2017_2018学年七年级数学上册第七章一元一次方程7.3一元一次方程的解法学案(无解答)(新版)青岛版
七年级数学上册第三单元《一元一次方程》-解答题专项知识点复习(答案解析)(1)
一、解答题1.一项工程,由甲队独做需12个月完工,由乙队独做需15个月完工.现决定由两队合作,且为了加快进度,甲、乙两队都将提高工作效率.若甲队的工作效率提高40%,乙队的工作效率提高25%,,则两队合作,几个月可以完工?解析:5【分析】设两队合作x 个月完成,甲队原来的工作效率为112,将工作效率提高40%以后为112(1+40%),乙队原来的工作效率为115,将工作效率提高25%以后为115(1+25%),根据工作效率×工作时间=工作总量1,列出方程,解方程即可【详解】 解:设两队合作x 个月完成,由题意,得[112(1+40%)+115(1+25%)]x =1, 解得x =5.答:两队合作,5个月可以完工.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.2.解方程:(1)3x ﹣4=2x +5;(2)253164x x --+=. 解析:(1)9x = ;(2)13x =【分析】(1)通过移项,合并同类项,便可得解;(2)通过去分母,去括号,移项,合并同类项,进行解答便可.【详解】(1)3x ﹣2x =5+4,解得:x =9;(2)去分母得:2(2x ﹣5)+3(3﹣x )=12,去括号得:4x ﹣10+9﹣3x =12,移项得:4x ﹣3x =12+10﹣9,合并同类项得:x =13.【点睛】本题主要考查了解一元一次方程,熟记解一元一次方程的一般步骤是解题的关键. 3.10.3x -﹣20.5x + =1.2.解析:4【解析】试题分析:先将分母化成整数后,再去分母,去括号,移项,系数为1的步骤解方程即可; 试题12 1.20.30.5x x -+-=10103x --10205x +=6550x-50-30x-60=1820 x=128x=6.4 4.一批皮鞋,按成本加5成作为售价,后因季节性原因,按原售价的七五折降低价格出售,降价后的新售价是每双63元,问这批皮鞋每双的成本价是多少元按降价后的新售价每双还可赚多少元?解析:成本价是56元,按降价后的新售价每双还可赚7元.【分析】若设成本价为x 元,则成本加5成后的售价为(1+50%)x 元,再按七五折后的售价为0.75(1+50%)x 元,根据降价后的新售价是每双63元即可得方程0.75(1+50%)x=63,解方程求得x 的值,根据盈利=售价-进价即可求得答案.【详解】设成本价为x 元,则成本加5成后的售价为(1+50%)x 元,再按七五折后的售价为0.75(1+50%)x 元.根据题意得:0.75(1+50%)x=63,解得:x=56,所以成本价是56元,按降价后的新售价每双还可赚7元.【点睛】本题考查了一元一次方程的应用,解决问题时弄清加五成和七五折这些概念.5.解下列方程:(1)2(x -1)=6;(2)4-x =3(2-x);(3)5(x +1)=3(3x +1)解析:(1)x =4;(2)x =1;(3)x =12【分析】(1)方程去括号,移项合并,将未知数系数化为1,即可求出解;(2)方程去括号,移项合并,将未知数系数化为1,即可求出解;(3)方程去括号,移项合并,将未知数系数化为1,即可求出解;【详解】(1)去括号, 得2x -2=6.移项,得2x =8.系数化为1,得x=4.(2)去括号,得4-x=6-3x.移项,得-x+3x=6-4.合并同类项,得2x=2.系数化为1,得x=1.(3)去括号,得5x+5=9x+3.移项,得5x-9x=3-5.合并同类项,得-4x=-2.系数化为1,得x=1 2 .【点睛】此题考查了解一元一次方程,其步骤为:去括号,移项合并,将未知数系数化为1,求出解.6.解下列方程(1)-9x-4x+8x=-3-7;(2)3x+10x=25+0.5x.解析:(1)x=2;(2)x=2【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程移项合并,把x系数化为1,即可求出解.【详解】解:(1)合并同类项,得,-5x=-10系数化为1,得,x=2(2)移项,得3x+10x-0.5x=25合并同类项,得12.5x=25系数化为1,得,x=2【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.7.某同学在解方程21233x x a-+=-时,方程右边的﹣2没有乘以3,其它步骤正确,结果方程的解为x=1.求a的值,并正确地解方程.解析:a=2,x=-3【分析】由题意可知x=1是方程2x-1=x+a-2的解,然后可求得a的值,然后将a的值代入方程求解即可.【详解】解:将x=1代入2x﹣1=x+a﹣2得:1=1+a﹣2.解得:a=2,将a =2代入21233x x a -+=-得:2x ﹣1=x +2﹣6. 解得:x =﹣3.【点睛】 本题主要考查的是一元一次方程的解,明确x=1是方程2(2x-1)=3(x+a )-2的解是解题的关键.8.解方程:()()3x 7x 132x 3--=-+① ;5x 2x 3132---=②. 解析:(1)5;(2)138; 【分析】①方程去括号,移项合并,把x 系数化为1,即可求出解;②方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】①去括号得:3x−7x+7=3−2x−6,移项合并得:−2x=−10,解得:x=5;②去分母,去括号得:10−2x−6=6x−9,移项合并得:8x=13, 解得:x=138. 【点睛】 此题考查解一元一次方程,解题关键在于掌握方程的解法.9.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?” 解析:x =60【分析】设有x 个客人,根据题意列出方程,解出方程即可得到答案.【详解】解:设有x 个客人,则65234x x x ++= 解得:x =60;∴有60个客人.【点睛】 本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.10.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价为多少?解析:180元或202.5元【分析】先根据题意判断出可能打折的情况,再分别算出可能的可能的原价.【详解】∵200×0.9=180,200×0.8=160,160<162<180,∴一次性购书付款162元,可能有两种情况.162÷0.9=180元;162÷0.8=202.5元.故王明所购书的原价一定为180元或202.5元.【点睛】本题考查打折销售问题,关键在于分类讨论.11.已知关于x 的方程3(2)x x a -=- 的解比223x a x a +-= 的解小52 ,求a 的值. 解析:a=1【分析】分别求出两个方程的解,然后根据关系列出等式,求出a 的值即可.【详解】解:∵3(2)x x a -=-, 解得:62a x -=; ∵223x a x a +-=, 解得:5x a =, ∴65522a a -=-, 解得:1a =;∴a 的值为1.【点睛】 本题考查了解一元一次方程,以及一元一次方程的解,解题的关键是正确求出一元一次方程的解,从而列出等式求出a 的值.12.一项工程,甲队独做10h 完成,乙队独做15h 完成,丙队独做20h 完成,开始时三队合作,中途甲队另有任务,由乙、丙两队完成,从开始到工程完成共用了6h ,问甲队实际工作了几小时?解析:3【分析】设三队合作时间为x ,总工程量为1,根据等量关系:三队合作部分工作量+乙、丙两队合作部分工作量=1,列式求解即可得到甲队实际工作时间.【详解】设三队合作时间为xh ,乙、丙两队合作为(6)x h -,总工程量为1, 由题意得:11111()()(6)11015201520x x ++++-=, 解得:3x =,答:甲队实际工作了3小时.【点睛】 本题主要考查了一元一次方程实际问题中的工程问题,准确分析题目中的等量关系以及设出未知量是解决本题的关键.13.小明解方程26152x x a -++=时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此得到方程的解为1x =-,试求a 的值,并正确地求出原方程的解. 解析:2a =-,8x =【分析】先根据错误的做法:“方程左边的1没有乘以10”而得到1x =-,代入错误方程,求出a 的值,再把a 的值代入原方程,求出正确的解.【详解】解:412155x x a -+=+∵1x =-为412155x x a -+=+的解∴16155a -+=-+∴2a =-;∴原方程为:262152x x --+= 去分母得:41210510x x -+=-∴45101012x x -=--+∴8x -=-∴8x =.【点睛】本题考查了解一元一次方程,本题易在去分母、去括号和移项中出现错误.由于看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.14.某班将买一些乒乓球和乒乓球拍.了解信息如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元;经洽谈:甲店每买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)如果要购买15盒或30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?解析:(1) 购买乒乓球20盒时,两种优惠办法付款一样;(2)买30盒乒乓球时,在甲店买5副乒乓球拍,在乙店买25盒乒乓球省钱.【分析】(1)设当购买乒乓球x盒时,两种优惠办法付款一样,根据总价=单价×数量,分别求出在甲、乙两家商店购买需要的钱数是多少;然后根据在甲商店购买需要的钱数=在乙商店购买需要的钱数,列出方程,解方程,求出当购买乒乓球多少盒时,两种优惠办法付款一样即可;(2)首先根据总价=单价×数量,分别求出在甲、乙两家商店购买球拍5副、15盒乒乓球,球拍5副、30盒乒乓球需要的钱数各是多少;然后把它们比较大小,判断出去哪家商店购买比较合算即可.【详解】(1)设当购买乒乓球x盒时,两种优惠办法付款一样,则30×5+5(x−5)=(30×5+5x)×90%5x+125=135+4.5x5x+125−4.5x=135+4.5x−4.5x0.5x+125=1350.5x+125−125=135−1250.5x=100.5x×2=10×2x=20答:当购买乒乓球20盒时,两种优惠办法付款一样.(2)①在甲商店购买球拍5副、15盒乒乓球需要:30×5+5×(15−5)=150+50=200(元)在乙商店购买球拍5副、15盒乒乓球需要:(30×5+5×15)×90%=225×90%=202.5(元)因为200<202.5,所以我去买球拍5副、15盒乒乓球时,打算去甲家商店购买,在甲家商店购买比较合算.答:我去买球拍5副、15盒乒乓球时,打算去甲家商店购买,在甲家商店购买比较合算.②在甲商店购买球拍5副、30盒乒乓球需要:30×5+5×(30−5)=150+125=275(元)在乙商店购买球拍5副、30盒乒乓球需要:(30×5+5×30)×90%=300×90%=270(元)因为270<275,所以我去买球拍5副、30盒乒乓球时,打算去乙家商店购买,在乙家商店购买比较合算.答:我去买球拍5副、30盒乒乓球时,打算去乙家商店购买,在乙家商店购买比较合算.考点:1.一元一次方程的应用;2.方案型.15.如果,a b为定值,关于x的方程2236kx a x bk+-=+无论k为何值时,它的根总是1,求,a b的值.解析:a=132,b=﹣4 【分析】 先把方程化简,然后把x =1代入化简后的方程,因为无论k 为何值时,它的根总是1,就可求出a 、b 的值.【详解】解:方程两边同时乘以6得:4kx +2a =12+x−bk ,(4k−1)x +2a +bk−12=0①,∵无论为k 何值时,它的根总是1,∴把x =1代入①,4k−1+2a +bk−12=0,则当k =0,k =1时,可得方程组:12120412120a a b --⎧⎨--⎩+=++=, 解得:a=132,b=﹣4 当a=132,b=﹣4时,无论为k 何值时,它的根总是1. ∴a=132,b=﹣4 【点睛】本题主要考查了一元一次方程的解,理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.本题利用方程的解求未知数a 、b .16.青岛市某实验学校举办一年一届的科技文化艺术节活动,需制作一块活动展板,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天.(1)两个人合作需要多少天完成?(2)现由徒弟先做1天,再两人合作,问:还需几天可以完成这项工作?解析:(1)2.4天(2)2天【分析】(1)完成工作的工作量为1,根据工作时间=工作总量÷工作效率和,列式即可求解. (2)设徒弟先做1天,再两人合作还需x 天完成,根据等量关系:完成工作的工作总量为1,列出方程即可求解.【详解】解:(1)11511=2.44612⎛⎫÷+=÷ ⎪⎝⎭(天). 答:两个人合作需要2.4天完成.(2)设还需x 天可以完成这项工作,根据题意,得1164x x ++=. 解得=2x . 答:还需2天可以完成这项工作.【点睛】本题考查一元一次方程的应用,根据题意列出方程并解答是解题关键17.依据下列解方程0.30.5210.23x x +-=的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。
人教版2018年 七年级数学上册 一元一次方程 课堂+课后+单元测试 汇编38页(7份含答案)
2018年七年级数学上册一元一次方程课堂+课后+单元测试汇编目录人教版2018年七年级数学上册解一元一次方程课后提升卷(含答案)人教版2018年七年级数学上册解一元一次方程课堂培优卷(含答案)人教版2018年七年级数学上册一元一次方程应用题一课堂培优(含答案)人教版2018年七年级数学上册一元一次方程应用题一课后提升(含答案)人教版2018年七年级数学上册一元一次方程应用题二课堂培优卷(含答案)人教版2018年七年级数学上册一元一次方程应用题二课后提升卷(含答案)人教版2018年七年级数学上册一元一次方程单元检测题(含答案)2018年七年级数学上册解一元一次方程同步培优练习卷一、选择题:1、下列结论正确的是()A.若m+3=n-7,则m+7=n-11B.若0.25x=-1,则x=-1/4C.若7y-6=5-2y,则7y+6=17-2yD.若7a=-7a,则7=-72、已知关于x的方程(2a+b)x-1=0无解,那么ab的值是()A.负数B.正数C.非负数D.非正数3、若x=﹣1是关于x的方程2x+5a=3的解,则a的值为()A. B.4 C.1 D.﹣14、下列一元一次方程中进行合并同类项,正确的是( ).A.已知x+7x-6x=2-5,则-2x=-3B.已知0.5x+0.9x+0.1=0.4+0.9x,则1.5x=1.3C.已知25x+4x=6-3,得29x=3D.已知5x+9x=4x+7,则18x=75、下列解方程去分母正确的是( )A.由,得2x-1=3-3x;B.由,得2(x-2)-3x-2 =-4C.由,得3y + 3=2y-3y + 1-6y;D.由,得12x-1=5y + 206、若方程的解与关于的方程的解相同,则的值为().A. B. C. D.7、已知代数式的值为7,则的值为()A. B. C.8 D.108、已知|3m-12|+=0,则2m-n等于( ).A.9B.11C.13D.159、定义,若,则的值是()A.3B.4C.6D.910、用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”的个数为( ).A.5B.4C.3D.211、当x=4时,式子5(x+m)-10与式子mx+4x的值相等,则m=()A.-2;B.2;C.4;D.6;12、如图所示的运算程序中,若开始输入的x值为96,我们发现第一次输出的结果为48,第二次输出的结果为24,…,则第2017次输出的结果为()A.6B.3C.D.6024二、填空题:13、已知4m+2n-5=m+5n,试利用等式的性质比较m与n的大小关系:__________.14、小李在解方程5a-x=13(x为未知数)时误将-x看作+x,得方程的解为x=-2,则原方程的解为__________.15、已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为 .16、用“*”表示一种运算,其意义是a*b=a﹣2b,如果x*(3*2)=3,则x= .17、已知满足方程,则的值为 .18、已知a、b、c、d为有理数,现规定一种新运算,如那么当时,则x的值为 .三、解答题:19、解方程:5x﹣2=7x+8 20、解方程:4x﹣1.5x=﹣0.5x﹣921、解方程: 22、解方程:70%x+(30-x)×55%=30×65%23、解方程:. 24、解方程:.25、﹣=3. 26、27、已知关于x的方程的解与方程的解互为相反数,求k的值.28、a⊗b是新规定的这样一种运算法则:a⊗b=a2+ab,例如3⊗(﹣2)=32+3×(﹣2)=3.(1)求(﹣2)⊗3的值;(2)若(﹣3)⊗x=5,求x的值;(3)若3⊗(2⊗x)=﹣4+x,求x的值.29、阅读下面一段文字:根据你对这段文字的理解,回答下列问题:(1)步骤①到步骤②的依据是;(2)仿照上述探求过程,请你尝试把表示成分数的形式.30、点A、B在数轴上分别表示有理数a、b,点A与原点O两点之间的距离表示为AO,则AO==,类似地,点B与原点O两点之间的距离表示为BO,则BO=,点A与点B两点之间的距离表示为AB=.请结合数轴,思考并回答以下问题:(1)数轴上表示1和-3的两点之间的距离是__________;(2)数轴上表示m和-1的两点之间的距离是__________;(3)数轴上表示m和-1的两点之间的距离是3,则有理数m是___________;(4)若x表示一个有理数,并且x比-3大,比1小,则______;(5)求满足的所有整数x的和.参考答案1、C;2、D;3、C;4、C;5、C;6、B;7、C;8、C;9、C;10、A;11、D; 12、B13、答案为:m>n14、答案为:x=2.15、答案为:9.16、答案为:1.17、答案为:2;18、答案为:-319、x=﹣5.20、x=-3;21、x=0.75.22、x=12.23、x=0.5.24、x=﹣3.25、x=5.26、x=70;27、解:=1+k,去括号得:=1+k,去分母得:1-x=2+2k,移项得:-x=1+2k,把x的系数化为1得:x=-1-2k,,去分母得:15(x-1)-8(3x+2)=2k-30(x-1),去括号得:15x-15-24x-16=2k-30x+30,移项得:15x-24x+30x=2k+30+15+16,合并同类项得:21x=61+2k,把x的系数化为1得:x=,∵两个方程的解为相反数,∴-1-2k+=0,解得:k=1.28、解:(1)根据题意得:(﹣2)⊗3=(﹣2)2﹣2×3=4﹣6=﹣2;(2)利用题中新定义化简(﹣3)⊗x=5得:9﹣3x=5,解得:x=;(3)根据题中的新定义化简2⊗x=4+2x,3⊗(2⊗x)=3⊗(4+2x)=9+12+6x=6x+21,3⊗(2⊗x)=﹣4+x得:6x+21=﹣4+x,解得:x=﹣5.29、解:(1)等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立.(2)设,,,,,,.30、(1)4;(2);(3)或;(4)4;(5).2018年七年级数学上册解一元一次方程课后提升卷一、选择题:1、若方程(a+2)x2+5x m-3-2=3是关于x的一元一次方程,则a和m分别为( ).A.2和4B.-2和4C.2和-4D.-2和-42、若x=﹣1是关于x的方程2x+5a=3的解,则a的值为A. B.4 C.1 D.﹣13、下列一元一次方程中进行合并同类项,正确的是( ).A.已知x+7x-6x=2-5,则-2x=-3B.已知0.5x+0.9x+0.1=0.4+0.9x,则1.5x=1.3C.已知25x+4x=6-3,得29x=3D.已知5x+9x=4x+7,则18x=74、若代数式4x﹣5与的值相等,则x的值是()A.1B.C.D.25、下列解方程去分母正确的是( )A.由,得2x-1 = 3-3x;B.由,得2(x-2)-3x-2 =-4C.由,得3y + 3 = 2y-3y + 1-6y;D.由,得12x-1 = 5y + 206、在解方程去分母真情的是()A. ;B. ;C. ;D. ;7、把方程中的分母化为整数,结果应为( ).A. B.C. D.8、小李在解方程5a﹣x=13(x为未知数)时,误将﹣x看作+x,得方程的解为x=﹣2,那么原方程的解为()A.x=﹣3B.x=0C.x=2D.x=19、定义,若,则的值是()A.3B.4C.6D.910、某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x个,则可列方程为()A. B. C. D.二、填空题:11、(2a+3b)x2+ax+b=0是关于x的一元一次方程,且x有唯一解,则x= .12、代数式﹣2a+1与1+4a互为相反数,则a= .13、若方程2x﹣3=11与关于x的方程4x+5=3k有相同的解,则k的值是_______.14、当x = ________时,代数式与的值相等.15、若“★”是新规定的某种运算符号,设a★b=ab+a﹣b,则2★n=﹣8,则n= .16、已知a、b、c、d为有理数,现规定一种新运算,如那么当时,则x的值为 .三、解答题:17、解方程:2(3x﹣1)=16 18、解方程:5(x-1)-2(3x-1)=4x-119、解方程:3x﹣7(x﹣1)=3﹣2(x+3) 20、解方程:70%x+(30-x)×55%=30×65% 21、解方程: 22、解方程:;23、解方程:. 24、解方程:.25、如果方程和的解相同,求出的值.26、聪聪在对方程①去分母时,错误的得到了方程2(x+3)﹣mx﹣1=3(5﹣x)②,因而求得的解是x=,试求m的值,并求方程的正确解.27、如果关于x的方程与的解相同,求的值.参考答案1、B2、C3、C4、B5、C6、A7、B8、C.9、C10、C.11、答案为:12、答案为:﹣1.13、答案为:11.14、答案为:x=-115、答案为:﹣1016、答案为:-317、答案为:x=3;18、答案为:x=-0.419、答案为:x=;20、答案为:x=12.21、答案为:x=22、答案为:x=.23、答案为:x=2.24、答案为:x=2.25、解:解得:因为解相同将代入,26、解:把x=代入方程②得:2(+3)﹣m﹣1=3(5﹣),解得:m=1,把m=1代入方程①得:﹣=,去分母得:2(x+3)﹣x+1=3(5﹣x),去括号得:2x+6﹣x+1=15﹣3x,移项合并得:4x=8,解得:x=2,则方程的正确解为x=2.27、100.2018年七上一元一次方程应用题一课堂培优一、选择题:1、实验中学七年级(2)班有学生56人,已知男生人数比女生人数的2倍少11人,求男生和女生各多少人?下面设未知数的方法,合适的是()A.设总人数为x人B.设男生比女生多x人C.设男生人数是女生人数的x倍D.设女生人数为x人2、我就买了20本,结果便宜了1.6元,你们猜猜原来每本的价格是多少?”原来每本的价是()A.0.4元B.0.5元C.0.6元D.0.7元3、某车间有26名工人,每人每天可以生产800个螺栓或1 000个螺母,1个螺栓需要配2个螺母,为使每天生产的螺栓和螺母刚好配套,设安排x名工人生产螺栓,则下面所列方程正确的是( )A.2×1 000(26x)=800xB.1 000(13x)=800xC.1 000(26x)=2×800xD.1 000(26x)=800x4、“地球停电一小时”活动的某地区烛光晚餐中,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是( ).A.30x-8=31x+26B.30x+8=31x+26C.30x-8=31x-26D.30x+8=31x-265、用两根长12cm的铁丝分别围成正方形和长与宽之比为2:1的长方形,则长方形和正方形的面积依次为()A.9cm2和8cm2B.8cm2和9cm2C.32cm2和36cm2D.36cm2和32cm26、一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为()A.x﹣1=5(1.5x)B.3x+1=50(1.5x)C.3x﹣1=(1.5x)D.180x+1=150(1.5x)7、我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x人,依题意列方程得()A. B. C. D.8、某工程要在x天内完成,现由甲先做3天,乙再参加合做,正好如期完成.若甲独做需12天完成,乙独做需8天完成,则下列方程正确的是()A.+=1B.+=1C.+=1D.+=19、一家服装店将某种服装按进价提高50%后标价,又以八折销售,售价为360元,则每件服装的进价是()A.168元BB. 300元C.60元D.400元10、某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( )A.240元B.250元C.280元D.300元11、有一位旅客携带了30kg重的行李从上海乘飞机去北京,按民航总局规定:旅客最多可免费携带20kg重的行李,超重部分每千克按飞机票价格1.5%购买行李票,现该旅客购买了180元的行李票,则他的飞机票价格应是()A.800元B.1000元C.1200元D.1500元12、初一(1)班有学生60人,其中参加数学小组的有36人,参加英语小组的人数比参加数学小组的人数少5人,并且这两个小组都不参加的人数比两个小组都参加的人数的四分之一多2人,则同时参加这两个小组的人数是()A.16B.12C.10D.8二、填空题:13、某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件x元,则x满足的方程是__________.14、一个长方形鸡场的一边靠墙,墙的对面有一个2m宽的门,另三边(门除外)用篱笆围成,篱笆总长33m,若鸡场的长:宽=3:2(尽量用墙),则鸡场的长为_________m,宽为__________m. 15、某品牌商品,按标价九折出售,仍可获得20%的利润.若该商品标价为28元,则商品的进价为__________.16、一个三位数的百位数字是1,若把百位数字移到个位,则新数比原数的2倍还多1,则原来的三位数是__________.17、某次数学测验共20道选择题,规则是:选对一道得5分,选错一道得-1分,不选得零分,王明同学的卷面成绩是:选对16道题,选错2道题,有2道题未做,他的得分是 .18、初一某班以6个同学为一组,一共分了n组.在捐书活动中,各组捐书的本数按一定规律增加,第1组捐了10本,第2组捐了13本,第3组捐了16本,…,第n组捐的本数比第1组的3倍还多1本,由此可知该班一共有学生人.三、解答题:19、解方程:5x﹣2.5x+3.5x=﹣18+6. 20、解方程:21、解方程:. 22、解方程:;23、将若干支铅笔分给几个同学,若每人5支还剩3支;若每人7支还差5支,问有多少学生,有多少铅笔?24、据某统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?25、如图,小红将一个正方形剪去一个宽为4cm的长条后,再从剩下的长方形纸片上沿平行短边的方向剪去一个宽为5cm的长条.若两次剪下的长条面积正好相等,那么每一长条的面积为多少?原正方形的面积为多少?26、有一些分别标有3、6、9、12…的卡片,后一张卡片上的数比前一张卡片上的数大3,小明拿到了相邻的3张卡片,且这些卡片上的数字之和是342,(1)小明拿到了哪三张卡片?(2)小明拿到相邻的3张卡片上的数字和能是95吗?27、某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,募得票款6950元,成人票每张8元,学生票每张5元,问成人票和学生票各卖了多少张?希望工程委员会决定把募捐款作为助学金发给山区的65名学生,其中每个初中生的助学金是150元,每个小学生的助学金为80元,问发给初中生和小学生各多少人?28、某商店先在甲地以每件15元的价格购进商品10件,后来又以每件12.5元的价格在乙地购进同样的商品40件,如果商店销售这些商品时,获得12%利润率,商品售价应定为多少元?29、为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段以达到节约用水的目的.该市规定了如下的用水标准:每户每月的用水不超过6m3时,水费按每立方米a元收费;超过6m3时,不超过部分每立方米仍按a元收费,超过部分每立方米按b元收费.该市居民张大爷一家今年3、4月份的用水量和水费如下表:设该户每月用水量为x(m3),应缴水费y(元).(1)求a、b的值,写出用水不超过6m3和超过6m3时,y与x之间的代数表达式;(2)若张大爷一家今年5月份的用水量为8m3,该户5月份应缴的水费是多少?参考答案1、D2、A3、C4、D5、B6、D.7、C8、A9、B10、A11、C12、B13、答案为:x+ 20=0.8×150;14、答案为:15,10;15、答案为:21元.16、答案为:125.17、答案为:78;18、答案为:48;19、解:合并得:6x=﹣12,解得:x=﹣2.20、解:,,,21、解:去分母得:3(x+2)﹣2(2x﹣3)=12,去括号得:3x+6﹣4x+6=12,移项合并同类项得:﹣x=0,系数化为1得:x=0.22、x=-9;23、有学生4人,铅笔23支;24、解:设严重缺水城市有x座,根据题意得:4x-50+2x+x=664解得,x=102答:严重缺水城市有102座.25、解:设原正方形的边长为xcm,列方程为:4x=5(x-4)解得x=204×20=80(cm2),20×20=400(cm2)答:每一长条的面积为80cm2,原正方形的面积为400cm2.26、解:(1)小明拿到了111,114,117;(2)X=95/3,小明不可能拿到这样的三张27、解:成人票650张,学生票350张,初中生有25人,小学生有40人28、解:设售价X元,X(10+40)=(15×10+12.5×40)(1+12%),X=14.5629、解:(1)3月份用水5m3不超过6m3,所以水费按每立方米a元收取,所以5a=7.5,所以a=1.5;4月份用水9m3,所以7.5+(9-6)·b=27,解得:b=6.5.不超过6m3时,y=1.5x;超过6m3时,y=7.5+6.5(x-6)(2)由(1)可得当x=8时,y=7.5+6.5(x-6)即y=7.5+6.5×2=20.5(元)2018年七上一元一次方程应用题一课后提升一、选择题:1、某班在一次美化校园的劳动中,先安排35人打扫卫生,15人拔草,后又增派10人去支援,结果打扫卫生的人数是拔草人数的2倍,若设支援打扫卫生的同学有x人,则下列方程正确的是( )A.35+x=2×10B.35+x=2×(15+10-x)C.35+x=2×(15-x)D.35+x=2×152、超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( )A.0.8x﹣10=90B.0.08x﹣10=90C.90﹣0.8x=10D.x﹣0.8x﹣10=903、小明和小刚从相距25千米的两地同时相向而行,3小时后两人相遇,小明的速度是4千米/小时,设小刚的速度为x千米/小时,列方程得( )A.4+3x=25B.12+x=25C.3(4+x)=25D.3(4﹣x)=254、甲厂有某种原料180吨,运出2x吨,乙厂有同样的原料120吨,运进x吨,现在甲厂原料比乙厂原料多30吨,根据题意列方程,则下列所列方程正确的是( )A.(180﹣2x)﹣(120+x)=30B.(180+2x)﹣(120﹣x)=30C.(180﹣2x)﹣(120﹣x)=30D.(180+2x)﹣(120+x)=305、某品牌商品按标价九折出售,仍可获得20%的利润.若该商品标价为28元,则商品的进价为( )A.21元B.19.8元C.22.4元D.25.2元6、学校组织了一次知识竞赛,共有25道题,每一道题答对得5分,答错或不答都扣3分,小明得了85分,那么他答对的题数是( )A.22B.20C.19D.187、学校组织一次有关世博的知识竞赛共有20道题,每小题答对得5分,答错或不答都倒扣1分,小明最终得76分,那么他答对的题数为( )A.14B.15C.16D.178、有一个班去划船,计划租若干条船,这时班长说,若再增加一条船,则每条船坐6人,若减少一条船,则每条船坐9人,这个班共有( )人.A.32B.36C.40D.489、如图所示,足球一半是由许多黑白相间的小皮块缝合而成的,黑块呈五边形,白快呈六边形,已知黑块有12块,则白块有( )块.A.32B.20C.12D.1010、一列长150m的火车,以15m/s的速度通过600m长的隧道,从火车进入隧道口算起,这列火车完全通过隧道所需时间是( )A.30秒B.40秒C.50秒D.60秒二、填空题:11、某次数学测验共20道选择题,规则是:选对一道得5分,选错一道得-1分,不选得零分,王明同学的卷面成绩是:选对16道题,选错2道题,有2道题未做,他的得分是.12、如图所示的日历中,任意圈出一竖列相邻的三个数,设中间的一个数为a,则这三个数之和为(用含a的代数式表示).13、某服装店同时以300元的价钱出售两件不同进价的衣服,其中一件赚了20%,而另一件亏损了20%,则这单买卖是________了(填“赚”或“亏”).14、王老师利用假期带领团员同学到农村搞社会调查,每张车票原价是50元,甲车车主说:“乘我的车可以8折(即原价的80%)优惠.”乙车车主说:“乘我的车可以9折(即原价的90%)优惠,老师不用买票.”王老师心里计算了一下,觉得无论坐谁的车,花费都一样.请问王老师一共带了多少名学生?如果设一共带了x名学生,那么可列方程为______________.15、某件工作甲独做9天完成,乙独做12天完成,甲、乙合做_____天后能完成总工作量的,若完成这些工作给报酬840元,则工作全部完成后甲、乙二人按工作量分别各得_____元和______元.16、王老师为帮助班级里家庭困难的x个孩子(x<10),购买了一批课外书,如果给每个家庭困难孩子发5本,那么剩下4本;如果给每个家庭困难的孩子发6本,那么最后一个孩子只能得到本.三、解答题:17、解方程:5(x-1)-2(3x-1)=4x-1 18、解方程:5(x+8)=6(2x﹣7)+5;19、解方程:. 20、解方程:=.21、甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
七年级数学上册第七章一元一次方程7.4一元一次方程的应用第6课时
第十二页,共二十一页。
练
习
1.将一个底面直径(zhíjìng)为10厘米,高为36厘米的“瘦长”形圆 柱锻压成底面直径是20厘米的“矮胖”形圆柱,高变成了多少?
锻压(duànyā)
等量关系:变形(biàn xíng)前的体积=变形后的体积
12/10/2021
第十三页,共二十一页。
等量关系: 锻压前的体积=锻压后的体积
解 设容器内放入金属圆柱后水的高度为x厘米(lí 。 mǐ) (1)如果容器内的水升高后不淹没放入的金属圆柱,
根据题意,得 π·(32-22)·x= π·32×15
解这个(zhè ge)方程,得x=27
因为27>28,这表明此时容器内的水已淹没了金属圆柱
(yuánzhù),不符合题意,应舍去。
12/10/2021
• 长方体的体积 = 长×宽×高
• 圆柱体的体积 = 底面积×高=π r2h
(这里r为底面圆的半径,h为圆柱体的高) 12/10/2021
第二页,共二十一页。
想一想: 请指出下列过程(guòchéng)中,哪些量发 生了变化,哪些量保持不变?
1、把一小杯水倒入另一只大杯中;
解:水的底面积、高度(gāodù)发生变化,水的 体积和质量都保持不变 2、用一块橡皮泥先做成一个立方体,再把它改 变成球。
小结(xiǎojié):说说列方程解应用题的一般步骤:
列一元一次方程解应用题的一般步骤:
1、分析题意,找出等量关系,分析题中数量及其关系,用 字母(例如x),表示问题里的未知数.
2、用代数式表示有关的量.
3、根据等量关系列出方程.
4、解方程,求出未知数的值.
5、检验求得的值是否正确和符合实际情形(qíng xing),并写出
2017-2018 历下区七年级(上)期末数学试卷(解析版)
2017-2018学年山东省济南市历下区七年级(上)期末数学试卷一、选择题(本大题共12个小题,每小题5分,共60分)1.﹣的倒数是()A.6 B.﹣6 C.D.﹣2.下列图形不是正方体展开图的是()A.B.C.D.3.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为()A.7.1×107B.0.71×10﹣6C.7.1×10﹣7D.71×10﹣84.下列计算正确的是()A.(3x)2=6x2B.x2+x3=x5C.(x2)3=x5D.x3÷x=x25.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查6.在直线m上顺次取A,B,C三点,使AB=10cm,BC=4cm,如果点O是线段AC的中点,则线段OB的长为()A.3cm B.7cm C.3cm或7cm D.5cm或2cm7.计算(x﹣y)3•(y﹣x)=()A.(x﹣y)4B.(y﹣x)4C.﹣(x﹣y)4D.(x+y)48.钟表上2时15分时,时针与分针的夹角为()A.15°B.30°C.22.5°D.45°9.天虹商场在国庆节期间开展促销活动,打出“1元人民币换2.5倍购物券”的促销活动,请问这次促销活动相当于打几折?()A.2.5折B.4折C.6折D.7.5折10.如图,A,B,C三人的位置在同一直线上,AB=5米,BC=10米,下列说法正确的是()A.C在A的北偏东30°方向的15米处B.A在C的北偏东60°方向的15米处C.C在B的北偏东60°方向的10米处D.B在A的北偏东30°方向的5米处11.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.12.将一列有理数﹣1,2,﹣3,4,﹣5,6,……,按如图所示有序排列,根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中D的位置是有理数(),2008应排在A、B、C、D、E中的()位置.其中两个填空依次为()A.29,C B.﹣29,D C.30,B D.﹣31,E二、填空题(本大题共6个小题,每小题4分,共24分)13.小明将一根木条固定在墙上只用了两个钉子,他这样做的依据是.14.已知单项式2x6y2m﹣1与3x3n y3的差仍为单项式,则m n的值为15.若(m﹣2)x|m|﹣1=6是一元一次方程,则m=16.如图,已知C,D是以AB为直径的半圆周上的两点,O是圆心,半径OA=2,∠COD=120°,则图中阴影部分的面积等于.17.已知m﹣n=2,mn=﹣1,则(1﹣2m)(1+2n)的值为.18.甲乙两车同时从A地出发,在相距900千米的AB两地间不断往返行驶,知甲车的速度是每小时25千米,乙车的速度是每小时20千米,则经过小时甲乙两车第二次迎面相遇三、简答题(本大题共8题,满分66分)19.(8分)计算:(1)(﹣)﹣(﹣)﹣+;(2)|﹣3|+(﹣1)3×(π﹣3.14)0﹣(﹣)﹣320.(8分)解方程:(1)3(x+4)=5﹣2(x﹣1);(2)=1﹣21.(9分)化简求值(1)化简:(a+2)2﹣(a+1)(a﹣1)(2)先化简再求值:x2﹣2(xy﹣y2)+3(xy﹣y2),其中x=﹣1,y=222.如图,点A、O、B在同一条直线上,∠COD=2∠COB,若∠COD=40°,求∠AOD的度数;23.如图已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB的中点,求DE的长.24.(10分)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E”组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.25.(10分)某商场出售的甲种商品每件售价80元,利润为30元;乙种商品每件进价40元,售价60元.(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小明第一天只购买甲种商品,实际付款360元,第二题只购买乙种商品实际付款432元,求小明这两天在该商场购买甲、乙两种商品一共多少件?26.(12分)如图,以直线AB上一点O为端点作射线OC,使∠BOC=70°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则∠COE=°;(2)如图②,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OC恰好平分∠BOE,求∠COD的度数;(3)如图③,将直角三角板DOE绕点O转动,如果OD始终在∠BOC的内部,试猜想∠BOD和∠COE有怎样的数量关系?并说明理由.四、附加题(本大题共2个题,每小题5分,共10分,得分不计入总分)27.(5分)如图,M、N、P、R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是(M、N、P、R中选).28.(5分)将一幅三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起,三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOC(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOC角度所有可能的值是.2017-2018学年山东省济南市历下区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣的倒数是()A.6 B.﹣6 C.D.﹣【分析】根据互为倒数的两个数的积等于1解答.【解答】解:∵(﹣)×(﹣6)=1,∴﹣的倒数是﹣6.故选:B.【点评】本题考查了倒数的定义,熟记概念是解题的关键.2.下列图形不是正方体展开图的是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:A、C、D经过折叠均能围成正方体,B•折叠后上边没有面,不能折成正方体.故选:B.【点评】解题时勿忘记四棱柱的特征及正方体展开图的各种情形.3.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为()A.7.1×107B.0.71×10﹣6C.7.1×10﹣7D.71×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:数字0.00000071用科学记数法表示为7.1×10﹣7,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.下列计算正确的是()A.(3x)2=6x2B.x2+x3=x5C.(x2)3=x5D.x3÷x=x2【分析】直接利用积的乘方运算法则以及幂的乘方运算法则和同底数幂的除法运算法则分别判断得出答案.【解答】解:A、(3x)2=9x2,故此选项错误;B、x2+x3,无法计算,故此选项错误;C、(x2)3=x6,故此选项错误;D、x3÷x=x2,正确.故选:D.【点评】此题主要考查了积的乘方运算以及幂的乘方运算和同底数幂的除法运算等知识,正确掌握运算法则是解题关键.5.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.在直线m上顺次取A,B,C三点,使AB=10cm,BC=4cm,如果点O是线段AC的中点,则线段OB 的长为()A.3cm B.7cm C.3cm或7cm D.5cm或2cm【分析】由已知条件可知,AC=10+4=14,又因为点O是线段AC的中点,可求得AO的值,最后根据题意结合图形,则OB=AB﹣AO可求.【解答】解:如图所示,AC=10+4=14cm,∵点O是线段AC的中点,∴AO=AC=7cm,∴OB=AB﹣AO=3cm.故选:A.【点评】首先注意根据题意正确画出图形,这里是顺次取A,B,C三点,所以不用考虑多种情况.能够根据中点的概念,熟练写出需要的表达式,还要结合图形进行线段的和差计算.7.计算(x﹣y)3•(y﹣x)=()A.(x﹣y)4B.(y﹣x)4C.﹣(x﹣y)4D.(x+y)4【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加计算.【解答】解:(x﹣y)3•(y﹣x)=﹣(x﹣y)3•(x﹣y)=﹣(x﹣y)3+1=﹣(x﹣y)4.故选:C.【点评】本题主要考查同底数幂的乘法的性质.解题时,要先转化为同底数的幂后,再相乘.8.钟表上2时15分时,时针与分针的夹角为()A.15°B.30°C.22.5°D.45°【分析】根据钟表上2时15分时,时针在2与3之间,分针在3上,可以得出分针与时针相隔个大格,每一大格之间的夹角为30°,可得出结果.【解答】解:∵钟表上从1到12一共有12格,每个大格30°,∴钟表上2时15分时,时针在2与3之间,分针在3上,∴时针与分针的夹角为×30°=22.5°.故选:C.【点评】此题主要考查了钟面角的有关知识,得出钟表上从1到12一共有12格,每个大格30°,是解决问题的关键.9.天虹商场在国庆节期间开展促销活动,打出“1元人民币换2.5倍购物券”的促销活动,请问这次促销活动相当于打几折?()A.2.5折B.4折C.6折D.7.5折【分析】设这次促销活动相当于打x折,根据“1元人民币换2.5倍购物券”列出方程并解答.【解答】解:设这次促销活动相当于打x折,依题意得:2.5•x=1,x=0.4,即打4折.故选:B.【点评】本题考查了一元一次方程的应用.解题的关键是读懂题意,找到等量关系,列出方程并解答.10.如图,A,B,C三人的位置在同一直线上,AB=5米,BC=10米,下列说法正确的是()A.C在A的北偏东30°方向的15米处B.A在C的北偏东60°方向的15米处C.C在B的北偏东60°方向的10米处D.B在A的北偏东30°方向的5米处【分析】根据方向角的定义进行判断,即可解答.【解答】解:A.因为C在A的北偏东60°方向的15米处,故本选项错误;B.因为A在C的南偏西60°方向的15米处,故本选项错误;C.C在B的北偏东60°方向的10米处,正确;D.因为B在A的北偏东60°方向的5米处,故本选项错误;故选:C.【点评】本题考查了方向角的定义,解决本题的关键是熟记方向角的定义.11.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x只羊,则下列方程正确的是()A.x+1=2(x﹣2) B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.【分析】根据甲的话可得乙羊数的关系式,根据乙的话得到等量关系即可.【解答】解:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x只羊,∴乙有+1只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴+1+1=x﹣1,即x+1=2(x﹣3)故选:C.【点评】考查列一元一次方程;得到乙的羊数的关系式是解决本题的难点.12.将一列有理数﹣1,2,﹣3,4,﹣5,6,……,按如图所示有序排列,根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中D的位置是有理数(),2008应排在A、B、C、D、E中的()位置.其中两个填空依次为()A.29,C B.﹣29,D C.30,B D.﹣31,E【分析】由题意可知:每个峰排列5个数,求出5个峰排列的数的个数,再求出,“峰6”中D位置的数的序数,然后根据排列的奇数为负数,偶数为正数解答;用(2008﹣1)除以5,根据商和余数的情况确定所在峰中的位置即可.【解答】解:∵每个峰需要5个数,∴5×5=25,25+1+3=29,∴“峰6”中D位置的数的是30,∵(2008﹣1)÷5=401…2,∴2008为“峰402”的第二个数,排在B的位置.故选:C.【点评】此题考查图形的变化规律,观察出每个峰有5个数是解题的关键,难点在于峰上的数的排列是从2开始.二、填空题(本大题共6个小题,每小题4分,共24分)13.小明将一根木条固定在墙上只用了两个钉子,他这样做的依据是两点确定一条直线.【分析】根据直线的性质:两点确定一条直线进行解答.【解答】解:将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为:两点确定一条直线.【点评】此题主要考查了直线的性质,是需要识记的内容.14.已知单项式2x6y2m﹣1与3x3n y3的差仍为单项式,则m n的值为4【分析】直接利用同类项的定义得出m,n的值,进而得出答案.【解答】解:∵单项式2x6y2m﹣1与3x3n y3的差仍为单项式,∴3n=6,2m﹣1=3,解得:n=2,m=2,则m n=4.故答案为:4.【点评】此题主要考查了同类项,正确得出m,n的值是解题关键.15.若(m﹣2)x|m|﹣1=6是一元一次方程,则m=﹣2【分析】直接利用一元一次方程的定义进而分析得出答案.【解答】解:∵(m﹣2)x|m|﹣1=6是一元一次方程,∴|m|﹣1=1,m﹣2≠0,解得:m=﹣2.故答案为:﹣2.【点评】此题主要考查了一元一次方程的定义,注意一次项系数不为零是解题关键.16.如图,已知C,D是以AB为直径的半圆周上的两点,O是圆心,半径OA=2,∠COD=120°,则图中阴影部分的面积等于π.【分析】图中阴影部分的面积=半圆的面积﹣圆心角是120°的扇形的面积,根据扇形面积的计算公式计算即可求解.【解答】解:图中阴影部分的面积=π×22﹣=2π﹣π=π.答:图中阴影部分的面积等于π.故答案为:π.【点评】本题考查了扇形面积的计算,求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.17.已知m﹣n=2,mn=﹣1,则(1﹣2m)(1+2n)的值为1.【分析】直接利用多项式乘法去括号,进而把已知代入求出答案.【解答】解:∵m﹣n=2,mn=﹣1,∴(1﹣2m)(1+2n)=1﹣2(m﹣n)﹣4mn=1﹣2×2﹣4×(﹣1)=1.故答案为:1.【点评】此题主要考查了多项式乘以多项式,正确掌握运算法则是解题关键.18.甲乙两车同时从A地出发,在相距900千米的AB两地间不断往返行驶,知甲车的速度是每小时25千米,乙车的速度是每小时20千米,则经过80小时甲乙两车第二次迎面相遇【分析】可设经过x小时甲乙两车第二次迎面相遇,根据等量关系:甲车的路程+乙车的路程=900×4千米,列出方程求解即可.【解答】解:设经过x小时甲乙两车第二次迎面相遇,依题意有(25+20)x=900×4,解得x=80.答:经过80小时甲乙两车第二次迎面相遇.故答案为:80.【点评】考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.三、简答题(本大题共8题,满分66分)19.(8分)计算:(1)(﹣)﹣(﹣)﹣+;(2)|﹣3|+(﹣1)3×(π﹣3.14)0﹣(﹣)﹣3【分析】(1)先算同分母分数,再相加即可求解;(2)本题涉及零指数幂、负整数指数幂、立方、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(1)(﹣)﹣(﹣)﹣+;=(﹣﹣)+(+)=﹣1+2=1;(2)|﹣3|+(﹣1)3×(π﹣3.14)0﹣(﹣)﹣3=3﹣1×1+8=3﹣1+8=10.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、负整数指数幂、立方、绝对值等考点的运算.20.(8分)解方程:(1)3(x+4)=5﹣2(x﹣1);(2)=1﹣【分析】(1)根据解一元一次方程的基本步骤依次去括号、移项、合并同类项、系数化为1可得;(2)根据解一元一次方程的基本步骤依次去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)去括号,得:3x+12=5﹣2x+2,移项,得:3x+2x=5+2﹣12,合并同类项,得:5x=﹣5,系数化为1,得:x=﹣1;(2)去分母,得:2(y+3)=12﹣3(3﹣2y),去括号,得:2y+6=12﹣9+6y,移项,得:2y﹣6y=12﹣9﹣6,合并同类项,得:﹣4y=﹣3,系数化为1,得:y=.【点评】本题主要考查解一元一次方程,解题的关键是熟练掌握等式的基本性质和解一元一次方程的基本步骤.21.(9分)化简求值(1)化简:(a+2)2﹣(a+1)(a﹣1)(2)先化简再求值:x2﹣2(xy﹣y2)+3(xy﹣y2),其中x=﹣1,y=2【分析】(1)先依据完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(2)先去括号、合并同类项化简原式,再将x、y的值代入计算可得.【解答】解:(1)原式=a2+4a+4﹣(a2﹣1)=a2+4a+4﹣a2+1=4a+5;(2)原式=x2﹣2xy+2y2+2xy﹣3y2=x2﹣y2,当x=﹣1、y=2时,原式=(﹣1)2﹣22=1﹣4=﹣3.【点评】本题主要考查整式的混合运算﹣化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则.22.如图,点A、O、B在同一条直线上,∠COD=2∠COB,若∠COD=40°,求∠AOD的度数;【分析】根据已知∠COD=2∠COB,∠COD=40°求出∠BOC度数,代入∠AOD=180°﹣∠BOC﹣∠COD求出即可.【解答】解:∵∠COD=2∠COB,∠COD=40°,∴∠BOC=20°,∴∠AOD=180°﹣∠BOC﹣∠COD=180°﹣20°﹣40°=120°.【点评】本题考查了角的有关计算,关键是求出∠BOC度数和得出∠AOD=180°﹣∠BOC﹣∠COD.23.如图已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB的中点,求DE的长.【分析】求DE的长度,即求出AD和AE的长度.因为D、E分别为AC、AB的中点,故DE=,又AC=12cm,CB=AC,可求出CB,即可求出CB,代入上述代数式,即可求出DE的长度.【解答】解:根据题意,AC=12cm,CB=AC,所以CB=8cm,所以AB=AC+CB=20cm,又D、E分别为AC、AB的中点,所以DE=AE﹣AD=(AB﹣AC)=4cm.即DE=4cm.故答案为4cm.【点评】此题要求学生灵活运用线段的和、差、倍、分之间的数量关系,熟练掌握.24.(10分)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E”组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.【分析】(1)根据第二组频数为21,所占百分比为21%,求出数据总数,再用数据总数减去其余各组频数得到第四组频数,进而补全频数分布直方图;(2)用第三组频数除以数据总数,再乘以100,得到m的值;先求出“E”组所占百分比,再乘以360°即可求出对应的圆心角度数;(3)用3000乘以每周课外阅读时间不小于6小时的学生所占百分比即可.【解答】解:(1)数据总数为:21÷21%=100,第四组频数为:100﹣10﹣21﹣40﹣4=25,频数分布直方图补充如下:(2)m=40÷100×100=40;“E”组对应的圆心角度数为:360°×=14.4°;(3)3000×(25%+)=870(人).即估计该校3000名学生中每周的课外阅读时间不小于6小时的人数是870人.【点评】此题主要考查了频数分布直方图、扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了利用样本估计总体.25.(10分)某商场出售的甲种商品每件售价80元,利润为30元;乙种商品每件进价40元,售价60元.(1)甲种商品每件进价为 50 元,每件乙种商品利润率为 50% .(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件? (3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小明第一天只购买甲种商品,实际付款360元,第二题只购买乙种商品实际付款432元,求小明这两天在该商场购买甲、乙两种商品一共多少件?【分析】(1)根据商品利润率=,可求每件甲种商品利润率,乙种商品每件进价; (2)首先设出购进甲商品的件数,然后根据“同时购进甲、乙两种商品共50件”表示出购进乙商品的件数;然后根据“恰好用去2100元”列方程求出未知数的值,即可得解;(3)第一天的总价为360元,享受了9折,先算出原价,然后除以单价,得出甲种商品的数量;第二天的也可能享受了9折,也可能享受了8折.应先算出原价,然后除以单价,得出乙种商品的数量.【解答】解:(1)(80﹣30)=50(元)(60﹣40)÷40=50%.故答案为:50,50%;(2)设该商场购进甲种商品x 件,根据题意可得:50x +40(50﹣x )=2100,解得:x=10;乙种商品:50﹣10=40(件).答:该商场购进甲种商品10件,乙种商品40件.(3)根据题意得,第一天只购买甲种商品,享受了9折优惠条件,∴360÷0.9÷80=5件第二天只购买乙种商品有以下两种情况:情况一:购买乙种商品打九折,432÷90%÷60=8件;情况二:购买乙种商品打八折,432÷80%÷60=9件.一共可购买甲、乙两种商品5+8=13件或5+9=14件.答:小聪这两天在该商场购买甲、乙两种商品一共13或14件.【点评】考查了一元一次方程的应用,解题的关键是理解题意,学会构建方程解决问题,属于中考常考题型.26.(12分)如图,以直线AB上一点O为端点作射线OC,使∠BOC=70°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则∠COE=20°;(2)如图②,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OC恰好平分∠BOE,求∠COD 的度数;(3)如图③,将直角三角板DOE绕点O转动,如果OD始终在∠BOC的内部,试猜想∠BOD和∠COE 有怎样的数量关系?并说明理由.【分析】(1)根据图形得出∠COE=∠DOE﹣∠BOC,代入求出即可;(2)根据角平分线定义求出∠EOB=2∠BOC=140°,代入∠BOD=∠BOE﹣∠DOE,求出∠BOD,代入∠COD=∠BOC﹣∠BOD求出即可;(3)根据图形得出∠BOD+∠COD=∠BOC=70°,∠COE+∠COD=∠DOE=90°,相减即可求出答案.【解答】解:(1)如图①,∠COE=∠DOE﹣∠BOC=90°﹣70°=20°,故答案为:20;(2)如图②,∵OC平分∠EOB,∠BOC=70°,∴∠EOB=2∠BOC=140°,∵∠DOE=90°,∴∠BOD=∠BOE﹣∠DOE=50°,∵∠BOC=70°,∴∠COD=∠BOC﹣∠BOD=20°;(3)∠COE﹣∠BOD=20°,理由是:如图③,∵∠BOD+∠COD=∠BOC=70°,∠COE+∠COD=∠DOE=90°,∴(∠COE+∠COD)﹣(∠BOD+∠COD)=∠COE+∠COD﹣∠BOD﹣∠COD=∠COE﹣∠BOD=90°﹣70°=20°,即∠COE﹣∠BOD=20°.【点评】本题考查了度、分、秒之间的换算,角的计算的应用,能根据图形求出各个角的度数是解此题的关键.四、附加题(本大题共3个题,第1、2题3分,第3题4分,得分不计入总分)27.(3分)如图,M、N、P、R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是M或R(M、N、P、R中选).【分析】根据数轴判断出a、b之间的距离小于3,然后根据绝对值的性质解答即可.【解答】解:∵MN=NP=PR=1,∴a、b之间的距离小于3,∵|a|+|b|=3,∴原点不在a、b之间,∴原点是M或R.故答案为:M或R.【点评】本题考查了数轴,准确识图,判断出a、b之间的距离小于3是解题的关键.28.(3分)将一幅三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起,三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOC (0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOC角度所有可能的值是120°、135°、165°、30°.【分析】分别利用OD⊥AB、CD⊥OB、CD⊥AB、OC⊥AB分别求出即可.【解答】解:当OD⊥AB时,∠AOC=30°+90°=120°,当CD⊥OB时,∠AOC=90°+45°=135°,当CD⊥AB时,∠AOC=90°+75°=165°,当OC⊥AB时,∠AOC=30°,即∠AOC角度所有可能的值为:120°、135°、165°、30°.故答案为120°、135°、165°、30°.【点评】本题考查了旋转的性质,互补、互余的定义等知识,解决本题的关键是理解重叠的部分实质是两个角的重叠以及分类讨论思想.29.已知:x+=3,求x4+的值.【分析】根据x+=3,通过变形可以求得所求式子的值.【解答】解:∵x+=3,∴=9,∴=7,∴=49,∴x4+=47.【点评】本题考查分式的混合运算、完全平方公式,解答本题的关键是明确题意,求出所求式子的值.。
七年级(上册)数学课后答案解析
七年级上册第一章1.1具有相反意义的量
1.2数轴相反数与绝对值
1.3有理数大小的比较
1.4.1有理数的加法
1.4.2有理数的减法
1.5有理数的乘法和除法
1.6有理数的乘方
1.7有理数的混合运算
第一章复习题
第二章2.1用字母表示
2.2列代数式
2.3代数式的值
2.4整式
2.5整式的加法和减法
第二章复习题
第三章3.1建立一元一次方程模型
3.2等式的性质
3.2一元一次方程的解法
3.4一元一次方程模型的应用
第三章复习题
第四章4.1几何图形
4.2线段射线直线
4.3.1角与角的大小
4.3.2角的度量与计算
第五章复习题
5.1数据的收集与抽样
5.2统计图
第六章复习题。
3.3解一元一次方程(二)第2课时去分母(导学案)七年级数学上册(人教版)
3.3 解一元一次方程(二)第2课时去分母导学案1. 掌握含有分数系数的一元一次方程的解法.2. 熟练利用解一元一次方程的步骤解各种类型的方程.★知识点1:去分母解一元一次方程通过去分母使方程的系数化为整数,减少分数参与计算,降低计算的难度,另外把握去分母的理论依据是等式的性质2,两边同乘以的数应为所有分母的最小公倍数.注意:①去分母时要注意分数线的括号作用;②去分母时不要漏乘不含分母的项.★知识点2:解一元一次方程的一般步骤去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a转化.1. 解一元一次方程的过程中,去分母的具体做法是:,依据是.2. 解一元一次方程的一般步骤是:①,②,③,④,⑤.英国伦敦博物馆保存着一部极其珍贵的文物——纸草书,这是古代埃及人用象形文字写在一种特殊的草上的著作,它于公元前1700年左右写成,至今已有三千七百多年.草片文书中记载了许多有关数学的问题,其中有如下一道著名的求未知数的问题.问题1:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,这个数是多少?追问1:题中涉及哪些相等关系?追问2:应怎样设未知数?如何根据相等关系列出方程?问题2:这个方程与前面学过的一元一次方程有什么不同?怎样解这个方程呢?问题3:不同的解法各有什么特点?通过比较你认为采用什么方法比较简便?追问1:怎样去分母呢?追问2:去分母的依据是什么?问题4:解方程:31322322105x x x+-+-=-.追问1:解含分数系数的一元一次方程的步骤包括哪些?追问2:以x为未知数的方程逐步向着x=a的形式转化的主要依据是什么?例1:解下列方程:(1)121224x x+--=+;(2)1213323x xx--+=-.解下列方程:(1)121163x x-+-=;(2)490.30.250.32x x x++--=.1. 方程5717324x x++-=-去分母正确的是( )A. 3-2(5x+7) = -(x+17)B. 12-2(5x+7) = -x+17C. 12-2(5x+7) = -(x+17)D. 12-10x+14 = -(x+17)2. 若代数式12x-与65的值互为倒数,则x= .3. 解下列方程:(1)334515x x-+=-;(2)5415523412y y y+--+=-.4. 某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.该单位参加旅游的职工有多少人?5. 有一人问老师,他所教的班级有多少学生,老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还剩六位学生正在操场踢足球.”你知道这个班有多少学生吗?“坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经历的道路. 上帝给予的童年占六分之一. 又过十二分之一,两颊长胡. 再过七分之一,点燃结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途.”1.(2022•黔西南州)小明解方程12123x x+--=的步骤如下:解:方程两边同乘6,得3(x+1)-1=2(x-2)①去括号,得3x+3-1=2x-2②移项,得3x-2x=-2-3+1③以上解题步骤中,开始出错的一步是()A.①B.②C.③D.④2. (4分)(2020•重庆A卷7/26)解一元一次方程11(1)123x x+=-时,去分母正确的是()A.3(x+1)=1-2x B.2(x+1)=1-3xC.2(x+1)=6-3x D.3(x+1)=6-2x(1)本节课学习了哪些主要内容?(2)去分母的依据是什么?去分母的作用是什么?(3)用去分母解一元一次方程时应该注意什么?(4)去分母时,方程两边所乘的数是怎样确定的?【参考答案】1. 方程各项都乘所有分母的最小公倍数;等式的性质2;2. 去分母;去括号;移项;合并同类项;系数化为1.例1:解:(1)去分母(方程两边乘4),得2(x+1) -4 = 8+ (2 -x). 去括号,得2x+2 -4 = 8+2 -x.移项,得2x+x= 8+2 -2+4.合并同类项,得3x = 12.系数化为1,得x = 4.(2)去分母(方程两边乘6),得18x+3(x-1) =18-2 (2x-1).去括号,得18x+3x-3 =18-4x +2.移项,得18x+3x+4x =18 +2+3.合并同类项,得25x = 23.系数化为1,得2325x=.解:(1)去分母(方程两边乘6),得(x-1) -2(2x+1) = 6. 去括号,得x-1-4x-2 = 6.移项,得x-4x = 6+2+1.系数化为1,得 x = -3.(2)整理方程,得49325532x x x ++--=, 去分母(方程两边乘30),得 6 (4x +9) -10(3+2x ) = 15(x -5). 去括号,得 24x+54-30-20x = 15x -75.移项,得 24x -20x -15x =-75-54+30 .合并同类项,得 -11x = -99.系数化为1,得 x = 9.1. C ;2. 83; 3. (1)56x =;(2)47y =. 4. 解:设该单位参加旅游的职工有x 人,由题意得方程: 4014050x x +-=, 解得x =360.答:该单位参加旅游的职工有360人.5. 解:这个班有x 名学生,依题意得6247x x x x +++=, 解得x =56.答:这个班有56个学生.解:设丢番图活了x 岁,据题意得5461272x x x x x +++++=, 解得x =84.答:丢番图活了84岁.1.【解答】解:方程两边同乘6应为:3(x +1)-6=2(x -2), 所以出错的步骤为:①,故选:A .2. 【解答】解:方程两边都乘以6,得:3(x+1)=6-2x,故选:D.。
七年级数学上册一元一次方程重点
七年级数学上册一元一次方程重点
一元一次方程是初中数学的重要内容,也是解方程的基础。
下面是七年级数学上册中关于一元一次方程的重点内容:
1. 方程的概念:方程是用等号连接的含有未知数的代数式。
一元一次方程指只含有一个未知数,并且该未知数的最高次数为1的方程。
2. 解一元一次方程的基本方法:通过逆运算的方式将方程变形,使得未知数单独出现在等号的一边,从而求得未知数的值。
3. 消元法:当方程中存在多个未知数时,可以利用加减消元和倍加倍减消元的方法,将方程化简为只含有一个未知数的一元一次方程,然后进行解方程。
4. 方程的解的判定:解方程时需要注意方程是否有解,以及解的唯一性。
如果一个方程没有解,我们称其为无解方程;如果一个方程有无限多个解,我们称其为恒等方程;如果一个方程只有一个解,我们称其为一般方程。
5. 方程的应用:一元一次方程在实际生活中有很多应用,例如物品的定价、速度与时间之间的关系等。
通过解方程可以求解这些实际问
题。
2017-2018学年湖北省武汉市黄陂区七年级(上)期末数学试卷(解析版)
2017-2018学年湖北省武汉市黄陂区七年级(上)数学期末试卷一、选择题(本大题共10小题,共30.0分)1.一个物体向右移动1m记作+1m,那么这个物体向左移动3m记作()A. B. C. D.2.如图,数轴上有A,B,C,D四个点,其中所对应的数互为相反数的是()A. A与CB. A与DC. B与CD. B与D3.单项式-2x3y的系数为()A. B. 1 C. 2 D. 34.下列各式错误的是()A. B. C. D.5.如图所示,这个圆锥的侧面展开图可能是()A.B.C.D.6.已知a=b,下列变形不一定成立的是()A. B. C. D.7.买两种布料共120米,花了540元.其中蓝布料每米3元,黑布料每米5元,设买了蓝布料x米,依题意列方程()A. B.C. D.8.如图,将三角形纸片ABC沿EF折叠,点C落在C′处.若∠BFE=65°,则∠BFC′的度数为()A.B.C.D.9.如图,取一条长度为1的线段,将它三等分,去掉中间一段,余下两条线段,达到第1阶段;将剩下的两条线段再分别三等分,各去掉中间一段,余下四条线段,达到第2阶段;再将剩下四条线段分别三等分,各去掉中间一段,余下八条线段,达到第3阶段;…;这样一直继续操作下去,当达到第2017个阶段时,余下的线段的长度之和为()A. B. C. D.10.下列结论:①平面内3条直线两两相交,共有3个交点;②在平面内,若∠AOB=40°,∠AOC=∠BOC,则∠AOC的度数为20°;⑨若线段AB=3,BC=2,则线段AC的长为1或5;④若∠α+∠β=180°,且∠α<∠β,则∠α的余角为(∠β-∠α).其中正确结论的个数有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)11.-的倒数是______.12.将一副三角板如图放置,则∠ABD的度数为______°.13.多项式3a2b-2ab+5是______次______项式,其中常数项为______.14.某货轮O在航行过程中,发现灯塔A在它的南偏东55°方向上,同时在它的北偏东40°方向发现了一座海岛B,则∠AOB的度数为______°.15.某商品按成本增加20%定出价格,由于库存积压,现将该商品按定价九折出售,那么出售该商品最终是______(填“盈利”或“亏损”),利润率或亏损率为______.16.如图,数轴上A,B两点之间的距离AB=16,有一根木棒PQ沿数轴向左水平移动,当点Q移动到点B时,点P所对应的数为6,当点Q移动到线段AB的中点时,点P所对应的数为______.三、计算题(本大题共3小题,共30.0分)17.先化简,再求值:3ab2+2(ab2-a3b)-3(2ab2-a3b),其中a=-2,b=.18.(1)观察积分榜,请直接写出球队胜一场积______分,负一场积______分;(2)根据积分规则,请求出E队已经进行了的11场比赛中胜、负各多少场?(3)若此次篮球比赛共16轮(每个球队各有16场比赛),D队希望最终积分达到28分,你认为有可能实现吗?请说明理由.19.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度、每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接写出a=______,b=______;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动;同时点N 从原点O出发沿数轴向左运动,运动时间为t,点P为线段ON的中点.若MP=MA,求t 的值;(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t.当以M,N,O,A为端点的所有线段的长度和为109时,求此时点M对应的数.四、解答题(本大题共5小题,共42.0分)20.计算.(1)80°-53°17′;(2)(3-5)×4+(-6)2÷921.解方程(1)2(x+3)=5x:(2)1-.22.某车间每天能制作甲种零件50只,或制作乙种零件25只,甲、乙两种零件各一只配成一套产品.现要使60天内制作的产品成套.则甲、乙两种零件各应安排制作多少天?23.如图,延长线段AB到点C,使BC=AB,点D为AC的中点.(1)若AB=8,请补齐图形并求线段BD的长;(2)若F为BC的三等分点,则的值为______(直接写出结果)24.如图,∠AOB=α,∠COD=β,且90°<α<180°,0°<β<90°.(1)如图1,已知α=128°.①若OD平分∠BOC,∠AOC与∠BOD互为余角,求∠AOC的度数;②若β=30°,分别作∠AOC和∠BOD平分线OP,OQ.求∠POQ的度数;(2)如图2,若α+β=160°,∠COD在平面内绕点O旋转,分别作∠AOC和∠BOD平分线OP,OQ,则∠POQ的度数为______°(直接写出结果).答案和解析1.【答案】D【解析】解:一个物体向右移动1m记作+1m,那么这个物体向左移动3m记作-3m,故选:D.根据正数和负数表示相反意义的量,向右移动记为正,可得向左移动的表示方法.本题考查了正数和负数,相反意义的量用正数和负数表示.2.【答案】B【解析】解:A=-2,-1<B<0,C=1,D=2,所以所对应的数互为相反数的是A和D,故选:B.根据数轴和相反数的概念解答即可.本题考查了数轴,学会根据点在数轴上的位置来判断数的大小与正负.3.【答案】A【解析】解:单项式-2x3y的系数为:-2.故选:A.利用单项式中的数字因数叫做单项式的系数,进而得出答案.此题主要考查了单项式,正确把握单项式的系数确定方法是解题关键.4.【答案】C【解析】解:A、-(-3)=3,正确;B、|2|=|-2|,正确;C、0<|-1|,错误;D、-2>-3,正确;故选:C.根据正数大于零,零大于负数和绝对值、相反数的概念可得答案.本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.5.【答案】B【解析】解:观察图形可知,这个圆锥的侧面展开图可能是.故选:B.根据圆锥的侧面展开图是扇形,结合选项即可求解.本题考查了立体图形的侧面展开图.熟记常见立体图形的侧面展开图的特征是解决此类问题的关键.6.【答案】D【解析】解:由等式a=b,可得:a-n=b-n,an=bn,a2=b2,但b=0时,无意义,故选:D.分别利用等式的基本性质判断得出即可.此题主要考查了等式的基本性质,熟练掌握性质1、等式两边加同一个数(或整式)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数(或整式),结果仍得等式是解题关键.7.【答案】A【解析】解:设蓝布料x米,则黑布料(120-x)m,根据题意可得:3x+5(120-x)=540,故选:A.首先设蓝布料x米,则黑布料(120-x)m,进而利用买两种布料共120m,花了540元得出等式求出即可.此题主要考查了一元一次方程的应用,得出正确的等量关系是解题关键.8.【答案】B【解析】解:设∠BFC′的度数为α,则∠EFC'=65°+α,由折叠可得,∠EFC=∠EFC'=65°+α,又∵∠BFC=180°,∴∠EFB+∠EFC=180°,∴65°+65°+α=180°,∴α=50°,∴∠BFC′的度数为50°,故选:B.设∠BFC′的度数为α,则∠EFC=∠EFC'=65°+α,依据∠EFB+∠EFC=180°,即可得到α的大小.本题考查了三角形内角和定理以及折叠的性质,解题时注意:折叠前后两图形全等,即对应角相等,对应线段相等.9.【答案】C【解析】解:根据题意知:第一阶段时,余下的线段的长度之和为,第二阶段时,余下的线段的长度之和为×=()2,第三阶段时,余下的线段的长度之和为××=()3,…以此类推,第五个阶段时,余下的线段的长度之和为()5,当达到第n个阶段时(n为正整数),余下的线段的长度之和为()n.∴达到第2017个阶段时,余下的线段的长度之和为()2017,故选:C.根据题意可知:当第一阶段时,余下线段之和为,当第二阶段时,余下线段之和为:=()2,当第三阶段时,余下线段之和为:=()3,于是得到结论.此题考查图形的变化规律,找出图形之间的联系,得出规律,解决问题.10.【答案】A【解析】解:①平面内3条直线两两相交,有1个或3个交点;故错误;②在平面内,若∠AOB=40°,∠AOC=∠BOC,则∠AOC的度数为20°或160°;故错误;③若线段AB=3,BC=2,则线段AC的长为1或5;点C不一定在直线AB上,故错误;④若∠α+∠β=180°,且∠α<∠β,则∠α的余角为(∠β-∠α),故正确.故选:A.根据线段的和差,相交线的定义,角平分线的定义,余角和补角的定义进行判断找到正确的答案即可.本题考查了基本的几何定义,比较简单,属于基础题.11.【答案】-2【解析】解:-的倒数是-2.故答案为:-2.乘积是1的两数互为倒数.本题主要考查的是倒数的定义,熟练掌握倒数的概念是解题的关键.12.【答案】15【解析】解:∠ABD=∠CBD-∠ABC=45°-30°=15°.故答案为:15.根据角的和差关系即可求解.考查了角的计算,关键是熟记三角板上面的度数.13.【答案】三三 5【解析】解:因为多项式的最高次项是3a2b,由三个单项式的和组成,所以多项式3a2b-2ab+5是三次三项式,其中常数项是-5.故答案是:三,三,5.根据多项式次数和项数以及常数项的定义求解.此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.常数项是不含字母的项.14.【答案】85【解析】解:∠AOB=180°-60°-35°=85°.故答案是:85.首先根据方向角的定义作出图形,根据图形即可求解.本题考查了方向角的定义,正确理解方向角的定义,理解A、B、O的相对位置是关键.15.【答案】盈利8%【解析】解:设成本为a元,根据题意可得:(1+20%)a•90%-a=0.08a,即出售该商品最终是盈利,利润率为8%.故答案是:盈利,8%.设成本为a元,按成本增加20%定出价格,求出定价,再根据按定价的90%出售,求出售价,最后根据售价-进价=利润,列式计算即可.本题考查了一元一次方程的应用,解题的关键是理清数量之间的关系,求出每件商品的售价.16.【答案】-2【解析】解:设AB的中点为C,则AC=BC=8,∵当点Q移动到点B时,点P所对应的数为6,∴此时AP=10,当点Q移动到线段AB的中点C时,BQ=AQ=8,∴点P所对应的数为6-8=-2,故答案为:-2.设AB的中点为C,则AC=BC=8,求得AP=10,当点Q移动到线段AB的中点C时,BQ=AQ=8,根据两点间的距离的求法即可得到结论.本题考查了数轴,正确理解两点间的距离是解题的关键.17.【答案】解:原式=3ab2+2ab2-2a3b-6ab2+3a3b=-ab2+a3b,当,时,原式==.【解析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.18.【答案】2 1【解析】解:(1)2,1(2)设胜x场,则负(11-x)场依题意列方程2x+(11-x)=13解得x=2,则负场为 11-2=9(场)答:E对11场比赛胜2场,负9场(3)不可能实现,理由如下:设接下来的5场比赛胜x场,则负(5-x)场依题意列方程:2x+(5-x)=28-17x=6>5,不符合题意故不可能实现本题是典型的比赛积分问题.清楚积分的组成部分及胜负积分的规则是本题的关键.本类题型清楚积分的组成部分及胜负积分的规则及各个量之间的关系,并与一元一次方程相结合即可解该类题型.总积分等于胜场积分与负场的和.19.【答案】5 6【解析】解:(1)∵|a-5|+(b-6)2=0.∴a-5=0,b-6=0∴a=5,b=6故答案为5,6.(2)①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,即3t+10-5t=5t,解得t=②点M到达O返回时当(2<t≤4时),OM=5t-10,AM=20-5t,即3t+5t-10=20-5t,解得t=③点M到达O返回时,即t>4时,不成立(3)①依题意,当M在OA之间时,NO+OM+AM+MN+OA+AN=6t+20+11t+10+6t=109,解得t=>2,不符合题意,舍去;②当M在A右侧时,NO+OA+AM+AN+OM+MN=6t+5t+11t+10+6t+5t=109,解得 t=3,点M对应的数为15答:此时点M对应的数为15.本题涉及数轴即路程为题,清楚各个点之间距离的表示方式是解题的关键.另外要注意路程相等的几种情况.本题考查学生对数轴相关知识的掌握情况及利用一元一次解决实际问题的能力.20.【答案】解:(1)原式=79°60'-53°17'=26°43';(2)原式=-2×4+36÷9=-8+4=-4.【解析】(1)根据度分秒的计算解答即可;(2)根据有理数的混合计算解答.此题考查度分秒的换算,关键是根据度分秒的和、差计算即可.21.【答案】解:(1)2(x+3)=5x,去括号,得:2x+6=5x,移项合并同类项,得3x=6,化系数为1,得x=2;(2)1-,去分母,得10-x=4x+8,移项合并同类项,得5x=2,化系数为1,得.【解析】(1)去括号、移项、合并同类项、系数化为1,依此即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.考查了解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.22.【答案】解:设安排甲制作x天,则安排乙制作(60-x)天,依题意列方程:50x=25(60-x)解得x=20,则安排乙制作 60-20=40(天)答:安排甲制作20天,则安排乙制作40天.【解析】可设甲种零件应制作x天,则乙种零件应制作(60-x)天,本题的等量关系为:甲、乙两种零件各一只配成一套产品.由此可得出方程求解.考查了一元一次方程的应用,解题关键是弄清题意,合适的等量关系,列出方程.本题要注意关键语“甲、乙两种零件各一只配成一套产品”得出等量关系,从而求出解.23.【答案】或【解析】解:(1)补图如图,∵BC=AB,AB=8,∴BC=4,∴AC=AB+BC=12,∵点D为AC的中点,∴DC=AC=6,∴BD=DC-BC=6-4=2.(2)由(1)知AD=DC=6,分两种情况讨论:①点F靠点B近,BF=,=;②点F靠点B近,BF=,=.故答案为:或.(1)先根据已知条件求出BC,再求出AC,由线段中点的定义求出DC,最后由BD=DC-BC求得答案;(2)由(1)知AD=DC=6,因为F为BC的三等分点,但是没有说明点F靠点B近,还是靠点C近,所以需要分两种情况讨论:①点F靠点B近,BF=;②点F靠点B近,BF=.本题主要考查的是两点间的距离,掌握图形间线段之间的和差关系是解题的关键.24.【答案】100或80【解析】解:(1)①∵OD平分∠BOC,∠AOC+∠BOD=90°,∴∠BOD=∠COD=β,∴∠AOB=∠AOD+∠BOD=90°+β=128°,即β=38°,∴∠AOC=90°-β=52°;②∵OP平分∠AOC,OQ平分∠BOD,∴∠AOP=∠AOC,∠BOQ=∠BOD,∴∠POQ=∠AOC+∠BOD+∠COD=(∠AOC+∠BOD+∠COD )+∠COD=∠AOB+15°=64°+15°=79°;(2)如图1,∵OP,OQ分别是∠AOC和∠BOD平分线,∴∠COP=∠AOC,∠DOQ=∠BOD,∴∠COP+∠DOQ=(∠AOC+∠BOD)=(∠AOB-∠COD)=(α-β),∴∠POQ=∠COP+∠DOQ+∠COD=(α-β)+β=(α+β)=80°;如图2,∵∠AOD=∠AOB+∠COD-∠BOC=α+β-∠BOC,∵OP,OQ分别是∠AOC和∠BOD平分线,∴∠COP=∠AOC,∠BOQ=∠BOD,∴∠POQ=∠COP+∠BOQ+∠BOC=(∠AOB-∠COD)+∠BOC=100°,故答案为:80°或100°.(1)①根据角平分线的定义可以求得∠BOD=∠COD=β,可得∠AOB=∠AOD+∠BOD=90°+β=128°,求得β=38°,从而得到∠AOC的度数;②根据角平分线的定义得到∠AOP=∠AOC,∠BOQ=∠BOD,可得∠POQ=∠AOC+∠BOD+∠COD=(∠AOC+∠BOD+∠COD )+∠COD,从而得到∠POQ的度数;(2)分两种情况进行讨论,本题考查了角平分线定义,熟练掌握角平分线的定义是解题的关键.。
七年级数学上册第三章一元一次方程3.1.1一元一次方程(图文详解)
为x元,则依题意可列出下列哪一个一元一次方程式( )
(A)15(2x20)=900
(B)15x202=900
(C)15(x202)=900 (D)15x220=900
【解析】选C.每份礼物的价格是(x+202)元,15份礼
物的价格是15(x202)元.
人教版七年级数学上册第三章一元一次方程
人教版七年级数学上册第三章一元一次方程
七年级上册数学
第三章一元一次方程
人教版七年级数学上册第三章一元一次方程
第三章 一元一次方程
3.1 从算式到方程
3.1.1 一元一次方程
人教版七年级数学上册第三章一元一次方程
1.了解什么是方程、一元一次方程、方程的解. 2.体会字母表示数的好处、画示意图有利于分析问题、找 相等关系是列方程的重要一步、从算式到方程(从算式到 代数)是数学的一大进步. 3.会将实际问题抽象为数学问题,通过列方程解决问题.
4.已知数x-5与2x-4的值互为相反数,列出关于x的方程. 解:由题意得:(x-5)+(2x-4)=0.
人教版七年级数学上册第三章一元一次方程
1.方程、方程的解、一元一次方程的概念. 2.根据实际问题中的等量关系,用一元一次方程表示问 题中的数量关系. 注:分析实际问题中的数量关系,利用其中的相等关系 列出方程,是用数学解决实际问题的一种方法.
人教版七年级数学上册第三章一元一次方程
一般地,要检验某个值是不是方程的解,可以用这个 值代替未知数代入方程,看方程左右两边的值是否相等.
任取x的值 代入 不成立
1 700+150x=2 450 成立
得方程的解
求方程的解的过程,叫做解方程.
人教版七年级数学上册第三章一元一次方程
数学人教版七年级上册移项解方程
3.2解一元一次方程(移项)教材分析:1、本节课是数学人教版七年级上册第三章第二节第二小节的内容。
2、本节课主要内容是解一元一次方程的重要步骤移项。
是学生学习解一元一次方程的基础,这一部分内容在方程中占有很重要的地位,在解方程、解一元一次不等式、解一元二次不等式中都要用到。
学情分析:针对初一年级学生学习热情高,但观察、分析、概括能力较弱的特点,本节从实际问题入手,让学生通过自己思考、动手,激发学生的求知欲,提高学生学习的兴趣与积极性。
在课堂教学中,学生主要采取讨论、思考、观察的学习方式,使学生真正成为课堂的主人,逐步培养学生观察、概括、归纳的能力。
教学策略:1)、自主探索策略:通过分组讨论,学生通过观察、分析发现结论,归纳概括。
(2)、师生交流:通过教师引导,让学生学会学习数学的方法和数学思想。
生生交流:学生分组讨论问题,在讨论的过程中相互交流,发表个人的见解,对问题进行探讨,互相学习。
教学目标:理解移项法,并知道移项法的依据,会用移项法则解方程。
教学重点:运用方程解决实际问题,会用移项法则解方程。
教学难点:找相等关系列方程,正确地移项解一元一次方程复习回顾回忆一下上节课我们学的什么内容呀?合并同类项解一元一次方程。
说到解方程,那么到目前为止你总共学了几种解一元一次方程的方法了?两种(除了合并同类项还有利用等式的性质)解方程并说出解方程的依据(让学生自己在练习本上做再一起对答案)(1)2x-2=4(2)5x-2x=9上面的这两个方程第一个是利用等式的性质来解的;第二个是利用合并同类项的方法来解的一、创设情境,引出问题好现在我们来看一个实际问题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?现在来看一下下面的3个小问题,先独立思考再找学生回答1.如果我设这个班有x名学生,请完成下列填空每人分3本,共分出-3x--本,加上剩余的20本,这批书共—(3x+20)本每人分4本,需要-4x-本,减去缺少的25本,这批书共--(4x-25)--本2.很明显这批书有2种分法,他们之间友存在怎样的关系呢?由于这批书的总数是一个定值所以由这两种分法得出的表示这批书总数的两个代数式是相等的。
解一元一次方程(第2课时)-2022-2023学年七年级数学上册课件(苏科版)
去分母:6(20x-10)-5(10x+30)=30(0.5x+2)
去括号:120x-60-50x-150=15x+60
移项:120x-50x-15x=60+60+150
合并同类项:55x=270
系数化为1:x=
例6 解下列方程
+ −
(3)
=1
. .
+ −
再去括号:3x-2x+14=54-3x
移项:3x-2x+3x=54-14
合并同类项:4x=40
系数化为1:x=10
02
方程的概念
方程的解
知识精讲
若方程中有分母呢~
自然又要先去分母啦~
+ −
Q1:如何去分母呢?以“ + =2”为例~
操作:等式两边同时乘以6—分母的最小公倍数
依据:等式性质2
例10
− − − −
解方程:
+
=
+
【分析】
每个分数线上下之间都有统一的联系:
分子=分母+(1+x)
2021-x=2020+(1-x)
2019-x=2018+(1-x)
2020-x=2019+(1-x)
2018-x=2017+(1-x)
解:移项: { [ ( x+1)+1]+1}=2
移项: ( x+1)=5
去分母: [ ( x+1)+1]+1=4
初中数学青岛版七年级上册第7章 一元一次方程7.3一元一次方程的解法-章节测试习题(12)
章节测试题1.【答题】若方程x+2m=8与方程的解相同,则m=______.【答案】.【分析】解一元一次方程即可.【解答】解:将方程4x﹣1=3移项化系数为1得:x=1,把x=1代入x+2m=8得:1+2m=8,移项化系数为1,解得:m=.故答案为:.2.【答题】已知多项式9a+20与4a-10的差等于5,则a的值为______.【答案】-5【分析】根据题意列出方程,解一元一次方程即可.【解答】解:9a+20-(4a-10)=5,去括号得:9a+20-4a+10=5,合并同类项得:5a+30=5,移项得:5a=5-30,合并同类项得:5a=-25,化系数为1得:a=-5.故答案为:-5.3.【答题】当______时,代数式与的值互为相反数.【答案】-2【分析】根据题意列出方程,解一元一次方程即可.【解答】因为与的值互为相反数,所以 + =0,去分母得:12+x+x-8=0,移项得:2x=-4,即x=-2,故答案是:-2.4.【答题】方程的解是______.【答案】5【分析】解一元一次方程即可.【解答】,去分母得,x-3=2,移项、合并同类项得,x=5.故答案是:5.5.【答题】当______时,代数式与的值相等.【答案】【分析】根据题意列出方程,解一元一次方程即可.【解答】根据题意得:3(x-1)=-2(x+1),去括号得:3x-3=-2x-2,移项得:3x+2x=-2+3合并同类项得:5x=1系数为1得:x=,故答案是:.6.【答题】若与互为相反数,则a=______.【答案】【分析】根据题意列出方程+=0,直接解出a的值,即可解题.【解答】解:根据相反数和为0得:+=0,去分母得:a+3+2a﹣7=0,合并同类项得:3a﹣4=0,化系数为1得:a﹣=0,故答案为.7.【答题】当a取整数______时,方程有正整数解.【答案】0【分析】先用含a的代数式表示x,根据方程的解是正整数,即可求出结果。
镇江市2017-2018学年七年级(上)期末数学试卷(解析版)
镇江市2017-2018学年七年级(上)期末数学试卷一、填空题(每小题2分,共24分)1.﹣3的相反数是.2.移动互联网已经全面进入人们的日常生活.截止2017年12月,全国4G用户总数947000 000,这个数用科学记数法表示为.3.方程2x+a=2的解是x=1,则a=.4.某超市举办促销活动,全场商品一律打八折,小强买了一件商品比标价少付了20元,那么这件商品的标价是元.5.按照如图的平面展开图折叠成正方体后,相对面上的两个数都互为相反数,那么(a+b)c=.6.长方体的主视图与俯视图如图所示,则这个长方体的体积是.7.已知∠1和∠2互为余角,且∠2与∠3互补,∠1=60°,则∠3=.8.如图,OA⊥OC,∠BOC=50°,若OD平分∠AOC,则∠BOD=°.9.如图,C为线段AB上一点,AB=6,若点E、F分别是线段AC、CB的中点,则线段EF的长度为.10.已知关于x的方程(k﹣1)x|k|﹣1=0是一元一次方程,则k的值为.11.已知∠AOB=50°,以O为顶点,OB为一边作∠BOC=20°,则∠AOC的度数为.12.点A1、A2、A3、…、A n(n为正整数)都在数轴上.点A2在点A1的左边,且A1A2=1;点A3在点A2的右边,且A2A3=2;点A4在点A3的左边,且A3A4=3;…,点A2018在点A2017的左边,且A2017A2018=2017,若点A2018所表示的数为2018,则点A1所表示的数为.二、选择题(每小题3分,共15分)13.如图,下列图案分别是一些汽车的车标,其中,可以看作由平移得到的是()A.B.C.D.14.下列各组单项式中,是同类项一组的是()A.3x2y与3xy2B.2abc与﹣3ac C.2xy与2ab D.﹣2xy与3yx15.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.85°B.105°C.125°D.160°16.下列现象:(1)用两个钉子就可以把木条固定在墙上.(2)从A地到B地架设电线,总是尽可能沿着线段AB架设.(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.(4)把弯曲的公路改直,就能缩短路程.其中能用“两点确定一条直线”来解释的现象有()A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)17.规定一种新运算“☆”,a☆b=a2﹣2b,则﹣3☆(﹣1)的值为()A.11B.8C.7D.﹣7三、解答题(共81分)18.(8分)计算:(1)(2)﹣22+3×(﹣1)2016﹣9÷(﹣3)19.(10分)解方程:(1)5x﹣2=﹣3(x﹣2)(2)20.(6分)先化简,后求值:(3a2﹣4ab)﹣2(a2+2ab),其中a,b满足|a+1|+(2﹣b)2=0.21.(6分)(1)由大小相同的小立方块搭成的几何体如图1,请在如图的方格中画出该几何体的俯视图和左视图.(2)在左视图和俯视图不变的情况下,你认为最多还可以添加个小正方体.22.(7分)利用网格画图:(1)过点C画AB的平行线;(2)过点C画AB的垂线,垂足为E;(3)连接CA、CB,在线段CA、CB、CE中,线段最短,理由:;(4)点C到直线AB的距离是线段的长度.23.(7分)一快递员骑摩托车需要在规定的时间内把快递送到某地,若每小时行驶40km,就早到12分钟;若每小时行驶30km,就要迟到8分钟.求快递员所要骑行的路程.24.(8分)如图,M是线段AC的中点,点B在线段AC上,且AB=4cm,BC=2AB,求线段MC和线段BM的长.25.(8分)为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:每月用气量单价(元/m3)不超出80m3的部分 2.5超出80m3不超出130m3的部分a超出130m3的部分a+0.5(1)若甲用户3月份用气125m3,缴费335元,求a的值;(2)在(1)的条件下,若乙用户3月份缴费392元,则乙用户3月份的用气量是多少?26.(9分)如图,OC是∠AOB内的一条射线,OD、OE分别平分∠AOB、∠AOC.(1)若∠AOC=20°,∠AOB=110°,则∠BOC=°,∠DOE=°;(2)若∠AOC=m°,∠AOB=n°(n>m),则∠BOC=°,∠DOE=°;(3)猜想:∠DOE与∠BOC有怎样的数量关系?并说明理由.27.(12分)如图,已知数轴上点A表示的数为10,点B在点A左边,且AB=18.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发.①问点P运动多少秒时追上点Q?②问点P运动多少秒时与点Q相距4个单位长度?并求出此时点P表示的数;(3)若点P、Q以(2)中的速度同时分别从点A、B向右运动,同时点R从原点O以每秒7个单位的速度向右运动,是否存在常数m,使得2QR+3OP﹣mOR为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.参考答案与试题解析一、填空题(每小题2分,共24分)1.﹣3的相反数是3.【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣(﹣3)=3,故﹣3的相反数是3.故答案为:3.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.2.移动互联网已经全面进入人们的日常生活.截止2017年12月,全国4G用户总数947000 000,这个数用科学记数法表示为9.47×108.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:947000 000=9.47×108.故答案为:9.47×108.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.方程2x+a=2的解是x=1,则a=0.【分析】将x=1代入方程得到关于a的方程,解之可得.【解答】解:将x=1代入方程,得:2+a=2,解得:a=0,故答案为:0.【点评】本题考查了一元一次方程的解,本题关键是理解方程解的意义:使方程左右两边相等的未知数的值.4.某超市举办促销活动,全场商品一律打八折,小强买了一件商品比标价少付了20元,那么这件商品的标价是100元.【分析】设这件商品的标价是x元,根据标价﹣实际付款钱数=20,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这件商品的标价是x元,根据题意得:x﹣0.8x=20,解得:x=100.故答案为:100.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.5.按照如图的平面展开图折叠成正方体后,相对面上的两个数都互为相反数,那么(a+b)c=.【分析】利用正方体及其表面展开图的特点,分别求得a,b,c的值,然后代入求解.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“a”与面“﹣1”相对,面“c”与面“2”相对,“﹣3”与面“b”相对,∵相对面上的两个数都互为相反数,∴a=1,b=3,c=﹣2,则(a+b)c=(1+3)﹣2=.故答案为:.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6.长方体的主视图与俯视图如图所示,则这个长方体的体积是36.【分析】根据所给的三视图判断出长方体的长、宽、高,再根据体积公式进行计算即可.【解答】解:由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别为4和3,因此这个长方体的长、宽、高分别为4、3、3,则这个长方体的体积为4×3×3=36.故答案为:36.【点评】此题考查了三视图判断几何体,注意:主视图主要反映物体的长和高,左视图主要反映物体的宽和高,俯视图主要反映物体的长和宽.7.已知∠1和∠2互为余角,且∠2与∠3互补,∠1=60°,则∠3=150°.【分析】根据∠1和∠2互为余角,∠1=60°,求得∠2的度数,然后根据∠2与∠3互补,得出∠3=180°﹣∠2.【解答】解:∵∠1和∠2互为余角,∠1=60°,∴∠2=90°﹣∠1=90°﹣60°=30°,∵∠2与∠3互补,∴∠3=180°﹣∠2=180°﹣30°=150°.故答案为:150°.【点评】本题考查了余角和补角的知识,属于基础题,解答本题的关键是掌握互余两角之和为90°,互补两角之和为180°.8.如图,OA⊥OC,∠BOC=50°,若OD平分∠AOC,则∠BOD=95°.【分析】首先根据角平分线的定义求出∠COD的度数,进而求出∠BOD的度数.【解答】解:∵∠AOC=90°,∵OD平分∠AOC,∴∠COD=∠AOC=×90°=45°.∵∠BOC=50°∴∠BOD=∠COD+∠BOC=45°+50°=95°.故答案为95【点评】本题考查了角度的计算,正确理解角平分线的定义,求得∠COD是关键.9.如图,C为线段AB上一点,AB=6,若点E、F分别是线段AC、CB的中点,则线段EF的长度为3.【分析】根据数轴和题意可以求得EF的长,本题得以解决.【解答】解:∵C为线段AB上一点,AB=6,若点E、F分别是线段AC、CB的中点,∴AE=EC=AC,CF=BF=CB,∵AC+CB=AB,∴EC+CF=AB=3,即EF=3,故答案为:3.【点评】本题考查两点间的距离,解答本题的关键是明确题意,利用数轴的知识解答.10.已知关于x的方程(k﹣1)x|k|﹣1=0是一元一次方程,则k的值为﹣1.【分析】根据一元一次方程定义可得:|k|=1,且k﹣1≠0,再解即可.【解答】解:由题意得:|k|=1,且k﹣1≠0,解得:k=﹣1,故答案为:﹣1.【点评】此题主要考查了一元一次方程定义,关键是掌握一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.11.已知∠AOB=50°,以O为顶点,OB为一边作∠BOC=20°,则∠AOC的度数为30°或70°.【分析】考虑两种情形:①当OC在∠AOB内部时,∠AOC=∠AOB﹣∠AOC=50°﹣20°=30°,②当OC在∠AOB外部时,∠AOC=∠AOB+∠BOC=50°+20°=70°.【解答】解:如图.当OC在∠AOB内部时,∠AOC=∠AOB﹣∠AOC=50°﹣20°=30°,当OC在∠AOB外部时,∠AOC=∠AOB+∠BOC=50°+20°=70°,故答案为30°或70°.【点评】本题考查角的计算、解题的关键是学会正确画出图形,注意有两种情形,属于中考常考题型.12.点A1、A2、A3、…、A n(n为正整数)都在数轴上.点A2在点A1的左边,且A1A2=1;点A3在点A2的右边,且A2A3=2;点A4在点A3的左边,且A3A4=3;…,点A2018在点A2017的左边,且A2017A2018=2017,若点A2018所表示的数为2018,则点A1所表示的数为3027.【分析】根据题意得出规律:当n为奇数时,A n﹣A1=,当n为偶数时,A n=A1﹣,把n=2018代入求出即可.【解答】解:根据题意得:当n为奇数时,A n﹣A1=,当n为偶数时,A n﹣A1=﹣,2018为偶数,代入上述规律A2018﹣A1=﹣=﹣1009解得A1=3027.故答案为:3027.【点评】此题考查数字的变化规律,找出数字之间的联系,利用运算规律解决问题.二、选择题(每小题3分,共15分)13.如图,下列图案分别是一些汽车的车标,其中,可以看作由平移得到的是()A.B.C.D.【分析】根据图形平移、旋转、轴对称的性质对各选项记性逐一分析即可.【解答】解:A、通过旋转得到,故本选项错误;B、通过轴对称得到,故本选项错误;C、通过平移得到,故本选项正确;D、通过旋转得到,故本选项错误.故选:C.【点评】本题考查的是利用平移设计图案,熟知图形平移、旋转、轴对称的性质是解答此题的关键.14.下列各组单项式中,是同类项一组的是()A.3x2y与3xy2B.2abc与﹣3ac C.2xy与2ab D.﹣2xy与3yx【分析】根据同类项是字母项相同且相同字母的指数也同,可得答案.【解答】解:A、相同字母的指数不同,故A错误;B、字母不同不是同类项,故B错误;C、字母不同不是同类项,故C错误;D、字母项相同且相同字母的指数也同,故D正确;故选:D.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.15.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.85°B.105°C.125°D.160°【分析】根据题中的方位角,确定出所求角度数即可.【解答】解:根据题意得:∠BAC=(90°﹣70°)+15°+90°=125°,故选:C.【点评】此题考查了方向角,解答此类题需要从运动的角度,正确画出方位角,再结合三角形的内角和与外角的关系求解.16.下列现象:(1)用两个钉子就可以把木条固定在墙上.(2)从A地到B地架设电线,总是尽可能沿着线段AB架设.(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.(4)把弯曲的公路改直,就能缩短路程.其中能用“两点确定一条直线”来解释的现象有()A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)【分析】直接利用直线的性质以及两点确定一条直线的性质分析得出答案.【解答】解:(1)用两个钉子就可以把木条固定在墙上,根据是两点确定一条直线;(2)从A地到B地架设电线,总是尽可能沿着线段AB架设,根据是两点之间线段最短;(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,根据是两点确定一条直线;(4)把弯曲的公路改直,就能缩短路程,根据是两点之间线段最短.故选:B.【点评】此题主要考查了线段以及直线的性质,正确把握相关性质是解题关键.17.规定一种新运算“☆”,a☆b=a2﹣2b,则﹣3☆(﹣1)的值为()A.11B.8C.7D.﹣7【分析】原式利用题中的新定义计算即可求出值.【解答】解:根据题中的新定义得:原式=9+2=11,故选:A.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.三、解答题(共81分)18.(8分)计算:(1)(2)﹣22+3×(﹣1)2016﹣9÷(﹣3)【分析】(1)原式利用绝对值的代数意义,以及减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=+﹣3=2﹣3=﹣1;(2)原式=﹣4+3+3=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.(10分)解方程:(1)5x﹣2=﹣3(x﹣2)(2)【分析】(1)直接移项合并同类项进而解方程即可;(2)首先去分母,进而移项合并同类项得出答案.【解答】解:(1)5x﹣2=﹣3(x﹣2)去括号得:5x﹣2=3x﹣6,移项得:5x﹣3x=﹣6+2,合并同类项得:2x=﹣4,系数化为1得:x=﹣2;(2)1﹣=去分母得:6﹣(2x﹣1)=2(2x+1),去括号得:6﹣2x+1=4x+2,移项得:﹣2x﹣4x=2﹣6﹣1,合并同类项得:﹣2x=﹣5,系数化为1得:x=2.5.【点评】此题主要考查了解一元一次方程,正确掌握基本解题步骤是解题关键.20.(6分)先化简,后求值:(3a2﹣4ab)﹣2(a2+2ab),其中a,b满足|a+1|+(2﹣b)2=0.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=3a2﹣4ab﹣2a2﹣4ab=a2﹣8ab,∵|a+1|+(2﹣b)2=0.∴a+1=0,2﹣b=0,即a=﹣1,b=2,当a=﹣1,b=2时,原式=(﹣1)2﹣8×(﹣1)×2=17.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.(6分)(1)由大小相同的小立方块搭成的几何体如图1,请在如图的方格中画出该几何体的俯视图和左视图.(2)在左视图和俯视图不变的情况下,你认为最多还可以添加2个小正方体.【分析】(1)从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可;从左面看得到从左往右2列正方形的个数依次为2,1,依此画出图形即可;(2)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最多个数相加即可.【解答】解:(1)如图所示:(2)由俯视图易得最底层有4个小立方块,第二层最多有3个小立方块,所以最多有2个小立方块.故答案为:2.【点评】考查了作图﹣三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形;俯视图决定底层立方块的个数,易错点是由主视图得到其余层数里最少的立方块个数和最多的立方块个数.22.(7分)利用网格画图:(1)过点C画AB的平行线;(2)过点C画AB的垂线,垂足为E;(3)连接CA、CB,在线段CA、CB、CE中,CE线段最短,理由:垂线段最短;(4)点C到直线AB的距离是线段的长度.【分析】(1)取点D作直线CD即可;(2)取点F作直线CF交AB与E即可;(3)根据垂线段最短即可解决问题;(3)根据三角形的面积的两种求法,构建方程即可解决问题;【解答】解:(1)直线CD即为所求;(2)直线CE即为所求;(3)在线段CA、CB、CE中,线段CE最短,理由:垂线段最短;故答案为CE,垂线段最短;=•AB•CE,(4)∵S△ABC∴18﹣×1×5﹣×1×3﹣×2×6=×2×CE,∴CE=.,【点评】本题考查作图﹣应用与设计,垂线段最短、勾股定理、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(7分)一快递员骑摩托车需要在规定的时间内把快递送到某地,若每小时行驶40km,就早到12分钟;若每小时行驶30km,就要迟到8分钟.求快递员所要骑行的路程.【分析】设送件的规定时间为x小时,根据路程=速度×时间,即可得出关于x的一元一次方程,解之即可得出x的值,再利用路程=速度×时间,即可求出快递员所要骑行的路程.【解答】解:设送件的规定时间为x小时,根据题意得:40(x ﹣)=30(x +),解得:x=,∴40×(﹣)=40(千米).答:快递员所要骑行的路程为40千米.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.24.(8分)如图,M是线段AC的中点,点B在线段AC上,且AB=4cm,BC=2AB,求线段MC和线段BM的长.【分析】先根据AB=4cm,BC=2AB求出BC的长,进而得出AC的长,由M是线段AC 中点求出MC及AM,再由BM=AM﹣AB即可得出结论.【解答】解:∵AB=4cm,BC=2AB,∴BC=8cm,∴AC=AB+BC=4+8=12cm,∵M是线段AC中点,∴MC=AM=AC=6cm,∴BM=AM﹣AB=6﹣4=2cm.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.25.(8分)为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:每月用气量单价(元/m3)不超出80m3的部分 2.5a超出80m3不超出130m3的部分超出130m3的部分a+0.5(1)若甲用户3月份用气125m3,缴费335元,求a的值;(2)在(1)的条件下,若乙用户3月份缴费392元,则乙用户3月份的用气量是多少?【分析】(1)根据应缴费用=80×2.5+超出80m3部分×a,即可得出关于a的一元一次方程,解之即可得出结论;(2)设乙用户3月份的用气量是xm3,由80×2.5+(130﹣80)×3=350<392可得出x >130,根据应缴费用=80×2.5+(130﹣80)×3+超出130m3部分×(3+0.5),即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)根据题意得:80×2.5+(125﹣80)a=335,解得:a=3.答:a的值为3.(2)设乙用户3月份的用气量是xm3,根据题意得:80×2.5+(130﹣80)×3+(x﹣130)×(3+0.5)=392,解得:x=142.答:乙用户3月份的用气量是142m3.【点评】本题考查了一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.26.(9分)如图,OC是∠AOB内的一条射线,OD、OE分别平分∠AOB、∠AOC.(1)若∠AOC=20°,∠AOB=110°,则∠BOC=90°,∠DOE=45°;(2)若∠AOC=m°,∠AOB=n°(n>m),则∠BOC=(n﹣m)°,∠DOE=(n﹣m)°;(3)猜想:∠DOE与∠BOC有怎样的数量关系?并说明理由.【分析】(1)依据AOC=20°,∠AOB=110°,可得∠BOC=110°﹣20°=90°;再根据OD、OE 分别平分∠AOB、∠AOC,即可得到∠DOE的度数;(2)依据∠AOC=m°,∠AOB=n°,可得∠BOC=n°﹣m°=(n﹣m)°;再根据OD、OE分别平分∠AOB、∠AOC,可得∠AOD=n°,∠AOE=m°,进而得出∠DOE的度数;(3)依据OD、OE分别平分∠AOB、∠AOC,即可得出∠AOD=∠AOB,∠AOE=∠AOC,进而得到∠DOE=∠AOD﹣∠AOE=(∠AOB﹣∠AOC)=∠BOC.【解答】解:(1)∵∠AOC=20°,∠AOB=110°,∴∠BOC=110°﹣20°=90°;∵OD、OE分别平分∠AOB、∠AOC,∴∠AOD=55°,∠AOE=10°,∴∠DOE=55°﹣10°=45°;故答案为:90,45;(2)∵∠AOC=m°,∠AOB=n°,∴∠BOC=n°﹣m°=(n﹣m)°;∵OD、OE分别平分∠AOB、∠AOC,∴∠AOD=n°,∠AOE=m°,∴∠DOE=∠AOD﹣∠AOE=(n﹣m)°;故答案为:(n﹣m),(n﹣m);(3)∠DOE=∠BOC.证明:∵OD、OE分别平分∠AOB、∠AOC,∴∠AOD=∠AOB,∠AOE=∠AOC,∴∠DOE=∠AOD﹣∠AOE=(∠AOB﹣∠AOC)=∠BOC.【点评】本题考查了角的平分线定义和角的有关计算的应用,主要考查学生计算能力和推理能力,求解过程类似.27.(12分)如图,已知数轴上点A表示的数为10,点B在点A左边,且AB=18.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发.①问点P运动多少秒时追上点Q?②问点P运动多少秒时与点Q相距4个单位长度?并求出此时点P表示的数;(3)若点P、Q以(2)中的速度同时分别从点A、B向右运动,同时点R从原点O以每秒7个单位的速度向右运动,是否存在常数m,使得2QR+3OP﹣mOR为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.【分析】(1)根据两点间的距离公式,以及路程=速度×时间即可求解;(2)①根据时间=路程差÷速度差,列出算式计算即可求解;②分两种情况:相遇前相距4个单位长度;相遇后相距4个单位长度;进行讨论可求点P表示的数;(3)表示出2QR+3OP﹣mOR,求得m值以及2QR+3OP﹣mOR的定值.【解答】解:(1)数轴上点B表示的数为10﹣18=﹣8,点P表示的数为10﹣5t;(2)①18÷(5﹣3)=9(秒).故点P运动9秒时追上点Q;②相遇前相距4个单位长度,(18﹣4)÷(5﹣3)=7(秒),10﹣7×5=﹣25,则点P表示的数为﹣25;相遇后相距4个单位长度,(18+4)÷(5﹣3)=11(秒),10﹣11×5=﹣45,则点P表示的数为﹣45;(3)设t秒后2QR+3OP﹣mOR为定值,由题意得,2QR+3OP﹣mOR=2×[7t﹣(3t﹣8)]+3(10+5t)﹣7mt=(23﹣7m)t+46,∴当m=时,2QR+3OP﹣mOR为定值46.【点评】本题考查的是一元一次方程的应用、数轴的应用,根据题意正确列出一元一次方程、灵活运用分情况讨论思想是解题的关键.。
七年级上册数学知识点:一元一次方程
七年级上册数学知识点:一元一次方程本章内容是代数学的核心,也是所有代数方程的基础。
丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。
一、目标与要求1.通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;2.初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;3.培养学生获取信息,分析问题,处理问题的能力。
二、重点从实际问题中寻找相等关系;建立列方程解决实际问题的思想方法,学会合并同类项,会解"ax+bx=c"类型的一元一次方程。
三、难点从实际问题中寻找相等关系;分析实际问题中的已经量和未知量,找出相等关系,列出方程,使学生逐步建立列方程解决实际问题的思想方法。
四、知识框架五、知识点、概念总结1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
2.一元一次方程的标准形式:ax+b=0。
3.条件:一元一次方程必须同时满足4个条件:它是等式;分母中不含有未知数;未知数最高次项为1;含未知数的项的系数不为0.4.等式的性质:等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。
等式的性质二:等式两边同时扩大或缩小相同的倍数,等式仍然成立。
等式的性质三:等式两边同时乘方,等式仍然成立。
解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。
5.合并同类项依据:乘法分配律把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项合并时次数不变,只是系数相加减。
6.移项含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。
依据:等式的性质把方程一边某项移到另一边时,一定要变号。
7.一元一次方程解法的一般步骤:使方程左右两边相等的未知数的值叫做方程的解。
七年级数学上册一元一次方程应用题行程类专题讲解
注意:抓住两码头间距离不变,水流速和船速(静水速)不变的特点考虑相等关系。 常见的还有:相背而行;环形跑道问题。
一、行程(相遇)问题 A.基础训练 1. 小李和小刚家距离 900 米,两人同时从家出发相向行,小李每分走 60 米,小刚每分走 90 米,几分
5. 一队学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以 18 米/分的速度从队头至 队尾又返回,已知队伍的行进速度为 14 米/分。问:若已知队长 320 米,则通讯员几分钟返回? 若已知通讯员用了 25 分钟,则队长为多少米?
6. 一架飞机在两个城市之间飞行,风速为 24 千米/小时,顺风飞行需要 2 小时 50 分,逆风飞行需要 3 小时,求两个城市之间的飞行路程?
2
2. 一条环形的跑道长 800 米,甲练习骑自行车平均每分钟行 500 米,乙练习赛跑,平均每分钟跑 200 米,两人同时同地出发。 (1)若两人背向而行,则他们经过多少时间首次相遇 (2)若两人同向而行,则他们经过多少时间首次相遇?
3. 甲乙二人沿 400 米的圆形跑道跑步,他们从同一地点同时出发,背向而行。当两人第一次相遇后, 甲的速度比原来提高 2 米/秒,乙的速度比原来降低 2 米/秒,结果两人都用 24 秒回到原地。求甲原 来的速度?
三、行程(行船、飞行)问题 1. 一架飞机飞行在两个城市之间,风速为 24 千米/时. 顺风飞行需要 2 小时 50 分,逆风飞行需要 3 小
时. 求飞机在无风时的速度及两城之间的飞行路程.
2. 一艘轮船航行于两地之间,顺水要用 3 小时,逆水要用 4 小时,已知船在静水中的速度是 50 千米/小时,求 水流的速度.
人教版数学七年级上册:基础提升专练《一元一次方程的解法》练习课件(附答案)
(3)当 x 为正整数时,请求出 m 的值. (3)(2m+1)x=3mx-1,移项、合并同类项, 得(m-1)x=1. ∵x 为正整数, ∴m-1 为正数且为 1 的约数. ∵m 为整数, ∴m-1=1. ∴m=2.
5.小王在解关于 x 的方程 2- 2x 4 =3a-2x 时,误 3
去括号得 20x-60-50x-200=16,
移项、合并同类项得-30x=276,
解得 x=-9.2.
(9) x x 1 =2 x+2 ;
2
4
解:去分母得 4x-2(x-1)=8-(x+2),
去括号得 4x-2x+2=8-x-2,
移项、合并同类项得 3x=4,
解得 x= 4 . 3
(10)(x-4)- (x 4) 1=3-(x 4) 2 .
4
解:(1)∵-3x= 9 , 4
∴x=- 3 . 4
∵ 9 -3=- 3 ,
4
4
∴-3x= 9 是“和解方程”. 4
(2)若关于 x 的一元一次方程 5x=m-2 是“和解方
程”,求 m 的值.
(2)∵关于 x 的一元一次方程 5x=m-2 是“和解方
程”,
∴m-2+5= m 2 . 5
故 m 的值为-17 . 4
将-2x 看作+2x,得方程的解为 x=1.
(1)求 a 的值;
解:(1)把 x=1 代入 2- 2x 4 =3a+2x, 3
得 2+ 2 =3a+2,解得 a= 2 .
3
9
(2)求此方程正确的解.
(2)把 a= 2 代入原方程得 2- 2x 4 = 2 -2x.
9
33
去分母得 6-(2x-4)=2-6x.
七年级数学上册 第三章 一元一次方程 3.3 解一元一次方程(二)—去括号与去分母课件
移项,得4x-3x=6+2+1,
合并同类项,得x=9.
错因分析 去分母时,各项都应乘各分母的最小公倍数,本题忽略了不
含分母的项.
2021/12/11
第二十二页,共九十五页。
知识点一 解一元一次方程——去括号(kuòhào)
1.将方程-3(2x-1)+2(1-x)=2去括号,得 ( ) A.-3x+3-1-x=2 B.-6x-3+2-x=2 C.-6x+3+1-2x=2 D.-6x+3+2-2x=2
≠0,a,b为常数)
等式的 性质2
(1)系数相加; (2)字母及其指数不变
(1)除数不为0;(2)不要把分子、分 母颠倒
化分母中的小数为整数不同于去分母,不是将方程两边同时乘同一个数,而是将分子、分母同时乘同一个 数
第六页,共九十五页。
例3 解方程:(1)4-3(10-y)=5y;
(2) 2 x =1 2-1x . 1
点拨 这是一道典型的追及问题,做题时要注意挖掘题中的隐含条件: 小明用的时间比小亮用的时间多0.5 h.
2021/12/11
第二十页,共九十五页。
易错点一 去括号时漏乘项或出现符号(fúhào)错误
例1 解方程:4x-3(2-x)=5x-2(9+x).
错解 错解一:去括号,得4x-6+x=5x-18-x, 移项、合并同类项,得x=-12. 错解二:去括号,得4x-6-3x=5x-18+2x, 移项、合并同类项,得-6x=-12, 系数化为1,得x=2. 正解 去括号,得4x-6+3x=5x-18-2x, 移项、合并同类项,得4x=-12,系数化为1,得x=-3. 错因分析 错解一中运用分配律时,括号前的系数只乘了第一项,漏乘 了第二项;错解二中出现了符号错误.本题括号前面是“-”,去括号时, 2只021改/12/变11 了第一项的符号,而忽视了第二改十一页变,共九括十五号页。 内其他项的符号.
中考数学复习:专题2-4 方程应用的误区
专题04 方程的应用误区分析【专题综述】一元一次方程的应用题,为学生初中阶段学好必备的代数,几何的基础知识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。
在提高学生的能力,培养他们对数学的兴趣 以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。
【方法解读】一、 审题不清楚,等量关系找不准 例1 一车间人数比二车间人数的54少30人,如从二车间调10人到一车间去,那么一车间人数就是二车间人数的,43求两车间的原有人数.【解读】造成错误的原因是题意分析不清,把二车间调出去10人,没有给一车间人数加上去.【举一反三】 2012年5月,在中国武汉举办了汤姆斯杯羽毛球团体赛.在27日的决赛中,中国队战胜韩国队夺得了冠军.某羽毛球协会组织一些会员到现场观看了该场比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张? 【来源】宁夏回族自治区银川六中2017-2018学年第一学期七年级上册数学期末试卷 解:设每张300元的门票买了x 张,则每张400元的门票买了(8-x)张, 由题意,得300x+400(8-x)=2700, 解得:x=5,所以买400元每张的门票张数为:8-5=3(张).答:每张300元的门票买了5张,每张400元的门票买了3张. 二、 列方程时,方程各项的单位名称不统一例2 一队学生到校外进行军事野营训练,他们以5km/h 的速度行走,走了18min 的时候,学校要把一个紧急通知传给队长,通讯员从学校出发,骑自行车以14km/h 的速度按原路追上去,通讯员要用多少时间才能追上学生队伍?解: 设xh 后通讯员追上学生队伍,根据题意,得 5×6018+5x=14x. 解这个方程得x=.61 答:61h, 通讯员可以追上学生队伍.学@科%网 【解读】:本题告诉学生队伍的速度是5km/h,通讯员的速度是14km/h,而学生队伍先走的时间却用分表示,所以要解此题,先必须把单位化统一,即18min=.6018h 【举一反三】妈妈用2万元为小明存了一个6年期的教育储蓄,6年后,共能得23456元,则这种教育储蓄的年利率为?【来源】浙江省嘉兴市秀洲区高照实验学校2017-2018学年七年级12月月考数学试题 解:设这种教育储蓄的年利率为x ,则有: 20000+6×20000x=23456 解得x=0.0288=2.88%,三、 当求得的是负数时,认为是不符合题意,原方程无解.例3 父亲今年38对,女儿今年14岁,哪一年父亲的年龄是女儿年龄的7倍?【解读】其实在类似的题中出现负值并不是无意义,这里的负数其实指的是10年前,也就是说只有在10年前,父亲的年龄才是女儿年龄的7倍.【举一反三】 .幼儿园智慧树班某次能力测验有人参加,这次测验共有五道题,并且每人至少做对了一道题每道题至少有一人做对,只做对一道题的有8人,五道题全做对的有27人,只做对两道题的人数是只做三道题的人数的2倍.(1)答对四道题的有n 人,那么只做对三道题的人数可以用含m 与n 的代数式表示为____________; (2)(1)中的m=42,那么n 可以是多少?请说明理由; (3)统计了每道题做错的人数如下表: 题 号12345做错的人数 5 8 14 23 45若m=73,请根据上表求n.【来源】湖北省襄阳市襄城区2016-2017学年度上学期期末考试七年级数学试卷∴n 只能取1或4. (3)由题意得:()27335733548325814234533n n n ----⨯+⨯+⨯+=++++. 解得23n =.答:当73m =时, 23n =.四、 间接设元时,到了最后不去求所要求的量,只要求出未知数的值,就认为万事大吉了例4 甲、乙两站的路程是708km ,一辆慢车从甲站开往乙站,慢车走了一个半小时之后,另有一辆快车从乙站开往甲站,已知慢车每小时走92 km ,快车每小时走136 km ,问两车各走几小时后相遇? 解: 设两车相遇时快车走了x km.根据题意列方程,得136922392708x x =⎪⎭⎫⎝⎛+⨯- 解这个方程得x=340快车所用时间为212136340=(h). 慢车所用时间为).(4211212h =+答:快车走了4h 后,快车走了h 212,两车相遇.【解读】本题要求计算两车相遇时各走的时间,而在解时却应用了间接设元的方法,所以求得x=340只是快车走过的路程,并不是快车所走的时间,要求时间还必须用路程÷速度.【举一反三】 将一堆糖果分给幼儿园某班的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.这个班共有多少名小朋友?这堆糖果有多少颗?【来源】山东省滨州市无棣县2017-2018学年七年级(上)期中数学试卷 解:设共有x 位小朋友, 由题意得: 28312x x +=-, 解得: 20x =.220848⨯+=答:这个班共有20名小朋友,这堆糖果有48颗.学..科0.0网【强化训练】1. 一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?【来源】江苏省丹阳市第三中学2017-2018学年七年级12月月考数学试题 【答案】打开丙管后3013小时可注满水池. 【解析】设打开丙管后x 小时可注满水池.等量关系为:甲注水量+乙注水量-丙排水量=1. 据此列出方程并解答.2. 课外阅读课上.老师将一批书分给各小组.若每小组8本.则还剩余3本:若每小组9本.则还缺2本.问有几个小组.(根据题意设未知数,只列出方程即可)【来源】河北省唐山市路北区2017-2018学年七年级(上)期末复习数学试卷 【答案】8x+3=9x ﹣2.【解析】试题分析:设有x 个小组,则课外书的本数为83x +,或表示为92x -,由此联立得出方程即可. 试题解析:设有x 个小组,根据题意可得:8392x x +=-.3.用白铁皮做罐头盒,每张铁皮可制盒身15个,或盒底40个,一个盒身与两个盒底配成一套罐头盒.现有280张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?(列方程计算) 【来源】山东省莒县第四协作区2017-2018学年度上学期第二次月考七年级数学试题 【答案】用160张制盒身,120张制盒底.试题解析:解:设用x 张制盒身,则用(280﹣x )张制盒底,由题意得: 2×15x=40(280﹣x ), 解得:x=160, 280﹣x=120.答:用160张制盒身,120张制盒底.4. 某班一次数学竞赛共出了20道题,现抽出了4份试卷进行分析如下表: (1)问答对一题得多少分,不答或答错一题扣多少分? (2)一位同学说他得了65分,请问可能吗?请说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.3 一元一次方程的解法
学习目标:
1. 正确熟练地解分母中含小数的一元一次方程及含多重括号的一元一次方程;2.进一步熟练掌握解一元一次方程的一般步骤;
3.用一元一次方程思想解决实际问题。
学习重点:熟练掌握解分母中含小数的一元一次方程及含多重括号的一元一次方程. 学习难点:分母小数整数化以及去多重括号的方法。
学习要求:
1. 回顾解一元一次方程的一般步骤;
2.限时25分钟完成本导学案(独立或合作);
3.课前在组内交流展示,组长对组员进行等级评价。
[导学指导]
一、自主预习:
1.利用分数的基本性质,把下列式子的分母化成整数.
(1)0.120.4
________
0.3
x
-
=;(2)
0.20.3
__________
0.05
a-
= .
2.解方程:2152
1
32
x x
++
=- .
3.若式子31
2
x+
比式子
0.20.1
0.3
x-
小1 ,则x=_________ .
4.你会下列解方程吗?试试看:
(1)0.10.21
3
0.020.5
x x
-+
-=;(2)
111
[(3)3]0
222
y--= .
【注意】(1)解分母是小数的一元一次方程方程,可先利用分数的基本性质,将分子、分母同时扩
大若干倍,此时,分子.整体要加括号,不是去分母,不能把方程其余的项也扩大若干倍。
(2)对于多重括号的,可先去小括号,再去中括号,若有大括号,最后去大括号,或由外向内去括号,有时也可用去分母的方法去括号。
二、合作探究:
1.对于方程1411
[(23)
4323
x x
--=变形,第一步较好的方法是()
(A ) 去分母(B)去括号(C)移项(D)合并同类项2.解方程:
(1)0.520.3(0.52)
0.030.2
x x
x
++
-=;(2)
2121
5[(1)]7
5452
x x x
--=-- .
3.甲、乙两车同时从A,B两地相向而行,两车的相遇点距A、B两地中点处8km,已知甲车速度是乙车速度的1.2倍,求A、B两地的路程。
三、当堂评价:
1.解方程:0.2 2.7 1.62 1.54
0.10.20.5
x x x
-++
+= .
2.一块金与银的合金重250克,放在水中减轻了16克,已知金在水中称重量减轻
1
19
,银在水中称
重量减轻
1
10
,求这块合金中含金、银各多少克?
四、拓展提升:
1.解下列方程: ⑴
432(5)532x x x x ++---=- ⑵30.20.20.30.750.20.01x x ++-=
⑶
4846523y y y y +++++=-
2.试用简便方法解方程: ⑴112[(1)1](1)223x x x -
-+=-
五、课后检测:
1.已知关于x 的方程1(2)50m m x -++=是一元一次方程. 求方程
533132x m mx m +--=的解.
2.若a 是方程32312482x x +--=的解,b 是方程51911683
x x x ++-=-的解,求a -3b 的值.
3.东坡中学组织七年级师生春游.如果单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可少租1辆,且余15个座位。
(1)求参加春游的人数;
(2)已知租用45座的客车日租金为每辆250元, 60座的客车日租金为每辆300元,问租用哪种客车更合算?。