2019-2020年高三下学期第一次月考数学(文)试题 含答案

合集下载

2016届高三上学期第一次月考数学(文)试题Word版含答案

2016届高三上学期第一次月考数学(文)试题Word版含答案

2016届高三上学期第一次月考数学(文)试题Word版含答案2016届高三上学期第一次月考数学文试卷考试时间120分钟,满分150分一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N 等于( ) A .[0,1] B .[0,1) C .(0,1]D .(0,1)2.已知集合A ={1,2},B ={1,a ,b },则“a =2”是“A ?B ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知命题p :所有有理数都是实数;命题q :正数的对数都是负数,则下列命题中为真命题的是( ) A .﹁p 或q B .p 且q C .﹁p 且﹁qD .﹁p 或﹁q4.设函数f (x )=x 2+1,x ≤1,2x ,x >1,则f (f (3))等于( )A.15B .3C.23D.1395.函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)6.已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)等于( )A .-2B .0C .1D .27. 如果函数f (x )=x 2-ax -3在区间(-∞,4]上单调递减,则实数a 满足的条件是( ) A .a ≥8 B .a ≤8 C .a ≥4D .a ≥-48. 函数f (x )=a x -2+1(a >0且a ≠1)的图像必经过点( ) A .(0,1) B .(1,1) C .(2,0)D .(2,2)9. 函数f (x )=lg(|x |-1)的大致图像是( )10. 函数f (x )=2x +3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)11. 设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为( ) A .e 2B .eC.ln22D .ln212. 函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集为( ).A .{x |x >0}B .{x |x <0}C .{x |x <-1或x >1}D .{x |x <-1或0<1}<="" p="">二、填空题:本大题共4小题,每题5分.13. 已知函数y =f (x )及其导函数y =f ′(x )的图像如图所示,则曲线y =f (x )在点P 处的切线方程是__________.14. 若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是________. 15. 函数y =12x 2-ln x 的单调递减区间为________.16. 若方程4-x 2=k (x -2)+3有两个不等的实根,则k 的取值范围是________.三、解答题:解答应写出文字说明、证明过程或演算步骤17.(10分) 化简:(1)3131421413223b a b a ab b a -(a >0,b >0);(2)(-278)23-+(0.002)12--10(5-2)-1+(2-3)0.18.(12分)已知函数f (x )=1a -1(a >0,x >0),(1)求证(用单调性的定义证明):f (x )在(0,+∞)上是增函数; (2)若f (x )在[12,2]上的值域是[12,2],求a 的值.19.(12分)已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (1)和f (-1)的值; (2)求f (x )在[-1,1]上的解析式.20.(12分)已知函数f (x )=x 2+2ax +3,x ∈[-4,6]. (1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数;(3)当a =1时,求f (|x |)的单调区间. 21.(12分)已知函数f (x )=x 3+x -16. (1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标; 22.(12分)已知函数f (x )=x 3-3ax -1,a ≠0. (1)求f (x )的单调区间;(2)若f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图像有三个不同的交点,求m 的取值范围.2016届高三上学期第一次月考数学答题卡一、选择题(共12小题,每小题5分,共60分,每小题有一个正确答案)13、 14、15、 16、三、解答题17.(10分) 化简:(1)131421413223b a b a ab b a -(a >0,b >0);(2)(-278)23-+(0.002)12--10(5-2)-1+(2-3)0.18.(10分)已知函数f (x )=1a -1x(a >0,x >0),(1)求证(用单调性的定义证明):f (x )在(0,+∞)上是增函数; (2)若f (x )在[12,2]上的值域是[12,2],求a 的值.19.(12分)已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (1)和f (-1)的值; (2)求f (x )在[-1,1]上的解析式.20.(12分)已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;21.(13分)已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;(3)当a=1时,求f(|x|)的单调区间.22.(13分)已知函数f(x)=x3-3ax-1,a≠0.(1)求f(x)的单调区间;(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图像有三个不同的交点,求m的取值范围.2016届高三上学期第一次月考数学文试卷参考答案1.B2.A3.D4.D5.D6.A7.A8.D9.B10.B11.B12.A13. x -y -2=0 14. {x |-32<1}<="" p="">15. (0,1] 16. (512,34]17. 解 (1)原式=121311113233211212633311233().a b a b abab ab a b+-++----==(2)原式=(-278)23-+(1500)12--105-2+1=(-827)23+50012-10(5+2)+1=49+105-105-20+1=-1679. 18. (1)证明设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0,∵f (x 2)-f (x 1)=(1a -1x 2)-(1a -1x 1)=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数. (2)解∵f (x )在[12,2]上的值域是[12,2],又f (x )在[12,2]上单调递增,∴f (12)=12,f (2)=2.易得a =25.19. 解(1)∵f (x )是周期为2的奇函数,∴f (1)=f (1-2)=f (-1)=-f (1),∴f (1)=0,f (-1)=0. (2)由题意知,f (0)=0. 当x ∈(-1,0)时,-x ∈(0,1).由f (x )是奇函数,∴f (x )=-f (-x )=-2-x4-x +1=-2x4x +1,综上,在[-1, 1]上,f (x )=2x4x +1,x ∈(0,1),-2x 4x+1,x ∈(-1,0),0,x ∈{-1,0,1}.20.解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,∵x ∈[-4,6],∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增,∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35. (2)∵函数f (x )的图像开口向上,对称轴是x =-a ,∴要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4. (3)当a =1时,f (x )=x 2+2x +3,∴f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=?x 2+2x +3,x ∈(0,6],x 2-2x +3,x ∈[-6,0],∴f (|x |)的单调递增区间是(0, 6],单调递减区间是[-6,0].21.解 (1)可判定点(2,-6)在曲线y =f (x )上.∵f ′(x )=(x 3+x -16)′=3x 2+1.∴f ′(x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. ∴切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)法一设切点为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16,又∵直线l 过点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得,x 30=-8,∴x 0=-2,∴y 0=(-2)3+(-2)-16=-26,k =3×(-2)2+1=13. ∴直线l 的方程为y =13x ,切点坐标为(-2,-26.) 法二设直线l 的方程为y =kx ,切点为(x 0,y 0),则k=y0-0x0-0=x30+x0-16x0又∵k=f′(x0)=3x20+1,∴x30+x0-16x0=3x2+1,解之得x0=-2,∴y0=(-2) 3+(-2)-16=-26,k=3×(-2)2+1=13.∴直线l的方程为y=13x,切点坐标为(-2,-26).22.解(1)f′(x)=3x2-3a=3(x2-a),当a<0时,对x∈R,有f′(x)>0,∴当a<0时,f(x)的单调增区间为(-∞,+∞).当a>0时,由f′(x)>0,解得x<-a或x>a.由f′(x)<0,解得-a<x<a,< p="">∴当a>0时,f(x)的单调增区间为(-∞,-a),(a,+∞),单调减区间为(-a,a).(2)∵f(x)在x=-1处取得极值,∴f′(-1)=3×(-1)2-3a=0,∴a=1.∴f(x)=x3-3x-1,f′(x)=3x2-3,由f′(x)=0,解得x1=-1,x2=1.由(1)中f(x)的单调性可知,f(x)在x=-1处取得极大值f(-1)=1,在x=1处取得极小值f(1)=-3.∵直线y=m与函数y=f(x)的图像有三个不同的交点,结合如图所示f(x)的图像可知:实数m的取值范围是(-3,1).</x<a,<>。

2019-2020年高一下学期第一次月考语文试卷 含答案

2019-2020年高一下学期第一次月考语文试卷 含答案

2019-2020年高一下学期第一次月考语文试卷含答案第一次质量监测考试语文学科试卷出题人:王风华审题人:赵珊考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷分第Ⅰ卷、第Ⅱ卷和答题卡,共3页。

满分120分,考试用时120分钟。

考试结束后,请将答题卡卷交回,试题卷自己保存。

2.答题前,请您务必将自己的班级、姓名、学号、考号用0.5毫米黑色签字笔填写在答题卡上。

3.作答非选择题必须用0.5毫米的黑色签字笔写在答题卡上的指定位置,在其它位置作答一律无效。

4.保持答题卷清洁、完整,严禁使用涂改液和修正带。

一、阅读下面文段,回答问题。

(28分)(一)阅读下面的文言文,完成1-3题。

(9分)姚文然,字弱侯,江南桐城人。

明崇祯十六年进士,改庶吉士。

顺治三年,以安庆巡抚李犹龙荐,授国史院庶吉士。

五年,改礼科给事中。

六年,疏请“敕抚、按、道恩诏清理刑狱,勿任有司稽.玩。

条赦之外,有可矜疑原宥者,许专疏上陈”。

又请重定会试..下第举人选用例,以广任使。

又请敕各省督抚勿滥委私人署.州县官。

诸疏皆下部议行。

寻转工科。

八年,世祖亲政,疏请令都察院甄别各省巡按,下部院会议,以六等考核,黜陟..有差。

是岁,江南、浙江被水,文然请灾地漕米改折,视灾重轻定折多寡。

既,又言:“折漕例新定,民未周知。

官吏或折外重征耗银,或先已征米而又收折,或折重运轻,其弊不一。

请敕漕臣密察严劾。

”上并采纳。

十年,疏言大臣得罪不当锁禁,得旨允行。

迁兵科都给事中,乞归养...。

康熙五年,起补户科给事中。

九年,考满内升,命以正四品顶带食俸任事。

故事,给事中内升,还籍候补。

留任自文然始。

文然与魏象枢皆以给事中敢言负.清望,号“姚魏”。

十年,两江总督麻勒吉坐事逮诣京师,仍用锁系.例。

文然复上疏论之,上谕:“自后命官赴质,概免锁系,著为令。

”寻迁副都御史,再迁刑部侍郎。

十二年,调兵部督捕侍郎。

京口副都统张所养劾将军柯永蓁徇私纵恣,令文然往按,永蓁坐罢。

2022-2023学年四川省内江市高二年级下册学期第一次月考数学(文)试题【含答案】

2022-2023学年四川省内江市高二年级下册学期第一次月考数学(文)试题【含答案】

2022-2023学年四川省内江市高二下学期第一次月考数学(文)试题一、单选题1.命题“”的否定是( )20,10x x ∃>->A .B .20,10x x ∃≤->20,10x x ∃>-≤C .D .20,10x x ∀>-≤20,10x x ∀≤->【答案】C【分析】由特称命题的否定是全称命题即可得出答案.【详解】命题“”的否定是:.20,10x x ∃>->20,10x x ∀>-≤故选:C.2.椭圆的离心率是( )22124x y +=A B C D 【答案】A【分析】根据题意求,再求离心率即可.,,a b c【详解】由题意可得:y 轴上,则2,a b ==c ==故椭圆的离心率是22124x y +=c e a =故选:A.3.下列说法正确的是( )A .若为假命题,则p ,q 都是假命题p q ∨B .“这棵树真高”是命题C .命题“使得”的否定是:“,”R x ∃∈2230x x ++<R x ∀∈2230x x ++>D .在中,“”是“”的充分不必要条件ABC A B >sin sin A B >【答案】A【分析】若为假命题,则p ,q 都是假命题,A 正确,“这棵树真高”不是命题,B 错误,否定是:p q ∨“,”,C 错误,充分必要条件,D 错误,得到答案.R x ∀∈2230x x ++≥【详解】对选项A :若为假命题,则p ,q 都是假命题,正确;p q ∨对选项B :“这棵树真高”不是命题,错误;对选项C :命题“使得”的否定是:“,”,错误;R x ∃∈2230x x ++<R x ∀∈2230x x ++≥对选项D :,则,,故,充分性;若,则A B >a b >22a b R R >sin sin A B >sin sin A B >,,则,必要性,故是充分必要条件,错误.2sin 2sin R A R B ⋅>⋅a b >A B >故选:A4.在如图所示的正方体中,异面直线与所成角的大小为( )1111ABCD A B C D -1A B 1B CA .30°B .45°C .60°D .90°【答案】C【分析】根据异面直线所成角的定义及正方体的特征求解【详解】连接,,如图,1A D DB因为正方体中,11//A D B C 所以就是与所成的角,1BA D ∠1A B 1B C 在中,.1BA D 11A D A B BD ==∴.160BA D ∠=︒故选:C5.已知双曲线的两条渐近线相互垂直,焦距为,则该双曲线的虚轴长为()222210,0x y a b a b -=>>12( )A .B .C .D .6【答案】B【分析】分析可得,求出的值,即可得出双曲线的虚轴长.b a =b 【详解】双曲线的渐近线方程为,()222210,0x y a b a b -=>>b y x a =±由题意可知,可得,所以,,则1b ba a -⋅=-b a =6c ===b =因此,该双曲线的虚轴长为2b =故选:B.6.若直线与焦点在x 轴上的椭圆总有公共点,则n 的取值范围是( )2y mx =+2219x y n +=A .B .C .D .(]0,4()4,9[)4,9[)()4,99,∞⋃+【答案】C【分析】由题得直线所过定点在椭圆上或椭圆内,代入椭圆得到不等式,再结合椭圆焦点在()0,2轴上即可.x 【详解】直线恒过定点,若直线与椭圆总有公共点,2y mx =+()0,2则定点在椭圆上或椭圆内,,解得或,()0,241n ∴≤4n ≥0n <又表示焦点在轴上的椭圆,故,,2219x y n += x 09n <<[)4,9n ∴∈故选:C.7.已知,分别为双曲线的左、右焦点,为双曲线右支上一点,满足,1F 2F 22145x y -=M 12MF MF ⊥则的面积为( )12F MF △A .B .CD .510【答案】A 【分析】由可以求得M 在以原点为圆心,焦距为直径的圆周上,写出圆的方程,与双曲12MF MF ⊥线的方程联立求得M 的坐标,进而得到所求面积.【详解】设双曲线的焦距为,则.2c 2459c =+=因为,所以为圆与双曲线的交点.12MF MF ⊥M 229x y +=联立,解得,22229145x y x y ⎧+=⎪⎨-=⎪⎩53y =±所以的面积为.12F MF △156523⨯⨯=故选:A.【点睛】本题考查与双曲线有关的三角形面积最值问题,利用轨迹方程法是十分有效和简洁的解法.8.已知椭圆的左、右焦点分别为,过坐标原点的直线交于两点,2222:1(0)x y E a b a b +=>>12,F F E ,P Q 且,且,则椭圆的标准方程为( )22PF F Q⊥2224,6PF Q S PF F Q =+= E A .B .22143x y +=22154x y +=C .D .22194x y +=22195x y +=【答案】C【分析】根据椭圆的定义可求,结合三角形的面积可求,进而可得答案.3a =c 【详解】如图,连接,由椭圆的对称性得四边形为平行四边形,11,PF QF 12PFQF 所以,得.222126PF F Q PF PF a +=+==3a =又因为,所以四边形为矩形,设,22PF F Q ⊥12PFQF 22,==PF m QF n 则,所以得或;2142PF QS mn == 6,8,m n mn +=⎧⎨=⎩ 42m n =⎧⎨=⎩24m n =⎧⎨=⎩则,12F F =2224c b ac ==-=椭圆的标准方程为.E 22194x y +=故选:C.9.当双曲线的焦距取得最小值时,双曲线M 的渐近线方程为222:1(20)26x y M m m m -=-≤<+( )A .y =B .y =xC .y =±2xD .y =±x12【答案】C【解析】求得关于的函数表达式,并利用配方法和二次函数的性质得到取得最小值时的值,2c m m 进而得到双曲线的标准方程,根据标准方程即可得出渐近线方程【详解】由题意可得c 2=m 2+2m +6=(m +1)2+5,当m =-1时,c 2取得最小值,即焦距2c 取得最小值,此时双曲线M 的方程为,所以渐近线方程为y =±2x .2214y x -=故选:C .【点睛】本题考查双曲线的标准方程与几何性质,属基础题,掌握双曲线的基本量的关系是,,a b c 关键.由双曲线的方程:的渐近线可以统一由得出.22(0,0)Ax By AB λλ+=<≠220Ax By +=10.已知,是椭圆C 的两个焦点,P 为C 上一点,,若C ,则1F 2F 122PF PF =( )12F PF ∠=A .B .C .D .150︒120︒90︒60︒【答案】B【分析】根据椭圆的定义,结合余弦定理、椭圆离心率的公式进行求解即可.【详解】解:记,,由,及,得,,又由余弦定11r PF =22r PF =122r r =122r r a +=143r a =223r a=理知,得.2221212122cos 4r r r r F PF c +-⋅∠=222122016cos 499a a F PF c -⋅∠=由,从而,∴.c e a ==2279c a =2212168cos 99a a F PF ⋅∠=-121cos 2F PF ∠=-∵,∴.120180F PF ︒<∠<︒12120F PF ∠=︒故选:B11.吹奏乐器“埙”(如图1)在古代通常是用陶土烧制的,一种埙的外轮廓的上部是半椭圆,下部是半圆.半椭圆(,且为常数)和半圆组成的曲线22221y x a b +=0y ≥0a b >>()2220x y b y +=<如图2所示,曲线交轴的负半轴于点,交轴的正半轴于点,点是半圆上任意一点,C C x A y G M 当点的坐标为时,的面积最大,则半椭圆的方程是()M 12⎫-⎪⎪⎭AGM A .B .()2241032x y y +=≥()22161093x y y +=≥C .D .()22241033x y y +=≥()22421033x y y +=≥【答案】D【分析】由点在半圆上,可求,然后求出G ,A ,根据已知的面积最大的条12M ⎫-⎪⎪⎭b AGM 件可知,,即,代入可求,进而可求椭圆方程OM AG ⊥1OM AGk k ⋅=-a 【详解】由点在半圆上,所以,12M ⎫-⎪⎪⎭b=(0,),(,0)G a A b -要使的面积最大,可平行移动AG ,当AG 与半圆相切于时,M 到直线AG 的AGM 12M ⎫-⎪⎪⎭距离最大, 此时,即,OM AG ⊥1OM AGk k ⋅=-又,OM AG ak k b ===1,a a b =-∴==所以半椭圆的方程为()22421033x y y +=≥故选:D12.已知,为椭圆与双曲线的公共焦点,1F 2F ()221112211:10x y C a b a b +=>>()222222222:10,0x y C a b a b -=>>是它们的一个公共点,且,,分别为曲线,的离心率,则的最小值为M 12π3F MF ∠=1e 2e 1C 2C 12e e ( )ABC .1D .12【答案】A【分析】由题可得,在中,由余弦定理得112212MF a a MF a a =+⎧⎨=-⎩12MF F △,结合基本不等式得,即可解决.2221212122cos3F F MF MF MF MF π=+-⋅⋅222121243c a a a =+≥【详解】由题知,,为椭圆与双曲线的1F 2F ()221112211:10x y C a b a b +=>>()222222222:10,0x y C a b a b -=>>公共焦点,是它们的一个公共点,且,,分别为曲线,的离心率,M 123F MF π∠=1e 2e 1C 2C 假设,12MF MF >所以由椭圆,双曲线定义得,解得,12112222MF MF a MF MF a +=⎧⎨-=⎩112212MF a a MF a a =+⎧⎨=-⎩所以在中,,由余弦定理得12MF F △122F F c =,即222121212π2cos3F F MF MF MF MF =+-⋅⋅,()()()()22212121212π42cos3c a a a a a a a a =++--+⋅-化简得,2221243=+c a a 因为,222121243c a a a =+≥所以,212c a a ≥=12≥e e 当且仅当时,取等号,12a =故选:A二、填空题13.过椭圆的一个焦点的直线与椭圆交于A ,B 两点,则A 与B 和椭圆的另一个焦点2241x y +=1F 构成的的周长为__________2F 【答案】4【分析】先将椭圆的方程化为标准形式,求得半长轴的值,然后利用椭圆的定义进行转化即可求a 得.【详解】解:椭圆方程可化为,显然焦点在y 轴上,,22114x y +=1a =根据椭圆定义,121222AF AF a BF BF a+=+=,所以的周长为.2ABF 121244AF AF BF BF a +++==故答案为4.14.若命题“,”为假命题,则a 的取值范围是______.x ∀∈R 210ax ax ++≥【答案】(,0)(4,)-∞+∞ 【分析】先求得命题为真时的等价条件,取补集即可得到为假命题时的参数取值范围.【详解】当时,命题为“,”,该命题为真命题,不满足题意;0a =x ∀∈R 10≥当时,命题,可得到,解得,0a ≠R x ∀∈210ax ax ++≥2Δ400a a a ⎧=-≤⎨>⎩04a <≤故若命题“,”是假命题,则R x ∀∈210ax ax ++≥(,0)(4,)a ∈-∞+∞ 故答案为:(,0)(4,)-∞+∞ 15.已知椭圆C :,,为椭圆的左右焦点.若点P 是椭圆上的一个动点,点A 的坐2212516x y +=1F 2F 标为(2,1),则的范围为_____.1PA PF +【答案】[10【分析】利用椭圆定义可得,再根据三角形三边长的关系可知,当共线时即1210PF PF =-2,,A P F 可取得最值.1PA PF +【详解】由椭圆标准方程可知,5,3a c ==12(3,0),(3,0)F F -又点P 在椭圆上,根据椭圆定义可得,所以12210PF PF a +==1210PF PF =-所以1210PA PF PA PF +=+-易知,当且仅当三点共线时等号成立;222AF PA PF AF -≤-≤2,,A P F=10+即的范围为.1PA PF +[10+故答案为:[1016.己知,是双曲线C 的两个焦点,P为C 上一点,且,,若1F 2F 1260F PF ∠=︒()121PF PF λλ=>C ,则的值为______.λ【答案】3【分析】根据双曲线的定义及条件,表示出,结合余弦定理求解即可.12,PF PF 【详解】由及双曲线的定义可得,12(1)PF PF λλ=>122(1)2PF PF PF aλ-=-=所以,,因为,在中,221aPF λ=-121a PF λλ=-1260F PF ∠=︒12F PF △由余弦定理可得,222222442242cos 60(1)(1)11a a a ac λλλλλλ=+-⨯⋅⋅︒----即,所以,2222(1)(1)c a λλλ-=-+2222217(1)4c e a λλλ-+===-即,解得或(舍去).231030λλ-+=3λ=13λ=故答案为:3三、解答题17.已知,,其中m >0.2:7100p x x -+<22430q :x mx m -+<(1)若m =4且为真,求x 的取值范围;p q ∧(2)若是的充分不必要条件,求实数m 的取值范围.q ⌝p ⌝【答案】(1)()4,5(2)5,23⎡⎤⎢⎥⎣⎦【分析】(1)解不等式得到,,由为真得到两命题均为真,从而求出:25p x <<q :412x <<p q ∧的取值范围;x (2)由是的充分不必要条件,得到是的充分不必要条件,从而得到不等式组,求出实q ⌝p ⌝p q数m 的取值范围.【详解】(1),解得:,故,27100x x -+<25x <<:25p x <<当时,,解得:,故,4m =216480x x +<-412x <<q :412x <<因为为真,所以均为真,p q ∧,p q 所以与同时成立,:25p x <<q :412x <<故与求交集得:,25x <<412x <<45x <<故的取值范围时;x ()4,5(2)因为,,解得:,0m >22430x mx m -+<3m x m <<故,:3q m x m <<因为是的充分不必要条件,所以是的充分不必要条件,q ⌝p ⌝p q即,但,:25:3p x q m x m <<⇒<<:3q m x m <<⇒:25p x <<故或,0235m m <≤⎧⎨>⎩0235m m <<⎧⎨≥⎩解得:,523m ≤≤故实数m 的取值范围是5,23⎡⎤⎢⎥⎣⎦18.求适合下列条件的圆锥曲线的标准方程;(1)短轴长为的椭圆;23e =(2)与双曲线具有相同的渐近线,且过点的双曲线.22143y x -=()3,2M -【答案】(1)或22195x y+=22195y x +=(2)22168x y -=【分析】(1)根据题意求出、、的值,对椭圆焦点的位置进行分类讨论,可得出椭圆的标准a b c 方程;(2)设所求双曲线方程为,将点的坐标代入所求双曲线的方程,求出的值,()22043y x λλ-=≠M λ即可得出所求双曲线的标准方程.【详解】(1)解:由题意可知.23b c a b ⎧=⎪⎪=⎨⎪⎪=⎩32a b c =⎧⎪=⎨⎪=⎩若椭圆的焦点在轴上,椭圆的标准方程为,x 22195x y +=若椭圆的焦点在轴上,椭圆的标准方程为.y 22195y x +=综上所述,所求椭圆的标准方程为或.22195x y +=22195y x +=(2)解:设所求双曲线方程为,()22043y x λλ-=≠将点代入所求双曲线方程得,()3,2-()2223243λ-=-=-所以双曲线方程为,即.22243y x -=-22168x y -=19.已知直棱柱的底面ABCD 为菱形,且,为1111ABCD A B C D-2AB AD BD ===1AA =E 的中点.11B D (1)证明:平面;//AE 1BDC (2)求三棱锥的体积.1E BDC -【答案】(1)证明见解析(2)1【分析】(1)根据平行四边形的判定定理和性质,结合菱形的性质、线面平行的判定定理进行证明即可;(2)根据菱形的性质、直棱柱的性质,结合线面垂直的判定定理、三棱锥的体积公式进行求解即可.【详解】(1)连接AC 交BD 于点,连接,F 1C F 在直四棱柱中,,1111ABCD A B C D -11//AA CC 11=AA CC 所以四边形为平行四边形,即,,11AA C C 11//AC A C 11=AC A C 又因为底面ABCD 为菱形,所以点为AC 的中点,F 点为的中点,即点为的中点,所以,,E 11B D E 11A C 1//C E AF 1C E AF =即四边形为平行四边形,所以,1AFC E 1//AE C F 因为平面,平面,,所以平面;1C F ⊂1BDC AE ⊄1BDC //AE 1BDC (2)在直棱柱中平面,平面,1111ABCD A B C D -1BB ⊥1111D C B A 11A C ⊂1111D C B A 所以,111BB A C ⊥又因为上底面为菱形,所以,1111D C B A 1111B D A C ⊥因为平面,1111111,,B D BB B B D BB =⊂ 11BB D D 所以平面,11A C ⊥11BB D D 因为在中,,ABD △2AB AD BD ===且点为BD 的中点,所以,即FAF ==1C E =所以.11111121332E BDC C BDE BDE V V S C E --==⋅=⨯⨯=△20.已知椭圆E :.()222210x y a b a b +=>>(P (1)求椭圆E 的方程;(2)若直线m 过椭圆E 的右焦点和上顶点,直线l 过点且与直线m 平行.设直线l 与椭圆E 交()2,1M 于A ,B 两点,求AB 的长度.【答案】(1)221168x y +=【分析】(1)由待定系数法求椭圆方程.(2)运用韦达定理及弦长公式可求得结果.【详解】(1)由题意知,,,设椭圆E 的方程为.e =a=b c =222212x y b b +=将点的坐标代入得:,,所以椭圆E 的方程为.P 28b =216a=221168x y +=(2)由(1)知,椭圆E 的右焦点为,上顶点为,所以直线m 斜率为(0,,1k ==-由因为直线l 与直线m 平行,所以直线l 的斜率为,1-所以直线l 的方程为,即,()12y x -=--30x y +-=联立,可得,2211683x y y x ⎧+=⎪⎨⎪=-+⎩231220x x -+=,,,1200∆=>124x x +=1223x x =.==21.已知双曲线.221416x y -=(1)试问过点能否作一条直线与双曲线交于,两点,使为线段的中点,如果存在,()1,1N S T N ST 求出其方程;如果不存在,说明理由;(2)直线:与双曲线有唯一的公共点,过点且与垂直的直线分别交轴、l ()2y kx m k =+≠±M M l x 轴于,两点.当点运动时,求点的轨迹方程.y ()0,0A x ()00,B y M 00(,)P x y 【答案】(1)不能,理由见解析;(2),.22100125x y -=0y ≠【分析】(1)设出直线的方程,与双曲线方程联立,由判别式及给定中点坐标计算判断作答.ST (2)联立直线与双曲线的方程,由给定条件得到,求出的坐标及过点与直线l ()2244m k =-M M 垂直的直线方程,即可求解作答.l 【详解】(1)点不能是线段的中点,N ST 假定过点能作一条直线与双曲线交于,两点,使为线段的中点,()1,1N S T N ST 显然,直线的斜率存在,设直线的方程为,即,ST ST ()11y n x -=-1y nx n =-+而双曲线渐近线的斜率为,即,221416x y -=2±2n ≠±由得,则有,解得,2211416y nx n x y =-+⎧⎪⎨-=⎪⎩()22242(1)(1)160n x n n x n -+----=2(1)14n n n --=-4n =此时,即方程组无解,22224(1)4(4)[(1)16]4169412250n n n n '∆=----+=⨯⨯-⨯⨯<所以过点不能作一条直线与双曲线交于,两点,使为线段的中点.()1,1N S T N ST (2)依题意,由消去y 整理得,221416x y y kx m ⎧-=⎪⎨⎪=+⎩()()22242160k x kmx m ---+=因为,且是双曲线与直线唯一的公共点,2k ≠±M l 则有,即,点M 的横坐标为,()()222Δ(2)44160km k m =-+-+=()2244m k =-244km kkm =--点,,过点与直线垂直的直线为,416(,)k M m m --0km ≠M l 1614()k y x m k m +=-+因此,,,,020k x m =-020y m =-2222002224164(4)110025x y k k m m m --=-==00y ≠所以点的轨迹方程为,.00(,)P x y 22100125x y -=0y ≠22.已知椭圆:上的点到左、右焦点,的距离之和为4.C ()222210x y a b a b +=>>31,2A ⎛⎫ ⎪⎝⎭1F 2F (1)求椭圆的方程.C (2)若在椭圆上存在两点,,使得直线与均与圆相切,问:C P Q AP AQ ()222322x y r ⎛⎫-+-= ⎪⎝⎭()0r >直线的斜率是否为定值?若是定值,请求出该定值;若不是定值,请说明理由.PQ 【答案】(1)22143x y +=(2)是定值,定值为12【分析】(1)由椭圆的定义结合性质得出椭圆的方程.C (2)根据直线与圆的位置关系得出,将直线的方程代入椭圆的方程,由韦达定理得21k k =-AP C 出坐标,进而由斜率公式得出直线的斜率为定值.,P Q PQ 【详解】(1)由题可知,所以.24a =2a =将点的坐标代入方程,得A 31,2⎛⎫⎪⎝⎭22214x y b +=23b =所以椭圆的方程为.C 22143x y +=(2)由题易知点在圆外,且直线与的斜率均存在.A ()()2223202x y r r ⎛⎫-+-=> ⎪⎝⎭AP AQ 设直线的方程为,直线的方程是AP ()1312y k x -=-AQ ()2312y k x -=-由直线与圆相切,AP ()()2223202x y r r ⎛⎫-+-=> ⎪⎝⎭r=r=.=21k k =-将直线的方程代入椭圆的方程,AP C 可得.()()222111113443241230k x k k x k k ++-+--=设,.因为点也是直线与椭圆的交点,(),P P P x y (),Q Q Q x y 31,2A ⎛⎫ ⎪⎝⎭AP 所以,21121412334P k k x k --=+1132P P y k x k =+-因为,所以,21k k =-21121412334Q k k x k +-=+1132Q Q y k x k =-++所以直线的斜率PQ Q P PQ Q Py y k x x -=-()112Q P Q Pk x x k x x -++=-22111111221122111122114123412323434412341233434k k k k k k k k k k k k k k ⎛⎫+----++ ⎪++⎝⎭=+----++()()22111118623424k k k k k --++=12=。

高一下学期第一次月考数学试题(解析版

高一下学期第一次月考数学试题(解析版
在 中角 所对的边分别为 __________.
(1)求角 ;
(2)求 的取值范围.
【18题答案】
【答案】(1)条件选择见解析
(2)
【解析】
【分析】(1)若选①由正弦定理得 即可求出 ;若选②由正弦定理得 即可求出 .
(2)用正弦定理得表示出 得到 利用三角函数求出 的取值范围.
【小问1详解】
若选①则由正弦定理得
【解析】
【分析】由题可得 .作差法可判断A;用基本不等式可判断B;分别化简不等式左边和右边可判断C;假设法可判断D.
【详解】如图
易知 .
A: (当 时取等号) 故A正确;
B: (当 时取等号)故B正确;
C:
又 (当 时取等号) 故C正确;
D:假设 成立



当 且 时上式不成立故D错误.
故选:ABC.
同理由 三点共线则存在实数 使得
所以 解得 所以 所以A正确.
又由 且
可得 解得 则
可得 所以B正确;
又由
当且仅当 时等号成立所以C正确.
又由 可得 所以D不正确.
故选:ABC.
12.设 分别为 中ab两边上的高 的面积记为S.当 时下列不等式正确的是( )
A. 【20题答案】
【答案】(1)
(2)
【解析】
【分析】(1)由最大值和最小值求得 的值由 以及 可得 的值再由最高点可求得 的值即可得 的解析式由正弦函数的对称中心可得 对称中心;
(2)由图象的平移变换求得 的解析式由正弦函数的性质可得 的值域令 的取值为 的值域解不等式即可求解.
【小问1详解】
由题意可得: 可得 所以
A. B.
C. D.

2022-2023学年上海市新川中学高一年级下册学期第一次月考数学试题【含答案】

2022-2023学年上海市新川中学高一年级下册学期第一次月考数学试题【含答案】

2022-2023学年上海市新川中学高一下学期第一次月考数学试题一、填空题1.的终边经过点,则的正切值为________.α()5,12-α【答案】125-【分析】直接根据正切函数的广义定义带入即可算出.【详解】.1212tan 55y x α-===-故答案为: .125-2.已知是第二象限角,,则________.α1sin 3α=πsin 2α⎛⎫+=⎪⎝⎭【答案】【分析】根据诱导公式,结合同角的三角函数关系式进行求解即可.【详解】因为是第二象限角,,α1sin 3α=所以πsin cos 2αα⎛⎫+==== ⎪⎝⎭故答案为:3.已知角终边上一点,则________.α()2,3P -()()πcos sin π23πcos πcot 2αααα⎛⎫+- ⎪⎝⎭=⎛⎫++ ⎪⎝⎭【答案】【分析】根据三角函数定义及诱导公式化简即可得解.【详解】由诱导公式知,,()()πcos sin πsin sin 2sin 3πcos (tan )cos πcot 2ααααααααα⎛⎫+- ⎪-⋅⎝⎭===--⋅-⎛⎫++ ⎪⎝⎭因为角终边上一点,α()2,3P -所以sin α所以原式sin α=-=故答案为:4化成的形式___________.cos x x -sin()(0,02)A x A ϕϕπ+>≤<【答案】112sin 6x π⎛⎫+ ⎪⎝⎭,再由诱导公式将其转化为cos 2sin(6x x x π-=-的形式即可.sin()(0,02)A x A ϕϕπ+>≤<,1cos cos )2(sin cos cos sin 2sin()2666x x x x x x x πππ-=-=-=-.112sin()2sin[2(2sin()666x x x ππππ-=+-=+故答案为:.112sin()6x π+5.化简________.()()()()sin 70cos 10cos 70sin 170αααα︒+︒+-︒+︒-=【分析】根据诱导公式以及两角和的正弦公式进行化简,即可求得答案.【详解】由题意可得()()()()sin 70cos 10cos 70sin 170αααα︒+︒+-︒+︒-()()()()sin 70cos 10cos 70sin 10αααα=︒+︒+-︒+︒+()()7010]sin 6sin[0αα︒+-︒+=︒==6.若,则_______________.1cos()3αβ-=22(sin sin )(cos cos )αβαβ+++=【答案】83【解析】原式展开,利用、两角差的余弦公式,化简整理,即可得答案.22sin cos 1αα+=【详解】222222(sin sin )(cos cos )sin +sin 2sin sin cos cos 2cos cos αβαβαβαβαβαβ+++=++++=.22sin sin 2cos 282cos()2323cos αβαβαβ++=+-=+=故答案为:83【点睛】本题考查同角三角函数的关系,两角差的余弦公式,考查计算化简的能力,属基础题.7.已知,,则________.2tan()5αβ+=1tan()44πβ-=tan()4πα+=【答案】322【分析】由,再结合两角差的正切公式求解即可.()()44ππααββ+=+--【详解】解:因为,,2tan()5αβ+=1tan()44πβ-=又,()()44ππααββ+=+--所以=,tan()tan()4tan()tan[()()]441tan()tan()4παββππααββπαββ+--+=+--=++-213542122154-=+⨯故答案为.322【点睛】本题考查了两角差的正切公式及考查了角的拼凑,重点考查了观()()44ππααββ+=+--察能力及运算能力,属中档题.8.已知则________.1sin cos 3αα+=2πcos 4α⎛⎫-=⎪⎝⎭【答案】118【分析】由两角差余弦公式可得,结合条件可求.πππcos cos cos sin sin444ααα⎛⎫-=+ ⎪⎝⎭2πcos 4α⎛⎫- ⎪⎝⎭【详解】因为πππcos cos cos sin sin444ααα⎛⎫-=+ ⎪⎝⎭所以,)πcos cos sin 4ααα⎛⎫-+ ⎪⎝⎭又,1sin cos 3αα+=所以,2π111cos 42918α⎛⎫-=⨯=⎪⎝⎭故答案为:.1189.中,,,________.ABC 60A ∠=︒75C ∠=︒a =ABC S = 【分析】根据正弦定理可求得c ,再求出B ,根据三角形面积公式即可求得答案.【详解】因为sin 75sin(4530)sin 45cos30cos 45sin 30︒=︒+=︒+︒在中,由正弦定理可得,ABC sin ,sin sin sin a c a C c A C A =∴===因为,,故,60A ∠=︒75C ∠=︒45B ∠=︒所以,11sin 22ABC S ac B ===10.边长为10,14,16的三角形中最大角与最小角的和为________.【答案】##2π3120【分析】利用余弦定理求得最大角与最小角的和的补角即可.【详解】解:设边长为10,14,16分别对应边a ,b ,c ,由余弦定理得:,2222221016141cos 2210162a c b B ac +-+-===⨯⨯因为,()0,B π∈所以,则,3B π=23A C π+=故三角形中最大角与最小角的和为,2π3故答案为:2π311.在中,边,,则角的取值范围是________________.ABC ∆2BC =AB C 【答案】0,3π⎛⎤ ⎝⎦【分析】利用余弦定理构建方程,利用判别式可得不等式,从而可求角的取值范围.C 【详解】由题意,设,由余弦定理得,AC b =2222cos AB AC BC AC BC C =+-⋅⋅即,即,,2344cos b b C =+-24cos 10b b C -+=216cos 40C ∴∆=-≥或,1cos 2C ∴≥1cos 2C ≤-,不可能为钝角,则,AB BC < C ∴1cos 2C ≥又,.0C >03C π∴<≤因此,角的取值范围是.C 0,3π⎛⎤ ⎥⎝⎦故答案为:.0,3π⎛⎤ ⎥⎝⎦【点睛】本题考查余弦定理的运用,考查解不等式,解题的关键是利用余弦定理构建方程,利用判别式得不等式,属于中等题.12.已知,存在实数,使得对任意,总成立,则的最小值是0θ>ϕn N *∈()cos cos8n πθϕ+<θ______.【答案】27π【分析】作出单位圆,根据终边位置可得;结合,即可求得最n θϕ+4πθ>2N πθ*∈()2k N k πθ*=∈小值.【详解】作出单位圆如图所示,由题意知:的终边需落在图中阴影部分区域,n θϕ+,即,()()188n n ππθϕθϕθ⎛⎫∴++-+=>--⎡⎤ ⎪⎣⎦⎝⎭4πθ>对任意,总成立,,即,n N *∈()cos cos 8n πθϕ+<2N πθ*∴∈()2k N k πθ*=∈又,,.4πθ>1,2,3,4,5,6,7k ∴=min 27πθ∴=故答案为:.27π【点睛】关键点点睛:本题考查三角函数中的恒成立问题的求解,解题关键是能够根据三角函数定义,结合单位圆,确定角的终边的位置,进而利用位置关系构造不等式求得所求变量所满足的范围.二、单选题13.下列命题中,正确的是( )A .第二象限角大于第一象限角;B .若是角终边上一点,则()(),20P a a a ≠αsin α=C.若,则、的终边相同;sin sin αβ=αβD ..tan x =ππ,Z 3x x k k ⎧⎫=-∈⎨⎬⎩⎭【答案】D【分析】取特例可判断AC ,根据三角函数的定义判断B ,利用周期解出三角方程的解集判断D.【详解】因为象限角不能比较大小,如是第二象限角,是第一象限角,故A 错误;100α=︒400β=︒因为是角终边上一点,所以,()(),20P a a a ≠α|r a==所以B 错误;sin α==当时,满足,但、的终边不相同,故C 错误;π2π,33αβ==sin sin αβ=αβ当上的解为,故在定义域上的解为,tan x =ππ(,)22-π3-ππ,Z 3x x k k ⎧⎫=-∈⎨⎬⎩⎭故D 正确.故选:D14.化简 )A .B .C .D .2sin 22sin 2-2sin 24cos 2-2sin 24cos2-+【答案】C【分析】根据正弦、余弦的二倍角公式即可求解.【详解】又2sin 2cos 22cos 2==-+因为,所以,即原式22ππ<<sin 20,cos 20><2sin 24cos 2=- 故选C【点睛】本题考查正弦、余弦的二倍角公式,属于基础题.15.中,设,则的形状为( )ABC 21cos cos cos 2CA B -=ABC A .直角三角形B .锐角三角形C .等腰三角形D .钝角三角形【答案】C 【分析】先将降幂扩角,再将利用诱导公式换成,再利用和角公式展开即可2cos 2Ccos C ()cos A B -+得出结论.【详解】由得21cos cos cos 2C A B -=1cos 1cos cos 2CA B +-=整理得,因为,12cos cos cos A B C -=πA B C ++=所以()()cos cos πcos cos cos sin sin C A B A B A B A B=-+=-+=-+⎡⎤⎣⎦所以12cos cos cos cos sin sin A B A B A B -=-+所以()1cos cos sin sin cos A B A B A B =+=-又因为,所以,即.(),0,πA B ∈0A B -=A B =所以为等腰三角形.ABC 故选:C.16.设a ,,,若对任意实数x 都有,则满足条件的有R b ∈[)0,2πc ∈()π2sin 3sin 3x a bx c ⎛⎫-=+ ⎪⎝⎭序实数组的组数为( )()a b c ,,A .1组;B .2组;C .4组;D .无数组.【答案】C【分析】由题意得出,,然后对、的取值进行分类讨论,结合题中等式求出的值,3b =2=a a b c 即可得出正确选项.【详解】由题意知,函数与函数的最大值相等,最小值也相等,2sin 3π3y x ⎛⎫=- ⎪⎝⎭()sin y a bx c =+则,2=a 函数与函数的最小正周期相等,则,2sin 3π3y x ⎛⎫=- ⎪⎝⎭()sin y a bx c =+3b =当,时,由于,则,2a =3b =()2sin 32sin 33πx x c ⎛⎫-=+ ⎪⎝⎭()π2πZ 3c k k =-+∈由于,此时,;02πc ≤<5π3c =当,时,,2a =3b =-()()2sin 32sin 32sin 33πx x c x c π⎛⎫-=-+=-+ ⎪⎝⎭则,得,,此时,;()ππ2πZ 3c k k -=-∈()4π2πZ 3c k k =-∈02πc ≤< 4π3c =当,时,,2a =-3b =()()2sin 32sin 32sin 33πx x c x c π⎛⎫-=-+=++ ⎪⎝⎭则,得,,则;()ππ2πZ 3c k k +=-∈()()213c k k Z ππ=--∈02c π≤< 23c π=当,时,,2a =-3b =-()()π2sin 32sin 32sin 33x x c x c ⎛⎫-=--+=- ⎪⎝⎭则,得,,则.()π2πZ 3c k k -=-∈()π2πZ 3c k k =-∈02πc ≤< π3c =因此,满足条件的有序实数组的组数为组.()a b c ,,4故选:C .三、解答题17.已知,,都是锐角,求的值.cos αsin βαβαβ+【答案】π4αβ+=【分析】利用同角三角函数的基本关系求得,的值,再利用两角和的余弦公式求出sin αcos β的值,可得的值.()cos αβ+αβ+【详解】因为,cos α=sin β=αβ所以sin α==cos β==所以()cos cos cos sin sin αβαβαβ+=-==因,为都是锐角,所以,.所以,αβπ02α<<π02β<<0παβ<+<所以.π4αβ+=18.证明:()sin 211tan 1sin 2cos 212θθθθ+=+++【答案】证明见解析【分析】根据二倍角公式以及同角三角函数之间的基本关系即可得出证明.【详解】证明:由二倍角公式以及可得,22sin 22sin cos cos 2cos sin θθθθθθ==-,22sin cos 1θθ+=222sin 212sin cos sin cos sin 2cos 212sin cos 2cos θθθθθθθθθθ+++=+++()()2sin cos sin cos 2cos sin cos 2cos θθθθθθθθ++==+1sin cos 2cos cos θθθθ⎛⎫=+ ⎪⎝⎭()1tan 12θ=+得证.19.设点P 是以原点为圆心的单位圆上的一个动点,它从初始位置出发,沿单位圆按顺时()01,0P 针方向转动角后到达点,然后继续沿着单位圆按顺时针方向转动角到达点,若π02αα⎛⎫<< ⎪⎝⎭1P π32P点的纵坐标为,求点的坐标.2P 35-1P【答案】【分析】由三角函数的定义可得,利用两角差的正弦、余弦公式可求得、π3sin 35α⎛⎫--=-⎪⎝⎭sin α的值,即可得出点的坐标.cos α1P 【详解】由三角函数的定义可知,点的纵坐标为,即,2P π3sin 35α⎛⎫--=-⎪⎝⎭π3sin 35α⎛⎫-+=- ⎪⎝⎭故.因为,则,π3sin 35α⎛⎫+= ⎪⎝⎭π02α<<ππ5π336α<+<若,不符合题意;πππ332α<+<πsin 13α⎛⎫<+< ⎪⎝⎭若,则,符合题意.ππ5π236α≤+<1πsin 123α⎛⎫<+≤⎪⎝⎭故.所以.ππ5π236α≤+<π4cos 35α⎛⎫+==-⎪⎝⎭所以ππ1ππcos cos cos 33233αααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.ππ1ππsin sin sin 33233αααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+-+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦而()cos cos αα-==()sinsin αα-=-=所以点的坐标为.1P 20.在中,角A ,B ,C 对应边为a ,b ,c ,其中.ABC 2b =(1)若,且,求边长c ;120A C +=︒2a c =(2)若,求的面积.15,sin A C a A =︒-=ABC ABC S 【答案】(2)3【分析】(1)利用正弦定理以及三角恒等变换的知识求得.c (2)利用正弦定理、两角和的正弦公式以及三角形的面积公式求得正确答案.【详解】(1)依题意,,2a c =由正弦定理得,即,sin 2sin A C =()sin 1202sin C C︒-=,1sin 2sin ,tan 2C C C C +==由于,所以,则,0120C ︒<<︒30C =︒90,60A B =︒=︒由正弦定理得.sin ,sin sin sin c b b Cc C B B====(2)依题意,,sin a A =由正弦定理得,sin sin A C A =由于,,所以,15180A ︒<<︒sin 0A>sin C =由于,所以为锐角,所以,150A C -=︒>C 45C =︒则,60,75A B =︒=︒()sin 75sin 4530sin 45cos30cos 45sin 30︒=︒+︒=︒︒+︒︒=由正弦定理得,sin ,sin sin sin c b b Cc C B B====)21==所以.)11sin 221322ABC S bc A ==⨯⨯=△21.在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市(如图)的东偏南O 方向300千米的海面处,并以20千米/时的速度向西偏北45°方向移动,台风侵袭(cos θθ=P的范围为圆形区域,当前半径为60千米,并以10千米/时的速度不断增大,问几个小时后该城市开始受到台风的侵袭?受到台风的侵袭的时间有多少小时?【答案】12小时后该城市开始受到台风侵袭,受到台风的侵袭的时间有12小时.【分析】设经过小时台风中心移动到点时,台风边沿恰好在城,由题意得,t Q O,在中,300,20,r()6010OP PQ t OQ t t ====+cos 45a θθ==-︒4sin 5a θ==POQ ∆由余弦定理得:.2222cos OQ OP PQ OP PQ a =+-⋅【详解】解:设经过小时台风中心移动到点时,台风边沿恰好在城,t Q O 由题意得,300,20,r()6010OP PQ t OQ t t====+cos 45a θθ==-︒4sin 5a θ∴==由余弦定理得:2222cos OQ OP PQ OP PQ a=+-⋅即2224(6010)300(20)230020t 5t t +=+-⨯⨯⨯即2362880t t -+=解得,1212,24t t ==2112t t -=答:12小时后该城市开始受到台风侵袭,受到台风的侵袭的时间有12小时.【点睛】本题主要考查了余弦定理在实际生活中的应用,需熟记定理内容,属于基础题.。

山西省大同市第一中学2020届高三下学期3月月考数学(文)试题 Word版含解析

山西省大同市第一中学2020届高三下学期3月月考数学(文)试题 Word版含解析
.
故选: .
【点睛】本题考查了线面夹角,意在考查学生 计算能力和空间想象能力.
10.“勾股定理”在西方被称为“毕达哥拉斯定理”,国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明 如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形 若直角三角形中较小的锐角 ,现在向该大止方形区域内随机地投掷一枚飞镖,则飞镖落在阴影部分的概率是
18.如图,在四棱锥 中, 为平行四边形, , 平面 ,且 ,点 是 的中点.
(1)求证: 平面 ;
(2)求 到平面 的距离.
【答案】(1)证明见解析;(2)
【解析】
【分析】
(1)连接 交 于 点,连接 ,在 中, ,得到证明.
(2)计算 ,根据等体积法得到 ,计算得到答案.
【详解】(1)连接 交 于 点,连接 ,
【详解】 ,故 ,则 ,
故 .
故选:B.
【点睛】本题考查了回归方程的中心点,意在考查学生的计算能力和应用能力.
5.已知角 的顶点与坐标原点重合,始边与 轴的非负半轴重合.若点 是角 终边上一点,则 ( )
A. -2B. C. D. 2
【答案】B
【解析】
【分析】
由题意利用任意角的三角函数的定义求得 的值,再利用两角差的正切公式,求得 的值.
一、选择题:本大题共12小题,每小題5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设全集 ,集合 ,则 ( )
A. B. C. D.
【答案】A
【解析】
【分析】
计算 , ,再计算交集得到答案.
【详解】 , ,
故 .
故选: .
【点睛】本题考查了交集运算,意在考查学生的计算能力.

贵溪市实验中学高中部2021届高三上学期第一次月考数学文试卷含答案

贵溪市实验中学高中部2021届高三上学期第一次月考数学文试卷含答案

江西省贵溪市实验中学高中部2021届高三上学期第一次月考数学文试卷含答案贵溪市实验中学高中部2019-2020学年第一学期第一次月考高三(文科)数学试卷考试时间:120分钟 总分:150 命题人:第Ⅰ卷(选择题 共60分)一、 选择题:本大题共12小题.每小题5分,共60分。

在每个小题给出的四个选项中 ,只有一项是符合题目要求的。

1.已知集合{}31|<<-=x x A ,(){}1lg |-==x y x B ,则()=⋂B C A R ( )A 。

()3,1B 。

()3,1- C.()1,1- D.(]1,1-2.已知命题:p x R ∀∈,1sin x e x ≥+。

则命题p ⌝为( ) A .x R ∀∈,1sin x e x <+ B .x R ∀∈,1sin x e x ≤+ C .0x R∃∈,001sin x e x ≤+D .0x R∃∈,001sin x e x <+3.下列哪一组函数相等( ) A 。

()()xx x g x x f 2==与B.()()()42x x g x x f ==与C.()()()2x x g x x f ==与D.()()362x x g x x f ==与 4. = 255tan ( )A .3-2- B .32-+C .3-2D .32+5.设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的() A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.()的图像为函数R x x y x ∈-=22( ) A.B.C 。

D 。

7.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )①f (b )>f (a )>f (c );②函数f (x )在x =c 处取得极小值在x =e 处取得极大值;③函数f (x )在x =c 处取得极大值在x =e 处取得极小值;④函数f (x )的最小值为f (d ).A.③ B 。

湖南师范大学附属中学2019届高三上学期月考(四)数学(文)试卷(带答案)

湖南师范大学附属中学2019届高三上学期月考(四)数学(文)试卷(带答案)

湖南师大附中2019届高三月考试卷(四)数 学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页。

时量120分钟。

满分150分。

第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,集合M ={} |x 2x <1,集合N ={} |x log 2x >1,则下列结论中成立的是(C) A .M ∩N =M B .M ∪N =N C .M ∩()∁U N =M D.()∁U M ∩N =【解析】由2x <1=20,得x <0,由log 2x >1=log 22,∴x >2,∴M ∩()∁U N ={}x |x <0∩{}x |x ≤2=M ,故答案为C.2.已知三条不重合的直线m 、n 、l ,两个不重合的平面α、β,下列四个命题中正确的是(A) A .若l ⊥α,m ⊥β,且l ∥m ,则α∥β B .若m ∥n ,n α,则m ∥αC .若m α,n α,m ∥β,n ∥β,则α∥βD .若α⊥β,α∩β=m ,n β,则n ⊥α【解析】∵m 与α的位置关系不确定,∴m ∥α不一定成立,B 不成立;由于m 与n 几何位置关系不确定,∴α∥β的条件不具备,C 不成立;D 也不成立,∴选A.3.已知P (1,3)在双曲线x 2a 2-y 2b 2=1()a >0,b >0的渐近线上,则该双曲线的离心率为(A)A.10 B .2 C. 5 D. 3【解析】根据点P (1,3)在双曲线的渐近线上,所以双曲线的一条渐近线方程为y =3x ,所以有ba =3,即b =3a ,根据双曲线中a ,b ,c 的关系,可以得c =10a ,所以有e =10,故选A.4.已知f (x )=A sin(ωx +φ)(A >0,ω>0,||φ<π2,x ∈R )在一个周期内的图象如图所示,则y =f (x )的解析式是(B)A .f (x )=sin ⎝⎛⎭⎫2x -π6B .f (x )=sin ⎝⎛⎭⎫2x +π3C .f (x )=sin ⎝⎛⎭⎫2x +π6D .f (x )=sin ⎝⎛⎭⎫x +π3【解析】由函数f (x )=A sin(ωx +φ)(A >0,ω>0,||φ<π2,x ∈R )在一个周期内的图象可得:A =1,14T =14·2πω=π12+π6,解得ω=2,再把点⎝⎛⎭⎫π12,1代入函数的解析式可得:1=sin ⎝⎛⎭⎫2×π12+φ,即sin ⎝⎛⎭⎫π6+φ=1.再由||φ<π2可得:φ=π3,所以函数f (x )=sin ⎝⎛⎭⎫2x +π3.故应选B.5.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n 的值为(参考数据:sin 15°=0.258 8,sin 7.5°=0.130 5)(C)A .12B .16C .24D .48【解析】由程序框图可列表如下:n 6 12 24 S332336-32因为36-32≈3.106>3.10,所以输出n 的值为24,故选C.6.已知数列{}a n 的前n 项和为S n ,通项公式a n =log 2n +1n +2(n ∈N *),则满足不等式S n <-6的n的最小值是(D)A .62B .63C .126D .127【解析】因为S n =log 2⎝ ⎛⎭⎪⎫23×34×…×n +1n +2=log 2⎝⎛⎭⎫2n +2<-6,所以2n +2<2-6,n >126,故应选D. 7.设A 、B 、C 为圆O 上三点,且AB =3,AC =5,则AO →·BC →=(D) A .-8 B .-1 C .1 D .8【解析】取BC 的中点D ,连接AD ,OD ,因为O 为三角形ABC 外接圆的圆心,则AD →=12(AB →+AC →),OD →·BC →=0.所以AO →·BC →=(AD →+DO →)·BC →=AD →·BC →=12(AB →+AC →)·(AC →-AB →)=12(|AC →|2-|AB →|2)=8,选D.8.已知定义在R 上的奇函数f (x )满足f (x )=f (x +2),数列{}a n 的前n 项和为S n ,且S n =2a n +2,则f (a n )=(A)A .0B .0或1C .-1或0D .1或-1【解析】∵f (x )=f (x +2),所以f (x )函数周期为2,∵数列{}a n 满足S n =2a n +2,∴a 1=-2,S n -1=2a n -1+2,∴a n =2a n -2a n -1,即a n =2a n -1,∴{a n }以-2为首项,2为公比的等比数列,∴a n =-2n ,∴f (a n )=f (-2n )=f ()0=0,故选A.9.设定义域为R 的函数f (x )=⎩⎨⎧||lg ||x -2,x ≠2,0,x =2,若b <0,则关于x 的方程[f (x )]2+bf (x )=0的不同实数根共有(C)A .4个B .5个C .7个D .8个【解析】由[f (x )]2+bf (x )=0,得f (x )=0或f (x )=-b .所以方程[f (x )]2+bf (x )=0的根的个数转化为函数y =f (x )与函数y =0,y =-b (b <0)的图象的交点个数.因为函数f (x )的图象大致如图所示,数形结合可知,f (x )=0有3个实数根,f (x )=-b (b <0)有4个实数根,所以[f (x )]2+bf (x )=0共有7个不同的实数根,故答案选C.10.一个圆锥被过顶点的平面截去了较少的一部分几何体,余下的几何体的三视图如下,则余下部分的几何体的体积为(D)A.8π3+15B.16π3+ 3C.8π3+233D.16π9+233【解析】由已知中的三视图,圆锥母线为l =(5)2+⎝⎛⎭⎫2322=22,圆锥的高h =(5)2-12=2,圆锥底面半径为r =l 2-h 2=2,截去的底面弧的圆心角为120°,故底面剩余部分为S =23πr 2+12r 2sin 120°=83π+3,故几何体的体积为:V =13Sh =13×⎝⎛⎭⎫83π+3×2=169π+233,故选D. 11.本周星期日下午1点至6点学校图书馆照常开放,甲、乙两人计划前去自习,其中甲连续自习2小时,乙连续自习3小时.假设这两人各自随机到达图书馆,则下午5点钟时甲、乙两人都在图书馆自习的概率是(B)A.19B.16C.13D.12【解析】据题意,甲、乙应分别在下午4点、3点之前到达图书馆,设甲、乙到达图书馆的时间分别为x ,y ,则⎩⎨⎧1≤x ≤4,1≤y ≤3,所对应的矩形区域的面积为6.若下午5钟点时甲、乙两人都在自习,则⎩⎨⎧3≤x ≤4,2≤y ≤3,所对应的正方形区域的面积为1,所以P =16,选B.12.设函数d (x )与函数y =log 2x 关于直线y =x 对称.已知f (x )=⎩⎨⎧d (x )-a ,x <1,4(x 2-3ax +2a 2),x ≥1,若函数f (x )恰有2个不同的零点,则实数a 的取值范围是(A)A.⎣⎡⎭⎫12,1∪[2,+∞)B.⎣⎡⎭⎫14,1∪⎣⎡⎭⎫32,+∞ C.⎣⎡⎭⎫14,+∞ D.⎝⎛⎦⎤-∞,32 【解析】因为函数d (x )与函数y =log 2x 关于直线y =x 对称,所以d (x )=2x ;设g (x )=4(x -a )(x -2a ),x ≥1,h (x )=2x -a ,x <1,因为f (x )恰有2个不同的零点,又因为h (x )至多有一个零点,故:①若g (x )有两个零点,h (x )没有零点,则⎩⎨⎧a ≥1,h (1)=2-a ≤0,得a ≥2②若g (x )和h (x )各有1个零点,则⎩⎪⎨⎪⎧a <1,2a ≥1且⎩⎨⎧-a <0,h (1)=2-a >0,得12≤a <1.综上,a ∈⎣⎡⎭⎫12,1∪[2,+∞).故答案选A.选择题答题卡题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案CAABCDDACDBA本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4个小题,每小题5分,满分20分.请把答案填在答题卷对应题号后的横线上.13.已知圆C 1:(x -a )2+y 2=1与圆C 2:x 2+y 2-6x +5=0外切,则a 的值为__0或6__. 【解析】圆C 1:(x -a )2+y 2=1的圆心为()a ,0,半径为1,圆C 2:x 2+y 2-6x +5=0的圆心为()3,0,半径为2,两圆外切,所以||a -3=3,∴a =0,6,故a 的值为0或6.14.如果复数z 满足关系式z +||z -=2+i ,那么z 等于__34+i__. 【解析】设z =a +b i(a ,b ∈R ),则z -=a -b i ,||z -=a 2+b 2,所以a +b i +a 2+b 2=2+i , 所以得:⎩⎨⎧a +a 2+b 2=2,b =1,解得:⎩⎪⎨⎪⎧a =34,b =1所以z =34+i.15.已知2a =5b =10,则a +bab=__1__.【解析】由已知,a =log 210=1lg 2,b =log 510=1lg 5.所以a +b ab =1a +1b =lg 2+lg 5=lg 10=1.16.已知定义在R 上的函数f (x )满足:对任意实数a 、b 都有f (a +b )=f (a )+f (b )-1,且当x >0时f (x )>1.若f (4)=5,则不等式f (3x 2-x -2)<3的解集为__⎝⎛⎭⎫-1,43__. 【解析】设x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>1.所以f (x 1)-f (x 2)=f [(x 1-x 2)+x 2]-f (x 2)=f (x 1-x 2)-1>0,即f (x 1)>f (x 2),所以f (x )是增函数.因为f (4)=5,即f (2)+f (2)-1=5,所以f (2)=3.所以原不等式化为f (3x 2-x -2)<f (2)3x 2-x -2<23x 2-x -4<0-1<x <43.故不等式的解集是⎝⎛⎭⎫-1,43. 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本题满分12分)已知函数f (x )=a sin x +b cos x ,a ≠0,x ∈R ,f (x )的最大值是2,且在x =π6处的切线与直线x -y=0平行.(1)求a 、b 的值;(2)先将f (x )的图象上每点的横坐标缩小为原来的12,纵坐标不变,再将其向右平移π6个单位得到函数g (x )的图象,已知g ⎝⎛⎭⎫α+π4=1013,α∈⎝⎛⎭⎫π6,π2,求cos 2α的值.【解析】(1)f ′(x )=a cos x -b sin x ,1分由已知有:⎩⎪⎨⎪⎧a 2+b 2=2a cos π6-b sin π6=1,解之得:⎩⎨⎧a =3,b =1.4分 (2)由(1)有f (x )=3sin x +cos x =2sin ⎝⎛⎭⎫x +π6,6分因为将f (x )的图象上每点的横坐标缩小为原来的12,纵坐标不变,再将其向右平移π6个单位得到函数g (x )的图象,则g (x )=2sin ⎝⎛⎭⎫2x -π6,8分由g ⎝⎛⎭⎫α+π4=1013,α∈⎝⎛⎭⎫π6,π2得sin ⎝⎛⎭⎫2α+π3=513,且2α+π3∈⎝⎛⎭⎫2π3,π,则cos ⎝⎛⎭⎫2α+π3=-1213,10分cos 2α=cos ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3=cos ⎝⎛⎭⎫2α+π3cos π3+sin ⎝⎛⎭⎫2α+π3sin π3=-1213·12+513·32=53-1226.12分18.(本题满分12分)如图,已知三棱柱ABC -A ′B ′C ′的侧棱垂直于底面,AB =AC ,∠BAC =90°,点M ,N 分别是A ′B 和B ′C ′的中点。

2019-2020学年云南师大附中高三(下)月考数学试卷(理科)(含答案)

2019-2020学年云南师大附中高三(下)月考数学试卷(理科)(含答案)

2019-2020学年云南师大附中高三(下)月考数学试卷(理科)(六)一、选择题.1.(5分)已知集合2{|log 1}A x x =<,集合{|||2}B x N x =∈<,则(A B = )A .{|01}x x <<B .{|02}x x <C .{|22}x x -<<D .{0,1}2.(5分)已知i 为虚数单位,则复数3(1)(1)(i i --= )A .2iB .2i -C .2D .2-3.(5分)已知平面向量a ,b 的夹角为30︒,||1a =,1()2a a b -=-,则||(b = )AB .2C .3D .44.(5分)已知实数x ,y 满足约束条件()1221x y x y y +⎧⎪-⎨⎪⎩,则yx 的最大值为( )A .2B .32C .1D .235.(5分)在区间(0,3)上随机地取一个数k ,则事件“直线y kx =与双曲线22:1C x y -=有两个不同的交点“发生的概率为( ) A .13B .12C .23D .16.(5分)已知3(21)()x x a -+展开式中各项系数之和为27,则其展开式中2x 项的系数为( )A .24B .18C .12D .47.(5分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c,若sin A =,a =,c a >,则角C 的大小为( )A .3πB .2πC .23πD .34π8.(5分)在下面四个三棱柱中,A ,B 为三棱柱的两个顶点,E ,F ,G 为所在棱的中点,则在这四个三棱柱中,直线AB 与平面EFG 不平行的是( )A .B .C .D .9.(5分)已知椭圆2222:1(0)x y C a b a b +=>>与抛物线2:2(0)E y px p =>有公共焦点F ,椭圆C 与抛物线E 交于A ,B 两点,且A ,B ,F 三点共线,则椭圆C 的离心率为( )A 21B .22C .3D .51-10.(5分)已知数列{}n a 满足:对*n N ∀∈,1log (2)n n a n +=+,设n T 为数列{}n a 的前n 项之积,则下列说法错误的是( ) A .12a a >B .17a a >C .63T =D .76T T <11.(5分)数学家托勒密从公元127年到151年在亚历山大城从事天文观测,在编制三角函数表过程中发现了很多重要的定理和结论,如图便是托勒密推导倍角公式“2cos212sin αα=-”所用的几何图形。

新疆维吾尔自治区吐鲁番市高昌区二中2024年高三下学期第一次月考(3月)数学试题

新疆维吾尔自治区吐鲁番市高昌区二中2024年高三下学期第一次月考(3月)数学试题

新疆维吾尔自治区吐鲁番市高昌区二中2024年高三下学期第一次月考(3月)数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.为得到的图象,只需要将的图象( )A .向左平移个单位B .向左平移个单位C .向右平移个单位D .向右平移个单位2.设复数z 满足21z i z -=+,z 在复平面内对应的点为(,)x y ,则( ) A .2430x y --= B .2430x y +-=C .4230x y +-=D .2430x y -+=3.如图,四边形ABCD 为正方形,延长CD 至E ,使得DE CD =,点P 在线段CD 上运动.设AP x AB y AE =+,则x y +的取值范围是( )A .[]1,2B .[]1,3C .[]2,3D .[]2,44.若复数221a ii++(a R ∈)是纯虚数,则复数22a i +在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限5.若圆锥轴截面面积为2360°,则体积为( )A 3B 6C 23D 266.已知实数,x y 满足约束条件11220220x y x y x y ≥-⎧⎪≥-⎪⎨-+≥⎪⎪--≤⎩,则23x y -的最小值是A .2-B .72-C .1D .47.定义在R 上的偶函数()f x ,对1x ∀,()2,0x ∈-∞,且12x x ≠,有()()21210f x f x x x ->-成立,已知()ln a f π=,12b f e -⎛⎫= ⎪⎝⎭,21log 6c f ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .b a c >>B .b c a >>C .c b a >>D .c a b >>8.已知函数()2ln 2xx f x ex a x=-+-(其中e 为自然对数的底数)有两个零点,则实数a 的取值范围是( ) A .21,e e⎛⎤-∞+ ⎥⎝⎦B .21,e e ⎛⎫-∞+⎪⎝⎭ C .21,e e⎡⎫-+∞⎪⎢⎣⎭D .21,e e⎛⎫-+∞ ⎪⎝⎭9.已知向量a ,b 夹角为30,()1,2a =,2b = ,则2a b -=( )A .2B .4C .D .10.若复数52z i=-(i 为虚数单位),则z =( ) A .2i +B .2i -C .12i +D .12i -11.ABC ∆ 的内角,,A B C 的对边分别为,,a b c ,已知22cos a c b A +=,则角B 的大小为( ) A .23π B .3π C .6π D .56π 12.本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有( ) A .72种B .144种C .288种D .360种二、填空题:本题共4小题,每小题5分,共20分。

高一数学第一次月考试题(含解析)

高一数学第一次月考试题(含解析)
【详解】证明:(Ⅰ)因为三棱柱ABC-A1B1C1中CC1⊥平面ABC,
所以CC1⊥BC.
因为AC=BC=2, ,
所以由勾股定理的逆定理知BC⊥AC.
又因为AC∩CC1=C,
所以BC⊥平面ACC1A1.
因为AM 平面ACC1A1,
所以BC⊥AM.
(Ⅱ)过N作NP∥BB1交AB1于P,连结MP,则NP∥CC1.
A. 30°B. 60°C. 120°D. 150°
【答案】A
【解析】
试题分析:先利用正弦定理化简 得 ,再由 可得 ,然后利用余弦定理表示出 ,把表示出的关系式分别代入即可求出 的值,根据A的范围,利用特殊角的三角函数值即可求出A的值.
由 及正弦定理可得 ,
故选A.
考点:正弦、余弦定理
4.如图, 是水平放置的 的直观图,则 的面积为
二、填空题(每题5分,满分20分,将答案填在答题纸上)
13.在 中,角 的对边分别为 ,若 ,则角 的值为________.
【答案】
【解析】
【分析】
根据余弦定理得到 由特殊角的三角函数值得到角B.
【详解】根据余弦定理得到 进而得到角B= .
故答案为: .
【点睛】在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现 及 、 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.
A. 6B.
C. D. 12
【答案】D
【解析】
△OAB是直角三角形,OA=6,OB=4,∠AOB=90°,∴S△OAB= ×6×4=12.

2019-2020学年广东省梅州市茶背中学高三数学文月考试题含解析

2019-2020学年广东省梅州市茶背中学高三数学文月考试题含解析

2019-2020学年广东省梅州市茶背中学高三数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知幂函数是偶函数,则实数的值为A、0B、-1或1C、1D、0或1参考答案:C因为函数为幂函数,所以,即或.当时,函数为为奇函数,不满足条件.当时,为偶函数,所以,选C.2. 已知复数满足,则()A.B.C.D.参考答案:D3. 如图,点A,B,C是圆O上的点,且AB=2,BC=,∠CAB=120°,则∠AOB对应的劣弧长为()A.πB.C.D.参考答案:C【考点】圆周角定理.【专题】计算题;转化思想;综合法;推理和证明.【分析】由正弦定理求出sin∠ACB=,从而∠AOB=,进而OB=,由此能求出∠AOB 对应的劣弧长.【解答】解:由正弦定理知:=, =,∴sin∠ACB==,∴,∴∠AOB=,∴OB=,∴∠AOB对应的劣弧长: =π.故选:C.【点评】本题考查劣弧长的求法,是中档题,解题时要认真审题,注意正弦定理的合理运用.4. 在边长为3的等边三角形ABC中,点D、E分别在AB、AC上,且满足,则A.B.C.D.参考答案:B略5. 已知命题P:若平面向量,,满足(?)?=(?)?,则向量与一定共线.命题Q:若?>0,则向量与的夹角是锐角.则下列选项中是真命题的是()A.P∧Q B.(¬P)∧Q C.(¬P)∧(¬Q)D.P∧(¬Q)参考答案:C【考点】命题的真假判断与应用.【分析】先判断出命题P和命题Q的真假,进而根据复合命题真假判断的真值表,可得答案.【解答】解:命题P:若平面向量,,满足(?)?=(?)?,则向量与共线或为零向量.故为假命题,命题Q:若?>0,则向量与的夹角是锐角或零解,故为假命题.故命题P∧Q,(¬P)∧Q,P∧(¬Q)均为假命题,命题(¬P)∧(¬Q)为真命题,故选:C【点评】本题以命题的真假判断与应用为载体,考查了复合命题,向量的运算,向量的夹角等知识点,难度中档.6. 数列{a n}的通项公式为a n=3n2﹣28n,则数列{a n}各项中最小项是()A. 第4项B. 第5项C. 第6项D. 第7项参考答案:B二次函数的对称轴为,数列中的项为二次函数自变量为正整数时对应的函数值,据此可得:数列各项中最小项是第5项.本题选择C选项.7. 某四面体三视图如图所示,则该四面体的四个面中,直角三角形的面积和是( ) Ks5u(A) 2 (B) 4 (C) (D)参考答案:C略8. 椭圆两个焦点分别是F1,F2,点P是椭圆上任意一点,则的取值范围是()A.[﹣1,1] B.[﹣1,0] C.[0,1] D.[﹣1,2]参考答案:C【考点】椭圆的简单性质.【专题】转化思想;向量法;圆锥曲线的定义、性质与方程.【分析】设P(x,y),,,则=x2+y2﹣i=即可.【解答】解:由椭圆方程得F1(﹣1,0)F2(1,0),设P(x,y),∴,,则=x2+y2﹣1=∈[0,1]故选:C【点评】本题考查了椭圆与向量,转化思想是关键,属于中档题.9. 已知函数是定义在R上的增函数,函数的图象关于点对称.w若对任意的恒成立,则当时,的取值范围是()A. B. C.D.参考答案:C略10. 若为实数,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分条件D.既不充分也不必要条件参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 把边长为1的正方形ABCD沿对角线BD折起,形成三棱锥C-ABD,它的主视图与俯视图如右图所示,则二面角 C-AB-D的正切值为 .参考答案:12. 如图所示,将数以斜线作如下分群:(1),(2,3),(4,6,5),(8,12,10,7),(16,24,20,14,9),…,并顺次称其为第1群,第2群,第3群,第4群,…,(1)、第7群中的第2项是:;(2)、第n群中n个数的和是:参考答案:96,3·2n-2n-313. 若实数满足,则的取值范围是__________.参考答案:如图,画出可行域,设写成表示斜率为-2的一组平行线,当直线过时,目标函数取得最小值,当直线过点时目标函数取得最大值,所以的取值范围是,故填:.考点:线性规划14. 已知,,且,若恒成立,则实数m的取值范围是____.参考答案:(-4,2)试题分析:因为当且仅当时取等号,所以考点:基本不等式求最值15. 曲线:(为参数)上的点到曲线:(为参数)上的点的最短离为.参考答案:116. “所有末位数字是0或5的整数能被5整除”的否定形式是______ __________。

2024学年安徽省亳州市蒙城县第一中学高三下学期月考(一)数学试题

2024学年安徽省亳州市蒙城县第一中学高三下学期月考(一)数学试题

2024学年安徽省亳州市蒙城县第一中学高三下学期月考(一)数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数f (x )=223,1ln ,1x x x x x ⎧--+≤⎨>⎩,若关于x 的方程f (x )=kx -12恰有4个不相等的实数根,则实数k 的取值范围是( ) A .1,e 2⎛⎫⎪⎝⎭B .1,2e ⎡⎫⎪⎢⎣⎭C .1,2e e ⎛⎤⎥⎝⎦D .1,2e e ⎛⎫⎪⎝⎭2.()252(2)x x -+的展开式中含4x 的项的系数为( ) A .20-B .60C .70D .803.已知函数()2cos sin 6f x x x m π⎛⎫=⋅++ ⎪⎝⎭(m ∈R )的部分图象如图所示.则0x =( )A .32πB .56π C .76π D .43π-4.设O 为坐标原点,P 是以F 为焦点的抛物线24y x =上任意一点,M 是线段PF 上的点,且PM MF =,则直线OM 的斜率的最大值为( )A .1B .12C .22D 5 5.函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象的交点横坐标的和为( ) A .53π B .2πC .76π D .π6.已知函数()()222ln 25f x a x ax =+++.设1a <-,若对任意不相等的正数1x ,2x ,恒有()()12128f x f x x x -≥-,则实数a 的取值范围是( ) A .()3,1-- B .()2,1-- C .(],3-∞-D .(],2-∞-7.若()()613x a x -+的展开式中3x 的系数为-45,则实数a 的值为( ) A .23B .2C .14D .138.做抛掷一枚骰子的试验,当出现1点或2点时,就说这次试验成功,假设骰子是质地均匀的.则在3次这样的试验中成功次数X 的期望为( ) A .B .C .1D .29.曲线(2)xy ax e =+在点(0,2)处的切线方程为2y x b =-+,则ab =( ) A .4-B .8-C .4D .810.已知集合{}2,1,0,1A =--,{}22*|,B x x a a N=≤∈,若A B ⊆,则a 的最小值为( )A .1B .2C .3D .411.已知集合{}0,1,2,3A =,{|22}B x x =-≤≤,则AB 等于( )A .{}012,,B .{2,1,0,1,2}--C .{}2,1,0,1,2,3--D .{}12, 12.若x 、y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为( )A .5B .9C .6D .12二、填空题:本题共4小题,每小题5分,共20分。

2020届高三数学第一次月考试题 文(含解析)新 人教

2020届高三数学第一次月考试题 文(含解析)新 人教

2019学年第一学期九月测试卷高三数学(文科)一、选择题(每小题5分,共60分)1. 设集合M={1,2,3,4,5,6},N={1,4,5,7},则M∩N等于( )A. {1,2,4,5,7}B. {1,4,5}C. {1,5}D. {1,4}【答案】B【解析】则2. ( )A. B. C. D. -【答案】A【解析】试题分析:选C.考点:诱导公式.【易错点晴】本题主要考查诱导公式,属于容易题型.本题虽属容易题型,但如果不细心的话容易因判断错象限、或因忘了改变函数名而犯错.解决此类题型的口诀是:奇变偶不变,符号看象限,应用改口诀的注意细节有:1、“奇”、“偶”指的是的奇数倍或偶数倍,2、符号看象限,既要看旧角,又要看旧函数名.要熟练掌握这两个细节才不会“走火入魔”.3. 下列函数中,是偶函数且在上为增函数的是( )A. B. C. D.【答案】A【解析】由选项可看出四个函数中D为奇函数,所以排除D,在ABC三个选项中,A函数为增函数,B函数为减函数,C函数既有增区间又有减区间.故选A.4. 若已知函数f(x)= , 则的值是( )A. B. 3 C. D.【答案】D【解析】由函数f(x)=可知:,+1=故选:D5. 函数y=的定义域是( )A. [1,2]B. [1,2)C.D.【答案】D【解析】即得解得故选D6. 下列说法中,正确的是()A. 命题“若,则”的否命题为“若,则”B. 命题“存在,使得”的否定是:“任意,都有”C. 若命题“非”与命题“或”都是真命题,那么命题一定是真命题D. ""是" "的充分不必要条件【答案】C【解析】对于A,命题“若,则”的否命题为“若a≤b,则”;∴A 不正确;对于B,命题“存在x∈R,使得”的否定是:“任意x∈R,都有”;∴B不正确;对于C,若命题“非p”是真命题则P是假命题,命题“p或q”是真命题,那么命题q一定是真命题,∴C正确;对于D,∴推不出. ∴D不正确故选:C.7. 设a=,,则a,b,c的大小关系是( )A. b>c>aB. a>c>bC. b>a>cD. a>b>c【答案】D【解析】,所以故选D8. 函数f(x)=2x-6+lnx的零点个数为( )A. 1B. 2C. 3D. 4【答案】A【解析】,所以函数在上递增,又,所以函数的零点只有1个故选A点睛:本题是零点存在性定理的考查,先确定函数的单调性,在判断特殊点处的函数值有正负变化即得解.9. 函数y=Asin(ωx+φ)在一个周期内的图象如图所示,则此函数的解析式为( )A. B.C. D.【答案】B【解析】由图知A=2,又,此函数的解析式是故选B.10. 若=,则cos(π-2α)=( )A. -B.C. -D.【答案】C【解析】==,故选C11. 函数y= (0<a<1)的图象的大致形状是( )A. B.C. D.【答案】D【解析】又所以函数在上递减,在上递增,故选D点睛:函数中有绝对值的要去掉绝对值,写成分段函数,根据单调性即可以选出选项.12. 已知函数f(x)=x(ln x-ax)有两个极值点,则实数a的取值范围是( )A. (-∞,0)B.C. (0,1)D. (0,+∞)【答案】B【解析】函数f(x)=x(lnx﹣ax),则f′(x)=lnx﹣ax+x(﹣a)=lnx﹣2ax+1,令f′(x)=lnx﹣2ax+1=0得lnx=2ax﹣1,函数f(x)=x(lnx﹣ax)有两个极值点,等价于f′(x)=lnx﹣2ax+1有两个零点,等价于函数y=lnx与y=2ax﹣1的图象有两个交点,在同一个坐标系中作出它们的图象(如图)当a=时,直线y=2ax﹣1与y=lnx的图象相切,由图可知,当0<a<时,y=lnx与y=2ax﹣1的图象有两个交点.则实数a的取值范围是(0,).故选B.二、填空题(每小题5分,共20分)13. 已知=2, 则=______【答案】3【解析】,故答案为314. 函数f(x)=的单调递增区间为________.【答案】【解析】根据复合函数的单调性,内外层函数同则增异则减的原则,f(x)=的递增区间为的递减区间,但要注意定义域,所以f(x)=的递增区间为................故答案为点睛:研究复合函数的单调性:先把复合函数分成内外两层,根据内外层函数单调性相同,复合函数增,内外层函数单调性相异,复合函数减,即同则增异则减,做题时还要注意定义域.15. 已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则=________.【答案】-2【解析】由f(x+4)=f(x)得f(x)的周期为4,所以又f(x)在R上是奇函数,所以故答案为-2.点睛:函数奇偶性,周期性结合求函数值的问题,先利用周期性,把变为再利用奇偶性根据已知很容易出结果.16. 若不等式2x ln x≥-x2+ax-3对x∈(0,+∞)恒成立,则实数a的取值范围是________.【答案】(-∞,]【解析】2xlnx≥-x2+ax-3,则a≤2lnx+x+,设h(x)=2lnx+x+(x>0),则h′(x)=.当x∈(0,1)时,h′(x)<0,函数h(x)单调递减;当x∈(1,+∞)时,h′(x)>0,函数h(x)单调递增,所以h(x)min=h(1)=4,则a≤h(x)min=4,故实数a的取值范围是(-∞,4].故答案为:(-∞,4]点睛:恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立,转化为;(3)若恒成立,可转化为.三、解答题(共6小题,共70分,解答应写出必要的文字说明、计算过程或证明步骤)17. (10分) 化简求值:(1) ; (2) .【答案】(1) 4 ; (2)【解析】试题分析:(1)主要是对数运算性质的考查(2)主要是三角恒等变换的二倍角公式,两角和与差的余弦公式的考查.试题解析:(1)原式= (2)原式=18. (12分)(1)已知sinα=- ,且α为第四象限角,求tanα的值;(2)已知cos且都是锐角,求的值【答案】(1)(2)【解析】试题分析:(1)由α为第四象限角,根据同角基本关系的平方关系得的值,商式关系得出.(2) cos,是锐角得出sin,又都是锐角,,得出,根据得出结果.试题解析:(1)为第四象限角,(2) 因为是锐角,所以sin=又都是锐角,,=,则cos=cos19. (12分)已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)若f(x)在区间[-4,6]上是单调函数.求实数a的取值范围.【答案】(1)35 (2) a≤-6,或a≥4【解析】试题分析:(1) 当a=-2时,f(x)=x2-4x+3=(x-2)2-1,根据二次函数的单调性得出函数的最值(2)二次函数的对称轴为x=-a,根据图像得出[-4,6]在轴的左侧或在轴的右侧,即-a≤-4,或-a≥6得解.试题解析:(1)当a=-2时,f(x)=x2-4x+3=(x-2)2-1,由于x∈[-4,6],∴f(x)在[-4,2]上单调递减,在[2,6]上单调递增.∴f(x)的最小值是f(2)=-1.又f(-4)=35,f(6)=15,故f(x)的最大值是35.(2)由于函数f(x)的图象开口向上,对称轴是x=-a,所以要使f(x)在[-4,6]上是单调函数,应有-a≤-4,或-a≥6,即a≤-6,或a≥4.20. (12分)已知.f(x)=sin x cos x-cos2x+(1)求f(x)的最小正周期,并求其图象对称中心的坐标;(2)当0≤x≤时,求函数f(x)的值域.【答案】(1)(k∈Z) (2)【解析】试题分析:(1)先对函数f(x)=sin x cos x-cos2x+=sin2x- (cos2x+1)+化简得f(x)=sin,令sin=0,得=kπ(k∈Z)解得对称中心(2)0≤x≤所以-≤2x-≤,根据正弦函数图像得出值域.试题解析:(1)f(x)=sin x cos x-cos2x+=sin2x- (cos2x+1)+=sin2x-cos2x=sin,所以f(x)的最小正周期为π.令sin=0,得=kπ(k∈Z),所以x= (k∈Z).故f(x)图象对称中心的坐标为 (k∈Z).(2)因为0≤x≤,所以-≤2x-≤,所以≤sin≤1,即f(x)的值域为.点睛:本题重点考查三角函数式的恒等变换,正弦型函数的最小正周期,正弦型函数的对称中心,及函数在某一定义域下的值域,是高考的常见题型,在求值域时要运用整体的思想.21. (12分)已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线方程为l:y=3x+1,且当x=时,y=f(x)有极值.(1)求a,b,c的值;(2)求y=f(x)在[-3,1]上的最大值和最小值.【答案】(1) a=2,b=-4, c=5 (2) 最大值为13,最小值为【解析】试题分析:(1)对函数进行求导,当x=1时,切线l的斜率为3,可得2a+b=0,当x=时,y=f(x)有极值,则f′=0,联立得出a,b,c的值(2) 由(1)可得f(x)=x3+2x2-4x+5,f′(x)=3x2+4x-4. 令f′(x)=0,解得x1=-2,x2=,研究单调性得出最值.试题解析:(1)由f(x)=x3+ax2+bx+c,得f′(x)=3x2+2ax+b.当x=1时,切线l的斜率为3,可得2a+b=0,①当x=时,y=f(x)有极值,则f′=0,可得4a+3b+4=0,②由①②,解得a=2,b=-4.由于切点的横坐标为1,所以f(1)=4. 所以1+a+b+c=4,得c=5.(2)由(1)可得f(x)=x3+2x2-4x+5,f′(x)=3x2+4x-4.令f′(x)=0,解得x1=-2,x2=.当x变化时,f′(x),f(x)的取值及变化情况如下表所示:所以y=f(x)在[-3,1]上的最大值为13,最小值为.点睛:已知切线方程求参数问题,利用切线斜率,切点在切线上也在曲线上这两点即可求出字母值.函数的极值问题要注意对应的导值为0,且在此点的左右函数有单调性变化.22. (12分)已知函数f(x)=ln x+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.【答案】(1)见解析(2) (0,1)【解析】试题分析:(1)先求导数,再根据导函数符号是否变化进行讨论:若,则,在单调递增;若,导函数先正后负,函数先增后减;(2)由(1)知函数有最大值条件为,且最大值为,转化为解不等式,先化简,再利用导数研究函数单调性及零点,确定不等式解集试题解析:解:(Ⅰ)的定义域为若,则,所以在单调递增若,则当时,;当时,。

2019-2020学年贵州省贵阳一中高三第二学期月考(文科)数学试卷 含解析

2019-2020学年贵州省贵阳一中高三第二学期月考(文科)数学试卷 含解析

2019-2020学年高三第二学期月考(文科)数学试卷一、选择题1.已知集合A={(x,y)|x2+y2≤2,x∈Z,y∈Z},B={(x,y)|x+1>0},则A∩B的元素个数为()A.9B.8C.6D.52.i是虚数单位,x,y是实数,x+i=(2+i)(y+yi),则x=()A.3B.1C.D.3.平面向量,满足||=4,||=2,(+2)=24,则|﹣2|=()A.2B.4C.8D.164.命题p:∀x∈R,e x>x,命题q:∃x0∈R,x02<0,下列给出四个命题①p∨q;②p∧q;③p∧¬q;④¬p∨q所有真命题的编号是()A.①③B.①④C.②③D.②④5.为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.下列说法中,错误的是()A.服药组的指标x的均值和方差比未服药组的都低B.未服药组的指标y的均值和方差比服药组的都高C.以统计的频率作为概率,患者服药一段时间后指标x低于100的概率约为0.94 D.这种疾病的患者的生理指标y基本都大于1.56.已知,则sin2α=()A.﹣1B.1C.D.07.直线x=m与椭圆交于A,B两点,△OAB(O为原点)是面积为3的等腰直角三角形,则b等于()A.1B.2C.3D.48.函数f(x)=A sin(ωx+φ)(其中A>0,|φ|<)的部分图象如图所示,为得到的图象,可以将函数f(x)的图象()A.向右平移个单位长度﹣1B.向左平移个单位长度C.向左平移个单位长度D.向右平移个单位长度9.在正方体ABCD﹣A1B1C1D1中,E,F分别在B1B和C1C上(异于端点),则过三点A,F,E的平面被正方体截得的图形(截面)不可能是()A.正方形B.不是正方形的菱形C.不是正方形的矩形D.梯形10.已知数列{a n}满足a1=1,a n+1=2a n+1,如图是计算该数列的前n项和的程序框图,图中①②③应依次填入()A.i<n,a=2a+1,S=S+a B.i<n,S=S+a,a=2a+1C.i≤n,a=2a+1,S=S+a D.i≤n,S=S+a,a=2a+111.过点A(2a,0)作双曲线的一条渐近线的垂线,垂足为B,与另一条渐近线交于点C,B是AC的中点,则双曲线的离心率为()A.B.C.2D.12.x1=1是函数f(x)=+(b﹣3)x+2b﹣a的一个极值点,则ab的取值范围是()A.B.C.D.二、填空题(共4小题)13.函数的零点个数为.14.在四棱锥P﹣ABCD中,PA⊥底面ABCD,PA=AB=AD=1,BC=CD=BD=,则四棱锥的外接球的表面积为.15.在△ABC中,D是AB边上一点,AD=2DB,DC⊥AC,DC=,则AB =.16.奇函数f(x)满足f(1+x)=f(1﹣x),当0<x≤1时,f(x)=log2(4x+a),若,则a+f(a)=.三、解答题(共70分.)17.为抗击“新冠肺炎”,全国各地“停课不停学”,各学校都开展了在线课堂,组织学生在线学习,并自主安排时间完成相应作业为了解学生的学习效率,某在线教育平台统计了部分高三备考学生每天完成数学作业所需的平均时间,绘制了如图所示的频率分布直方图.(1)如果学生在完成在线课程后每天平均自主学习时间(完成各科作业及其他自主学习)为5小时,估计高三备考学生每天完成数学作业的平均时间占自主学习时间的比例(同一组中的数据用该组区间的中点值为代表)(结果精确到0.01);(2)以统计的频率作为概率,估计一个高三备考学生每天完成数学作业的平均时间不超过45分钟的概率.18.S n是等差数列{a n}的前n项和,对任意正整数n,2S n是a n a n+1与1的等差中项.(1)求数列{a n}的通项公式;(2)求数列的最大项与最小项.19.点P是直线y=﹣2上的动点,过点P的直线l1,l2与抛物线y=x2相切,切点分别是A,B.(1)证明:直线AB过定点;(2)以AB为直径的圆过点M(2,1),求点P的坐标及圆的方程.20.如图,在多面体ABCDE中,平面ACD⊥平面ABC,AC⊥BC,BC=2AC=4,DA=DC,CD=3,F是BC的中点,EF⊥平面ABC,.(1)证明:A,B,E,D四点共面;(2)求三棱锥B﹣CDE的体积.21.已知函数;(1)试讨论f(x)的单调性;(2)当函数f(x)有三个不同的零点时,a的取值范围恰好是,求b的值.请考生在第22、23两题中任选一题作答,并用2B铅笔在答题卡上把所选题目的题号涂黑,注意所做题目的题号必须与所涂题目的题号一致,在答题卡选答区域指定位置答题如果多做,则按所做的第一题计分.(本小题满分10分)[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若曲线C的极坐标方程为,P点的极坐标为,在平面直角坐标系中直线l经过点P,且倾斜角为60°.(1)写出曲线C的直角坐标方程以及点P的直角坐标;(2)设直线与曲线C相交于A,B两点,求的值.[选修4-5:不等式选讲](本小题满分0分)23.已知f(x)=|x﹣m|(x+2)+|x|(x﹣m).(1)当m=2时,求不等式f(x)<0的解集;(2)若x>1时,f(x)>0,求m的取值范围.参考答案一、选择题(共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={(x,y)|x2+y2≤2,x∈Z,y∈Z},B={(x,y)|x+1>0},则A∩B的元素个数为()A.9B.8C.6D.5【分析】利用交集定义先求出A∩B,由此能求出A∩B的元素个数.解:∵集合A={(x,y)|x2+y2≤2,x∈Z,y∈Z},B={(x,y)|x+1>0},∴A∩B={(x,y)|}={(0,﹣1),(0,0),(0,1),(1,﹣1),(1,0),(1,1)},∴A∩B的元素个数为6.故选:C.2.i是虚数单位,x,y是实数,x+i=(2+i)(y+yi),则x=()A.3B.1C.D.【分析】先利用复数代数形式的乘除运算化简,再利用复数相等的定义计算即可.解:(2+i)(y+yi)=y+3yi,所以3y=1,x=y=,故选:D.3.平面向量,满足||=4,||=2,(+2)=24,则|﹣2|=()A.2B.4C.8D.16【分析】先根据数量积求出•=4,再求模长的平方,进而求得结论.解:因为平面向量,满足||=4,||=2,∵(+2)=24⇒+2•=24⇒•=4,则|﹣2|2=﹣4•+4=42﹣4×4+4×22=16;∴|﹣2|=4;故选:B.4.命题p:∀x∈R,e x>x,命题q:∃x0∈R,x02<0,下列给出四个命题①p∨q;②p∧q;③p∧¬q;④¬p∨q所有真命题的编号是()A.①③B.①④C.②③D.②④【分析】判定出p真q假⇒¬p为假,¬q为真,①③为真命题.解:令f(x)=e x﹣x,利用导数可求得当x=0时,f(x)=e x﹣x=1,1是极小值,也是最小值,从而可判断p为真命题,命题q为假命题.故①p∨q为真;②p∧q为假;③p∧¬q为真;④¬p∨q为假.所有真命题的编号是①③.故选:A.5.为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.下列说法中,错误的是()A.服药组的指标x的均值和方差比未服药组的都低B.未服药组的指标y的均值和方差比服药组的都高C.以统计的频率作为概率,患者服药一段时间后指标x低于100的概率约为0.94 D.这种疾病的患者的生理指标y基本都大于1.5【分析】由图可得服药组的指标x的均值和方差比未服药组的都低判断A;未服药组的指标y的取值相对集中,方差较小判断B;再求出患者服药一段时间后指标x低于100的频率判断C;直接由图象判断D.解:由图可知,服药组的指标x的均值和方差比未服药组的都低,∴A说法正确;未服药组的指标y的取值相对集中,方差较小,∴B说法不对;以统计的频率作为概率,患者服药一段时间后指标x低于100的概率约为0.94,∴C说法正确;这种疾病的患者的生理指标y基本都大于1.5,∴D说法正确.故选:B.6.已知,则sin2α=()A.﹣1B.1C.D.0【分析】由题意利用诱导公式求得2α=2kπ﹣,可得sin2α的值.解:由诱导公式及,可得cos(+α)=cos(+α),可得(舍去),或(+α)+(+α)=2kπ,k∈Z,即2α=2kπ﹣,∴sin2α=﹣1,故选:A.7.直线x=m与椭圆交于A,B两点,△OAB(O为原点)是面积为3的等腰直角三角形,则b等于()A.1B.2C.3D.4【分析】利用△OAB(O为原点)是面积为3的等腰直角三角形,求出A的坐标,代入椭圆方程求解即可.解:直线x=m与椭圆交于A,B两点,△OAB是等腰直角三角形,解得m=±,不妨A取,A点在椭圆上,代入椭圆,可得,解得b=2,故选:B.8.函数f(x)=A sin(ωx+φ)(其中A>0,|φ|<)的部分图象如图所示,为得到的图象,可以将函数f(x)的图象()A.向右平移个单位长度﹣1B.向左平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【分析】由函数图象可得A,利用周期公式可求ω,由f()=sin(2×+φ)=﹣1,结合范围|φ|<,可求φ,可求函数解析式f(x)=sin(2x+),进而化简g(x)解析式由函数y=A sin(ωx+φ)的图象变换即可求解.解:由函数f(x)=A sin(ωx+φ)(其中A>0,|φ|<)的图象,可得A=1,=﹣=,即=π求得ω=2,∵f()=sin(2×+φ)=﹣1,即sin(+φ)=1,∴+φ=+2kπ,k∈Z,即φ=+2kπ,k∈Z,∵|φ|<,∴φ=,∴f(x)=2sin(2x+).由图可知,,,所以把f(x)的图象向右平移个单位得到g(x)的图象.故选:D.9.在正方体ABCD﹣A1B1C1D1中,E,F分别在B1B和C1C上(异于端点),则过三点A,F,E的平面被正方体截得的图形(截面)不可能是()A.正方形B.不是正方形的菱形C.不是正方形的矩形D.梯形【分析】画出图形,通过特殊位置判断截面形状即可.解:当BE=CF时,截面是矩形;当2BE=CF时,截面是菱形;当BE>CF时,截面是梯形,故选:A.10.已知数列{a n}满足a1=1,a n+1=2a n+1,如图是计算该数列的前n项和的程序框图,图中①②③应依次填入()A.i<n,a=2a+1,S=S+a B.i<n,S=S+a,a=2a+1C.i≤n,a=2a+1,S=S+a D.i≤n,S=S+a,a=2a+1【分析】模拟程序的运行过程,即可得出程序框图中应填的内容.解:取n=1,有S=a=1,即a1=1,不能进入循环,判断框应是i<n进入循环;进入循环后第一次加上的应该是a2=2a1+1,所以先算a=2a+1.故选:A.11.过点A(2a,0)作双曲线的一条渐近线的垂线,垂足为B,与另一条渐近线交于点C,B是AC的中点,则双曲线的离心率为()A.B.C.2D.【分析】有题意BO垂直平分AC∠AOB=∠BOC,又∠AOB,AOC互为补角,所以∠AOB为60°,求出渐近线的斜率,即得出a,b的关系,再由a,b,c之间的关系进而求出a,c的关系,即求出离心率.解:依题意,一条渐近线是x轴与另一条渐近线的对称轴,OB垂直平分AC,∠AOB=∠BOC,又∠AOB,AOC互为补角,所以渐近线的倾斜角是60°或120°,所以渐近线的斜率为,即=,c2=a2+b2,所以离心率e====2,故选:C.12.x1=1是函数f(x)=+(b﹣3)x+2b﹣a的一个极值点,则ab的取值范围是()A.B.C.D.【分析】先求导,再f'(1)=0得2a+b﹣2=0且△>0,所以a≠﹣1,ab=a(2﹣2a),(a≠﹣1)利用二次函数图象和性质求出答案.解:f'(x)=x2+2ax+b﹣3,f'(1)=0⇒2a+b﹣2=0,若函数f(x)有一个极值点,则△=4a2﹣4(b﹣3)=4a2﹣4(2﹣2a﹣3)=4a2+4(2a+1)=4(a+1)2>0所以a≠﹣1,ab=a(2﹣2a)=,故选:A.二、填空题(共4小题,每小题5分,共20分)13.函数的零点个数为3.【分析】条件等价于函数与y=x2的图象交点个数,数形结合即可.解:令,分别作与y=x2的图象如图,又因为指数函数的增长速度最终会远远超过幂函数的增长速度,所以两函数图象有3个交点,即f(x)有3个零点,故答案为3.14.在四棱锥P﹣ABCD中,PA⊥底面ABCD,PA=AB=AD=1,BC=CD=BD=,则四棱锥的外接球的表面积为5π.【分析】根据已知条件定出球心的位置,然后求出球的半径,代入球的表面积公式可求.解:如图,由已知,在底面ABCD中,AB⊥BC,AD⊥CD,由PA⊥底面ABCD,易得△PAC,△PBC,△PCD都是直角三角形,所以球心是PC的中点,,S=4πR2=5π.故答案为:5π15.在△ABC中,D是AB边上一点,AD=2DB,DC⊥AC,DC=,则AB =3.【分析】设BD=x,由已知结合锐角三角函数定义及余弦定理分别表示cos A,建立关系x的方程,可求.解:如图,设BD=x,则由余弦定理可得,,又由余弦定理可得,7=BC2=9x2,=13x2﹣3,即7=6+x2,解得x=1,∴AB=3.故答案为:116.奇函数f(x)满足f(1+x)=f(1﹣x),当0<x≤1时,f(x)=log2(4x+a),若,则a+f(a)=2.【分析】根据题意,分析可得f(x)是以4为周期的奇函数,结合函数的解析式分析可得,解可得a=2,分析可得f(2)的值,计算可得答案.解:根据题意,函数f(x)满足f(1+x)=f(1﹣x),则f(﹣x)=f(x+2),又由f(x)为奇函数,则f(﹣x)=﹣f(x),则有f(x+2)=﹣f(x),则有f(x+4)=﹣f(x+2)=f(x),即f(x)是以4为周期的奇函数,又由当0<x≤1时,f(x)=log2(4x+a),则,解可得a=2,又由f(x)是以4为周期的奇函数,则f(2)=f(﹣2)且f(2)+f(﹣2)=0,则f (2)=0,故a+f(a)=2+f(2)=2;故答案为:2.三、解答题(共70分.解答题应写出文字说明,证明过程或演算步骤)17.为抗击“新冠肺炎”,全国各地“停课不停学”,各学校都开展了在线课堂,组织学生在线学习,并自主安排时间完成相应作业为了解学生的学习效率,某在线教育平台统计了部分高三备考学生每天完成数学作业所需的平均时间,绘制了如图所示的频率分布直方图.(1)如果学生在完成在线课程后每天平均自主学习时间(完成各科作业及其他自主学习)为5小时,估计高三备考学生每天完成数学作业的平均时间占自主学习时间的比例(同一组中的数据用该组区间的中点值为代表)(结果精确到0.01);(2)以统计的频率作为概率,估计一个高三备考学生每天完成数学作业的平均时间不超过45分钟的概率.【分析】(1)先利用每组的频率×该组区间的中点值再相加求出平均值的估计值,再处于总时间5小时,即可得到所求的结果;(2)由直方图,算出[25,35)和[35,45)这两组的概率,再相加即可得到样本中高三备考学生每天完成数学作业的平均时间不超过45分钟的频率,以样本估算总体,进而得出每个高三备考学生每天完成数学作业的平均时间不超过45分钟的概率.解:(1)高三备考学生每天完成数学作业的平均时间的平均值的估计值为30×0.1+40×0.18+50×0.3+60×0.25+70×0.12+80×0.05=52.6,完成数学作业的平均时间占自主学习时间的比例估计值为;(2)由直方图,样本中高三备考学生每天完成数学作业的平均时间不超过45分钟的频率为0.28,估计每个高三备考学生每天完成数学作业的平均时间不超过45分钟的概率为0.28.18.S n是等差数列{a n}的前n项和,对任意正整数n,2S n是a n a n+1与1的等差中项.(1)求数列{a n}的通项公式;(2)求数列的最大项与最小项.【分析】(1)设{a n}的首项为a1,公差为d,取n=1,2,求出数列的通项公式即可.(2)记,利用函数图象结合函数的单调性推出当n≤4时,递增且都大于﹣1,当n≥5时,递增且都小于﹣1,得到结果即可.解:(1)设{a n}的首项为a1,公差为d,取n=1,2,得,解得或,当a1=1,d=2时,满足条件;当时,不满足条件,舍去,综上,数列{a n}的通项公式为a n=2n﹣1.(2),记,f(x)在(﹣∞,4.5)与(4.5,+∞)上都是增函数(图象如图3),对数列,当n≤4时,递增且都大于﹣1,当n≥5时,递增且都小于﹣1,数列的最大项是第4项,值为9,最小项是第5项,值为﹣11.19.点P是直线y=﹣2上的动点,过点P的直线l1,l2与抛物线y=x2相切,切点分别是A,B.(1)证明:直线AB过定点;(2)以AB为直径的圆过点M(2,1),求点P的坐标及圆的方程.【分析】(1)设A,B,P的坐标,求出直线AP,BP的方程,因为两条直线的交点P,可得直线AB的方程为:,整理可得恒过(0,2)点;(2)因为AB为直径的圆过点M(2,1),所以,由(1)设直线AB的方程,与椭圆联立求出两根之和及两根之积,进而可得直线AB的斜率,即求出P的坐标,即求出直线AB,进而求出圆心坐标.解:(1)证明:设点A(x1,y1),B(x2,y2),P(b,﹣2),过点A,P的直线方程为,同理过点B,P的直线方程为,因为点P是两切线的交点,所以,即y=2bx+2恒过(0,2).(2)解:设直线AB为y=kx+2(k=2b),与抛物线方程联立得x2﹣kx﹣2=0,其中△>0,x1x2=﹣2,x1+x2=k,因为M(2,1)在AB为直径的圆上,所以,即(x1﹣2,y1﹣1)(x2﹣2,y2﹣1)=0⇔(x1﹣2)(x2﹣2)+(y1﹣1)(y2﹣1)=0⇔(x1﹣2)(x2﹣2)+(kx1+1)(kx2+1)=0,整理得(k2+1)x1x2+(k﹣2)(x1+x2)+5=0,即k2+2k﹣3=0,解得k=1或k=﹣3.当k=1时,,圆心为,半径,圆的标准方程为;当k=﹣3时,,圆心为,半径,圆的标准方程为.20.如图,在多面体ABCDE中,平面ACD⊥平面ABC,AC⊥BC,BC=2AC=4,DA=DC,CD=3,F是BC的中点,EF⊥平面ABC,.(1)证明:A,B,E,D四点共面;(2)求三棱锥B﹣CDE的体积.【分析】(1)设M是AC的中点,则DM⊥AC,且,从而DM⊥平面ABC,由EF⊥平面ABC,得DM∥EF,且,四边形DEFM是平行四边形,从而DE∥MF,推导出MF∥AB,DE∥AB,由此能证明A,B,E,D四点共面.(2)D到平面BCE的距离是A到平面BCE距离的,EF⊥平面ABC,从而EF⊥AC,AC⊥BC,进而AC⊥平面BCE,由V B﹣CDE=V D﹣BCE.能求出三棱锥B﹣CDE的体积.解:(1)证明:如图4,设M是AC的中点,因为DA=DC=3,所以DM⊥AC,且,因为平面ACD⊥平面ABC,交线为AC,DM⊂平面ACD,所以DM⊥平面ABC,又EF⊥平面ABC,所以DM∥EF,且,四边形DEFM是平行四边形,从而DE∥MF,在△ABC中,M,F是AC,BC的中点,所以MF∥AB,所以DE∥AB,从而A,B,E,D四点共面.(2)解:由(1),所以D到平面BCE的距离是A到平面BCE距离的,EF⊥平面ABC⇒EF⊥AC,又AC⊥BC⇒AC⊥平面BCE,所以D到平面BCE的距离为,△BCE的面积,故三棱锥B﹣CDE的体积为.21.已知函数;(1)试讨论f(x)的单调性;(2)当函数f(x)有三个不同的零点时,a的取值范围恰好是,求b的值.【分析】(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(2)求出f(x)的极值,函数f(x)有3个零点等价于f(a)•f(1)<0,即(a3﹣3a2﹣6b)(3a﹣1+6b)>0,根据函数的单调性求出b的值即可.解:(1)f'(x)=x2﹣(a+1)x+a=(x﹣1)(x﹣a),当a=1时,f'(x)=(x﹣1)2≥0,f(x)在(﹣∞,+∞)上单调递增;当a<1时,在(a,1)上,f'(x)<0,f(x)单调递减;在(﹣∞,a)和(1,+∞)上,f'(x)>0,f(x)单调递增;当a>1时,在(1,a)上,f'(x)<0,f(x)单调递减;在(﹣∞,1)和(a,+∞)上,f'(x)>0,f(x)单调递增;综上,当a=1时,f(x)在(﹣∞,+∞)上单调递增;当a<1时,f(x)在(a,1)上单调递减;在(﹣∞,a)和(1,+∞)上单调递增;当a>1时,f(x)在(1,a)上单调递减;在(﹣∞,1)和(a,+∞)上单调递增.(2)当a≠1时,函数有两个极值和,若函数f(x)有三个不同的零点⇔f(a)•f(1)<0,即(a3﹣3a2﹣6b)(3a﹣1+6b)>0,又因为a的取值范围恰好是,所以令g(a)=(a3﹣3a2﹣6b)(3a﹣1+6b)恰有三个零点,若a=3时,g(3)=﹣6b(6b+8),b=0或;当b=0时,g(a)=a2(3a﹣1)(a﹣3)>0,解得符合题意;当时,g(a)=(a3﹣3a2+8)(3a﹣9)=0,则a3﹣3a2+8=0不存在这个根,与题意不符,舍去,所以b=0.请考生在第22、23两题中任选一题作答,并用2B铅笔在答题卡上把所选题目的题号涂黑,注意所做题目的题号必须与所涂题目的题号一致,在答题卡选答区域指定位置答题如果多做,则按所做的第一题计分.(本小题满分10分)[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若曲线C的极坐标方程为,P点的极坐标为,在平面直角坐标系中直线l经过点P,且倾斜角为60°.(1)写出曲线C的直角坐标方程以及点P的直角坐标;(2)设直线与曲线C相交于A,B两点,求的值.【分析】(1)运用极坐标和直角坐标的关系:x=ρcosθ,y=ρsinθ,x2+y2=ρ2,代入化简可得所求;(2)由题意可设直线l的参数方程,代入曲线C的直角坐标方程,运用韦达定理和参数的几何意义,化简可得所求值.解:(1)因为,所以ρ﹣ρsinθ=2,则,即=y+2,两边平方整理得x2=4y+4;由P点的极坐标,可得P点的直角坐标x=ρcosθ=0,y=ρsinθ=1,所以P(0,1).(2)由题意设直线l的参数方程为(t为参数),与曲线C的方程x2=4y+4联立,得,设PA,PB对应的参数分别为t1,t2,则,t1t2=﹣32,所以==,而,所以.[选修4-5:不等式选讲](本小题满分0分)23.已知f(x)=|x﹣m|(x+2)+|x|(x﹣m).(1)当m=2时,求不等式f(x)<0的解集;(2)若x>1时,f(x)>0,求m的取值范围.【分析】(1)将f(x)写成分段函数式,讨论x≤0时,0<x<2时,x≥2时,不等式的解,再求并集可得所求解集;(2)由题意可得f(m)=0,且x>m恒成立,求得m的范围,检验可得所求范围.解:(1)当m=2时,f(x)=|x﹣2|(x+2)+|x|(x﹣2)=,当x≤0时,﹣2x2+2x+4<0⇒x<﹣1;当0<x<2时,﹣2x+4<0⇒x>2矛盾;当x≥2时,2x2﹣2x﹣4<0⇒﹣1<x<2矛盾,综上,x<﹣1,则f(x)<0的解集为{x|x<﹣1};(2)对任意的x>1时,因为f(m)=0,f(x)>0=f(m),所以x>m,则m≤1,当m≤1,x>1时,x﹣m>0,则f(x)=(x﹣m)(x+2)+x(x﹣m)>0恒成立,所以m的取值范围是m≤1.。

湖南省长沙市第一中学2022-2023学年高三下学期月考卷(六)数学试题及答案

湖南省长沙市第一中学2022-2023学年高三下学期月考卷(六)数学试题及答案

长沙市一中2023届高三月考试卷(六)数学时量:120分钟 满分:150分一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知集合,,则( ) {}32,Z M x x n n ==-∈{}2,1,0,1,2N =--M N ⋂=A. B. C.D. {}2,1-{}1,2-{}1,1-{}2,0,2-2. 已知复数满足,为虚数单位,则( )z ()1i 1i z -=+i z =A. B. C. D. i 11i 22+1i +3. 已知,,,一束光线从点出发经AC 反射后,再经BC 上点D 反射,()30A -,()3,0B ()0,3C ()1,0F -落到点上.则点D 的坐标为( )()1,0E A. B. C. D. 15,22⎛⎫ ⎪⎝⎭33,22⎛⎫ ⎪⎝⎭()1,2()2,14. 若,且,则( ) ππ,24α⎛⎫∈-- ⎪⎝⎭23π1cos cos 222αα⎛⎫++=- ⎪⎝⎭tan α=A. B. C. D. 2-3--5. 据一组样本数据,求得经验回归方程为,且.现发现()(()1122,,,,,,n n x y x y x y ⋅⋅⋅ 1.20.4y x =+3x =这组样本数据中有两个样本点和误差较大,去除后重新求得的经验回归直线的斜率为()1.2,0.5()4.8,7.5l 1.1,则( )A. 去除两个误差较大的样本点后,的估计值增加速度变快y B. 去除两个误差较大的样本点后,重新求得的回归方程对应直线一定过点()3,5C. 去除两个误差较大的样本点后,重新求得的回归方程为1.10.7y x =+D. 去除两个误差较大的样本点后,相应于样本点的残差为0.1()2,2.76. 在四面体中,,,,,则该四面体的PABC PA AB ⊥PA AC ⊥120BAC ∠=︒2AB AC AP ===外接球的表面积为( )A. B. C. D.12π16π18π20π7. 已知圆O 的半径为1,A 为圆内一点,,B ,C 为圆O 上任意两点,则的最小值是12OA =AC BC ⋅( )A. B. C. D. 18-116-116188. 设是定义在上的函数,若是奇函数,是偶函数,函数()f x R ()2f x x +()f x x -,若对任意的,恒成立,则实数的最大值为()()[]()(),0,121,1,f x x g x g x x ∞⎧∈⎪=⎨-∈+⎪⎩[]0,x m ∈()3g x ≤m ( ) A. B. C. D. 133********二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9. 已知函数在区间上有且仅有3条对称轴,给出下列四个结论,正确()()πsin 04f x x ωω⎛⎫=+> ⎪⎝⎭[]0,π的是( )A. 的取值范围是 ω913,44⎡⎫⎪⎢⎣⎭B. 在区间上有且仅有3个不同的零点()f x ()0,πC. 的最小正周期可能是 ()f x 4π5D. 在区间()f x π0,15⎛⎫ ⎪⎝⎭10. 已知抛物线C :的焦点为F ,准线为,A ,B 是C 上异于点O 的两点,O 为坐标原点,则22x y =l ( )A. 的方程为 l 12x =-B. 若,则 32AF =AOF AC. 若,则0OA OB ⋅= 9OA OB ⋅≥D. 若,过AB 的中点D 作于点E ,则的最小值为 120AFB ∠=︒DE l ⊥AB DE11. 如图,正方体中,顶点在平面内,其余顶点在的同侧,顶点到1111ABCD A B C D -A αα1,,B C A α的距离分别为,则( )1,2,3A. 平面BD A αB. 平面平面1A AC ⊥αC. 直线与所成角比直线与所成角大1AB α1AA αD.12. 已知,为正实数,且,则( )a b 26ab a b ++=A. 的最大值为2B. 的最小值为5 ab 2a b +C. 的最小值为D. 1211a b +++98()0,3a b -∈三、填空题(本题共4小题,每小题5分,共20分.)13. 设直线是曲线的一条切线,则_________.10x y ++=ln y a x =-=a 14. 楼道里有8盏灯,为了节约用电,需关掉3盏互不相邻的灯,则关灯方案有_________种.15. 过双曲线:右焦点作直线,且直线与双曲线的一条渐近线垂直,C ()222210x y a b a b-=>>F l l C 垂足为A ,直线与另一条渐近线交于点B .且点A ,B 位于x 轴的异侧,O 为坐标原点,若的内切l OAB A 圆的半径为,则双曲线C 的离心率为__________. 23b 16. 小说《三体》中,一个“水滴”摧毁了人类整个太空舰队,当全世界第一次看到“水滴”的影像时,所有人都陶醉于它那绝美的外形.这东西真的是太美了,像梦之海中跃出的一只镜面海豚,仿佛每时每刻都在宇宙之夜中没有尽头地滴落着.有科幻爱好者为“水滴”的轴截面设计了二维数学图形,已知集合.由集合中所有的点组成的图形如图中阴影部分()()(){}22,cos sin 4,0P x y x y θθθπ=-++=≤≤P所示,中间白色部分就如美丽的“水滴”.则图中“水滴”外部阴影部分的面积为_________.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 记为正项数列的前项和,已知是4与的等比中项.n S {}n a n 1n a +n S (1)求的通项分式;{}n a (2)证明:. 2222123111154n a a a a +++⋅⋅⋅+<18. 已知a ,b ,c 分别为三个内角A ,B ,C 的对边,且.ABCA cos sin a C C b c +=+(1)求A ;(2)已知M 为BC 的中点,且,的平分线交BC 于N ,求线ABC A AM =BAC ∠段AN 的长度.19. 近日,某芯片研发团队表示已自主研发成功多维先进封装技术XDFOI ,可以实现4nm 手机SOC 芯片的封装,这是中国芯片技术的又一个重大突破,对中国芯片的发展具有极为重要的意义.可以说国产4nm 先进封装技术的突破,激发了中国芯片的潜力,证明了知名院士倪光南所说的先进技术是买不来的、求不来的,自主研发才是最终的出路.研发团队准备在国内某著名大学招募人才,准备了3道测试题,答对两道就可以被录用,甲、乙两人报名参加测试,他们通过每道试题的概率均为,且相互独立,若()01p p <<甲选择了全部3道试题,乙随机选择了其中2道试题,试回答下列问题.(所选的题全部答完后再判断是否被录用)(1)求甲和乙各自被录用的概率;(2)设甲和乙中被录用的人数为,请判断是否存在唯一的值,使得?并说明理由. ξp 0p () 1.5E ξ=20. 如图,四棱锥的底面是边长为2的正方形,. P ABCD -ABCD 2PA PB ==(1)证明:;PAD PBC ∠=∠(2)当直线PA 与平面PCD 所成角的正弦值最大时,求此时二面角的大小.P AB C --21. 已知,D 是圆C :上的任意一点,线段DF 的垂直平分线交DC 于点P . ()1,0F -()22116x y -+=(1)求动点P 的轨迹的方程:Γ(2)过点的直线与曲线相交于A ,B 两点,点B 关于轴的对称点为,直线交轴于(),0M t l Γx B 'AB 'x 点,证明:为定值.N OM ON ⋅ 22. 已知函数,. ()1e ln axf x x x-=+a ∈R (1)当时,求函数的最小值;1a =()f x x -(2)若函数的最小值为,求的最大值.()f x xa a长沙市一中2023届高三月考试卷(六)数学时量:120分钟 满分:150分一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知集合,,则( ) {}32,Z M x x n n ==-∈{}2,1,0,1,2N =--M N ⋂=A.B. C. D. {}2,1-{}1,2-{}1,1-{}2,0,2-【答案】A【解析】【分析】利用列举法及交集的定义即可求解.【详解】,{}}{32,Z ...,5,2,1,4,7,M x x n n ==-∈=-- 所以.{}2,1M N =- 故选:A.2. 已知复数满足,为虚数单位,则( )z ()1i 1i z -=+i z =A.B. C. D. i 11i 22+1i +【答案】B【解析】【分析】根据向量的除法和向量模的求法,变形的,即可求解. 1i 1i z +==-【详解】, 1i 1i z +===+-故选:B3. 已知,,,一束光线从点出发经AC 反射后,再经BC 上点D 反射,()30A -,()3,0B ()0,3C ()1,0F -落到点上.则点D 的坐标为( )()1,0E A. B. C. D.15,22⎛⎫ ⎪⎝⎭33,22⎛⎫ ⎪⎝⎭()1,2()2,1【答案】C【解析】【分析】根据入射光线与反射光线的性质可知方程,由与的交点可得D ,求坐标即可.GH GH BC【详解】根据入射光线与反射光线关系可知,分别作出关于的对称点,,F E ,AC BC ,G H 连接,交于,则D 点即为所求,如图,GH BCD因为所在直线方程为,,设,AC 3y x =+(1,0)F -()G x y ,则,解得,即, 132211y x y x -⎧=+⎪⎪⎨⎪=-⎪+⎩3,2x y =-=(3,2)G -由所在直线方程为,,同理可得,BC 3y x =-+(1,0)E (3,2)H 所以直线方程为,由解得, GH 2y =32y x y =-+⎧⎨=⎩(1,2)D 故选:C4. 若,且,则( ) ππ,24α⎛⎫∈-- ⎪⎝⎭23π1cos cos 222αα⎛⎫++=- ⎪⎝⎭tan α=A.B. C. D. 2-3--【答案】C【解析】【分析】利用三角函数的诱导公式及二倍角的正弦公式,结合三角函数的齐次式法即可求解.【详解】因为,所以, ππ,24α⎛⎫∈-- ⎪⎝⎭tan 1α<-由,得,即, 23π1cos cos 222αα⎛⎫++=- ⎪⎝⎭21cos sin 22αα+=-222cos 2sin cos 1cos sin 2ααααα+=-+所以,即,解得 212tan 11tan 2αα+=-+2tan 4tan 30αα++=或(舍).tan 3α=-tan 1α=-故选:C.5. 据一组样本数据,求得经验回归方程为,且.现发现()()()1122,,,,,,n n x y x y x y ⋅⋅⋅ 1.20.4y x =+3x =这组样本数据中有两个样本点和误差较大,去除后重新求得的经验回归直线的斜率为()1.2,0.5()4.8,7.5l1.1,则( )A. 去除两个误差较大的样本点后,的估计值增加速度变快y B. 去除两个误差较大的样本点后,重新求得的回归方程对应直线一定过点()3,5C. 去除两个误差较大的样本点后,重新求得的回归方程为1.10.7y x =+D. 去除两个误差较大的样本点后,相应于样本点的残差为0.1()2,2.7【答案】C【解析】【分析】根据直线的斜率大小判断A ;求出判断B ;再求出经验回归方程判断C ;计算残差判断D 作l y 答.【详解】对于A ,因为去除两个误差较大的样本点后,经验回归直线的斜率变小,则的估计值增加速l y 度变慢,A 错误;对于B ,由及得:,因为去除的两个样本点和, 1.20.4y x =+3x =4y =()1.2,0.5()4.8,7.5并且,因此去除两个样本点后,样本的中心点仍为, 1.2 4.80.57.53,422++==(3,4)因此重新求得的回归方程对应直线一定过点,B 错误;(3,4)对于C ,设去除后重新求得的经验回归直线的方程为,由选项B 知,,解得l ˆ1.1y x a=+ˆ4 1.13a =⨯+, ˆ0.7a=所以重新求得的回归方程为,C 正确;1.10.7y x =+对于D ,由选项C 知,,当时,,则, 1.10.7y x =+2x = 1.120.72.9y =⨯+= 2.7 2.90.2-=-因此去除两个误差较大的样本点后,相应于样本点的残差为,D 错误.()2,2.70.2-故选:C6. 在四面体中,,,,,则该四面体的PABC PA AB ⊥PA AC ⊥120BAC ∠=︒2AB AC AP ===外接球的表面积为( )A.B. C. D. 12π16π18π20π【答案】D【解析】【分析】由线面垂直的判定定理可得平面,设底面的外心为,外接球的球心为,PA ⊥ABC ABC A G O 为的中点,可得四边形为平行四边形,所以,在中,由余弦定理及正弦定理D PA ODAG 1OG =ABC 可求,故可求外接球的半径,根据球的表面积公式即可求解.AG 【详解】因为,,平面,PA AB ⊥PA AC ⊥,,AB AC A AB AC =⊂ ABC 所以平面.PA ⊥ABC设底面的外心为,外接球的球心为,则平面,所以. ABC A G O OG ⊥ABC //PA OG 设为的中点,DPA因为,所以.OP OA =DO PA ⊥因为平面,平面,PA ⊥ABC AG ⊂ABC 所以,所以.PA ⊥AG //OD AG 因此四边形为平行四边形,所以. ODAG 112OG AD PA ===因为,,120BAC ∠=︒2AB AC ==所以,BC ===由正弦定理,得. 242AG AG ==⇒=所以该外接球的半径满足,R )()2225R OG AG =+=故该外接球的表面积为.24π20πS R ==故选:D.7. 已知圆O 的半径为1,A 为圆内一点,,B ,C 为圆O 上任意两点,则的最小值是12OA =AC BC ⋅ ( )A.B. C. D. 18-116-11618【答案】A【解析】 【详解】首先设与所成角为,根据题意得到OA BC θ,再根据()1cos cos 2AC BC OC OA BC OC BC OA BC BC BCO BC θ⋅=-⋅=⋅-⋅=∠- 求解即可. 221111cos 2222BC BC BC BC θ-≥-【点睛】如图所示:设与所成角为,OA BCθ因为, ()1cos cos 2AC BC OC OA BC OC BC OA BC BC BCO BC θ⋅=-⋅=⋅-⋅=∠- 因为,112cos 2BC BCO BC OC ∠== 所以 211cos 22AC BC BC BC θ⋅=- 因为,当时,等号成立. 221111cos 2222BC BC BC BC θ-≥- 0θ= 因为,所以当时,取得最小值为, 02BC ≤≤ 12BC = 21122BC BC - 18-所以当时,取得最小值为. 12BC = AC BC ⋅ 18-故选:A8. 设是定义在上的函数,若是奇函数,是偶函数,函数()f x R ()2f x x +()f x x -,若对任意的,恒成立,则实数的最大值为()()[]()(),0,121,1,f x xg x g x x ∞⎧∈⎪=⎨-∈+⎪⎩[]0,x m ∈()3g x ≤m ( )A. B. C. D. 133********【答案】B【解析】【分析】由是奇函数,是偶函数,求出,再根据()2f x x +()f x x -()2f x x x =-,作出函数的图象即可求解. ()()[]()(),0,121,1,f x xg x g x x ∞⎧∈⎪=⎨-∈+⎪⎩()g x【详解】因为是奇函数,是偶函数, ()2f x x +()f x x -所以,解得,()()()()()22f x x f x x f x x f x x⎧-+-=--⎪⎨-+=-⎪⎩()2f x x x =-由, ()()[]()(),0,121,1,f x x g x g x x ∞⎧∈⎪=⎨-∈+⎪⎩当时,则,所以, ()1,2x ∈()10,1x -∈()()()2121gx g x f x =-=-同理:当时,,()2,3x ∈()()()()214242g x g x g x f x =-=-=-以此类推,可以得到的图象如下:()gx由此可得,当时,,()4,5x ∈()()164g x f x =-由,得,解得或, ()3g x ≤()()16453x x --≤174x ≤194x ≥又因为对任意的,恒成立,[]0,x m ∈(3g x ≤所以,所以实数的最大值为. 1704m <≤m 174故选:B.【点睛】本题考查了奇函数与偶函数的性质,抽象函数的周期性,通过递推关系分析出每一个区间的解析式是本题的关键,数形结合是解题中必须熟练掌握一种数学思想,将抽象转化为形象,有助于分析解决抽象函数的相关问题. 二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9. 已知函数在区间上有且仅有3条对称轴,给出下列四个结论,正确()()πsin 04f x x ωω⎛⎫=+> ⎪⎝⎭[]0,π的是( )A. 的取值范围是 ω913,44⎡⎫⎪⎢⎣⎭B. 在区间上有且仅有3个不同的零点()f x ()0,πC. 的最小正周期可能是 ()f x 4π5D. 在区间上单调递增 ()f x π0,15⎛⎫ ⎪⎝⎭【答案】ACD【解析】【分析】由,得,再根据函数在区间上有且仅有条对称轴,[]0,πx ∈πππ,π444x ωω⎡⎤+∈+⎢⎥⎣⎦()f x []0,π3可得,可求出的取值范围判断A ,再利用三角函数的性质可依次判断BCD . 5ππ7ππ242ω≤+<ω【详解】由,得, []0,πx ∈πππ,π444x ωω⎡⎤+∈+⎢⎥⎣⎦因为函数在区间上有且仅有条对称轴,()f x []0,π3所以,解得,故A 正确; 5ππ7ππ242ω≤+<91344ω≤<对于B ,,, (0,π)x ∈ ∴πππ,π444x ωω⎛⎫+∈+ ⎪⎝⎭, ∴π5π7ππ,422ω⎛⎫+∈ ⎪⎝⎭当时,在区间上有且仅有个不同的零点; π5π,3π42x ω⎛⎤+∈ ⎥⎝⎦()f x (0,π)2当时,在区间上有且仅有个不同的零点,故B 错误; π7π3π,42x ω⎛⎫+∈ ⎪⎝⎭()f x (0,π)3对于C ,周期,由,则, 2πT ω=91344ω≤<414139ω<≤, ∴8π8π139T <≤又,所以的最小正周期可能是,故C 正确; 84ππ58π,139⎛⎤∈ ⎥⎝⎦()f x 4π5对于D ,,, π0,15x ⎛⎫∈ ⎪⎝⎭∴ππππ,44154x ωω⎛⎫+∈+ ⎪⎝⎭又,, 91344ω≤<∴ππ2π7ππ,0,1545152ω⎡⎫⎛⎫+∈⊆⎪ ⎪⎢⎣⎭⎝⎭所以在区间上一定单调递增,故D 正确. ()f x π0,15⎛⎫ ⎪⎝⎭故选:ACD.10. 已知抛物线C :的焦点为F ,准线为,A ,B 是C 上异于点O 的两点,O 为坐标原点,则22x y =l ( )A. 的方程为 l 12x =-B. 若,则 32AF =AOF AC. 若,则0OA OB ⋅= 9OA OB ⋅≥D. 若,过AB 的中点D 作于点E ,则的最小值为 120AFB ∠=︒DE l ⊥AB DE【答案】BD【解析】【分析】A 选项,由抛物线方程得到准线方程,A 错误;由焦半径公式得到,进而求出1A y =A x =从而得到的面积,B 正确;由得到,,表达出AOF A 0OA OB ⋅=4A B x x =-4A B y y =,结合基本不等式求出最值,C 错误;作出辅助线,设()2222232A B A B OA OB x y y x ⋅=++,由焦半径公式得到,结合余弦定理,基本不等式得到的最小值. ,AF a BF b ==2a b DE +=AB DE【详解】的焦点为,准线方程为,故A 错误; 22x y =F ⎛ ⎝12y =-由焦半径公式可知:,解得, 1322A AF y =+=1A y =故,故 222A A x y ==A x =所以的面积为,B 正确; AOF A 111222A OF x ⋅=⨯=若,则,即,解得:, 0OA OB ⋅= 0A B A B x x y y +=22104A B A B x x x x +=4A B x x =-则,4A B y y =故 ()()()2222222223232A A B B AB A B OA OB x y x y x y y x ⋅=++=++≥+,32264A B A B x x y y =+⋅=故,当且仅当时,等号成立,C 错误;8OA OB ⋅≥A B A B x y y x =过点作⊥l 于点,过点B 作⊥l 于点,A 1AA 1A 1BB 1B设,所以, ,AF a BF b ==2a b DE +=因为()2222222cos AB a b ab AFB a b ab a b ab =+-∠=++=+-, ()()22223342a b a b a b DE ++⎛⎫≥+-== ⎪⎝⎭所以. AB ≥故选:BD【点睛】圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.11. 如图,正方体中,顶点在平面内,其余顶点在的同侧,顶点到1111ABCD A B C D -A αα1,,B C A α的距离分别为,则( )1,2,3A. 平面BD A αB. 平面平面1A AC ⊥αC. 直线与所成角比直线与所成角大1AB α1AA αD.【答案】ABD【解析】【分析】根据点到面的距离的性质,结合线面垂直的判定定理、线面角的定义、面面相交的性质进行求解判断即可.【详解】解:设的交点为,显然是、的中点,,AC BD O O AC BD 因为平面,到平面的距离为,所以到平面的距离为,ABCD A α= C α2O α1又到平面的距离为,B α1所以平面,即平面,即A 正确;//BO α//BD α设平面,ABCD l α= 所以,//BD l 因为是正方形,所以,ABCD AC BD ⊥又因为平面,平面,1AA ⊥ABCD BD ⊂ABCD 所以,因为平面,1AA BD ⊥11,,AA AC A AA AC ⋂=⊂1A AC 所以平面,因此有平面,而,BD ⊥1A AC l ⊥1A AC l ⊂α所以平面平面,因此选项B 正确;1A AC ⊥α设到平面的距离为,1B αd 因为平面,是正方形,点,B 到的距离分别为,1,11AA B B A α= 11AA B B 1A α3所以有, 31422d d +=⇒=设正方体的棱长为,1111ABCD A B CD -a设直线与所成角为,所以, 1AB αβ14sin AB β===设直线与所成角为,所以, 1AA αγ133sin AA aγ==因为,因此选项C 不正确;3>sin sin βγβγ<⇒<因为平面平面,平面平面,1A AC ⊥α1A AC ⋂A α=所以在平面的射影与共线,1,C A α,E F A显然,如图所示:1112,3,,,CE A F AC AA a AA AC ====⊥由,11ECA CAE CAE A AF ECA A AF ∠+∠=∠+∠⇒∠=∠, 111cos ,sin A F CE ECA A AF AC AA ∠=∠=由, 2212249cos sin 112ECA A AF a a a ∠+∠=⇒+=⇒=因此选项D 正确,故选:ABD 12. 已知,为正实数,且,则( )a b 26ab a b ++=A. 的最大值为2B. 的最小值为5 ab 2a b +C. 的最小值为D. 1211a b +++98()0,3a b -∈【答案】AC【解析】【分析】由已知条件结合基本不等式及相关结论分别检验各选项即可求解.【详解】依题意,对于A :因为,26ab a b ++=所以,62ab a b ab =++≥+当且仅当时取等号,2a b =令,则有,0t =>260t +-≤解得,又因为, t -≤≤0t =>所以,即0t <≤0<≤的最大值为2,故A 选项正确;ab 对于B :因为,26ab a b ++=所以, ()221162222224a b ab a b ab a b a b +=++=⨯++≤⨯++当且仅当时取等号,2a b =令,则有,20t a b =+>28480t t +-≥解得或(舍去),4t ≥t 12≤-即,所以的最小值为4,24a b +≥2a b +故B 选项错误;对于C :因为,26ab a b ++=所以, 12111888b b a ++==++所以,81221119888111a b b b +++≥=+++=++当且仅当,即时等式成立, 2118b b +=+3b =所以的最小值为,故C 选项正确; 1211a b +++98对于D :当,时,, 14a =225b =()4.150,3a b -=∉所以D 选项错误;故选:AC.三、填空题(本题共4小题,每小题5分,共20分.)13. 设直线是曲线的一条切线,则_________.10x y ++=ln y a x =-=a 【答案】2-【解析】【分析】设切点为,根据导数的几何意义求出切点的横坐标,再根据切点即在曲线上又在切线上()00,x y 即可得解.【详解】设切点为,()00,x y , 1y x '=-则,所以, 0011x x y x ==-=-'01x =所以切点为,()1,a 又切线为,10x y ++=所以,解得.110a ++=2a =-故答案为:.2-14. 楼道里有8盏灯,为了节约用电,需关掉3盏互不相邻的灯,则关灯方案有_________种.【答案】20【解析】【分析】根据题意,原问题等价于在5盏亮灯的6个空隙中插入3盏不亮的灯,由组合公式计算即可求解.【详解】依题意,原问题等价于在5盏亮灯的6个空隙中插入3盏不亮的灯,则有种方案.36C 20=故答案为:20. 15. 过双曲线:右焦点作直线,且直线与双曲线的一条渐近线垂直,C ()222210,0x y a b a b-=>>F l l C 垂足为A ,直线与另一条渐近线交于点B .且点A ,B 位于x 轴的异侧,O 为坐标原点,若的内切l OAB A 圆的半径为,则双曲线C 的离心率为__________. 23b【解析】 【分析】作出图象,设的内切圆的圆心为,易知在的平分线上,过分别作OAB A M M AOB ∠Ox M 于,于,则有四边形为正方形,则,MN OA ⊥N MT AB ⊥T MTAN 2||||3b NA MN ==2||3b ON a =-,由,可得,由斜率公式即可得答案. tan MNb AOF ON a∠==2a b =【详解】解:如图所示:设A 在第一象限,由题意可知,其中为点到渐近线的距离,, AF d b ===d (c,0)F b y x a =||OF c =所以, ||OA a ===设的内切圆的圆心为,OAB A M 则在的平分线上,M AOB ∠Ox 过分别作于,于,M MN OA ⊥N MT AB ⊥T 又因为于,FA OA ⊥A 所以四边形为正方形,MTAN所以, 2||||3b NA MN ==所以, 2||||||3b ON OA NA a =-=-又因为, 2||3tan 2||3bMN b AOF b ON aa ∠===-所以, 2233a b a =-,2a b =所以,22225c a b b =+=所以, c =所以. c e a ===. 16. 小说《三体》中,一个“水滴”摧毁了人类整个太空舰队,当全世界第一次看到“水滴”的影像时,所有人都陶醉于它那绝美的外形.这东西真的是太美了,像梦之海中跃出的一只镜面海豚,仿佛每时每刻都在宇宙之夜中没有尽头地滴落着.有科幻爱好者为“水滴”的轴截面设计了二维数学图形,已知集合.由集合中所有的点组成的图形如图中阴影部分()()(){}22,cos sin 4,0P x y x y θθθπ=-++=≤≤P 所示,中间白色部分就如美丽的“水滴”.则图中“水滴”外部阴影部分的面积为_________.【答案】 16π3+【解析】【分析】根据图形与,建立直角坐标系,画出图形,()()(){}22,cos sin 4,0πP x y x y θθθ=-+-=≤≤求出相应的坐标,先求第一、二象限的阴影面积,再求第三象限的阴影面积,再求和即可求解.【详解】根据题意,建立直角坐标系,如图所示:在方程,中, ()()22cos sin 4x y θθ-+-=0πθ≤≤令,则有, 0x =222cos 2sin sin 4y y θθθ+-+=所以,其中, 12sin y yθ=-0πθ≤≤所以,所以, []sin 0,1θ∈[]12sin 0,2y y θ=-∈解得,1y ⎡⎤⎤∈-⎣⎦⎦所以,,,, (A ()0,3E ()0,1G -(0,D 令,则有,0θ=()2214x y -+=所以,,()1,0C ()3,0N 令,则有πθ=()2214x y ++=所以,. ()1,0B -()3,0M -由,,易得与线段()3,0M -()3,0N ()0,3E A MEN MN 组成的图形为的上半圆,229x y +=由此可知,在第一、第二象限中的阴影面积是由 的上半圆减去上半圆 229x y +=()2214x y -+=与上半圆相交的部分形成, ()2214x y ++=即与线段组成的面积,设为. A BACBC S 水滴上部由,,三点易得 (A ()1,0B -()1,0C 为边长为2的等边三角形,ABC A所以 212ππ263ABC AnC S S =⨯⨯-=-A 弓形所以,4π23ABC AnC S S S =+=A 弓形水滴上部设第一、二象限的阴影面积为, 1S 则. 19π9π4π19π2236S S =-=-+=+水滴上部由,,易得与线段 ()1,0B -()1,0C ()0,1G -A BGCBC 组成的图形为的下半圆, 221x y +=设在第三象限中的阴影面积为, 2S 则有, 2π4MOD MpD S S S =+-A 弓形由图知11322MOD S MO OD =⨯⨯=⨯=A ,,11222MBD S MB OD =⨯⨯=⨯=A 2π3MBD ∠=所以,214ππ233MBD MpD S S =⨯⨯-=A 弓形所以,2π4ππ13π43412MOD MpD S S S =+-=+-=A 弓形所以图中“水滴”外部阴影部分的面积为:. 1219π13π16π226123S S S ⎛=+=⨯=+ ⎝故答案为:. 16π3+【点睛】本题考查了圆与三角函数综合的知识点,可以根据图形的对称性建立直角坐标系,将图形转化为实际的数据,割补法是求阴影面积常用的方法,需要考生有一定的分析转化能力.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 记为正项数列的前项和,已知是4与的等比中项. n S {}n a n 1n a +n S (1)求的通项分式;{}n a (2)证明:. 2222123111154n a a a a +++⋅⋅⋅+<【答案】(1)21n a n =-(2)证明见解析 【解析】【分析】(1)由等比中项得,进而由递推式计算出,并得到,得数列()214n n a S +=11a =12n n a a --=是等差数列,进而可求解;{}n a (2)由,从第二项开始放缩即可证明. ()22111114121n a n n n ⎛⎫=<- ⎪-⎝⎭-【小问1详解】∵是4与的等比中项,∴①. 1n a +n S ()214n n a S +=当时,,∴. 1n =()2111144a S a +==11a =当时,②,2n ≥()21114n n a S --+=由①-②得,, ()()()22111144n n n n n a a S S a --+-+=-=∴, ()()1120n n n n a a a a ----+=∵,∴,0n a >12n n a a --=∴数列是首项为l ,公差为2的等差数列, {}n a ∴的通项公式. {}n a 21n a n =-【小问2详解】由(1)得,2111a =当时,,2n ≥()222111111444121n a n n n n n ⎛⎫==<=- ⎪--⎝⎭-∴ 22222221232311111111n na a a a a a a +++⋅⋅⋅+=+++⋅⋅⋅+1111111115151114122314444n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫<+-+-+⋅⋅⋅+-=+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦18. 已知a ,b ,c 分别为三个内角A ,B ,C 的对边,且.ABC A cos sin a C C b c +=+(1)求A ;(2)已知M 为BC 的中点,且,的平分线交BC 于N ,求线ABC A AM =BAC ∠段AN 的长度. 【答案】(1) π3A =(2) AN =【解析】【分析】(1)根据题意,由正弦定理的边角互化将原式化简,再结合三角恒等变换即可求得结果; (2)根据题意,可得,再结合三角形()22222242AMAB ACAB AB AC AC c b bc =+=+⋅+=++的面积公式,代入计算,即可得到结果. 【小问1详解】由题意知中,, ABC A cos sin a C C b c +=+由正弦定理边角关系得:则sin cos sin A C A C,()sin sin sin sin sin cos cos sin sin B C A C C A C A C C =+=++=++, sin cos sin sin A C A C C =+∵,()0,πC ∈∴, sin 0C ≠cos 1A A -=∴,∴, π2sin 16A ⎛⎫-= ⎪⎝⎭π1sin 62A ⎛⎫-= ⎪⎝⎭又,, ()0,πA ∈ππ5π,666A ⎛⎫-∈- ⎪⎝⎭所以,即. ππ=66A -π3A =【小问2详解】如下图所示,在中,为中线,ABC A AM∴, 2AM AB AC =+∴,()22222242AMAB ACAB AB AC AC c b bc =+=+⋅+=++ ∴. 2212b c bc ++=∵, ABC S =△1sin 2bc A ==3bc =∴,b c +==∵, ABC ABN ACN S S S =+△△△,∴. ()1πsin 26b c AN AN =+=AN =19. 近日,某芯片研发团队表示已自主研发成功多维先进封装技术XDFOI ,可以实现4nm 手机SOC 芯片的封装,这是中国芯片技术的又一个重大突破,对中国芯片的发展具有极为重要的意义.可以说国产4nm 先进封装技术的突破,激发了中国芯片的潜力,证明了知名院士倪光南所说的先进技术是买不来的、求不来的,自主研发才是最终的出路.研发团队准备在国内某著名大学招募人才,准备了3道测试题,答对两道就可以被录用,甲、乙两人报名参加测试,他们通过每道试题的概率均为,且相互独立,若()01p p <<甲选择了全部3道试题,乙随机选择了其中2道试题,试回答下列问题.(所选的题全部答完后再判断是否被录用)(1)求甲和乙各自被录用的概率;(2)设甲和乙中被录用的人数为,请判断是否存在唯一的值,使得?并说明理由. ξp 0p () 1.5E ξ=【答案】(1)甲被录用的概率为,乙被录用的概率为2332p p -2333p p -(2)不存在;理由见解析 【解析】【分析】(1)分析已知,甲被录用符合二项分布,乙被录用符合组合排列,分别利用对应求概率公式计算即可.(2)先分析的可能取值,然后分别求解对应概率,再利用离散型数学期望的公式表示出数学期望,然后构ξ造函数,利用求导分析函数单调性,进而判断即可. 【小问1详解】由题意,设甲答对题目的个数为,得, X ()~3,X B p 则甲被录用的概率为,()2232313C 132P pp p p p =-+=-乙被录用的概率为. ()222332C 133P p p p p =-=-【小问2详解】的可能取值为0,1,2,ξ则,()()()12011P P P ξ==--, ()()()1212111P P P P P ξ==-+-,()122P PP ξ==∴ ()()()()()121212*********E P P P P P P PPξ=⨯--+⨯-+-+⨯⎡⎤⎣⎦,23232312323365 1.5P P p p p p p p =+=-+-=-=,32101230p p ∴-+=设,()()321101230f p p p p +=<<-则.()23024f p p p '=-∴当时,单调递减,405p <<()f p 当时,单调递增,415p <<()f p 又,,,()03f =()11f =4110525f ⎛⎫=> ⎪⎝⎭所以不存在的值,使得.p 0p ()00f p =20. 如图,四棱锥的底面是边长为2的正方形,.P ABCD -ABCD 2PA PB ==(1)证明:;PAD PBC ∠=∠(2)当直线PA 与平面PCD 所成角的正弦值最大时,求此时二面角的大小. P AB C --【答案】(1)证明见解析(2)6π【解析】【分析】(1) 分别取,的中点,,连接,,,证明出,可得AB CD E F PE EF PF PC PD =,由此可证得结论成立;PAD PBC ≌△△(2)先根据条件推出为二面角的平面角,设,建立空间直角坐标系,利用PEF ∠P AB C --PEF α∠=空间向量法结合基本不等式求出直线与平面所成角的正弦值的最大值,求出对应的角的值,即PA PCD 可求解. 【小问1详解】分别取,的中点,,连接,,, AB CD E F PE EF PF ∵,为的中点,∴.PA PB =E AB PE AB ⊥∵四边形为正方形,则且,∴. ABCD AB CD ∥AB CD =CD PE ⊥∵,分别为,的中点,∴,∴,E F AB CD EF AD ∥EF CD ⊥∵,∴平面.EF PE E ⋂=CD ⊥PEF∵平面,∴. PF ⊂PEF CD PF ⊥在中,PCD A ∵为的中点,,∴. F CD CD PF ⊥PC PD =又∵,,∴, PA PB =AD BC =PAD PBC ≌△△从而可得. PAD PBC ∠=∠【小问2详解】由(1)可知,,PE AB ⊥EF AB ⊥∴为二面角的平面角,且,PEF ∠P AB C --PE ==以点为坐标原点,,所在直线分别为x ,轴建立如下图所示的空间直角坐标系,E EB EFy设,其中,PEF α∠=0απ<<则,,,,,,()1,0,0A -()1,0,0B ()1,2,0C ()1,2,0D -()0,2,0F ()P αα,,.()AP αα= ()2,0,0DC =u u ur()FP αα=- 设平面的法向量为,PCD (),n x y z =由,即,取, 00n DC n FP ⎧⋅=⎪⎨⋅=⎪⎩202)0x y z αα=⎧⎪⎨-⋅=⎪⎩y α=则,,∴,2z α=-0x=(),2n αα=-cos ,n AP n AP n AP⋅<>==⋅==令,(77t α-=∈-+则, cos α=则,cos ,n AP <>==≤=当且仅当时,即当时,等号成立.1t =cos α=6πα=所以当直线与平面所成角的正弦值最大时,二面角为.PA PCD P AB C --6π21. 已知,D 是圆C :上的任意一点,线段DF 的垂直平分线交DC 于点P . ()1,0F -()22116x y -+=(1)求动点P 的轨迹的方程:Γ(2)过点的直线与曲线相交于A ,B 两点,点B 关于轴的对称点为,直线交轴于(),0M t l Γx B 'AB 'x 点,证明:为定值. N OM ON ⋅【答案】(1)22143x y +=(2)证明见解析 【解析】【分析】(1)由中垂线性质,可知,得动点P 的轨迹以,F 42PC PF PC PD DC FC +=+==>=C 为焦点的椭圆;(2)将直线与曲线方程联立,利用韦达定理及题目条件表示出点N 坐标,后可得答案. l Γ【小问1详解】圆:,圆心为,半径为4,C ()22116x y -+=)1,0因为线段DF 的垂直平分线交DC 于P 点,所以, PD PF =所以, 42PC PF PC PD DC FC +=+==>=所以由椭圆定义知,P 的轨迹是以,F 为焦点的椭圆, C 则,,.242a a =⇒=221c c =⇒=2223b a c =-=故轨迹方程为:.22143x y +=【小问2详解】依题意,直线不垂直于坐标轴,设直线的方程为,将其与方程联立:l l ()0x my t m =+≠Γ,消去x 得. 22143x my tx y =+⎧⎪⎨+=⎪⎩()2223463120m y mty t +++-=方程判别式,设,,则,()2248430m t+->()11,A x y ()22,B x y ()22,B x y '-由韦达定理有,,122634mt y y m -+=+212231234t y y m -=+则直线的方程为,AB '()121112y y y y x x x x +-=--令()1212211212N 121212202my y t y y x y x y y yy x m t y y y y y y +++=⇒===⋅++++,则,得.2312426t m t mt t -=⋅+=-40,N t ⎛⎫ ⎪⎝⎭()400,,,OM t ON t ⎛⎫== ⎪⎝⎭∴.即为定值4.44OM ON t t ⋅=⋅= OM ON ⋅ 22. 已知函数,.()1e ln axf x x x-=+a ∈R (1)当时,求函数的最小值; 1a =()f x x -(2)若函数的最小值为,求的最大值. ()f x xa a 【答案】(1)0(2)1【分析】(1)当时,令,求得,根据在不同区间1a =()()F x f x x =-()()()121e x x x x F x --=-'()F x '的符号判断的单调性,由单调性即可求出的最小值;()F x ()()F x f x x =-(2)将等价变换为,借助第(1)问中判断的符号时()≥f x a x ()0f x ax -≥()()()121e x x xx F x --=-'构造的在时取最小值,取,将问题转化为有解问题即可.()1ex g x x -=-1x =()ln g ax x -ln 1ax x -=【小问1详解】当时,令,,1a =()()1e ln x x x F xf x x x-+=--=()0,x ∈∞则,()()()()()11112221e e 11e e 11x x x x x x x x x x x x F xx x ------+-'==-⋅-+-=令,,则,()1ex g x x -=-x ∈R ()1e 1x g x -'=-易知在上单调递增,且,()g x 'R ()10g '=∴当时,,在区间上单调递减,且,()0,1x ∈()0g x '<()g x ()0,1()()110e x g x x g -=->=当时,,在区间上单调递增,且,()1,x ∈+∞()0g x '>()g x ()1,+∞()()110e x g x x g -=->=∴当时,,在区间上单调递减, ()0,1x ∈()()()121e 0x x x F x x --'=-<()F x ()0,1当时,,在区间上单调递增,()1,x ∈+∞()()()121e 0x x x F xx --'=->()F x ()1,+∞当时,取得极小值,也是最小值,,1x =()F x ()()11mine 1ln1101F x F -==+-=∴当时,函数的最小值为. 1a =()f x x -0【小问2详解】由已知,的定义域为, ()f x ()0,∞+若函数的最小值为,则有,∴,, ()f x x a ()≥f x a x()f x ax ≥()0f x ax -≥令,即的最小值为,()()h x f x ax =-()()1e ln ax x ax h x x ax xf -+=--=0由第(1)问知,当且仅当时,取最小值,1x =()1ex g x x -=-()10g =∴当且仅当时,取得最小值, ln 1ax x -=()ln g ax x -0又∵,()()()l 1l 1n 1n n e e ln ln ln ee ax ax ax x x g ax x ax x x ax x ax h x x-----=--=+-=+-=∴只需令有解,即有解, ln 1ax x -=ln 1x a x+=令,,则, ()ln 1x H x x+=()0,x ∈+∞()()221ln 1ln x x x x H x x x ⋅-+'==-当时,,在区间上单调递增, ()0,1x ∈()2ln 0xH x x '=->()H x ()0,1当时,,在区间上单调递减, ()1,x ∈+∞()2ln 0xH x x'=-<()H x ()1,+∞∴, ()()ln 111x a H x H x+==≤=综上所述,若函数的最小值为,则的最大值为. ()f x xa a 1【点睛】在导数压轴题中,常常会使用前问的结论或某一步构造的函数,解决后面的问题.本题第(2)问中直接求导分析的单调性较为困难,这里使用了换元思想,借助第()()1e ln ax x ax h x x ax xf -+=--=(1)问构造的,使,以达到简化运算的目的.()1ex g x x -=-()()ln g ax x h x -=。

广东省2023-2024学年高一下学期第一次月考试题 数学含答案

广东省2023-2024学年高一下学期第一次月考试题 数学含答案

2023-2024学年第二学期高一教学质量检测数学试卷(答案在最后)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知()2,1a =- ,()1,1b =- ,则()()23a b a b +⋅-等于()A.10B.-10C.3D.-32.函数()2cos 2f x x x =是()A.周期为2π的奇函数 B.周期为2π的偶函数C.周期为4π的奇函数 D.周期为4π的偶函数3.将向量()1,1OA = 绕坐标原点O 逆时针旋转60°得到OB ,则OA AB ⋅=()A.-2B.2C.-1D.14.一个质点受到平面上的三个力1F ,2F ,3F (单位:牛顿)的作用而处于平衡状态,已知1F ,2F成60°角且12F = ,24F = ,则3F =()A.6B.2C. D.5.在ABC △中,若sin cos a B A =,且sin 2sin cos C A B =,那么ABC △一定是()A.等腰直角三角形B.直角三角形C.锐角三角形D.等边三角形6.请运用所学三角恒等变换公式,化简计算tan102sin102︒+︒,并从以下选项中选择该式子正确的值()A.12C.2D.17.在ABC △中,D 是AB 的中点,E 是CD 的中点,若AE CA CB λμ=+,则λμ+=()A.34-B.12-C.34D.18.已知菱形ABCD 的边长为1,60ABC ∠=︒,点E 是AB 边上的动点,则DE DC ⋅的最大值为().A.1B.32C.12D.32二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求的.全部选对的得6分,部分选对的得部分,有选错的得0分.9.下列关于平面向量的命题正确的是()A.若a b ∥ ,b c ∥ ,则a c∥ B.两个非零向量a ,b 垂直的充要条件是:0a b ⋅=C.若向量AB CD =,则A ,B ,C ,D ,四点必在一条直线上D.向量()0a a ≠ 与向量b 共线的充要条件是:存在唯一一个实数λ,使b aλ= 10.如图,函数()()2tan 04f x x πωω⎛⎫=+> ⎪⎝⎭的图象与x 轴相交于A ,B 两点,与y 轴相交于点C ,且满足ABC △的面积为2π,则下列结论不正确的是()A.4ω=B.函数()f x 的图象对称中心为,082k ππ⎛⎫-+ ⎪⎝⎭,k ∈Z C.()f x 的单调增区间是5,8282k k ππππ⎛⎫++⎪⎝⎭,k ∈Z D.将函数()f x 的图象向右平移4π个单位长度后可以得到函数2tan y x ω=的图象11.如图,弹簧挂着的小球做上下运动,它在s t 时相对于平衡位置的高度h (单位:cm )由关系式()sin h A t ωϕ=+,[)0,t ∈+∞确定,其中0A >,0ω>,(]0,ϕπ∈.小球从最高点出发,经过2s 后,第一次回到最高点,则()A.4πϕ=B.ωπ=C. 3.75s t =与10s t =时的相对于平衡位置的高度h 之比为22D. 3.75s t =与10s t =时的相对于平衡位置的高度h 之比为12三、填空题:本题共3小题,每小题5分,共15分.12.如图,在正六边形ABCDEF 中,2AF ED EF AB -++=__________.13.已知(2a = ,若向量b 满足()a b a +⊥ ,则b 在a方向上的投影向量的坐标为__________.14.已知ABC △的内角A ,B ,C 的对边为a ,b ,c ,ABC △3,且2cos 2b A c a =-,4a c +=,则ABC △的周长为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知α,β为锐角,1tan 2α=,()5cos 13αβ+=.(1)求cos 2$α的值;(2)求()tan αβ-的值.16.(15分)已知4a = ,2b = ,且a 与b的夹角为120°,求:(1)2a b -;(2)a 与a b +的夹角;(3)若向量2a b λ- 与3a b λ-平行,求实数λ的值.17.(15分)如图,四边形ABCD 中,1AB =,3BC =,2CD DA ==,60DCB ∠=︒.(1)求对角线BD 的长:(2)设DAB θ∠=,求cos θ的值,并求四边形ABCD 的面积.18.(17分)如图,某公园摩天轮的半径为40m ,圆心距地面的高度为50m ,摩天轮做匀速转动,每3min 转一圈,摩天轮上的点P 的起始位置在最低点处.(1)已知在时刻t (单位:min )时点P 距离地面的高度()()sin f t A t h ωϕ=++(其中0A >,0ω>,ϕπ<,求函数()f t 解析式及2023min 时点P 距离地面的高度;(2)当点P距离地面(50m +及以上时,可以看到公园的全貌,求转一圈中有多少时间可以看到公园的全貌?19.(17分)设向量()12,a a a = ,()12,b b b = ,定义一种向量()()()12121122,,,a b a a b b a b a b ⊗=⨯=.已知向量12,2m ⎛⎫= ⎪⎝⎭ ,,03n π⎛⎫= ⎪⎝⎭,点()00,P x y 为函数sin y x =图象上的点,点(),Q x y 为()y f x =的图象上的动点,且满足OQ m OP n =⊗+(其中O 为坐标原点).(1)求()y f x =的表达式并求它的周期;(2)把函数()y f x =图象上各点的横坐标缩小为原来的14倍(纵坐标不变),得到函数()y g x =的图象.设函数()()()h x g x t t =-∈R ,试讨论函数()h x 在区间0,2π⎡⎤⎢⎥⎣⎦内的零点个数.2023-2024学年第二学期高一教学质量检测数学答案1.B 【详解】由向量()2,1a =- ,()1,1b =- ,可得()24,3a b +=- ,()31,2a b -=-,所以()()()()23413210a b a b +⋅-=⨯-+-⨯=-.2.A 【详解】由题意得()2cos 2sin 42f x x x x ==,所以()()()4sin 422f x x x f x -=-=-=-,故()f x 为奇函数,周期242T ππ==.3.C 【详解】因为OA == OB = ,()21212OA AB OA OB OA OA OB OA ⋅=⋅-=⋅-=-=- .4.D 【详解】∵物体处于平衡状态,∴1230F F F ++=,即()312F F F =-+ ,∴312F F F =+===5.D 【详解】因为sin cos a B A =,则sin sin cos A B B A =,因为(),0,A B π∈,则sin 0B >,所以tan A =,则3A π=,又因为sin 2sin cos C A B =,A B C π++=,则()sin 2sin cos A B A B +=,则sin cos cos sin 2sin cos A B A B A B +=,即sin cos cos sin 0A B A B -=,即()sin 0A B -=,又因为(),0,A B π∈,则A B ππ-<-<,所以3A B π==,即3A B C π===.即ABC △一定是等边三角形,故D 正确.6.A 【详解】2sin102cos10tan102sin102sin1022cos102cos10︒︒+︒⨯︒︒+︒=+︒=︒︒()2sin 30102sin 202cos102cos10︒+︒-︒︒+︒==︒︒()2sin 30cos10cos30sin102cos10︒+︒︒-︒︒=︒cos10cos1012cos102cos102︒+︒︒︒===︒︒7.B 【详解】ABC △中,D 是AB 的中点,E 是CD 的中点,则()1111113122222244AE AC AD AC AB AC AC CB CA CB ⎛⎫⎛⎫=+=+=++=-+ ⎪ ⎪⎝⎭⎝⎭,所以34λ=-,14μ=,所以12λμ+=-.8.D 【详解】设AE x =,[]0,1x ∈,()DE DC DA AE DC DA DC AE DC⋅=+⋅=⋅+⋅113cos cos0,222DA DC ADC AE DC x ⎡⎤=⋅∠+︒=+∈⎢⎥⎣⎦ ,∴DE DC ⋅ 的最大值为32.故选:D.9.BD 【详解】对于A ,当0b =时,不一定成立,A 错误;对于B ,两个非零向量a ,b ,当向量a ,b 垂直可得0a b ⋅= ,反之0a b ⋅= 也一定有向量a ,b垂直,∴B 正确;对于C ,若向量AB CD = ,AB 与CD方向和大小都相同,但A ,B ,C ,D 四点不一定在一条直线上,∴C 错误;对于D ,由向量共线定理可得向量()0a a ≠ 与向量b 共线的充要条件是:存在唯一一个实数λ,使b a λ=,∴D 正确.10.ABD 【详解】A :当0x =时,()02tan 24OC f π===,又2ABC S π=△,所以112222ABCS AB OC AB π==⨯=△,得2AB π=,即函数()f x 的最小正周期为2π,由T πω=得2ω=,故A 不正确;B :由选项A 可知()2tan 24f x x π⎛⎫=+⎪⎝⎭,令242k x ππ+=,k Z ∈,解得48k x ππ=-,k Z ∈,即函数()f x 的对称中心为,048k ππ⎛⎫-⎪⎝⎭,k Z ∈,故B 错误;C :由32242k x k πππππ+<+<+,k Z ∈,得58282k k x ππππ+<<+,k Z ∈,故C 正确;D :将函数()f x 图象向右平移8π个长度单位,得函数2tan 2y x =的图象,故D 不正确.11.BC 【详解】对于AB ,由题可知小球运动的周期2s T =,又0ω>,所以22πω=,解得ωπ=,当0s t =时,sin A A ϕ=,又(]0,ϕπ∈,所以2πϕ=,故A 错误,B 正确;对于CD ,则sin cos 2h A t A t πππ⎛⎫=+= ⎪⎝⎭,所以 3.75s t =与10s t =时的相对于平衡位置的高度之比为()()15cos coscos 3.75244cos 10cos10cos 02A A πππππ⎛⎫- ⎪⨯⎝⎭===⨯,故C 正确D 错误.故选:BC.12.0【详解】由题意,根据正六边形的性质()222AF ED EF AB AF ED EF AB AF DF AB-++=--+=++ 22220AF CA AB CF AB BA AB =++=+=+= .故答案为:0.13.(1,-【详解】由题意知()a b a +⊥ ,故()0a b a +⋅= ,所以20a a b +⋅=,而(a =,则a ==23a b a ⋅=-=- ,则b 在a方向上的投影向量为(1,a a aab ⋅⋅==- ,即b在a方向上的投影向量的坐标为(1,-,故答案为:(1,-.14.6【详解】∵2cos 2b A c a =-,∴222222b c a b c a bc+-⋅=-,∴22222b c a c ac +-=-,∴222a cb ac+-=∴2221cos 22a cb B ac +-==∵0B π<<,∴3B π=,∵1sin 24ABC S ac B ac ===△∴4ac =,∵4a c +=,∴2a c ==,又3B π=,∴ABC △是边长为2的等边三角形,∴ABC △的周长为6.15.【详解】(1)22222211cos sin 1tan 34cos 21cos sin 1tan 514ααααααα---====+++;(2)由1tan 2α=,得22tan 14tan 211tan 314ααα===--,因为α,β为锐角,所以,0,2παβ⎛⎫∈ ⎪⎝⎭,则()0,αβπ+∈,又因()5cos 13αβ+=,所以0,2παβ⎛⎫+∈ ⎪⎝⎭,所以()12sin 13αβ+==,所以()()()sin 12tan cos 5αβαβαβ++==+,则()()()()412tan 2tan 1635tan tan 24121tan 2tan 63135ααβαβααβααβ--+-=-+==-⎡⎤⎣⎦+++⨯.16.【详解】(1)2a b -====(2)因为()2222168412a ba ab b +=+⋅+=-+=,所以a b += ,又()216412a a b a a b ⋅+=+⋅=-=,所以()3cos ,2a a b a a b a a b⋅++===+ ,又[],0,a a b π+∈ 所以a 与a b + 的夹角为6π;(3)因为向量2a b λ- 与3a b λ-平行,所以存在实数k 使()233a b k a b ka kb λλλ-=-=- ,所以23kkλλ=⎧⎨-=-⎩,解得λ=17.【详解】(1)解:连接BD ,在BCD △中,3BC =,2CD =,60DCB ∠=︒得:22212cos 9423272BD CD BC CD BC DCB =+-⨯⨯∠=+-⨯⨯⨯=∴BD =(2)在ABD △中,由DAB θ∠=,1AB =,2DA =,7BD =2221471cos 22122AB DA BD AB DA θ+-+-===-⨯⨯⨯,∴120θ=,四边形ABCD 的面积:11sin sin 22BCD ABC S S S BC CD BCD AB AD θ=+=⨯⨯⨯∠+⨯⨯⨯△△∴13133212232222S =⨯⨯⨯+⨯⨯⨯=.18.【详解】(1)依题意,40A =,50h =,3T =,则23πω=,所以()240sin 503f t t πϕ⎛⎫=++⎪⎝⎭,由()010f =可得,40sin 5010ϕ+=,sin 1ϕ=-,因为ϕπ<,所以2πϕ=-.故在时刻t 时点P 距离地面的离度()()240sin 50032f t t t ππ⎛⎫=-+≥⎪⎝⎭.因此()2202340sin 2023507032f ππ⎛⎫=⨯-+=⎪⎝⎭,故2023min 时点P 距离地面的高度为70m.(2)由(1)知()2240sin 505040cos 323f t t t πππ⎛⎫⎛⎫=-+=-⎪ ⎪⎝⎭⎝⎭,其中0t ≥.依题意,令()503f t ≥+240cos 33t π⎛⎫-≥ ⎪⎝⎭23cos 32t π⎛⎫≤- ⎪⎝⎭,解得52722636k t k πππππ+≤≤+,k ∈Z .则573344k t k +≤≤+,k ∈Z .由75330.544k k ⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,可知转一圈中有0.5min 时间可以看到公园全貌.19.【详解】(1)因为12,2m ⎛⎫= ⎪⎝⎭,()00,OP x y =,因为点()00,P x y 为sin y x =的图象上的动点,所以00sin y x =,0000112,2,sin 22m OP x y x x ⎛⎫⎛⎫⊗== ⎪ ⎪⎝⎭⎝⎭;因为OQ m OP n =⊗+ ,所以()000011,2,sin ,02,sin 2332x y x x x x ππ⎛⎫⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以00231sin 2x x y x π⎧=+⎪⎪⎨⎪=⎪⎩,即0032sin 2x x x y π⎧-⎪⎪=⎨⎪=⎪⎩,所以()11sin 226y f x x π⎛⎫==- ⎪⎝⎭,它的周期为4T π=;(2)由(1)知()1sin 226g x x π⎛⎫=- ⎪⎝⎭,52,666x πππ⎡⎤-∈-⎢⎣⎦,当262x ππ-=时,3x π=所以()1sin 226g x x π⎛⎫=- ⎪⎝⎭在0,3π⎡⎤⎢⎥⎣⎦上单调递增,在,32ππ⎡⎤⎢⎥⎣⎦上单调递减,其函数图象如下图所示:由图可知,当12t=或1144t-≤<时,函数()h x在区间0,2π⎡⎤⎢⎣⎦内只有一个零点,当1142t≤<时,函数()h x在区间0,2π⎡⎤⎢⎥⎣⎦内有两个零点,当14t<-或12t>时,函数()h x在区间0,2π⎡⎤⎢⎥⎣⎦内没有零点.。

截面问题(含详细解析)

截面问题(含详细解析)

几何体截面问题①定义:一个几何体和一个平面相交所得到的平面图形(包含它的内部)叫做这个几何体的截面. 截面不唯一,好的截面应包含几何体的主要元素!②画法:常通过“作平行线”或“延长直线找交点”作出完整的截面,作截面是立体几何非常重要的研究课题.③思想:作截面是研究空间几何体的重要方法,它将陌生空问题转化为熟悉的平面问题!技能1.结合线、面平行的判定定理与性质性质求截面问题; 技能2.结合线、面垂直的判定定理与性质定理求正方体中截面问题;技能3.猜想法求最值问题:要灵活运用一些特殊图形与几何体的特征,“动中找静”:如正三角形、正六边形、正三棱锥等;技能4.建立函数模型求最值问题:①设元②建立二次函数模型③求最值。

1.【云南省昆明市2019-2020学年高三下学期1月月考数学】某同学在参加《通用技术》实践课时,制作了一个工艺品,如图所示,该工艺品可以看成是一个球被一个棱长为为4π,则该球的半径是( )A .2B .4C .D .【答案】B【解析】设截面圆半径为r ,球的半径为R ,则球心到某一截面的距离为正方体棱长的一半即截面圆的周长可得42r ππ=,得2r =,故由题意知(222R r =+,即(222216R=+=,所以4R =,故选:B .2.如图,已知三棱锥V ABC -,点P 是VA 的中点,且2AC =,4VB =,过点P 作一个截面,使截面平行于VB 和AC ,则截面的周长为( )A .12B .10C .8D .6【答案】D 【解析】如图所示,设AB 、BC 、VC 的中点分别为D,E,F ,连接PD,DE,EF,PF. 由题得PD||VB,DE||AC,因为,PD DE ⊆平面DEFP,VB,AC 不在平面DEFP 内, 所以VB||平面DEFP,AC||平面DEFP, 所以截面DEFP 就是所作的平面.由于11||,||,,22PD VB EF VB PD VB EF VB ===, 所以四边形DEFP 是平行四边形, 因为VB=4,AC=2,所以PD=FE=2,DE=PF=1, 所以截面DEFP 的周长为2+2+1+1=6. 故选:D3.【2020届广东省东莞市高三期末调研测试理科数学试题】已知球O 是正四面体A BCD -的外接球,2BC =,点E 在线段BD 上,且3BD BE =,过点E 作球O 的截面,则所得截面圆面积的最小值是( ) A .89π B .1118πC .512π D .49π 【答案】A【解析】由题,设平面α为过E 的球O 的截面,则当OE ⊥平面α时,截面积最小, 设截面半径为r ,球的半径为R ,则222r R d =-,因为正四面体棱长为a ,设过点A 垂直于平面BCD 的直线交平面BCD 于点M ,则DM =,令AM h =,OM x =,则x h R =-,在Rt AMD V 中,222AM DM AD +=,即222h a ⎫+=⎪⎪⎝⎭,则3h a =,在Rt OMD V 中,222DM OM R +=,即222x R ⎫+=⎪⎪⎝⎭,则22213a R R ⎫+-=⎪⎪⎝⎭,解得R =,则x ==, 在Rt OED △中,222OE OM EM =+,因为点E 在线段BD 上,3BD BE =,设BC 中点为N ,则2DM MN =, 所以211333EM BN BC a ===,在Rt OED △中,222OE OM EM =+,即2222111372d a a ⎫⎛⎫=+=⎪ ⎪⎪⎝⎭⎝⎭,所以22221124729r a a a ⎛⎫=-= ⎪ ⎪⎝⎭,因为2a BC ==, 所以289r =,所以截面面积为289S r ππ==, 故选:A4.【2020届福建省福州市高三适应性练习卷数学理科试题】在三棱锥P ABC -中,PA ⊥底面ABC ,,6,8AB AC AB AC ⊥==,D 是线段AC 上一点,且3AD DC =.三棱锥P ABC -的各个顶点都在球O 表面上,过点D 作球O 的截面,若所得截面圆的面积的最大值与最小值之差为16π,则球O 的表面积为( ) A .72πB .86πC .112πD .128π【答案】C【解析】将三棱锥P ABC -补成直三棱柱,且三棱锥和该直三棱柱的外接球都是球O , 记三角形ABC 的中心为1O ,设球的半径为R ,2PA x =, 则球心O 到平面ABC 的距离为x ,即1OO x =, 连接1O A ,则15O A =,∴2225R x =+.在ABC V 中,取AC 的中点为E ,连接11,O D O E , 则1132O E AB ==,124DE AC ==,所以1O D =在1Rt OO D V 中,OD = 由题意得到当截面与直线OD 垂直时,截面面积最小, 设此时截面圆的半径为r ,则()22222251312r R OD x x =-=+-+=,所以最小截面圆的面积为12π,当截面过球心时,截面面积最大为2R π, 所以21216R π-π=π,228R =, 球的表面积为2112R 4π=π. 故选:C.5.【2020届重庆南开中学高三第五次教学质量检测考试数学文科试题】正三棱锥P ABC -,Q 为BC 中点, PA =,2AB =,过Q 的平面截三棱锥P ABC -的外接球所得截面的面积范围为( )A .13,45ππ⎡⎤⎢⎥⎣⎦B .12,23ππ⎡⎤⎢⎥⎣⎦C .[],2ππD .3,2ππ⎡⎤⎢⎥⎣⎦【答案】D【解析】因为正三棱锥P ABC -,PB PC PA ===2AC BC AB ===,所以222PB PA AB +=,即PB PA ⊥,同理PB PC ⊥,PC PA ⊥, 因此正三棱锥P ABC -可看作正方体的一角,如图,记正方体的体对角线的中点为O ,由正方体结构特征可得,O 点即是正方体的外接球球心,所以点O 也是正三棱锥P ABC -外接球的球心,记外接球半径为R ,则2R ==,因为球的最大截面圆为过球心的圆, 所以过Q 的平面截三棱锥P ABC -的外接球所得截面的面积最大为2max 32S R ππ==;又Q 为BC 中点,由正方体结构特征可得122OQ PA ==;由球的结构特征可知,当OQ 垂直于过Q 的截面时,截面圆半径最小为1r ==,所以2min S r ππ==.因此,过Q 的平面截三棱锥P ABC -的外接球所得截面的面积范围为3,2ππ⎡⎤⎢⎥⎣⎦.故选:D.6.【2020届湖北省部分重点中学高三第二次联考数学试卷理科试题】如图,已知四面体ABCD 的各条棱长均等于4,E ,F 分别是棱AD 、BC 的中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )A .B .4C .D .6【答案】B【解析】将正四面体补成正方体如图,可得EF ⊥平面CHBG ,且正方形边长为由于EF α⊥,故截面为平行四边形MNKL ,且4KL KN +=, 又//KL BC ,//KN AD ,且AD BC ⊥, ∴KN KL ⊥, ∴MNKLS KN KL =⋅Y 242KN KL +⎛⎫≤= ⎪⎝⎭,当且仅当2KL KN ==时取等号, 故选:B .7.已知正方体1111ABCD A B C D -的边长为2,边AB 的中点为M ,过M 且垂直1BD 的平面被正方体所截的截面面积为( )A .2B C .D .【答案】A【解析】如图,连结111,,,AC CB AB BC ,易知11CB BC ⊥,111CB D C ⊥,又1111BC D C C ⋂=,则1CB ⊥平面11BC D ,故11CB BD ⊥,同理可证明CA ⊥平面1BDD ,则1CA BD ⊥,又1CA CB C =I ,故1BD ⊥平面1ACB .取BC 的中点E ,1BB 的中点F ,易知平面//MEF 平面1ACB , 所以1BD ⊥平面MEF ,即MEF V 为所求截面.易知MEF V 为正三角形,边长ME ==故12MEF S ==V 故选:A.8.在棱长为2的正方体1111ABCD A B C D -中,P ,Q ,R 分别是AB ,AD ,11B C 的中点,设过P ,Q ,R 的截面与面11ADD A ,以及面11ABB A 的交线分别为l ,m ,则l ,m 所成的角为( )A .90︒B .30°C .45︒D .60︒【答案】D【解析】因为,在正方体1111ABCD A B C D -中,P ,Q ,R 分别是AB ,AD ,11B C 的中点,取11C D ,1DD ,1BB 的中点分别为G ,F ,E ,连接FG , FQ ,QP ,PE ,ER ,RG ,根据正方体的特征,易知,若连接PG ,EF ,RQ ,则这三条线必相交于正方体的中心,又////GR EF QP ,所以P ,Q ,R ,G ,F ,E 六点必共面,即为过P ,Q ,R 的截面;所以EP 即为直线m ,FQ 即为直线l ;连接1AB ,1AD ,11B D ,因为1//EP AB ,1//FQ AD ,所以11B AD ∠即为异面直线EP 与FQ 所成的角,又因为正方体的各面对角线都相等,所以11AB D V 为等边三角形, 因此1160B AD ∠=︒.故选:D.9.【2020届山西省吕梁市高三上学期第一次模拟考试数学(理)试题】如图四面体A BCD -中,2,AD BC AD BC ==⊥,截面四边形EFGH 满足//EF BC ;//FG AD ,则下列结论正确的个数为( ) ①四边形EFGH 的周长为定值 ②四边形EFGH 的面积为定值 ③四边形EFGH 为矩形④四边形EFGH 的面积有最大值1A .0B .1C .2D .3【答案】D【解析】因为//EF BC EF ⊄,平面BCD ,所以//EF 平面BCD ,又平面EFGH I 平面BDC GH =,所以//EF GH .同理//FG EH ,所以四边形EFGH 为平行四边形, 又AD BC ⊥,所以四边形EFGH 为矩形.所以③是正确的;由相似三角形的性质得EF AF FC FGBC AC AC AD==,, 所以EF FG AF FCBC AD AC AC+=+,2BC AD ==,所以2EF FG +=, 所以四边形EFGH 的周长为定值4,所以①是正确的;212EFGHEF FG S EF FG ⨯⎛⎫=⨯≤= ⎪⎝⎭,所以四边形EFGH 的面积有最大值1,所以④是正确的.因为①③④正确.故选:D10.【2018年全国普通高等学校招生统一考试理科数学(新课标I 卷)】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A .4B C .4D 【答案】A【解析】首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果. 【解析】根据相互平行的直线与平面所成的角是相等的, 所以在正方体1111ABCD A B C D -中,平面11AB D 与线11111,,AA A B A D 所成的角是相等的,所以平面11AB D 与正方体的每条棱所在的直线所成角都是相等的, 同理平面1C BD 也满足与正方体的每条棱所在的直线所成角都是相等, 要求截面面积最大,则截面的位置为夹在两个面11AB D 与1C BD 中间的,且过棱的中点的正六边形,且边长为2,所以其面积为26S ==,故选A. 11.【云南省曲靖市2019-2020学年高三第一次教学质量检测数学文科试题】在四面体ABCD 中,3AB BD AD CD ====,4AC BC ==,用平行于AB ,CD 的平面截此四面体,得到截面四边形EFGH ,则四边形EFGH 面积的最大值为( ) A .43B .94C .92D .3【答案】B【解析】设截面分别与棱,,,AD BD BC AC 交于点,,,E F G H .由直线//AB 平面EFGH , 且平面ABC I 平面EFGH GH =,平面ABD ⋂平面EFGH EF = 得//GH AB ,//EF AB ,所以//GH EF ,同理可证//EH FG ,所以四边形EFGH 为平行四边形, 又3AB BD AD CD ====,4AC BC ==, 可证得AB CD ⊥,四边形EFGH 为矩形.设:::BF BD BG BC FG CD x ===,01x <<, 则3FG x =,()31HG x =-,于是2199(1)9,0124EFGH S FG HG x x x x ⎛⎫=⋅=-=--+<< ⎪⎝⎭当12x =时,四边形EFGH 的面积有最大值94. 故选:B. 二、填空题12.【新疆维吾尔自治区乌鲁木齐市2019-2020学年高三第一次诊断性测试数学文试题】 如图,已知正方体1111ABCD A B C D -的棱长为2,E 、F 、G 分别为11,,AB AD B C 的中点,给出下列命题:①异面直线EF 与AG 所成的角的余弦值为6;②过点E 、F 、G 作正方体的截面,所得的截面的面积是③1A C ⊥平面EFG④三棱锥C EFG -的体积为1其中正确的命题是_____________(填写所有正确的序号)【答案】①③④【解析】取11C D 的中点为点H ,连接GH 、AH ,如图1所示,因为//EF GH ,所以AGH ∠就是异面直线EF 与AG 所成的角易知在AGH V 中,3,AG AH GH ===2cos 36AGH ∠==,①正确;图1 图2 图3矩形EFGH 即为过点E 、F 、G 所得正方体的截面,如图2所示,易知EF EG ==所以EFGH S ==分别以DA 、DC 、DD 1为x 轴、y 轴、z 轴建立如图3所示直角坐标系,则(2,0,2),(2,1,0),A E(1,0,0),(1,2,2)F G ,1(2,2,2),(1,1,0),(1,1,2)AC FE EG =--==-u u u r u u u r u u u r , 因为110,0AC FE AC EG ⋅=⋅=u u u r u u u r u u u r u u u r ,所以11,A C EF A C EG ⊥⊥,又EF ⊂平面EFG , EG ⊂平面EFG 且EF EG E =I ,所以1A C ⊥平面EFG ,故③正确134(111212)22EFC S =-⨯⨯+⨯+⨯=V ,1113G ECF EFC V S C C -=⋅=V ,④正确. 故答案为:①③④13.如图所示,在长方体1111ABCD A B C D -中,点E 是棱1CC 上的一个动点,若平面1BED 交棱1AA 于点F ,给出下列命题:①四棱锥11B BED F -的体积恒为定值;②对于棱1CC 上任意一点E ,在棱AD 上均有相应的点G ,使得//CG 平面1EBD ; ③O 为底面ABCD 对角线AC 和BD 的交点,在棱1DD 上存在点H ,使//OH 平面1EBD ; ④存在唯一的点E ,使得截面四边形1BED F 的周长取得最小值.其中为真命题的是____________________.(填写所有正确答案的序号)【答案】①③④【解析】①111111112B BED F B BED B BFD B BED V V V V ----=+=,又三棱锥11B BED -为三棱锥11E BB D -,则底面11BB D 不变,且因为1//CC 平面11BB D ,故点E 到底面11BB D 的距离即三棱锥11E BB D -底面的高不变,故三棱锥11E BB D -的体积不变,所以四棱锥11B BED F -的体积不变,恒为定值,故①正确;②当点E 在点C 处时,总有CG 与平面1EBD 相交,故②错误;③由O 为底面ABCD 对角线AC 和BD 的交点,则12DO DB =,设H 为1DD 的中点,则在1D DB V 中1//OH D B ,所以//OH 平面1EBD ,故③正确;④四边形1BED F 的周长为()012C BE ED =+,则分析1BE ED +即可,将矩形11BCC B 沿着1CC 展开使得B 在DC 延长线上时,此时B 的位置设为P ,则线段1D P 与1CC 的交点即为截面平行四边形1BED F 的周长取得最小值时唯一点E ,故④正确;故答案为:①③④14.【2020届河南省驻马店市高三上学期期末数学(文科)试题】 在棱长为2的正方体1111ABCD A B C D -中,E 是正方形11BB C C 的中心,M 为11C D 的中点,过1A M 的平面α与直线DE 垂直,则平面α截正方体1111ABCD A B C D -所得的截面面积为______.【答案】【解析】如图,在正方体1111ABCD A B C D -中,记AB 的中点为N ,连接1,,MC CN NA , 则平面1A MCN 即为平面α.证明如下:由正方体的性质可知,1A M NC P ,则1A ,,,M CN N 四点共面, 记1CC 的中点为F ,连接DF ,易证DF MC ⊥.连接EF ,则EF MC ⊥, 所以MC ⊥平面DEF ,则DE MC ⊥.同理可证,DE NC ⊥,NC MC C =I ,则DE ⊥平面1A MCN , 所以平面1A MCN 即平面α,且四边形1A MCN 即平面α截正方体1111ABCD A B C D -所得的截面. 因为正方体的棱长为2,易知四边形1A MCN 是菱形,其对角线1AC =,MN =12S =⨯=故答案为:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高三下学期第一次月考数学(文)试题 含答案
一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求
的.
1.复数311z i
=-对应的点在 A .第一象限
B .第二象限
C .第三象限
D .第四象限 2.已知集合{|||2,},{|4,}A x x x R B x x x Z =≤∈=≤∈,则A B =
(A )(0,2) (B )[0,2] (C )|0,2| (D )|0,1,2|
3.已知α是第二象限角,(,5)P x 为其终边上一点,且2cos ,4
x x α=
则= A .3 B .±3 C .2- D .—3 4.(8)如果执行右面的框图,输入N=5,则输出的数等于
(A )5
4
(B )4
5
(C )6
5
(D )5
6
5.某人订了一份报纸,送报人可能在早晨6:30—7:30之间把报送到,
该人早晨7:00-8:00之间离开家,该人在离开家前能看到报纸的
概率是
A .58
B .13
C .14
D .78
6.函数)(),(1cos 2cos sin 32)(2x f R x x x x x f 则∈-+=的最小正周期是
A .π
B .2π
C .2π
D .3
π 7.已知数列}{n a 为等比数列,S n 是它的前n 项和,若,2132a a a =⋅且742a a 与的等差中项为
45,则S 5=
A .35
B .33
C .31
D .
29
8.已知双曲线22
221(0,0)x y a b a b
-=>>的两条渐近线方程是2y x =±,则双曲线的离心率为 A .5 B . 355 C .52 D .233
9.一个圆锥被过顶点的平面截去了较少的一部分几何体,余下的几何体的三视图如下,则余下部分
的几何体积为
A .1538+π
B .332916+π
C .82393π+
D .33
16+π 10.若3(),()1(0),()(1,(1))f x f x x x f x M f =->--为奇函数且则在点处的切线方程是
A .330x y ++=
B .330x y --=
C .330x y -+=
D .330x y +-=
11.已知三棱锥P —ABC ,∠BPC=90°,PA ⊥平面BPC ,其中AB=10,BC=5,13=
AC ,P 、A 、B 、C 四点均在球O 的表面上,则球O 的表面积
A .12π
B .14π
C .2
7 D .28π 12.已知点P 是双曲线22
2222221(0,0)x y a b x y a b a b -=>>+=+和圆的一个交点,F 1,F 2是该双曲
线的两个焦点,∠PF 2F 1=2∠PF 1F 2,则该双曲线的离心率为
A .12
B .312+
C .2
D .31+
二、填空题:本大题共4小题,每小题5分.
13.已知O 为坐标原点,点M 的坐标为(2,1),点N (x ,y )的坐标x 、y 满足不等式组
230330.1x y x y OM ON y +-≤⎧⎪+-≥∙⎨⎪≤⎩
则的取值范围是 。

14.已知抛物线22(0)y px p =>的准线与圆22
450x y x +--=相切,则p 值为 。

15.已知||2,||2,a b ==a 与b 的夹角为45°,且,b a a λλ-与垂直则实数= 。

16.在ABC 中,D 为BC 边上一点,3BC BD =,2AD =,135ADB ο∠=.若2AC AB =,则
BD=_____
三、解答题:解答应写出文字说明,证明过程和演算步骤
17、在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且
c
a b C B +-=2cos cos 。

(1)求角B 的大小;
(2)若13=b ,4=+c a ,求△ABC 的面积。

18.如图,在四棱锥P - ABCD 中,PD ⊥平面ABCD .AB ∥DC .已知BD =2AD=2PD=8, AB=2DC=4 5.
(I )设M 是PC 上一点,证明:平面MBD ⊥平面PAD ;
(Ⅱ)若M 是PC 的中点,求棱锥P —DMB 的体积.
19.为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天100颗种子浸泡后的发芽数,得到如下资料:
(I )从这5天中任选2天,记发芽的种子数分别为m ,n ,求事件“m ,n 均不小于25”的概率; (Ⅱ)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另
三天的数据,求出y 关于x 的线性回归方程ˆy
bx a =+; (Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到
的线性回归方程是可靠的,试问(Ⅱ)中所得的线性回归方程是否可靠?
(参考公式:1
21,n i
i i n
i i x y nx y b a y bx x nx =2=-==--∑∑)(参考数据:33
211977,434i i i i i x y x ====∑∑) 20、设椭圆M :22
221y x a b
+=(0>>b a )的离心率与双曲线122=-y x 的离心率互为倒数,且内切于圆422=+y x 。

(1)求椭圆M 的方程;
(2)若直线m x y +=
2交椭圆于A 、B 两点,椭圆上一点(1,2)P , 求△PAB 面积的最大值。

21.已知函数()3ln ()f x x a x a R =-∈,
(I ) 讨论函数()f x 的单调区间和极值点;
(II )若函数()f x 有极值点0x ,记过点00(,())A x f x 与原点的直线斜率为k .是否存在a 使
3k a =-?若存在,求出a 值;若不存在,请说明理由.
请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题记分。

作答时必须用2B 铅笔将选作题目对应题号后面的方框图涂满、涂黑,请勿多涂、漏涂。

22.(本小题满分10分)《选修4—1:几何证明选讲》
在ABC ∆中,AB=AC ,过点A 的直线与其外接圆
交于点P ,交BC 延长线于点D 。

(Ⅰ)求证:BD PD AC PC =; (Ⅱ)若AC =3,求AD AP ⋅的值。

23.(本小题满分10分)《选修4-4:坐标系与参数方程》
在平面直角坐标系xOy 中,已知曲线1:2
21=+y x C ,以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线6)sin cos 2(:=θ-θρl 。

(Ⅰ)将曲线1C 上的所有点的横坐标、纵坐标分别伸长为原来的3、2倍后得到曲线2C ,试写
出直线l 的直角坐标方程和曲线2C 的参数方程;
(Ⅱ)在曲线2C 上求一点P ,使点P 到直线l 的距离最大,并求出此最大值。

24.(本小题满分10分)《选修4-5:不等式选讲》
已知a 和b 是任意非零实数。

(Ⅰ)求a b
a b a -++22的最小值; (Ⅱ)若不等式)22(22x x a b a b a -++≥-++恒成立,求实数x 的取值范围。

P
D C B A。

相关文档
最新文档