小学数学《三角形内角和》教学设计
人教版数学四年级下册三角形的内角和优秀教案(精推3篇)
人教版数学四年级下册三角形的内角和优秀教案(精推3篇)〖人教版数学四年级下册三角形的内角和优秀教案第【1】篇〗《三角形内角和》教学设计教材分析:《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是学生在学习了上册《平行与垂直》中的《角的认识》和本册本单元《三角形的特性》以及《三角形三边关系》、《三角形的分类》等知识之后进行的,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习、掌握“三角形的内角和是 180°”这一规律具有重要意义。
首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。
三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角撕下来,再拼在一起,组成一个平角,因此三角形内角和是 180 度。
二是把三个内角折叠在一起,发现也能组成一个平角。
每个活动都要使学生动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探索过程。
另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是直角三角形里的两个锐角和等于 90 度,钝角三角形里的两个锐角和小于90 度。
本节课的教学重点是让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。
而教学难点则放在对不同探究方法的指导和学生对规律的灵活运用。
学情分析:四年级的学生已初步具备了动手操作的意识和能力,并能够在探究问题的过程中,运用已有的知识和经验,通过交流、比较、评价等寻找解决问题的途径和策略。
“三角形的内角和是 180°”这一结论,大多数学生在四年级上册“角的度量”也有接触,但不一定清楚道理,所以本课的重点不在于了解,而在于验证,让学生在课堂上经历研究问题的全过程。
学生在本课学习前已经认识了三角形的基本特征及分类,学生课上对数学知识、能力和思考问题的角度有一定的差异,因此比较容易出现解决问题的策略多样化。
小学数学《三角形内角和》教学设计(6篇)
小学数学《三角形内角和》教学设计(6篇)《三角形的内角和》教学反思篇一新课程将探究式学习作为学生学习的主要方式之一,着重点放在让学生在主动参与的过程进行学习,在探究问题的活动中获取知识并主动建构新的认知结构,了解获取知识的途径和技巧。
这节课我设计了以“观察—猜想—验证—应用”为主线,让学生在自主学习中“不知不觉”学习到新的知识。
在学生猜测三角形内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最后达成共识。
这节课我创设了学生喜欢的情境:“三个三角形的争吵”入手,让学生自己动手探索三角形的内角和。
让学生“量一量”“剪—拼”贴近了学生的生活,降低了学习难度,注重学生们的动手实践,亲生去体验去感悟。
在操作反馈的过程中我提出了两个问题:第一,你选用什么三角形,采用什么方法来验证;第二,经过操作得到什么结论。
学生分小组对大小不一的三角形进行验证,经历量、剪、拼一系列操作活动,从而得出“三角形内角和是180°”这一结论。
本节课不足之处:1学生在还没学习三角形的特性和三角形三边的关系及三角形的内角和的基础上进行学习三角形内角和。
就无法复习三角形的有关知识。
2、在解决三角形内角和是什么这个问题,说的不够透彻,课后我改成这样,先让两个学生说,说完让一个学生指出来,指完并让他用黑色水笔画出来。
为验证三角形内是180度做铺垫。
3、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。
而且由于内角和这个概念没有讲清楚,学生在这一环节花了一定的时间。
4、在学生汇报方法时,还应该用尺子比一下拼后的三个角是在一条直线上,更直观的说明三个角形成一个平角,三角形的内角和是180°。
5、练习设计是有分层次,但是学生说的较少,我比较急地去分析,留给学生的时间不足这是我今后要特别注意的一个方面。
本节课我引导学生用测量或剪拼的方法探究三角形的内角和。
《三角形内角和》说课稿(精选5篇)
《三角形内角和》说课稿《三角形内角和》说课稿(精选5篇)作为一名默默奉献的教育工作者,常常要写一份优秀的说课稿,说课稿有助于顺利而有效地开展教学活动。
如何把说课稿做到重点突出呢?以下是小编精心整理的《三角形内角和》说课稿(精选5篇),欢迎阅读,希望大家能够喜欢。
《三角形内角和》说课稿1一、说教材三角形的内角和是北师大版四年级下册第二单元的内容。
三角形的内角和是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。
二、说学情本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识和技能,这为感受、理解、抽象三角形的内角和的规律,打下了坚实的基础。
因此,我确定本节课的教学目标是:教学目标:知识与技能:通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180。
知道三角形两个角的度数,能求出第三个角的度数。
能应用三角形内角和的性质解决一些简单的问题。
过程与方法:发展学生动手操作、观察比较和抽象概括的能力。
情感、态度与价值观:体验数学活动的探索乐趣,体会研究数学问题的思想方法。
教学重点:学生经历探究三角形内角和的全过程并归纳概括三角形内角和等于180。
教学难点:三角形内角和的探索与验证,对不同探究方法的指导和学生对规律的灵活应用。
三、说教法、学法整个教学将体现以人为本,先放后扶的教学策略。
放,不是漫无目的的放,而是为学生提供足够的探究规律的材料和时间,放手让学生自主学习,合作探究;扶,则是根据学生的不同探究方法和出现的错误,给予恰当指导,引导学生归纳概括出规律。
《课程标准》明确指出:要结合有关内容的教学,引导学生进行观察、操作、猜想,培养学生初步的思维能力。
四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作、主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。
《三角形内角和》数学教案【优秀6篇】
《三角形内角和》数学教案【优秀6篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《三角形内角和》数学教案【优秀6篇】作为一位不辞辛劳的人·民教师,常常要根据教学需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。
三角形内角和教学设计(通用6篇)
三角形内角和教学设计三角形内角和教学设计(通用6篇)作为一名教师,总不可避免地需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。
那么优秀的教学设计是什么样的呢?下面是小编帮大家整理的三角形内角和教学设计(通用6篇),欢迎阅读,希望大家能够喜欢。
三角形内角和教学设计1【教学目标】1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。
2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。
3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。
【教学重点】探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。
【教学难点】对不同探究方法的指导和学生对规律的灵活应用。
【教具准备】课件、表格、学生准备不同类型的三角形各一个,量角器。
【教学过程】一、激趣引入。
1、猜谜语师:同学们喜欢猜谜语吗?生:喜欢。
师:那么,下面老师给大家出个谜语。
请听谜面:形状似座山,稳定性能坚,三竿首尾连,学问不简单。
(打一图形)大家一起说是什么?生:三角形2、介绍三角形按角的分类师:真聪明!!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类师分别出示卡片贴于黑板。
3、激发学生探知心里师:大家会不会画三角形啊?生:会师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。
试一试吧!生:试着画师:画出来没有?生:没有师:画不出来了,是吗?生:是师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”(板书课题)二、探究新知。
1、认识三角形的内角看看这三个字,说说看,什么是三角形的内角?生:就是三角形里面的角。
师:三角形有几个内角啊?生:3个。
师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)师:你知道什么是三角形“内角和”吗?生:三角形里面的角加起来的度数。
四年级数学教案《三角形的内角和》(精选10篇)
四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》篇1教学目的⑴探究并发现三角形的内角和是180°,能利用这个知识解决实际问题。
⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的才能。
⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。
教学重点:检验三角形的内角和是180°。
教学难点:引导学生通过实验探究得出三角形的内角和是180度。
教学环节:问题情境与老师活动:学生活动媒体应用设计意图目的达成导入新课一、复习旧知,导入新课。
1、复习三角形分类的知识。
师出示三角形,生快速说出它的名称。
2、什么是三角形的内角?我们通常所说的角就是三角形的内角。
为了便于称呼,我们习惯用∠A、∠B、∠c来表示。
什么是三角形的内角和?三角形“三个内角的度数之和”就是三角形的内角和。
用一个含有∠A、∠B、∠c的式子来表示应该如何写?∠A+∠B+∠c。
3、今天这节课啊我们就一起来研究三角形的内角和。
〔揭题:三角形的内角和〕由三角形的内角引出三角形的内角和,“∠A+∠B+∠c”的表示形式形象的表达出三内角求和的关系二、动手操作,探究新知1、出示三角板,猜一猜。
师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数把三角形三个内角的度数合起来就叫三角形的内角和。
是不是所有的三角形的内角和都是180°呢?你能肯定吗?我们得想个方法验证三角形的内角和是多少?可以用什么方法验证呢?3.学生测量4.汇报的测量结果除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°5、稳固知识。
一个三角形中能不能有两个直角?能不能有2个钝角?三、应用所学,解决问题。
《三角形内角和》数学教案设计
《三角形内角和》數學教案設計标题:《三角形内角和》數學教案設計一、教学目标:1. 学生能理解和掌握三角形的内角和定理。
2. 学生能够通过实验操作,观察并发现三角形内角和等于180度的规律。
3. 培养学生的空间想象能力、逻辑推理能力和动手操作能力。
二、教学重点和难点:教学重点:理解并掌握三角形内角和定理。
教学难点:通过实验操作,发现并理解三角形内角和等于180度的规律。
三、教学过程:1. 引入新课:教师可以通过提问:“同学们,你们知道三角形有几条边,几个角吗?”引导学生复习三角形的基本概念。
然后提出问题:“那么,一个三角形的三个内角加起来是多少度呢?”,引发学生思考,引入新课。
2. 新课讲解:教师可以利用教具或PPT展示,先让学生自己尝试测量不同类型的三角形的内角,并记录下来。
然后,教师引导学生观察数据,发现三角形内角和总是等于180度的规律。
最后,教师给出三角形内角和定理的定义和证明方法。
3. 实验操作:教师可以让学生分组进行实验,每组准备一些不同类型的三角形纸片,用量角器测量每个三角形的内角,验证三角形内角和是否等于180度。
4. 巩固练习:教师提供一些题目,让学生运用所学知识解题,以巩固对三角形内角和定理的理解和掌握。
5. 课堂小结:教师带领学生回顾本节课的内容,总结三角形内角和定理,强调其在实际生活中的应用。
四、作业布置:安排一些与三角形内角和相关的习题,要求学生独立完成,以检验他们对本节课内容的理解程度。
五、教学反思:在课程结束后,教师需要反思教学效果,看看是否达到了预期的教学目标,对于教学过程中出现的问题,应该如何改进等。
以上就是关于《三角形内角和》的数学教案设计,希望对您有所帮助。
《三角形的内角和〉教学设计
《三角形的内角和〉教学设计《三角形的内角和〉教学设计作为一位不辞辛劳的人民教师,常常要根据教学需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。
那么大家知道规范的教学设计是怎么写的吗?下面是店铺收集整理的《三角形的内角和〉教学设计,希望对大家有所帮助。
《三角形的内角和〉教学设计篇1设计理念:本教学活动通过创设情境,让学生从情境中出发经历猜测、验证、交流等数学活动,培养学生动手实践、自主探究与合作交流的能力。
同时,让学生充分感受到:数学源于生活,生活离不开数学,数学就在我们身边。
遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一,并在这一系列教学活动中潜移默化地向学生渗透了“转化”数学思想,为后续学习奠定必要的基础。
教学内容:《义务教育课程标准实验教科书·数学》(人教版)四年级下册第85页例5及相应练习。
学情与教材分析:该内容是本册教材第五单元关于三角形内角和的教学。
它安排在三角形的分类之后,组织学生对不同形状和不同大小三角形度量内角的度数。
通过度量,各种三角形内角和之和都接近180°,引发学生对三角形内角和探究的欲望,应用折叠、拼凑等方法验证。
教材重视知识的探索与发现,安排了一系列的实验操作活动。
教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生进行自主探索和交流的空间,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。
教学目标:1.通过量、剪、拼等方法,探索和发现三角形内角和是180°。
2.在操作活动中,培养学生的合作能力、动手操作能力,发展学生的空间观念,并应用新知识解决问题。
3.使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。
教学重点:引导学生发现三角形内角和是180°。
教学难点:用不同方法验证三角形的内角和是180°。
小学数学《三角形的内角和》教案
小学数学《三角形的内角和》教案一、教学目标1.让学生通过观察、操作、交流等活动,探索三角形的内角和。
2.使学生掌握三角形的内角和是180度的性质,能够运用这一性质解决简单的问题。
3.培养学生的观察能力、动手操作能力和合作交流能力。
二、教学重点与难点1.教学重点:三角形的内角和是180度。
2.教学难点:运用三角形的内角和性质解决问题。
三、教学过程1.导入新课a.引导学生回顾已学的三角形知识,如三角形的定义、分类、性质等。
b.提问:同学们,你们知道三角形的内角和是多少度吗?今天我们就来学习三角形的内角和。
2.探索三角形的内角和a.分组合作:将全班分为若干小组,每组发一角形纸片和直尺。
b.指导学生用直尺分别测量三角形的三个内角,并记录下来。
c.学生汇报测量结果,教师引导学生发现三角形的内角和是180度。
3.验证三角形的内角和a.提问:同学们,你们有什么方法可以验证三角形的内角和是180度吗?b.学生讨论并分享验证方法,如:撕纸法、折纸法、拼接法等。
c.教师示范撕纸法,让学生尝试用其他方法验证三角形的内角和。
4.应用三角形的内角和a.出示练习题,让学生运用三角形的内角和性质解决问题。
b.学生独立完成练习题,教师巡回指导。
b.提问:同学们,你们还能想到哪些与三角形内角和有关的问题?c.学生分享自己的想法,教师给予鼓励和指导。
6.课后作业a.出示课后作业,要求学生运用三角形的内角和性质解决实际问题。
b.布置作业:请同学们回家后,用三角形的内角和性质解决一道实际问题,下节课分享。
四、教学反思本节课通过引导学生观察、操作、交流等活动,让学生自主探索三角形的内角和。
在教学过程中,注重培养学生的动手操作能力和合作交流能力,使学生在实践中掌握三角形的内角和性质。
同时,通过练习题的设计,让学生运用所学知识解决实际问题,提高学生的知识运用能力。
总体来说,本节课教学效果较好,但仍需在课后加强巩固和拓展,以提高学生的综合素质。
《三角形的内角和》教学设计【优秀8篇】
《三角形的内角和》教学设计【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《三角形的内角和》教学设计【优秀8篇】教学设计的目的是为了提高教学效率和教学质量,使学生在单位时间内能够学到更多的知识。
《三角形的内角》教学设计(7篇)
《三角形的内角》教学设计(优秀7篇)角形内角和教学设计篇一教学内容:人教版四年级下册第85面——87面。
教学目标:1、让学生亲自动手,通过量、剪、拼等活动发现三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、让学生在动手获取知识的过程中,渗透“转化”数学思想,掌握简单的数学推理方法,培养学生的创新意识、探索精神和实践能力。
3、让学生感受到数学的价值,体会成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:让学生经历“三角形内角和是180°”这一知识的发现过程。
教学准备:教具:多媒体课件、三角板一个、两个完全一样的直角三角形。
学具:锐角三角形、直角三角形、钝角三角形各一个。
教学过程:(一)创设情境,提出问题。
师:同学们的歌声真嘹亮,老师站在这里和大家一起学习感到很高兴,今天老师还给大家带来了一个老朋友,请看,是什么?生:三角形!师:前面我们已经认识了三角形,谁能给大家介绍一下?学生讲学过的三角形知识。
(学生叙述到部分主要内容即可)师:看来大家对三角形已经非常熟悉了,老师还为大家带来了两个特殊的三角形,请看,它们是什么三角形?(点击FLASH出示直角三角形实物图)师:(师指第一个三角形)谁知道这个直角三角形每个角的度数吗?师:答的真准确,(FLASH:生说完后师边说边点出度数)30度、60度、90度都在这个三角形的内部,我们把这样的角叫做三角形的内角。
师:有谁知道这个三角形三个内角的度数?(FLASH:生说完后师点击出第二个三角形,边说边点出度数)[U1]试一试,看谁算得快。
师:谁来说说自己的计算过程?[U2]角的和叫做三角形的内角和。
(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?生:它们的内角和都是180度。
师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,咱们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是180度呢?[回答可能有二]:(一种全部说是:)师:请问,你们是怎么想的,为什么这么认为?生:……师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)(一种有一部分同学说是,有一部分同学说不是:)师:看来,大家的意见不一致,想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)(二)动手操作,探究新知[U3]师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?生:我准备用量的方法。
《三角形内角和》教学设计范文
《三角形内角和》教学设计范文最新《三角形的内角和》教学设计篇一背景分析:在学习“三角形的内角和”之前,学生已经学习了三角形的特性和分类,知道平角的度数是180°,并且能够用量角器测量角的大小。
“三角形的内角和是180°”是三角形的一个基本特征,也是“空间与图形”领域中的重要内容之一,学好它有助于学生理解三角形三个内角之间的关系,也为以后进一步学习几何知识打下良好的学习基础。
教学目标:1、通过测量、剪拼、折拼等活动让学生全面经历探索和发现“三角形的内角和等于180°”的过程。
2、会用“三角形的内角和等于180°”这个结论进行一些简单的计算和推理。
3、体会数学学习的魅力,体验探究学习的乐趣。
教学重难点:探索和发现三角形的内角和等于180°。
教具准备:多媒体课件、一副三角板、量角器、三角形纸片。
学具准备:每个小组准备4个量角器、4把剪刀、两副三角板、两个学具袋,两个学具袋中各装有2个完全相同的锐角三角形、1个直角三角形、一个钝角三角形。
其中1号学具袋中,还装有表格纸一张。
教学过程:一、导入课题1、故事引入,激发兴趣同学们,今天,老师给大家带来一个小故事,想听吗?课件显示数学家——帕斯卡的图片师:孩子们,你们认识他吗?这可是位了不起的人物,他的名字叫帕斯卡。
他可是位数学奇人,从小就痴迷于数学,可帕斯卡的父亲却不支持他学习数学,因为,他从小就体弱多病,然而,这并不能阻挡帕斯卡对数学的热爱,一个个数学问题就像磁石一样深深地吸引着帕斯卡。
他常常背着父亲一个人偷偷琢磨。
12岁那年,他发现了一个改变他一生的数学问题,当父亲知道后激动的热泪盈眶。
从此以后,父亲不仅支持他学习数学,而且还尽全力帮助他。
在父亲的帮助下,帕斯卡成为了世界著名的数学家、物理学家。
师:究竟是什么发现让父亲的态度发了180°的大转弯呢,想知道吗?揭示并板书课题:三角形的内角和。
生齐读课题。
《三角形内角和》教案
《三角形内角和》教案教学目标:1.了解三角形的定义及性质。
2.掌握三角形内角和的计算方法。
3.能够运用所学知识解决相关问题。
教学重点:1.三角形内角和的概念。
2.三角形内角和的计算方法。
教学难点:1.如何理解三角形内角和的概念。
2.如何运用所学知识解决相关问题。
教学准备:1.教师准备:黑板、彩色粉笔、教学PPT。
2.学生准备:课本、作业本、笔等。
教学过程:一、导入(5分钟)教师提问:什么是三角形?举例说明。
学生回答后,教师引导学生讨论三角形的定义及性质,引出三角形内角和的概念。
二、讲解(15分钟)1.三角形内角和:教师通过图示和示例,讲解三角形内角和的定义,即三角形的三个内角之和等于180度。
2.计算方法:教师讲解如何计算三角形内角和,可以通过以下公式进行计算:内角和=第一个角+第二个角+第三个角。
3.案例分析:教师通过几个案例讲解如何应用所学知识计算三角形内角和。
三、练习(25分钟)1.基础练习:学生进行基础的计算练习,如计算各种角度和为180度的三角形。
2.拓展练习:学生进行一些拓展性的练习,如寻找三角形内角和不等于180度的特殊情况。
3.讨论疑难问题:学生对遇到的疑难问题进行讨论,教师进行指导和解答。
四、总结(10分钟)1.教师对本节课内容进行总结,强调三角形内角和的计算方法及相关性质。
2.学生对本节课所学内容进行复习总结,并提出问题。
五、作业布置(5分钟)1.布置相关练习题目,巩固所学知识。
2.提醒学生认真复习课堂内容,做好作业准备下节课。
教学反思:通过本节课的教学,学生对三角形内角和的概念有了更深入的理解,掌握了相关的计算方法,能够运用所学知识解决相关问题。
在教学过程中,学生的参与度和积极性较高,对课堂内容有了较深的印象。
教师需要在后续的教学中继续巩固学生对三角形相关知识的理解和掌握,帮助他们建立数学思维,提高解决问题的能力。
四年级《三角形内角和》教学设计8篇
四年级《三角形内角和》教学设计8篇作为一位不辞辛劳的人民教师,有必要进行细致的教学设计准备工作,教学设计是一个系统化规划教学系统的过程。
优秀的教学设计都具备一些什么特点呢?下面是小编为大家整理的四年级《三角形内角和》教学设计,希望能够帮助到大家。
四年级《三角形内角和》教学设计1教学目标:1、通过测量,撕拼,折叠等方法。
探索和发现三角形三个内角和的度数等于180°。
2、引导学生动手实验,经历知识的生长过程培养学生的探索意识和动手能力,初步感受数学研究方法。
3、能运用三角形内角和知识解决一些简单的问题。
教学重点:探索和发现“三角形内角和是180°”。
教学难点:验证“三角形内角和是180°,以及对这一知识的灵活运用。
”教具准备:三角形,多媒体课中。
教学过程设计:一、创设情境:故事引入,森林王国里住着平面图形和立体图形两大家族,一天平面图形的三角形家庭传出一片吵闹声,大三角形与小三角形在争论:听大三角形说:“我的内角和比你大”,小三角形不服气,可又不知如何反驳,同学们,你们知道到底谁的内角和大吗?二、探究新知:(一)、量一量:四人一小组,分别测量本组准备的三角形的内角,并求出和。
你们发现三角形的内角和是多少?汇报,提出疑问,三角形的内角和是不是刚好等于180°(二)、拼一拼引导学生独立完成,撕下二个角与第三个角拼在在一起,发现了什么?引导学生得出:三角形内角和等于180°(三)折一折引导学生同桌互相帮助完成,发现三个角形的三个内角折在一起是平角。
回答大小三角形的争论:大三角形与小三角形的内角形谁大?并说出理由。
三、巩固拓展1、填一填①直角形三角形的两个锐角和是()度。
②直角三角形的一个锐角是45°,另一个锐角是()度。
③钝角三角形的两上内角分别是20°,60°;则第三个角是()2、火眼金晴①钝角三角形的两个钝角和大于90°()。
《三角形的内角和》教学设计15篇
《三角形的内角和》教学设计 1 教学内容:本节课的教学内容是义务教育课程标准试验教科书数 学四班级下册第五单位的第四课时《三角形的内角和》,主要内容是: 验证三角形的内角和是 180°等。 教学内容分析:三角形的内角和是 180 是三角形的一个重要性质, 它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的 基础。 教学对象分析:作为四班级的学生已有肯定的生活阅历,在平常 的生活中已经接触到三角形,在尊重学生已有的学问的基础上和利用 他们已把握的学习方法,老师把课堂教学组织生动、活泼,突出学问 性、趣味性和生活性,使学生能在轻松开心的气氛中学习。 教学目标: 1、学问目标:学生通过量、剪、拼、摆等操作学具活动,找到 新旧学问之间的联系,主动把握三角形内角和是 180°,并运用所学 学问解决简洁的实际问题。 2、能力目标:培养学生的观察、归纳、概括能力和初步的空间 想象力。 3、情感目标:培养学生的创新意识、探究精神和实践能力,在 学生亲自动手和归纳中,感受到理性的美。 教学重点:理解并把握三角形的内角和是 180°。
第 7 页 共 71 页
就是∠1+∠2+∠3=180°,借助图像 ∠2=180°-∠1-∠3 或∠2=180°-(∠1+∠3) =180°-140°-25°=180°-(140°+25°) =40°-25°=180°-165° =15°=15° 2、一个等腰三角形的顶角是 80°,它的两个底角各是多少度? 学生分析:因为等腰三角形的两个底角相等,又因为三角形的内
教学目标 1、通过试验、操作、推理归纳出三角形内角和是 180°。 2、能运用三角形的内角和是 180°这一规律,求三角形未知角 的度数并运用解决实际生活问题。 3、通过拼摆,感受数学的转化思想。 教学重点 探究发觉和验证“三角形的内角和 180 度”。 教学难点 验证三角形的内角和是 180 度。 教学预备 多媒体课件,锐角三角形、直角三角形、钝角三角形,剪刀,量 角器等。
三角形内角和教学设计(共6篇)
三角形内角和教学设计(共6篇)第1篇:“三角形内角和”教学设计“三角形内角和”教学设计教学内容:义务教育教科书《数学》(人教版) 四年级下册第67页例6。
教学目标:1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。
并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。
教学难点:学生理解不同探究方法的内涵和对所得结论的灵活运用。
设计思路:三角形的内角和是三角形的一个重要特征,它是在学生已经熟悉长方形、平角等有关知识,并掌握了三角形的特征及分类之后的基础上学习的。
四年级的学生已具备了初步的动手操作能力、主动探究能力以及合作学习的习惯,他们正处于由形象思维向抽象思维过渡的阶段。
《课标》明确指出“要结合有关内容的教学,引导学生进行观察、操作、猜想,培养学生初步的思维能力”。
因此,这节课我将重点引导学生从“猜测—验证—得出结论”展开学习活动,让学生感受这种重要的思维方式。
并在教学中渗透“从特殊到一般”、“利用旧知解决新知”、“进行转化”等数学思想。
同时借助交互式电子白板的画图、手写、图片处理、屏幕捕获、隐藏、拖拽、链接及较好的交互功能等,让学生通过自主探索、实验、发现、讨论、交流获得知识,形成结论。
教学准备:多媒体课件、三角尺等。
教学过程:一、激趣引入(一)认识三角形内角师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?生1:三角形是由三条线段围成的图形。
生2:三角形有三个角,……师:请看屏幕(课件演示三条线段围成三角形的过程)。
师:三条线段围成三角形后,在三角形内形成了三个角,(白板:画弧线,标上∠1、∠2、∠3),我们把三角形里面的这三个角分别叫做三角形的内角。
三角形的内角和数学教学设计(精选4篇)
三角形的内角和数学教学设计(精选4篇)三角形的内角和,即三个内角的和。
三角形内角和定理:三角形三个内角和等于180°。
用数学符号表示为:在△ABC中,△1+△2+△3=180°。
奇文共欣赏,疑义相如析,该页是漂亮的小编给大家收集整理的三角形的内角和数学教学设计【精选4篇】,欢迎借鉴,希望能够帮助到大家。
《三角形内角和》数学教案篇一大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:一、教材分析“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。
二、教学目标1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。
2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。
3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。
三、教学重难点教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。
教学难点:采用多种途径验证三角形的内角和是180°。
四、学情分析通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。
五、教学法分析本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。
领悟转化思想在解决问题中的应用。
六、课前准备1、教师准备:多媒体课件、三角形教具。
2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。
七、教学过程(一)、创设情境,激趣导入导入:“同学们,有三位老朋友已经恭候我们多时了。
“(出示三角形动画课件),让学生依次说出各是什么三角形。
课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学《三角形内角和》教学设计教学目标:
1、通过测量一量、拼一拼、折一折三个活动,探索和发现三角形三个内角的度数和等于180°。
2、已知三角形两个角的度数,会求出第三个角的度数。
3、经历三角形内角和的研究方法,感受数学研究方法。
教学重点:
1、探索和发现三角形三个内角的度数和等于180°。
2、已知三角形两个角的度数,会求出第三个角的度数。
教学难点:掌握探究方法(猜想-验证-归纳总结),学会用“转化”的数学思想探究三角形内角和。
教学用具:表格、课件。
学具准备:各种三角形、剪刀、量角器。
一、创设情境揭示课题。
1、一天两个三角形发生了争执,他们请你们来评评理。
大三角形说:“我的个头大,所以我的内角和一定比你大。
”小三角形很不甘心地说:“我有一个钝角,我的内角和一定比你大。
”。
谁说得有道理呢?今天让我们来做一回裁判吧。
生1:大三角形大(个子大)
生2:小三角形大(有钝角)
(教师不做判断,让学生带着问题进入新课)
2、什么是三角形的内角和?(板书:内角和)
讲解:三角形内两条边所夹的角就叫做这个三角形的内角。
每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。
二、自主探究,合作交流。
(一)提出问题:
1、你认为谁说得对?你是怎么想的?
2、你有什么办法可以比较一下这两个三角形的内角和呢?
生1:用量角器量一量三个内角各是多少度,把它们加起来,再比较。
生2:用拼一拼的办法把三个角拼到一起看它们能不能组成平角。
生3:用折一折的办法把三个角折到一起看它们能不能组成平角
(二)探索与发现
活动一:量一量
(1)①了解活动要求:(屏幕显示)
A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。
(测量时要认真,力求准确)
B、把测量结果记录在表格中,并计算三角形内角和。
C、讨论:从刚才的测量和计算结果中,你发现了什么?
(引导生回顾活动要求)
②小组合作。
③汇报交流。
你们测量了几个三角形?它们的内角和分别是多少?从测量和计算结果中你们发现了什么?
(引导学生发现每个三角形的三个内角和都在180°,左右。
)
(2)提出猜想
刚才我们通过测量和计算发现了三角形内角和都在180度左右,那你能不能大胆的猜测一下:三角形内角和是否相等?三角形的内角和等于多少度呢?(板书:猜测)活动二:拼一拼,验证猜想
这个猜想是否成立呢?我们要想办法来验证一下。
(板书验证)
引导:180°,跟我们学过的什么角有关?我们课前准备了各种三角形纸片,你能不能利用这些三角形纸片,想办法把三角形的三个内角转换成一个平角呢?
(1)小组合作,讨论验证方法。
(把三个角撕下来,拼在一起,3个角拼成了一个平角,所以三角形内角和就是180°)。
(2)讨论:锐角三角形、直角三角形、钝角三角形是否都能得出相同的结论呢?
(3)分组汇报,讨论质疑
(4)课件演示,验证结果
活动三:折一折
师生一起活动,教师先让学生看课件演示,然后拿出准备好的三角形纸艮老师一起折一折。
(把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,也证明了三角形内角和等于180°,)。
讨论:锐角三角形、直角三角形、钝角三角形能否得到相同的结论?
提问:还有没有其它的方法?
3、回顾两种方法,归纳总结,得出结论。
(1)引导学生得出结论。
孩子们,三角形内角和到底等于多少度呢?”
学生答:“180°!”
(2)总结方法,齐读结论
我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。
(板书:得到结论)(3)解释测量误差
为什么我们刚才通过测量,计算出来的三角形内角和不是180°,呢?
那是因为我们在测量时,由于测量工具、测量操作等各方面的原因,使我们的测量结果存在一定的误差。
实际上,三角形内角和就等于180°
(三)回顾问题:
现在你知道这两个三角形谁说得对了吗?(都不对!)
为什么?请大家一起,自信肯定的告诉我。
生:因为三角形内角和等于1800180°。
(齐读)
三、巩固深化,加深理解。
1、试一试:数学书28页第3题
∠A=180°-90°-30°
2、练一练:数学书29页第一题(生独立解决)
∠A=180°-75°-28°
3、小法官:数学书29页第二题
四、回顾课堂,渗透数学方法。
1、总结:猜想—验证—归纳—应用的数学方法。
2、介绍:三角形内角和等于180度这个结论的由来;数学领域里还未被证明的其它猜想,如哥德巴赫猜想、霍启猜想、庞加莱猜想等。
3、课堂延伸活动:探索——多边形内角和
板书设计:
探索与发现(一)
三角形内角和等于180°。