行测数量关系考点

合集下载

行测数量关系总结

行测数量关系总结

行测数量关系总结引言在行政能力测验(行测)中,数量关系是一个非常重要的考点。

掌握数量关系的基本概念和解题方法,对于顺利完成行测至关重要。

本文将对数量关系的相关知识进行总结,并提供一些解题技巧和例题,帮助考生更好地备考行测。

基本概念1. 数字与数字关系在数量关系中,数字与数字之间常常存在一定的关系,如等差数列、等比数列等等。

了解这些数列的性质对于解题非常有帮助。

同时还需熟悉常见的数字规律,如数字之和、数字之差等等。

2. 图形与数字关系图形与数字之间的关系也是数量关系考察的一大重点。

常见的图形与数字关系有正方形、长方形、平行四边形、圆等等。

通过研究图形的边长、面积、周长等特征,可以得到有关数字的信息。

3. 符号与数字关系在数量关系中,符号与数字之间的关系也是需要考虑的。

例如,加减乘除符号与数字的关系,大小关系符号与数字的关系等。

正确理解并运用这些关系,对于解题至关重要。

解题技巧1. 善于列式计算对于涉及多个变量的数量关系题目,可以通过列式计算的方法来解决。

将问题中提到的所有变量罗列出来,并找出它们之间的关系,建立数学模型。

通过列式计算,可以更清晰地理解问题,并得到解题的思路。

2. 灵活运用代入法代入法是解决数量关系题目的一种常见方法。

当问题中给出了一些具体数值时,可以尝试将这些数值代入问题中,验证是否符合题意。

通过代入法,可以快速进行解答,并排除一些错误答案。

3. 注意单位的转换在数量关系中,有时会涉及到不同的单位之间的转换。

例如,将米转换为千米、将时速转换为米每秒等等。

在解题过程中,需要注意单位的转换,保持一致性,避免出现计算错误。

示例题目下面是一些典型的数量关系题目,供考生练习。

例题1:甲、乙、丙三人合作来完成一项工作,甲单独完成所需时间为6天,乙单独完成所需时间为8天,丙单独完成所需时间为12天。

如果三人一起合作完成该项工作,他们需要多少天?解答:甲、乙、丙三人一起合作的效率为:1/6 + 1/8 + 1/12 = 11/24。

(完整版)行测数量关系知识点汇总

(完整版)行测数量关系知识点汇总

行测常用数学公式工作效率=工作量÷工作时间; 工作时间=工作量÷工作效率; 总工作量=各分工作量之和; 设总工作量为1或最小公倍数1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷4+1)2=N 2 最外层人数=(最外层每边人数-1)×42.空心方阵:方阵总人数=(最外层每边人数)2-(最外层每边人数-2×层数)2=(最外层每边人数-层数)×层数×4=中空方阵的人数。

★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。

3.N 边行每边有a 人,则一共有N(a-1)人。

4.实心长方阵:总人数=M ×N 外圈人数=2M+2N-4 5.方阵:总人数=N 2 N 排N 列外圈人数=4N-4例:有一个3层的中空方阵,最外层有10人,问全阵有多少人? 解:(10-3)×3×4=84(人) (2)排队型:假设队伍有N 人,A 排在第M 位;则其前面有(M-1)人,后面有(N-M )人 (3)爬楼型:从地面爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要爬N M -层。

总长/间隔+1 环型棵数=总长/间隔 楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔 (2)单边环形植树:棵数=总长÷间隔; 总长=棵数×间隔(3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔 (4)双边植树:相应单边植树问题所需棵数的2倍。

:对折N 次,从中剪M 刀,则被剪成了(2N ×M +1)段平均速度=总路程÷总时间 平均速度型:平均速度=21212v v v v + (2)相遇追及型:相遇问题:相遇距离=(大速度+小速度)×相遇时间 追及问题:追击距离=(大速度—小速度)×追及时间 背离问题:背离距离=(大速度+小速度)×背离时间 (3)流水行船型:顺水速度=船速+水速; 逆水速度=船速-水速。

行测数量关系知识点汇总2024

行测数量关系知识点汇总2024

行测数量关系知识点汇总2024一、数字推理。

1. 等差数列。

- 定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

- 通项公式:a_n=a_1+(n - 1)d,其中a_n是第n项的值,a_1是首项,n是项数。

- 求和公式:S_n=frac{n(a_1+a_n)}{2}=na_1+(n(n - 1))/(2)d。

- 示例:数列1,3,5,7,9·s是一个首项a_1=1,公差d = 2的等差数列。

2. 等比数列。

- 定义:如果一个数列从第二项起,每一项与它的前一项的比值等于同一个常数,这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q≠0)。

- 通项公式:a_n=a_1q^n - 1。

- 求和公式:当q≠1时,S_n=frac{a_1(1 - q^n)}{1 - q};当q = 1时,S_n=na_1。

- 示例:数列2,4,8,16,32·s是一个首项a_1=2,公比q = 2的等比数列。

3. 和数列。

- 定义:通过相邻项相加得到下一项的数列。

- 类型:- 两项和数列:如1,2,3,5,8,13·s,其中a_n=a_n - 1+a_n - 2(n≥3)。

- 三项和数列:例如1,1,2,4,7,13,24·s,a_n=a_n - 1+a_n - 2+a_n - 3(n≥4)。

4. 积数列。

- 定义:通过相邻项相乘得到下一项的数列。

- 类型:- 两项积数列:如2,3,6,18,108·s,其中a_n=a_n - 1× a_n - 2(n≥3)。

- 三项积数列:例如1,2,3,6,36,648·s,a_n=a_n - 1× a_n - 2× a_n - 3(n≥4)。

5. 多次方数列。

- 类型:- 平方数列:1,4,9,16,25·s,通项公式为a_n=n^2。

行测考点丨数量关系

行测考点丨数量关系

行测考点丨数量关系一、方程法(一)定义及适用范围【定义】方程法是指将题目中未知的数用变量(如x,y)表示,根据题目中所含的等量关系,列出含有未知数的等式(组),通过求解未知数的数值来解应用题的方法。

【适用范围】方程法应用范围较为广泛,数学运算绝大部分题目,如行程问题、工程问题、盈亏问题、和差倍比问题、浓度问题、利润问题、年龄问题等均可以通过方程法来求解。

(二)分类示例1.N元一次方程(组)主要流程为:设未知量->找出等量关系->列出方程(组)->化简、解出方程【例题1】商店经销某商品,第二次进货的单价是第一次进货单价的九折,而售价不变,利润率比第一次销售该商品时的利润率增加了15个百分点,则该商店第一次经销该商品时所定的利润率是()。

A.35%B.20%C.30%D.12%【解析】A。

设第一次进价为100,售价为x,则解得x=135,即第一次进货的利润率为35%。

【例题2】张老汉驾驶拖拉机从家开往农场,要行4600米,开始以每小时20千米速度行驶,途中拖拉机出现故障,维修用时6分钟。

因为要按原计划时间到达农场,修好拖拉机后必须以每小时45千米的速度行驶。

则拖拉机是在距离张老汉的家()米远处出现故障的。

A.600 B.800 C.1000 D.1200【解析】C。

设拖拉机是在距离张老汉家x千米处出现故障的,所以由于实际与原计划的所用时间相同,则有解得x=1千米=1000米。

【例题3】某工厂有学徒工、熟练工、技师共80名,每天完成480件产品的任务。

已知每天学徒工完成2件,熟练工完成6件,技师完成7件,且学徒工和熟练工完成的量相等,则该厂技师人数是熟练工人数的()倍。

A. 6 B. 8 C. 10 D. 12【解析】D。

学徒工和熟练工完成的量相等,但学徒工和熟练工的效率之比为1:6=1:3,故学徒工和熟练工的人数之比为3:1。

设熟练工为x人,则学徒工为3x人,设技师为y人,则有:(3x+x+y=80,2*3x+6x+7y=480)。

(完整版)行测数量关系知识点汇总

(完整版)行测数量关系知识点汇总

行测常用数学公式一、工程问题工作量=工作效率×工作时间;工作效率=工作量÷工作时间;工作时间=工作量÷工作效率;总工作量=各分工作量之和;注:在解决实质问题时,常设总工作量为 1 或最小公倍数二、几何边端问题( 1)方阵问题:1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷ 4+1)2=N2最外层人数=(最外层每边人数- 1)× 42.空心方阵:方阵总人数=(最外层每边人数)2- (最外层每边人数 - 2×层数)2=(最外层每边人数 - 层数)×层数× 4=中空方阵的人数。

★不论是方阵仍是长方阵:相邻两圈的人数都知足:外圈比内圈多8 人。

3.N 边行每边有 a 人,则一共有 N(a-1) 人。

4.实心长方阵:总人数 =M×N 外圈人数 =2M+2N-45.方阵:总人数 =N2N 排 N 列外圈人数 =4N-4例:有一个 3 层的中空方阵,最外层有 10 人,问全阵有多少人?解:(10 -3 )×3 ×4 =84(人)(2)排队型:假定队伍有 N 人, A 排在第 M位;则其前方有( M-1)人,后边有( N-M)人(3) 爬楼型:从地面爬到第 N 层楼要爬( N-1)楼,从第 N 层爬到第 M层要爬 M N 层。

三、植树问题线型棵数 =总长 / 间隔 +1环型棵数=总长/间隔楼间棵数=总长/间隔-1(1)单边线形植树:棵数=总长间隔+1;总长=(棵数-1)×间隔(2)单边环形植树:棵数=总长间隔;总长=棵数×间隔(3)单边楼间植树:棵数=总长间隔-1;总长=(棵数+1)×间隔(4)双边植树:相应单边植树问题所需棵数的 2 倍。

N(5)剪绳问题:对折 N次,从中剪 M刀,则被剪成了( 2×M+1)段四、行程问题⑴ 行程=速度×时间;均匀速度=总行程÷总时间均匀速度型:均匀速度=2v1v2v1 v2(2)相遇追及型:相遇问题:相遇距离 =(大速度 +小速度)×相遇时间追及问题:追击距离 =(大速度—小速度)×追实时间背叛问题:背叛距离 =(大速度 +小速度)×背叛时间(3)流水行船型:顺流速度=船速+水速;逆水速度=船速-水速。

行测常考考点(数量关系)数量关系

行测常考考点(数量关系)数量关系
-( )题型特征
1.数列中有明显的多次方数字或者多次方附近的数字。
2.数列局部有明显多次方规律。 3.数列基本单调,从大数字看变化幅度陡增(大于 6 倍)。
( 二 )应又枋法
K熟练掌握多次方数字,对多次方附近的数字敏感。观察数列局部有无多次方数字或者
多次方附近的数字。 2.结合选项发现数列变化幅度陡增时,考虑数列前一项的多次方推出后项,或者前两项
A。
考点三,分式数列
-( )题型街正
数列中大部分数字都是分数。
( 二 )应又枋法
1.观察题干中分数,如果容易通分,考虑作差或者加和;如果容易约分,考虑乘积或者 倍数。
2.无明显规律,观察有无重复数字出现在分子、分母位置。 3.最后考虑分子分母单独观察规律,通过化繁或化简均衡分子间/分母间的关系。
2 14 28 140
【例】12, 14, 17, 22, 2 9, ( )
A.3 1
B.3 6
C.4 0
D.5 6
【答案】C。解析:观察发现数列单调递增,从大数字看变化幅度不到 2 倍,故优先考
虑作差。相邻两项之差依次为 2、3、5、7、(11 ) , 是质数列,应填入 29+ ( 11) = (40) 。
考点二、多次方数列
1.数列基本单调,从大数字看变化幅度不大(2 倍左右)。 2.数列没有典型的题型特征时,强行逐差寻找规律。
( 二 )应又枋法
1.先逐差,随时关注差和基本数列的联系,一级差无特点时再逐一级差。
2.如果二级差也没有特点,则先将其放在一边,将一级差斜向代入原数列构造网络。 3.如果无法构造网络,则需要对二级差“一逐到底”,随时结合差和倍数大胆猜测。
( 二 )应又枋法
观察数列,如果总项数是偶数项,一般考虑两两分段或间隔数列。

行测数量关系难题和解析

行测数量关系难题和解析

行测数量关系难题和解析一、难题一:工程问题中的合作与交替工作1. 题目一项工程,甲单独做需要10天完成,乙单独做需要15天完成。

如果甲先做3天,然后甲乙合作2天,剩下的工程由乙单独完成,问乙还需要多少天?2. 解析我们先算出甲和乙的工作效率。

甲单独做10天完成,那么甲一天的工作效率就是1÷10 = 1/10;乙单独做15天完成,乙一天的工作效率就是1÷15 = 1/15。

甲先做3天,完成的工作量就是3×(1/10)=3/10。

甲乙合作2天,完成的工作量就是2×(1/10 + 1/15)。

1/10+1/15 = 3/30+2/30 = 5/30 = 1/6,那么合作2天完成的工作量就是2×(1/6)=1/3。

总共的工作量看作单位1,那么剩下的工作量就是 1 - 3/10 - 1/3。

3/10 = 9/30,1/3 = 10/30,所以剩下的工作量是 1 - 9/30 - 10/30 = 11/30。

乙单独完成需要的时间就是剩下的工作量除以乙的工作效率,即(11/30)÷(1/15)=11/30×15 = 11/2 = 5.5天。

二、难题二:行程问题中的相遇与追及1. 题目甲、乙两人分别从A、B两地同时出发相向而行,甲的速度是每小时6千米,乙的速度是每小时4千米,两人相遇后继续前行,甲到达B地后立即返回,乙到达A地后也立即返回,第二次相遇时距离A地8千米,求A、B两地的距离。

2. 解析设A、B两地的距离为x千米。

第一次相遇时,甲乙两人走过的路程之和就是A、B两地的距离,根据时间 = 路程÷速度,两人相遇所用时间为x÷(6 + 4)=x/10小时。

第二次相遇时,两人走过的路程之和是3倍的A、B两地的距离,所用时间就是3x÷(6 + 4)=3x/10小时。

甲在第二次相遇时走过的路程是x + 8千米,甲的速度是6千米每小时,根据路程 = 速度×时间,可得到方程6×(3x/10)=x + 8。

行测知识点数量关系汇总【精编】.pdf

行测知识点数量关系汇总【精编】.pdf

数量关系一、数量思维1.选项关联:不是填空题注意观察选项之间的倍数关系。

2.代入排除:应用范围:多位数范围、不定方程问题、同余问题、年龄问题、周期问题、复杂行程问题和差倍比问题,优先代入整数选项。

3.整除思想:必须将题目式子转化成 A =B ×C 两两相乘的形式整除判定法则:①拆分法517=470+47;②因式分解 6=2×3 ;③常用的 2、3、5、7、11和13 整除判定法则。

4.特值思想:数字特值:题目没具体数字,只有相互比例关系等,常用于计算题、浓度问题、工程问题或行程问题。

数字特值计算题优先考虑-1,0,1,工程与行程等问题优先考虑最小公倍。

图形特值:比如特殊的长方形——正方形。

5.奇偶特性:题目中出现平均、总和、差,尤其是不定方程的时候 奇偶判定:①加减运算:同奇同偶比得偶,一奇一偶只能奇;②乘除运算:一偶就是偶,双奇才是奇。

二、基础代数公式和方法1.基础代数公式:完全平方:(a ±b)2=a 2±2ab +b 2平方差: a 2-b 2=(a +b )×(a -b ) 完全立方:(a ±b)3=a 3±3a 2b +3ab 2±b3立方和差: a 3±b 3=(a ±b)(a 2ab +b 2)阶乘: a m×a n=am +na m ÷a n =a m -n (a m )n =a mn (ab)n =a n ×b n2.常用方法:公式法(记住常用的公式) 因子法(整除特性结合)放缩法(用于判定计算的整数部分)n1-n 32=1n!)(⨯⋯⨯⨯⨯构造法 特值法三、等差数列1.n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和 通项公式:a n =a 1+(n -1)d求和公式:s n = =na 1+ n(n-1)d项数公式:n = +1等差中项:2A =a +b (若a 、A 、b 成等差数列) 2.若m+n =k+i ,则:a m +a n =a k +a i3.前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 2四、等比数列1.n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等差数列前n 项的和 通项公式:a n =a 1qn -1求和公式:s n = (q ≠1)等比公式:G 2=ab (若a 、G 、b 成等比数列)2.若m+n =p+q ,则:a m ×a n =a p ×a q3.a m -a n =(m-n)d =q(m-n)五、周期问题一周7天,5个工作日。

公务员行测数量关系知识点整理

公务员行测数量关系知识点整理

公务员行测数量关系知识点整理公务员考试中,行测的数量关系部分一直是众多考生的难点和重点。

数量关系涉及的知识点繁多,题型复杂,需要我们系统地学习和掌握。

下面就为大家整理一下常见的数量关系知识点。

一、数学运算1、整数特性整数特性是数量关系中的基础知识点。

包括整除特性、奇偶性、质数与合数等。

整除特性:若整数 a 除以非零整数 b,商为整数,且余数为零,我们就说 a 能被 b 整除。

比如,能被 2 整除的数的特征是个位是偶数;能被 3 整除的数,其各位数字之和能被 3 整除。

奇偶性:奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数。

质数与合数:质数是指在大于 1 的自然数中,除了 1 和它本身以外不再有其他因数的自然数。

合数是指自然数中除了能被 1 和本身整除外,还能被其他数(0 除外)整除的数。

2、方程与不等式方程是解决数量关系问题的常用工具。

通过设未知数,根据题目中的等量关系列出方程,然后求解。

一元一次方程:形如 ax + b = 0(a≠0)的方程。

二元一次方程组:由两个未知数,且未知数的次数都是 1 的方程组成。

不等式:用不等号(大于>、小于<、大于等于≥、小于等于≤)连接两个代数式的式子。

3、比例问题比例是指两个比相等的式子。

常见的有工程问题中的效率比、行程问题中的速度比等。

若 a:b = c:d,则 ad = bc。

4、行程问题行程问题是数量关系中的重点和难点。

基本公式:路程=速度×时间。

相遇问题:路程和=速度和×相遇时间。

追及问题:路程差=速度差×追及时间。

5、工程问题工程问题的核心是工作总量=工作效率×工作时间。

经常通过设工作总量为 1 或工作总量的最小公倍数来解题。

6、利润问题涉及成本、售价、利润、利润率等概念。

利润=售价成本,利润率=利润÷成本×100% 。

7、几何问题包括平面几何和立体几何。

数量关系知识点总结行测知识点总结

数量关系知识点总结行测知识点总结

数量关系知识点总结行测知识点总结数量关系知识点总结一,能被3,9整除的数的数字特性① 判断3/9的倍数的方法是“划” ② “A是B的2倍(一半)”则“A+B”是3的倍数③ 3/9的倍数加减乘3/9的倍数结果还是3/9的倍数④ “A+X”是3/9的倍数,则A的各个数字之和加X也是3/9的倍数⑤ 求几个数之和除以3/9余几,用“划”的方法⑥ 一个除以3余2的数加上一个除以3余1 的数和能被3整除一个除以3余2的数减去一个除以3余2 的数差能被3整除⑦ 三个连续自然数之和是3的倍数能被11整除的数,这个数奇数位的和与偶数位的和之差是11的倍数二,倍数关系如果a:b=m:n(m,n互质)a是m的倍数如果ab=mn(m,n互质)b是n的倍数如果a=bmn(m,n互质)a 土b是m土n的倍数aXb是mxn的倍数注:①题目中出现“比例,分数,倍数”等形式优先考虑倍数关系②2是质数中唯一的偶数,题干中出现质数优先考虑2的特殊性三,直接带入法1. 求某数最大或最小,一般猜选项中的第二大或第二小2. 求操作次数时,一般猜选项中的最大或最小选项罗列一般用直接代入四,工程问题工作总量=工作效率X工作时间如果问题问的是总量,一般设工作总量为X 如果问题问的不是总量,一般设工作总量为某些数(速度,时间,效率,分母)的最小公倍数工作总量=人数X时间(默认每个人的效率为1)总量一定,效率与时间成反比五,行程问题1. 等时间平均速度公式:V=V1+V2+V3+………Vnn 路程=速度X时间2. 等距离平均速度公式:1V=1n(1v1+1v2+1v3+………1vn) 平均速度=总路程总时间注:等时间平均速度大于等于等距离平均速度(当v1=v2=vn 时取等号)迎面相遇时间=相距路程速度和追击相遇时间=相距路程速度差V顺=V船+V水V船=V顺+V逆2 V逆=V船﹣V水V水=V顺﹣V逆2 火车完全在桥上的时间=(桥长﹣车长)÷速度火车从开始上桥到完全过桥的时间=(桥长+车长)÷速度六,容斥问题标志:出现“既……..又…………,两者,三者都………,或都不……….” 条件1+条件2+两者都不满足=总数+两者都满足当问题中求只满足某个条件个数时用画图加减(两集合,三集合皆可)条件1+条件2+条件3+三者都不满足=总数+只满足两者+2倍三者都满足条件1+条件2+条件3+三者都不满足=总数+满足两者﹣三者都满足(三个条件两两组合时用第二个公式)三集合七,年龄问题主要特点:时间变化年龄相应变化,但年龄差始终不变,倍数关系在变小。

行测数量关系知识点

行测数量关系知识点

数量关系知识点代入排除法1.选出答案而非算出答案2.最值代入、就简代入3.特定题型:年龄问题、余数问题、多位数问题、不定方程等选项特征:多选项特征、最值特征等知识点:质数:2,3,5,7,11,13,17,192 是唯一的偶质数;0 和 1 非质非合;多位数颠倒规律:(n 是对调的两个数字之差)个位与十位对调,差 9n十位与百位对调,差 90n个位和百位对调,差 99n不定方程:未知数的个数多于等式的个数数字特性法1.奇偶特性(1)加、减法:基础性质:奇数±奇数=偶数、偶数±偶数=偶数、奇数±偶数=奇数推论:①同性为偶,异性为奇a,两数的和或差为偶数,则两数同奇同偶b,两数的和或差为奇数,则两数一奇一偶②两个数的和与差奇偶性相同两数和为偶数,差也为偶数;两数和为奇数,差也为奇数两数差为偶数,和也为偶数;两数差为奇数,和也为奇数(2)乘法:基础性质:奇数×奇数=奇数、奇数×偶数=偶数、偶数×偶数=偶数推论:①两个数中只要有一个为偶数,乘积就为偶数②两个数的乘积为奇数,则两个数都为奇数(3)应用:①不定方程;②知和求差、知差求和2.整除特性(整除的判定)2 或 5 的判定:末一位4(2²)或 25(5²)的判定:末两位8(2³)的判定:末三位3 或 9 的判定:各位数字之和6(2×3)的判定:既能被 2 整除又能被 3 整除10(2×5)的判定:末一位为 07 的判定:直接除以 7 验证应用:y=ax,y=ax+b3.倍数特性若 a:b=m:n(m、n 互质),则 a 是 m 的倍数、b 是 n 的倍数、a±b 是m±n 的倍数m、n 互质:m/n 是最简整数比变形:若 a=(m/n)b,(m/n 是最简分数),则 a 是 m 的倍数,b 是 n 的倍数,a±b 是 m±n 的倍数题型特征:题干中出现比例、分数、小数、倍数、百分数4.因子特性型如:ax+by=c若其中两项都含有某因子,则剩余的一项必有该因子若其中一项含有某因子,另一项不含有该因子,则剩余的一项也不含有该因子常用因子:2,3,4,5方程法1.巧设未知数:①问什么设什么;(量<3)②设中间变量(是、比、为);(量≥3)③设 nx(比例未知数)简化计算2.快速列方程:寻找等量关系(深度挖掘题干)①A 比 B 多/少……②A 是 B 的……倍③共……和、差、相同、相等、相当于、共计④隐含的不变量:如果……如果;若……若3.精确解方程:一元一次方程→移项法二元一次方程→消元法二、不定方程(组)未知数个数多于等式个数 ax+by=c;1.不定方程:两个未知数一个等式代入排除法求解数字特性法辅助(奇偶特性、因子特性)2.不定方程组:三个未知数两个等式消元法→不定方程枚举归纳法有序的枚举一、枚举所有可能(直接得到答案)二、枚举寻找规律(推导得出答案)方法:直接枚举、列表枚举、画图枚举规律类型:循环周期规律、等差规律、递推和规律、多级差规律等赋值法1.核心:赋某个量为具体值2.应用题型:工程问题、经济利润问题、行程问题、溶液问题、几何问题等题型共性:解题公式:A=B×C 型总量=时间×效率;路程=速度×时间;总额=单价×销量;总利=单利×销量;溶质=溶液×浓度;总数=平均数×个数。

公务员考试行测数量关系整理全集

公务员考试行测数量关系整理全集

第1讲计算问题主要题型:①尾数法、估算法、公式法、②乘方尾数问题、裂项相消、重复项计算、③新定义符号运算、符号运算、数学概念例1:破:①底数留个位;②指数除以4,恰好整除取4。

例2:破:用(最小数的分之一减最大数的分之一)乘以原来的分子/两数之差例3:破:把目标算式转化成已经给定的算式、特殊值带入第2讲多位数问题主要方法:带入排除,多步推理题型:①多位数求值、②多位数构造、③多位数个数统计、④多位数判定位置、⑤多位数乘法拆分、⑥多位数加法拆分、⑦复杂多位数问题例1:破:按给定条件一步步推理例2:破:多位数个数统计--位数固定:按数位来考虑,此时第一位可以是0。

破:多位数个数统计—位数不固定:按位数划分,如果是一位数,两位数,三位数。

首位不能是0。

例3:破:多位数加法拆分问题,分5步,①求总和;②确定问题对其他影响;③写下确定的情况;④剩下的总和求平均,对应中位数,写下这种情况;⑤对此情况调整修正。

第3讲平均数问题题型:①总和与平均数、②轮换平均数、③混合平均数、④不规则平均数、⑤分析性平均数、⑥调和平均数:三个数,它们的倒数成等差数列,则这三个数构成调和平均数。

例1:破:轮换平均数,写出各自表达式最后求和例2:破:混合平均数:已知各自平均数,又知混合后平均数,用十字交叉法求人数比例,再带入。

例3:破:不规则平均数:混合的不均匀,有两两求平均,有三三求平均。

设未知数带入求解。

例4:破:调和平均数题型的突破口是每次的增量成等差(最常见是相等),知道是调和平均数,直接带入求解。

第4讲工程问题总量不变,效率和时间成反比。

可赋值总量为一常数。

题型:①基本工程问题(等式列方程);②分阶段工程问题(按阶段解题);③两项工程型问题;④合作问题;⑤时效转化问题。

例1:破:典型的分阶段工程问题,赋值总量,然后按步骤写出。

效率与时间成反比。

第5讲浓度问题浓度问题的破题之道就是要在变化的过程中抓住不变量。

题型:①重复稀释:多次加溶剂稀释,加的过程有变化,有时是不等量、有时先倒出再加。

行测数量关系知识点汇总

行测数量关系知识点汇总

行测数量关系知识点汇总一、数字推理。

1. 基础数列。

- 等差数列:相邻两项的差值相等,例如:1,3,5,7,9,…,公差为2。

- 等比数列:相邻两项的比值相等,例如:2,4,8,16,32,…,公比为2。

- 质数数列:由质数组成的数列,如2,3,5,7,11,13,…- 合数数列:由合数组成的数列,如4,6,8,9,10,12,…- 周期数列:数列中的数字按照一定的周期重复出现,例如:1,2,1,2,1,2,…- 简单递推数列。

- 递推和数列:如1,2,3,5,8,13,…,从第三项起,每一项等于前两项之和。

- 递推差数列:如5,3,2,1,1,0,…,从第三项起,每一项等于前两项之差。

- 递推积数列:如1,2,2,4,8,32,…,从第三项起,每一项等于前两项之积。

- 递推商数列:如100,50,2,25,1/12.5,…,从第三项起,每一项等于前两项之商。

2. 多级数列。

- 做差多级数列。

- 对于数列不具有明显规律时,可先尝试做差。

例如数列:5,7,10,14,19,…,相邻两项做差得到2,3,4,5,…,是一个公差为1的等差数列。

- 做商多级数列。

- 当数列各项之间有明显的倍数关系时,可尝试做商。

如数列:2,4,12,48,240,…,相邻两项做商得到2,3,4,5,…,是一个公差为1的等差数列。

- 做和多级数列。

- 有些数列做和后会呈现出规律。

例如数列:1,2,3,4,7,11,…,相邻两项做和得到3,5,7,11,18,…,得到的新数列可能是质数数列或者其他有规律的数列。

- 做积多级数列。

- 数列中相邻项之间有乘积关系时适用。

比如数列:1,2,2,4,8,32,…,相邻两项做积得到2,4,8,32,256,…,做积后得到的数列可能有自身规律。

3. 幂次数列。

- 基础幂次数列。

- 要牢记常见的幂次数:1^2 = 1,2^2=4,3^2 = 9,4^2=16,5^2 = 25,6^2=36,7^2 = 49,8^2=64,9^2 = 81,10^2 = 100;1^3=1,2^3 = 8,3^3=27,4^3 = 64,5^3=125,6^3 = 216,7^3=343,8^3 = 512,9^3 = 729,10^3=1000等。

行测数量关系知识点整理

行测数量关系知识点整理

行测数量关系知识点整理1.能被2,3,4,5,6,整除的数字特点。

2.同余问题口诀:“差同减差,和同加和,余同取余,最小公倍加”这是同余问题的口诀。

①同余问题。

一个数除以4余1,除以5余1,除以6余1,这个数字是?(4,5,6的最小公倍数60n+1)②差同减差。

一个数除以4余1,除以5余2,除以6余3,这个数是?因为4-1=5-2=6-3=3,所以取-3, 表示为60n-3。

③和同加和。

“一个数除以4余3,除以5余2,除以6余1”,因为4+3=5+2=6+1=7,所以取+7,表示为60n+7。

最小公倍加:所选取的数加上除数的最小公倍数的任意整数倍(即上面1、2、3中的60n)都满足条件,称为:“最小公倍加”,也称为:“公倍数作周期”。

3.奇偶特性。

奇±奇=偶奇±偶=奇偶±偶=偶奇×偶=偶奇×奇=奇偶×偶=偶;例:同时扔出A、B两个骰子,两个骰子出现的数字的奇为偶数的情形有多少种?解析:偶×偶C3.1*C3.1 + 奇×偶C3.1*C3.1+偶×奇C3.1*C3.1=27;4.一个数如果被拆分成多个自然数的和,那么这些自然数中3越多,这些自然数的积越大。

例如21拆分成3×3×3×3×3×3×3,比其他的如11×10要大。

5.尾数法。

①自然数的多次幂的尾数都是以4为周期。

3的2007次方的尾数和3的2007÷4次方的尾数相同。

②5和5以后的的自然数的阶乘的尾数都是0。

如2003!的尾数为0;③等差数列的最后一项的尾数。

1+2+3+……+N=2005003,则N是();A.2002 B.2001C.2008D.2009解析:根据等差公式展开N(N+1)=......6,所以N为尾数为2的数,所以选择A。

④在木箱中取球,每次拿7个白球、3个黄球,操作M次后剩余24个,原木箱中有乒乓球多少个?A.246 B.258 C.264 D.272解析:考察尾数。

公务员行测数量关系十大知识要点

公务员行测数量关系十大知识要点

数量关系十大知识要点一、行程问题1.核心公式:S二V x T,路程二速度x时间2.平均速度二总路程一总时间3.若物体前一半时间以速度VI运动,后一半时间以速度V2V1+V2运动,则全程平均速度为一^4•若物体前一半路程以VI运动,后一半路程以V2运动,则全程平均速度为2V1V2V1+V25.相遇时间二相遇路程一速度和6.追及时间二追及路程一速度差7.直线多次相遇问题:从两地同时出发的直线多次相遇问题中,第n次相遇时,每个人走的路程等于他第一次所走的路程的(2n-l)倍8.环形相遇问题:环形相遇问题中每次相遇所走的路程之和是一圈。

如果最初从同一点出发,那么第n次相遇时,每个人所走的总路程等于第一次相遇时他所走路程的n倍9.流水问题:顺水速度=船速+水速;逆水速度=船速-水速船速二(顺水速度+逆水速度)一2;水速二(顺水速度-逆水速度)一210•火车过桥问题:火车速度X时间二车长+桥长完全在桥上时间二(桥长-车长)一火车速度二、几何问题札占扌absir<-yj:<ir9-l-EcMn上正方廉-1□-S-a5[C"2(i*£■!L翠行OHA需AZ7S"BH©知irF・+=(f番方体GI S=^(»*bc44c}V-a&cIE方体0V-a15»4IT P1ff]讯糧捧&5Jnf*2zrfti廿・Sh*r+(S列戛戟[£%?A(S炖卫独為1.极限理论平面图形:周长一定,趋近于圆,面积越大面积一定,趋近于圆,周长越小立体图形:表面积一定,越趋近于球,体积越大体积一定,越趋近于球,表面积越小2.三角形常见考点两边之和大于第三边,两边之差小于第三边较小的角对应的边也较小3.内角和:N边形的内角和为(N-2)180°4.几何图形的缩放:对于常见的几何图形,若将其边长变为原来的n倍,则其周长变为原来的n倍,面积变为原来的汩倍,体积变为原来的用倍三、十字交叉Aa+Bb={A+B)x匚整理变形后可得" (a>c>b)A c-i用图示可简单表示为其中c为平均值十字交叉法使用时要注意几点:1.用来解决两者之间的比例关系问题2.得出的比例关系是基数的比例关系3.总均值放中央,对角线上,大数减小数,结果放对角线上四、利润问题进价:商品进货的价格定价:商家根据进价定出的商品出售价格售价:商品实际的出售价格利润:售价与进价的差利润率:利润与进价的百分比折扣:售价与定价之比五、方阵问题1.方阵每层总人数=每边人数*4-42.方阵相邻两层人数相差8,实心方阵最外层每边人数为奇数时,从内到外每层人数依次是1,8,16,24……3.在方阵中,若去掉一行一列,去掉的人数=原来每行人数*2-1若去掉两行两列,去掉的人数=原来每行人数*4-2*24.实心方阵总人数二最外层每边人数N的平方5.空心方阵总人数=最外层每边人数的平方-(最内层每边人数-2)的平方或者利用等差数列求和公式,首项为最外层总人数,公差为-8的等差数列六、浓度问题溶液=溶质+溶剂浓度二溶质三溶液高浓度溶液A 与低浓度溶液B 混合,得到溶液C,那么C 的浓度介于 A 和B 之间。

公务员行测考试数量关系考点.doc

公务员行测考试数量关系考点.doc
注意:求前取后,求后取前。周期较短时,直接画日历(枚举法)。
1)过n年星期加几?
过1年星期加1,过一个闰年日(2月29日)星期再加1。
2)过n月星期加几?
大月+3,小月+2,平年2月不变,闰年2月+1。
1.3钟表问题
基础知识:
1)每昼夜24小时,每小时60分钟,没分钟60秒。
2)时针走一小时为30。,分针走一分钟为6。。
2)由题目给定的工作过程,根据公式或列方程求解。
1.2赋值效率
题型特征:题干给出效率的比例关系。
解题思路:
1)给效率赋值,按照给定的比例关系进行赋值。
2)有题目给的其他条件,算出工程总量或其他所需的数据。
1.3给具体值
题型特征:题干有效率、时间、总量三个量中的至少两个量的具体值。
解题思路:一般不能赋值,应使用方程法,结合公式计算。
解题思路:
当某个量为定值时,可考虑使用比例。将比例转化为份数或通过比例列方程。
3.
3.1基础题型
基础知识:利润二售价-进价
利润率二利润:进价=(售价-进价):进价
售价二进价X (1+利润率)
折扣二售价小定价
具体方法:
1)求具体价格:列式计算、方程。
2)求比例:赋值法。
3)赋值技巧:常设成为为1、10、100等,如果成本当中涉及数量,也可以对 数量赋值,如成本100=10X10。
连续7天内,周一至周日均出现1次。
连续7n天内,周一至周日均出现n次。
任意星期数的日期呈奇偶交替排列。
每个月任意星期数最少出现4次,最多出现5次。
大月31天,当月1、2、3日对应的星期数出现5次。
小月30天,当月1、2日对应的星期数出现5次。

公考行测——数量关系——知识点整理

公考行测——数量关系——知识点整理

公考行测——数量关系——知识点整理1. 数量关系题型介绍
- 数量关系题是公务员考试行测中的一种常见题型。

- 主要考查数量大小、比例关系、代数运算等方面的能力。

2. 数量大小比较
- 直接数量比较
- 利用已知条件推理数量大小关系
3. 比例与占比
- 比例概念及计算
- 百分比、千分比等占比问题
- 利率计算
4. 代数运算
- 四则运算
- 方程式求解
- 函数运算
5. 数列规律
- 等差数列
- 等比数列
- 找规律推理
6. 几何计算
- 平面图形面积、周长计算
- 立体图形表面积、体积计算
7. 逻辑推理
- 利用已知条件进行逻辑推理
- 排除无关选项
- 验证选项正确性
8. 题型技巧
- 注意题干中的限制条件
- 关注数据单位及换算
- 利用选项互斥性进行排除
- 审题细致,避免粗心错误
以上是公考行测数量关系部分的主要知识点整理,建议多加练习,熟练掌握解题思路和方法。

行测数量关系高频考点解析

行测数量关系高频考点解析

行测数量关系高频考点解析在公务员行测考试中,数量关系一直是让众多考生头疼的部分。

但其实,只要我们掌握了其中的高频考点,加以针对性的练习,就能在考试中取得更好的成绩。

接下来,就让我们一起来解析一下行测数量关系中的几个高频考点。

一、工程问题工程问题是数量关系中的常见题型,其核心公式是:工作总量=工作效率×工作时间。

对于简单的工程问题,我们可以直接利用公式求解。

例如,一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成,那么两人合作需要多少天完成?我们先求出甲、乙的工作效率,甲每天完成工作总量的 1/10,乙每天完成工作总量的 1/15,两人合作每天完成工作总量的(1/10 + 1/15),则合作完成所需时间为 1÷(1/10 + 1/15)= 6 天。

对于复杂一些的工程问题,可能会涉及到多人合作、交替工作等情况。

比如,甲、乙两人轮流工作,甲工作 1 天,乙工作 2 天,甲再工作 1 天,乙再工作 2 天……如此循环,共需要 15 天完成工作。

已知甲单独做需要 20 天,乙单独做需要 30 天,问这项工作总量是多少?我们可以设工作总量为 60(20 和 30 的最小公倍数),则甲的效率为 3,乙的效率为 2。

一个周期(甲 1 天,乙 2 天)共完成 7 的工作量,15天内包含 5 个周期,正好完成 35 的工作量,所以工作总量为 60。

二、行程问题行程问题也是行测中的重点,其基本公式有:路程=速度×时间。

常见的题型包括相遇问题和追及问题。

相遇问题中,相遇路程=速度和×相遇时间;追及问题中,追及路程=速度差×追及时间。

例如,甲、乙两人分别从 A、B 两地同时出发相向而行,甲的速度是 5 千米/小时,乙的速度是 3 千米/小时,经过 2 小时相遇,那么 A、B 两地的距离就是(5 + 3)×2 = 16 千米。

还有流水行船问题,顺流速度=船速+水速,逆流速度=船速水速。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行测数量关系考点:植树问题知识点储备
一、考情分析
通过近几年的国考来看,植树问题虽然并不像行程问题、利润问题那样年年都会考查。

但是总是会出现一些植树问题与其他问题相结合的题目,同时在省考中还是会经常出现很多植树问题,并且在近几年的省市考试中得到了延伸,考题中开始出现锯木头、爬楼梯等各类植树问题的变形。

大家同样需要重视这类问题。

二、基础概念
路长:整个道路的长度。

株距:相邻两棵树之间的距离。

棵数:树木的数量。

三、技巧方法
(一)封闭路线植树问题
应用公式:棵数=路长÷株距
路长=株距×棵数
株距=路长÷棵数
(二)两端植树的开放路线植树问题
应用公式:棵树=路长÷株距+1
路长=株距×(棵数-1)
株距=路长÷(棵数-1)
(三)只有一端种树的开放路线植树问题
应用公式:棵数=路长÷株距
路长=株距×棵数
株距=路长÷棵数
(四)两端都不种树的开放路线植树问题
应用公式:棵数=路长÷株距-1
路长=株距×(棵数+1)
株距=路长÷(棵数+1)
四、例题精讲
例题1:在圆形的花坛周围植树,已知周长为50米,如果每隔5米种一棵树的话,一共可以种多少棵?
A.9
B.10
C.11
D.12
解析:这是一道典型的封闭性植树问题,首尾重合。

棵数为50÷5=10,因此选B。

例题2:从图书馆到百货大楼有25根电线杆,相邻两根电线杆的距离都是30米,从图书馆到百货大楼距离是多少?(图书馆门口没有一根电线杆)
A.750
B.720
C.680
D.700
解析:“图书馆门口没有一根电线杆”,说明是“只有一端植树”型。

利用公式解题,图书馆到百货大楼的距离为25×30=750米。

例题3:有一条新修的道路,现在需要在该道路的两边植树,已知路长为5052米,如果每隔6米植一棵树,那么一共需要植多少棵树?
A.1646
B.1648
C.1686
D.1628
解析:“两端都植树”类型。

根据公式,一边需要5052÷6+1=843棵树,两边都植树需要843×2=1686棵,选C。

例题4:有两座楼间距500米,若在两座楼间每隔25米种一棵树,则共需种多少棵树?
A.19
B.20
C.21
D.22
解析:“两端都不植树”类型。

根据公式,共需种500÷25-1=19棵树。

例题5:有3根相同的木料,打算把每根锯成3段,每锯开一处需要3分钟,全部锯开需多少时间?
A.20
B.15
C.18
D.23
解析:植树问题的变形。

一根木料需锯3-1=2次,所以共需3×2×3=18分钟。

例题6:从一楼走到五楼,爬完一层休息30秒,一共要210秒,那么从一楼走到七楼,需要多少秒?
A.318
B.294
C.330
D.360
解析:从一楼走到五楼一共爬了4层,因此需要休息3次,休息了30×3=90秒;
那么爬到五楼所需时间为210-90=120秒,爬一层楼需要120÷(5-1)=30秒。

从一楼走到七楼一共需要休息5次,共费时(7-1)×30+5×30=330秒。

相关文档
最新文档