1和预置数功能。程序计数器的输出由74HC245保存,74HC245与74HC161的输出相连,74HC245(2)的输出连接地址总线,74HC245(1)的输出接到数据总线(当LDPC=0时)。
二、实验原理
(一)寄存器
多思计算机组成原理实验 1 全加器实验
实验 1 全加器实验1.1 实验目的1) 熟悉多思计算机组成原理网络虚拟实验系统的使用方法。
2) 掌握全加器的逻辑结构和电路实现方法。
1.2 实验要求1) 做好实验预习,复习全加器的原理,掌握实验元器件的功能特性。
2) 按照实验内容与步骤的要求,独立思考,认真仔细地完成实验。
3) 写出实验报告。
1.3 实验电路本实验使用的主要元器件有:与非门、异或门、开关、指示灯。
图1.1 一位全加器实验电路一位全加器的逻辑结构如图 1.1 所示,图中涉及的控制信号和数据信号如下: 1) A i 、B i :两个二进制数字输入。
2) C i :进位输入。
3) S i :和输出。
4) C i+1:进位输出。
&& &=1=1Ai B i C i C i +1 Si1.4 实验原理1 位二进制加法器有三个输入量:两个二进制数字A i、B i 和一个低位的进位信号C i,这三个值相加产生一个和输出Si 以及一个向高位的进位输出C i+1,这种加法单元称为全加器,其逻辑方程如下:S i=A i⊕B i⊕C i (1.1)C i+1=A i B i+B i C i+C i A i1.5 实验内容与步骤1.运行虚拟实验系统,从左边的实验设备列表选取所需组件拖到工作区中,按照图 1.1所示搭建实验电路,得到如图 1.2 所示的实验电路。
图1.2 一位全加器虚拟实验电路2.打开电源开关,按表1-1 中的输入信号设置数据开关,根据显示在指示灯上的运算结果填写表1-1 中的输出值。
3.关闭电源开关,增加元器件,实现一个 2 位串行进位并行加法器。
用此加法器进行运算,根据运算结果填写好表1-2。
1.6 思考与分析1.串行进位并行加法器的主要缺点是什么?有改进的方法吗?高位的运算必须等到低位的进位产生才能进行,因此运算速度较慢。
改进方法:为了提高运算速度,可采用超前进位的方式,即每一位的进位根据各位的输入同时预先形成,而与低位的进位无关。
计算机组成原理实验一运算器组成实验
实验一 运算器组成实验一、实验目的1.熟悉双端口通用寄存器堆的读写操作。
2.熟悉简单运算器的数据传送通路。
3.验证运算器74LS181的算术逻辑功能。
4.按给定数据,完成指定的算术、逻辑运算。
二、实验电路ALU-BUS#DBUS7DBUS0Cn#C三态门(244)三态门(244)ALU(181)ALU(181)S3S2S1S0MA7A6A5A4F7F6F5F4F3F2F1F0B3B2B1B0Cn+4CnCnCn+4LDDR2T2T2LDDR1LDRi T3SW-BUS#DR1(273)DR2(273)双端口通用寄存器堆RF(ispLSI1016)RD1RD0RS1RS0WR1WR0数据开关(SW7-SW0)数据显示灯A3A2A1A0B7B6B5B4图3.1 运算器实验电路LDRi T3AB三态门R S -B U S #图3.1示出了本实验所用的运算器数据通路图。
参与运算的数据首先通过实验台操作板上的八个二进制数据开关SW7-SW0来设置,然后输入到双端口通用寄存器堆RF 中。
RF(U54)由一个ispLSI1016实现,功能上相当于四个8位通用寄存器,用于保存参与运算的数据,运算后的结果也要送到RF 中保存。
双端口寄存器堆模块的控制信号中,RS1、RS0用于选择从B 端口(右端口)读出的通用寄存器,RD1、RD0用于选择从A 端口(左端口)读出的通用寄存器。
而WR1、WR0用于选择写入的通用寄存器。
LDRi 是写入控制信号,当LDRi=1时,数据总线DBUS上的数据在T3写入由WR1、WR0指定的通用寄存器。
RF的A、B端口分别与操作数暂存器DR1、DR2相连;另外,RF的B端口通过一个三态门连接到数据总线DBUS上,因而RF中的数据可以直接通过B端口送到DBUS上。
DR1(U47)和DR2(U48)各由1片74LS273构成,用于暂存参与运算的数据。
DR1接ALU 的A输入端口,DR2接ALU的B输入端口。
(完整word版)计算机组成原理实验1~4
实验一寄存器实验一、实验目的1、了解CPTH模型机中寄存器的结构、工作原理及其控制方法.2、熟悉CPTH实验仪的基本构造及操作方法。
二、实验电路寄存器的作用是用于保存数据的,因为CPTH模型机是8位的,因此模型机中大部寄存器是8 位的,标志位寄存器(Cy, Z)是二位的.CPTH 用74HC574 (8—D触发器)来构成寄存器。
74HC574 的功能如表1—1所示:图1-1 74HC574的引脚图1. 在CLK的上升沿将输入端的数据打入到8 个触发器中2. 当OC = 1 时触发器的输出被关闭,当OC=0 时触发器的输出数据表1-1 74HC574功能表图1—2 74HC574工作波形图三、实验内容(一)proteus仿真平台1、proteus仿真平台简介Proteus软件是英国Lab Center Electronics公司出版的EDA工具软件。
它不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及外围器件.它的主界面如图1-3所示:图1—3 proteus仿真平台主界面2、在proteus平台上运行电路:寄存器_1.DSN。
拨动开关,观察灯的亮灭,回答思考题1。
思考题1:先使OC=1,拨D0~D7=00110011,按下CK提供CLK上升沿;再拨D0~D7=01000100,OC=0,此时Q0~Q7为多少?3、CPTH模型机上,寄存器A的电路组成如图1-4所示。
在proteus平台上运行电路:寄存器_2.DSN,回答思考题2。
图1-4 寄存器A原理图思考题2:数据从D端传送到Q端,相应的控制端如何设置?3、CPTH模型机上,寄存器组R0~R3的电路组成如图1-5所示。
在proteus平台上运行电路:寄存器_3。
DSN,回答思考题3。
图1—5 寄存器组R0~R3 原理图74LS139是2—4线译码器,由A、B两个输入端选择控制4个输出端Y0~Y3,使能端E低电平有效,允许译码输出。
74HC32是或门,两个输入端同时为低电平,输出为低电平.具体的控制方式见表1-2。
计算机组成原理-实验1静态随机存储器实验
计算机组成原理实验报告实验名称:静态随机存储器实验实验类型:验证型实验环境:PC + TD-CMA实验系统指导教师:专业年级:姓名:学号:实验地点:实验日期:实验成绩:一、实验目的:掌握静态随机存储器 RAM 工作特性及数据的读写方法二、实验过程实验原理实验所用的静态存储器由一片 6116(2K×8bit)构成(位于 MEM 单元),如图 2-1-1 所示。
6116 有三个控制线: CS(片选线)、 OE(读线)、 WE(写线),其功能如表 2-1-1所示,当片选有效(CS=0)时, OE=0 时进行读操作, WE=0 时进行写操作,本实验将 CS 常接地。
图 2-1-1 SRAM 6116 引脚图由于存储器(MEM)最终是要挂接到 CPU 上,所以其还需要一个读写控制逻辑,使得 CPU 能控制 MEM 的读写,实验中的读写控制逻辑如图 2-1-2 所示,由于 T3 的参与,可以保证 MEM的写脉宽与 T3 一致, T3 由时序单元的 TS3 给出(时序单元的介绍见附录2)。
IOM 用来选择是对 I/O 还是对 MEM 进行读写操作, RD=1 时为读, WR=1 时为写。
实验原理图如图 2-1-3 所示,存储器数据线接至数据总线,数据总线上接有 8 个 LED 灯显示 D7…D0 的内容。
地址线接至地址总线,地址总线上接有 8 个 LED 灯显示 A7…A0 的内容,地址由地址锁存器(74LS273,位于 PC&AR 单元)给出。
数据开关(位于 IN 单元)经一个三态门(74LS245)连至数据总线,分时给出地址和数据。
地址寄存器为 8 位,接入 6116的地址 A7…A0, 6116 的高三位地址 A10…A8 接地,所以其实际容量为 256 字节。
图 2-1-3 存储器实验原理图实验箱中所有单元的时序都连接至时序与操作台单元, CLR 都连接至 CON 单元的 CLR 按钮。
(计算机组成原理)实验一运算器实验
D
红色:运算器控制信号
BUS UNIT
蓝色:器件中信号
运算器电路图
M
S3
当为减
S2
法算术
S1
运算时
S0
输出1
ALU TO BUS
D7-D0
ALU-B
B7 B6 B5 B4 B3 B2 B1 B0 +5
A7
A6
A74LS2455
A4
A3
A2
A1
DIR E
A0
+5 +5
ZI D SET Q
1K
Q
CLR
Ci
返回
CN+4 F3 F2 F1 F0
S3
S2
ALU(74LS181)
S1 S0
M
CN
A3 A2 A1 A0 B3 B2 B1 B0
F3 F2 F1 F0
S3
S2
ALU(74LS181)
S1 S0
M
CN+4
A3 A2 A1 A0 B3 B2 B1 B0CN
S3 S2 S1 S0 M
Cn181
DA1,DA2:两片74LS273
T4 T1 B-IR
I3-I0
寄存器 译码
B-R0
MA6 -MA0
B-R1 B-R2
B-R3
R0-B
R1-B
R2-B
MA6-MA0
R3-B
D6-D0
J1
I7-I2
T1 微地址锁存器 OE CLK Q6-Q0 CLR
|
J5
FZ
指令译码器
FC
INT
T4 KA
7
KB
Q6-Q0
计算机组成原理 -实验一运算器组成实验_
三.实验内容
验证74LS181的算术运算和逻辑运算功能(采 用正逻辑)
改变运算器的功能设置,观察运算器的输出。
SW-B=1、ALU-B=0保持不变 在给定DR1=65、DR2=A7的情况下,改变运算器的功
能设置,观察运算器的输出,填入下表中,并和理论分 析进行比较、验证。 例如:置S3 S2 S1 S0 M CN为 1 0 0 1 0 1 运算器做加 法运算;
45
4.实验步骤
4.对源程序进行编译
在左方Source in Project栏中选中第二行ispLSI1032-70LJ84, 在右方Process for current Source栏中双击第七行JEDEC File按钮,则开始编译。如果编译正确,则生成可下载的文 件JEDEC File,即使出现警告提示,也表示已成功生成了可 下载文件。如果提示错误,则需要修改程序,然后重新编译。
40
3.实验原理
对该器件的逻辑系统设计是通过使用硬件描述 语言活原理图输入来实现的,硬件描述语言有 ABEL、VHDL等多种语言。
为了方便同学学习,这里以硬件描述语言进行 编程,描写器件功能,下面用ABEL语言编程 来实现一个加法器。
41
4.实验步骤
1.安装EDA。
打开计算机电源,进入windows系统,安装上述 ispDesignEXPERT软件,安装完成后,桌面和开始菜单中 则建有ispDesignEXPERT软件图标。
5
三.实验内容
图中已将用户需要连接的控制信号用圆圈标明(其 他实验相同,不再说明),其中除T4为脉冲信号, 其它均为电平信号。由于实验电路中的时序信号均 已连至“W/R UNIT”的相应时序信号引出端,因此, 在进行实验时,只需将“W/R UNIT”的T4接至 “STATE UNIT”的微动开关KK2的输出端,按动微 动开关,即可获得实验所需的单脉冲,而S3、S2、 S1、S0 、Cn、M、LDDR1、LDDR2、ALU-B、 SW-B各电平控制信号用“SWITCH UNIT”中的二 进制数据开关来模拟,其中Cn、ALU-B、SW-B为 低电平有效,LDDR1、LDDR2为高电平有效。
计算机组成原理实验指导 (1)
计算机组成原理实验指导实验一运算器部件实验一、实验目的⒈掌握简单运算器的数据传输方式。
⒉验证运算功能发生器(74LS181)及进位控制的组合功能。
二、实验要求完成不带进位及带进位算术运算实验、逻辑运算实验,了解算术逻辑运算单元的运用。
三、实验原理实验中所用的运算器数据通路如图7-1-1所示。
其中运算器由两片74LS181以并/串形式构成8位字长的ALU。
运算器的输出经过一个三态门(74LS245)以8芯扁平线方式和数据总线相连,运算器的2个数据输入端分别由二个锁存器(74LS273)锁存,锁存器的输入亦以8芯扁平线方式与数据总线相连,数据开关(INPUT DEVICE)用来给出参与运算的数据,经一三态门(74LS245)以8芯扁平线方式和数据总线相连,数据显示灯(BUS UNIT)已和数据总线相连,用来显示数据总线内容。
图7-1-1运算器电原理图图7-1-1中T2、T4为时序电路产生的节拍脉冲信号,通过连接时序启停单元时钟信号“”来获得,剩余均为电平控制信号。
进行实验时,首先按动位于本实验装置右中侧的复位按钮使系统进入初始待令状态,在LED显示器闪动位出现“P.”的状态下,按【增址】命令键使LED显示器自左向右第4位切换到提示符“L”,表示本装置已进入手动单元实验状态,在该状态下按动【单步】命令键,即可获得实验所需的单脉冲信号,而LDDR1、LDDR2、ALU-B、SW-B、S3、S2、S1、S0、CN、M各电平控制信号用位于LED显示器上方的26位二进制开关来模拟,均为高电平有效。
四、实验连线图7-1-2实验连线示意图按图7-1-2所示,连接实验电路:①总线接口连接:用8芯扁平线连接图7-1-2中所有标明“”或“”图案的总线接口。
②控制线与时钟信号“”连接:用双头实验导线连接图7-1-2中所有标明“”或“”图案的插孔(注:Dais-CMH的时钟信号已作内部连接)。
五、实验系统工作状态设定在闪动的“P.”状态下按动【增址】命令键,使LED显示器自左向右第4位显示提示符“L”,表示本装置已进入手动单元实验状态。
《计算机组成原理》实验1寄存器试验,2运算器试验
实验指导书课程:计算机组成原理实验教师:班级:第一章系统概述1.1 实验系统组成第二章基础模块实验实验一寄存器实验实验目的:熟悉试验仪各部分功能。
掌握寄存器结构、工作原理及其控制方法。
实验内容:利用实验仪开关区上的开关sk23-sk16提供数据,其它开关做为控制信号,将数据通过DBUS写入OUT 寄存器,并将OUT寄存器的内容送往扩展区通过数码管和发光二极管显示。
实验原理:实验箱用74HC273 来构成寄存器。
(1)74HC273的功能如下:(2)实验箱中74HC273的连接方式:(3)实验逻辑框图12、打开实验仪电源,按CON单元的nRST按键,系统复位;如果EXEC键上方指示灯不亮,请按一次EXEC键,点亮指示灯,表示实验仪在运行状态。
3、利用开关和控制信号将数据通过DBUS写入OUT寄存器,并将OUT寄存器的内容送往扩展区通过数码管和发光二极管显示。
并写出将数据5FH写入OUT寄存器的操作过程。
实验二运算器实验实验目的:了解运算器的组成结构;掌握运算器的工作原理和控制方法。
实验内容:利用实验仪提供的运算器,通过开关提供数据信号,将数据写入寄存器A和寄存器B,并用开关控制ALU的运算方式,验证运算器的功能。
实验原理:(1)实验逻辑框图:信号说明:IN0~IN7:ALU数据输入信号ALU_D0~ALU_D7:ALU数据输出信号:寄存器A写信号,低电平有效。
当T1节拍信号到来,该信号有效时,IN0~IN7数据可以写入寄存器A。
:寄存器B写信号,低电平有效。
当T2节拍信号到来,该信号有效时,IN0~IN7数据可以写入寄存器B。
:ALU计算结果读出信号,当T3节拍信号到来,该信号有效时,ALU计算结果送往ALU_D0~ALU_D7。
S3~S0,CN_I:ALU运算控制信号,控制ALU的运算方法。
T1,T2,T3:三个节拍信号,高电平有效,由con区的uSTEP按键控制,在运行状态时,依次按下uSTEP 键会依次发出T1、T2、T3节拍。
计算机组成原理实验1_脱机运算器
实验一.脱机运算器部件实验一、教学计算机的通电启动和关闭操作1.教学计算机系统通电启动的操作步骤:(1) 准备一台串行接口运行正常的PC机;(2) 将TH-union计原16放在实验台上,打开实验箱的盖子,确定电源处于断开状态;(3) 将黑色的电源线一端接220V交流电源,另一端插在计原16实验箱的电源插座;(4) 取出通讯线,将通讯线的9芯插头接在计原16实验箱后板上左侧位置的串口插座,另一端接到PC机的串口上;(5) 将计原16实验系统左下方的五个黑色的功能控制开关置于00010的位置(连续、内存读指令、微程序、联机、16位),开关拨向上方表示“1”,拨向下方表示“0”;(6) 接通电源,船形开关和5V电源指示灯亮。
(7) 在PC机上运行PCEC16.EXE文件,根据使用的PC机的串口情况选“1”或“2”,其它的设置一般不用改动,直接回车即可。
(具体步骤附后)(8) 按一下“RESET”按键,再按一下“START”按键,PC机屏幕上显示:TH-union CRT MONITORVersion 1.0 April 2001Computer Architectur Lab., Tsinghua UniversityProgrammed by He Jia>这个版权信息显示出来之后,表示教学机已经进入正常运行状态,等待输入监控命令。
实验注意事项:1.连接电源线和通讯线前TH-union计原16实验系统的电源开关一定要处于断开状态,否则可能损坏教学计算机系统的或PC机的串行接口电路;2.五个黑色控制开关的功能示意图如下:开关位置,自左向右共5个,分别控制1 2 3 4 5向上拨:单步手工拨指令组合逻辑运算器联机 8位向上拨:连续读内存指令微程序运算器脱机 16位几种常用的工作方式,(开关向上拨表示为1,向下拨表示0)工作方式功能开关状态连续运行程序、硬连线控制器、联机、16位机 00110连续运行程序、微程序控制器、联机、16位机 00010单步、手拨指令、硬连线控制器、联机、16位机 11110单步、手拨指令、微程序控制器、联机、16位机 11010单步、脱机运算器实验、16位机 100002.关闭教学计算机系统在需要关闭教学计算机系统时,应首先通过安装在机箱右侧板上的开关关闭交流电源,教学机上的全部指示灯都会熄灭。
计算机组成原理实验1运算器实验
计算机组成原理实验1运算器实验新疆师范⼤学计算机组成原理(本科)实验报告实验名称:实验1 运算器实验院系:计算机科学技术学院班级: 11-1班学⽣姓名:⽊拉提·巴⼒学号: 20111601141025 合作者姓名:指导教师:彭程⽼师教师评阅结果:教师评语:实验⽇期 2014 年 12⽉ 01⽇⼀、实验⽬的1.掌握运算器的组成及⼯作原理;2.了解4位函数发⽣器74LS181的组合功能,熟悉运算器执⾏算术操作和逻辑操作的具体实现过程;3.验证带进位控制的74LS181的功能。
⼆、实验仪器及设备1.EL-JY-II型计算机组成原理实验系统⼀套。
2. 导线若⼲三、实验内容验证74LS181运算器的逻辑运算功能和算术运算功能。
四、电路图图1-7 实验⼀开关实验接线图五、实验操作及运⾏结果1)拨动清零开关CLR,使其指⽰灯。
再拨动CLR,使其指⽰灯亮。
置ALU-G=1:关闭ALU的三态门;再置C-G=0:打开数据输⼊电路的三态门;2)向数据暂存器LT1(U3、U4)中置数:(1)设置数据输⼊电路的数据开关“D15……D0”为要输⼊的数值;(2)置LDR1=1:使数据暂存器LT1(U3、U4)的控制信号有效,置LDR2=0:使数据暂存器LT2(U5、U6)的控制信号⽆效;(3)按⼀下脉冲源及时序电路的【单脉冲】按钮,给暂存器LT1送时钟,上升沿有效,把数据存在LT1中。
3)向数据暂存器LT2(U5、U6)中置数:(1)设置数据输⼊电路的数据开关“D15……D0”为想要输⼊的数值;(2)置LDR1=0:数据暂存器LT1的控制信号⽆效;置LDR2=1:使数据暂存器LT2的控制信号有效。
(3)按⼀下脉冲源及时序电路的“单脉冲”按钮,给暂存器LT2送时钟,上升沿有效,把数据存在LT2中。
(4)置LDR1=0、LDR2=0,使数据暂存器LT1、LT2的控制信号⽆效。
4 )检验两个数据暂存器LT1和LT2中的数据是否正确:(1)置C-G=1,关闭数据输⼊电路的三态门,然后再置ALU-G=0,打开ALU的三态门;(2)置“S3S2S1S0M”为“11111”,数据总线显⽰灯显⽰数据暂存器LT1中的数,表⽰往暂存器LT1置数正确;(3)置“S3S2S1S0M”为“10101”,数据总线显⽰灯显⽰数据暂存器LT2中的数,表⽰往暂存器LT2置数正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
软112,网112-存储器
112485冯朝阳-112479李芸
存储器实验报告
一、实验目的;
1、熟悉挂总线的逻辑器件的特性和总线传送的逻辑实现方法。
2、掌握半导体静态存储器的存取方法。
二、实验内容;
(一)实验设计和连线步骤;(丛实验指导书内容自己总结简要说明,200~300字以内)模型机的主存储器采用静态随机存储器,由存储体、地址译码器、读写电路和控制电路组成。
存储器数据通路中,由两片1k*4位的2114静态存储器,扩展成1k*8位的存储器。
A0~A9为地址线,I/O为数据线,/R为读写控制线,为片选信号。
两片74LS161组成8位地址寄存器,A、B、C、D为地址输入端,QA~QD为输出端。
LD控制操作模式。
为低电平时置数,为高电平时计数。
1存储电路说明:
1.使用了一片6116静态RAM(2048×8位),存储器的数据线D7~D0接至数据总线。
2.使用一片8位的74LS273作为地址寄存器(AR),地址寄存器的输出端接存储器6116的地址线A7~A0。
3.数据开关(INPUT DEVICE)用来设置地址和数据,它经过一个三态门74LS245与数据总线相连,分别给出地址和数据。
4.地址显示灯A D7~AD0与6116地址线相连,用来显示存储单元的地址,数据总线上的显示灯B7~B0用来显示写入存储单元的数据或从存储单元读出的数据。
5.存储器有三个控制信号:CE片选信号、OE读命令信号、WE写信号。
当片选信号CE=0时,RAM被选中,可以进行读/写操作;当CE=1时,RAM未被选中,不能进行读/写操作。
读命令信号OE在本实验中已固定接地,在此情况下,当CE=0,WE=1时,存储器进行写操作,当CE=0,WE=0时,存储器进行读操作。
6. LDAR是地址存储器AR存数控制信号。
(二)主存储器读写操作步骤
进行主存储器读写的实验操作步骤与实验现象记录,
04H,02H;
05H,0AH;
(1)打开电源开关
按A3,对程序计数器PC和2个74LS273清零
将存储器和寄存器的使能状态关闭,即K4置1、K3置1、K2置1、K1置1、K0
置0
程序计数器的LD 端置低,即K6置0,是PC的初始状态为置数状态(2)主存储器写操作
1)00000100→D7~D0 置第一个数的存储地址
2)0→K7 存储器地址打入总线,BUS显示00000100
3)按A1 总线上的地址打入程序计数器PC
4)1→K7 总线悬空,BUS显示11111111
5)0→K5 地址由PC打入总线,BUS显示00000100
6)按A2 ADR和BUS灯均显示00000100
7)1→K5 结束PC对总线的占用,BUS显示11111111
8)00000010→D7~D0 置第一个数据
9)0→K7 数据打入总线,BUS显示00000010
10)0→K3 设置为写状态
11)0→K4 存储器使能,第一个数据写入00000100单元
12)1→K4 关闭存储器的使能状态
13)1→K7 BUS显示11111111
14)1→K6 计数模式
15)按A1 程序计数器PC+1
16)0→K5 地址由PC打入总线。
BUS灯显示00000101
17)按A2 ADR和BUS均显示00000101
18)1→K5 BUS灯显示11111111
19)00001010→D7~D0 置第二个数据
20)0→K7 数据打入总线,BUS显示00001010
21)0→K4 存储器使能,第二个数据写入00000101单元
22)1→K4 关闭存储器的使能
23)0→K6 程序计数器设为置数模式
24)1→K7 写操作结束,BUS显示11111111 (3)主存储器读操作
1)00000100→D7~D0 置第一个数的存储地址
2)0→K7 存储器打入总线,BUS显示00000100
3)按A1 总线的地址打入程序计数器PC
4)1→K7 BUS显示11111111
5)0→K5 地址有PC打入总线,BUS显示00000100
6)按A2 DAR和BUS显示00000100
7)1→K5 BUS显示11111111
8)1→K3 存储器设为读状态
9)0→K4 ADR灯显示00000100,BUS显示数据00000010
10)1→K4 BUS显示11111111
11)1→K6 程序计数器设为计数模式
12)按A1 程序计数器PC+1
13)0→K5 地址由程序计数器打入总线,BUS显示00000101
14)按A2 ADR和BUS显示00000101
15)1→K5 BUS灯显示11111111
16)0→K4 地址灯ADR显示00000101,BUS显示第二个数据00001010
17)1→K4 关闭主存储器的使能,BUS显示11111111
(三)寄存器读写操作步骤
进行寄存器读写的实验操作步骤与实验现象记录,
01,3AH;
(1)寄存器写操作
1)01→D3~D2 写操作命令,选择寄存器
2)0→K7 写命令打入总线,BUS显示00000100
3)1→K0,0→K0
4)1→k7 BUS灯显示11111111
5)00111010→D7~D0 置写入数据
6)0→K7 数据打入总线,BUS显示00111010
7)0→K2,1→K2 数据写入寄存器
8)1→K7 BUS显示11111111
(2)寄存器读操作
1)01→D1~D0 读操作命令,选择寄存器
2)0→K7 BUS显示00000001
3)1→K0,0→K0
4)1→K7 BUS显示11111111
5)0→K1 数据从寄存器读出,读数显示在总线上,BUS显示00111010
6)1→K1 关闭寄存器的使能,BUS显示11111111
三、实验调试过程中所遇到的问题、解决问题的思路和解决的方法。
(发生连线错误的组要重点分析)
做实验时,寄存器开始几个灯全为1,后来经过多次认真地反复试验,并且在老师反复试验芯片的引脚的高低电位,才找出原来是有一根线的问题,线在连的过程中由于挤压已经折断,导致测试的时候没有高低电位的变化,换掉之后这个试验恢复了正常。
四、实验后的收获与体会。
(200~300字)
本次实验为验证性实验,在实验过程中我们按照上述实验步骤进行操作,在连接存储器板时比较麻烦,但我们坚持做到准确无误。
通过这次实验,我们了解了存储器的基本功能,掌握了数据的存储过程,熟悉理解了存储器的组成和控制。
此次实验因为是验证性实验,所以我觉得重要的是在于扩展存储器实验板的接线,由于实验板小,而线孔较多,所以需要很大的耐心进行连接。
我们坚持每一根线都按照教材上的步骤进行连接,完成后对照检查。
终于做到了准确无误。
从中我们也体会到做实验必须要耐心,心细,磨刀不误砍柴工也正是这个道理。