高一数学必修3期末测试题

合集下载

人教版高一数学必修1必修4期末测试卷附答案

人教版高一数学必修1必修4期末测试卷附答案

人教版高一数学必修1必修4期末测试卷附答案人教版高一数学必修1必修4期末测试卷姓名:__________ 班级:___________ 学号:____________ 分数:______________一、选择题(每题5分,共40分)1.集合A={x∈N*|-1<x<3}的子集的个数是(。

)。

A。

4.B。

8.C。

16.D。

322.函数f(x)=1/(1-x)+lg(1+x)的定义域是(。

)。

A。

(-∞,-1)。

B。

(1,+∞)。

C。

(-1,1)U(1,+∞)。

D。

(-∞,+∞)3.设a=log2,c=5-1/3,b=ln22,则(。

)。

A。

a<b<c。

B。

b<c<a。

C。

c<a<b。

D。

c<b<a4.函数y=-x^2+4x+5的单调增区间是(。

)。

A。

(-∞,2]。

B。

[-1,2]。

C。

[2,+∞)。

D。

[2,5]5.已知函数f(x)=x^2-2ax+3在区间(-2,2)上为增函数,则a的取值范围是(。

)。

A。

a≤2.B。

-2≤a≤2.C。

a≤-2.D。

a≥26.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是(。

)。

A。

y=x-2.B。

y=x-1.C。

y=x^2.D。

y=x^37.若函数f(x)=x/(2x+1)(x-a)为奇函数,则a=(。

)。

A。

1/2.B。

2/3.C。

3/4.D。

1/88.已知α是第四象限角,XXX(π-α)=5/12,则sinα=(。

)。

A。

1/5.B。

-1/5.C。

5.D。

-59.若tanα=3,则sinαcosα=(。

)。

A。

3.B。

3/2.C。

3/4.D。

9/410.sin600°的值为(。

)。

A。

3/2.B。

-3/2.C。

-1/2.D。

1/211.已知cosα=3/5,π/4<α<π,则XXX(α+π/4)=(。

)。

A。

1.B。

-1.C。

5/8.D。

-5/812.在△ABC中,sin(A+B)=sin(A-B),则△ABC一定是(。

高中数学必修三习题带答案

高中数学必修三习题带答案

第一章1. 家中配电盒至电视机的线路断了,检测故障的算法中,为了使检测的次数尽可能少,第一步检测的是 B(A)靠近电视的一小段,开始检查 (B)电路中点处检查 (C)靠近配电盒的一小段开始检查 (D)随机挑一段检查2. 早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤,从下列选项中选最好的一种算法 C (A)S1洗脸刷牙、S2刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播 (B)S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播 (C)S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播 (D)S1吃饭同时听广播、S2泡面、S3烧水同时洗脸刷牙、S4刷水壶 3. 给出以下四个问题:①输入一个数x ,输出它的相反数;②求面积为6的正方形的周长;③求三个数a ,b ,c ,中的最大数;④求函数⎩⎨⎧<+≥-=)0(2)0(1)(x x x x x f 的函数值;⑤求两个正整数a ,b 相除的商及余数.其中不需要用条件语句来描述其算法的有_____125_______. 4. 下面的问题中必须用条件分支结构才能实现的是__23__________.①求面积为1的正三角形的周长; ②求方程0ax b +=(,a b 为常数)的根; ③求两个实数,a b 中的最大者; ④求1+2+3+…+100的值 5. 840和1764的最大公约数是84.6. 用秦九韶算法计算多项式23456()1235879653f x x x x x x x =+-++++,在4x =-时的值时,3V 的值为 C(A)-845 (B)220 (C)-57 (D)34 9.___28_____.12.(08-广东-9)阅读下图的程序框图,若输入4m =,3n =,则输出a =12,i =3;13.按如图所示的框图运算:若输入x =8,则输出k =5;(基本算法语句)1.下列给出的赋值语句中正确的是 B(A)M =4 (B)M M -= (C)3==A B (D)0=+y x 2.下列给变量赋值的语句正确的是 D(A)3a =(B)1a a +=(C)3a b c ===(D)8a a =+ 3.下列赋值语句中错误的是 C(A)1N N =+ (B)*K K K = (C)()C A B D =+ (D)M=M/5第二章一、选择题:1.某单位有老年人28人,中年人54人,青年人81人.为了调查他们的身体状况,需从他们中抽取一个容量为36的样本,最适合抽取样本的方法是( D ).A.简单随机抽样 B.系统抽样C.分层抽样 D.先从老年人中剔除一人,然后分层抽样2.某学校为了了解高一年级学生对教师教学的意见,打算从高一年级2007名学生中抽取50名进行抽查,若采用下面的方法选取:先用简单随机抽样从2007人中剔除7人,剩下2000人再按系统抽样的方法进行,则每人入选的机会( C )A. 不全相等B. 均不相等C. 都相等D. 无法确定3.有20位同学,编号从1至20,现在从中抽取4人作问卷调查,用系统抽样方法确定所抽的编号为( A )k=5A.5,10,15,20B.2,6,10,14C.2,4,6,8D.5,8,11,144.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2)。

高中数学选择性必修三 专题33 二项分布与超几何分布(含答案)

高中数学选择性必修三 专题33 二项分布与超几何分布(含答案)

专题33 二项分布与超几何分布一、单选题1.(2020·山西应县一中高二期中(理))盒中有10个螺丝钉,其中有3个是坏的,现从盒中随机地抽取4个,那么概率是310的事件为()A.恰有1个是坏的B.4个全是好的C.恰有2个是好的D.至多有2个是坏的【答案】C【解析】对于选项A,概率为133741012C CC=.对于选项B,概率为4741016CC=.对于选项C,概率为2237410310C CC=.对于选项D,包括没有坏的,有1个坏的和2个坏的三种情况.根据A选项,恰好有一个坏的概率已经是13210>,故D选项不正确.综上所述,本小题选C.2.(2020·天山新疆实验高二期末)有10件产品,其中3件是次品,从中任取两件,若X表示取得次品的个数,则P(X<2)等于()A.715B.815C.1415D.1【答案】C【解析】由题意,知X取0,1,2,X服从超几何分布,它取每个值的概率都符合等可能事件的概率公式,即P(X=0)=27210715CC=,P(X=1)=1173210715C CC=⋅,P(X=2)=23210115CC=,于是P(X<2)=P(X=0)+P(X=1)=7714 151515 +=故选C3.(2020·江苏鼓楼 南京师大附中高二期末)某地7个贫困村中有3个村是深度贫困,现从中任意选3个村,下列事件中概率等于67的是( ) A .至少有1个深度贫困村 B .有1个或2个深度贫困村 C .有2个或3个深度贫困村 D .恰有2个深度贫困村【答案】B 【解析】用X 表示这3个村庄中深度贫困村数,X 服从超几何分布,故()33437k kC C P X k C -==, 所以()3043374035C C P X C ===, ()21433718135C C P X C ===,()12433712235C C P X C ===,()0343371335C C P X C ===, ()()6127P X P X =+==. 故选:B4.(2020·辉县市第二高级中学高二月考(理))在10个排球中有6个正品,4个次品.从中抽取4个,则正品数比次品数少的概率为( ) A .542B .435C .1942D .821【答案】A 【解析】分析:根据超几何分布,可知共有410C 种选择方法,符合正品数比次品数少的情况有两种,分别为0个正品4个次品,1个正品3个次品,分别求其概率即可。

高一数学必修一,必修四练习题

高一数学必修一,必修四练习题

高一数学(必修一,必修四)期末练习题一.A 卷1.0390sin 的值为( ) A.23 B.23- C.21- D.21 2.若sin 0α<,tan 0α>,则角α的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限3.函数x x x f cos sin 2)(=是 ( ) A .最小正周期为2π的奇函数 B .最小正周期为2π的偶函数 C .最小正周期为π的奇函数D .最小正周期为π的偶函数4.设M 和m 分别是函数1)62cos(31--=πx y 的最大值和最小值,则M+m 等于( )A.32B.32-C. 34- D.2-5.已知角α的终边经过点)3,1(P ,则α2cos 的值为 ( ) A. 21-B. 23-C . 21 D. 236. tan(40)-,tan38,tan56的大小关系是( )A .tan(40)tan 38tan 56->>B .tan 56tan 38tan(40)>>-C .tan 38tan(40)tan 56>->D .tan 56tan(40)tan 38>->7.将函数sin 2y x =的图象向左平移6π个单位,所得图象的函数解析式为( ) A .sin 26y x π⎛⎫=+⎪⎝⎭C .sin 26y x π⎛⎫=-⎪⎝⎭B .sin 23y x π⎛⎫=+⎪⎝⎭D .sin 23y x π⎛⎫=-⎪⎝⎭8.在ABC ∆中,若135cos ,53cos ==B A ,则C sin 的值为( )A. 6556-B. 6556C. 6563D.6516-9.为了得到函数)32sin(π-=x y 的图象,只需把函数x y 2sin =的图象 ( )A. 向左平移3π个长度单位 B. 向右平移3π个长度单位C. 向左平移6π个长度单位 D. 向右平移6π个长度单位 10.对于函数)62sin(2π+=x y ,则下列结论正确的是 ( )A .)(x f 的图象关于点)0,3(π对称 B.)(x f 在区间]6,3[ππ-递增C .)(x f 的图象关于直线12π-=x 对称 D. 最小正周期是2π11.105sin 15cos 75cos 15sin +=12. 已知扇形的半径为2,圆心角是3π弧度,则该扇形的面积是 . 13. 函数x x y 2cos 2sin =的最小正周期是 ,最大值是 。

数学必修三习题答案

数学必修三习题答案

数学必修三习题答案【篇一:高一数学必修3全册各章节课堂同步习题(详解答案)】概念班次姓名[自我认知]:1.下面的结论正确的是( ).a. 一个程序的算法步骤是可逆的b. 一个算法可以无止境地运算下去的 c. 完成一件事情的算法有且只有一种 d. 设计算法要本着简单方便的原则 2.下面对算法描述正确的一项是 ( ). a.算法只能用自然语言来描述 b.算法只能用图形方式来表示 c.同一问题可以有不同的算法d.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征( ) a.抽象性 b.精确性 c.有穷性 d.唯一性4.算法的有穷性是指( )a.算法必须包含输出b.算法中每个操作步骤都是可执行的c.算法的步骤必须有限d.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤,从下列选项中选最好的一种算法() a.s1洗脸刷牙、s2刷水壶、s3烧水、s4泡面、s5吃饭、s6听广播 b.s1刷水壶、s2烧水同时洗脸刷牙、s3泡面、s4吃饭、s5听广播 c. s1刷水壶、s2烧水同时洗脸刷牙、s3泡面、s4吃饭同时听广播 d.s1吃饭同时听广播、s2泡面;s3烧水同时洗脸刷牙;s4刷水壶6.看下面的四段话,其中不是解决问题的算法是( )a.从济南到北京旅游,先坐火车,再坐飞机抵达b.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1c.方程x2?1?0有两个实根d.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15 7.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c?a,b的值;③输出斜边长c的值,其中正确的顺序是 ( ) a.①②③ b.②③①c.①③②d.②①③[课后练习]:8.若f?x?在区间?a,b?内单调,且f?a??f?b??0,则f?x?在区间?a,b?内( )a.至多有一个根 b.至少有一个根c.恰好有一个根 d.不确定9.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取a=89 ,b=96 ,c=99;第二步:____①______;第三步:_____②_____;第四步:输出计算的结果.10.写出求1+2+3+4+5+6+?+100的一个算法.可运用公式1+2+3+?+n= 第一步______①_______;第二步_______②________;第三步输出计算的结果.12.写出按从小到大的顺序重新排列x,y,z三个数值的算法.n(n?1)直接计算. 21.1.2程序框图[自我认知]: 1.算法的三种基本结构是()A.顺序结构、条件结构、循环结构B.顺序结构、流程结构、循环结构C.顺序结构、分支结构、流程结构D.流程结构、循环结构、分支结构2.程序框图中表示判断框的是()A.矩形框B.菱形框 d.圆形框 d.椭圆形框3.如图(1)、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为( )⑴333⑵3a.⑴n≥1000 ? ⑵n<1000 ?b. ⑴n≤1000 ?⑵n≥1000 ?c. ⑴n<1000 ? ⑵n≥1000 ?d. ⑴n<1000 ?⑵n<1000 ?4.算法共有三种逻辑结构,即顺序逻辑结构,条件逻辑结构和循环逻辑结构,下列说法正确的是 ( ) a.一个算法只能含有一种逻辑结构 b.一个算法最多可以包含两种逻辑结构 c.一个算法必须含有上述三种逻辑结构d.一个算法可以含有上述三种逻辑结构的任意组合 [课后练习]:5.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是( ) a.求输出a,b,c三数的最大数 b.求输出a,b,c三数的最小数3333c.将a,b,c按从小到大排列d.将a,b,c按从大到小排列第5题图第6题图6.右边的程序框图(如上图所示),能判断任意输入的数x的奇偶性:其中判断框内的条件是( )a.m?0?b.x?0 ?c.x?1 ?d.m?1?7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构 ( ) a.顺序结构 b.条件结构和循环结构 c.顺序结构和条件结构 d.没有任何结构?x2?1(x?0)8.已知函数f?x??? ,设计一个求函数值的算法,并画出其程序框图(x?0)?2x?11.1.2程序框图(第二课时)[课后练习]:班次姓名1.如图⑴的算法的功能是____________________________.输出结果i=___,i+2=_____.2.如图⑵程序框图箭头a指向①处时,输出 s=__________. 箭头a指向②处时,输出 s=__________.3.如图⑷所示程序的输出结果为s=132, 则判断中应填a、i≥10?b、i≥11?c、i≤11? d、i≥12?4.如图(3)程序框图箭头b指向①处时,输出 s=__________. 箭头b指向②处时,输出 s=__________5、如图(5)是为求1~1000的所有偶数的和而设计的一个程序空白框图,将空白处补上。

高一数学必修3质量检测试题(卷)(2)

高一数学必修3质量检测试题(卷)(2)

高一数学必修3质量检测试题(卷)(2)一,选择题(本答题共10小题,每小题5分,共50分)1.(2013年西工大附中五检)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,则抽到的32人中,编号落入区间[1,450]的人数为 A .10 B .14 C .15 D .162,(2013年西工大附中六检)如图所示,矩形长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,由此我们可估计出阴影部分的面积约为( )A .235 B .215C .195D . 1653.(2013宝鸡市二检)某地区共有10万居民,其中城市住户与农村住户之比为32:现利用分层抽样方法调查该地区1000户居民电脑拥有情况,调查结果如表所示,那么可以估计该地区农村住户中无电脑的总户数约为( )A.万24.0 B.万6.1 C.万76.1 D.万4.4 4.(2013年宝鸡市三检)若程序框图如图所示,视x 为自变量,y 为函数值,可得函数)(x f y =的解析式,那么函数4)(-x f 在x ∈R 上的零点个数为( )A .2B .3C .4D .55.(2013年高考) 根据下列算法语句, 当输入x 为60时, 输出y 的值为( ) (A) 25 (B) 30 (C) 31 (D) 61 6.(2013年渭南市二检)已知x 与y 之产间的几组数据如下表:则y 与x 的线性回归方程y=bx+a 必过( )A .(1,2)B .(2,6)24D .(3,7)7. (2012年高考)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是 ( ) A .46,45,56 B .46,45,53 C .47,45,56 D .45,47,538.右图是两组各7名同学体重(单位:kg )数据的茎叶图.设1,2两组数据的平均数依次为1x 和2x ,标准差依次为1s 和2s ,那么()(注:标准差s =其中x 为12,,,n x x x 的平均数)A .12x x >,12s s >B .12x x >,12s s <C .12x x <,12s s <D .12x x <,12s s >8. (2013年高考)如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是 (A)14π-(B)12π- (C) 22π-(D)4π9.(2010年陕西高考)右图是求x 1,x 2,…,x 10的乘积S 的程序框图,图中空白框中应填入的内容为 ( ) (A)S=S*(n+1) (B )S=S*x n+1 (C)S=S*n (D)S=S*x n二、填空题(本答题共5小题,每小题5分,共25分。

汕头市潮阳林百欣中学新课标必修3测试题

汕头市潮阳林百欣中学新课标必修3测试题

1新课标高中数学必修3测试题组题:汕头市潮阳林百欣中学 许吟裕(2006-4-9)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 从装有红球、黑球和白球的口袋中摸出1只球.若摸出的球是红球的概率是0.4,摸出的球是黑球的概率是0.25,那么摸出的球是白球的概率是( )A.0.35 B.0.65 C.0.1 D.不能确定2. 掷一颗骰子,出现偶数点或出现不小于4的点数的概率是( ) A.23 B.34 C.56 D.453. 利用秦九韶算法,对求当23x =时,多项式3273511x x x +-+的算法 ①1S :23x =2S :3273511x x x +-+3S :输出y②1S :23x =2S :((73)5)11y x x x =*+*-*+3S :输出y③算6次乘法3次加法④算3次乘法3次加法 以上正确描述为( )A.①③ B.②③、 C.②④ D.①④24. 从总数为N 的一批零件中抽取一个容量为30的样本,若每个零件被抽取的概率为0.25,则N =( ) A.150 B.200 C.120 D.1005. 某市为了了解职工家庭生活状况,先把职工按所在行业分为B 类,然后每个行业抽1100的职工家庭进行调查,这种抽样是( ) A.简单随机抽样 B.系统抽样 C.分层抽样 D.不属于以上抽样6. 一个三位数字的密码锁,每位上的数字都在0到9这十个数字中任选,某人忘记了密码最后一个号码,那么此人开锁时,在对好前两位数码后,随意拨动最后一个数字恰好能开锁的概率为( ) A.3110 B.2110 C.110D.11000 7. x 是1x ,2x ,…,100x 的平均数,a 是1x ,2x ,…,40x 的平均数,b 是41x ,42x ,…,100x 的平均数,则下列各式正确的是( )A.4060100a b x += B.6040100a b x +=C.x a b =+ D.2a b x +=8.上图输出的是( )A.2005 B .65 C.64 D.639. 算法 1S :输入n2S :判断n 是否是2 若2n =,则n 满足条件 若2n >,则执行3S3S :依次从2到1n -检验能不能整除n .若不能整除n 满足条件, 上述的满足条件是什么( )A.质数 B.奇数 C.偶数 D.约数10. 盒子中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么310等于()A.恰有1只是坏的概率B.恰有2只是好的概率C.4只全是好的概率D.至多2只是坏的概率二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在题中横线上.11. 某厂的产品次品率为2%,该厂8000件产品中次品约为件.12. (1)在已分组的若干数据中,每组的频数是指,每组的频率是指.(2)一个公司共有N名员工,下设一些部门,要采用等比例分层抽样的方法从全体员工中抽取样本容量为n的样本,已知某部门有m名员工,那么从该部门抽取的员工人数是.13. 在1,2,3,4共4个数字中,可重复选取两个数,其中一个数是另一个数的2倍的概率是.14. 两次抛掷骰子,若出现的点子相同的概率是a,出现的点子之和为5的概率是b,那么a与b的大小关系是.三、解答题:本大题共6小题,共50分,解答应写出必要的计算过程、推演步骤或文字说明.15.(本小题8分) 在一个盒中装有15枝圆珠笔,其中7枝一等品,5枝二等品和3枝三等品,从中任取3枝,问下列事件的概率有多大?(1)恰有一枝一等品;(2)恰有两枝一等品;(3)没有三等品.3416.(本小题8分) 一支田径队有男运动员56人,女运动员42人,用分层抽样的方法从全体运动员中抽出一个容量为28的样本.17.(本小题8分) 用i N 代表第i 个学生学号,用i G 代表成绩,打印出每个班及格学生的学号和成绩,画出程序框图.18.(本小题8分) 某城市的电话号码是8位数,如果从电话号码本中任指一个电话号码,求: (1) 头两位数码都是8的概率; (2) 头两位数码都不超过8的概率; (3) 头两位数码不相同的概率.19.(本小题8分) 掷一枚均匀的硬币10次,求出现正面的次数多于反面次数的概率.20.(本小题10分) 假设每个人在任何一个月出生是等可能的,利用随机模拟的方法,估计在一个有10个人的集体中至少有两个人的生日在同一个月的概率?56参考答案一、选择题: 1. A.2. A.3. C.4. C.5. C.6. C.7. A.8. D.9. A.10. D.二、填空题: 11. 160 12. (1)该组中的数据个数,该组的频数除以全体数据总数;(2)nm N . 13. 1414. a b > 三、解答题: 15.(本小题8分) (1)2865;(2)2465;(3)4491. 16.(本小题8分) 田径队运动员的总人数是56+42=98(人), 要得到28人的样本,占总体的比例为27.于是,应该在男 运动员中随机抽取256167⨯=(人),在运动员中随机抽取 28-16=12(人).这样我们就可以得到一个容量为28的样本. 17.(本小题8分)18.(本小题8分) 每一位可以是09 这10个数字中的一个,所以(1)1100;(2)81100;(3)109110010-=.19.(本小题8分) 第一步,先计算出现正面次数与反面次数相等的概率510102526321024256c ==. 第二步,利用对称性,即出现正面的次数多于反面次数的概率与出现 反面的次数多于正面次数的概率是相等的,所以出现正面的次数多于7反面次数的概率为6319312256512⎛⎫-÷= ⎪⎝⎭. 20.(本小题10分) 具体步骤如下:① 建立概率模型.首先要模拟每个人的出生月份,可用1,2, ,11,12表示月份,用产生取整数值的随机数的办法,随机产生112 之间的随机数.由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.② 进行模拟试验.可用计算器或计算机进行模拟试验.如使用Excel 软件, 可参看教科书125页的步骤,下图是模拟的结果:,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果.这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③ 统计试验的结果.K,L,M,N列表示统计结果.例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一个月.本题的难点是统计每一行前十列中至少有两个数相同的个数.由于需要判断的条件太多,所以用K,L,M三列分三次完成统计.其中K列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0”,L列公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1,G1=H1,G1=I1,G1=J1,H1=I1,H1=J1,I1=J1),1,0)”,M列的公式为“=IF(OR(K1=1,L1=1),1,0)”.M列的值为1表示该行所代表的10人集体中至少有两个人的生日在同一个月,N1表示100个10人集体中至少有两个人的生日在同一个月的个数,其公式为“=SUM(M$1:M$100)”.100所得的结果0.98,就是用模拟方法计算10人集体中至少有两个人的生日在同一个月的概率的估计值.可以看出,这个估计值很接近1.8。

高中数学 章末综合测评3 概率(含解析)新人教A版必修3-新人教A版高一必修3数学试题

高中数学 章末综合测评3 概率(含解析)新人教A版必修3-新人教A版高一必修3数学试题

章末综合测评(三) 概 率(满分:150分 时间:120分钟)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为( )①在学校明年召开的田径运动会上,学生X 涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4X 号签中任取一X ,恰为1号签;④在标准大气压下,水在4℃时结冰.A .1B .2C .3D .4C [①在明年运动会上,可能获冠军,也可能不获冠军.②李凯不一定被抽到.③任取一X 不一定为1号签.④在标准大气压下水在4℃时不可能结冰,故①②③是随机事件,④是不可能事件.]2.若干个人站成一排,其中为互斥事件的是( )A .“甲站排头”与“乙站排头”B .“甲站排头”与“乙不站排尾”C .“甲站排头”与“乙站排尾”D .“甲不站排头”与“乙不站排尾”A [由互斥事件的定义知,“甲站在排头”与“乙站在排头”不能同时发生,是互斥事件.]3.给甲、乙、丙三人打,若打的顺序是任意的,则第一个打给甲的概率是( )A.16B.13C.12D.23B [给三人打的不同顺序有6种可能,其中第一个给甲打的可能有2种,故所求概率为P =26=13.] 4.在两根相距6 m 的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2 m 的概率为( )A.12B.13C.14D.15B [所求事件构成的区域长度为2 m ,试验的全部结果所构成的区域长度为6 m ,故灯与两端距离都大于2 m 的概率为26=13.] 5.掷一枚均匀的硬币两次,事件M :“一次正面朝上,一次反面朝上”;事件N :“至少一次正面朝上”,则下列结果正确的是( )A .P (M )=13,P (N )=12B .P (M )=12,P (N )=12C .P (M )=13,P (N )=34D .P (M )=12,P (N )=34D [掷一枚硬币两次,所有基本事件为(正,正),(正,反),(反,正),(反,反)四种情况,事件M 包含2种情况,事件N 包含3种情况,故P (M )=12,P (N )=34.] 6.某人从甲地去乙地共走了500 m ,途中要过一条宽为x m 的河流,他不小心把一件物品丢在途中,若物品掉在河里就找不到,若物品不掉在河里,则能找到,已知该物品能找到的概率为45,则河宽为( ) A .100 mB .80 mC .50 mD .40 mA [设河宽为x m ,则1-x 500=45,∴x =100.] 7.考察下列命题:(1)掷两枚硬币,可能出现“两个正面”“两个反面”“一正一反”3种等可能的结果;(2)某袋中装有大小均匀的三个红球、二个黑球、一个白球,那么每种颜色的球被摸到的可能性相同;(3)从-4,-3,-2,-1,0,1,2中任取一数,取到的数小于0与不小于0的可能性相同;(4)分别从3个男同学、4个女同学中各选一个作代表,那么每个同学当选的可能性相同;(5)5人抽签,甲先抽,乙后抽,那么乙与甲抽到某号中奖签的可能性肯定不同.其中正确的命题有( )A .0个B .1个C .2个D .3个A [(1)中,出现“两个正面”“两个反面”的概率都是14,出现“一正一反”的概率是12,因此不是等可能的;(2)中,每种颜色的球的个数不同,因此被摸到的可能性不同;(3)中,小于0的数有4个,不小于0的数有3个,显然取到的数小于0的可能性更大;(4)中,每个男同学当选为代表的机会是13,每个女同学当选为代表的机会是14,显然可能性不同;(5)中,抽签无论先抽还是后抽,中奖的机会相等.综上,选A.]8.在区间[-1,4]内取一个数x ,则2x -x 2≥14的概率是( ) A.12B.13C.25D.35D [不等式2x -x 2≥14,可化为x 2-x -2≤0, 则-1≤x ≤2,故所求概率为2-(-1)4-(-1)=35.] 9.定义:abcde =10 000a +1 000b +100c +10d +e ,当五位数abcde 满足a <b <c ,且c >d >e 时,称这个五位数为“凸数”.由1,2,3,4,5组成的没有重复数字的五位数共120个,从中任意抽取一个,则其恰好为“凸数”的概率为( )A.16B.110C.112D.120D [由题意,由1,2,3,4,5组成的没有重复数字的五位数恰好为“凸数”的有:12543,13542,14532,23541,24531,34521,共6个基本事件,所以恰好为“凸数”的概率为P =6120=120.故选D.] 10.分别在区间[1,6]和[1,4]内任取一个实数,依次记为m 和n ,则m >n 的概率为( ) A.710B.310C.35D.25A [建立平面直角坐标系(如图所示),则由图可知满足m >n 的点应在梯形ABCD 内,所以所求事件的概率为P =S 梯形ABCD S 矩形ABCE =710. ]11.在一次随机试验中,彼此互斥的事件A ,B ,C ,D 的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是( )A .A +B 与C 是互斥事件,也是对立事件B .B +C 与D 是互斥事件,也是对立事件C .A +C 与B +D 是互斥事件,但不是对立事件D .A 与B +C +D 是互斥事件,也是对立事件D [由于A ,B ,C ,D 彼此互斥,且A +B +C +D 是一个必然事件,故各事件的关系可由图表示.由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件.]12.阅读图所示的程序框图,如果函数的定义域为(-3,4),则输出函数的值在⎝⎛⎭⎫54,32内的概率为( )A.17B.37C.27D.47A [由程序框图得,f (x )=⎩⎪⎨⎪⎧2x +1,-1≤x ≤1,2-x +1,x <-1或x >1.若-1≤x ≤1,令54<2x +1<32,即14<2x <12,∴-2<x <-1(舍去);若x <-1或x >1,令54<2-x +1<32,即14<2-x <12,∴1<x <2. 问题转化为长度的几何概型,总长度为4-(-3)=7,所求事件表示的长度为2-1=1,则所求的概率为17.故选A.] 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题纸的横线上)13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.0.98[由题意得,经停该高铁站的列车正点数约为10×0.97+20×0.98+10×0.99=39.2,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为39.240=0.98.] 14.从1,2,3,4这四个数字中,任取两个,这两个数字都是奇数的概率是________,这两个数字之和是偶数的概率是________.1613[从1,2,3,4四个数字中任取两个共有6种取法.取的两个数字都是奇数只有1,3一种情况,故此时的概率为16.若取出两个数字之和是偶数,必须同时取两个偶数或两个奇数,有1,3;2,4两种取法,所以所求的概率为26=13.]15.已知集合A ={(x ,y )|x 2+y 2=1},集合B ={(x ,y )|x +y +a =0},若A ∩B ≠∅的概率为1,则a 的取值X 围是________.[-2,2] [依题意知,直线x +y +a =0与圆x 2+y 2=1恒有公共点,故|a |12+12≤1, 解得-2≤a ≤ 2.]16.如图是在召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,它是由正方形ABCD 中四个全等的直角三角形和一个小正方形EFGH 构成.现设直角三角形的两条直角边长为3和4,在正方形ABCD 内随机取一点,则此点取自小正方形EFGH 内的概率为________.125[因为直角三角形的两条直角边长为3和4,所以正方形ABCD 的边长为a =32+42=5,所以S 正方形ABCD =a 2=25,所以S 正方形EFGH =S 正方形ABCD -4S △ABF =25-4×12×3×4=1, 因此,在正方形ABCD 内随机取一点,则此点取自小正方形EFGH 内的概率为P =S 正方形EFGH S 正方形ABCD =125.] 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)某校从高二甲、乙两班各选出3名学生参加书画比赛,其中从高二甲班选出了1名女同学、2名男同学,从高二乙班选出了1名男同学、2名女同学.(1)若从这6名同学中抽出2名进行活动发言,写出所有可能的结果,并求高二甲班女同学、高二乙班男同学至少有一人被选中的概率;(2)若从高二甲班和乙班各选1名同学现场作画,写出所有可能的结果,并求选出的2名同学性别相同的概率.[解] (1)设选出的3名高二甲班同学为A ,B ,C ,其中A 为女同学,B ,C 为男同学,选出的3名高二乙班同学为D ,E ,F ,其中D 为男同学,E ,F 为女同学.从这6名同学中抽出2人的所有可能结果有(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.其中高二甲班女同学、高二乙班男同学至少有一人被选中的可能结果有(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,D ),(C ,D ),(D ,E ),(D ,F ),共9种,故高二甲班女同学、高二乙班男同学至少有一人被选中的概率P =915=35. (2)高二甲班和乙班各选1名的所有可能结果为(A ,D ),(A ,E ),(A ,F ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),共9种,选出的2名同学性别相同的有(A ,E ),(A ,F ),(B ,D ),(C ,D ),共4种,所以选出的2名同学性别相同的概率为49. 18.(本小题满分12分)甲、乙两人玩一种游戏,每次由甲、乙各出1到5根手指,若和为偶数算甲赢,否则算乙赢.(1)若以A 表示和为6的事件,求P (A );(2)现连玩三次,若以B 表示甲至少赢一次的事件,C 表示乙至少赢两次的事件,试问B 与C 是否为互斥事件?为什么?(3)这种游戏规则公平吗?试说明理由.[解] (1)甲、乙出手指都有5种可能,因此基本事件的总数为5×5=25(种),事件A 包括甲、乙出的手指的情况有(1,5),(5,1),(2,4),(4,2),(3,3),共5种情况,∴P (A )=525=15. (2)B 与C 不是互斥事件.因为事件B 与C 可以同时发生,如甲赢一次,乙赢两次的事件即符合题意.(3)这种游戏规则不公平.由(1)知和为偶数的基本事件数为13,即(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5).所以甲赢的概率为1325,乙赢的概率为1225. 所以这种游戏规则不公平.19.(本小题满分12分)四X 大小、质地均相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下扣在桌子上,从中随机抽取一X(不放回),再从桌子上剩下的3X 中随机抽取第二X .(1)列出前后两次抽得的卡片上所标数字的所有可能情况;(2)计算抽得的两X 卡片上的数字之积为奇数的概率是多少.[解] (1)如图.则所有可能情况为:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),共12种.(2)积为奇数的情况为(1,3),(3,1),共2种,因此有P (积为奇数)=16. 20.(本小题满分12分)在等腰三角形ABC 中 ,∠B =∠C =30°,求下列事件的概率.(1)在底边BC 上任取一点P ,使BP <AB ;(2)在∠BAC 的内部任作射线AP 交BC 于P ,使BP <AB .[解](1)因为点P 随机地落在线段BC 上,故线段BC 为试验的全部结果所构成的区域,以B 为圆心,BA 为半径的弧交BC 于M ,记“在底边BC 上任取一点P ,使BP <AB ”为事件A ,则P (A )=BA BC =BA 2BA cos 30°=13=33. (2)所作射线AP 在∠BAC 内是等可能分布的,在BC 上取一点M ,使∠AMP =75°,则BM=BA .记“在∠BAC 的内部作射线AP 交线段BC 于P ,使BP <AB ”为事件B ,则P (B )=∠BAM ∠BAC=75°120°=58. 21. (本小题满分12分)某日用品按行业质量标准分成五个等级,等级系数X 依次为1,2,3,4,5,现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到如下频率分布表:(1)2件,求a,b,c的值;(2)在(1)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2这5件日用品中任取2件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这2件日用品的等级系数恰好相等的概率.[解](1)因为抽取的20件日用品中,等级系数为4的恰有3件,所以b=320=0.15.等级系数为5的恰有2件,所以c=220=0.1.从而a=1-0.2-0.45-0.1-0.15=0.1.所以a=0.1,b=0.15,c=0.1.(2)从x1,x2,x3,y1,y2这5件日用品中任取2件,所有可能的结果为(x1,x2),(x1,x3),(x1,y1),(x1,y2),(x2,x3),(x2,y1),(x2,y2),(x3,y1),(x3,y2),(y1,y2),共10个.设事件A表示“从x1,x2,x3,y1,y2这5件日用品中任取2件,其等级系数相等”,则事件A所包含的基本事件为(x1,x2),(x1,x3),(x2,x3),(y1,y2),共4个.故所求的概率P(A)=410=0.4.22.(本小题满分12分)一条笔直街道上的A,B两盏路灯之间的距离为120米,由于光线较暗,想在中间再随意安装两盏路灯C,D,路灯次序为A,C,D,B,求A与C,B与D 之间的距离都不小于40米的概率.[解]设A与C之间的距离为x米,B与D之间的距离为y米,(x,y)可以看成平面中的点,在如图所示的平面直角坐标系xOy中,(x,y)的所有可能结果构成的区域为Ω={(x,y)|0<x +y<120,x>0,y>0},即两直角边边长都为120米的等腰直角三角形区域(不包括边界).而“A 与C,B与D之间的距离都不小于40米”(记为事件M)的所有可能结果构成的区域为M={(x,y )|x ≥40,y ≥40,x ∈Ω且y ∈Ω},即图中的阴影部分.由几何概型的概率计算公式得P (M )=12×40×4012×120×120=19.故A 与C ,B 与D 之间的距离都不小于40米的概率为19.。

高一必修一、二数学期末试卷及答案

高一必修一、二数学期末试卷及答案

高一数学期末考试一、选择题(每题只有一个答案正确,每题 5 分,共 50分)1.已知会合 M={ y y x 22x3, x R },会合N={ y y23},则M N()。

A.{ y y 4 }B.{ y 1 y 5 }C.{ y4y 1 }D.2.如图, U 是全集, M 、P、 S 是 U 的三个子集,则暗影部分所表示的会合是()A.( M P)SB.( M P)SC.( M P)( C U S)D.( M P)( C U S)3.若函数y f x 的定义域是[2,4], y f log 1x 的定义域是()2A.[1,1] B.[4, 16] C.[1 , 1] D.[2, 4] 21644.以下函数中,值域是 R+的是()A. y x23x 1B. y2x3, x(0,)C. y x2x1D. y13x5.设 P 是△ ABC 所在平面α外一点, H 是 P 在α内的射影,且PA, PB, PC与α所成的角相等,则 H 是△ ABC的()A.心里B.外心C.垂心D.重心6.已知二面角α- l-β的大小为 60°,m, n 为异面直线,且m⊥ α,n ⊥β,则 m,n 所成的角为 ()°.60 °C°°7.函数f ( x)ln x 2()的零点所在的大概区间是xA. (1,2)B. (e,3)C.(2, e)D.(e,)8.已知a0.3blog0.23 c log0.2 4)0.2 ,,,则(A. a>b>cB. a>c>bC. b>c>aD. c>b>a9.在长方体ABCD-A1B1C1D1中, AB= BC= 2, A A1= 1,则 BC1与平面 BB1D1 D 所成的角的正弦值为 ()10.如图,平行四边形ABCD中, AB⊥ BD,沿 BD 将△ ABD 折起,使平面ABD⊥平面 BCD,连结 AC,则在四周体ABCD的四个面中,相互垂直的平面的对数为() A.1B. 2C.3D.4二、填空题:本大题共 4 小题,每题 5 分,满分20 分11.已知函数f x log 2 x x0. x,,则 f f 03x 012.函数y a x b ( a >0且 a1)的图象经过点(1, 7),其反函数的图象经过点(4,0),则 a b=13.函数y log 1 log 1 x 的定义域为2314.α、β是两个不一样的平面, m、n 是平面α及β以外的两条不一样直线,给出四个结论:① m⊥ n;②α⊥ β;③ n⊥ β;④ m⊥ α,以此中三个论断作为条件,余下一个作为结论,写出你以为正确的一个命题是 __________ .三、解答题:本大题共 6 小题,满分 80 分.解答须写出文字说明、证明过程和演算步骤.15、( 12分)已知 f ( x)a xa x1( a11)(1)判断函数y f (x) 的奇偶性;(2)商讨y f ( x) 在区间(,) 上的单一性16.(12 分 )如图,在四棱锥P- ABCD中,平面 PAD⊥平面 ABCD,AB= AD,∠ BAD=60°,E,F 分别是 AP, AD 的中点.求证:(1)直线 EF∥平面 PCD;(2)平面 BEF⊥平面 PAD.17、( 14 分)如图,正方形ABCD和四边形ACEF所在的平面相互垂直,EF∥ AC, AB=2,CE= EF= 1.(1)求证: AF∥平面 BDE;(2)求证: CF⊥平面 BDE.、18、( 14分)已知函数 f ( x)ax22x2a,( a0)(1)若a1, 求函数y f ( x) 的零点;a 的取值范围;(2)若函数在区间(0,1]上恰有一个零点,求19、( 14 分)北京市的一家报刊摊点,从报社买进《北京日报》的价钱是每份元,卖出的价格是每份元,卖不掉的报纸能够以每份元的价钱退回报社。

高一数学必修3质量检测试题(卷)(1)

高一数学必修3质量检测试题(卷)(1)

高一数学必修3质量检测试题(卷)(1)一、单项选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列给出的赋值语句中,正确的是( ) A .x + y = 0 B .M= —M -1C .m m -=0D . m =22.在右图所示的程序框图中,若输入x =28,则输出的k =( )A .2B .3C .4D .53.算法共有三种逻辑结构,即顺序结构、选择结构、循环结构,下列说法中正确的是( )A. 一个算法只能含有一种逻辑结构B. 一个算法最多可以包含两种逻辑结构C. 一个算法必须含有上述三种逻辑结构D. 4. 下列关于算法的说法中,正确的是( ) A .算法是某个问题的解决过程B .算法可以无限不停地操作下去C .算法执行后的结果是不确定的D .解决某类问题的算法不是唯一的5.右图所示的算法流程图中,输出的S 表达式为( ) A .1+2+…+49B .1+2+…+50C .11249++⋅⋅⋅+D. 11250++⋅⋅⋅+6.给出两个具有线性相关关系的变量x ,y 之间的一组数据(0,1),(1,3),(2,5),(3,7),则y 与x 的线性回归直线yˆ=bx +a 必过点( ) A .(1,2) B .(1.5,3)C .(1.5,4)D .(2,3)7. 有两项调查:① 某社区有300个家庭,其中高收入家庭105户,中等收入家庭180户,低收入家庭15户,为了了解社会购买力的某项指标,要从中抽出一个容量为100户的样本;② 在某地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况.这两项调查宜采用的抽样方法是( )A. 调查①采用系统抽样法,调查②采用分层抽样法B. 调查①采用分层抽样法,调查②采用系统抽签法C. 调查①采用分层抽样法,调查②采用抽签法D. 调查①采用抽签法,调查②采用系统抽样法 8. 下面的算法的功能是( )(1)a m =,(2)若,m b >则b m =;(3)若m c >,则c m =; (4)若m d >,则d m =;(5)输出m . A .求a ,b ,c ,d 中的最大值 B .求a ,b ,c ,d 中的最小值 C .将a ,b ,c ,d 由小到大排序D .将a ,b ,c ,d 由大到小排序9.早上从起床到出门需要洗脸刷牙(5 min)、刷水壶(2 min)、烧水(8 min)、泡面(3 min)、吃饭(10 min)、听广播(8 min)几个步骤.下列选项中最好的一种算法是( )A .S1洗脸刷牙、S2刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播B .S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播C .S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D .S1吃饭同时听广播、S2泡面、S3烧水同时洗脸刷牙、S4刷水壶10. 右图是求1210,,,x x x 的乘积S 的程序框图,图中空白框中应填入的内容为( )A. (1)S s n =*+B. n S s x =*C. 1n S s x +=*D. S s n =*二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在题中横线上. 11. 随机地向某个区域抛撒了100粒种子,在面积为102m 的地方有2粒种子发芽,假设种子的发芽率为100%,则整个撒种区域的面积大约有________2m .12.右图是一个算法程序框图,当输入x 的 值为1时,则其输出的结果是__________;13.若总体中含有1610个个体,现在要采用系统抽样,从中抽取一个容量为25的样本,分段时应从总体中随机剔除个个体,编号后应均分为 段;14. 一个口袋内装有大小相同的红球、白球和黑球共100个,其中有37个红球,从中摸出1个球,摸出白球的概率为0.23,则摸出黑球的概率为_________.15. 设变量a 、b 分别表示一个数,现将a 、b 交换,用赋值语句描述该算法的结果是三、解答题:(本大题共6小题,共75分.)16.有一把围棋子,5个5个地数,最后剩下4个;7个7个地数,最后剩下2个;9个9个地数,最后剩下6个.请设计两个算法,求出这把围棋子至少有多少个.算法一:算法二:17.为了解某地高一年级男生的身高情况,从其中的一个学校选取容量为80的样本(80名男生的身高,单位:cm),制成如下频率分布表:频率分布表,推出①处的数值为________,②处的数值为_______,③处的数值为________,④处的数值为___________;(2)请你给出计算①处数值的两种不同的方法;(3)根据上面表格所给数据,画出频率分布直方图.18.将两粒均匀的骰子各抛掷一次,观察向上的点数,计算:(1)共有多少种不同的结果?(2)两粒骰子点数之和等于3的倍数的概率;(3)两粒骰子点数之和为4或5的概率.19.某良种培育基地正在培育甲、乙两种小麦新品种,为了进行对 照试验,两种小麦各种了15亩,所得亩产数据(单位:kg )如下:品种甲:368, 392, 399, 400, 405, 412, 415, 421, 423,423, 427, 430,434, 445, 445;品种乙:374, 383, 385, 386, 391, 392, 395,397, 400,401, 401, 403,406, 410, 415.(1)画出两组数据的茎叶图;(2)用茎叶图处理现有的数据,有什么优点?(3)根据茎叶图比较甲、乙两种小麦亩产量的极差及标准差.20.设火车托运重量为()x kg 行李时,托运费用y (单位:元)的 标准为:⎩⎨⎧>-+⨯≤<=50)50(5.0503.05003.0x x x xy试画出计算行李托运费用的流程框图;并用if 语句写出算法.21.为了解某种干电池的使用寿命,对其使用情况进行了追踪调查,统计情况如下表:(1)根据上面数据列出频率分布表; (2)画出频率分布直方图;(3)估计使用寿命在300h 以上的干电池在总体中所占的比例.。

【沪科版】高中数学必修三期末试卷(附答案)(2)

【沪科版】高中数学必修三期末试卷(附答案)(2)

一、选择题1.民间有一种五巧板拼图游戏.这种五巧板(图1)可以说是七巧板的变形,它是由一个正方形分割而成(图2),若在图2所示的正方形中任取一点,则该点取自标号为③和④的巧板的概率为( )A .518B .13C .718D .492.如图所示,在一个边长为2.的正方形AOBC 内,曲2y x =和曲线y x =围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是( )A .12B .14C .13D .163.在一个棱长为3cm 的正方体的表面涂上颜色,将其适当分割成棱长为1cm 的小正方体,全部放入不透明的口袋中,搅拌均匀后,从中任取一个,取出的小正方体表面仅有一个面涂有颜色的概率是() A .49B .827C .29D .1274.先后抛掷两枚均匀的正方体骰子,骰子朝上的面的点数分别为x ,y ,则满足()()22lg 2lg 3lg x y x y +=+的概率为( )A .18B .14C .13D .125.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的0x =,则一开始输入的x 的值为( )A .34B .78C .1516D .31326.在如图算法框图中,若6a =,程序运行的结果S 为二项式5(2)x +的展开式中3x 的系数的3倍,那么判断框中应填入的关于k 的判断条件是( )A .3k <B .3k >C .4k <D .4k >7.执行如图所示的程序框图,若输人的n 值为2019,则S =A .B .C .D .8.若执行如图所示的程序框图,则输出S 的值为( )A .9-B .16-C .25-D .36-9.工人月工资y (元)与劳动生产率x (千元)变化的回归直线方程为=50+80x ,下列判断不正确的是( )A .劳动生产率为1000元时,工资约为130元B .工人月工资与劳动者生产率具有正相关关系C .劳动生产率提高1000元时,则工资约提高130元D .当月工资为210元时,劳动生产率约为2000元 10.①45化为二进制数为(2)101101;②一个总体含有1000个个体(编号为0000,0001,…,0999),采用系统抽样从中抽取一个容量为50的样本,若第一个抽取的编号为0008,则第六个编号为0128;③已知a ,b ,c 为ABC ∆三个内角A ,B ,C 的对边,其中3a =,4c =,6A π=,则这样的三角形有两个解.以上说法正确的个数是( ) A .0B .1C .2D .311.某校高中三个年级共有学生1050人,其中高一年级300人,高二年级350人,高三年级400人.现要从全体高中学生中通过分层抽样抽取一个容量为42的样本,那么应从高三年级学生中抽取的人数为 A .12B .14C .16D .1812.已知某企业上半年前5个月产品广告投入与利润额统计如下: 月份1 2 3 4 5 广告投入(x 万元) 9.5 9.3 9.1 8.9 9.7 利润(y 万元)9289898793由此所得回归方程为7.5ˆyx a =+,若6月份广告投入10(万元)估计所获利润为( ) A .97万元B .96.5万元C .95.25万元D .97.25万元二、填空题13.掷一颗骰子,向上的点数第一次记为x ,第二次记为y ,则()2log 3x y +=的概率________.14.乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,甲发球得1分的概率为35,乙发球得1分的概率为23,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.则开始第4次发球时,甲、乙的比分为1比2的概率为________.15.在区间[]0,2中随机地取出一个数x ,则sin6x π>的概率是__________.16.我国元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没有壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的0x =,问一开始输入的x =______斗.遇店添一倍,逢友饮一斗,意思是碰到酒店就把壶里的酒加1倍,碰到朋友就把壶里的酒喝一斗,店友经三处,意思是每次都是遇到店后又遇到朋友,一共是3次.17.如图所示的伪代码,最后输出的S 值为__________.18.右图程序框图的运行结果是____________________19.已知数据1x ,2x ,…,10x 的方差为1,且()()()222123222x x x -+-+-()2102170x ++-=,则数据1x ,2x ,…,10x 的平均数是________. 20.已知由样本数据集合(){}11,1,2,3,...,x y i n =,求得的回归直线方程为1.2308ˆ.0y x =+,且ˆ4x =,若去掉两个数据点 (4.1,5.7)和(3.9,4.3)后重新求得的回归直线方程l 的斜率估计值为1.2,则此回归直线l 的方程为_______.三、解答题21.某校从高一年级学生中随机抽取60名学生,将期中考试的物理成绩(均为整数)分成六段:[40,50),[50,60),[60,70),…,[90,100]后得到如图频率分布直方图.(1)根据频率分布直方图,估计众数和中位数;(2)用分层抽样的方法从[40,60)的学生中抽取一个容量为5的样本,从这五人中任选两人参加补考,求这两人的分数至少一人落在[50,60)的概率.22.在一个盒子中装有6支圆珠笔,其中3支一等品,2支二等品和1支三等品,从中任取3支.求(1)恰有1支一等品的概率; (2)恰有两支一等品的概率; (3)没有三等品的概率.23.以下给出了求1234+++的一个算法,按照逐一相加的程序进行: 第一步:计算12+,得到3;第二步:将第一步中的运算结果3与3相加,得到6; 第三步:将第二步中的运算结果6与4相加,得到10. 请设计一个求12345⨯⨯⨯⨯的一个算法.24.图是求239111112222S =+++++的一个程序框图. (1)在程序框图的①处填上适当的语句; (2)写出相应的程序.25.随着中美贸易战的不断升级,越来越多的国内科技巨头加大了科技研发投入的力度.中华技术有限公司拟对“麒麟”手机芯片进行科技升级,根据市场调研与模拟,得到科技升级投入x (亿元与科技升级直接收益y (亿元)的数据统计如下: 序号 1 2 3 4 5 6 7 8 9 10 11 12 x 2 3 4 6 8 10 13 21 22 23 24 25 y1322314250565868.56867.56666当017x <≤时,建立了y 与x 的两个回归模型:模型①:ˆ 4.111.8yx =+;模型②:ˆ21.314.4yx =;当17x >时,确定y 与x 满足的线性回归方程为ˆ0.7y x a =-+. (1)根据下列表格中的数据,比较当017x <≤时模型①、②的相关指数2R 的大小,并选择拟合精度更高、更可靠的模型,预测对“麒麟”手机芯片科技升级的投入为17亿元时的直接收益.(附:刻画回归效果的相关指数()()22121ˆ1ni i i nii y yR y y ==-=--∑∑ 4.1≈)(2)为鼓励科技创新,当科技升级的投入不少于20亿元时,国家给予公司补贴5亿元,以回归方程为预测依据,比较科技升级投入17亿元与20亿元时公司实际收益的大小.(附:用最小二乘法求线性回归方程ˆˆˆybx a =+的系数:()()()1122211ˆn ni iiii i nni i i i x y nx y x x y y bx nx x x ====-⋅--==--∑∑∑∑,ˆˆay bx =-) (3)科技升级后,“麒麟”芯片的效率X 大幅提高,经实际试验得X 大致服从正态分布()20.52,0.01N .公司对科技升级团队的奖励方案如下:若芯片的效率不超过50%,不予奖励:若芯片的效率超过50%,但不超过53%,每部芯片奖励2元;若芯片的效率超过53%,每部芯片奖励4元记为每部芯片获得的奖励,求()E Y (精确到0.01). (附:若随机变量()2~,(0)X N μσσ>,则()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=)26.现有某高新技术企业年研发费用投入x(百万元)与企业年利润y (百万元)之间具有线性相关关系,近5年的年科研费用和年利润具体数据如下表: (1)画出散点图;(2)求y 对x 的回归直线方程;(3)如果该企业某年研发费用投入8百万元,预测该企业获得年利润为多少?参考公式:用最小二乘法求回归方程ˆˆˆybx a =+的系数ˆˆ,a b 计算公式: 1221ˆˆˆ·,ni ii nii x y nx y bay bx xnx ==-==--∑∑【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分别求出③和④的巧板的面积,根据几何概型的概率关系转化为面积比. 【详解】设巧板①的边长为1,则结合图2可知大正方形的边长为3, 其面积239S ==.其中巧板③是底边长为2的等腰直角三角形,其面积为112112S =⨯⨯=,巧板④的正方形 与腰长为1的等腰直角三角形的组合图形,其面积为22151122S ⨯⨯+==, 故所求的概率12718S S P S +==. 故选:C . 【点睛】本题考查几何概型的概率求法,转化为面积比,属于中档题 .2.C解析:C 【分析】欲求所投的点落在叶形图内部的概率,须结合定积分计算叶形图(阴影部分)平面区域的面积,再根据几何概型概率计算公式求解. 【详解】联立2y y x⎧=⎪⎨=⎪⎩(1,1)C . 由图可知基本事件空间所对应的几何度量1OBCA S =正方形,满足所投的点落在叶形图内部所对应的几何度量:S (A)3123120021)()|33x dx x x ==-⎰13=. 所以P (A )1()1313OBCAS A S ===正方形. 故选:C . 【点睛】本题综合考查了几何概型及定积分在求面积中的应用,考查定积分的计算,意在考查学生对这些知识的理解掌握水平.3.C解析:C 【分析】由在27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,根据古典概型及其概率的计算公式,即可求解. 【详解】由题意,在27个小正方体中,恰好有三个面都涂色有颜色的共有8个,恰好有两个都涂有颜色的共12个,恰好有一个面都涂有颜色的共6个,表面没涂颜色的1个,可得试验发生包含的事件是从27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,所以所求概率为62279=. 故选:C . 【点睛】本题主要考查了古典概型及其概率的计算公式的应用,其中解答根据几何体的结构特征,得出基本事件的总数和所求事件所包含基本事件的个数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4.B解析:B 【分析】 先化简()()22lg 2lg 3lg x yx y +=+,得到x y =或2x y =.利用列举法和古典概型概率计算公式可计算出所求的概率. 【详解】 由22320xxy y ,有()()20x y x y --=,得x y =或2x y =,则满足条件的(),x y 为()1,1,()2,2,()3,3,()4,4,()5,5,()6,6,()2,1,()4,2,()6,3,所求概率为91364p == .故选B. 【点睛】本小题主要考查对数运算,考查列举法求得古典概型概率有关问题,属于基础题.5.B解析:B 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算输入时变量x 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得到答案. 【详解】本题由于已知输出时x 的值,因此可以逆向求解: 输出0x =,此时4i =; 上一步:1210,2x x -==,此时3i =; 上一步:1321,24x x -==,此时2i =; 上一步:3721,48x x -==,此时1i =; 故选:B . 【点睛】本题考查了程序框图的循环结构,考查了学生逻辑推理和数学运算的能力,属于基础题.6.C解析:C 【分析】根据二项式(2+x )5展开式的通项公式,求出x 3的系数,模拟程序的运行,可得判断框内的条件. 【详解】∵二项式5(2)x +展开式的通项公式是5152r r r r T C x -+=⋅⋅,令3r =,3233152T C x +∴=⋅⋅,332356(4)21408x x C x∴⨯⋅⋅=,∴程序运行的结果S 为120, 模拟程序的运行,由题意可得 k=6,S=1不满足判断框内的条件,执行循环体,S=6,k=5 不满足判断框内的条件,执行循环体,S=30,k=4 不满足判断框内的条件,执行循环体,S=120,k=3此时,应该满足判断框内的条件,退出循环,输出S 的值为120. 故判断框中应填入的关于k 的判断条件是k <4? 故选:C【点睛】本题考查了二项式展开式的通项公式的应用问题,考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于中档题.7.B解析:B 【分析】根据程序框图可知,当时结束计算,此时.【详解】计算过程如下表所示:周期为6 n 2019k 1 2 (2018)2019S…k<n 是是是是否【点睛】本题考查程序框图,选用表格计算更加直观,此题关键在于判断何时循环结束.8.D解析:D 【分析】执行循环结构的程序框图,逐次运算,根据判断条件终止循环,即可得到运算结果,得到答案. 【详解】由题意,执行循环结构的程序框图,可知:第一次运行时,1(1)11,0(1)1,3T S n =-=-=+-=-=•;第二次运行时,3(1)33,1(3)4,5T S n =-=-=-+-=-=•; 第三次运行时,5(1)55,4(5)9,7T S n =-=-=-+-=-=•; 第四次运行时,7(1)77,9(7)16,9T S n =-=-=-+-=-=•; 第五次运行时,9(1)99,16(9)25,11T S n =-=-=-+-=-=•; 第六次运行时,11(1)1111,25(11)36T S =-=-=-+-=-•, 此时刚好满足9n >,所以输出S 的值为36-.故选D. 【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中熟练应用给定的程序框图,逐次运算,根据判断条件,终止循环得到结果是解答的关键,着重考查了推理与运算能力,属于基础题.9.C解析:C 【解析】试题分析:根据线性回归方程=50+80x 的意义,对选项中的命题进行分析、判断即可. 解:根据线性回归方程为=50+80x ,得;劳动生产率为1000元时,工资约为50+80×1=130元,A 正确; ∵=80>0,∴工人月工资与劳动者生产率具有正相关关系,B 正确;劳动生产率提高1000元时,工资约提高=80元,C 错误;当月工资为210元时,210=50+80x ,解得x=2, 此时劳动生产率约为2000元,D 正确. 故选C .考点:线性回归方程.10.C解析:C 【解析】分析:①根据进位制的互化可得结果;②根据系统抽样的性质可得结论;③由正弦定理可得结论.详解:①45222...1÷=,22211...0÷=,112 5...1÷=,52 2...1÷=,22 1...0÷=,120...1÷=,故()()10245101101=,①正确;②因为1000个个题抽取50个样本,∴每个样本编号间隔为20,第六个编号为8205108+⨯=,即编号为0108,故②错误;③由正弦定理可得342,1sin 32sinC C ==,,c a C >∴∠可能是锐角,也可能是钝角,三角形有两个解,③正确,故选C.点睛:本题主要考查进位制、正弦定理的应用,分层抽样的应用,意在考查综合运用所学知识解决问题的能力,属于中档题.11.C解析:C 【解析】 【分析】根据分层抽样的定义求出在各层中的抽样比,即样本容量比上总体容量,按此比例求出在高三年级中抽取的人数. 【详解】根据题意得,用分层抽样在各层中的抽样比为421105020=,则在高三年级抽取的人数是14001625⨯=人, 故选C. 【点睛】该题所考查的是有关分层抽样的问题,在解题的过程中,需要明确无论采用哪种抽样方法,都必须保证每个个体被抽到的概率是相等的,所以注意成比例的问题.12.C解析:C 【解析】 【分析】首先求出x y ,的平均数,将样本中心点代入回归方程中求出a 的值,然后写出回归方程,然后将10x =代入求解即可 【详解】()19.59.39.18.99.79.35x =⨯++++=()19289898793905y =⨯++++=代入到回归方程为7.5ˆy x a =+,解得20.25a = 7.25ˆ50.2yx ∴=+ 将10x =代入7.50.5ˆ22yx =+,解得ˆ95.25y = 故选C 【点睛】本题是一道关于线性回归方程的题目,解答本题的关键是求出线性回归方程,属于基础题。

【新教材】2020新人教版A高中数学必修第一册期末复习高中数学必修第3章测试卷

【新教材】2020新人教版A高中数学必修第一册期末复习高中数学必修第3章测试卷

第三章 函数的概念与性质考试时间120分钟,满分150分.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =x 2+1的值域是( B ) A .[0,+∞) B .[1,+∞) C .(0,+∞)D .(1,+∞)[解析] 由题意知,函数y =x 2+1的定义域为R ,则x 2+1≥1,∴y ≥1. 2.已知f (12x -1)=2x -5,且f (a )=6,则a 等于( B )A .-74B .74C .43D .-43[解析] 设12x -1=t ,则x =2t +2,t ∈R ,∴f (t )=2(2t +2)-5=4t -1,∴f (x )=4x -1.由f (a )=6得4a -1=6,即a =74.3.(2019·山东烟台高一期中测试)已知函数y =f (x )的部分x 与y 的对应关系如下表:则f [f (4)]A .-1 B .-2 C .-3D .3[解析] 由图表可知,f (4)=-3,∴f [f (4)]=f (-3)=3.4.已知幂函数f (x )=x α的图象过点(2,12),则函数g (x )=(x -2)f (x )在区间[12,1]上的最小值是( C )A .-1B .-2C .-3D .-4[解析] 由已知得2α=12,解得α=-1,∴g (x )=x -2x =1-2x 在区间[12,1]上单调递增,则g (x )min =g (12)=-3,故选C .5.(2019·吉林榆树一中高一期中测试)已知函数f (x -1)=x 2-3,则f (2)的值是( B ) A .-2B .6C.1 D.0[解析]解法一:令x-1=2,则x=3,∴f(2)=32-3=6.解法二:令x-1=t,则x=t+1,∴f(t)=(t+1)2-3=t2+2t-2,∴f(2)=22+2×2-2=6.6.(2019·吉林乾安七中高一期测试)已知函数f(x)=(m-1)x2+(m-2)x+m2-7m+12为偶函数,则m的值是(B)A.1 B.2C.3 D.4[解析]由题意得m-2=0,∴m=2.7.“龟兔赛跑”讲述了这样一个故事:领先的兔子看着缓缓爬行的乌龟,骄傲起来,睡了一觉,当它醒来时发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.用s1和s2分别表示乌龟和兔子所行的路程,t为时间,s为路程,则下列图象中与故事情节相吻合的是(D)[解析]根据题意:s1是匀速运动,路程一直在增加,s2有三个阶段:开始是路程增加,中间睡觉,路程不变;醒来时发现乌龟快到终点了急忙追赶,路程增加;但是乌龟还是先到终点,即s1在s2上方,故选D.8.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x)且在区间[0,2]上是增函数,则(D)A.f(-1)<f(3)<f(4) B.f(4)<f(3)<f(-1)C.f(3)<f(4)<f(-1) D.f(-1)<f(4)<f(3)[解析]因为f(x)是R上的奇函数,所以f(0)=0,又f(x)满足f(x-4)=-f(x),则f(4)=-f(0)=0,又f(x)=-f(-x)且f(x-4)=-f(x),所以f(3)=-f(-3)=-f(1-4)=f(1),又f (x )在区间[0,2]上是增函数,所以f (1)>f (0),即f (1)>0,所以f (-1)=-f (1)<0,f (3)=f (1)>0,可得f (-1)<f (4)<f (3),故选D . 二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分)9.下列幂函数中,其图象过点(0,0),(1,1),且为偶函数的是( BD )A .y =x 12B .y =x 2C .y =x-14D .y =x 4[解析] 由题设知该幂函数为偶函数,且幂指数大于0,故选BD .10.若奇函数f (x )在[3,7]上是增函数,且最小值是1,则它在[-7,-3]上( AB ) A .是增函数 B .最大值是-1 C .是减函数D .最小值是-1[解析] ∵奇函数在对称区间上的单调性相同,最值互为相反数.∴y =f (x )在[-7,-3]上有最大值-1且为增函数.故选AB .11.已知f (x )=3-2|x |,g (x )=x 2-2x ,F (x )=⎩⎪⎨⎪⎧g (x )(若f (x )≥g (x ))f (x )(若f (x )<g (x )),则F (x )( BC )A .最小值-1B .最大值为7-27C .无最小值D .无最大值[解析] 作出F (x )的图象,如图实线部分,知有最大值而无最小值,且最大值不是3,故选BC .12.已知f (x )是定义在[0,+∞)上的函数,根据下列条件,可以断定f (x )是增函数的是( CD )A .对任意x ≥0,都有f (x +1)>f (x )B .对任意x 1,x 2∈[0,+∞),且x 1≥x 2,都有f (x 1)≥f (x 2)C .对任意x 1,x 2∈[0,+∞),且x 1-x 2<0,都有f (x 1)-f (x 2)<0D .对任意x 1,x 2∈[0,+∞),且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0[解析] 根据题意,依次分析选项:对于选项A ,对任意x ≥0,都有f (x +1)>f (x ),不满足函数单调性的定义,不符合题意;对于选项B ,当f (x )为常数函数时,对任意x 1,x 2∈[0,+∞),都有f (x 1)=f (x 2),不是增函数,不符合题意;对于选项C ,对任意x 1,x 2∈[0,+∞),且x 1-x 2<0,都有f (x 1)-f (x 2)<0,符合题意;对于选项D ,对任意x 1,x 2∈[0,+∞),设x 1>x 2,若f (x 1)-f (x 2)x 1-x 2>0,必有f (x 1)-f (x 2)>0,则函数在[0,+∞)上为增函数,符合题意.三、填空题(本大题共4小题,每小题5分,共20分.) 13.(2019·陕西黄陵中学高一期末测试)函数f (x )=4-2x +1x +1的定义域是__{x |x ≤2且x ≠-1}__.[解析] 由题意得⎩⎪⎨⎪⎧4-2x ≥0x +1≠0,解得x ≤2且x ≠-1,∴函数f (x )的定义域为{x |x ≤2且x ≠-1}.14.已知f (x )=⎩⎪⎨⎪⎧2x ,x >0,f (x +1),x ≤0,则f (-43)+f (43)等于__4__.[解析] ∵f (x )=⎩⎪⎨⎪⎧2x ,x >0,f (x +1),x ≤0,∴f (-43)=f (-43+1)=f (-13)=f (-13+1)=f (23)=23×2=43,f (43)=2×43=83,∴f (-43)+f (43)=43+83=4.15.已知幂函数f (x )=x α的图象经过点(9,3),则f (12)=2,函数f (1x -1)的定义域为__(0,1]__.[解析] 幂函数f (x )的图象经过点(9,3),所以3=9α,所以α=12,所以幂函数f (x )=x ,故f (12)=22,故1x-1≥0,解得0<x ≤1.16.设α∈{1,2,3,-1},则使y =x α为奇函数且在(0,+∞)上单调递增的α的值为__1或3__.[解析] 当α=1时,y =x 为奇函数,且在R 上单调递增,满足题意;当α=2时,y =x 2为偶函数不满足题意;当α=3时,y =x 3为奇函数,且在R 上单调递增,满足题意;当α=-1时,y =1x为奇函数,但在(0,+∞)上单调递减,不满足题意.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知函数f (x )=ax +b ,且f (1)=2,f (2)=-1. (1)求f (m +1)的值;(2)判断函数f (x )的单调性,并用定义证明.[解析] (1)由f (1)=2,f (2)=-1,得a +b =2,2a +b =-1,即a =-3,b =5,故f (x )=-3x +5,f (m +1)=-3(m +1)+5=-3m +2.(2)f (x )在R 上是减函数.证明:任取x 1<x 2(x 1,x 2∈R ),则f (x 2)-f (x 1)=(-3x 2+5)-(-3x 1+5)=3x 1-3x 2=3(x 1-x 2),因为x 1<x 2,所以f (x 2)-f (x 1)<0,即函数f (x )在R 上单调递减. 18.(本小题满分12分)已知函数f (x )=3-axa -1(a ≠1). (1)若a >0,求f (x )的定义域;(2)若f (x )在区间(0,1]上单调递减,求实数a 的取值范围.[解析] (1)当a >0且a ≠1时,由3-ax ≥0得x ≤3a ,即函数f (x )的定义域是(-∞,3a ].(2)当a -1>0,即a >1时,要使f (x )在(0,1]上单调递减,则需3-a ×1≥0,此时1<a ≤3. 当a -1<0,即a <1时,要使f (x )在(0,1]上单调递减,则需-a >0,且3-a ×1≥0,此时a <0.综上所述,所求实数a 的取值范围是(-∞,0)∪(1,3].19.(本小题满分12分)某商品在近30天内每件的销售价格P (元)和时间t (天)的函数关系为P =⎩⎪⎨⎪⎧t +20,0<t <25,-t +100,25≤t ≤30(t ∈N *).设商品的日销售量Q (件)与时间t (天)的函数关系为Q =40-t (0<t ≤30,t ∈N *),求这种商品的日销售金额的最大值,并指出日销售金额最大时是第几天.[解析] 设日销售金额为y 元,则y =PQ ,所以y =⎩⎪⎨⎪⎧-t 2+20t +800(0<t <25,t ∈N *),t 2-140t +4 000(25≤t ≤30,t ∈N *). 当0<t <25且t ∈N *时,y =-(t -10)2+900, 所以当t =10时,y max =900.①当25≤t ≤30且t ∈N *时,y =(t -70)2-900, 所以当t =25时,y max =1 125.②结合①②得y max =1 125.因此这种商品日销售金额的最大值为1 125元,且在第25天日销售金额最大.20.(本小题满分12分)已知二次函数f (x )的最小值为1,且f (0)=f (2)=3. (1)求f (x )的解析式;(2)若f (x )在区间[2a ,a +1]上不单调,求实数a 的取值范围.[解析] (1)由f (0)=f (2)知二次函数f (x )关于直线x =1对称,又函数f (x )的最小值为1, 故可设f (x )=a (x -1)2+1,由f (0)=3,得a =2. 故f (x )=2x 2-4x +3.(2)要使函数不单调,则2a <1<a +1, 则0<a <12.故实数a 的取值范围(0,12).21.(本小题满分12分)如果函数y =f (x )(x ∈D )满足: ①f (x )在D 上是单调函数;②存在闭区间[a ,b ]⊆D ,使f (x )在区间[a ,b ]上的值域也是[a ,b ]. 那么就称函数y =f (x )为闭函数.试判断函数y =x 2+2x 在[-1,+∞)内是否为闭函数.如果是闭函数,那么求出符合条件的区间[a ,b ];如果不是闭函数,请说明理由.[解析] 设x 1,x 2是[-1,+∞)内的任意两个不相等的实数,且-1≤x 1<x 2,则有f (x 2)-f (x 1)=(x 22+2x 2)-(x 21+2x 1)=(x 22-x 21)+2(x 2-x 1)=(x 2-x 1)(x 1+x 2+2). ∵-1≤x 1<x 2,∴x 2-x 1>0,x 1+x 2+2>0. ∴(x 2-x 1)(x 1+x 2+2)>0. ∴f (x 2)>f (x 1).∴函数y =x 2+2x 在[-1,+∞)内是增函数. 假设存在符合条件的区间[a ,b ],则有⎩⎪⎨⎪⎧ f (a )=a f (b )=b ,即⎩⎪⎨⎪⎧a 2+2a =ab 2+2b =b. 解得⎩⎪⎨⎪⎧ a =0b =0或⎩⎪⎨⎪⎧ a =0b =-1或⎩⎪⎨⎪⎧ a =-1b =0或⎩⎪⎨⎪⎧a =-1b =-1.又∵-1≤a <b ,∴⎩⎪⎨⎪⎧a =-1b =0.∴函数y =x 2+2x 在[-1,+∞)内是闭函数,符合条件的区间是[-1,0].22.(本小题满分12分)已知函数y =x +tx 有如下性质:如果常数t >0,那么该函数在(0,t )上是减函数,在[t ,+∞)上是增函数.(1)已知f (x )=4x 2-12x -32x +1,x ∈[0,1],利用上述性质,求函数f (x )的单调区间和值域;(2)对于(1)中的函数f (x )和函数g (x )=-x -2a ,若对任意x 1∈[0,1],总存在x 2∈[0,1],使得g (x 2)=f (x 1)成立,求实数a 的值.[解析] (1)y =f (x )=4x 2-12x -32x +1=2x +1+42x +1-8,设u =2x +1,x ∈[0,1],∴1≤u ≤3,则y =u +4u -8,u ∈[1,3].由已知性质得,当1≤u ≤2,即0≤x ≤12时,f (x )单调递减,所以单调减区间为[0,12];当2≤u ≤3,即12≤x ≤1时,f (x )单调递增,所以单调增区间为[12,1];由f (0)=-3,f (12)=-4,f (1)=-113,得f (x )的值域为[-4,-3].(2)g (x )=-x -2a 为减函数,故g (x )∈[-1-2a ,-2a ],x ∈[0,1].由题意知,f (x )的值域是g (x )的值域的子集,∴⎩⎪⎨⎪⎧-1-2a ≤-4,-2a ≥-3,∴a =32.。

【原创】校本练习:高一数学必修3(人教版)第三章章

【原创】校本练习:高一数学必修3(人教版)第三章章

第三章综合练习班级 姓名 座号一、选择题1.掷一颗骰子,出现偶数点或出现不小于4的点数的概率是( )A.23B.34C.56D.45[答案] A[解析] 对立事件为出现1点或3点,∴P =1-26=23. 2.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A .至少有1个白球;都是白球B .至少有1个白球;至少有1个红球C .恰有1个白球;恰有2个白球D .至少有1个白球;都是红球[答案] C3.从分别写着数字1,2,3,…,9的九张卡片中,任意抽取2张,其上数字之积是完全平方数的概率为( )A.19B.29C.13D.59 [答案] A[解析] 如表,从1至9这9个数字中任取两个,所有可能取法为空白部分,共36种,其中两数的乘积是完全平方数的有1×4,1×9,2×8,4×9,∴概率为P =436=19. 二、填空题4.甲、乙两人参加法律知识竞赛,共有10道不同的题目,其中有6道选择题和4道填空题,甲、乙两人依次各抽一题,则甲抽到选择题,乙抽到填空题的概率为______.[答案] 815[解析] 共有不同取法9+8+7+…+1=45种,甲抽到选择题,乙抽到填空题的抽法有6×4=24种,∴所求概率P =2425=815. 5.已知集合A ={-1,0,1,3},从集合A 中有放回的任取两个元素x 、y 作为点P 的坐标,则点P 落在坐标轴上的概率为________.[答案] 716[解析] 所有基本事件构成集合Ω={(-1,-1),(-1,0),(-1,1),(-1,3),(0,-1),(0,0),(0,1),(0,3),(1,-1),(1,0),(1,1),(1,3),(3,-1),(3,0),(3,1),(3,3)},其中“点P 落在坐标轴上”的事件所含基本事件有(-1,0),(0,-1),(0,0),(0,1),(0,3),(1,0),(3,0),∴P =716. 6.在单位正方形ABCD 内(包括边界)任取一点M ,△AMB 的面积大于或等于14的概率为________.[答案] 12[解析] 如图,取AD 、BC 的中点E 、F ,在EF 上任取一点P ,则S △ABP =12AB ·12=14,故当点M 在矩形CDEF 内时,事件“△AMB 的面积大于等于14”发生,其概率P =S 矩形CDEF S 正方形ABCD =12.7.设a ∈[0,10)且a ≠1,则函数f (x )=log a x 在(0,+∞)内为增函数,且g (x )=a -2x在(0,+∞)内也为增函数的概率为________. [答案] 110 [解析] 由条件知,a 的所有可能取值为a ∈[0,10]且a ≠1,使函数f (x ),g (x )在(0,+∞)内都为增函数的a 的取值为⎩⎨⎧a >1a -2<0,∴1<a <2, 由几何概率知,P =2-110-0=110.。

高一上学期数学期末考测试卷(提升)(解析版)--人教版高中数学精讲精练必修一

高一上学期数学期末考测试卷(提升)(解析版)--人教版高中数学精讲精练必修一

的值可以是(

A.3
B.4
C.5
D. 16 3
【答案】BC
【解析】作出函数 f x 的图象,如图所示,
设 f x1 f x2 f x3 f x4 t , 由图可知,当 0 t 1时,直线 y t 与函数 f x 的图象有四个交点,
交点的横坐标分别为 x1, x2 , x3, x4 ,且 x1 x2 x3 x4 ,
因为
x
0,
π 3
,
2x
π 6
π, 6
5π 6
,函数
y
sint

π 6
,
5π 6
上不单调,故
D
错误.
故选:ABC.
10.(2023 秋·江苏南通 )下列命题中,真命题的是( )
A. x R ,都有 x2 x x 1
B.
x 1,
,使得
x
x
4
1
6
.
C.任意非零实数 a,b ,都有 b a 2 ab
f x 在 , 上不具单调性,故 B 错误;
f x 图象与 x 轴只一个交点,即有且只有一个零点,故 C 正确;

yቤተ መጻሕፍቲ ባይዱ
0
,解得
x
3 2
,从图象看,
f
(x)
关于
3 2
,
0
对称,下面证明:
由 f x x 1 x 2 ,

f
3 2
x
x
1 2
x1 2

f
3 2
x
x
1 2
x 1 2
x 1 2
x 1, 2

f
3 2

高一数学必修三经典例题

高一数学必修三经典例题

概率必须满足三个基本要求:① 对任意的一个随机事件A ,有()10≤≤A P② ()()0,1,=Φ=ΩΦΩP P 则有可能事件分别表示必然事件和不和用③如果事件()()()B P A P B A P B A +=+:,则有互斥和互斥事件(exclusive events):不能同时发生的两个事件称为互斥事件对立事件(complementary events ):两个互斥事件中必有一个发生,则称两个事件为对立事件 ,事件A 的对立事件 记为:A独立事件的概率:()()()B P A P A =AB P , B , 则为相互独立的事件事件若,若()()()()n 21n 2121A ...A A ...A A A P , , ... , , P P P A A A n =则为两两独立的事件古典概率(Classical probability model ):① 所有基本事件有限个 ② 每个基本事件发生的可能性都相等。

满足这两个条件的概率模型成为古典概型如果一次试验的等可能的基本事件的个数为个n ,则每一个基本事件发生的概率都是n1,如果某个事件A 包含了其中的m 个等可能的基本事件,则事件A 发生的概率为 ()nm A P = 几何概型(geomegtric probability model ):一般地,一个几何区域D 中随机地取一点,记事件“改点落在其内部的一个区域d 内”为事件A ,则事件A 发生的概率为()的侧度的侧度D d A P = ( 这里要求D 的侧度不为0,其中侧度的意义由D 确定,一般地,线段的侧度为该线段的长度;平面多变形的侧度为该图形的面积;立体图像的侧度为其体积 )例1. 在大小相同的6个球中,4个是红球,若从中任意选2个,求所选的2个球至少有一个是红球的概率?练习1 在大小相同的6个球中,2个是红球,4 个是白球,若从中任意选取3个,求至少有1个是红球的概率?练习2 盒子中有6只灯泡,其中2只次品,4只正品,有放回的从中任抽2次,每次抽取1只,试求下列事件的概率:(1)第1次抽到的是次品(2)抽到的2次中,正品、次品各一次例题2 甲乙两人一起去游“2010上海世博会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是【解析】试题分析:甲、乙最后一小时他们所在的景点共有6×6=36中情况甲、乙最后一小时他们同在一个景点共有6种情况,故选D.考点:古典概型及其概率计算公式.例题3 设一直角三角形两直角边的长均是区间(0,1)的随机数,则斜边的长小于率为∠为直角)的练习如图所示,一只蚂蚁在一直角边长为1 cm的等腰直角三角形ABC(B边上爬行,则蚂蚁距A点不超过1 cm的概率为.练习甲乙两人约定在6时到7时之间在某一处会面,并约定先到者应等候另一个人一刻钟,这时方可离去。

高中数学 章末检测试卷(一)(含解析)新人教A版必修3-新人教A版高一必修3数学试题

高中数学 章末检测试卷(一)(含解析)新人教A版必修3-新人教A版高一必修3数学试题

章末检测试卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.算法共有三种逻辑结构,即顺序结构、条件结构、循环结构,下列说法正确的是( ) A.一个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C.一个算法必须含有上述三种逻辑结构D.一个算法可以含有上述三种逻辑结构的任意组合答案 D解析任何一种算法都是由上述三种逻辑结构组成的,它可以含有三种结构中的一种、两种或三种.2.下面一段程序执行后的结果是( )A.6B.4C.8D.10答案 A解析由程序知a=2,2×2=4,4+2=6,故最后输出a的值为6,故选A.3.执行如图所示的程序框图,若输出的结果为11,则M处可填入的条件为( )A.k≥31B.k≥15C.k>31D.k>15答案 B解析依题意k=1,S=0,进入循环,循环过程依次为:S=0+1=1,k=2×1+1=3;S=1+3=4,k=2×3+1=7;S=4+7=11,k=2×7+1=15,终止循环,输出S=11.结合选项知,M处可填k≥15.4.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s为( )A.7B.12C.17D.34答案 C解析由框图可知,输入x=2,n=2,a=2,s=2,k=1,不满足条件;a=2,s=4+2=6,k=2,不满足条件;a=5,s=12+5=17,k=3,满足条件输出s=17,故选C.5.执行如图所示的程序框图,输出的S值为( )A.1B.3C.7D.15答案 C解析由程序框图得S=0+20=1,k=1;S=1+21=3,k=2;S=3+22=7,k=3,输出S的值为7.6.运行如图所示的程序,当输入的数据为75,45时,输出的值为( ) INPUT “输入两个不同正整数m,n=”;m,nDOIF m>n THENm=m-nELSEn=n-mEND IFLOOP UNTIL m=nPRINT mENDA.24B.18C.12D.15答案 D解析由程序语句知,此程序是用更相减损术求75,45的最大公约数.7.执行如图所示的框图,输入N=5,则输出S的值为( )A.54B.45C.65D.56 答案 D解析 第一次循环,S =0+11×2=12,k =2; 第二次循环,S =12+12×3=23,k =3;第三次循环,S =23+13×4=34,k =4;第四次循环,S =34+14×5=45,k =5;第五次循环,S =45+15×6=56,此时k =5不满足判断框内的条件,跳出循环, 输出S =56,故选D.8.若如图所示的程序框图的功能是计算1×12×13×14×15的结果,则在空白的执行框中应该填入( )A .T =T ·(i +1)B .T =T ·iC .T =T ·1i +1D .T =T ·1i答案 C解析 程序框图的功能是计算1×12×13×14×15的结果,依次验证选项可得C 正确.9.如图所示的程序运行时,从键盘输入-3,则输出值为( ) INPUT “x=”;x IF x >0 THEN y =1 ELSEIF x =0 THENy =0 ELSEy =-1 END IF END IF PRINT y END A .-3B .3C .1D .-1 答案 D解析 由程序知,当x >0时,y =1;否则,当x =0时,y =0;当x <0时,y =-1. 即y =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0.10.执行如图所示的程序框图,若输出的k =5,则输入的整数p 的最大值为( )A .7B .15C .31D .63 答案 B解析 由程序框图可知:①S =0,k =1;②S =1,k =2;③S =3,k =3;④S =7,k =4;⑤S =15,k =5,输出k ,此时S =15≥p ,则p 的最大值为15,故选B.11.执行如图所示的程序框图,若输出的结果是4,则判断框内实数m 的取值X 围是( )A .(2,6]B .(6,12]C .(12,20]D .(2,20] 答案 B解析 由程序框图,知第一次循环后,S =0+2=2,k =2; 第二次循环后,S =2+4=6,k =3; 第三次循环后,S =6+6=12,k =4.∵输出k =4,∴循环体执行了3次,此时S =12,∴6<m ≤12,故选B.12.执行如图所示的程序框图,若输出的结果为2,则输入的正整数a 的取值的集合是( )A.{1,2,3,4,5}B.{1,2,3,4,5,6}C.{2,3,4,5}D.{2,3,4,5,6}答案 C解析若输入a=1,则a=2×1+3=5,i=0+1=1,因为5>13不成立,所以继续循环;a =2×5+3=13,i=1+1=2,因为13>13不成立,所以继续循环;a=2×13+3=29,i=2+1=3,因为29>13成立,所以结束循环,输出的结果为3,不为2,所以a≠1,排除A,B,若输入a=6,则a=2×6+3=15,i=0+1=1,因为15>13成立,所以结束循环,输出的结果为1,不为2,所以a≠6,排除D,故选C.二、填空题(本大题共4小题,每小题5分,共20分)13.执行如图程序框图,若输入的a,b的值分别为0和9,则输出的i的值为________.答案 3解析第1次循环:i=1,a=1,b=8,a<b;第2次循环:i=2,a=3,b=6,a<b;第3次循环:i=3,a=6,b=3,a>b,输出i的值为3.14.将二进制数110101(2)化成十进制数,结果为________,再将该结果化成七进制数,结果为________.答案53 104(7)解析110101(2)=1×25+1×24+0×23+1×22+0×21+1×20=53,然后用除7取余法得53=104(7).15.执行如图所示的程序框图,则输出结果S=________.答案1010解析根据程序框图知,S=(-1+2)+(-3+4)+…+(-2019+2020)=1010,故输出的S 的值为1010.16.阅读下面的程序,该算法的功能是_____________________.S=0t=1i=1DOS=S+it=t*ii=i+1LOOP UNTIL i>20PRINT S,tEND答案求S=1+2+3+…+20,t=1×2×3×…×20三、解答题(本大题共6小题,共70分)17.(10分)分别用辗转相除法和更相减损术求282与470的最大公约数.解辗转相除法:470=1×282+188,282=1×188+94,188=2×94,所以282与470的最大公约数为94.更相减损术:470与282分别除以2得235和141.235-141=94,141-94=47,94-47=47,所以470与282的最大公约数为47×2=94.18.(12分)下面给出一个用循环语句编写的程序:(1)指出程序所用的是何种循环语句,并指出该程序的算法功能;(2)请用另一种循环语句的形式把该程序写出来.解(1)本程序所用的循环语句是WHILE循环语句,其功能是计算12+22+32+…+92的值.(2)用UNTIL语句改写程序如下:19.(12分)下列是某个问题的算法,将其改为程序语言,并画出程序框图. 算法:第一步,令i =1,S =0.第二步,若i ≤999成立,则执行第三步; 否则,输出S ,结束算法. 第三步,S =S +1i.第四步,i =i +2,返回第二步. 解 程序如下: i =1 S =0WHILE i<=999 S =S +1/i i =i +2 WEND PRINT S END程序框图如图:20.(12分)下列语句是求S =2+3+4+…+99的一个程序,请回答问题: i =1 S =0DOS =S +ii =i +1LOOP UNTIL i >=99PRINT SEND(1)程序中是否有错误?若有,请加以改正;(2)把程序改成另一种类型的循环语句.解 (1)错误有两处:第一处:语句i =1应改为i =2.第二处:语句LOOPUNTIL i >=99应改为LOOPUNTIL i >99.(2)改为当型循环语句为:i =2S =0WHILE i <=99S =S +ii =i +1WENDPRINT SEND21.(12分)输入x ,求函数y =⎩⎪⎨⎪⎧ 3x -2,x ≥2,-2,x <2的值的程序框图如图所示.(1)指出程序框图中的错误之处并写出正确的算法步骤;(2)重新绘制程序框图,并回答下面提出的问题.①要使输出的值为7,则输入的x 的值应为多少?②要使输出的值为正数,则输入的x 应满足什么条件?解 (1)函数y =⎩⎪⎨⎪⎧ 3x -2,x ≥2,-2,x <2是分段函数,其程序框图中应该有判断框,应该有条件结构,不应该只用顺序结构.正确的算法步骤如下所示:第一步,输入x .第二步,判断x ≥2是否成立.若是,则y =3x -2;否则y =-2.第三步,输出y .(2)根据(1)中的算法步骤,可以画出程序框图如图所示.①要使输出的值为7,则3x -2=7,故x =3,即输入的x 的值应为3.②要使输出的值为正数,则⎩⎪⎨⎪⎧ x ≥2,3x -2>0,得x ≥2.故当x ≥2时,输出的值为正数.22.(12分)为了节约用水,学校改革澡堂收费制度,开始实行计时收费,30min 以内每分钟收费0.1元,30min 以上超过部分每分钟收费0.2元,编写程序并画出程序框图,要求输入洗澡时间,输出洗澡费用.解 用y (单位:元)表示洗澡费用,x (单位:min)表示洗澡时间,则y =⎩⎪⎨⎪⎧ 0.1x ,0<x ≤30,3+0.2x -30,x >30.程序如下:INPUT xIF x <=30 THENy =0.1*xELSEy =3+0.2*x -30END IFPRINT yEND程序框图如图所示.。

高中数学人教版-必修三必修四测试卷(含答案)

高中数学人教版-必修三必修四测试卷(含答案)

高中数学人教版-必修三必修四测试卷(含答案)华鑫中学2011~2012学年第三次月考高一数学试卷(总分150)一、选择题:(以下每小题有且仅有一个正确答案,共40分)1、在100个产品中,一等品20个,二等品30个,三等品50个,用分层抽样的方法抽取一个容量20的样本,则二等品中A被抽取到的概率()A.等于15B.等于3 10C.等于23D.不确定2、已知点P(tanα,cosα)在第三象限,则角α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限3、已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()23A.2B. 1sin 2sinC.2sin1D.sin24、函数y =2sin(3x -π4)图象的两条相邻对称轴之间的距离是 A. π3 B. 2π3C.πD. 4π35、函数y =sin (π4 -2x)的单调增区间是 ( )A.[kπ-3π8 ,kπ+π8 ](k ∈Z)B.[kπ+π8 ,kπ+5π8](k ∈Z)C.[kπ-π8 ,kπ+3π8](k ∈Z)4D.[kπ+3π8 ,kπ+7π8](k ∈Z)6、若,24παπ<<则( ) A .αααtan cos sin >> B .αααsin tan cos >>C .αααcos tan sin >>D .αααcos sin tan >>7、已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值 为 ( ) A .5 B .-5 C .6 D .-68、已知一点O 到平行四边形ABCD 的三个顶点A 、B 、C 的向量分别为a →、b →、c →,则向量等于( )A.a b c ++r r rB.a b c -+r r rC.a b c +r r r -D.a b c r r r --二、填空题(每小题5分,共7题合计35分)9、下列各数)9(85、)6(210、)4(1000、)2(111111中最小的数是____________。

[高一数学必修3测试题答案解析]高一数学必修3测试题答案

[高一数学必修3测试题答案解析]高一数学必修3测试题答案

[高一数学必修3测试题答案解析]高一数学必修3测试题答案说明:本试卷共4页,共有20题,满分共100分,考试时间为60分钟. b某a,参考公式:回归直线的方程是:y其中b(某i1nni某)(yiy)i是与某i对应的回归估计值。

,ayb某;其中yi(某i1某)2一、选择题:(本大题共12小题,每小题4分,共48分)b某a表示的直线必经过的一个定点是 ( A ) 1. 线性回归方程yA. (某,y) B. (某,0) C. (0,y) D. (0,0) 2. 在如图所示的“茎叶图”表示的数据中,众数和中位数分别 ( B )A. 23与26 B. 31与26 C. 24与30 D. 26与30 3. 下列事件:12 3 4 2 0 0 143 5 6 1 1 2① 连续两次抛掷同一个骰子,两次都出现2点; ② 明天下雨; ③某人买彩票中奖;④ 从集合{1,2,3}中任取两个元素,它们的和大于2; ⑤ 在标准大气压下,水加热到90℃时会沸腾。

其中是随机事件的个数有 ( C )4. 200辆汽车通过某一段公路时,时速的频率分布直方图如右图所示,则时速在[50,70)的汽车大约有 ( D )A. 1 B. 2 C.3 D. 4A. 60辆 B. 80辆 C. 70辆 D. 140辆 5. 通过随机抽样用样本估计总体,下列说法正确的是( BA.样本的结果就是总体的结果 B.样本容量越大,可能估计就越精确C.样本的标准差可以近似地反映总体的平均状态 D.数据的方差越大,说明数据越稳定6. 按照程序框图(如右图)执行,第3个输出的数是( C ).A.3B.4C.5D.61)7. 已知n次多项式f(某)an某nan1某n1a1某a0,用秦九韶算法求f(某0)的值,需要进行的乘法运算、加法运算的次数依次是 ( A )A. n, n B. 2n, n C. n(n1), n 2 D. n1, n18. 同时掷3枚硬币,至少有1枚正面向上的概率是 ( A ) A. 5317 B. C. D. 88889. 函数f(某)某2某2,某5,5,在定义域内任取一点某0,使得f(某0)≤0的概率是( C ). A. 1 10 B. 2 3C. 3 10 D.4 510. 把11化为二进制数为( A )A. 1 011(2)B. 11 011(2)C. 10 110(2)D. 0 110(2)11. 交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末测试题
考试时间:90分钟 试卷满分:100分
一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的.
1.如果输入n =2,那么执行右图中算法的结果是( ). A .输出3 B .输出4 C .输出5
D .程序出错,输不出任何结果
2.一个容量为1 000的样本分成若干组,已知某组的频率为0.4,则该组的频数是( ). A .400
B .40
C .4
D .600
3.从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数的概率是( ). A .
6
1
B .
4
1
C .3
1
D .
2
1 4.通过随机抽样用样本估计总体,下列说法正确的是( ). A .样本的结果就是总体的结果 B .样本容量越大,可能估计就越精确
C .样本的标准差可以近似地反映总体的平均状态
D .数据的方差越大,说明数据越稳定 A .
6
1 B .103 C .3
1
D .
2
1 8.右图是根据某赛季甲、乙两名篮球运动员每场比赛得分情况画出的茎叶图.从这个茎叶图可以看出甲、乙两名运动员得分的中位数分别是( ).
A .31,26
B .36,23
C .36,26
D .31,
23
9.按照程序框图(如右图)执行,第3个输出的数是( ). A .3 B .4 C .5 D .6
10.在下列各图中,两个变量具有线性相关关系的图是( ).
A .(1)(2)
B .(1)(3)
C .(2)(4)
D .(2)(3)
13.有一位同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计得到了一天所卖的热饮杯数(y )与当天气温(x ℃)之间的线性关系,其回归方程为y
ˆ=-2.35x +147.77.如果某天气温为2℃时,则该小卖部大约能卖出热饮的杯数是( ).
A .140
B .143
C .152
D .156
14.若以连续掷两次骰子分别得到的点数m ,n 作为点P 的坐标,求点P 落在圆x 2+y 2
=16外部的概率是( ).
A .
9
5
B .
3
2 C .
9
7 D .
9
8 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.
17.一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样 本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出80人作进一步调查,则在[1 500,2 000)(元)月收入段应抽出 人.
(1)
(2)
(3) (4)
18.已知数列{a n },a 1=1,a n +1=a n -n ,计算数列{a n }的第20项.现已给出该问题算法的程序框图(如图所示).
为使之能完成上述的算法功能,则在右图判断框中(A )处应填上合适的语句是 ;在处理框中(B )处应填上合适的语句是 .
三、解答题:本大题共3小题,共28分. 解答应写出文字说明,证明过程或演算步骤. 19.(本小题满分8分)
从甲、乙两名学生中选拔一人参加射箭比赛,为此需要对他们的射箭水平进行测试.现这两名学生在相同条件下各射箭10次,命中的环数如下:
(1)计算甲、乙两人射箭命中环数的平均数和标准差; (2)比较两个人的成绩,然后决定选择哪名学生参加射箭比赛.
21.(本小题满分10分)
在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.
(1)求取出的两个球上标号为相同数字的概率;
(2)求取出的两个球上标号之积能被3整除的概率.。

相关文档
最新文档