选修2-2数学归纳法教案

合集下载

数学归纳法-北师大版选修2-2教案

数学归纳法-北师大版选修2-2教案

数学归纳法-北师大版选修2-2教案一、教学目标1.了解数学归纳法的概念与特点;2.能够使用数学归纳法证明简单的命题;3.能够理解和应用数学归纳法解决实际问题。

二、教学内容1.数学归纳法的概念与特点;2.数学归纳法的推广和严密化;3.数学归纳法的应用。

三、教学重点1.数学归纳法的概念与特点;2.能够使用数学归纳法证明简单的命题。

四、教学难点1.数学归纳法的推广和严密化;2.数学归纳法的应用。

五、教学方法1.观察与讨论法:通过生动的例子,引导学生认识和理解数学归纳法的基本概念和特点;2.讲授与演示法:通过讲授和演示归纳法的具体步骤,使学生掌握如何运用归纳法证明命题;3.练习与探究法:通过练习和探究,让学生掌握数学归纳法的应用技巧。

第一步:引入1.引入数学归纳法的基本概念;2.通过实际例子,引导学生理解数学归纳法的重要性。

第二步:讲解1.讲解数学归纳法基本的步骤;2.分析数学归纳法的特点,包括归纳假设、基本步骤、归纳证明、结论;第三步:演示1.带领学生完成归纳法的几个简单例子,让学生深入掌握归纳法的基本操作;2.带领学生完成一道较为复杂的归纳证明练习,让学生掌握归纳法的应用技巧。

第四步:练习1.让学生分组自主练习归纳法的应用;2.教师辅助解答学生的问题。

第五步:总结1.对本节课所学的内容进行总结;2.强调数学归纳法在理解和应用中的重要性。

七、教学评价1.课堂参与度(20%):检测学生是否认真听讲、积极互动,师生互动是否频繁;2.练习与应用(40%):检测学生掌握归纳法的技巧和应用能力;3.课堂表现(40%):检测学生是否能够在课上正确展现自己的学习成果。

通过本节课的教学,我发现学生对于数学归纳法的概念和特点有了更加深入的理解和认识。

同时,在练习中也发现了一些问题,比如有些学生在归纳证明中容易犯错,需要加强指导和训练。

因此,在教学中需要更加强化实践,多引入真实案例来加强学生对归纳法的认识和理解,同时通过练习和探究来让学生得到更好的应用和提高。

选修2-2 2.3.1数学归纳法教案

选修2-2 2.3.1数学归纳法教案

设计意图: 通过从不同的角度审视, 更有利于学生全面地了解数学归纳法的本质。 (四)方法的应用 例 1 用数学归纳法证明:如果{an}是一个等差数列,则 an=a1+(n-1)d 对于一切
n∈ N*都成立。(学生板书,教师在教室走动看同学们对数学归纳法的掌握情况 及做题规范)注:张老师建议将本例题换成 1²+2²+3²+.+n²=n(n+1)(2n+1)/6 证明: (1)当 n=1 时,左边=a1,右边=a1 +(1-1)d=a1,
五、教学方法
本节课采用类比启发探究式教学方法,以学生及其发展为本,一切从学生出 发。在教师组织启发下,通过创设问题情境,激发学习欲望。师生之间、学生之 间共同探究多米诺骨牌倒下的原理,并类比多米诺骨牌倒下的原理,探究数学归
纳法的原理、步骤;培养学生归纳、类比推理的能力,进而应用数学归纳法,证 明一些与正整数 n 有关的简单数学命题;提高学生的应用能力,分析问题、解决 问题的能力。既强调独立思考,又提倡团结合作;既重视教师的组织引导,又强 调学生的主体性、主动性、平等性、交流性、开放性和合作性。
在应用数学归纳法时,第一步中的起点 1 可以恰当偏移(如取 k=n0),那么由 第二步,就可证明命题对 n=n0 以后的每个正整数都成立;而第二步的递推方式也 可作灵活的变动, 如跳跃式前进等,但必须保证第一步中必须含有实现第二步递 推时的基础. 数学归纳法名为归纳法, 实质上与归纳法毫无逻辑联系.按波利亚的说法 “这 个名字是随便起的”.归纳法是一种以特殊化和类比为工具的推理方法,是重要 的探索发现的手段,是一种似真结构;而数学归纳法是一种严格的证明方法,一 种演绎法,它的实质是如庞加莱所说“把无穷的三段论纳入唯一的公式中”,它 得到的结论是真实可靠的.在皮亚诺提出“自然数公理”后,数学归纳法以归纳 公理为理论基础,得到了广泛的确认和应用.而自然数中的“最小数原理”,则 从反面进一步说明了数学归纳法证题的可靠性. 数学归纳法虽不是归纳法,但它与归纳法有着一定程度的关联.在数学结论 的发现过程中, 往往先通过对大量个别事实的观察, 通过归纳形成一般性的结论, 最终利用数学归纳法的证明解决问题.因此可以说论断是以试验性的方式发现的, 而论证就像是对归纳的一个数学补充,即“观察”+“归纳”+“证明”=“发现”.

最新人教版高中数学选修2-2第二章《数学归纳法》示范教案(第2课时)

最新人教版高中数学选修2-2第二章《数学归纳法》示范教案(第2课时)

第2课时教学目标1.知识与技能目标(1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.(2)进一步掌握数学归纳法的实质与步骤,掌握用数学归纳法证明等式、不等式、整除问题、几何问题等数学命题.(3)掌握证明n =k +1成立的常见变形技巧:提公因式、添项、拆项、合并项、配方等.2.过程与方法目标(1)利用“归纳—猜想—证明”模式解决问题,培养学生自觉运用数学归纳法的意识.(2)培养学生综合运用知识的能力及解题时的目标意识.(3)培养学生思维的严谨性,培养学生观察、归纳、发现的能力,并能以递推的思想作指导,理解数学归纳法的操作步骤,使学生的抽象思维和概括能力进一步提升.3.情感、态度与价值观通过对数学归纳法的学习,培养学生勇于探索、创新的个性品质,培养大胆猜想,小心求证的辩证思维素质,进一步培养学生思维的严密性.通过学生之间的交流和讨论,增强学生之间的团结合作意识,提高学生的语言交流能力.重点难点重点:(1)由“n =k ”到“n =k +1”时项的确定.(2)处理P(k +1)时“拆、分、并、补”等配凑技巧的应用.难点:(1)初步形成“观察—归纳—猜想—证明”的思维模式.(2)处理P(k +1)时“拆、分、并、补”等配凑技巧的应用.(3)运用数学归纳法时,在“归纳递推”的步骤中发现递推关系.教学过程复习巩固让学生独立完成下列练习题1.某个命题与正整数有关,如果当n =k(k ∈N )时,该命题成立,那么可推得n =k +1时,该命题也成立.现在已知当n =5时,该命题成立,那么可推导出( )A .当n =6时命题不成立B .当n =6时命题成立C .当n =4时命题不成立D .当n =4时命题成立2.某个命题与正整数有关,如果当n =k(k ∈N )时,该命题成立,那么可推得n =k +1时,该命题也成立.现在已知当n =5时,该命题不成立...,那么可推导出( ) A .当n =6时命题不成立 B .当n =6时命题成立C .当n =4时命题不成立D .当n =4时命题成立3.已知f(n)=1n +1n +1+1n +2+…+1n 2,则下列说法正确的是( ) A .f(n)中共有n 项,当n =2时,f(2)=12+13B .f(n)中共有n +1项,当n =2时,f(2)=12+13+14C .f(n)中共有n 2-n 项,当n =2时,f(2)=12+13D .f(n)中共有n 2-n +1项,当n =2时,f(2)=12+13+144.设f(n)=1n +1+1n +2+1n +3+…+12n (n ∈N ),那么f(k +1)-f(k)等于…( ) A.12k +1 B.12k +2C.12k +1+12k +2D.12k +1-12k +2活动结果:1.B 2.C 3.D 4.D设计意图练习中4个题难度不大,但题目小巧灵活,用来复习旧知,为师生共同探讨下面的例题作准备.5.用数学归纳法证明12+22+…+n 2=n (n +1)(2n +1)6(n ∈N ). 思路分析:注意数学归纳法的两步一结论,特别是归纳假设的利用.证明:(学生板演)(1)当n =1时,左边=12=1,右边=1×(1+1)×(2×1+1)6=1等式成立. (2)假设当n =k(k ∈N )时等式成立,即12+22+…+k 2=k (k +1)(2k +1)6, 那么,当n =k +1时左边=12+22+…+k 2+(k +1)2=k (k +1)(2k +1)6+(k +1)2=k (k +1)(2k +1)+6(k +1)26=(k +1)(2k 2+7k +6)6=(k +1)(k +2)(2k +3)6=(k +1)[(k +1)+1][2(k +1)+1]6=右边,即当n =k +1时等式成立. 根据(1)和(2)可知等式对任何n ∈N 都成立.点评:应用归纳假设的过程中要注意变形的目的性,否则由n =k 到n =k +1的变形不易完成.设计意图通过本题复习数学归纳法的证明步骤,体会由“n =k ”到“n =k +1”时归纳假设的应用及在证明过程中强化“目标意识”.典型示例类型一:用数学归纳法证明“等式”例1设数列{a n }满足a 1=2,a n +1=a 2n -na n +1,n ∈N *.求a 2,a 3,a 4,由此猜想a n 的一个通项公式,并证明你的结论.思路分析:在“推理与证明”一节课中已经熟悉了这种模式,由于这是一个与正整数有关的命题,可以考虑用数学归纳法证明.由于上节课刚学完数学归纳法,此题学生想到用数学归纳法证明很容易.证明:由a 1=2,得a 2=a 21-a 1+1=3,由a 2=3,得a 3=a 22-2a 2+1=4,由a 3=4,得a 4=a 23-3a 3+1=5.由此猜想a n =n +1,下面用数学归纳法证明:(1)当n =1时,a 1=1+1,猜想成立.(2)假设当n =k 时,猜想成立,即a k =k +1,那么当n =k +1时,a k +1=a 2k -ka k +1=(k+1)2-k(k +1)+1=k +2=(k +1)+1.所以,当n =k +1时,猜想也成立.由(1)(2)知,对于任意n ∈N *都有a n =n +1成立.点评:此例属于用数学归纳法证明“等式”.以数列为背景,培养学生“观察→分析→归纳→猜想→证明”这种从特殊到一般的数学思维,体会数学归纳法在数列中的应用.巩固练习是否存在常数a 、b 、c ,使得等式1×22+2×32+3×42+…+n(n +1)2=n (n +1)12(an 2+bn +c)对一切正整数成立?并证明你的结论.解:假设存在a 、b 、c 使上式对n ∈N 均成立,则当n =1,2,3时上式显然也成立,此时可得⎩⎪⎨⎪⎧ 1×22=16(a +b +c ),1×22+2×32=12(4a +2b +c ),1×22+2×32+3×42=9a +3b +c ,解此方程组可得a =3,b =11,c =10,下面用数学归纳法证明等式1×22+2×32+3×42+…+n(n +1)2=n (n +1)12(3n 2+11n +10)对一切正整数均成立.(1)当n =1时,命题显然成立.(2)假设n =k 时,命题成立.即1×22+2×32+3×42+…+k(k +1)2=k (k +1)12(3k 2+11k +10), 那么当n =k +1时,左边=1×22+2×32+3×42+…+k(k +1)2+(k +1)(k +2)2=k (k +1)12(3k 2+11k +10)+(k +1)(k +2)2=k +112[k(3k 2+11k +10)+12(k +2)2]=(k +1)(k +2)12(3k 2+17k +24)=(k +1)[(k +1)+1]12[3(k +1)2+11(k +1)+10].所以,当n =k +1时,命题也成立. 综上所述,存在常数a =3,b =11,c =10,使得等式1×22+2×32+3×42+…+n(n +1)2=n (n +1)12(an 2+bn +c)对一切正整数均成立. 类型二:用数学归纳法证明“不等式”例2(2009山东高考理20题改编)已知数列{b n }的通项公式为b n =2n ,求证:对任意的n ∈N ,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n >n +1都成立. 思路分析:没有要求用哪种方法来证明,首先要综合分析是选用分析法?综合法、反证法、还是数学归纳法来证明.此题与正整数有关可以考虑数学归纳法,当然也不能把学生试图用其他方法证明的想法一棍子打死.证明方法的选用体现了新学知识与旧知识的融合,而不能仅停留在刚学完什么方法就用什么方法证明的思维误区中,以至于在复习考试时非常被动.证明:由b n =2n ,得b n +1b n =2n +12n,所以b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n. 下面用数学归纳法证明不等式b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n >n +1成立. ①当n =1时,左边=32,右边=2,因为32>2,所以不等式成立. ②假设当n =k(k ≥1且k ∈N )时不等式成立,即b 1+1b 1·b 2+1b 2·…·b k +1b k =32·54·76·…·2k +12k >k +1成立. 则当n =k +1时,左边=b 1+1b 1·b 2+1b 2·…·b k +1b k ·b k +1+1b k +1=32·54·76·…·2k +12k ·2k +32k +2 >k +12k +32k +2=(2k +3)24(k +1)=4k 2+12k +94(k +1) >4k 2+12k +84(k +1)=4(k 2+3k +2)4(k +1)=4(k +1)(k +2)4(k +1) =k +2 =(k +1)+1. 所以当n =k +1时,不等式也成立.由①、②可得不等式b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n>n +1对任意的n ∈N 都成立.点评:本题属高考改编题,与高考题相比,删去了与数学归纳法无关的某些内容,一方面提高了课堂效率,突出了本节课的重点,同时也体现了数学归纳法在证明不等式中的应用,结合了分析法、放缩法等其他方法证明不等式.用数学归纳法证明不等式要有目标意识,考虑到n =k +1时不等式的左边为分式右边为根式,所以一般先将要证明的不等式两端都化成同一种形式(同为分式或根式),再根据目标进行合理放缩.本题证法的关键是“4k 2+12k +94(k +1)>4k 2+12k +84(k +1)”这一步的放缩. 巩固练习证明不等式1+12+13+…+1n <2n(n ∈N ). 证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即1+12+13+ (1)<2k. 那么当n =k +1时,左边=1+12+13+…+1k +1k +1<2k +1k +1=2k k +1+1k +1<k +(k +1)+1k +1=2(k +1)k +1=2k +1=右边, 这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意正整数都成立.类型三:用数学归纳法证明整除性问题例3对于n ∈N *,求证:(x +1)n +1+(x +2)2n -1可被(x 2+3x +3)整除.思路分析:此题既不是证明等式也不是证明不等式,代数式的整除性是第一次遇到,用以前学过的方法不好处理,又由于此命题与正整数有关,故考虑用数学归纳法来证明.证明:(1)当n =1时,(x +1)n +1+(x +2)2n -1=(x +1)2+(x +2)1=x 2+3x +3可被(x 2+3x+3)整除,命题成立.(2)假设n =k 时命题成立,即(x +1)k +1+(x +2)2k -1=(x 2+3x +3)·f(x).当n =k +1时,(x +1)k +2+(x +2)2k +1=(x +1)(x +1)k +1+(x +2)2(x +2)2k -1=(x +1)(x +1)k +1+(x +2)2(x +2)2k -1+(x +1)(x +2)2k -1-(x +1)(x +2)2k -1=(x +1)[(x +1)k +1+(x +2)2k -1]+[(x +2)2-(x +1)](x +2)2k -1=(x +1)(x 2+3x +3)·f(x)+(x 2+3x +3)(x +2)2k -1=(x 2+3x +3)·[(x +1)f(x)+(x +2)2k -1],∴当n =k +1时命题成立.由(1)(2)知对一切n ∈N *,(x +1)n +1+(x +2)2n -1可被(x 2+3x +3)整除.点评:整除问题一般要面临因式分解,所以在证明n =k +1时,要对式子进行合理的添加项使得既能提取公因式进行因式分解又能利用归纳假设,一般添加项的项是从两项中各取一个因式然后相乘得到.本题中添加的项是(x +1)(x +2)2k -1,也可以是(x +1)k +1(x +2)2.巩固练习求证:对于任意n ∈N ,3×52n -1+23n -2可被17整除.证明:(1)当n =1时,即3×5+2=15+2=17命题成立.(2)假设n =k 时命题成立,即3×52k -1+23k -2=17M ,M ∈N .则当n =k +1时,3×52k +1+23k +1=25×3×52k -1+8×23k -2=25×3×52k -1+8×23k -2+25×23k -2-25×23k -2=25(3×52k -1+23k -2)-17×23k -2=25×17M -17×23k -2=17(25M -23k -2),∴n =k +1时命题成立.由(1)(2)可知对于任意n ∈N ,3×52n -1+23n -2可被17整除.类型四:用数学归纳法证明相关问题例4平面上有n(n ∈N *,n ≥2)条直线,任意两条不平行,任意三条不共点,求证:(1)共有交点a n =12n(n -1)个; (2)构成线段或射线b n =n 2条.思路分析:用数学归纳法证明平面几何中与自然数有关的证明题的时候,关键是分析好由n =k 到n =k +1时的证明思路,而要找到证明思路就要通过分析当直线的条数由n =2增加到n =3时交点(线段或射线)增加的数目以及为什么增加,这样由特殊到一般就容易找到由n =k 到n =k +1时交点(线段或射线)增加的数目以及为什么增加,从而找到证明思路.证明:(1)①当n =2时,a 2=1,结论成立,②假设n =k 时结论成立,即a k =12k(k -1), 则当n =k +1时,第k +1条直线与前k 条有k 个交点,∴a k +1=a k +k =12k(k -1)+k =12k(k +1).∴结论成立. 由①②知,结论共有交点a n =12n(n -1)(n ≥2)个成立.(2)①n =2时,b 2=4,结论成立.②假设n =k 时结论成立,即b k =k 2,则当n =k +1时,第k +1条直线上有k 个交点,将第k +1条直线分成k +1部分,k 个交点在原k 条线上,每一点将所在线段或射线分成两部分,增加了k 部分.∴b k +1=b k +(k +1)+k =k 2+2k +1=(k +1)2.∴结论成立.由①②知,对一切n ∈N ,n ≥2,b n =n 2成立.巩固练习平面上有n(n ∈N *,n ≥2)条直线,任意两条不平行,任意三条不共点,求证:将平面分成c n =12n(n +1)+1部分. 证明:①n =2时,两条相交直线将平面分成4部分,c 2=12·2·(2+1)+1=4,结论成立. ②假设n =k 时结论成立,即c k =12k(k +1)+1, 当n =k +1时,第k +1条直线被分成k +1段,每一段将原来那一部分分成两部分,即增加了k +1部分.∴c k +1=c k +(k +1)=12k(k +1)+(k +1)+1=12(k +1)(k +2)+1, 即n =k +1时结论成立.由①②知对一切n ∈N ,n ≥2,c n =12n(n +1)+1成立. 变练演编用数学归纳法证明(n +1)(n +2)(n +3)…(n +n)=2n ·1·3·…·(2n -1)(n ∈N )时,从“n =k →n =k +1”两边需同乘以一个代数式,它是( )A .2k +2B .(2k +1)(2k +2)C.2k +2k +1D.(2k +1)(2k +2)k +1解析:当n =k 时,(k +1)(k +2)…(k +k)=2k ·1·3·…·(2k -1),当n =k +1时,(k +1+1)(k +1+2)…(k +1+k +1)=2k +1·1·3·…·[2(k +1)-1].通过对比等式左边可知,增加了两个因式(2k +1)(2k +2),减少了一个因式k +1.故答案选D.答案:D达标检测1.如果命题P(n)对于n =k(k ∈N *)时成立,则它对n =k +2也成立,若P(n)对于n =2时成立,则P(n)对所有的________都成立.①正整数 ②正偶数 ③正奇数 ④大于1的正整数2.如果命题p(n)对n =k 成立,则它对n =k +1也成立,现知p(n)对n =4不成立,则下列结论正确的是( )A .p(n)对n ∈N 成立B .p(n)对n>4且n ∈N 成立C .p(n)对n<4且n ∈N 成立D .p(n)对n ≤4且n ∈N 不成立3.利用数学归纳法证明不等式1n +1+1n +2+1n +3+…+1n +n >1324时,由k 递推到k +1不等式左边应添加的项是( )A.12(k +1)B.12k +1+12(k +1)C.12k +1-12(k +1)D.12k +1答案:1.② 2.D 3.C反考老师已知m 为正整数,用数学归纳法证明当x>-1时,(1+x)m ≥1+mx.证明:(ⅰ)当m =1时,原不等式成立;当m =2时,左边=1+2x +x 2,右边=1+2x , ∵x 2≥0,所以左边≥右边,原不等式成立;(ⅱ)假设当m =k 时,不等式成立,即(1+x)k ≥1+kx ,则当m =k +1时,∵x>-1,∴1+x>0,于是在不等式(1+x)k ≥1+kx 两边同乘以1+x 得(1+x)k ·(1+x)≥(1+kx)(1+x)=1+(k +1)x +kx 2≥1+(k +1)x ,所以(1+x)k +1≥1+(k +1)x ,即当m =k +1时,不等式也成立.综合(ⅰ)(ⅱ)知,对一切正整数m ,不等式都成立.课堂小结1.知识收获:(1)数学归纳法的证明步骤.(2)用数学归纳法证明等式、不等式、整除等问题的主要思路.2.方法收获:目标意识,用数学归纳法证明时有一个技巧,即当n =k +1时,代入假设后再写出结论,然后往中间”凑”.3.思维收获:体会数学的严谨性,提高思维的深刻性和批判性,养成严谨缜密的思维习惯.布置作业教材习题2.3 A 组第2题,B 组第1,2题.补充练习基础练习1.用数学归纳法证明1+2+22+…+2n -1=2n -1(n ∈N *)的过程如下:①当n =1时,左边=1,右边=21-1=1,等式成立.②假设当n =k 时,等式成立,即1+2+22+…+2k -1=2k -1,则当n =k +1时,1+2+22+…+2k -1+2k=1-2k +11-2=2k +1-1. 所以,当n =k +1时等式成立.由此可知,对任何n ∈N *,等式都成立.上述证明的错误..是__________. 2.对于n ∈N *,n ≥2,求证:1+122+132+…+1n 2<2-1n. 答案:1.没有用上归纳递推2.证明:(1)当n =2时,左边=1+14=54<32=2-12=右边,所以不等式成立. (2)假设n =k 时不等式成立,即1+122+132+…+1k 2<2-1k, 当n =k +1时,左=1+122+132+…+1k 2+1(k +1)2<2-1k +1(k +1)2<2-1k +1k (k +1)=2-(k +1)-1k (k +1)=2-1k +1, 即n =k +1时不等式成立.由(1)(2)知对一切n ∈N *,n ≥2不等式成立.拓展练习3.首项为正数的数列{a n }满足a n +1=14(a 2n +3),n ∈N *. 证明若a 1为奇数,则对一切n ≥2,a n 都是奇数.证明:已知a 1是奇数,可假设a k =2m -1,其中m 为正整数,则由递推关系得a k +1=a 2k +34=m(m -1)+1是奇数. 根据数学归纳法,对任何n ∈N ,a n 都是奇数.设计说明第1课时已经理解了数学归纳法的原理及步骤,本节课主要熟悉用数学归纳法证明各种题型,进一步加深对数学归纳法的理解,特别是证明当n =k +1时有一个技巧:即代入假设后再写出结论,然后往中间”凑”.对于教学中学生可能遇到的障碍也通过例题得到清除.常见障碍:1.由“n =k ”到“n =k +1”时项的确定(产生此障碍的原因:没弄清计数规律,这类问题,通常按“找规律,定项数”的方法来处理).2.若命题中n 为正奇数(或正偶数),在第二步假设“n =k 时命题成立”,误认为需证明“n =k +1时命题也成立”(错因:忽略相邻的正奇数相差2).3.处理P(k +1)时不善于“拆、分、并、补”等配凑技巧的应用(原因:缺乏目标意识).4.不能灵活运用其他证明不等式的方法,如比较法、分析法、综合法、放缩法(原因:对“数学归纳法”缺乏认识,忽略了应用数学归纳法证题时可以结合其他数学方法).备课资料例1:(2009陕西卷理)已知数列{x n }满足,x 1=12,x n +1=11+x n,n ∈N *. 猜想数列{x 2n }的单调性,并证明你的结论.思路分析:用数学归纳法证明一个与正整数有关的命题,关键是第二步,要注意当n =k +1时,等式两边的式子与n =k 时等式两边的式子的联系,增加了哪些项,或减少了哪些项,问题就容易解决.解:由x 1=12及x n +1=11+x n得x 2=23,x 4=58,x 6=1321. 由x 2>x 4>x 6猜想:数列{x 2n }是递减数列.下面用数学归纳法证明:(1)当n =1时,x 2>x 4,命题成立.(2)假设当n =k 时命题成立,即x 2k >x 2k +2.易知x 2k >0,那么x 2k +2-x 2k +4=11+x 2k +1-11+x 2k +3=x 2k +3-x 2k +1(1+x 2k +1)(1+x 2k +3) =x 2k -x 2k +2(1+x 2k )(1+x 2k +1)(1+x 2k +2)(1+x 2k +3)>0, 即x 2(k +1)>x 2(k +1)+2.也就是说,当n =k +1时命题也成立,结合(1)和(2)知,命题成立.例2:求证:(1+1)(1+13)…(1+12n -1)>2n +1,n ∈N *. 思路分析:与正整数有关的不等式证明可以考虑数学归纳法,关键在于由假设n =k 时不等式成立推出当n =k +1时不等式成立,在这个过程中可以应用分析法或者是放缩法.证明:(1)当n =1时,左边=1+1=2=4>3=右边,所以不等式成立.(2)假设n =k 时不等式成立,即(1+1)(1+13)…(1+12k -1)>2k +1, 当n =k +1时,左=(1+1)(1+13)…(1+12k -1)(1+12k +1)>2k +1(1+12k +1)=2k +22k +1, 欲证:左边>2(k +1)+1=右边,只需证(2k +22k +1)2-(2k +3)2=(2k +2)2-(2k +1)(2k +3)2k +1=12k +1>0. ∴2k +22k +1>2k +3.∴n =k +1时不等式成立. 由(1)(2)知对一切n ∈N *不等式成立.点评:由假设n =k 时不等式成立推出当n =k +1时不等式成立的过程中也可以应用放缩法:左边=(1+1)(1+13)…(1+12k -1)+(1+12k +1)>2k +1(1+12k +1) =2k +22k +1=(2k +2)22k +1=4k 2+8k +42k +1>4k 2+8k +32k +1=(2k +1)(2k +3)2k +1 =2k +3=2(k +1)+1=右边.(设计者:张建霞)。

高中数学北师大版选修2-2教案-§4 数学归纳法_教学设计_教案

高中数学北师大版选修2-2教案-§4 数学归纳法_教学设计_教案

教学准备1. 教学目标1、使学生了解归纳法, 理解数学归纳的原理与实质。

2、掌握数学归纳法证题的两个步骤;会用“数学归纳法”证明简单的与自然数有关的命题。

3、培养学生观察, 分析, 论证的能力, 进一步发展学生的抽象思维能力和创新能力,让学生经历知识的构建过程, 体会类比的数学思想。

4、努力创设课堂愉悦情境,使学生处于积极思考、大胆质疑氛围,提高学生学习的兴趣和课堂效率。

5、通过对例题的探究,体会研究数学问题的一种方法(先猜想后证明), 激发学生的学习热情,使学生初步形成做数学的意识和科学精神。

2. 教学重点/难点二、教学重点:能用数学归纳法证明一些简单的数学命题。

教学难点:明确数学归纳法的两个步骤的必要性并正确使用。

3. 教学用具4. 标签教学过程四、教学过程(一)、复习:1、数学归纳法:对于某些与自然数n有关的命题常常采用下面的方法来证明它的正确性:先证明当n取第一个值n0时命题成立;然后假设当n=k(kÎN*,k≥n0)时命题成立,证明当n=k+1时命题也成立这种证明方法就叫做数学归纳法2、数学归纳法的基本思想:即先验证使结论有意义的最小的正整数n0,如果当n=n0时,命题成立,再假设当n=k(k≥n0,k∈N*)时,命题成立.(这时命题是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于n0的正整数n0+1,n0+2,…,命题都成立.3、用数学归纳法证明一个与正整数有关的命题的步骤:(1)证明:当n取第一个值n0结论正确;(2)假设当n=k(k∈N*,且k≥n0)时结论正确,证明当n=k+1时结论也正确. 由(1),(2)可知,命题对于从n0开始的所有正整数n都正确(二)、探究新课用数学归纳法证明几何问题的关键是“找项”,即几何元素从k个变成k+1个时,所证的几何量将增加多少,这需用到几何知识或借助于几何图形来分析,在实在分析不出来的情况下,将n=k+1和n=k分别代入所证的式子,然后作差,即可求出增加量,然后只需稍加说明即可,这也是用数学归纳法证明几何命题的一大技巧。

2.数学归纳法-苏教版选修2-2教案

2.数学归纳法-苏教版选修2-2教案

2.数学归纳法-苏教版选修2-2教案一、知识概述1.1 数学归纳法的定义数学归纳法是一种重要的证明方法,是对一些基本等式或者命题在正整数的范围内依次递推证明的方法。

该方法的基本思想是从一些基本事实出发,递推地得出更一般的结论。

1.2 数学归纳法的应用数学归纳法在各个学科中具有广泛的应用,特别是在数学中。

例如,可以通过归纳证明某些重要的等式或命题,甚至是数学定理。

二、教学内容及教学方式2.1 教学内容本次教学的主要内容是数学归纳法,包括其定义、原理、常见的数学归纳法证明方法等。

通过学习,学生将掌握数学归纳法的基本思想和应用方法,以及数学归纳法证明的具体过程。

2.2 教学方式本次教学采用小组探究与讲解相结合的方式。

首先,由教师简要介绍数学归纳法的基本原理和应用;然后,分组让学生自己探究和总结数学归纳法的证明方法,并回答一些教师提出的问题;最后,教师进行总结和讲解,帮助学生全面掌握数学归纳法的相关知识和方法。

三、教学目标3.1 知识目标1.掌握数学归纳法的定义和原理;2.理解数学归纳法的基本思想和应用方法;3.学会使用数学归纳法证明数学等式和命题。

3.2 能力目标1.培养学生归纳思维和递推思维能力;2.提高学生解决问题的能力和方法;3.培养学生对证明过程的清晰和严谨的掌握和理解。

四、教学重点和难点4.1 教学重点1.掌握数学归纳法的定义和原理;2.学会使用数学归纳法证明数学等式和命题。

4.2 教学难点1.学生对数学归纳法的理解和应用方法;2.学生对数学归纳法证明过程的严谨和清晰的掌握和理解。

五、教学方法5.1 案例教学法通过引导学生找到数学归纳法应用的例子,同时解析归纳法的应用方法和具体证明过程。

5.2 小组讨论法将学生分成小组,让每组自己探究数学归纳法的证明方法,并通过小组讨论,帮助学生理解和掌握数学归纳法的相关知识和方法。

六、教学过程6.1 案例分析以斐波那契数列为例,通过归纳法证明其递推式至第 n 阶。

高中数学选修2-2《数学归纳法及其应用举例》教案

高中数学选修2-2《数学归纳法及其应用举例》教案

课题:数学归纳法及其应用举例教材:人民教育出版社A版一、教学目标【知识目标】(1)了解由有限多个特殊事例得出的一般结论不一定正确。

(2)初步理解数学归纳法原理。

(3)理解和记住用数学归纳法证明数学命题的两个步骤。

(4)初步会用数学归纳法证明一些简单的与正整数有关的恒等式。

【能力目标】(1)通过对数学归纳法的学习、应用,培养学生观察、归纳、猜想、分析能力和严密的逻辑推理能力。

(2)让学生经历发现问题、提出问题、分析问题、解决问题的过程,培养学生的创新能力。

【情感目标】(1)通过对数学归纳法原理的探究,培养学生严谨的、实事求是的科学态度和不怕困难,勇于探索的精神。

(2)让学生通过对数学归纳法原理的理解,感受数学内在美的振憾力,从而使学生喜欢数学。

(3)学生通过置疑与探究,培养学生独立的人格与敢于创新精神。

二.教学重点、难点【重点】(1)初步理解数学归纳法的原理。

(2)明确用数学归纳法证明命题的两个步骤。

(3)初步会用数学归纳法证明简单的与正整数数学恒等式。

【难点】(1)对数学归纳法原理的理解,即理解数学归纳法证题的严密性与有效性。

板书设计1.数学归纳法是一种用于证明与自然数n有关的命题的正确性的证明方法.它的操作步骤简单、明确,教学重点应该是方法的应用.但是我们认为不能把教学过程当作方法的灌输,技能的操练.对方法作简单的灌输,学生必然疑虑重重.为什么必须是二步呢?于是教师反复举例,说明二步缺一不可.你怎么知道n=k时命题成立呢?教师又不得不作出解释,可学生仍未完全接受.学完了数学归纳法的学生又往往有应该用时但想不起来的问题,等等.为此,我们设想强化数学归纳法产生过程的教学,把数学归纳法的产生寓于对归纳法的分析、认识当中,把数学归纳法的产生与不完全归纳法的完善结合起来.这样不仅使学生可以看到数学归纳法产生的背景,从一开始就注意它的功能,为使用它打下良好的基础,而且可以强化归纳思想的教学,这不仅是对中学数学中以演绎思想为主的教学的重要补充,也是引导学生发展创新能力的良机.数学归纳法产生的过程分二个阶段,第一阶段从对归纳法的认识开始,到对不完全归纳法的认识,再到不完全归纳法可靠性的认识,直到怎么办结束.第二阶段是对策酝酿,从介绍递推思想开始,到认识递推思想,运用递推思想,直到归纳出二个步骤结束.把递推思想的介绍、理解、运用放在主要位置,必然对理解数学归纳法的实质带来指导意义,也是在教学过程中努力挖掘、渗透隐含于教学内容中的数学思想的一种尝试.2.在教学方法上,这里运用了在教师指导下的师生共同讨论、探索的方法.目的是在于加强学生对教学过程的参与程度.为了使这种参与有一定的智能度,教师应做好发动、组织、引导和点拨.学生的思维参与往往是从问题开始的,尽快提出适当的问题,并提出思维要求,让学生尽快投入到思维活动中来,是十分重要的.这就要求教师把每节课的课题作出层次分明的分解,并选择适当的问题,把课题的研究内容落于问题中,在逐渐展开中,引导学生用已学的知识、方法予以解决,并获得新的发展.本节课的教学设计也想在这方面作些研究.(注:本资料素材和资料部分来自网络,供参考。

高中数学选修2-2 北师大版 数学归纳法1(2课时) 教案

高中数学选修2-2 北师大版 数学归纳法1(2课时) 教案

课题:数学归纳法及其应用举例【教学目标】1.使学生了解归纳法, 理解数学归纳的原理与实质.2.掌握数学归纳法证题的两个步骤;会用“数学归纳法”证明简单的与自然数有关的命题.3.培养学生观察, 分析, 论证的能力, 进一步发展学生的抽象思维能力和创新能力,让学生经历知识的构建过程, 体会类比的数学思想.4.努力创设课堂愉悦情境,使学生处于积极思考、大胆质疑氛围,提高学生学习的兴趣和课堂效率.5.通过对例题的探究,体会研究数学问题的一种方法(先猜想后证明), 激发学生的学习热情,使学生初步形成做数学的意识和科学精神.【教学重点】归纳法意义的认识和数学归纳法产生过程的分析【教学难点】数学归纳法中递推思想的理解【教学方法】类比启发探究式教学方法【教学手段】多媒体辅助课堂教学【教学程序】第一阶段:输入阶段——创造学习情境,提供学习内容1.创设问题情境,启动学生思维(1) 不完全归纳法引例:明朝刘元卿编的《应谐录》中有一个笑话:财主的儿子学写字.这则笑话中财主的儿子得出“四就是四横、五就是五横……”的结论,用的就是“归纳法”,不过,这个归纳推出的结论显然是错误的.(2) 完全归纳法对比引例:有一位师傅想考考他的两个徒弟,看谁更聪明一些.他给每人一筐花生去剥皮,看看每一粒花生仁是不是都有粉衣包着,看谁先给出答案.大徒弟费了很大劲将花生全部剥完了;二徒弟只拣了几个饱满的,几个干瘪的,几个熟好的,几个没熟的,几个三仁的,几个一仁、两仁的,总共不过一把花生.显然,二徒弟先给出答案,他比大徒弟聪明.在生活和生产实际中,归纳法也有广泛应用.例如气象工作者、水文工作者依据积累的历史资料作气象预测,水文预报,用的就是归纳法.这些归纳法却不能用完全归纳法.2.回顾数学旧知,追溯归纳意识(从生活走向数学,与学生一起回顾以前学过的数学知识,进一步体会归纳意识,同时让学生感受到我们以前的学习中其实早已接触过归纳.)(1) 不完全归纳法实例:给出等差数列前四项, 写出该数列的通项公式.(2) 完全归纳法实例:证明圆周角定理分圆心在圆周角内部、外部及一边上三种情况.3.借助数学史料, 促使学生思辨(在生活引例与学过的数学知识的基础上,再引导学生看数学史料,能够让学生多方位多角度体会归纳法,感受使用归纳法的普遍性.同时引导学生进行思辨:在数学中运用不完全归纳法常常会得到错误的结论,不管是我们还是数学大家都可能如此.那么,有没有更好的归纳法呢?)问题1 已知n a =22)55(+-n n (n ∈N ),(1)分别求1a ;2a ;3a ;4a .(2)由此你能得到一个什么结论?这个结论正确吗?(培养学生大胆猜想的意识和数学概括能力.概括能力是思维能力的核心.鲁宾斯坦指出:思维都是在概括中完成的.心理学认为“迁移就是概括”,这里知识、技能、思维方法、数学原理的迁移,我找的突破口就是学生的概括过程.)问题2 费马(Fermat )是17世纪法国著名的数学家,他曾认为,当n ∈N 时,122+n 一定都是质数,这是他对n =0,1,2,3,4作了验证后得到的.后来,18世纪伟大的瑞士科学家欧拉(Euler )却证明了1252+=4 294 967 297=6 700 417×641,从而否定了费马的推测.没想到当n =5这一结论便不成立.问题3 41)(2++=n n n f , 当n ∈N 时,)(n f 是否都为质数?验证: f (0)=41,f (1)=43,f (2)=47,f (3)=53,f (4)=61,f (5)=71,f (6)=83,f (7)=97,f (8)=113,f (9)=131,f (10)=151,…,f (39)=1 601.但是f (40)=1 681=241,是合数. 第二阶段:新旧知识相互作用阶段——新旧知识作用,搭建新知结构4. 搜索生活实例,激发学习兴趣(在第一阶段的基础上,由生活实例出发,与学生一起解析归纳原理, 揭示递推过程.孔子说:“知之者不如好之者,好之者不如乐之者.”兴趣这种个性心理倾向一般总是伴随着良好的情感体验.)实例:播放多米诺骨牌录像关键:(1) 第一张牌被推倒; (2) 假如某一张牌倒下, 则它的后一张牌必定倒下. 于是, 我们可以下结论: 多米诺骨牌会全部倒下.搜索:再举几则生活事例:推倒自行车, 早操排队对齐等.5. 类比数学问题, 激起思维浪花类比多米诺骨牌过程, 证明等差数列通项公式d n a a n )1(1-+=:(1) 当n =1时等式成立; (2) 假设当n =k 时等式成立, 即d k a a k )1(1-+=, 则d a a k k +=+1=d k a ]1)1[(1-++, 即n =k +1时等式也成立. 于是, 我们可以下结论: 等差数列的通项公式d n a a n )1(1-+=对任何n ∈*N 都成立.(布鲁纳的发现学习理论认为,“有指导的发现学习”强调知识发生发展过程.这里通过类比多米诺骨牌过程,让学生发现数学归纳法的雏形,是一种再创造的发现性学习.)6. 引导学生概括, 形成科学方法证明一个与正整数有关的命题关键步骤如下:(1) 证明当n 取第一个值0n 时结论正确;(2) 假设当n =k (k ∈*N ,k ≥0n ) 时结论正确, 证明当n =k +1时结论也正确. 完成这两个步骤后, 就可以断定命题对从0n 开始的所有正整数n 都正确.这种证明方法叫做数学归纳法. 第三阶段:操作阶段——巩固认知结构,充实认知过程7. 蕴含猜想证明, 培养研究意识(本例要求学生先猜想后证明,既能巩固归纳法和数学归纳法,也能教给学生做数学的方法,培养学生独立研究数学问题的意识和能力.)例题 在数列{n a }中, 1a =1, nn n a a a +=+11(n ∈*N ), 先计算2a ,3a ,4a 的值,再推测通项n a 的公式, 最后证明你的结论.8. 基础反馈练习, 巩固方法应用(课本例题与等差数列通项公式的证明差不多,套用数学归纳法的证明步骤不难解答,因此我把它作为练习,这样既考虑到学生的能力水平,也不冲淡本节课的重点.练习第3题恰好是等比数列通项公式的证明,与前者是一个对比与补充.通过这两个练习能看到学生对数学归纳法证题步骤的掌握情况.)(1)用数学归纳法证明:1+3+5+…+(2n -1)=2n .(2)首项是1a ,公比是q 的等比数列的通项公式是11-=n n q a a . 9. 师生共同小结, 完成概括提升(1) 本节课的中心内容是归纳法和数学归纳法;(2) 归纳法是一种由特殊到一般的推理方法,它可以分为完全归纳法和不完全归纳法两种,完全归纳法只局限于有限个元素,而不完全归纳法得出的结论不一定具有可靠性,数学归纳法属于完全归纳法;(3) 数学归纳法作为一种证明方法,其基本思想是递推(递归)思想,使用要点可概括为:两个步骤一结论,递推基础不可少,归纳假设要用到,结论写明莫忘掉;(4) 本节课所涉及到的数学思想方法有:递推思想、类比思想、分类思想、归纳思想、辩证唯物主义思想.10. 布置课后作业, 巩固延伸铺垫在数学归纳法证明的第二步中,证明n =k +1时命题成立, 必须要用到n =k 时命题成立这个假设.这里留一个辨析题给学生课后讨论思考:用数学归纳法证明: 1222221132-=+++++-n n (n ∈*N )时, 其中第二步采用下面的证法: 设n =k 时等式成立, 即1222221132-=+++++-k k , 则当n =k +1时, 12212122222111132-=--=++++++++-k k kk . 你认为上面的证明正确吗?为什么?教后反思:1.数学归纳法是一种用于证明与自然数n 有关的命题的正确性的证明方法.它的操作步骤简单、明确,教学重点不应该是方法的应用.我认为不能把教学过程当作方法的灌输,技能的操练.为此,我设想强化数学归纳法产生过程的教学,把数学归纳法的产生寓于对归纳法的分析、认识当中,把数学归纳法的产生与不完全归纳法的完善结合起来.这样不仅使学生可以看到数学归纳法产生的背景,从一开始就注意它的功能,为使用它打下良好的基础,而且可以强化归纳思想的教学,这不仅是对中学数学中以演绎思想为主的教学的重要补充,也是引导学生发展创新能力的良机.2.在教学方法上,这里运用了在教师指导下的师生共同讨论、探索的方法.目的是加强学生对教学过程的参与.为了使这种参与有一定的智能度,教师应做好发动、组织、引导和点拨.学生的思维参与往往是从问题开始的,本节课按照思维次序编排了一系列问题,让学生投入到思维活动中来,把本节课的研究内容置于问题之中,在逐渐展开中,引导学生用已学的知识、方法予以解决,并获得知识体系的更新与拓展.3.运用数学归纳法证明与正整数有关的数学命题,两个步骤缺一不可.理解数学归纳法中的递推思想,尤其要注意其中第二步,证明n =k +1命题成立时必须要用到n =k 时命题成立这个条件.这些内容都将放在下一课时完成,这种理解不仅使我们能够正确认识数学归纳法的原理与本质,也为证明过程中第二步的设计指明了思维方向.。

[精品]新人教A版选修2-2高中数学2.3数学归纳法优质课教案

[精品]新人教A版选修2-2高中数学2.3数学归纳法优质课教案

数学:2.3《数学归纳法》教案(新人教A 版选修2-2) 第一课时 2.3 数学归纳法(一)教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写.教学重点:能用数学归纳法证明一些简单的数学命题.教学难点:数学归纳法中递推思想的理解.教学过程:一、复习准备:1. 问题1: 在数列{}n a 中,*111,,()1n n n a a a n N a +==∈+,先算出a 2,a 3,a 4的值,再推测通项a n 的公式. (过程:212a =,313a =,414a =,由此得到:*1,n a n N n=∈) 2. 问题2:2()41f n n n =++,当n ∈N 时,()f n 是否都为质数? 过程:(0)f =41,(1)f =43,(2)f =47,(3)f =53,(4)f =61,(5)f =71,(6)f =83,(7)f =97,(8)f =113,(9)f =131,(10)f =151,… (39)f =1 601.但是(40)f =1 681=412是合数3. 问题3:多米诺骨牌游戏. 成功的两个条件:(1)第一张牌被推倒;(2)骨牌的排列,保证前一张牌倒则后一张牌也必定倒.二、讲授新课:1. 教学数学归纳法概念:① 给出定义:归纳法:由一些特殊事例推出一般结论的推理方法. 特点:由特殊→一般.不完全归纳法:根据事物的部分(而不是全部)特例得出一般结论的推理方法叫不完全归纳法.完全归纳法:把研究对象一一都考查到了而推出结论的归纳法称为完全归纳法.② 讨论:问题1中,如果n =k 猜想成立,那么n =k +1是否成立?对所有的正整数n 是否成立?③ 提出数学归纳法两大步:(i )归纳奠基:证明当n 取第一个值n 0时命题成立;(ii )归纳递推:假设n =k (k ≥n 0, k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.原因:在基础和递推关系都成立时,可以递推出对所有不小于n 0的正整数n 0+1,n 0+2,…,命题都成立. 关键:从假设n =k 成立,证得n =k +1成立.2. 教学例题:① 出示例1:2222*(1)(21)123,6n n n n n N ++++++=∈. 分析:第1步如何写?n =k 的假设如何写? 待证的目标式是什么?如何从假设出发?小结:证n =k +1时,需从假设出发,对比目标,分析等式两边同增的项,朝目标进行变形.② 练习:求证:2*1427310(31)(1),n n n n n N ⨯+⨯+⨯+++=+∈. ③ 出示例2:设an +…n ∈N *),求证:a n <12(n +1)2.关键:a1k +<12(k +1)2+=12(k +1)2<12(k +1)2+(k +32)=12(k +2)2 小结:放缩法,对比目标发现放缩途径. 变式:求证a n >12n (n+1)3. 小结:书写时必须明确写出两个步骤与一个结论,注意“递推基础不可少,归纳假设要用到,结论写明莫忘掉”;从n =k 到n =k +1时,变形方法有乘法公式、因式分解、添拆项、配方等.三、巩固练习: 1. 练习:教材108 练习1、2题 2. 作业:教材108 B 组1、2、3题.第二课时 2.3 数学归纳法(二)教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写.教学重点:能用数学归纳法证明一些简单的数学命题.教学难点:经历试值、猜想、归纳、证明的过程来解决问题. 教学过程:一、复习准备:1. 练习:已知()*()13521,f n n n N =++++-∈,猜想()f n 的表达式,并给出证明?过程:试值(1)1f =,(2)4f =,…,→ 猜想2()f n n = → 用数学归纳法证明.2. 提问:数学归纳法的基本步骤?二、讲授新课:1. 教学例题:① 出示例1:已知数列1111,,,,2558811(31)(32)n n ⋅⋅⋅⨯⨯⨯-⨯+,猜想n S 的表达式,并证明. 分析:如何进行猜想?(试值1234,,,S S S S →猜想n S ) → 学生练习用数学归纳法证明→ 讨论:如何直接求此题的n S ? (裂项相消法)小结:探索性问题的解决过程(试值→猜想、归纳→证明) ② 练习:是否存在常数a 、b 、c 使得等式132435......(2)n n ⨯+⨯+⨯+++=21()6n an bn c ++对一切自然数n 都成立,试证明你的结论.解题要点:试值n =1,2,3, → 猜想a 、b 、c → 数学归纳法证明2. 练习:① 已知 0(1,2,,)i a i n >=,考察111()1i a a ⋅≥;121211()()()4ii a a a a ++≥;123123111()()()9iii a a a a a a ++++≥之后,归纳出对12,,,n a a a 也成立的类似不等式,并证明你的结论.② (89年全国理科高考题)是否存在常数a 、b 、c ,使得等式 (答案:a =3,b =11,c =10) 12222(1)223.....(1)()12n n n n an bn c +⨯+⨯+++=++对一切自然数n 都成立?并证明你的结论3. 小结:探索性问题的解决模式为“一试验→二归纳→三猜想→四证明”.三、巩固练习:1. 平面内有n 个圆,任意两个圆都相交于两点,任何三个圆都不相交于同一点,求证这n 个圆将平面分成f (n )=n 2-n +2个部分.2. 是否存在正整数m ,使得f (n )=(2n +7)·3n +9对任意正整数n 都能被m 整除?若存在,求出最大的m 值,并证明你的结论;若不存在,请说明理由. (答案:m =36)3. 试证明面值为3分和5分的邮票可支付任何(7,)n n n N >∈的邮资.证明:(1)当8,9,10n =时,由835,9333,1055=+=++=+可知命题成立;(2)假设(7,)n k k k N =>∈时,命题成立. 则 当3n k =+时,由(1)及归纳假设,显然3n k =+时成立.根据(1)和(2),可知命题成立.小结:新的递推形式,即(1)验证00(),(1),,P n P n + 0(1)P n l +-成立()l N ∈;(2)假设()P k 成立,并在此基础上,推出()P k l +成立. 根据(1)和(2),对一切自然数0()n n ≥,命题()P n 都成立.2. 作业:。

【教案】人教版高中《数学》选修2-2《数学归纳法》教学设计

【教案】人教版高中《数学》选修2-2《数学归纳法》教学设计

人教版高中《数学》选修2-2§2.3 数学归纳法(第一课时)一、教学目标:1、了解数学归纳法,理解数学归纳法的原理与实质,掌握归纳法证明的两个步骤;2、会证明简单的与正整数有关的命题。

二、教学重点、难点:1、重点:借助具体实例,了解数学归纳法的基本思想,掌握基本步骤,会用它证明一些与正整数n 有关的命题;2、难点:(1)学生不易理解数学归纳法的思想实质,具体表现在不了解第二步的作用,不易根据归纳假设作出证明;(2)运用数学归纳法时,在“归纳递推”的步骤中发现具体问题的递推关系。

三、教学手段:借助多媒体呈现多米诺骨牌等生活素材辅助课堂教学;四、教学过程:(一)创设情境,引入课题师:前面我们学习推理,并且知道由推理得到的结论是否正确,需要我们进一步验证。

我们来看这样的一道题目:已知数列{}n a 中,*111,()1n n na a a n N a +==∈+,试猜想数列的通项公式n a = 生:分别求出12341111,,,234a a a a ====,从而猜测1n a n=。

师:那么这个猜想是否正确?我们又该如何证明这个猜想?生:方法1:从n=5逐个验证?(由于n 为正整数,为无限个,所以可行性不高)方法2:通过构造新数列{}n b ,其中1n nb a =,先求出数列{}n b 的通项公式,从而得到{}n a 的通项公式;(技巧性较高,且有时新数列{}n b 不易构造)方法3:能否通过有限个步骤的推理,证明n 取所有正整数时,通项公式都成立? 师:带着这个问题,我们来观察一个关于多米诺骨牌游戏的视频。

(二)观看视频,动手实验观看多米诺骨牌游戏视频后,由学生来展示骨牌游戏:实验步骤:1、摆好骨牌,并由教师动手轻轻碰了第一块(并未推倒),发现实验不成功;2、由学生自己动手推倒骨牌,实验成功;3、再次摆好骨牌,教师调整最后3块的距离,发现并未全部倒下,实验失败。

师:我们一起来总结3次实验,那么要使游戏成功,所需条件有哪些?生:(1)第一块骨牌要倒下;(2)相邻的两块骨牌,前一块倒下一定导致后一块也倒下;师:若将每一块骨牌相应的看成数列的1234,,,a a a a ,那么这两个条件分别相当于:(1)首项1a 要符合n a 的通项公式;(2)假设n=k 时猜想成立,则必将导致n=k+1时猜想也成立;这样一来,就可以发现由n=1成立,就有n=2成立;n=2成立,就有n=3成立;n=3成立,就有n=4成立;n=4成立,就有n=5也成立……,所以对任意的正整数n ,猜想都成立。

数学人教版高中二年级选修2 《数学归纳法》教学设计

数学人教版高中二年级选修2 《数学归纳法》教学设计

《数学归纳法》教学设计人民教育出版社A版教科书数学选修2-2第二章第三节【教材分析】1、教学内容:数学归纳法是人教社全日制普通高级中学教科书数学选修2-2第二章第3节的内容,根据课标要求,本书该节共2课时,这是第一课时,其主要内容是数学归纳法的原理及其应用。

2、地位作用:在已经学习了不完全归纳法的基础上,介绍了数学归纳法,它是一种用于关于正整数命题的直接证法。

教材通过剖析生活实例中蕴含的思维过程揭示数学思想方法,即借助“多米诺骨牌”的设计思想,揭示数学归纳法依据的两个条件及它们之间的关系。

【教学目标】1、知识与技能:(1)了解归纳法,理解数学归纳法的原理与实质,掌握数学归纳法证题的两个步骤。

(2)会用数学归纳法证明简单的与正整数有关的命题。

2、过程与方法:努力创设课堂愉悦的情境,使学生处于积极思考,大胆质疑的氛围,积极参与,提高学生学习兴趣和课堂效率,让学生经历知识的构建过程,体会类比的数学思想。

3、情感、态度与价值观:通过本节课的教学,使学生领悟数学思想和辩证唯物主义观点,激发学生学习热情,提高学生数学学习的兴趣,培养学生大胆猜想,小心求证的辩证思维素质,以及发现问题、提出问题的意见和数学交流能力。

【教学重点】借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,运用它证明一些简单的与正整数n(n取无限多个值)有关的数学命题。

【教学难点】(1)学生不易理解数学归纳法的思想实质,具体表现在不了解第二个步骤的作用,不易根据归纳假设作出证明。

(2)运用数学归纳法时,在“归纳递推”的步骤中发现具体问题的递推关系。

【教学方法】运用类比启发探究的数学方法进行教学;【教学手段】借助多媒体播放人的多米诺骨牌视频;学生动手参与多米诺骨牌游戏等生活素材辅助课堂教学;【教学程序】第一阶段:回顾复习,课前准备复习1:类比推理及其一般步骤1、类比推理是由特殊到特殊的推理。

2、类比推理一般步骤:(1)观察、比较(2)联想、类推(3)猜想新结论复习2:归纳推理归纳推理是由部分到整体、由个别到一般的推理.(回顾复习类比推理和归纳推理目的是为数学归纳法推理的奠定基础。

高中数学选修2-2教学设计11:2.3 数学归纳法教案

高中数学选修2-2教学设计11:2.3 数学归纳法教案

2.3 数学归纳法(二)教学目标 1.进一步掌握数学归纳法的实质与步骤,掌握用数学归纳法证明等式、不等式、整除问题、几何问题等数学命题.2.掌握证明n =k +1成立的常见变形技巧:提公因式、添项、拆项、合并项、配方等.知识链接1.数学归纳法的两个步骤有何关系?答 使用数学归纳法时,两个步骤缺一不可,步骤(1)是递推的基础,步骤(2)是递推的依据.2.用数学归纳法证明的问题通常具备怎样的特点?答 与正整数n 有关的命题.教学引导数学归纳法(1)应用范围:作为一种证明方法,用于证明一些与正整数有关的数学命题;(2)基本要求:它的证明过程必须是两步,最后还有结论,缺一不可;(3)注意点:在第二步递推归纳时,从n =k 到n =k +1必须用上归纳假设.课堂讲义要点一 用数学归纳法证明不等式问题例1 用数学归纳法证明:122+132+142+…+1n 2<1-1n(n ≥2,n ∈N *). 证明 (1)当n =2时,左式=122=14,右式=1-12=12. 因为14<12,所以不等式成立. (2)假设n =k (k ≥2,k ∈N *)时,不等式成立,即122+132+142+…+1k 2<1-1k, 则当n =k +1时,122+132+142+…+1k 2+1(k +1)2<1-1k +1(k +1)2=1-(k +1)2-k k (k +1)2=1-k 2+k +1k (k +1)2<1-k (k +1)k (k +1)2 =1-1k +1, 所以当n =k +1时,不等式也成立.综上所述,对任意n ≥2的正整数,不等式都成立.规律方法 用数学归纳法证明不等式时常要用到放缩法,即在归纳假设的基础上,通过放大或缩小等技巧变换出要证明的目标不等式.跟踪演练1 用数学归纳法证明:对一切大于1的自然数n ,不等式⎝⎛⎭⎫1+13 ⎝⎛⎭⎫1+15…⎝⎛⎭⎫1+12n -1>2n +12成立. 证明 (1)当n =2时,左=1+13=43,右=52,左>右, ∴不等式成立.(2)假设n =k (k ≥2且k ∈N *)时,不等式成立,即⎝⎛⎭⎫1+13⎝⎛⎭⎫1+15…⎝ ⎛⎭⎪⎫1+12k -1>2k +12, 那么当n =k +1时,⎝⎛⎭⎫1+13⎝⎛⎭⎫1+15…⎝ ⎛⎭⎪⎫1+12k -1⎣⎢⎡⎦⎥⎤1+12(k +1)-1 >2k +12·2k +22k +1=2k +222k +1=4k 2+8k +422k +1>4k 2+8k +322k +1=2k +3·2k +12·2k +1=2(k +1)+12, ∴n =k +1时,不等式也成立.由(1)(2)知,对一切大于1的自然数n ,不等式都成立.要点二 用数学归纳法证明整除性问题例2 用数学归纳法证明:f (n )=(2n +7)·3n +9能被36整除.证明 ①当n =1时,f (1)=(2×1+7)×3+9=36,能被36整除.②假设n =k (k ∈N *)时,f (k )能被36整除,即(2k +7)·3k +9能被36整除,则当n =k +1时, f (k +1)=[2(k +1)+7]·3k +1+9=3[(2k +7)·3k +9]+18(3k -1-1),由归纳假设3[(2k +7)·3k +9]能被36整除,而3k -1-1是偶数,所以18(3k -1-1)能被36整除,所以f (k +1)能被36整除.由①②可知,对任意的n ∈N *,f (n )能被36整除.规律方法 应用数学归纳法证明整除性问题时,关键是“凑项”,采用增项、减项、拆项和因式分解等方法,也可以说将式子“硬提公因式”,即将n =k 时的项从n =k +1时的项中“硬提出来”,构成n =k 的项,后面的式子相对变形,使之与n =k +1时的项相同,从而达到利用假设的目的.跟踪演练2 用数学归纳法证明62n -1+1(n ∈N *)能被7整除.证明 (1)当n =1时,62-1+1=7能被7整除.(2)假设当n =k (k ∈N *,且k ≥1)时,62k -1+1能被7整除.那么当n =k +1时,62(k+1)-1+1=62k -1+2+1 =36(62k -1+1)-35.∵62k -1+1能被7整除,35也能被7整除,∴当n =k +1时,62(k +1)-1+1能被7整除.由(1),(2)知命题成立.要点三 用数学归纳法证明几何问题例3 用数学归纳法证明凸n 边形的对角线有12n (n -3)条. 证明 (1)当n =3时,12n (n -3)=0,这就说明三角形没有对角线,故结论正确. (2)假设当n =k (k ≥3,k ∈N *)时结论正确,即凸k 边形的对角线有12k (k -3)条, 当n =k +1时,凸(k +1)边形是在k 边形基础上增加了一边,增加了一个顶点,设为A k +1,增加的对角线是顶点A k +1与不相邻顶点的连线再加上原k 边形一边A 1A k ,共增加了对角线的条数为k -2+1=k -1.∴f (k +1)=12k (k -3)+k -1 =12(k 2-k -2) =12(k +1)(k -2) =12(k +1)[(k +1)-3] 故当n =k +1时命题成立.由(1)(2)知,对任意n ≥3,n ∈N *,命题成立.规律方法 用数学归纳法证明几何问题,关键在于分析由n =k 到n =k +1的变化情况,即分点(或顶点)增加了多少,直线的条数(或划分区域)增加了几部分等,或先用f (k +1)-f (k )得出结果,再结合图形给予严谨的说明,几何问题的证明:一要注意数形结合;二要注意要有必要的文字说明.跟踪演练3 平面内有n (n ∈N *,n ≥2)条直线,其中任何两条不平行,任何三条不过同一点,求证交点的个数f (n )=n (n -1)2. 证明 (1)当n =2时,两条直线的交点只有一个,又f (2)=12×2×(2-1)=1, ∴当n =2时,命题成立.(2)假设当n =k (k ∈N *,k ≥2)时命题成立,即平面内满足题设的任何k 条直线的交点个数f (k )=12k (k -1), 那么,当n =k +1时,任取一条直线l ,除l 以外其他k 条直线的交点个数为f (k )=12k (k -1), l 与其他k 条直线交点个数为k ,从而k +1条直线共有f (k )+k 个交点,即f (k +1)=f (k )+k =12k (k -1)+k =12k (k -1+2)=12k (k +1) =12(k +1)[(k +1)-1], ∴当n =k +1时,命题成立.由(1),(2)可知,对任意n ∈N *(n ≥2)命题都成立.要点四 归纳—猜想—证明例4 在数列{a n },{b n }中,a 1=2,b 1=4,且a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列(n ∈N *).(1)求a 2,a 3,a 4及b 2,b 3,b 4,由此猜测{a n },{b n }的通项公式,并证明你的结论;(2)证明:1a 1+b 1+1a 2+b 2+…+1a n +b n <512. (1)解 由条件得2b n =a n +a n +1,a 2n +1=b n b n +1.由此可以得a 2=6,b 2=9,a 3=12,b 3=16,a 4=20,b 4=25.猜测a n =n (n +1),b n =(n +1)2.用数学归纳法证明:①当n =1时,由上可得结论成立.②假设当n =k (k ∈N *)时,结论成立.即a k =k (k +1),b k =(k +1)2,那么当n =k +1时,a k +1=2b k -a k =2(k +1)2-k (k +1)=(k +1)(k +2)=(k +1)[(k +1)+1],b k +1=a 2k +1b k=(k +2)2=[(k +1)+1]2, 所以当n =k +1时,结论也成立.由①②,可知a n =n (n +1),b n =(n +1)2对一切正整数都成立.(2)证明 1a 1+b 1=16<512. n ≥2时,由(1)知a n +b n =(n +1)(2n +1)>2(n +1)n .故1a 1+b 1+1a 2+b 2+…+1a n +b n <16+12⎣⎢⎡⎦⎥⎤12×3+13×4+…+1n (n +1) =16+12⎝ ⎛⎭⎪⎫12-13+13-14+…+1n -1n +1 =16+12⎝ ⎛⎭⎪⎫12-1n +1<16+14=512. 综上,原不等式成立.规律方法 探索性命题是试题中经常出现的一种题型,此种问题未给出问题的结论,往往需要由特殊情况入手,归纳、猜想、探索出结论,然后再对探索出的结论进行证明,而证明往往用到数学归纳法.这类题型是考试热点之一,对培养创造性思维具有很好作用. 跟踪演练4 设数列 {a n }的前n 项和为S n ,满足S n =2na n +1-3n 2-4n ,n ∈N *,且S 3=15.(1)求a 1,a 2,a 3的值;(2)求数列{a n }的通项公式.解 (1)由题意知S 2=4a 3-20,∴S 3=S 2+a 3=5a 3-20.又S 3=15,∴a 3=7,S 2=4a 3-20=8.又S 2=S 1+a 2=(2a 2-7)+a 2=3a 2-7,∴a 2=5,a 1=S 1=2a 2-7=3.综上知,a 1=3,a 2=5,a 3=7.(2)由(1)猜想a n =2n +1,下面用数学归纳法证明.①当n =1时,结论显然成立;②假设当n =k (k ≥1)时,a k =2k +1,则S k =3+5+7+…+(2k +1)=k [3+(2k +1)]2=k (k +2).又S k =2ka k +1-3k 2-4k ,∴k (k +2)=2ka k +1-3k 2-4k ,解得2a k +1=4k +6,∴a k +1=2(k +1)+1,即当n =k +1时,结论成立.由①②知,∀n ∈N *,a n =2n +1.当堂检测1.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N *,n >1)时,第一步应验证不等式( ) A.1+12<2 B.1+12+13<2 C.1+12+13<3 D.1+12+13+14<3 [答案]B[解析]∵n >1且n ∈N *,∴n 取的第一个值n 0=2.∴第一步应验证:1+12+13<2,选B. 2.用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”时,第一步验证n =1时,命题成立,第二步归纳假设应写成( )A.假设n =2k +1(k ∈N *)时命题正确,再推证n =2k +3时命题正确B.假设n =2k -1(k ∈N *)时命题正确,再推证n =2k +1时命题正确C.假设n =k (k ∈N *)时命题正确,再推证n =k +2时命题正确D.假设n ≤k (k ∈N *)时命题正确,再推证n =k +2时命题正确[答案]B[解析]因n 为正奇数,所以否定C 、D 项;当k =1时,2k -1=1,2k +1=3,故选B.3.用数学归纳法证明3n ≥n 3(n ≥3,n ∈N *)第一步应验证________.[答案]n =3时是否成立[解析]n 的最小值为3,所以第一步验证n =3时是否成立.4.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N *,n >1)时,在第二步证明从n =k 到n =k +1不等式成立时,左边增加的项数为________.[答案]2k[解析]项数为2k +1-2k =2k .。

高中数学2.3数学归纳法教学设计新人教B版选修2_2

高中数学2.3数学归纳法教学设计新人教B版选修2_2

数学归纳法教学设计课标分析数学归纳法是高中数学选修2-2第二章《推理与证明》中介绍的证明的最后一种方法,在前一节学过的归纳推理(不完全归纳法推理)的基础上,又有必修五数列中递推数列的底子,这一部分是归纳法知识的螺旋式上升的升华与最终成果。

这一节要求学生明白数学归纳法的原理,会使用数学归纳法证明一些与自然数有关的简单问题。

教材分析这一节分两个小节,第一小节主要介绍数学归纳法的基本思想及其实施步骤,并在证明等式的过程中简单应用;下一节要在证明不等式问题(用到放缩法)、证明整除问题及几何等问题中显示其巨大的威力。

本课选取第一小节,主要为学生介绍清晰数学归纳法的思想及实施步骤,使学生明白其原理,并会简单操作,证明等式问题。

其中为了帮助学生理解数学归纳法,本课借助了多米诺骨牌等学生比较熟悉的例子引入,主要为学生阐述明白递推这一难于理解的原理。

应用举例主要选取学生比较熟悉的自然数的一些运算公式用数学归纳法加以证明,主要让学生熟悉操作步骤。

并为下一节的深化应用做好准备和铺垫。

学情分析学生们在前一节学过的归纳推理(不完全归纳法推理),又有必修五数列中递推数列对于递推的理解做基础,应该说有一定的理解的基础。

但本节课的主要精力还是放在对数学归纳法原理(尤其是递推关系)的阐述上,使学生知其然,知其所以然。

学习目标:1.通过学习过的归纳推理及几个例子,弄明白数学归纳法的证明原理(重点)2.通过几个证明问题,梳理清楚数学归纳法的一般实施步骤,并会证明等式恒成立问题(难点)目标达成:1.通过思考1、2、3、4完成目标1的达成2.通过思考5、6、7及例1、例2,当堂检测1、2完成目标2的达成 教学设计 新课讲授: 概念形成:问题思考:已知11a =且*121()n n a a n N +=+∈,求通项公式n a .解:∵11a =∴21212113a a =+=⨯+= 32212317a a =+=⨯+= 432127115a a =+=⨯+= 5421215131a a =+=⨯+= … … …∴所求通项公式为*21()n n a n N =-∈以上推测正确吗?在使用归纳法探究数学命题时,必须对任何可能的情况进行论证后,才能判别命题正确与否。

人教版高中数学选修2-2归纳法教案

人教版高中数学选修2-2归纳法教案

【优化设计】 2015-2016学年高中数学 2.3 数学概括法教课设计 新人教 A 版选修 2-2教课建1.教材剖析数学 法是一种直接 明的方法, 合用于与正整数相关的数学命 的 明 .本 通 比多米 骨牌游 ,得出数学 法的两个步,而后通 两个例 介 数学 法的 用.要点 :数学 法的原理及 用 .点 :数学 法的思想 及在 推理中 详细 的 推关系.2.主要 及教课建(1)对于数学 法所 的正确性.建 教 就 推理的几种情况介 一下.不完整 :只观察了部分 象 , 不必定正确 .完整 (枚 法 ):观察了 所波及的全部 象, 必定正确 .数学 法 :通 有限个步 的推理, 了然 n 取无穷多个正整数 的情况,本 上相当于完整, 是正确的 .(2) 于假 的使用 ., 明 明 程中不用假 也能 出某些 目 ,但不是数学 法 明 ,也建 教 通 详细例子就不用再按数学 法的步 行 .n1. 明 :假如 x 是 数 ,且 x>- 1,x ≠ 0,n 大于 1 的自然数,那么 (1+x ) > 1+nx.明 :(1)当 n= 2 ,左 = (1+x )2= 1+2x+x 2,右 = 1+ 2x,因 x ≠ 0,因此不等式建立 .k(2)假 当 n=k 不等式建立 ,即 (1+x) > 1+kx. 那么当 n=k+ 1 , 左 = (1+x )k+ 1 = (1+x )k (1+x ), 因 x>- 1,因此 (1+x )k (1+x)> (1+kx )(1+x )= 1+ (k+ 1)x+kx 2> 1+ (k+ 1)x. 因此当 n=k+ 1 ,不等式建立 .由 (1)(2) 及数学 法可知所 不等式建立.2 n-1*2.用数学 法 明 6 + 1(n ∈ N ) 能被 7 整除 .2-1明 :(1)当 n= 1 ,6 + 1= 7,能被 7 整除 .(2)假 当 n=k (k ∈ N * ,k ≥ 1) ,62k-1+1 能被 7 整除 . 那么当 n=k+ 1 ,62(k+ 1)-1+1= 62k-1+ 2+1= 36(62k-1+ 1)-35.∵ 62k-1+ 1 能被 7 整除 ,35 也能被 7 整除 , ∴当 n=k+ 1 ,62(k+ 1)-1+ 1 能被 7 整除 . 由 (1)(2) 知命 建立 .解: 当 n= 5 ,25> 52 ,即 2n >n 2.当 n= 6 ,26> 62,即 2n >n 2 ; ⋯⋯ 猜想 :当 n ≥5,n ∈ N * ,2n >n 2. 下边用数学 法 明猜想建立:(1) 当 n= 5 ,猜想建立 .(2) 假 当 n=k (k ≥ 5,k ∈ N * ) 猜想成 立 ,即 2k >k 2,那么 ,当 n=k+ 1 ,2k+ 1k22222也建立 . = 2×2 > 2k =k +k >k + (2k+ 1)= (k+1) ,即当 n=k+ 1 依据 (1)和 (2),可知当 n ≥5 ,2n >n 2 任何 n ∈ N * 都建立 (n ≥5).。

选修2-2数学归纳法教案

选修2-2数学归纳法教案

高中选修2-2 2.3《数学归纳法》教学设计一、教材分析数学归纳法是一种重要的数学证明方法,在高中数学内容中占有重要的地位,其中体现的数学思想方法对学生进一步学习数学、领悟数学思想至关重要.数学归纳法的证明过程中展现的推理和逻辑思维让学生体会到数学的严谨和规范.学习数学归纳法后学生对等差等比数列、数列求和、二项式定理、整除问题等问题的解决有了新的方法.首先,我们需要初步掌握了由有限多个特殊事例得出一般结论的推理方法,即不完全归纳法,这是研究数学问题,猜想或发现数学规律的重要手段.但是,由有限多个特殊事例得出的结论不一定正确,这种推理方法不能作为一种论证方法.因此,在不完全归纳法的基础上,必须进一步学习严谨的科学的论证方法——数学归纳法,这是促进思维从有限性发展到无限性的一个重要环节,掌握数学归纳法的证明过程是培养严密的推理能力、训练抽象思维能力、体验数学内在美的好素材.二、教学目标1.知识目标(1)了解由有限多个特殊事例得出的一般结论不一定正确,初步理解数学归纳法原理.(2)能以递推思想为指导,理解数学归纳法证明数学命题的两个步骤一个结论.(3)初步会用数学归纳法证明一些与正整数相关的简单的恒等式.2. 能力目标(1)通过对数学归纳法的学习,使学生初步掌握观察、归纳、猜想、分析能力和严密的逻辑推理能力.(2)进一步发展学生的抽象思维能力和创新能力,让学生经历知识的构建过程, 体会类比的数学思想.(3)在学习中培养学生大胆猜想,小心求证的辨证思维素质以及发现问题、提出问题的意识和数学交流的能力.3. 情感目标(1)通过对数学归纳法原理的探究,亲历知识的构建过程,领悟其中所蕴含的数学思想和辨正唯物主义观点.(2)体验探索中挫折的艰辛和成功的快乐,感悟数学的内在美,激发学生学习热情,使学生喜欢数学.(3)学生通过置疑与探究,初步形成正确的数学观,创新意识和严谨的科学精神.三、教学重点与难点1.教学重点借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,运用它证明一些与正整数有关的简单恒等式,特别要注意递推步骤中归纳假设的运用和恒等变换的运用.2.教学难点(1 如何理解数学归纳法证题的严密性和有效性.(2)递推步骤中如何利用归纳假设,即如何利用假设证明当1=+时结论n k正确.四、教学方法本节课采用类比启发探究式教学方法,以学生及其发展为本,一切从学生出发.在教师组织启发下,通过创设问题情境,激发学习欲望.师生之间、学生之间共同探究多米诺骨牌倒下的原理,并类比多米诺骨牌倒下的原理,探究数学归纳法的原理、步骤;培养学生归纳、类比推理的能力,进而应用数学归纳法,证明一些与正整数n有关的简单数学命题;提高学生的应用能力,分析问题、解决问题的能力.既强调独立思考,又提倡团结合作;既重视教师的组织引导,又强调学生的主体性、主动性、平等性、交流性、开放性和合作性.五、教学过程(一)创设情境,提出问题情景一:明朝刘元卿编的《应谐录》中有一个笑话:财主的儿子学写字.这则笑话中财主的儿子得出“四就是四横、五就是五横……”的结论,用的就是“归纳法”,不过,这个归纳推出的结论显然是错误的.情境二:平面内三角形内角和是180︒,四边形内角和是2180︒⨯,五边形内角和是3180︒⨯,于是得出:凸n 边形内角和是()2180n ︒-⋅ .情境三:数列{}n a 的通项公式为()2255n a n n =-+可以求得12341,1,1,1a a a a ====于是猜想出数列{}n a 的通项公式为1n a =.情景四:粉笔盒中有10支白色粉笔,怎么证明它们是白色的呢?结论:情景一到情景三都是由殊事例得出的一般性结论,即不完全归纳法不一定正确.因此,它不能作为一种论证方法,情景四是完全归纳法,结论可靠但要一一核对,工作量大.提出问题:如何寻找一个科学有效的方法证明结论的正确性呢?我们本节课要 学习的数学归纳法就是解决这一问题的方法之一.(二)实验演示,探索解决问题的方法1.几何画板演示动画多米诺骨牌游戏,师生共同探讨:要让这些骨牌全部倒 下,必须具备哪些条件呢 ① 第一块骨牌必须倒下.② 两块连续的骨牌,当前一块倒下一定导致后一块倒下.可以看出,条件②事实上给出了一个递推关系:当第k 块倒下时,相邻的第1k + 块也倒下.这样,只要第1块倒下,其他所有的就能够相继倒下.无论多少块,只要①②成立,那么所有的骨牌一定可以全部倒下.演示小节:数学归纳法原理就如同多米诺骨牌一样.2. 数学归纳法原理 证明一个与正整数n 有关的命题,可按下列步骤进行:(1) (归纳奠基) 当n 取第一个值0n (*0n ∈)时命题成立; (2) (归纳递推)假设当()*0,n k k k n =∈≥时命题成立,证明当1n k =+时命题也成立.只要完成这两个步骤,就可以断定命题对从0n 开始的所有正整数n 都成立. 上述证明方法称为数学归纳法.主要有两个步骤、一个结论: 其中第一步是递推的基础,解决了特殊性;第二步是递推的依据,解决了从有限到无限的过渡.这两步缺一不可.只有第一步,属不完全归纳法;只有第二步,假设就失去了基础.(注:数学归纳法是证明与自然数有关的数学命题的重要方法.在用数学归纳法证题时注意以下三句话“递推基础不可少,归纳假设要用到,结论写明莫忘掉.”)(三)迁移应用,理解升华例1 用数学归纳法证明:如果{}n a 是一个等差数列,那么()11n a a n d =+- 对于一切*n ∈ 都成立.证明: (1)当1n = 时,左边1,a = 右边()1111,a d a =+-=结论成立(2)假设当n k = 时结论成立, 即 ()11k a a k d =+-则当1n k =+ 1k k a a d +=+()1[11]a k d =++- ∴ 当1n k =+时,结论也成立.由(1)和(2)知,等式对于任何*n ∈都成立.例2 已知数列{}n a 其通项公式为21,n a n =-试猜想该数列的前n 项和公式,n S 并用数学归纳法证明你的结论.解: (1)111S a == 212134S S a =+=+=(2) 猜想2,n S n =问题转化为证明213521.n n ++++-=证明:(1) 当1n =时,左边=1,右边=1,等式是成立的.(2) 假设当n k =时等式成立,即有则当1n k =+,有因此,当1n k =+时,等式也成立由(1)和(2)知,等式对于任何*n ∈都成立.(四)反馈练习,巩固提高课堂练习:课本第95页练习1,2(五)课堂小结:让学生归纳本节课所学内容,不足的老师补充.n k = 到1n k =+ 有什么变化 用假设凑结论1. 归纳法是一种由特殊到一般的推理方法2. 数学归纳法作为一种证明方法,它的基本思想是递推思想,证明程序为,两个步骤一个结论.3数学归纳法的科学性:基础正确,可传递.用有限的步骤证明无限的结论. (六)布置作业课本第96页习题 2.3 A组1、2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修2-2 2.3《数学归纳法(一)》教学设计
太康县第二高级中学郭伟峰
一、教材分析
数学归纳法是一种重要的数学证明方法,在高中数学内容中占有重要的地位,其中体现的数学思想方法对学生进一步学习数学、领悟数学思想至关重要。

数学归纳法的证明过程中展现的推理和逻辑思维让学生体会到数学的严谨和规范。

学习数学归纳法后学生对等差等比数列、数列求和、二项式定理、整除问题等问题的解决有了新的方法。

首先,我们需要初步掌握了由有限多个特殊事例得出一般结论的推理方法,即不完全归纳法,这是研究数学问题,猜想或发现数学规律的重要手段。

但是,由有限多个特殊事例得出的结论不一定正确,这种推理方法不能作为一种论证方法。

因此,在不完全归纳法的基础上,必须进一步学习严谨的科学的论证方法——数学归纳法,这是促进思维从有限性发展到无限性的一个重要环节,掌握数学归纳法的证明过程是培养严密的推理能力、训练抽象思维能力、体验数学内在美的好素材。

二、教学目标
1.知识目标
(1)了解由有限多个特殊事例得出的一般结论不一定正确,初步理解数学归纳法原理。

(2)能以递推思想为指导,理解数学归纳法证明数学命题的两个步骤一个结论。

(3)初步会用数学归纳法证明一些与正整数相关的简单的恒等式。

2.能力目标
(1)通过对数学归纳法的学习,使学生初步掌握观察、归纳、猜想、分析能力和严密的逻辑推理能力。

(2)进一步发展学生的抽象思维能力和创新能力,让学生经历知识的构建过程, 体会类比的数学思想.
(3)在学习中培养学生大胆猜想,小心求证的辨证思维素质以及发现问题、提出问题的意识和数学交流的能力。

3.情感目标
(1)通过对数学归纳法原理的探究,亲历知识的构建过程,领悟其中所蕴含的数学思想和辨正唯物主义观点。

(2)体验探索中挫折的艰辛和成功的快乐,感悟数学的内在美,激发学生学习热情,使学生喜欢数学。

(3)学生通过置疑与探究,初步形成正确的数学观,创新意识和严谨的科学精神。

三、教学重点与难点
1.教学重点
借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,运用它证明一些与正整数有关的简单恒等式,特别要注意递推步骤中归纳假设的运用和恒等变换的运用。

2.教学难点
(1 如何理解数学归纳法证题的严密性和有效性。

(2)递推步骤中如何利用归纳假设,即如何利用假设证明当时结论正确。

四、教学方法
本节课采用类比启发探究式教学方法,以学生及其发展为本,一切从学生出发。

在教师组织启发下,通过创设问题情境,激发学习欲望。

师生之间、学生之间共同探究多米诺骨牌倒下的原理,并类比多米诺骨牌倒下的原理,探究数学归纳法的原理、步骤;培养学生归纳、类比推理的能力,进而应用数学归纳法,证明一些与正整数有关的简单数学命题;提高学生的应用能力,分析问题、解
决问题的能力。

既强调独立思考,又提倡团结合作;既重视教师的组织引导,又强调学生的主体性、主动性、平等性、交流性、开放性和合作性。

五、教学过程
(一)创设情境,提出问题
情景一:明朝刘元卿编的《应谐录》中有一个笑话:财主的儿子学写字.这则笑话中财主的儿子得出“四就是四横、五就是五横……”的结论,用的就是“归纳法”,不过,这个归纳推出的结论显然是错误的.
情境二:平面内三角形内角和是,四边形内角和是,五边形内角
和是,于是得出:凸边形内角和是。

情境三:数列的通项公式为可以求得,
,,于是猜想出数列的通项公式为。

情景四:粉笔盒中有10支白色粉笔,怎么证明它们是白色的呢?
结论:情景一二三是由殊事例得出的一般性结论,即不完全归纳法不一定正因此它不能作为一种论证方法,情景四是完全归纳法,结论可靠但
要一一核对,不变操
提出问题:如何寻找一个科学有效的方法证明结论的正确性呢?我们本节课要学习的数学归纳法就是解决这一问题的方法之一
(二)实验演示,探索解决问题的方法
1.几何画板演示动画多米诺骨牌游戏,师生共同探讨:要让这些骨牌全部倒下,必须具备哪些条件呢
①第一块骨牌必须倒下。

② 两块连续的骨牌,当前一块倒下一定导致后一块倒下。

可以看出,条件②事实上给出了一个递推关系:当第k 块倒下时,相邻的第k+1块也倒下。

这样,只要第1块倒下,其他所有的就能够相继倒下。

无论多少块,只要①②成立,那么所有的骨牌一定可以全部倒下。

演示小节:数学归纳法原理就如同多米诺骨牌一样。

2. 数学归纳法原理 (1) 当取第一个值(例如等)结论正确;
(2) 假设当
时结论正确; 证明当时结论也正确。

那么命题对从0n 开始的所有正整数n 都正确。

步骤(1)是数学归纳法的基础,步骤(2)建立了递推过程,两者缺一不可,这就是数学归纳法。

(三)迁移应用,理解升华
例1用数学归纳法证明:如果{a n }是一个等差数列,那么a n =a 1+(n-1)d 对于
一切n ∈N*都成立。

证明: (1)当n=1时,左边=a 1,右边=a 1 +(1-1)d=a 1, 结论成立
(2)假设当n=k 时结论成立, 即 a k =a 1+(k-1)d
则 当n=k+1 a k+1= a k +d
= a 1+(k-1)d+d = a 1+[(k+1)-1]d
∴当n=k+1时,结论也成立。

由(1)和(2)知,等式对于任何n ∈N 都成立。

数学归纳法是一种证明与自然数有关的数学命题的重要方法。

n=k 到n=
用假设
凑结论
主要有两个步骤、一个结论: 其中第一步是递推的基础,解决了特殊
性;第二步是递推的依据,解决了从有限到无限的过渡。

这两步缺一不可。

只有第一步,属不完全归纳法;只有第二步,假设就失去了基础。

例2:已知数列{a n},其通项公式为a n=2n-1,试猜想该数列的前n项和公式S n,并用数学归纳法证明你的结论。

解:(1)S
1=a
1
=1 S
2
= S
1
+a
2
=1+3=4
S 3= S
2
+a
3
=4+5=9 S
4
= S
3
+a
4
=9+7=16
(2) 猜想S
n
=n2, 问题转化为证明1+3+5+…+(2n-1)=n2
证明:(1)当n=1时,左边=1,右边=1,等式是成立的。

(2)假设当n=k时等式成立,即 1+3+5+…+(2k-1)=k2
则当n=k+1 1+3+5+…+(2k-1)+[2(k+1)-1]
=k2+[2(k+1)-1]
=(k+1)2
∴,当n=k+1时,等式也成立
由(1)和(2)知,等式对于任何n∈N都成立
注:在用数学归纳法证题时注意以下三句话“递推基础不可少,归纳假设要用到,
结论写明莫忘掉。


(四)反馈练习,巩固提高
课堂练习:课本第95页练习1,2
(五)课堂小结:让学生归纳本节课所学内容,不足的老师补充。

1归纳法是一种由特殊到一般的推理方法
2数学归纳法作为一种证明方法,它的基本思想是递推思想,证明程序为,两个步骤一个结论。

3数学归纳法的科学性:基础正确,可传递。

用有限的步骤证明无限的结论。

(六)布置作业
课本第96页习题2.3A组1.2.。

相关文档
最新文档