人教版九年级上册数学第二十四章达标测试卷

合集下载

人教版数学九年级上册第二十四章测试题及答案

人教版数学九年级上册第二十四章测试题及答案

人教版数学九年级上册第二十四章测试卷(45分钟100分)一、选择题(每小题4分,共28分)1.已知☉O的半径为6,A为线段PO的中点,当OP=10时,点A与☉O的位置关系为( )A.在圆上B.在圆外C.在圆内D.不确定【解析】选C.∵点A为OP的中点,∴OA=OP÷2=5<6,∴点A在☉O内部.2.圆最长弦为12cm,如果直线与圆相交,且直线与圆心的距离为d,那么( )A.d<6cmB.6cm<d<12cmC.d≥6cmD.d>12cm【解析】选A.由题意知圆的直径为12cm,那么圆的半径为6cm.则当直线与圆相交时,直线与圆心的距离d<6cm.3.(2013·巴中中考)如图,已知☉O是△ABD的外接圆,AB是☉O的直径,CD是☉O 的弦,∠ABD=58°,则∠BCD等于( )A.16°B.32°C.58°D.64°【解析】选B.∵AB是☉O的直径,∴∠ADB=90°.∵∠ABD=58°,∴∠A=90°-∠ABD=32°,∴∠BCD=∠A=32°.4.(2013·河池中考)如图, AB为☉O的直径,C为☉O外一点,过C作☉O的切线,切点为B,连接AC交☉O于D,∠C=38°.点E在AB右侧的半圆周上运动(不与A,B 重合),则∠AED的大小是( )A.19°B.38°C.52°D.76°【解析】选B.如图,连接BE,则直径AB所对的圆周角∠AEB=90°,由切线BC可得直角△ABC中,∠BAC=90°-∠C=90°-38°=52°,因为∠BAC=∠BED=52°,所以∠AED=∠AEB-∠BED=90°-52°=38°.5.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为( )A.2a2B.3a2C.4a2D.5a2【解析】选A.由正方形和正八边形的性质知四个三角形为全等的等腰直角三角形,正好拼接成一个边长为a的正方形,又根据正方形的面积等于边长的平方,所以阴影部分的面积是2a2.6.(2013·德州中考)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中的阴影部分的面积为( )A.πB.π-C. D.π+【解析】选C.因为扇形AOB的半径为1,∠AOB=90°,所以AB=,△AOB的面积为,扇形AOB的面积为=,所以弓形的面积为-,又因为半圆的面积为,所以阴影部分的面积为:-=.【变式训练】(2013·东营中考)如图,正方形ABCD中,分别以B,D为圆心,以正方形的边长a 为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的周长为( )A.πaB.2πaC.πaD.3a【解析】选A.方法一:∵四边形ABCD是正方形,∴∠B=∠D=90°.则扇形ABC的弧长为l==aπ,同理可求扇形ADC的弧长为aπ,所以树叶形图案的周长为aπ×2=πa;方法二:由题意知树叶形图案的周长为以a为半径的圆周长的一半,所以树叶形图案的周长为:×2πa=πa.7.如图,四边形ABCD内接于☉O,如果它的一个外角∠DCE=64°,那么∠BOD=( )A.128°B.100°C.64°D.32°【解析】选A.∵∠DCE=64°,∴∠BCD=116°,∵四边形ABCD内接于☉O,∴∠A+∠DCB=180°,∴∠A=64°,∴∠BOD=2∠A= 128°.二、填空题(每小题5分,共25分)8.如图,已知AB,CD是☉O的直径,=,∠AOE=32°,那么∠COE的度数为度.【解析】∵=,∴∠AOE=∠COA;又∠AOE=32°,∴∠COA=32°,∴∠COE=∠AOE+∠COA=64°.答案:649.(2013·衡阳中考)如图,要制作一个母线长为8cm,底面圆周长为12πcm的圆锥形小漏斗,若不计损耗,则所需纸板的面积是cm2.【解析】所需纸板的面积=×12π×8=48π(cm2).答案:48π10.如图,AB,AC,BD是☉O的切线,P,C,D为切点,如果AB=5,AC=3,则BD的长为.【解析】∵AC,AP为☉O的切线,∴AC=AP,∵BP,BD为☉O的切线,∴BP=BD,∴BD=PB=AB-AP=5-3=2.答案:211.(2013·哈尔滨中考)如图,直线AB与☉O相切于点A,AC,CD是☉O的两条弦,且CD∥AB,若☉O的半径为,CD=4,则弦AC的长为.【解析】连接AO并延长交CD于点E,连接OC,∵AB是圆O的切线,∴OA⊥AB,∵CD∥AB,∴∠AEC=90°,∴CE=CD=2,在Rt△OCE 中,由勾股定理得OE===,∴AE=4,在Rt△ACE中,由勾股定理得AC===2.答案:212.直角三角形的两边长分别为16和12,则此三角形的外接圆半径是. 【解析】当已知长度分别为16和12的两边为直角边时,可知斜边长为20,此时直角三角形的外接圆半径是10.当斜边长为16时,此时直角三角形的外接圆半径是8.所以三角形的外接圆半径是10或8.答案:10或8三、解答题(共47分)13.(10分)如图,☉O的半径OC=10cm,直线l⊥CO,垂足为H,交☉O于A,B两点,AB=16cm,直线l平移多少厘米时能与☉O相切?【解析】如图,连接OA,延长CO交☉O于D,∵l⊥OC,∴OC平分AB.∴AH=8.在Rt△AHO中,OH===6,∴CH=4cm,DH=16cm.答:直线l向左平移4cm,或向右平移16cm时与圆相切.【一题多解】设直线l平移x cm时能与圆相切,(10-x)2+82=102,x1=16,x2=4,所以CH=4cm,DH=16cm.答:直线l向左平移4cm,或向右平移16cm时与圆相切.【易错提醒】直线l可能向左移动,也可能向右移动,不要只考虑一种情况.14.(12分)如图,AB是☉O的直径,=,∠COD=60°.(1)△AOC是等边三角形吗?请说明理由.(2)求证:OC∥BD.【解析】(1)△AOC是等边三角形.∵=,∴∠AOC=∠COD=60°.∵OA=OC,∴△AOC是等边三角形.(2)∵=,∴OC⊥AD,又∵AB是☉O的直径,∴∠ADB=90°,即BD⊥AD,∴OC∥BD.15.(12分)(2013·德州中考)如图,已知☉O的半径为1,DE是☉O的直径,过D作☉O的切线,C是AD的中点,AE交☉O于B点,四边形BCOE是平行四边形.(1)求AD的长.(2)BC是☉O的切线吗?若是,给出证明;若不是,说明理由.【解题指南】(1)连接BD,由ED为☉O的直径,利用直径所对的圆周角为直角得到∠DBE为直角,由四边形BCOE为平行四边形,得到BC与OE平行,且BC=OE=1,在直角三角形ABD中,C为AD的中点,利用斜边上的中线等于斜边的一半求出AD 的长即可.(2)连接OB,由BC与OD平行,BC=OD,得到四边形BCDO为平行四边形,由AD为圆的切线,利用切线的性质得到OD垂直于AD,可得出四边形BCDO为矩形,利用矩形的性质得到OB垂直于BC,即可得出BC为圆O的切线.【解析】(1)连接BD,则∠DBE=90°.∵四边形BCOE是平行四边形,∴BC∥OE,BC=OE=1.在Rt△ABD中,C为AD的中点,∴BC=AD=1.∴AD=2.(2)连接OB,由(1)得BC∥OD,且BC=OD.∴四边形BCDO是平行四边形.又∵AD是☉O的切线,∴OD⊥AD.∴四边形BCDO是矩形.∴OB⊥BC,∴BC是☉O的切线.16.(13分)(2013·莆田中考)如图,▱ABCD中,AB=2,以点A为圆心,AB为半径的圆交边BC于点E,连接DE,AC,AE.(1)求证:△AED≌△DCA.(2)若DE平分∠ADC且与☉A相切于点E,求图中阴影部分(扇形)的面积.【解析】(1)∵AB=AE,∴∠ABE=∠AEB;在▱ABCD中,AB=CD,AD∥BC,∠ABE=∠ADC,∴DC=AE,∠DAE=∠AEB=∠ADC;在△ADE与△DAC中,DC=AE,∠DAE =∠ADC,AD=DA,∴△AED≌△DCA.(2)∵DE平分∠ADC且与☉A相切于点E,AE是☉A的半径,∴∠AED=90°,∠ADE=∠EDC,∵AD∥BC,∴∠ADE=∠DEC=∠CDE,∴CD=CE.由(1)中结论,可知∠AED=∠DCA=90°,DC=AE=CE, ∴∠ACE=∠EAC.∵∠CAE+∠BAE=90°,∠ACE+∠ABE=90°,∴∠BAE=∠ABE,∴BE=AE=AB,∴△ABE是等边三角形,∴∠BAE=60°.∴阴影部分的面积为:=π.。

人教版九年级数学上册 第二十四章检测题

人教版九年级数学上册 第二十四章检测题

第二十四章检测题时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.下列说法中,错误的是( C )A.半圆是弧B.半径相等的圆是等圆C.过圆心的线段是直径D.直径是弦2.如图,在⊙O中,半径为r=5 cm,弦AB=8 cm,OC⊥AB于点C,则OC=( A ) A.3 cm B.4 cm C.5cm D.6cm第2题图第3题图第4题图第5题图3.(2020·镇江)如图,AB是半圆的直径,C,D是半圆上的两点,∠ADC=106°,则∠CAB等于( C )A.10°B.14°C.16°D.26°4.(2020·长春)如图,AB是⊙O的直径,点C,D在⊙O上,∠BDC=20°,则∠AOC 的大小为( B )A.40°B.140°C.160°D.170°5.(2020·雅安)如图,△ABC内接于圆O,∠ACB=90°,过点C的切线交AB的延长线于点P,∠P=28°.则∠CAB=( B )A.62°B.31°C.28°D.56°6.(德阳中考)已知圆内接正三角形的面积为3,则该圆的内接正六边形的边心距是( B )A.2 B.1 C.3D.3 27.(2020·黄石)如图,点A,B,C在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,若∠DCE=40°,则∠ACB的度数为( C )A.140°B.70°C.110°D.80°第7题图第8题图第9题图第10题图8.(2020·永州)如图,已知P A ,PB 是⊙O 的两条切线,A ,B 为切点,线段OP 交⊙O 于点M .给出下列四种说法:①P A =PB ;②OP ⊥AB ;③四边形OAPB 有外接圆;④M 是△AOP 外接圆的圆心.其中正确说法的个数是( C )A .1B .2C .3D .49.(2020·泰州)如图,半径为10的扇形AOB 中,∠AOB =90°,C 为AB 上一点,CD ⊥OA ,CE ⊥OB ,垂足分别为D ,E .若∠CDE 为36°,则图中阴影部分的面积为( A )A .10πB .9πC .8πD .6π10.(2020·泰安)如图,点A ,B 的坐标分别为A (2,0),B (0,2),点C 为坐标平面内一点,BC =1,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( B )A .2 +1B .2 +12C .22 +1D .22 +12二、填空题(每小题3分,共24分)11.已知圆的直径是13 cm ,圆心到某条直线的距离是6 cm ,那么这条直线与该圆的位置关系是__相交__.12.(2020·随州)如图,点A ,B ,C 在⊙O 上,AD 是∠BAC 的角平分线,若∠BOC =120°,则∠CAD 的度数为__30°__.第12题图 第13题图 第14题图第15题图13.如图,扇形OAB 的圆心角为122°,C 是AB 上一点,则∠ACB =__119__°.14.(湖州中考)如图,已知△ABC 的内切圆⊙O 与BC 边相切于点D ,连接OB ,OD .若∠ABC =40°,则∠BOD 的度数是__70°__.15.(2020·安顺)如图,△ABC 是⊙O 的内接正三角形,点O 是圆心,点D ,E 分别在边AC ,AB 上,若DA =EB ,则∠DOE 的度数是__120__度.16.在周长为26π的⊙O 中,CD 是⊙O 的一条弦,AB 是⊙O 的切线,且AB ∥CD ,若AB 和CD 之间的距离为18,则弦CD 的长为__24__.17.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b ,然后把半圆沿直线b 进行无滑动滚动,直到半圆的直径与直线b 重合为止,则圆心O 运动路径的长度等于__5π__.第17题图第18题图18.(2020·贵港)如图,在扇形OAB中,点C在AB上,∠AOB=90°,∠ABC=30°,AD⊥BC于点D,连接AC,若OA=2,则图中阴影部分的面积为3.三、解答题(共66分)19.(6分)如图,AB是⊙O的直径,点D,C是⊙O上两点,且AD=DC=CB,连接AD,AC,OC,求证:OC∥AD.解:∵AD=DC=CB,∴∠DAC=∠BAC.∵∠BAC=∠ACO,∴∠DAC=∠ACO,∴OC∥AD20.(6分)如图所示,破残的圆形轮片上弦AB的垂直平分线交弧AB于点C,交弦AB 于点D.(1)求作此残片所在的圆;(不写作法,保留作图痕迹)(2)已知AB=16,CD=4,求(1)中所作圆的半径.解:(1)图略(2)∵AB=16,CD=4,CD⊥AB,∴AD=BD=8.设半径为x,得x2=82+(x-4)2,解得x=1021.(6分)(2020·天津)在⊙O 中,弦CD 与直径AB 相交于点P ,∠ABC =63°.(1)如图①,若∠APC =100°,求∠BAD 和∠CDB 的大小;(2)如图②,若CD ⊥AB ,过点D 作⊙O 的切线,与AB 的延长线相交于点E ,求∠E 的大小.题图 答图解:(1)∵∠APC 是△PBC 的一个外角,∴∠C =∠APC -∠ABC =100°-63°=37°,由圆周角定理得:∠BAD =∠C =37°,∠ADC =∠ABC =63°,∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠CDB =∠ADB -∠ADC =90°-63°=27° (2)连接OD ,如图②所示:∵CD ⊥AB ,∴∠CPB =90°,∴∠PCB =90°-∠ABC =90°-63°=27°,∵DE 是⊙O 的切线,∴DE ⊥OD ,∴∠ODE =90°,∵∠BOD =2∠PCB =54°,∴∠E =90°-∠BOD =90°-54°=36°22.(8分)(2020·深圳)如图,AB 为⊙O 的直径,点C 在⊙O 上,AD 与过点C 的切线互相垂直,垂足为D .连接BC 并延长,交AD 的延长线于点E .(1)求证:AE =AB ;(2)若AB =10,BC =6,求CD 的长.(1)证明:连接AC ,OC ,如图,∵CD 为切线,∴OC ⊥CD ,又∵CD ⊥AD ,∴OC ∥AD ,∴∠OCB =∠E ,∵OB =OC ,∴∠OCB =∠B ,∴∠B =∠E ,∴AE =AB (2)解:∵AB 为直径,∴∠ACB =90°,∴AC =102-62 =8,∵AB =AE =10,AC ⊥BE ,∴CE =BC =6,∵12 CD ·AE =12 AC ·CE ,∴CD =6×810 =24523.(8分)如图所示,已知圆锥底面半径r =10 cm ,母线长为40 cm.(1)求它的侧面展开图的圆心角和表面积;(2)若一小虫从A 点出发沿着圆锥侧面运动到母线SA 的中点B 处,请你计算它所走的最短路线是多少?解:(1)依题意,得n π×40180=2π×10,解得n =90.圆锥表面积为π×102+π×10×40=500π(cm 2) (2)如图,由圆锥的侧面展开图可知,所走的最短路线是线段AB 的长.在Rt △ASB 中,SA =40 cm ,SB =20cm ,∴AB =205 cm.故小虫走的最短路线的长度是205 cm.原因:两点之间线段最短24.(10分)(2020·扬州)如图,△ABC 内接于⊙O ,∠B =60°,点E 在直径CD 的延长线上,且AE =AC .(1)试判断AE 与⊙O 的位置关系,并说明理由;(2)若AC =6,求阴影部分的面积.(1)证明:连接OA ,AD ,如图,∵CD 为⊙O 的直径,∴∠DAC =90°,又∵∠ADC =∠B =60°,∴∠ACD =30°,又∵AE =AC ,OA =OD ,∴△ADO 为等边三角形,∴∠E =30°,∠ADO =∠DAO =60°,∴∠EAD =30°,∴∠EAD +∠DAO =90°,∴OA ⊥AE ,∴AE 为⊙O 的切线 (2)解:作OF ⊥AC 于F ,由(1)可知△AEO 为直角三角形,且∠E =30°,∵AE =AC =6,∴OA =23 ,∴阴影部分的面积为12 ×6×23 -60π×(23)2360=6 3 -2π.故阴影部分的面积为(63 -2π)25.(10分)(2020·宜昌)如图,在四边形ABCD 中,AD ∥BC ,AB =23 a ,∠ABC =60°,过点B 的⊙O 与边AB ,BC 分别交于E ,F 两点.OG ⊥BC ,垂足为G ,OG =a .连接OB ,OE ,OF .(1)若BF =2a ,试判断△BOF 的形状,并说明理由;(2)若BE =BF ,求证:⊙O 与AD 相切于点A .(1)解:△BOF 为等腰直角三角形.理由如下:∵OG ⊥BC ,∴BG =FG =12BF =a ,∵OG =a ,∴BG =OG ,FG =OG ,∴△BOG 和△OFG 都是等腰直角三角形,∴∠BOG =∠FOG =45°,∴∠BOF =90°,而OB =OF ,∴△BOF 为等腰直角三角形(2)证明:连接EF ,如图,∵∠EBF =60°,BF =BE ,∴△BEF 为等边三角形,∴EB =EF ,∵OG 垂直平分BF ,∴点E ,O ,G 共线,即EG ⊥BF ,∵OG =a ,∠OBG =30°,∴BG =3 OG =3 a ,∴BE =2BG =23 a ,而AB =23 a ,∴点A 与点E 重合,∵AD ∥BC ,AG ⊥BF ,∴AG ⊥AD ,∴⊙O 与AD 相切于点A26.(12分)如图,已知⊙O 上依次有A ,B ,C ,D 四个点,AD =BC ,连接AB ,AD ,BD ,弦AB 不经过圆心O ,延长AB 到E ,使BE =AB ,连接EC ,F 是EC 的中点,连接BF .(1)若⊙O 的半径为3,∠DAB =120°,求劣弧BD 的长;(2)求证:BF =12BD ; (3)设G 是BD 的中点,探索:在⊙O 上是否存在点P (不同于点B ),使得PG =PF ?并说明PB 与AE 的位置关系.解:(1)连接OB ,OD ,∵∠DAB =120°,∴BCD 所对圆心角的度数为240°,∴∠BOD=120°.∵⊙O 的半径为3,∴劣弧BD 的长为120180×π×3=2π (2)连接AC ,∵AB =BE ,∴点B 为AE 的中点.∵F 是EC 的中点,∴BF 为△EAC 的中位线,∴BF =12AC .∵AD =BC ,∴AD +AB =BC +AB ,∴BD =CA ,∴BD =AC ,∴BF =12BD(3)过点B 作AE 的垂线,与⊙O 的交点即为所求的点P ,∵BF 为△EAC 的中位线,∴BF ∥AC ,∴∠FBE =∠CAE .∵AD =BC ,∴∠DBA =∠CAB ,∴∠FBE =∠DBA .由作法可知BP ⊥AE ,∴∠GBP =∠FBP .∵G 为BD 的中点,∴BG =12BD ,∴BG =BF .在△PBG 和△PBF 中,BG =BF ,∠PBG =∠PBF ,BP =BP ,∴△PBG ≌△PBF (SAS),∴PG =PF .故在⊙O 上存在点P ,使得PG =PF ,此时PB ⊥AE。

人教版九年级上册数学 第二十四章过关测试题含答案

人教版九年级上册数学 第二十四章过关测试题含答案

人教版九年级上册数学第二十四章过关测试题含答案24.1.4圆周角一.选择题1.在同圆或等圆中,下列说法正确的有()①平分弦的直径垂直于弦;②圆内接平行四边形是菱形;③一条弧所对的圆周角等于它所对的圆心角的一半;④如果两条弦相等,那么他们所对的圆周角相等.A.1个B.2个C.3个D.4个2.如图,⊙O中,若OA⊥BC、∠AOB=66°,则∠ADC的度数为()A.33°B.56°C.57°D.66°3.如图所示,四边形ABCD是圆O的内接四边形,∠A=45°,BC=4,CD=2,则弦BD的长为()A.2B.3C.D.24.如图,⊙O是四边形ABCD的外接圆,连接OB、OD,若四边形ABOD是平行四边形,则∠ABO的度数是()A.50°B.55°C.60°D.65°5.如图,AB是⊙O的直径,点C,D在⊙O上.若∠D=50°,则∠BAC等于()A.25°B.40°C.50°D.55°6.如图,AB,BC为⊙O中异于直径的两条弦,OA交BC于点D,若∠AOC=50°,∠C=35°,则∠A的度数为()A.35°B.50°C.60°D.70°7.如图,AB是半圆O的直径,C、D是上的两点,=,点E为上一点,且∠CED=∠COD,则∠DOB=()A.92°B.96°C.100°D.120°8.如图,五边形ABCDE内接于⊙O,若∠CAD=35°,则∠B+∠E的度数是()A.210°B.215°C.235°D.250°9.如图,AB是⊙O的直径,OC是⊙O的半径,点D是半圆AB上一动点(不与A、B 重合),连结DC交直径AB与点E,若∠AOC=60°,则∠AED的范围为()A.0°<∠AED<180°B.30°<∠AED<120°C.60°<∠AED<120°D.60°<∠AED<150°10.如图,BC为⊙O直径,弦AC=2,弦AB=4,D为⊙O上一点,I为AD上一点,且DC=DB=DI,AI长为()A.B.C.D.二.填空题11.如图,已知C为上一点,若∠AOB=100°,则∠ACB的度数为度.12.如图,AB是⊙O的直径,点C,D,E都在⊙O上,∠1=55°,则∠2=°.13.如图,AB是⊙O的直径,弦CD⊥AB,连接CO并延长交⊙O于点E,连接BD交CE于点F,若∠DBE=32°,则∠DFE的度数是.14.如图,四边形ABCD内接于圆O,四边形ABCO是平行四边形,则∠ADC=.15.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为8,则GE+FH 的最大值为.三.解答题16.如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作DF∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.17.如图,BC是⊙O的直径,点A、D在⊙O上,DB∥OA,BC=10,AC=6.(1)求证:BA平分∠DBC;(2)求DB的长.参考答案1.解:①平分弦的直径垂直于弦,错误,此弦不是直径,才能成立.②圆内接平行四边形是菱形,错误,圆内接平行四边形是矩形.③一条弧所对的圆周角等于它所对的圆心角的一半,正确.④如果两条弦相等,那么他们所对的圆周角相等.错误,弦所对的圆周角有两个,也可能互补.故选:A.2.解:如图,连接OC,OB.∵OA⊥BC,∴=,∴∠AOC=∠AOB=66°,∴∠ADC=∠AOC=33°,故选:A.3.解:如图,过点D作DE⊥BC交BC的延长线于E.∵∠A+∠BCD=180°,∠A=45°,∴∠BCD=135°,∴∠DCE=45°,∵∠E=90°,CD=2,∴CE=ED=2,BE=CE+BC=6,在Rt△BED中,∵∠E=90°,BE=6,DE=2,∴BD===2,故选:D.4.解:∵四边形ABOD是平行四边形,∴∠A=∠BOD,∵∠BOD=2∠C,∠A+∠C=180°,∴∠C=60°,∠A=∠BOD=120°,∵AD∥OB,∴∠ABO+∠DAB=180°,∴∠ABO=60°,故选:C.5.解:∵AB是直径,∴∠ACB=90°,∵∠ABC=∠ADC=50°,∴∠BAC=90°﹣50°=40°,故选:B.6.解:∵∠C=35°,∠AOC=50°,∴∠ADC=85°,∠B=∠AOC=25°,∴∠A=∠ADC﹣∠B=85°﹣25°=60°,故选:C.7.解:设∠COD=x,则∠CED=x,∴,解得:x=60°,∴∠COD=60°,∴∠BOD+∠AOC=180°﹣60°=120°,∵=,∴∠BOD=4∠AOC,∴∠BOD=120°×=96°,故选:B.8.解:如图,连接CE,∵五边形ABCDE是圆内接五边形,∴四边形ABCE是圆内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=35°,∴∠B+∠E=180°+35°=215°.故选:B.9.解:如图1,当点E在线段AO上时,∵AB是⊙O的直径,∴∠ADB=90°,∵∠AOC=60°,∴∠ADC=30°,∴∠BDE=60°,∴∠AED>∠BDE,∴∠AED>60°;如图2,当点E在线段OB上时,∵∠ADE=AOC=30°,∴∠DEB>30°,∵∠AED+∠DEB=180°,∴∠AED<150°,∴∠AED的范围为60°<∠AED<150°,故选:D.10.解:如图,连接IC,作IE⊥AC于E,IF⊥AB于F,IG⊥BC于G.∵DB=DC,∴=,∠DBC=∠DCB,∴∠BAD=∠CAD,∵DI=DC,∴∠DIC=∠DCI,∵∠DIC=∠DAC+∠ACI,∠DCI=∠DCB+∠ICB,∠DBC=∠DAC,∴∠ICA=∠ICB,∴点I为△ABC内心,∴IE=IF=IG,∵BC是直径,∴∠BAC=90°,∴BC===2,∵S△ABC=•AB•AC=•IE•(AB+AC+BC),∴IE=3﹣,∵∠IAE=∠AIE=45°,∴AI=IE=3﹣,故选:D.11.解:在优弧AB上取一点D,连接AD、BD,∵∠AOB=100°,∴∠D=AOB=50°,∵A、D、B、C四点共圆,∴∠D+∠ACB=180°,∴∠ACB=180°﹣∠D=130°,故答案为:130.12.解:如图,连接AD.∵AB是直径,∴∠ADB=90°,∵∠1=∠ADE,∴∠1+∠2=90°,∵∠1=55°,∴∠2=35°,故答案为35.13.解:如图,∵∠DBE=32°,∴∠C=∠DBE=32°.∵弦CD⊥AB,∴∠1=90°﹣32°=58°.∴∠2=∠1=58°.∵OB=OE,∴∠E=∠OBE==61°.∴∠DFE=∠DBE+∠E=32°+61°=93°.故答案是:93°.14.解:设∠ADC的度数=α,∠ABC的度数=β;∵四边形ABCO是平行四边形,∴∠ABC=∠AOC;∵∠ADC=β,∠AOC=α;而α+β=180°,∴,解得:β=120°,α=60°,∠ADC=60°,故答案为:60°.15.解:如图1,连接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB为等边三角形,∵⊙O的半径为8,∴AB=OA=OB=8,∵点E,F分别是AC、BC的中点,∴EF=AB=4,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵当弦GH是圆的直径时,它的最大值为:8×2=16,∴GE+FH的最大值为:16﹣4=12.故答案为:12.16.证明:(1)∵AC=BC,∵DF∥BC,∴∠ADF=∠B,∵∠BAC=∠CFD,∴∠ADF=∠CFD,∴BD∥CF,∵DF∥BC,∴四边形DBCF是平行四边形;(2)连接AE,∵∠ADF=∠B,∠ADF=∠AEF,∴∠AEF=∠B,∵四边形AECF是⊙O的内接四边形,∴∠ECF+∠EAF=180°,∵BD∥CF,∴∠ECF+∠B=180°,∴∠EAF=∠B,∴∠AEF=∠EAF,∴AF=EF.17.解:(1)∵OA∥BD,∴∠ABD=∠OAB,∵OA=OB,∴∠OAB=∠OBA,∴∠OBA=∠ABD,∴BA平分∠DBC.(2)如图,作AH⊥BC于H,OE⊥BD于E,则BD=2BE,∵BC为直径,∴,∵,∴,在Rt△OAH中,,∵OA∥BD,∴∠AOH=∠EBO,在△AOH和△OBE中,,∴△AOH≌△OBE(AAS),∴,∴.24.2 点和圆、直线和圆的位置关系一、选择题1. 下列说法中,正确的是()A.垂直于半径的直线是圆的切线B.经过半径的外端且垂直于这条半径的直线是圆的切线C.经过半径的端点且垂直于这条半径的直线是圆的切线D.到圆心的距离等于直径的直线是圆的切线2. (2019•益阳)如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO 的延长线交圆O于点D,下列结论不一定成立的是A.PA=PB B.∠BPD=∠APDC.AB⊥PD D.AB平分PD3. 平面上⊙O与四条直线l1,l2,l3,l4的位置关系如图.若⊙O的半径为2 cm,且点O 到其中一条直线的距离为2.2 cm,则这条直线是()A.l l B.l2C.l3D.l44. 在Rt△ABC中,∠C=90°,BC=3 cm,AC=4 cm,以点C为圆心,以2.5 cm为半径画圆,则⊙C与直线AB的位置关系是()A. 相交B. 相切C. 相离D. 不能确定5. 如图,一个边长为4 cm的等边三角形ABC的高与⊙O的直径相等.⊙O与BC相切于点C,与AC相交于点E,则CE的长为()A.4 cm B.3 cm C.2 cm D.1.5 cm6. 如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D 的半径长r的取值范围是()A. 1<r<4B. 2<r<4C. 1<r<87. 2020·武汉模拟 在平面直角坐标系中,圆心为坐标原点,⊙O 的半径为10,则P (-10,1)与⊙O 的位置关系为( ) A .点P 在⊙O 上 B .点P 在⊙O 外 C .点P 在⊙O 内D .无法确定8. 如图0,在Rt △ABC 中,AB ⊥BC ,AB =6,BC =4,P 是△ABC 内部的一个动点,且满足∠PAB =∠PBC ,则线段CP 长的最小值为( )图0A.32B .2C.81313D.121313二、填空题9. 如图,AT切⊙O 于点A ,AB 是⊙O 的直径.若∠ABT =40°,则∠ATB =________.10. 直角三角形的两条直角边分别是5和12,则它的内切圆半径为 .11. 如图1,已知△ABC 的外心为O ,BC =10,∠BAC =60°,分别以AB ,AC 为腰向三角形外作等腰直角三角形ABD 与ACE ,连接BE ,CD 交于点P ,则OP 长的最小值是________.12. 如图,在矩形ABCD 中,AB =6,BC =2.8,⊙O 是以AB 为直径的圆,则直线CD 与⊙O 的位置关系是________.13. 在周长为26π的⊙O 中,CD 是⊙O 的一条弦,AB 是⊙O 的切线,且AB ∥CD ,若AB 和CD 之间的距离为18,则弦CD 的长为________.14. 如图所示,在半圆O 中,AB 是直径,D 是半圆O 上一点,C 是AD ︵的中点,CE ⊥AB于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE ,CB 于点P ,Q ,连接AC ,有下列结论:①∠BAD =∠ABC ;②GP =GD ;③点P 是△ACQ 的外心.其中正确的结论是________(只需填写序号).15. 如图,⊙O 的半径为1,正方形ABCD 的对角线长为6,OA =4.若将⊙O 绕点A 按顺时针方向旋转360°,则在旋转的过程中,⊙O 与正方形ABCD 的边只有一个公共点的情况一共出现( )A .3次B .4次C .5次D .6次16. 2019·兴化期中 已知等边三角形ABC 的边长为2,D 为BC 的中点,连接AD .点O 在线段AD 上运动(不与端点A ,D 重合),以点O 为圆心,33为半径作圆,当⊙O 与△ABC 的边有且只有两个公共点时,DO 的取值范围为________.三、解答题17. 如图,MP切⊙O 于点M ,直线PO 交⊙O 于点A 、B ,弦AC ∥MP ,求证:MO ∥BC.18. 如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,P是CD的延长线上一点,且AP=AC.(1)求证:P A是⊙O的切线;(2)若PD=5,求⊙O的直径.19. 在△ABC中,AB=AC=10,BC=16,⊙A的半径为7,判断⊙A与直线BC的位置关系,并说明理由.20. 2019·天津如图,已知PA,PB分别与⊙O相切于点A,B,∠APB=80°,C为⊙O上一点.(1)如图①,求∠ACB的大小;(2)如图②,AE为⊙O的直径,AE与BC相交于点D.若AB=AD,求∠EAC的大小.21. 如图,在平面直角坐标系中,以点O为圆心,5个单位长度为半径画圆.直线MN平行移动.按下列条件求m的值或取值范围.(1)⊙O上任何一点到直线MN的距离都不等于3;(2)⊙O上有且只有一点到直线MN的距离等于3;(3)⊙O上有且只有两点到直线MN的距离等于3;(4)随着m的变化,⊙O上到直线MN的距离等于3的点的个数还有哪些变化?请说明所有各种情形及对应m的值或取值范围.人教版九年级数学上册24.2 点和圆、直线和圆的位置关系同步训练-答案一、选择题1. 【答案】B2. 【答案】D【解析】∵PA,PB是⊙O的切线,∴PA=PB,所以A成立;∠BPD=∠APD,所以B成立;∴AB⊥PD,所以C成立;∵PA,PB是⊙O的切线,∴AB⊥PD,且AC=BC,只有当AD∥PB,BD∥PA时,AB平分PD,所以D不一定成立,故选D.3. 【答案】C[解析] 因为所求直线到圆心O的距离为2.2 cm>半径2 cm,所以此直线与⊙O相离,所以这条直线为直线l3.4. 【答案】A【解析】如解图,在Rt△ABC中,AC=4,BC=3,由勾股定理得AB=5.过C作CD⊥AB于D,则S△ABC =12AC·BC=12AB·CD,解得CD=2.4<2.5,∴直线AB与⊙C相交.解图5. 【答案】B [解析] 如图,连接OC ,并过点O 作OF ⊥CE 于点F .∵△ABC 为等边三角形,边长为4 cm , ∴△ABC 的高为23 cm ,∴OC = 3 cm.又∵⊙O 与BC 相切于点C ,∠ACB =60°, ∴∠OCF =30°.在Rt △OFC 中,可得FC =32 cm , ∴CE =2FC =3 cm.6. 【答案】B【解析】连接AD ,则AD =AC 2+CD 2=42+32=5,∵⊙A与⊙D 相交,∴3-r <5<3+r ,解得2<r <8,又∵点B 在⊙D 外,∴r <BD ,即r <4.∴2<r <4,故选B.解图7. 【答案】B8. 【答案】B [解析] ∵∠ABC =90°,∴∠ABP +∠PBC =90°. ∵∠PAB =∠PBC ,∴∠ABP +∠PAB =90°,∴∠APB =90°,∴点P 在以AB 为直径的圆上,设圆心为O ,连接OC 交⊙O 于点P ,此时CP 最小. 在Rt △BCO 中,∵∠OBC =90°,BC =4,OB =3,∴OC =5,OP =OB =3,∴PC =OC -OP =5-3=2,∴PC 的最小值为2.二、填空题9. 【答案】50°【解析】∵AT 是⊙O 的切线,AB 是⊙O 的直径,∴∠BAT10. 【答案】2 [解析]直角三角形的斜边==13,所以它的内切圆半径==2.11. 【答案】5-533 [解析] ∵∠BAD =∠CAE =90°,∴∠DAC =∠BAE .在△DAC 和△BAE 中, ⎩⎪⎨⎪⎧AD =AB ,∠DAC =∠BAE ,AC =AE ,∴△DAC ≌△BAE (SAS), ∴∠ADC =∠ABE ,从而∠PDB +∠PBD =90°, 即∠DPB =90°,从而∠BPC =90°, ∴点P 在以BC 为直径的圆上.如图,过点O 作OH ⊥BC 于点H ,连接OB ,OC . ∵△ABC 的外心为O ,∠BAC =60°, ∴∠BOC =120°.又∵BC =10, ∴OH =53 3,∴OP 长的最小值是5-533.12. 【答案】相交 [解析] 设AB 的中点为O ,则点O 到CD 的距离为2.8.因为⊙O 的半径为3,3>2.8,所以直线CD 与⊙O 的位置关系是相交.13. 【答案】24【解析】设AB 切⊙O 于点E ,如解图,连接EO 并延长交CD 于点M ,∵C ⊙O =26π=2πr ,∴r =13,∵AB ∥CD ,且AB 与CD 之间的距离为18,∴OM =18-r =5,∵AB 为⊙O 的切线,∴∠CMO =∠AEO =90°,∴在Rt △CMO 中,CM =OC 2-OM 2=12,∴CD =2CM =24.解图14. 【答案】②③ [解析] ∵在半圆O 中,AB 是直径,D 是半圆O 上一点,C 是AD ︵的中点,∴AC ︵=DC ︵,但不一定等于DB ︵,∴∠BAD 与∠ABC 不一定相等,故①错误.如图,连接OD ,则OD ⊥GD ,∠OAD =∠ODA .∵∠ODA +∠GDP =90°,∠OAD +∠GPD =∠OAD +∠APE =90°,∴∠GPD =∠GDP ,∴GP =GD ,故②正确.补全⊙O ,延长CE 交⊙O 于点F .∵CE ⊥AB ,∴A 为FC ︵的中点,即AF ︵=AC ︵.又∵C 为AD ︵的中点,∴CD ︵=AC ︵,∴AF ︵=CD ︵,∴∠CAP =∠ACP ,∴AP =CP .∵AB 为⊙O 的直径,∴∠ACQ =90°,∴∠ACP +∠PCQ =90°,∠CAP +∠PQC =90°,∴∠PCQ =∠PQC ,∴PC =PQ ,∴AP =PQ ,即P 为Rt △ACQ 的斜边AQ 的中点,∴点P 为Rt △ACQ 的外心,故③正确.15. 【答案】B [解析] ∵正方形ABCD 的对角线长为6,∴它的边长为3 2.如图,⊙O 与正方形ABCD 的边AB ,AD 只有一个公共点的情况各有1次,与边BC ,CD 只有一个公共点的情况各有1次,∴在旋转的过程中,⊙O 与正方形ABCD 的边只有一个公共点的情况一共出现4次.16. 【答案】0<DO <33或2 33<DO <3 [解析] ∵等边三角形ABC 的边长为2,D 为BC的中点,∴AD ⊥BC ,BD =1,AD = 3.分四种情况讨论:(1)如图①所示,当0<DO <33时,⊙O 与△ABC 的BC 边有且只有两个公共点,(2)如图②所示,当DO =33时,⊙O 与△ABC 的边有三个公共点;(3)如图③所示,当⊙O 经过△ABC 的顶点A 时,⊙O 与△ABC 的边有三个公共点,则当33<DO ≤2 33时,⊙O 与△ABC 的边有四个或三个公共点.(4)如图④所示,当2 33<DO <3时,⊙O 与△ABC 的边有两个公共点.综上,当0<DO <33或2 33<DO <3时,⊙O 与△ABC 的边只有两个公共点.故答案为0<DO <33或2 33<DO < 3.三、解答题17. 【答案】证明:∵AB 是⊙O 的直径,∴∠ACB =90°,∵MP 为⊙O 的切线, ∴∠PMO =90°,∵MP ∥AC ,∴∠P =∠CAB ,∴∠MOP =∠B,故MO ∥BC.18. 【答案】∵∠B=60°,∴∠AOC=2∠B=120°.又∵OA=OC,∴∠OAC=∠OCA=30°.又∵AP=AC,∴∠P=∠OCA=30°,∴∠OAP=∠AOC-∠P=90°,∴OA⊥PA.又∵OA是⊙O的半径,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD.又∵OA=OD,∴PD=OD=OA.∵PD=5,∴2OA=2PD=2 5,∴⊙O的直径为2 5.19. 【答案】解:⊙A与直线BC相交.理由:过点A作AD⊥BC于点D,则BD=CD=8.∵AB=AC=10,∴AD=6.∵6<7,∴⊙A与直线BC相交.20. 【答案】∵PA ,PB 是⊙O 的切线,∴∠OAP =∠OBP =90°,∴∠AOB =360°-90°-90°-80°=100°.由圆周角定理,得∠ACB =12∠AOB =50°.(2)如图②,连接CE .∵AE 为⊙O 的直径,∴∠ACE =90°.∵∠ACB =50°,∴∠BCE =90°-50°=40°,∴∠BAE =∠BCE =40°.∵AB =AD ,∴∠ABD =∠ADB =70°,∴∠EAC =∠ADB -∠ACB =20°.21. 【答案】解:(1)m <-8或m >8(2)m =-8或m =8(3)-8<m <-2或2<m <8(4)当m =-2或m =2时,⊙O 上有且只有三个点到直线MN 的距离等于3; 当-2<m <2时,⊙O 上有且只有四个点到直线MN 的距离等于3.24.3正多边形和圆1.如图,四边形ABCD是⊙O的内接四边形,若∠D=3∠B,则∠B的度数为()A.30°B.36°C.45°D.60°2.如图,四边形ABCD是⊙O的内接四边形,BE平分∠ABC,若∠D=110°,则∠ABE 的度数是()A.30°B.35°C.50°D.55°3.对于以下说法:①各角相等的多边形是正多边形;②各边相等的三角形是正三角形;③各角相等的圆内接多边形是正多边形;④各顶点等分外接圆的多边形是正多边形.正确的有()A.1个B.2个C.3个D.4个4.一个三角形的外接圆的圆心在这个三角形的外部,则该三角形一定是()A、锐角三角形B、直角三角形C、钝角三角形D、等腰三角形5.如图,△ABC是半径为1的⊙O的内接正三角形,则圆的内接矩形BCDE的面积为()A.3B.32C3D.326.如图,正五边形ABCDE内接于O,点P是劣弧BC上一点(点P不与点C重合),A.45︒B.36︒C.35︒D.30∠等于()7.如图,四边形ABCD内接于⊙O ,110BOD︒∠=,那么BCDA.110°B.135°C.55°D.125°8.如图,△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ADC的度数是()A.80°B.160°C.100°D.40°9.如图,将正五边形绕中心O顺时针旋转a角度,与原正五边形构成新的图形,若要使该图形既是轴对称又是中心对称图形,则a的最小角度为()A.30B.36C.72D.90∠的度数是()10.如图,正五边形ABCDE和等边AFG内接于O,则GFDA .10︒B .12︒C .15︒D .20︒二、填空题 11.如图,四边形ABCD 为O 的内接四边形,已知BOD 110∠=,则BCD ∠的度数为____________________.12.一个正多边形的一个外角为30°,则它的内角和为_____.13.如图,四边形ABCD 内接于⊙O ,点E 在BC 的延长线上,若∠BOD =100°,则∠DCE =_____°.14.如图,四边形ABCD 是⊙O 的内接四边形,∠B=135°,则∠AOC 的度数为_____.15.如图,点A ,B ,C ,D 在O 上,CD CB =,30CAD ∠=︒,50ACD ∠=︒,则ADB =∠_______.三、解答题16.如图,四边形ABCD 内接于O ,AC 与BD 为对角线,BCA BAD ∠=∠,过点A 作//AE BC 交CD 的延长线于点E .求证:EC AC =.17.如图,ABC 的外角BAM ∠的平分线与它的外接圆相交于点E ,连接BE ,CE ,过点E 作//EF BC ,交CM 于点D求证:(1)BE CE =;(2)EF 为⊙O 的切线.18.如图,⊙O 外接于正方形,ABCD P 为弧AD 上一点,且1,3AP PC ==,求正方形ABCD 的边长和PB 的长.参考答案1-5 CBBCC6-10 BDCBB11.125°12.1800°13.5014.9015.70°16.证明:∵//AE BC ,∴ACB EAC ∠=∠.∵ACB BAD ∠=∠,∴EAC BAD ∠=∠,∴EAD CAB ∠=∠,∵180ADE ADC ∠+∠=︒,180ADC ABC ∠+∠=︒,∴ADE ABC =∠∠,∵180EAD ADE E ∠+∠+∠=︒,180BAC ABC ACB ∠+∠+∠=︒, ∴E ACB EAC ∠=∠=∠,∴CE CA =.17.证明:(1)∵四边形ACBE 是圆内接四边形,∴∠EAM =∠EBC ,∵AE 平分∠BAM ,∴∠BAE =∠EAM ,∵∠BAE =∠BCE ,∴∠BCE =∠EAM ,∴∠BCE =∠EBC ,∴BE =CE ;(2)如图,连接EO 并延长交BC 于H ,连接OB ,OC ,∵OB =OC ,EB =EC ,∴直线EO 垂直平分BC ,∴EO ⊥BC ,∵EF//BC ,∴EO ⊥EF ,∵OE 是⊙O 的半径,∴EF 为⊙O 的切线.18.解:连接AC ,作AE PB ⊥于点E , 如图所示.∵四边形ABCD 是正方形,,AB BC CD AD ∴===90,45ABC D BCD ACB ︒︒∠=∠=∠=∠=, AC ∴是O 的直径,ABC 是等腰直角三角形, 90,2,APC AC ︒∴∠==22221310,AC AP PC ∴+=+= 52AB ∴== 45,,APB ACB AE PB ︒∠=∠=⊥ APE ∴是等腰直角三角形,22PE AE AP ∴=== 2222232(5)22BE AB AE ⎛⎫∴=-=-= ⎪ ⎪⎝⎭,232∴=+=+=.22PB PE BE正方形ABCD的边长为5,PB的长为22.24.4弧长和扇形面积1.下列说法中,正确的是()A.垂直于半径的直线是圆的切线B.经过半径的外端且垂直于这条半径的直线是圆的切线C.经过半径的端点且垂直于这条半径的直线是圆的切线D.到圆心的距离等于直径的直线是圆的切线2.如图,AB是⊙O的直径,MN是⊙O的切线,切点为N,如果∠MNB=52°,则∠NOA 的度数为()A.76°B.56°C.54°D.52°3.如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连接BC,若∠P =36°,则∠B等于()A.27°B.32°C.36°D.54°4.如图,⊙O是△ABC的内切圆,则点O是△ABC的( )A.三条边的垂直平分线的交点 B.三条角平分线的交点C.三条中线的交点 D.三条高的交点5.如图,PA,PB为⊙O的切线,切点分别为A,B,PO交AB于点C,PO的延长线交⊙O于点D,下列结论不一定成立的是( )A.PA=PB B.∠BPD=∠APD C.AB⊥PD D.AB平分PD6.如图,从一块半径为20cm的圆形铁皮上剪出一个圆心角是60°的扇形ABC,则此扇形围成的圆锥的侧面积为()A.200πcm2B.100πcm2C.100πcm2D.50πcm27.将一把直尺,含60°角的直角三角板和光盘如图摆放,点A为60°角与直尺的交点,AB =3,则光盘的直径是( )A.3 B.3 3 C.6 D.6 38.如图,边长为23的等边△ABC的内切圆的半径为( )A.1 B. 3 C.2 D.2 39.佳佳制作了一个圆锥形的紫绸帽子,经测量,圆锥的母线长为40cm,所用紫绸面积为360πcm2(不计接头损耗),则圆锥的底面直径为()A.6cm B.9cm C.18cm D.36cm10.如图,已知扇形的圆心角为60°,直径为6,则图中弓形(阴影部分)的面积为()A.6π﹣9B.6π﹣3C.D.二、填空题11.如图3,AB为⊙O的直径,圆周角∠ABC=40°,当∠BCD=________°时,CD为⊙O 的切线.图312.有一圆锥,它的高为8cm,底面半径为6cm,则这个圆锥的侧面积是. 13.如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P=.14.如图,已知△ABC的内切圆⊙O与BC边相切于点D,连接OB,OD.若∠ABC=40°,则∠BOD的度数是.15.已知一个扇形的圆心角是60°,面积是6π,那么这个扇形的弧长是2π.16.如图,⊙O是ΔABC的外接圆,∠ABC=30°,AC=8,则优弧ABC的长为.17.边心距为3的正六边形的周长为 .三、解答题18.如图5,点O在∠APB的平分线上,⊙O与PA相切于点C.求证:直线PB与⊙O相切.19.如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB=18 cm,BC=28 cm,CA=26 cm,求AF,BD,CE的长.20.如图,AB,BC,CD分别与⊙O相切于点E,F,G,若∠BOC=90°,求证:AB∥CD.答案一.选择题1 2 3 4 5 6 7 8 9 10B A A B D A D AC C二.填空题11.50°12. 60π13. 76°14.70° 15. 2π 16. 17. 12三.解答题18.证明:如图,连接OC,过点O作OD⊥PB于点D.∵⊙O与PA相切于点C,∴OC⊥PA.∵点O在∠APB的平分线上,OC⊥PA,OD⊥PB,∴OD=OC,∴直线PB与⊙O相切.19.解:根据切线长定理,得AE=AF,BF=BD,CE=CD.设AF=AE=x cm,则CE=CD=(26-x)cm,BF=BD=(18-x)cm.∵BC=28 cm,∴(18-x)+(26-x)=28.解得x=8.∴AF=8 cm,BD=10 cm,CE=18 cm.20.证明:∵∠BOC=90°,∴∠OBC+∠OCB=90°.又∵BE与BF为⊙O的切线,∴BO为∠EBF的平分线.∴∠OBE=∠OBC.同理可得∠OCB=∠OCG.∴∠OBE+∠OCG=∠OBC+∠OCB=90°.∴∠OBC+∠OCB+∠OBE+∠OCG=180°,即∠ABF+∠DCF=180°.∴AB∥CD.。

初中数学人教版九年级上册第二十四章能力测试题含答案

初中数学人教版九年级上册第二十四章能力测试题含答案

初初初初初初初初初初初初初初初初初初初初初初初初初24.1圆的有关性质一、选择题1.如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=√13,则AE =()A. 3B. 3√2C. 4√3D. 2√32.如图,在⊙O中,弦AB的长为16cm,圆心O到AB的距离为6cm,则⊙O的半径是()A. 6cmB. 10cmC. 8cmD. 20cm3.如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是()A. 130°B. 140°C. 150°D. 160°4.如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为()A. √2rB. √3rC. rD. 2r5.下列说法正确的是()1/ 45A. 垂直于弦的直线平分弦所对的两条弧B. 平分弦的直径垂直于弦C. 垂直于直径平分这条直径D. 弦的垂直平分线经过圆心6.下列说法正确的是()A. 相等的圆心角所对的弧相等B. 在同圆中,等弧所对的圆心角相等C. 在同圆中,相等的弦所对的弧相等D. 相等的弦所对的弧相等7.如图,在⊙O中,半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,若AB=8,CD=2,则EC的长度为()A. 2√15B. 8C. 2√10D. 2√138.如图所示,图中弦的条数为()A. 1条B. 2条C. 3条D. 4条9.如图,⊙O的半径为5,AB为弦,点C为AB⌢的中点,若∠ABC=30°,则弦AB的长为()A. 12B. 5 C. 5√32D. 5√310.如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A. 6B. 8C. 5√2D. 5√3二、填空题11.如图,在⊙O中,AB、AC是互相垂直的两条弦,OD⊥AB于点D,OE⊥AC于点E,且AB=8cm,AC=6cm,那么⊙O的半径OA长为______.12.如图,AB是⊙O的直径,C、D为半圆的三等分点,CE⊥AB于点E,∠ACE的度数为______.13.如图,AB是⊙O的直径,点D在⊙O上,∠BOD=130°,AC//OD交⊙O于C,连接BC,则∠B=________.14.如图,CD是⊙O的直径,CD=4,∠ACD=20°,点B为弧AD的中点,点P是直径CD上的一个动点,则PA+PB的3/ 45最小值为______.三、计算题15.⊙O中,直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,且∠DEB=60°,求CD的长.四、解答题16.如图,AB是⊙O的直径,点C为BD⌢的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.17.如图,已知A,B,C,D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD,AD.求证:DB平分∠ADC.18.如图所示,已知⊙O′与平面直角坐标系交于A,O,B三点,点C在⊙O′上,点A的坐标为(0,2),∠COB=45°,∠OBC= 75°,求⊙O′的直径.5/ 45答案和解析1.【答案】D【解析】解:连接AC,如图,∵BA平分∠DBE,∴∠1=∠2,∵∠1=∠CDA,∠2=∠3,∴∠3=∠CDA,∴AC=AD=5,∵AE⊥CB,∴∠AEC=90°,∴AE=√AC2−CE2=√52−(√13)2=2√3.故选:D.连接AC,如图,根据圆内接四边形的性质和圆周角定理得到∠1=∠CDA,∠2=∠3,从而得到∠3=∠CDA,所以AC=AD=5,然后利用勾股定理计算AE的长.本题考查了圆内接四边形的性质:圆内接四边形的对角互补.圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).也考查了勾股定理.2.【答案】B【解析】解:过点O作OE⊥AB于点E,连接OC,∵弦AB的长为16cm,圆心O到AB的距离为6cmAB=8cm,∴OE=6cm,AE=12在Rt△AOE中,根据勾股定理得,OA=√OE2+AE2=10cm故选:B.过点O作OE⊥AB于点E.根据垂径定理和勾股定理求解.本题考查了垂径定理和勾股定理的综合应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.【解析】解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.根据题意得到四边形ABCD共圆,利用圆内接四边形对角互补即可求出所求角的度数.此题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解本题的关键.4.【答案】B【解析】解:连接AB,与OC交于点D,如图所示:∵四边形ACBO为菱形,∴OA=OB=AC=BC,OC⊥AB,又OA=OC=OB,∴△AOC和△BOC都为等边三角形,AD=BD,在Rt△AOD中,OA=r,∠AOD=60°,r,∴AD=OAsin60°=√32则AB=2AD=√3r.故选:B.连接AB,与OC交于点D,由ACBO为菱形,根据菱形的性质得到对角线互相垂直,且四条边相等,再由半径相等得到三角形AOC与三角形BOC都为等边三角形,同时得到AD=BD,在直角三角形AOD中,由OA=r,∠AOD为60°,利用余弦函数定义及特殊角的三角函数值求出AD的长,即可求出AB的长.此题考查了菱形的性质,等边三角形的判定与性质,垂径定理,以及锐角三角函数定义,熟练掌握性质及定理是解本题的关键.7/ 45【解析】解:A、垂直于弦的直径平分弦所对的两条弧,所以A选项错误;B、平分弦(非直径)的直径垂直于弦,所以B选项错误;C、垂直于直径的弦被这条直径平分,所以C选项错误;D、弦的垂直平分线经过圆心,所以D选项正确.故选:D.根据垂径定理对A、C进行判断;根据垂径定理的推论对B、D进行判断.本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧;平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.6.【答案】B【解析】解:A、错误.在同圆或等圆中,相等的圆心角所对的弧相等,本选项不符合题意.B、正确.C、错误.弦所对的弧有两个,不一定相等,本选项不符合题意.D、错误.相等的弦所对的弧不一定相等.故选:B.根据圆心角,弧,弦之间的关系一一判断即可.本题考查圆心角、弧、弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.【答案】D【解析】【分析】此题考查了圆周角定理、垂径定理、勾股定理以及三角形中位线的性质.注意准确作出辅助线是解此题的关键.首先连接BE,由⊙O的半径OD⊥弦AB于点C,AB=8,CD=2,根据垂径定理可求得AC=BC=4,然后设OA=R,利用勾股定理可得方程:42+(R−2)2=R2,则可求得半径的长,继而利用三角形中位线的性质,求得BE的长,又由AE是直径,可得∠B=90°,继而求得答案.【解答】解:如图,连接BE,设⊙O的半径为R,∵OD⊥AB,∴AC=BC=12AB=12×8=4,在Rt△AOC中,OA=R,OC=R−CD=R−2,由勾股定理,得OC2+AC2=OA2,∴(R−2)2+42=R2,解得R=5,∴OC=5−2=3,∵O是AE的中点,C是AB的中点,∴OC是三角形ABE的中位线,∴BE=2OC=6,∵AE为⊙O的直径,∴∠ABE=90∘,在Rt△BCE中,CE=√BC2+BE2=2√13.故选D.8.【答案】B【解析】【分析】本题考查了圆的有关概念,熟记连接圆上任意两点的线段叫弦是解题的关键.弦是连接圆上任意两点的线段,根据定义作答.【解答】解:由图可知,点A、B、D、C是⊙O上的点,9/ 45图中的弦有AB 、DC 一共2条.故选B .9.【答案】D【解析】【分析】此题考查圆周角定理,垂径定理,勾股定理,含30°直角三角形有关知识,连接OC 、OA ,利用圆周角定理得出∠AOC =60°,再利用垂径定理得出AB 即可.【解答】解:连接OC 、OA ,∵∠ABC =30°,∴∠AOC =60°,∵AB 为弦,点C 为AB⏜的中点, ∴OC ⊥AB ,∴∠OAB =30°,在Rt △OAE 中,∵AO =5,∴OE =2.5,∴AE =√AO 2−OE 2=√52−(52)2=5√32, ∴AB =5√3,故选D .10.【答案】B【解析】【分析】本题主要考查圆心角定理,解题的关键是掌握圆心角定理和圆周角定理.延长AO 交⊙O 于点E ,连接BE ,由∠AOB +∠BOE =∠AOB +∠COD 知∠BOE =∠COD ,据此可得BE=CD=6,在Rt△ABE中利用勾股定理求解可得.【解答】解:如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD=6,∵AE为⊙O的直径,∴∠ABE=90°,∴AB=√AE2−BE2=√102−62=8,故选B.11.【答案】5cm【解析】解:连接OA,∵OD⊥AB,OE⊥AC,∴AE=12AC=12×6=3(cm),AD=12AB=12×8=4(cm),∠OEA=∠ODA=90°,∵AB、AC是互相垂直的两条弦,∴∠A=90°,∴四边形OEAD是矩形,∴OD=AE=3cm,在Rt△OAD中,OA=√AD2+OD2=5cm.故答案为:5cm.首先由AB、AC是互相垂直的两条弦,OD⊥AB,OE⊥AC,易证得四边形OEAD是矩形,根据垂径定理,可求得AE与AD的长,然后利用勾股定理即可求得⊙O的半径OA11/ 45长.此题考查了垂径定理,矩形的判定与性质以及勾股定理等知识.此题难度不大,解题的关键是注意数形结合思想的应用,注意特殊图形的性质的应用.12.【答案】30°【解析】解:如图,连接OC.∵AB是直径,AC⏜=CD⏜=BD⏜,∴∠AOC=∠COD=∠DOB=60°,∵OA=OC,∴△AOC是等边三角形,∴∠A=60°,∵CE⊥OA,∴∠AEC=90°,∴∠ACE=90°−60°=30°.故答案为30°想办法证明△AOC是等边三角形即可解决问题.本题考查圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.【答案】40°【解析】【分析】本题主要考查圆周角定理及推论,平行线的性质,先求出∠AOD,利用平行线的性质得出∠A,再由圆周角定理求出∠B的度数即可.【解答】解:∵∠BOD=130°,∴∠AOD=50°,又∵AC//OD,∴∠A=∠AOD=50°,∵AB是⊙O的直径,∴∠C=90°,∴∠B=90°−50°=40°.故答案为40°.14.【答案】2【解析】【分析】本题考查的是轴对称−最短路线问题,解答此题的关键是找到点A的对称点,把题目的问题转化为两点之间线段最短解答.首先作A关于CD的对称点Q,连接BQ,然后根据圆周角定理、圆的对称性质和等边三角形的判定和性质解答.【解答】解:作A关于CD的对称点Q,连接CQ,BQ,BQ交CD于P,此时AP+PB=QP+PB= QB,根据两点之间线段最短,PA+PB的最小值为QB的长度,连接OQ,OB,∵点B为弧AD的中点,∴∠BOD=∠ACD=20°,∴∠QOD=2∠QCD=2×20°=40°,∴∠BOQ=20°+40°=60°.∵OB=OQ,∴△BOQ是等边三角形,13/ 45BQ=OB=12CD=2,即PA+PB的最小值为2.故答案为2.15.【答案】解:作OP⊥CD于P,连接OD,∴CP=PD,∵AE=1,EB=5,∴AB=6,∴OE=2,在Rt△OPE中,OP=OE⋅sin∠DEB=√3,∴PD=√OD2−OP2=√6,∴CD=2PD=2√6(cm).【解析】作OP⊥CD于P,连接OD,根据正弦的定义求出OP,根据勾股定理求出PD,根据垂径定理计算.本题考查的是垂径定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.16.【答案】证明:(1)∵C是BC⏜的中点,∴CD⏜=BC⏜,∵AB是⊙O的直径,且CF⊥AB,∴BC⏜=BF⏜,∴CD⏜=BF⏜,∴CD=BF,在△BFG和△CDG中,∵{∠F=∠CDG∠FGB=∠DGC BF=CD,∴△BFG≌△CDG(AAS);(2)如图,过C作CH⊥AD于H,连接AC、BC,∵CD⏜=BC⏜,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴BCAB =BEBC,∴BC2=AB⋅BE=6×2=12,∴BF=BC=2√3.【解析】(1)根据AAS证明:△BFG≌△CDG;(2)如图,作辅助线,构建角平分线和全等三角形,证明Rt△AHC≌Rt△AEC(HL),得AE=AH,再证明Rt△CDH≌Rt△CBE(HL),得DH=BE=2,计算AE和AB的长,证明△BEC∽△BCA,列比例式可得BC的长,就是BF的长.此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、三角形全等的性质和判定以及勾股定理.第二问有难度,注意掌握辅助线的作法,注意掌握数形结合思想的应用.17.【答案】证明:∵AB=BC,∴AB⏜=BC⏜,∴∠BDC=∠ADB,15/ 45【解析】本题考查了圆周角定理、圆心角、弧、弦的关系.熟练掌握圆周角定理,证出AB⏜=BC⏜是解决问题的关键.由圆心角、弧、弦的关系得出AB⏜=BC⏜,由圆周角定理得出∠BDC=∠ADB,即可得出结论.18.【答案】解:如图,连接AB.∵∠AOB=90°,∴AB是直径,∵∠C=180°−∠COB−∠OBC=180°−45°−75°=60°,∴∠OAB=∠OCB=60°,∴∠ABO=30°,∵A(0,2),∴OA=2,∴AB=2OA=4,∴⊙O′的直径为4.【解析】本题考查圆周角定理,坐标由图形的性质,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.如图,连接AB.首先证明AB是直径,解直角三角形求出AB即可.24.2点和圆、直线和圆的位置关系1、在矩形ABCD中,AB=8,AD=6,以A为圆心作圆,如果B、C、D三点中至少有一点在圆内,且至少有一点在圆外,则圆A的半径r的取值范围是?2、试述点和圆的位置关系?17 / 453、直线和圆的公共点的数目不能超过 ,这是因为 。

人教版数学九年级上册《第二十四章圆》单元检测卷-带答案

人教版数学九年级上册《第二十四章圆》单元检测卷-带答案

人教版数学九年级上册《第二十四章圆》单元检测卷-带答案一、选择题1点P是☉O内一点,过点P的最长弦的长为20 cm,最短弦的长为12 cm,则OP 的长为( )A.6 cmB.8 cmC.10 cmD.12 cm2如图,AB是☉O的弦,AC是☉O的直径,已知AC=4,∠BAC=30°,连接BC,若D是BC的中点,则OD的长为( )A.√2B.√3C.3√22D.3√323如图,☉O的直径CD=20,AB是☉O的弦,AB⊥CD,垂足为M,OM∶OD=3∶5,则AB的长为()A.8B.12C.16D.2√914小颖同学在手工制作中,把一个边长为12 cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为( )A.2√3cmB.4√3cmC.6√3cmD.8√3cm5如图,有圆锥形粮堆,其正视图是边长为6的正三角形ABC,粮堆母线AC的中点P处有一只老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处,捕捉老鼠,则小猫所经过的最短路程是( )A.3B.3√5C.3√3D.46如图,在半径为5的☉O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为( )A.3B.4C.3√2D.4√2二、填空题7如图所示的是一个圆锥的轴截面,AB=AC=6,BC=4,那么这个圆锥的侧面积是.8如图,OA是☉O的半径,BC是☉O的弦,OA⊥BC于点D,AE是☉O的切线,AE交OC的延长线于点E.若∠AOC=45°,BC=2,则线段AE的长为.9如图,已知☉P 的半径为3,圆心P 在抛物线y =12x 2+x -32上运动,当☉P 与x 轴相切时,则圆心P 的坐标为 .10如图,在半径为3的☉O 中,B 是劣弧AC 的中点,连接AB 并延长到D ,使BD =AB ,连接AC ,BC ,CD ,如果AB =2,那么CD 等于 .11如图,在Rt △ABC 中,∠ACB =90°,∠ABC =60°,BC =2,若以AB 为直径画半圆,以点B 为圆心,BC 长为半径画弧,交AB 于点D ,则阴影部分面积为 .(结果保留π)三、解答题12如图,在△ABC 中.∠ACB =90°,AB =10,BC =6.(1)用直尺和圆规作出☉O,使圆心O在AC边上,并与其他两边都相切,与边BC相切于点C;(保留作图痕迹,不写作法)(2)通过作图,试说明☉O与AB相切的理由;(3)求☉O的半径.13如图,AB是☉O的直径,CD是☉O的弦,连接AC,BC,BD,∠D=30°.(1)求∠ABC的度数;(2)若AC=4√3,求BC的长.14如图1,四边形ABCD内接于☉O,AD为直径,过点C作CE⊥AB于点E,连接AC.(1)求证:∠CAD=∠ECB;⏜围成阴影部分(2)如图2,连接OC,若OC⊥CE,∠EAD=60°,AC=2√3,求AD,AC与CD的面积.15如图,以线段AB为直径作☉O,交射线AC于点C,AD平分∠CAB交☉O于点D,过点D作直线DE⊥AC于点E,交AB的延长线于点F.连接BD并延长交AC于点M.(1)求证:直线DE是☉O的切线;(2)求证:AB=AM;(3)若ME=1,∠F=30°,求BF的长.参考答案一、选择题1点P是☉O内一点,过点P的最长弦的长为20 cm,最短弦的长为12 cm,则OP 的长为(B)A.6 cmB.8 cmC.10 cmD.12 cm2如图,AB是☉O的弦,AC是☉O的直径,已知AC=4,∠BAC=30°,连接BC,若D是BC的中点,则OD的长为(B)A.√2B.√3C.3√22D.3√323如图,☉O的直径CD=20,AB是☉O的弦,AB⊥CD,垂足为M,OM∶OD=3∶5,则AB的长为(C)A.8B.12C.16D.2√914小颖同学在手工制作中,把一个边长为12 cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为(B)A.2√3cmB.4√3cmC.6√3cmD.8√3cm5如图,有圆锥形粮堆,其正视图是边长为6的正三角形ABC,粮堆母线AC的中点P处有一只老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处,捕捉老鼠,则小猫所经过的最短路程是(B)A.3B.3√5C.3√3D.46如图,在半径为5的☉O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为(C)A.3B.4C.3√2D.4√2二、填空题7如图所示的是一个圆锥的轴截面,AB =AC =6,BC =4,那么这个圆锥的侧面积是12π .8如图,OA 是☉O 的半径,BC 是☉O 的弦,OA ⊥BC 于点D ,AE 是☉O 的切线,AE 交OC 的延长线于点E.若∠AOC =45°,BC =2,则线段AE 的长为 √2 .9如图,已知☉P 的半径为3,圆心P 在抛物线y =12x 2+x -32上运动,当☉P 与x 轴相切时,则圆心P 的坐标为 (√10-1,3)或(-√10-1,3) .10如图,在半径为3的☉O 中,B 是劣弧AC 的中点,连接AB 并延长到D ,使BD =AB ,连接AC ,BC ,CD ,如果AB =2,那么CD 等于 43 .11如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2,若以AB为直径画半圆,以点π+√3.(结果保留B为圆心,BC长为半径画弧,交AB于点D,则阴影部分面积为23π)三、解答题12如图,在△ABC中.∠ACB=90°,AB=10,BC=6.(1)用直尺和圆规作出☉O,使圆心O在AC边上,并与其他两边都相切,与边BC相切于点C;(保留作图痕迹,不写作法)(2)通过作图,试说明☉O与AB相切的理由;(3)求☉O的半径.解:(1)如图所示(2)过点O作OM⊥AB,垂足为点M.由题可知,BO是∠ABC的平分线∵∠ACB=90°,∴OC⊥BC∵BO是∠ABC的平分线,OM⊥AB∴OC=OM,∴OM是☉O的半径∴AB与☉O相切;(3)在△ABC中∵∠ACB=90°,AB=10,BC=6.∴AC=√102-62=8,∵BC,AB与☉O相切,∴BM=BC=6,∴AM=4设☉O半径为x,则OA=8-x,OM=x根据勾股定理得,x2+42=(8-x)2,解得x=3,∴☉O的半径为3.13如图,AB是☉O的直径,CD是☉O的弦,连接AC,BC,BD,∠D=30°.(1)求∠ABC的度数;(2)若AC=4√3,求BC的长.解:(1)∵点C在☉O上,AB是☉O的直径∴∠ACB=90°∵∠D=30°,∴∠A=30°∵∠A+∠ACB+∠ABC=180°∴∠ABC=180°-90°-30°=60°;(2)在Rt△ABC中,∠ACB=90°,∠A=30°AB,设BC=x,则AB=2x∴BC=12在Rt△ABC中,∠ACB=90°,由勾股定理得:AB2=AC2+BC2∵BC=x,AB=2x,AC=4√3∴x2+(4√3)2=(2x)2∵解得x=4,x=-4(舍),∴BC的长为4.14如图1,四边形ABCD内接于☉O,AD为直径,过点C作CE⊥AB于点E,连接AC.(1)求证:∠CAD=∠ECB;⏜围成阴影部分(2)如图2,连接OC,若OC⊥CE,∠EAD=60°,AC=2√3,求AD,AC与CD的面积.解:(1)∵四边形ABCD是☉O的内接四边形∴∠CBE=∠D∵AD为☉O的直径∴∠ACD=90°∴∠D+∠CAD=90°∴∠CBE+∠CAD=90°∵CE⊥AB∴∠CBE+∠BCE=90°∴∠CAD=∠BCE;(2)∵CE⊥AB,OC⊥CE∴AE∥OC∴∠COD=∠EAD=60°∵OA=OC,∠AOC=120°,AC=2√3∴OA=OC=AB=2∴AD =2OA =4在Rt △ACD 中,∠CAD =30°,∴CD =2∴AD ,AC 与CD ⏜围成阴影部分的面积为:S △AOC +S 扇形OCD =12×12×2×2√3+60π×22360 =√3+2π3. 15如图,以线段AB 为直径作☉O ,交射线AC 于点C ,AD 平分∠CAB 交☉O 于点D ,过点D 作直线DE ⊥AC 于点E ,交AB 的延长线于点F .连接BD 并延长交AC 于点M.(1)求证:直线DE 是☉O 的切线;(2)求证:AB =AM ;(3)若ME =1,∠F =30°,求BF 的长.解:(1)连接OD ,则OD =OA∴∠ODA =∠OAD∵AD 平分∠CAB∴∠OAD =∠DAC∴∠ODA =∠DAC∴OD ∥AC∵DE⊥AC∴∠ODF=∠AED=90°∵OD是☉O的半径,且DE⊥OD∴直线DE是☉O的切线.(2)∵线段AB是☉O的直径∴∠ADB=90°∴∠ADM=180°-∠ADB=90°∴∠M+∠DAM=90°,∠ABM+∠DAB=90°∵∠DAM=∠DAB∴∠M=∠ABM∴AB=AM.(3)∵∠AEF=90°,∠F=30°∴∠BAM=60°∴△ABM是等边三角形∴∠M=60°∵∠DEM=90°,ME=1∴∠EDM=30°∴MD=2ME=2∴BD=MD=2∵∠BDF=∠EDM=30°∴∠BDF=∠F∴BF=BD=2.。

2023-2024学年九年级数学上册《第二十四章 圆》单元测试卷有答案(人教版)

2023-2024学年九年级数学上册《第二十四章 圆》单元测试卷有答案(人教版)

2023-2024学年九年级数学上册《第二十四章圆》单元测试卷有答案(人教版)学校:___________班级:___________姓名:___________考号:___________知识点归纳1、圆在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。

固定的端点O叫做圆心,线段OA叫做半径,以点O为圆心的圆,记作⊙O,读作“圆O”。

连接圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径。

圆上任意两点间的部分叫做圆弧,简称弧。

圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。

小于半圆的弧叫做劣弧。

大于半圆的弧叫做优弧。

能够重合的两个圆叫做等圆。

在同圆或等圆中,能重合的弧叫等弧。

2、垂径定理垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线过圆心,且平分弦对的两条弧.3、弧、弦、圆心角之间的关系定义:顶点在圆心的角叫做圆心角。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。

注:在同圆或等圆中,如果两个圆心角,两条弦,两条弧、两个弦的弦心距中,有一组量相等,那么其余各组量也分别相等4、圆周角定义:顶点在圆上,并且两边都和圆相交的角叫圆周角。

圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

推论1:同弧或等弧所对的圆周角相等。

推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

圆内接四边形的性质:圆内接四边形的对角互补。

5、点和圆的位置关系设⊙O 的半径为r ,点P 到圆心的距离为OP=d ,则有:点P 在圆外⇔d >r ;点P 在圆上⇔d=r ;点P 在圆内⇔d <r 。

性质:不在同一条直线上的三个点确定一个圆。

初中九年级数学上册 第二十四章综合测试题附答案

初中九年级数学上册 第二十四章综合测试题附答案

人教版九年级数学上册第二十四章综合测试卷03一、选择题(每小题4分,共40分)1.如图24-14,AB 是O 的直径,点C 在O 上,若40A ∠=︒,则B ∠的度数为()A .80︒B .60︒C .50︒D .40︒2.如图24-15,AB 是O 的直径,弦CD AB ⊥,垂足为M ,下列结论不成立的是()A .CM DM=B . BCBD =C .ACD ADC ∠=∠D .OM MD=3.如图24-16,ABC △内接于O ,OD BC ⊥于点D ,50A ∠=︒,则OCD ∠的度数是()A .40︒B .45︒C .50︒D .60︒4.如图24-17,AB 是O 的弦,BC 与O 相切于点B ,连接OA ,OB .若70ABC ∠=︒,则A ∠等于()A .15︒B .20︒C .30︒D .70︒5.如图24-18,半径为1的小圆在半径为9的大圆内沿大圆滚动,则小圆扫过的阴影部分的面()A .17πB .32πC .49πD .80π6.如图24-19,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是()A .点0,3()B .点2,3()C .点5,1()D .点6,1()7.如图24-20,在边长为1的正方形组成的网格中,ABC △的顶点都在格点上,将ABC △绕点C 顺时针旋转60︒,则顶点A 所经过的路径长为()A .10πB.103C .10π3D .π8.如图24-21,在半径为R 的圆内作一个内接正方形,然后作这个正方形的内切圆,又在这个内切圆中作内接正方形,依次作到第n 个内切圆,它的半径是()A .22nR ⎛⎫ ⎪ ⎪⎝⎭B .12nR ⎛⎫⎪⎝⎭C .112n R-⎛⎫⎪⎝⎭D .122n R-⎛⎫ ⎪ ⎪⎝⎭9.小明用图24-22中所示的扇形纸片制作一个圆锥的侧面,已知扇形的半径为5 cm ,弧长是6π cm ,那么这个圆锥的高是()A .4 cmB .6 cmC .8 cmD .2 cm10.一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形的圆心角是()A .120︒B .180︒C .60︒D .90︒二、填空题(每小题4分,共16分)11.在圆中,30︒的圆周角所对的弦的长度为________.12.当宽为3 cm 的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图24-23所示(单位:cm ),那么该圆的半径为________cm .13.如图24-24,Rt ABC △的边BC 位于直线l 上,AC =,90ACB ∠=︒,30A ∠=︒,若Rt ABC △由现在的位置向右无滑动地翻转,当点A 第3次落在直线l 上时,点A 所经过的路线的长为________(结果用含的式子表示).14.(2013·江苏盐城)如图24-25,在ABC △中,90BAC ∠=︒, 5 cm AB =, 2 cm AC =,将ABC △绕顶点C 按顺时针方向旋转45︒至11A B C △的位置,则线段AB 扫过区域(图中的阴影部分)的面积为________2cm .三、解答题(共44分)15.(8分)如图24-26,在O 中,直径AB 与弦CD 相交于点P ,40CAB ∠=︒,65APD ∠=︒.(1)求B ∠的大小;(2)已知6AD =,求圆心O 到BD 的距离.16.(8分)如图24-27,在ABC △中,90C ∠=︒,8AC BC +=,点O 是斜边AB 上一点,以点O 为圆心的O 分别与AC ,BC 相切于点D ,E .(1)当2AC =时,求O 的半径;(2)设AC x =,O 的半径为y ,求y 与x 的函数关系式.17.(8分)如图24-28,P 的圆心为32P -(,),半径为3,直线MN 过点50M (,)且平行于y 轴,点N 在点M 的上方.(1)在图中作出P 关于y 轴对称的'P ,根据作图直接写出'P 与直线MN 的位置关系;(2)若点N 在(1)中的'P 上,求PN 的长.18.(8分)如图24-29,在O 中,弦BC 垂直于半径OA ,垂足为点E ,D 是优弧BC 上一点,连接BD ,AD ,OC ,30ADB ∠=︒.(1)求AOC ∠的度数;(2)若弦6BC =,求图中阴影部分的面积.19.(12分)实践操作:如图24-30,ABC △是直角三角形,90ACB ∠=︒,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)(1)作BAC ∠的平分线,交BC 于点O ;(2)以点O 为圆心,OC 为半径作圆.综合运用:在你所作的图中,(1)判别AB 与O 的位置关系,并说明理由;(2)若5AC =,12BC =,求O 的半径.第二十四章综合测试答案解析1.【答案】C【解析】因为AB 为O 的直径,所以90C ∠=︒.因为40A ∠=︒,所以180904050B ∠=︒-︒-︒=︒.2.【答案】D【解析】根据垂径定理,得CM DM =, BCBD =,AC AD =,由AC AD =,得ACD ADC ∠=∠,而OM MD =不一定成立.3.【答案】A【解析】连接OB ,则OB OC =,因为OD BC ⊥,所以12COD BOC ∠=∠.因为BOC ∠与A ∠分别是 BC所对的圆心角和圆周角,所以0A B C ∠=∠.所以50COD A ∠=∠=︒.所以90905040OCD COD ∠=︒-∠=︒-︒=︒.故选A .4.【答案】B【解析】由同圆半径相等和切线的性质,得907020A ABO ∠=∠=︒-︒=︒.故选B.5.【答案】B 【解析】22π9π(92)81π49π32πS =⋅-⋅-=-=阴影.6.【答案】C【解析】易知圆心坐标为()2,0,进而可知点()5,1符合要求.7.【答案】C【解析】ABC △绕点C 顺时针旋转60︒,顶点A 经过的路径是以点C 为圆心,AC 为半径,圆心角为60︒的圆弧.结合图形,由勾股定理,得AC =π180n R l =,可求路径长为π3.8.【答案】A【解析】第一个内切圆的半径为号2R,第二个内切圆的半径是22R ⎛⎫ ⎪ ⎪⎝⎭,所以第n个内切圆的半径是2nR ⎛⎫⎪ ⎪⎝⎭.9.【答案】A【解析】设圆锥的高、底面圆的半径分别为h ,r ,2π6πr =,所以3r =.因为圆的母线长为5,所以圆锥的高4(cm)h ==.10.【答案】A【解析】设母线长为l ,底面半径为r ,则底面周长为2πr ,底面积为2r π,侧面积为rl π.由题知侧面积是底面积的3倍,所以3l r =.设圆心角为n ︒,则π2π180n lr =,解得120n =.11.【答案】【解析】如答图24-1,因为30BAC ∠=︒,所以60BOC ∠=︒,所以BOC △是等边三角形,所以OB OC BC ===,即这个圆的半径为.12.【答案】256【解析】如答图24-2,连接OA ,AB ,OC ,设OC 与AB 的交点为点D .在Rt OAD △中,4AD =,3OD R =-,OA R =.由勾股定理,得22234R R =-+().解得256R =,故该圆的半径为256.134π+【解析】斜边长度是2,第一次经过的路线长度是120π2180⨯.第二次经过的路线长度是90π3120π2180180⨯+.第三次经过的路线长度与第二次经过的路线长度相同,也是90π3120π2180180⨯+.所以当点A 第三次落在直线l上时,经过的路线长度是120π290π120π24π4π224π18018018033⎛⎫⨯⨯+⨯+=+⨯=+ ⎪ ⎪⎝⎭.14.【答案】25π8【解析】在Rt ABC △中,BC ==,扇形1CBB的面积是245π29π3608⨯=,1115252CB A S =⨯⨯=△;1245π2π3602CAA S ⨯==扇形.故111129ππ25π55828CB A ABC BCB CAA S S S S S =+--=+--=△△阴影部分扇形扇形.15.【答案】解:(1)因为APD C CAB ∠=∠+∠,所以654025C ∠=︒-︒=︒,所以25B C ∠=∠=︒.(2)如答图24-3,过点O 作OE BD ⊥于点E ,则DE BE =.又因为AO BO =,所以116322OE AD ==⨯=.所以圆心O 到BD 的距离为3.16.【答案】解:如答图24-4,连接OD ,OE ,OC.因为点D ,E 为切点,所以OD AC ⊥,OE BC ⊥,OD OE =.因为ABCAO C BC C S S S =+△△△,所以111222AC BC AC OD BC OE ⋅=⋅+⋅.(1)因为8AC BC +=,2AC =,所以6BC =.所以1112626222OD OE⨯⨯=⨯⨯+⨯⨯.而OD OE =,所以32OD =,即O 的半径为32.(2)因为8AC BC +=,AC x =,所以8BC x =-.所以111(8)(8)222x x xy x y -=+-.化简,得218y x x =-+.17.【答案】解:(1)如答图24-5,点3,2P -()关于y 轴的对称点为'3,2P (),以点'P 为圆心,3为半径的圆即为所求, 'P 与直线MN 相交。

2023-2024学年人教版九年级数学上册第二十四章圆单元检测题(含答案)

2023-2024学年人教版九年级数学上册第二十四章圆单元检测题(含答案)

第二十四章圆单元检测题一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法中,正确的是( )A.过圆心的线段叫直径B.长度相等的两条弧是等弧C.与半径垂直的直线是圆的切线D.圆既是中心对称图形,又是轴对称图形2.已知☉O的半径为6,圆心O到直线l的距离为7,则直线l与☉O的位置关系是( )A.相离B.相交C.相切D.无法确定3.(2023自贡)如图所示,△ABC内接于☉O,CD是☉O的直径,连接BD,∠DCA=41°,则∠ABC的度数是( )第3题图A.41°B.45°C.49°D.59°4.圆锥的底面圆的半径r=3,高h=4,则圆锥的侧面积是( )A.10πB.15πC.30πD.45π5.如图所示,☉O的直径为10,弦AB的长为6,P为弦AB上的动点,则线段OP的取值范围是( )第5题图A.3<OP<5B.3≤OP≤5C.4<OP<5D.4≤OP≤56.如图所示,四边形ABCD内接于☉O,F是CD上一点,且DF=BC,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为( )A.45°B.50°C.55°D.60°7.如图所示,☉O是△ABC的外接圆,∠BAC=60°,若☉O的半径OC为2,则弦BC的长为( )第7题图A.4B.23C.338.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为( )2 B.22-22 D.2-29.(2022娄底改编)如图所示,等边三角形内切圆中的黑色部分和白色部分关于等边三角形ABC 的内心成中心对称,则圆中的黑色部分的面积与△ABC 的面积之比是( )第9题图3π18 B.3183π9 D.3910.(2022广大附中一模)如图所示,点A,B 的坐标分别为A(2,0), B(0,2),点C 为坐标平面内一点,BC=1,点M 为线段AC 的中点,连接OM,则OM 的最大值为( )2+1 B.2+12C.22+1D.22-12二、填空题:本大题共5小题,每小题3分,共15分.11.用反证法证明命题:“已知△ABC,AB=AC,求证:∠B<90°.”第一步应先假设 .12.如图所示,C为AB的中点,CN⊥OB于点N,CD⊥OA于点M,CD=4 cm,则CN= cm.13.已知圆心角为120°的扇形的面积为12π cm2,则扇形的弧长是 cm.14.如图所示,☉O的半径为1,PA,PB是☉O的两条切线,切点分别为A,B.连接OA,OB,AB,PO,若∠APB=60°,则△PAB的周长为 .第14题图15.小明很喜欢钻研问题,一次数学老师拿来一个残缺的圆形瓦片(如图所示),让小明求瓦片所在圆的半径,小明连接瓦片弧线两端AB,量得AB的中点C到AB的距离CD=1.6 cm,AB=6.4 cm,则求得圆形瓦片所在圆的半径为 cm.第15题图三、解答题(一):本大题3小题,第16题10分,第17,18题各7分,共24分.16.(1)(2022湘潭节选)如图所示,在☉O中,直径AB与弦CD相交于点E,连接AC,BD,AD.若AD=3,∠C=30°,求☉O的半径.(2)如图所示,扇形OAB的圆心角为120°,半径OA为6 cm.若把扇形纸片OAB卷成一个圆锥形无底纸帽,求这个纸帽的高OH.17.如图所示,四边形ABCD内接于☉O,AB=AD,∠C=110°,若点E在AD 上,求∠E的度数.18.(2022珠海一模改编)如图所示,已知AB是☉O的直径,直线CD是☉O的切线,过点A作AD⊥CD,垂足为D,直线CD与AB的延长线交于点E.当AB=2BE,且CE=3时,求AD的长.四、解答题(二):本大题3小题,每小题9分,共27分.19.(原创)综合与实践素材:一张三角形纸板.操作:如图(1)所示,将一块三角形纸板ABC,准备裁剪成一个面积最大的圆形,已知∠C=90°,BC=3,AC=4.如图(2)所示,作△ABC的内切圆☉O,切点分别为D,E,G,连接OG,OD,OE.解决问题:请求出裁剪出的最大圆形面积.20.(2022眉山改编)如图所示,AB为☉O的直径,点C是☉O上一点,CD 与☉O相切于点C,过点B作BD⊥DC,连接AC,BC.(1)求证:BC平分∠ABD;(2)若BC=23,AB=4,求阴影部分的面积.21.(2022新疆节选)如图所示,☉O是△ABC的外接圆,AB是☉O的直径,点D在☉O上,AC=CD,连接AD,延长DB交过点C的切线于点E.求证:(1)∠ABC=∠CAD;(2)BE⊥CE.五、解答题(三):本大题2小题,每小题12分,共24分.22.(2022金华)综合探究如图(1)所示,正五边形ABCDE内接于☉O,阅读以下作图过程,并回答下列问题:作法如图(2)所示.1.作直径AF.2.以F为圆心,FO为半径作圆弧,与☉O交于点M,N.3.连接AM,MN,NA.(1)求∠ABC的度数;(2)△AMN是正三角形吗?请说明理由;(3)从点A开始,以DN长为半径,在☉O上依次截取点,再依次连接这些分点,得到正n边形,求n的值.23.(2022宁波)综合运用如图(1)所示,☉O为锐角三角形ABC的外接圆,点D在BC上,AD交BC 于点E,点F在AE上,满足∠AFB-∠BFD=∠ACB,FG∥AC交BC于点G,BE=FG,连接BD,DG.设∠ACB=α.(1)用含α的代数式表示∠BFD;(2)求证:△BDE≌△FDG;(3)如图(2)所示,若AD为☉O的直径,当AB的长为2时,求AC的长.答案:一、选择题1.D2.A3.C4.B5.D6.B7.B8.B9.A 10.B二、填空题11.∠B≥90° 12.2 13.4π 14.33 15.4三、解答题(一)16.(1)解:∵∠C=∠B,∠C=30°,∴∠B=30°.∵AB是☉O的直径,AD=3,∴∠ADB=90°.∴AB=6.∴☉O的半径为3.(2)如图所示,设圆锥底面圆的半径为r,所以2πr=4π,解得r=2,在Rt△OHC中,HC=2,OC=6,所以OH=OC2-H C2=42(cm).17.解:如图所示,连接BD,∵∠C+∠BAD=180°,∠C=110°,∴∠BAD=180°-110°=70°.∵AB=AD,∴∠ABD=∠ADB.×(180°-70°)=55°.∴∠ABD=12∵四边形ABDE是☉O的内接四边形,∴∠E+∠ABD=180°.∴∠E=180°-55°=125°.18.解:如图所示,连接OC,∵直线CD为☉O的切线,∴∠OCE=90°.∵AB=2BO,AB=2BE,∴BO=BE=CO.设BO=BE=CO=x,∴OE=2x.在Rt△OCE中,根据勾股定理,得OC2+CE2=OE2,即x2+(3)2=(2x)2.∴x=1.∴AE=3,∠E=30°.∴AD=32.四、解答题(二)19.解:∵∠C=90°,BC=3,AC=4,OG=OE=OD,∴AB=32+42=5.∴S △ABC =12AC×BC=12AC×OG+12BC×OE+12AB×OD=12OG×C △ABC ,即12AC×BC=12OG×C △ABC .∴12×3×4=12×OG×(3+4+5),解得OG=1,∴裁剪出的最大圆形面积为π×12=π.20.(1)证明:连接OC,如图所示,∵CD 与☉O 相切于点C,OC 为半径,∴OC ⊥CD.∵BD ⊥CD,∴OC ∥BD.∴∠OCB=∠DBC.∵OC=OB,∴∠OCB=∠OBC.∴∠DBC=∠OBC.∴BC 平分∠ABD.(2)解:如图所示,作CE ⊥AO 于点E,∵AB是直径,AB=4,∴∠ACB=90°,OA=OC=2.在Rt△ABC中,AC=AB2-B C2=42-(23)2=2,∴AO=CO=AC=2.∴△AOC是等边三角形.∴∠AOC=60°.∵CE⊥OA,∴OE=12OA=1.∴CE=3.∴阴影部分的面积S=60×π×22360-12×2×3=2π3-3.21.证明:(1)∵AC=CD,∴∠CAD=∠ADC.∵∠ABC=∠ADC,∴∠ABC=∠CAD.(2)如图所示,连接OC,∵CE与☉O相切于点C,∴∠OCE=90°.∵四边形ADBC是圆内接四边形,∴∠CAD+∠DBC=180°.∵∠DBC+∠CBE=180°,∴∠CAD=∠CBE.∵∠ABC=∠CAD,∴∠CBE=∠ABC.∵OB=OC,∴∠OCB=∠ABC.∴∠OCB=∠CBE.∴OC∥BE.∴∠E=180°-∠OCE=90°.∴BE⊥CE.五、解答题(三)22.解:(1)∵五边形ABCDE是正五边形,∴∠ABC=(5-2)×180°=108°,5即∠ABC=108°.(2)△AMN是正三角形.理由如下:如图所示,连接ON,NF,由题意,得FN=ON=OF,∴△FON是等边三角形.∴∠NFA=60°.∴NMA=60°.同理,得∠ANM=60°,∴∠MAN=60°.∴△MAN是正三角形.(3)∵∠AMN=60°,∴∠AON=120°.×2=144°,∵∠AOD=360°5∴∠NOD=∠AOD-∠AON=144°-120°=24°.∵360°÷24°=15,∴n的值是15.23.(1)解:∵∠AFB-∠BFD=∠ACB=α,①又∵∠AFB+∠BFD=180°,②②-①,得2∠BFD=180°-α,.∴∠BFD=90°-α2,(2)证明:由(1),得∠BFD=90°-α2∵∠ADB=∠ACB=α,.∴∠FBD=180°-∠ADB-∠BFD=90°-α2∴∠BFD=∠FBD.∴DB=DF.∵FG∥AC,∴∠CAD=∠DFG.∵∠CAD=∠DBE,∴∠DFG=∠DBE.在△BDE 和△FDG 中,{DB =DF ,∠DBE =∠DFG ,BE =FG ,∴△BDE ≌△FDG(SAS).(3)解:∵△BDE ≌△FDG,∴∠FDG=∠BDE=α,DE=DG.∴∠BDG=∠BDF+∠EDG=2α.∵DE=DG,∴∠DGE=12(180°-∠FDG)=90°-α2.∴∠DBG=180°-∠BDG-∠DGE=90°-3α2.∵AD 是☉O 的直径,∴∠ABD=90°.∴∠ABC=∠ABD-∠DBG=3α2.∴AC 与AB 所对的圆心角度数之比为3∶2.∴AC 与AB 的长度之比为3∶2.∵AB =2,∴AC =3.。

初中数学人教版九年级上册第二十四章能力测试题含答案

初中数学人教版九年级上册第二十四章能力测试题含答案

初初初初初初初初初初初初初初初初初初初初初初初初初24.1圆的有关性质一、选择题1.如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=√13,则AE=()A. 3B. 3√2C. 4√3D. 2√32.如图,在⊙O中,弦AB的长为16cm,圆心O到AB的距离为6cm,则⊙O的半径是()A. 6cmB. 10cmC. 8cmD. 20cm3.如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是()A. 130°B. 140°C. 150°D. 160°4.如图,A、B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为()A. √2rB. √3rC. rD. 2r5.下列说法正确的是()A. 垂直于弦的直线平分弦所对的两条弧B. 平分弦的直径垂直于弦C. 垂直于直径平分这条直径D. 弦的垂直平分线经过圆心6.下列说法正确的是()A. 相等的圆心角所对的弧相等B. 在同圆中,等弧所对的圆心角相等C. 在同圆中,相等的弦所对的弧相等D. 相等的弦所对的弧相等7.如图,在⊙O中,半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,若AB=8,CD=2,则EC的长度为()A. 2√15B. 8C. 2√10D. 2√138.如图所示,图中弦的条数为()A. 1条B. 2条C. 3条D. 4条9.如图,⊙O的半径为5,AB为弦,点C为AB⌢的中点,若∠ABC=30°,则弦AB的长为()A. 12B. 5 C. 5√32D. 5√310.如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A. 6B. 8C. 5√2D. 5√3二、填空题11.如图,在⊙O中,AB、AC是互相垂直的两条弦,OD⊥AB于点D,OE⊥AC于点E,且AB=8cm,AC=6cm,那么⊙O的半径OA长为______.12.如图,AB是⊙O的直径,C、D为半圆的三等分点,CE⊥AB于点E,∠ACE的度数为______.13.如图,AB是⊙O的直径,点D在⊙O上,∠BOD=130°,AC//OD交⊙O于C,连接BC,则∠B=________.14.如图,CD是⊙O的直径,CD=4,∠ACD=20°,点B为弧AD的中点,点P是直径CD上的一个动点,则PA+PB的最小值为______.三、计算题15.⊙O中,直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,且∠DEB=60°,求CD的长.四、解答题16.如图,AB是⊙O的直径,点C为BD⌢的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.17.如图,已知A,B,C,D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD,AD.求证:DB平分∠ADC.18.如图所示,已知⊙O′与平面直角坐标系交于A,O,B三点,点C在⊙O′上,点A的坐标为(0,2),∠COB=45°,∠OBC= 75°,求⊙O′的直径.答案和解析1.【答案】D【解析】解:连接AC,如图,∵BA平分∠DBE,∴∠1=∠2,∵∠1=∠CDA,∠2=∠3,∴∠3=∠CDA,∴AC=AD=5,∵AE⊥CB,∴∠AEC=90°,∴AE=√AC2−CE2=√52−(√13)2=2√3.故选:D.连接AC,如图,根据圆内接四边形的性质和圆周角定理得到∠1=∠CDA,∠2=∠3,从而得到∠3=∠CDA,所以AC=AD=5,然后利用勾股定理计算AE的长.本题考查了圆内接四边形的性质:圆内接四边形的对角互补.圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).也考查了勾股定理.2.【答案】B【解析】解:过点O作OE⊥AB于点E,连接OC,∵弦AB的长为16cm,圆心O到AB的距离为6cmAB=8cm,∴OE=6cm,AE=12在Rt△AOE中,根据勾股定理得,OA=√OE2+AE2=10cm故选:B.过点O作OE⊥AB于点E.根据垂径定理和勾股定理求解.本题考查了垂径定理和勾股定理的综合应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.【解析】解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.根据题意得到四边形ABCD共圆,利用圆内接四边形对角互补即可求出所求角的度数.此题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解本题的关键.4.【答案】B【解析】解:连接AB,与OC交于点D,如图所示:∵四边形ACBO为菱形,∴OA=OB=AC=BC,OC⊥AB,又OA=OC=OB,∴△AOC和△BOC都为等边三角形,AD=BD,在Rt△AOD中,OA=r,∠AOD=60°,r,∴AD=OAsin60°=√32则AB=2AD=√3r.故选:B.连接AB,与OC交于点D,由ACBO为菱形,根据菱形的性质得到对角线互相垂直,且四条边相等,再由半径相等得到三角形AOC与三角形BOC都为等边三角形,同时得到AD=BD,在直角三角形AOD中,由OA=r,∠AOD为60°,利用余弦函数定义及特殊角的三角函数值求出AD的长,即可求出AB的长.此题考查了菱形的性质,等边三角形的判定与性质,垂径定理,以及锐角三角函数定义,熟练掌握性质及定理是解本题的关键.【解析】解:A、垂直于弦的直径平分弦所对的两条弧,所以A选项错误;B、平分弦(非直径)的直径垂直于弦,所以B选项错误;C、垂直于直径的弦被这条直径平分,所以C选项错误;D、弦的垂直平分线经过圆心,所以D选项正确.故选:D.根据垂径定理对A、C进行判断;根据垂径定理的推论对B、D进行判断.本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧;平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.6.【答案】B【解析】解:A、错误.在同圆或等圆中,相等的圆心角所对的弧相等,本选项不符合题意.B、正确.C、错误.弦所对的弧有两个,不一定相等,本选项不符合题意.D、错误.相等的弦所对的弧不一定相等.故选:B.根据圆心角,弧,弦之间的关系一一判断即可.本题考查圆心角、弧、弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.【答案】D【解析】【分析】此题考查了圆周角定理、垂径定理、勾股定理以及三角形中位线的性质.注意准确作出辅助线是解此题的关键.首先连接BE,由⊙O的半径OD⊥弦AB于点C,AB=8,CD=2,根据垂径定理可求得AC=BC=4,然后设OA=R,利用勾股定理可得方程:42+(R−2)2=R2,则可求得半径的长,继而利用三角形中位线的性质,求得BE的长,又由AE是直径,可得∠B=90°,继而求得答案.【解答】解:如图,连接BE,设⊙O的半径为R,∵OD⊥AB,∴AC=BC=12AB=12×8=4,在Rt△AOC中,OA=R,OC=R−CD=R−2,由勾股定理,得OC2+AC2=OA2,∴(R−2)2+42=R2,解得R=5,∴OC=5−2=3,∵O是AE的中点,C是AB的中点,∴OC是三角形ABE的中位线,∴BE=2OC=6,∵AE为⊙O的直径,∴∠ABE=90∘,在Rt△BCE中,CE=√BC2+BE2=2√13.故选D.8.【答案】B【解析】【分析】本题考查了圆的有关概念,熟记连接圆上任意两点的线段叫弦是解题的关键.弦是连接圆上任意两点的线段,根据定义作答.【解答】解:由图可知,点A、B、D、C是⊙O上的点,图中的弦有AB 、DC 一共2条.故选B .9.【答案】D【解析】【分析】此题考查圆周角定理,垂径定理,勾股定理,含30°直角三角形有关知识,连接OC 、OA ,利用圆周角定理得出∠AOC =60°,再利用垂径定理得出AB 即可.【解答】解:连接OC 、OA ,∵∠ABC =30°,∴∠AOC =60°,∵AB 为弦,点C 为AB⏜的中点, ∴OC ⊥AB ,∴∠OAB =30°,在Rt △OAE 中,∵AO =5,∴OE =2.5,∴AE =√AO 2−OE 2=√52−(52)2=5√32, ∴AB =5√3,故选D .10.【答案】B【解析】【分析】本题主要考查圆心角定理,解题的关键是掌握圆心角定理和圆周角定理.延长AO 交⊙O 于点E ,连接BE ,由∠AOB +∠BOE =∠AOB +∠COD 知∠BOE =∠COD ,据此可得BE=CD=6,在Rt△ABE中利用勾股定理求解可得.【解答】解:如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD=6,∵AE为⊙O的直径,∴∠ABE=90°,∴AB=√AE2−BE2=√102−62=8,故选B.11.【答案】5cm【解析】解:连接OA,∵OD⊥AB,OE⊥AC,∴AE=12AC=12×6=3(cm),AD=12AB=12×8=4(cm),∠OEA=∠ODA=90°,∵AB、AC是互相垂直的两条弦,∴∠A=90°,∴四边形OEAD是矩形,∴OD=AE=3cm,在Rt△OAD中,OA=√AD2+OD2=5cm.故答案为:5cm.首先由AB、AC是互相垂直的两条弦,OD⊥AB,OE⊥AC,易证得四边形OEAD是矩AE AD OA此题考查了垂径定理,矩形的判定与性质以及勾股定理等知识.此题难度不大,解题的关键是注意数形结合思想的应用,注意特殊图形的性质的应用.12.【答案】30°【解析】解:如图,连接OC.∵AB是直径,AC⏜=CD⏜=BD⏜,∴∠AOC=∠COD=∠DOB=60°,∵OA=OC,∴△AOC是等边三角形,∴∠A=60°,∵CE⊥OA,∴∠AEC=90°,∴∠ACE=90°−60°=30°.故答案为30°想办法证明△AOC是等边三角形即可解决问题.本题考查圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.【答案】40°【解析】【分析】本题主要考查圆周角定理及推论,平行线的性质,先求出∠AOD,利用平行线的性质得出∠A,再由圆周角定理求出∠B的度数即可.【解答】解:∵∠BOD=130°,又∵AC//OD,∴∠A=∠AOD=50°,∵AB是⊙O的直径,∴∠C=90°,∴∠B=90°−50°=40°.故答案为40°.14.【答案】2【解析】【分析】本题考查的是轴对称−最短路线问题,解答此题的关键是找到点A的对称点,把题目的问题转化为两点之间线段最短解答.首先作A关于CD的对称点Q,连接BQ,然后根据圆周角定理、圆的对称性质和等边三角形的判定和性质解答.【解答】解:作A关于CD的对称点Q,连接CQ,BQ,BQ交CD于P,此时AP+PB=QP+PB= QB,根据两点之间线段最短,PA+PB的最小值为QB的长度,连接OQ,OB,∵点B为弧AD的中点,∴∠BOD=∠ACD=20°,∴∠QOD=2∠QCD=2×20°=40°,∴∠BOQ=20°+40°=60°.∵OB=OQ,∴△BOQ是等边三角形,BQ=OB=1CD=2,即PA+PB的最小值为2.2故答案为2.15.【答案】解:作OP⊥CD于P,连接OD,∴CP=PD,∵AE=1,EB=5,∴AB=6,∴OE=2,在Rt△OPE中,OP=OE⋅sin∠DEB=√3,∴PD=√OD2−OP2=√6,∴CD=2PD=2√6(cm).【解析】作OP⊥CD于P,连接OD,根据正弦的定义求出OP,根据勾股定理求出PD,根据垂径定理计算.本题考查的是垂径定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是16.【答案】证明:(1)∵C是BC⏜的中点,∴CD⏜=BC⏜,∵AB是⊙O的直径,且CF⊥AB,∴BC⏜=BF⏜,∴CD⏜=BF⏜,∴CD=BF,在△BFG和△CDG中,∵{∠F=∠CDG∠FGB=∠DGC BF=CD,∴△BFG≌△CDG(AAS);(2)如图,过C作CH⊥AD于H,连接AC、BC,∵CD⏜=BC⏜,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∴△BEC∽△BCA,∴BCAB =BEBC,∴BC2=AB⋅BE=6×2=12,∴BF=BC=2√3.【解析】(1)根据AAS证明:△BFG≌△CDG;(2)如图,作辅助线,构建角平分线和全等三角形,证明Rt△AHC≌Rt△AEC(HL),得AE=AH,再证明Rt△CDH≌Rt△CBE(HL),得DH=BE=2,计算AE和AB的长,证明△BEC∽△BCA,列比例式可得BC的长,就是BF的长.此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、三角形全等的性质和判定以及勾股定理.第二问有难度,注意掌握辅助线的作法,注意掌握数形结合思想的应用.17.【答案】证明:∵AB=BC,∴AB⏜=BC⏜,∴∠BDC=∠ADB,∴DB平分∠ADC.【解析】本题考查了圆周角定理、圆心角、弧、弦的关系.熟练掌握圆周角定理,证出AB⏜=BC⏜是解决问题的关键.由圆心角、弧、弦的关系得出AB⏜=BC⏜,由圆周角定理得出∠BDC=∠ADB,即可得出结论.18.【答案】解:如图,连接AB.∵∠AOB=90°,∴AB是直径,∵∠C=180°−∠COB−∠OBC=180°−45°−75°=60°,∴∠OAB=∠OCB=60°,∵A(0,2),∴OA=2,∴AB=2OA=4,∴⊙O′的直径为4.【解析】本题考查圆周角定理,坐标由图形的性质,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.如图,连接AB.首先证明AB是直径,解直角三角形求出AB即可.24.2点和圆、直线和圆的位置关系1、在矩形ABCD中,AB=8,AD=6,以A为圆心作圆,如果B、C、D三点中至少有一点在圆内,且至少有一点在圆外,则圆A的半径r的取值范围是?2、试述点和圆的位置关系?3、直线和圆的公共点的数目不能超过,这是因为。

人教版九年级上册数学第二十四章测试试卷及答案

人教版九年级上册数学第二十四章测试试卷及答案

第二十四章学情评估一、选择题(每小题3分,共30分)1.如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是() A.75° B. 70° C. 65° D. 35°(第1题)(第3题)2.若直线l与半径为10的⊙O相交,则圆心O与直线l的距离d的取值范围为()A.0≤d<10 B.d>10 C.d=10 D.d≤10 3.如图,AB为⊙O的直径,∠ABC=35°,则∠CAB的度数为() A.35°B.45°C.55°D.65°4.用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是()A.10 B.20 C.10π D.20π5.已知半径为5的⊙O是△ABC的外接圆.若∠ABC=25°,则劣弧AC的长为()A.25π36 B.125π36 C.25π18 D.5π366.如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为() A.40°B.50°C.60°D.70°(第6题)(第7题)7.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,BD=8,AE=2,则OF的长度是()A.3 B. 6 C.2.5 D. 58.下列圆的内接正多边形中,一条边所对的圆心角最大的图形是() A.正三角形B.正方形C.正五边形D.正六边形9.如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB 为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD =2 3,则线段CD的长是()A.2 B. 3 C.32 D.32 3(第9题)(第10题)(第11题)10.如图,在平面直角坐标系xOy中,A(4,0),B(0,3),C(4,3),I是△ABC 的内心,将△ABC绕原点逆时针旋转90°后,I的对应点I′的坐标为() A.(-2,3) B.(-3,2) C.(3,-2) D.(2,-3) 二、填空题(每小题4分,共28分)11.如图,AB是⊙O的切线,点B为切点,若∠A=30°,则∠AOB=________.12.已知圆锥的底面圆半径为3 cm,高为4 cm,则圆锥的侧面积是________cm2. 13.如图,点A,B,C在⊙O上,∠A=40°,∠C=20°,则∠B=________°.(第13题)(第14题)(第15题)14.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CDA=________.15.如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB=________.16.如图,点M,N分别是正五边形ABCDE的两边AB,BC上的点,且AM=BN,点O是正五边形的中心,则∠MON的度数是________度.(第16题)(第17题)17.如图,AB是⊙O的弦,AB=8,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是________.三、解答题(一)(每小题6分,共18分)18.如图,P A,PB分别与⊙O相切于A,B两点,点C在⊙O上,已知∠C=65°,求∠P的度数.19.如图,AB是⊙O的一条弦,OD⊥AB,垂足为点C,交⊙O于点D,点E 在⊙O上.若∠AOD=52°,求∠DEB的度数.20.如图,在⊙O中,弦AB=AC,AD是⊙O的直径.求证:BD=CD.四、解答题(二)(每小题8分,共24分)21.如图,AB是半圆O的直径,C是半圆O上的一点,CF切半圆O于点C,BD⊥CF于点D,BD与半圆O交于点E.(1)求证:BC平分∠ABD;(2)若DC=8,BE=4,求AB的长.22.如图,△ABC 是⊙O 的内接三角形,AB 为⊙O 的直径,AB =6,AD 平分∠BAC ,交BC 于点E ,交⊙O 于点D ,连接BD . (1)求证:∠BAD =∠CBD ;(2)若∠AEB =125°,求BD ︵的长(结果保留π).23.如图,在平面直角坐标系xOy 中,以点O 为圆心的圆分别交x 轴的正半轴于点M ,交y 轴的正半轴于点N ,劣弧MN 的长为65π,直线y =-43x +4与x轴、y 轴分别交于点A ,B . (1)求证:直线AB 与⊙O 相切;(2)求图中所示的阴影部分的面积(结果用π表示).五、解答题(三)(每小题10分,共20分)24.如图,⊙O 为Rt △ABC 的外接圆,∠ACB =90°,BC =4 3,AC =4,点D是⊙O 上的动点,且点C ,D 分别位于AB 的两侧. (1)求⊙O 的半径;(2)当CD =4 2时,求∠ACD 的度数;(3)设AD 的中点为M ,在点D 的运动过程中,线段CM 是否存在最大值?若存在,直接写出CM 的最大值;若不存在,请说明理由.25.如图,AB 是半圆O 的直径,点D 是半圆O 上一点,点C 是AD ︵的中点,连接BC ,CE ⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE,CB于点P,Q,连接AC,CD.(1)求证:GP=GD;(2)求证:P是线段AQ的中点;(3)若CD=2,BC=4,求⊙O的半径和CE的长.答案一、1. B 2. A 3. C 4. A 5. C 6. A 7. D 8. A 9. B10. A 点拨:过点I 作IF ⊥AC 于点F ,IE ⊥OA 于点E .∵A (4,0),B (0,3),C (4,3),∴BC =4,AC =3,则AB =5.∵I 是△ABC 的内心,∴I 到△ABC 各边距离相等,等于其内切圆的半径,易知IF =1,则AE =1,故I 到BC 的距离也为1,故IE =3-1=2,OE =4-1=3,则I (3,2).∵△ABC 绕原点逆时针旋转90°,∴I 的对应点I ′的坐标为(-2,3),故选A. 二、11. 60° 12. 15π 13. 60 14. 125° 15. 2 2 16. 72 17. 4 2三、18. 解:连接OA ,OB .∵P A ,PB 均是⊙O 的切线,∴P A ⊥OA ,PB ⊥OB , ∴∠P AO =∠PBO =90°.∵∠P +∠P AO +∠AOB +∠PBO =360°, ∴∠P =180°-∠AOB .∵∠C =65°,∴∠AOB =2∠C =130°, ∴∠P =180°-130°=50°. 19. 解:∵OD ⊥AB ,∴AD ︵=BD ︵.∵∠AOD =52°,∴∠DEB =12×52°=26°.20. 证明:∵AB =AC ,∴AB ︵=AC ︵,∴∠ADB =∠ADC .∵AD 是⊙O 的直径,∴∠B =∠C =90°, ∴∠BAD =∠DAC ,∴BD ︵=CD ︵,∴BD =CD . 四、21. (1)证明:连接OC ,如图.∵CD 为切线,∴OC ⊥CD .∵BD ⊥DF ,∴OC ∥BD ,∴∠1=∠3. ∵OB =OC ,∴∠1=∠2,∴∠2=∠3, ∴BC 平分∠ABD .(2)解:连接AE 交OC 于G ,如图. ∵AB 为直径,∴∠AEB =90°. ∵OC ∥BD ,∴OC ⊥AE ,∴AG =EG . 易得四边形CDEG 为矩形, ∴GE =CD =8,∴AE =2EG =16. 在Rt △ABE 中,AB =162+42=417, 即AB 的长为417.22. (1)证明:∵AD 平分∠BAC ,∴∠BAD =∠CAD .又∵∠CBD =∠CAD ,∴∠BAD =∠CBD . (2)解:连接OD .∵∠AEB =125°,∴∠AEC =55°. ∵AB 为⊙O 的直径,∴∠ACE =90°. ∴∠CAE =35°.∴∠DAB =35°. ∴∠DOB =70°.∴BD ︵的长为70π×3180=76π. 23. (1)证明:如图,作OC ⊥AB 于点C .设⊙O 的半径为r .因为劣弧MN 的长为65π,所以90πr 180=65π, 所以r =125.对于直线y =-43x +4, 当x =0时,y =4,则OB =4. 当y =0时,x =3,则OA =3.在Rt△AOB中,AB=32+42=5.因为S△AOB =12OC·AB=12OA·OB,所以5OC=12,OC=125,所以OC=r,所以直线AB与⊙O相切.(2)解:因为S△AOB=12×3×4=6,S扇形OMN=90×π×⎝ ⎛⎭⎪⎫1252360=3625π,所以S阴影=S△AOB-S扇形OMN=6-3625π.五、24. 解:(1)∵AB是直径,∴∠ACB=90°.∵AC=4,BC=4 3,∴AB=AC2+BC2=42+(4 3)2=8,∴⊙O的半径为4.(2)如图,连接OC,OD.∵CD=4 2,OC=OD=4,∴CD2=OC2+OD2, ∴∠COD=90°,∴∠OCD=45°.∵AC=OC=OA,∴△AOC是等边三角形,∴∠ACO=60°,∴∠ACD=∠ACO-∠DCO=60°-45°=15°.(3)存在,CM的最大值为2 3+2.25. (1)证明:如图,连接OD,则OD⊥GD,∠OAD=∠ODA.又由题意易知∠ODA+∠GDP=90°,∠EP A+∠EAP=90°,∠EP A=∠GPD,∴∠GPD=∠GDP,∴GP=GD.(2)证明:∵AB为直径,∴∠ACB=90°.∵CE⊥AB,∴∠CEB=90°,11∴∠ACE +∠ECB =∠ABC +∠ECB =90°, ∴∠ACE =∠ABC .∵点C 是AD ︵的中点,∴AC ︵=CD ︵.∴∠ABC =∠CAD , ∴∠ACE =∠CAD ,∴PC =P A .∵∠ACB =90°,∴∠CQA +∠CAP =∠ACE +∠PCQ =90°, ∴∠PCQ =∠CQA ,∴PC =PQ ,∴P A =PQ ,即P 是线段AQ 的中点.(3)解:∵AC ︵=CD ︵,∴CD =AC .∵CD =2,∴AC =2.∵∠ACB =90°,∴AB =22+42=2 5.故⊙O 的半径为 5.∵S △ABC =12×CE ×AB =12×AC ×BC ,∴2 5CE =2×4,∴CE =4 55.。

人教版九年级数学上册第二十四章检测卷【含答案】

人教版九年级数学上册第二十四章检测卷【含答案】

C.115°
D.120°
人教版九年级数学上册单元检测卷
8.如图,直线AB,AD与⊙O分别相切于点B,D, C为⊙O上一点,且∠BCD=140°,则∠A的度 数是( C ) A.70° B.105° C.100° D.110°
人教版九年级数学上册单元检测卷
9.如图,AB为⊙O的切线,切点为B,连接AO, AO与⊙O交于点C,BD为⊙O的直径,连接CD. 若∠A=30°,⊙O的半径为2,则图中阴影部分 的面积为( A )
人教版九年级数学上册单元检测卷
6.如图,正方形ABCD内接于⊙O,AB=2,则
AB 的长是( A )
A.π B. 3 π
2
C.2π
D. 1 π
2
人教版九年级数学上册单元检测卷
7.如图,AB是⊙O的直径,点C,D,E在⊙O
上.若∠AED=20°,则∠BCD的度数为( B )
A.100°
B.110°
A. 4 3
3
C. 3
B. 4 2 3
3
D. 2 3
3
人教版九年级数学上册单元检测卷
10.如图,在⊙O中,AB是⊙O的直径,AB= 10,AC CD DB ,点E是点D关于AB所在直线 的对称点,M是AB上的一动点,下列结论: ①∠BOE=60°;②∠CED= 1 ∠DOB;③
2
DM⊥CE;④CM+DM的最小值是10.其中正确的 个数是( C ) A.1 B.2 C.3 D.4
人教版九年级数学上册单元检测卷
4.如图,AB,AC分别是⊙O的直径和弦, OD⊥AC于点D,连接BD,BC,且AB=10,AC=8, 则BD的长为( C ) A.2 5 B.4 C.2 13 D.4.8
人教版九年级数学上册单元检测卷

人教版九年级数学(上)第二十四章《圆》单元检测卷含答案

人教版九年级数学(上)第二十四章《圆》单元检测卷含答案

人教版九年级数学(上)第二十四章《圆》单元检测卷(120分钟150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.下列说法错误的是A.直径是弦B.最长的弦是直径C.垂直于弦的直径平分弦D.经过三点可以确定一个圆2.如图,已知☉O的半径为7,弦AB的长为12,则圆心O到AB的距离为A.√5B.2√5C.2√7D.√133.已知☉O的半径为5,且圆心O到直线l的距离是方程x2-4x-12=0的一个根,则直线l与圆的位置关系是A.相交B.相切C.相离D.无法确定4.如图,☉O的半径OC=5 cm,直线l⊥OC,垂足为点H,且l交☉O于A,B两点,AB=8 cm,当l与☉O相切时,l需沿OC所在直线向下平移A.1 cmB.2 cmC.3 cmD.4 cm5.如图,在△ABC中,已知AB=AC=5 cm,BC=8 cm,点D是BC的中点,以点D为圆心作一个半径为3 cm的圆,则下列说法正确的是A.点A在☉D外B.点A在☉D上C.点A在☉D内D.无法确定6.如图,☉O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切☉O于点Q,则PQ的最小值为A.√13B.√5C.3D.27.阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为A.(60°,4)B.(45°,4)C.(60°,2√2)D.(50°,2√2)8.如图,Rt△ABC的内切圆☉O与两直角边AB,BC分别相切于点D,E,过劣弧DE(不包括端点D,E)上任一点P作☉O的切线MN与AB,BC分别交于点M,N,若☉O的半径为r,则Rt△MBN 的周长为A.rB.3r2rC.2rD.529.如图,正六边形ABCDEF是边长为2 cm的螺母,点P是FA延长线上的点,在A,P之间拉一条长为12 cm的无伸缩性细线,一端固定在点A,握住另一端点P拉直细线,把它全部紧紧缠绕在螺母上(缠绕时螺母不动),则点P运动的路径长为A.13π cmB.14π cmC.15π cmD.16π cm10.如图,在△ABC中,AB=8 cm,BC=4 cm,∠ABC=30°,把△ABC以点B为中心按逆时针方向旋转,使点C旋转到AB边的延长线上的点C'处,那么AC边扫过的图形(图中阴影部分)面积是A.20π cm2B.(20π+8) cm2C.16π cm2D.(16π+8) cm2二、填空题(本大题共4小题,每小题5分,满分20分)11.一个直角三角形的两边长分别为3,4,则这个三角形外接圆的半径长为2或2.5.12.如图是考古学家发现的古代钱币的一部分,合肥一中的小明正好学习了圆的知识,他想求其外圆半径,连接外圆上的两点A,B,并使AB与内圆相切于点D,作CD⊥AB交外圆于点C.测得CD=10 cm,AB=60 cm,则这个钱币的外圆半径为50cm.13.如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是2√3.14.如图,点C在以AB为直径的半圆上,AB=4,∠CBA=30°,点D在AO上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F,下列结论:①CE=CF;②线段EF的最小值为√3;③当AD=1时,EF与半圆相切;④当点D从点A运动到点O时,线段EF扫过的面积是4√3.其中正确的序号是①③.三、(本大题共2小题,每小题8分,满分16分)15.如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.AB=24 cm,CD=8 cm.(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)求(1)中所作圆的半径.解:(1)作弦AC的垂直平分线与弦AB的垂直平分线交于O点,以O为圆心OA长为半径作圆O就是此残片所在的圆,如图.(2)连接OA,设OA=x,AD=12,OD=x-8,根据勾股定理,得x2=122+(x-8)2,解得x=13.∴圆的半径为13 cm.⏜上一点,且∠BPC=60°.试16.如图,已知CD是☉O的直径,弦AB⊥CD,垂足为点M,点P是AB判断△ABC的形状,并说明你的理由.解:△ABC为等边三角形.⏜=BC⏜,∴AC=BC,理由如下:∵AB⊥CD,CD为☉O的直径,∴AC又∵∠BPC=∠BAC=60°,∴△ABC为等边三角形.四、(本大题共2小题,每小题8分,满分16分)17.如图,在△ABC中,∠C=90°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E.⏜的度数;(1)若∠A=25°,求BD(2)若BC=9,AC=12,求BD的长.解:(1)延长BC交☉O于点N,∵在△ABC中,∠C=90°,∠A=25°,∴∠B=65°,∴∠B所对的弧BDN的度数是130°,⏜的度数是180°-130°=50°.∴BD(2)延长AC交☉O于点M,在Rt△BCA中,由勾股定理得AB=√AC2+BC2=√122+92=15,∵BC=9,AC=12,∴CM=CE=BC=9,AM=AC+CM=21,AE=AC-CE=3,由割线定理得AD×AB=AE×AM,∴(15-BD)×15=21×3,解得BD=54.518.如图,在△ABC中,AB=AC,内切圆O与边BC,AC,AB分别相切于点D,E,F.(1)求证:BF=CE;(2)若∠C=30°,CE=2√3,求AC.解:(1)∵AF,AE是☉O的切线,∴AF=AE.又∵AB=AC,∴AB-AF=AC-AE,即BF=CE.(2)连接AO,OD.∵O是△ABC的内心,∴OA平分∠BAC.∵☉O是△ABC的内切圆,D是切点,∴OD⊥BC.又∵AC=AB,∴A,O,D三点共线,即AD⊥BC.∵CD,CE是☉O的切线,∴CD=CE=2√3.在Rt△ACD中,由∠C=30°,设AD=x,则AC=2x,由勾股定理得CD2+AD2=AC2,即(2√3)2+x2=(2x)2,解得x=2.∴AC=2x=2×2=4.五、(本大题共2小题,每小题10分,满分20分)19.如图,已知ED为☉O的直径且ED=4,点A(不与点E,D重合)为☉O上一个动点,线段AB经过点E,且EA=EB,F为☉O上一点,∠FEB=90°,BF的延长线交AD的延长线于点C.(1)求证:△EFB≌△ADE;(2)当点A在☉O上移动时,直接回答四边形FCDE的最大面积为多少.解:(1)连接FA ,∵∠FEB=90°,∴EF ⊥AB , ∵BE=AE ,∴BF=AF ,∵∠FEA=∠FEB=90°,∴AF 是☉O 的直径,∴AF=DE , ∴BF=ED ,在Rt △EFB 与Rt △ADE 中,{BE =AE ,BF =DE ,∴Rt △EFB ≌Rt △ADE.(2)∵Rt △EFB ≌Rt △ADE ,∴∠B=∠AED ,∴DE ∥BC ,∵ED 为☉O 的直径,∴AC ⊥AB ,∵EF ⊥AB ,∴EF ∥CD ,∴四边形FCDE 是平行四边形,∴E 到BC 的距离最大时,四边形FCDE 的面积最大,即点A 到DE 的距离最大,∴当A 为ED ⏜的中点时,点A 到DE 的距离最大是2,∴四边形FCDE 的最大面积=4×2=8.20.如图,点P 是正方形ABCD 内的一点,连接PA ,PB ,PC.将△PAB 绕点B 顺时针旋转90°到△P'CB 的位置.(1)设AB 的长为a ,PB 的长为b (b<a ),求△PAB 旋转到△P'CB 的过程中边PA 所扫过区域(图中阴影部分)的面积;(2)若PA=2,PB=4,∠APB=135°,求PC 的长.解:(1)∵将△PAB绕点B顺时针旋转90°到△P'CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP'=π(a2-b2).4(2)连接PP',根据旋转的性质可知△APB≌△CP'B,∴BP=BP'=4,P'C=PA=2,∠PBP'=90°,∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32.又∵∠BP'C=∠BPA=135°,∴∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,即△PP'C是直角三角形,PC=√P'P2+P'C2=6.六、(本题满分12分)21.已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时(如图①),求∠ODC的度数;(2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC.①AE与OD的大小有什么关系?为什么?②求∠ODC的度数.解:(1)如图①,连接OC ,∵OC=OA ,CD=OA ,∴OC=CD ,∴∠ODC=∠COD , ∵CD 是☉O 的切线,∴∠OCD=90°,∴∠ODC=45°.(2)如图②,连接OE.∵CD=OA ,∴CD=OC=OE=OA ,∴∠1=∠2,∠3=∠4. ∵AE ∥OC ,∴∠2=∠3.设∠ODC=∠1=x ,则∠2=∠3=∠4=x ,∴∠AOE=∠OCD=180°-2x.①AE=OD.理由如下:在△AOE 与△OCD 中,{OA =OC ,∠AOE =∠OCD ,OE =CD ,∴△AOE ≌△OCD (SAS),∴AE=OD.②∠6=∠1+∠2=2x. ∵OE=OC ,∴∠5=∠6=2x.∵AE ∥OC ,∴∠4+∠5+∠6=180°,即x+2x+2x=180°,∴x=36°,∴∠ODC=36°.七、(本题满分12分)22.如图,已知∠xOy=90°,线段AB=10,若点A 在Oy 上滑动,点B 随着线段AB 在射线Ox 上滑动(A ,B 与O 不重合),Rt △AOB 的内切圆☉K 分别与OA ,OB ,AB 切于点E ,F ,P.(1)在上述变化过程中,Rt△AOB的周长,☉K的半径,△AOB外接圆半径,这几个量中不会发生变化的是什么?并简要说明理由.(2)当AE=4时,求☉K的半径r.(3)当Rt△AOB的面积为S,AE为x,试求S与x之间的函数关系,并求出S最大时直角边OA的长.解:(1)不会发生变化的是△AOB的外接圆半径.理由如下:∵∠AOB=90°,∴AB是△AOB的外接圆的直径.∵AB的长不变,∴△AOB的外接圆半径不变.(2)设☉K的半径为r,☉K与Rt△AOB相切于点E,F,P,连接EK,KF,∴∠KEO=∠OFK=∠O=90°,∴四边形EOFK是矩形.又∵OE=OF,∴四边形EOFK是正方形,∴OE=OF=r,∵☉K是Rt△AOB的内切圆,切点分别为点E,F,P,∴AE=AP=4,PB=BF=6,∴(4+r)2+(6+r)2=100,解得r=-12(不符合题意),r=2.(3)设AO=b,OB=a,∵☉K与Rt△AOB三边相切于点E,F,P,∴OE=r=a+b-10,即2(b-x)+10=a+b,∴10-2x=a-b,∴100-40x+4x2=a2+b2-2ab.2∵S=1ab,∴ab=2S,∵a2+b2=102,∴100-40x+4x2=100-4S,2∴S=-x2+10x=-(x-5)2+25.∴当x=5时,S最大,即AE=BF=5,∴OA==5√2.√2八、(本题满分14分)23.如图,点P在射线AB的上方,且∠PAB=45°,PA=2,点M是射线AB上的动点(点M不与点A重合),现将点P绕点A按顺时针方向旋转60°到点Q,将点M绕点P按逆时针方向旋转60°到点N,连接AQ,PM,PN,作直线QN.(1)求证:AM=QN.(2)直线QN与以点P为圆心,以PN的长为半径的圆是否存在相切的情况?若存在,请求出此时AM的长,若不存在,请说明理由.(3)当以点P为圆心,以PN的长为半径的圆经过点Q时,直接写出劣弧NQ与两条半径所围成的扇形的面积.解:(1)如图1,连接PQ,由点P绕点A按顺时针方向旋转60°到点Q,可得AP=AQ,∠PAQ=60°,∴△APQ为等边三角形,∴PA=PQ,∠APQ=60°,由点M绕点P按逆时针方向旋转60°到点N,可得PM=PN,∠MPN=60°,∴∠APM=∠QPN,则△APM≌△QPN(SAS),∴AM=QN.(2)存在.理由如下:如图2,由(1)中的证明可知△APM≌△QPN,∴∠AMP=∠QNP,∵直线QN与以点P为圆心,以PN的长为半径的圆相切,∴∠AMP=∠QNP=90°,即PN⊥QN.在Rt△APM中,∠PAB=45°,PA=2,∴AM=√2.(3)由(1)知△APQ是等边三角形,∴PA=PQ,∠APQ=60°.∵以点P为圆心,以PN的长为半径的圆经过点Q,∴PN=PQ=PA.∵PM=PN,∴PA=PM,∵∠PAB=45°,∴∠APM=90°,∴∠MPQ=∠APM-∠APQ=30°.∵∠MPN=60°,∴∠QPN=90°,∴劣弧NQ与两条半径所围成的扇形的面积是扇形QPN的面积,而此扇形的圆心角∠QPN=90°,半径为PN=PM=PA=2.∴劣弧NQ与两条半径所围成的扇形的面积=90π·22360=π.。

人教版九年级上册数学第二十四章测试卷附答案

人教版九年级上册数学第二十四章测试卷附答案

人教版九年级上册数学第二十四章测试题一、单选题1.下列说法正确的是( )A .同圆或等圆中弧相等,则它们所对的圆心角也相等B .90°的圆心角所对的弦是直径C .平分弦的直径垂直于这条弦D .三点确定一个圆2.已知⊙O 的直径为4cm ,点P 与圆心O 之间的距离为4cm ,那么点P 与⊙O 的位置关系为( )A .在圆上B .在圆内C .在圆外D .不能确定 3.四边形ABCD 内接于⊙O ,则∠A ∶∠B ∶∠C ∶∠D 的值可以是( )A .2∶3∶4∶5B .2∶4∶3∶5C .2∶5∶3∶4D .2∶3∶5∶44.如图,已知⊙O 的半径是4,点A,B,C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为( )A .83π-B .163π-C .163π-D .83π-5.如图,王大伯家屋后有一块长12m 、宽8m 的长方形空地,他在以较长边BC 为直径的半圆内种菜,他家养的一只羊平时拴在A 处的一棵树上,为了不让羊吃到菜,拴羊的绳长最长不超过( )A .3mB .4mC .5mD .6m6.如图,AB 、CD 是O 的两条弦,且AB CD =.OM AB ⊥,ON CD ⊥,垂足分别为点M 、N ,BA 、DC 的延长线交于点P ,连接OP .下列结论正确的个数是( ) ①AB CD =;②OM ON =;③PA PC =;④BPO DPO ∠=∠A.1个B.2个C.3个D.4个7.如图,⊙O过点B、C,圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A B.C D.8.在截面为半圆形的水槽内装有一些水,如图水面宽AB为6分米,如果再注入一些水后,水面上升1分米,此时水面宽度变为8分米.则该水槽截面半径为()A.3分米B.4分米C.5分米D.10分米9.如图,已知圆周角∠BAC=40°,那么圆心角∠BOC的度数是()A.40B.60C.80D.10010.已知如图,在⊙O中,OA⊥OB,∠A=35°,则弧CD的度数为()A.20°B.25°C.30°D.35°二、填空题11.如图,小明做实验时发现,当三角板中30°角的顶点A在⊙O上移动,三角板的两边与⊙O相交于点P、Q时,PQ的长度不变.若⊙O的半径为9,则PQ长为________.12.如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5BC的长为_____.13.如图,边长相等的正五边形和正六边形拼接在一起,则∠ABC的度数为________.14.如图,在矩形ABCD中,AB=3,AD=4,若以点A为圆心,以4为半径作⊙A,则点A,点B,点C,点D四点中在⊙A外的是________.15.如图,⊙O是△ABC的外接圆,∠OCB=30°,则∠A的度数等于____.三、解答题16.已知:如图,A,B,C,D是⊙O上的点,且AB=CD,求证:∠AOC=∠BOD.17.如图,点A,B,C,D在⊙O上,连结AB,CD,BD,若AB=CD.求证:∠ABD=∠CDB.18.已知在△ABC中,AB=AC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED.(1)求证:ED=EC;(2)若CD=3,AB的长.19.如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上任意一点(不与点A、B 重合),连接CO并延长CO交⊙O于点D,连接AD.(1)弦长AB等于________(结果保留根号);(2)当∠D=20°时,求∠BOD的度数.20.已知等边三角形ABC.(1)用尺规作图找出△ABC外心O.(2)记外心O到三角形三边的距离和为d,到三角形三个顶点的距离和为D,求dD的值21.如图,四边形ABCD内接于⊙O,AC平分∠BAD,延长DC交AB的延长线于点E.(1)若∠ADC=86°,求∠CBE的度数;(2)若AC=EC,求证:AD=BE22.已知:如图,AB为半圆O的直径,C、D是半圆O上的两点,若直径AB的长为4,且BC=2,∠DAC=15°.(1)求∠DAB的度数;(2)求图中阴影部分的面积(结果保留π)23.如图,AB是⊙O的直径,弦CD⊥AB于点E,在上取点G,连结CG,DG,AC.求证:∠DGC=2∠BAC.24.如图,△ABC中,⊙O经过A、B两点,且交AC于点D,连接BD,∠DBC=∠BAC.(1)证明BC与⊙O相切;(2)若⊙O的半径为6,∠BAC=30°,求图中阴影部分的面积.25.已知AB是⊙O的直径,弦CD与AB相交,∠BAC=40°.(1)如图1,若D为弧AB的中点,求∠ABC和∠ABD的度数;(2)如图2,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的度数.参考答案1.A【分析】利用等弧和弦的概念,垂径定理以及弧,弦与圆心角之间的关系进行判断.【详解】A选项:弧的度数与所对圆心角的度数相等,所以同圆或等圆中弧相等,则它们所对的圆心角也相等,故本选项正确;B选项:90°的圆周角所对的弦是直径,故本选项错误;C选项:应强调这条弦不是直径,故本选项错误;D选项:不在同一直线上的三点确定一个圆,故本选项错误.故选A.【点睛】考查了圆周角定理,垂径定理以及确定圆的条件.熟练掌握相关概念是解题的关键.2.C【分析】直接根据点与圆的位置关系进行解答即可.【详解】∵⊙O的半径为2cm,点P与圆心O的距离为4cm,4cm>2cm,∴点P在圆外.故选C.【点睛】考查的是点与圆的位置关系,熟知设⊙O的半径为r,点P到圆心的距离OP=d,当d<r时,点P在圆内是解答此题的关键.3.D【分析】利用圆内接四边形的对角互补判断即可.【详解】∵四边形ABCD内接于⊙O,∴∠A+∠C=180°=∠B+∠D,故选D .【点睛】考查了圆内接四边形的性质,关键是根据内接四边形的对角互补的性质解答.4.B【分析】连接OB 和AC 交于点D ,根据菱形及直角三角形的性质先求出AC 的长及∠AOC 的度数,然后求出菱形ABCO 及扇形AOC 的面积,则由S 扇形AOC -S 菱形ABCO 可得答案.【详解】连接OB 和AC 交于点D ,如图所示:∵圆的半径为4,∴OB=OA=OC=4,又四边形OABC 是菱形,∴OB ⊥AC ,OD=12OB=2, 在Rt △COD 中利用勾股定理可知:CD=224223,243AC CD -===,∵sin ∠COD=CD OC = ∴∠COD=60°,∠AOC=2∠COD=120°,∴S 菱形ABCO =11422OB AC ⨯=⨯⨯∴S 扇形=21204163603ππ⨯⨯=,则图中阴影部分面积为S 扇形AOC -S 菱形ABCO =163π-故选B.【点睛】 考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12a•b (a 、b 是两条对角线的长度);扇形的面积=2360n r π.5.B【详解】连接OA,交O于E点,在Rt△OAB中,OB=6m,BA=8m,所以;又因为OE=OB=6m,所以AE=OA−OE=4m.因此拴羊的绳长最长不超过4m.故选B.6.D【分析】如图连接OB、OD,只要证明Rt△OMB≌Rt△OND,Rt△OPM≌Rt△OPN即可解决问题.【详解】解:如图连接OB、OD;∵AB=CD,∴AB CD=,故①正确∵OM⊥AB,ON⊥CD,∴AM=MB,CN=ND,∴BM=DN,∵OB=OD,∴Rt△OMB≌Rt△OND,∴OM=ON,故②正确,∵OP=OP,∴Rt△OPM≌Rt△OPN,∴PM=PN,∠OPB=∠OPD,故④正确,∵AM=CN,∴PA=PC ,故③正确,故选:D .【点睛】本题考查垂径定理、圆心角、弧、弦的关系、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线构造全等三角形解决问题,属于中考常考题型.7.C【详解】试题分析:过A 作AD ⊥BC ,由题意可知AD 必过点O ,连接OB ,∵△BAC 是等腰直角三角形,AD ⊥BC ,∴BD=CD=AD=3,∴OD=AD ﹣OA=2,Rt △OBD 中,根据勾股定理,得:C .考点:1.垂径定理;2.勾股定理;3.等腰直角三角形.8.C【分析】如图,油面AB 上升1分米得到油面CD,依题意得AB=6,CD=8,过O 点作AB 的垂线,垂足为E,交CD 于F 点,连接OA,OC,由垂径定理,得132AE AB ==,142CF CD ==,设OE=x,则OF=x-1,在Rt OAE ∆中和Rt OCF ∆中,根据勾股定理求得OA 、OC 的长度,然后由OA OC =,列方程求x 即可求半径OA,得出直径MN.【详解】:如图,依题意得AB=6,CD=8,过O 点作AB 的垂线,垂足为E,交CD 于F 点,连接OA,OC, 由垂径定理,得132AE AB ==,142CF CD ==,设OE=x,则OF=x-1, 在Rt OAE ∆中, 222OA AE OE =+,在Rt OCF ∆中, 222OC CF OF =+,OA OC =,()2222341x x ∴+=+-, 解得x=4,∴半径OA =5分米,故选C.【点睛】本题考查了垂径定理的运用.关键是利用垂径定理得出两个直角三角形,根据勾股定理表示半径的平方,根据半径相等列方程求解.9.C【分析】根据圆周角定理∠BOC=2∠BAC 即可解决问题.【详解】解:∵∠BOC=2∠BAC ,∠BAC=40°,∴∠BOC=80°,故选C .【点睛】本题考查圆周角定理、圆心角、弧、弦之间的关系解题的关键是熟练掌握基本知识,属于中考基础题.10.A【解析】【分析】连接OC ,根据三角形内角和定理可得∠AOB=90°和∠OBC 的度数,又得∠DOC 的度数,根据弧的度数等于所对圆心角的度数,可得结论.【详解】解:连接OC,∵OA⊥OB,∴∠AOB=90°,∵∠A=35°,∴∠OBC=90°﹣35°=55°,∴OB=OC,∴∠OBC=∠OCB=55°,∴∠COB=70°,∴∠COD=90°﹣70°=20°,∴弧CD的度数为20°,故选:A.【点睛】本题考查了圆心角、弧、弦之间的关系,等腰三角形性质,三角形内角和定理,正确作出辅助线是解题的关键.11.3π.【详解】试题分析:连结OP、OQ,根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,得出∠POQ=2∠A=60°,再根据弧长公式列式计算即可.解:如图,连结OP、OQ,则∠POQ=2∠A=60°.∵⊙O的半径为9,∴的长==3π.故答案为3π.考点:弧长的计算.12.8【分析】连接AD,根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°,故可得出AD=BD,再由AB是⊙O的直径可知△ABD是等腰直角三角形,利用勾股定理求出AB的长,在Rt△ABC 中,利用勾股定理可得出BC的长.【详解】连接AD,∵∠ACB=90°,∴AB是⊙O的直径.∵∠ACB的角平分线交⊙O于D,∴∠ACD=∠BCD=45°,∴∵AB是⊙O的直径,∴△ABD是等腰直角三角形,∴.∵AC=6,∴.故答案为:8.【点睛】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.13.24°【分析】根据正五边形的内角和和正六边形的内角和公式求得正五边形的每个内角为108°和正六边形的每个内角为120°,然后根据周角的定义和等腰三角形性质可得结论.【详解】解:由题意得:正六边形的每个内角都等于120°,正五边形的每个内角都等于108°∴∠BAC=360°-120°-108°=132°∵AB=AC∴∠ACB=∠ABC=(180132)242-︒=︒故答案是:24︒.【点睛】考查了正多边形的内角与外角、等腰三角形的性质,熟练掌握正五边形的内角和正六边形的内角求法是解题的关键.14.C【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;本题可由勾股定理等性质算出点与圆心的距离d,当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【详解】∵CA>4,∴点C在⊙A外.∵AD═4,∴点D在⊙A上外;AB=3<4,∴点B在⊙A内.故答案为C.【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.15.60 º【分析】根据等腰三角形的性质由OB=OC得∠OBC=∠OCB=30°,再根据三角形内角和定理计算出∠BOC=120°,然后根据圆周角定理求解.【详解】∵OB=OC,∴∠OBC=∠OCB=30°,∴∠BOC=180°−30°−30°=120°∠BOC=60°.∴∠A=12【点睛】本题考查了圆周角定理,解题的关键是掌握圆周角定理的用法.16.由AB=CD可得弧AB=弧CD,则可得弧AC=弧BD,从而证得结论.【详解】试题分析:∵AB=CD∴弧AB=弧CD∴弧AC=弧BD∴∠AOC=∠BOD.考点:圆周角定理点评:圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.17.详见解析.【分析】欲证明∠ABD=∠CDB,只要证明AD BC=即可.【详解】证明:∵AB=CD,∴AB CD=,∴AB AC CD AC-=-,∴,AD BC=,∴∠ABD=∠CDB.【点睛】考查圆周角定理,圆心角、弧、弦之间的关系等知识,解题的关键是学会用转化的思想思考问题.18.(1)证明见解析(2)8【分析】()1根据180,180.EDC EDA B EDA ∠+∠=︒∠+∠=︒得到,B EDC ∠=∠因为,AB AC =根据等边对等角得到,B C ∠=∠根据等量代换得到,EDC C ∠=∠根据等角对等边即可证明. ()2连接,AE 根据等腰三角形三线合一的性质得到2BC EC ==证,ABC EDC ∽根据相似三角形的性质即可求出AB 的长.【详解】(1)证明: 180,180.EDC EDA B EDA ∠+∠=︒∠+∠=︒∴,B EDC ∠=∠又∵,AB AC =∴,B C ∠=∠∴,EDC C ∠=∠∴ .ED EC =(2)连接,AE∵AB 是直径,∴,AE BC ⊥又∵,AB AC =∴2BC EC ==∵,.B EDC C C ∠=∠∠=∠∴,ABC EDC ∽∴::,AB EC BC CD =又∵3,EC BC CD ===∴8.AB =【点睛】考查了圆周角定理,等腰三角形的判定和性质,勾股定理,相似三角形的判定与性质等,正确的作出辅助线是解题的关键.19.(1)(2)100°【详解】试题分析:(1)如图,过O作OE⊥AB于E,根据垂径定理知道E是AB的中点,然后在Rt△OEB中利用已知条件即可求解;(2)首先根据三角形的外角和内角的故选得到可以得到∠BOD=∠B+∠A+∠D,接着利用圆周角和圆心角的关系和已知条件即可求出∠BOD的度数.试题解析:(1)如图,过O作OE⊥AB于E,∴E是AB的中点,在Rt△OEB中,OB=2,∠B=30°,∴OE=1,∴∴(2)解法一:∵∠BOD=∠B+∠BCO,∠BCO=∠A+∠D.∴∠BOD=∠B+∠A+∠D.…又∵∠BOD=2∠A,∠B=30°,∠D=20°,∴2∠A=∠B+∠A+∠D=∠A+50°,∠A=50°,…∴∠BOD=2∠A=100°.…解法二:如图,连接OA.∵OA=OB,OA=OD,∴∠BAO=∠B,∠DAO=∠D,∴∠DAB=∠BAO+∠DAO=∠B+∠D.…又∵∠B=30°,∠D=20°,∴∠DAB=50°,…∴∠BOD=2∠DAB=100°考点:1.垂径定理;2.圆周角定理.20.(1)详见解析;(2)12.【分析】(1)作AB,AB的垂直平分线交于点O,则点O即为所求;(2)求出AO.OD,即可得到结论.【详解】(1)用直尺和圆规分别作线段AB、BC的垂直平分线CF、AE,两条垂直平分线相较于点O,点O即为△ABC的外心;(2)设△ABC的外接圆的半径为R,∵三角形ABC是等边三角形,∴∠OCB= 30 °,则OE=12 R,∴外心O到三角形三边的距离和d=32 R,外心O到三角形三个顶点的距离和D=3R,∴dD=31232RR.【点睛】考查了三角形的外接圆与外心,三角形的内接圆与内心,等边三角形的性质,熟练掌握等边三角形的性质是解题的关键.21.(1)∠CBE=86°;(2)证明见解析.【详解】试题分析:(1)根据圆内接四边形的性质计算即可;(2)证明△ADC≌△EBC即可.试题解析:(1)∵四边形ABCD内接于⊙O,∴∠ADC+ ∠ABC= 180°.又∵∠ADC= 86°,∴∠ABC= 94°,∴∠CBE=180° - 94°=86°.(2)∵ AC=EC,∴∠E=∠CAE ,∵ AC平分∠BAD,∴∠DAC=∠CAB ,∴∠DAC= ∠E.∵四边形ABCD内接于⊙O,∴∠ADC+ ∠ABC= 180°,又∵∠CBE+∠ABC = 180°, ,∴∠ADC= ∠CBE,∴△ADC ≌△EBC ,∴ AD=BE .22.(1)45°;(2)π-2.【分析】(1)根据含30°角的直角三角形性质求出∠CAB,即可得出答案;(2)连接OD,求出∠DOA,分别求出扇形AOD和△AOD面积,即可得出答案.【详解】(1)解:∵AB 是直径∴∠ACB=90°,又∵BC=2,AB=4,∴ BC= 12 AB,∴∠BAC=30°,∴∠DAB=∠DAC+∠BAC=15°+30°=45°;(2)解:连接OD,∵直径AB=4,∴半径OD=OA=2,∵OA=OD,∠DAB=45°,∴∠ADO=∠DAB=45°,∴∠AOD=90°,∴阴影部分的面积S=S扇形AOD-S△AOD=290213622022ππ⨯⨯-⨯⨯=-.【点睛】考查了含30°角的直角三角形性质,扇形的面积计算,圆周角定理等知识点,能求出∠CAB=30°和∠AOD=90°是解此题的关键.23.证明见解析.【解析】【分析】由AB是⊙O的直径,CD⊥AB,根据垂径定理的即可求得弧BC=弧BD=12弧CD,从而求得2∠BAC=2∠BAD=∠DAC,由圆周角定理易证得:∠DGC=2∠BAC;【详解】证明:连结AD,∵弦CD⊥直径AB,∴2∠BAC=2∠BAD=∠DAC(垂径定理),又∵∠DGC=∠DAC(圆周角定理),∴∠BAC=∠DGC,∴∠DGC =2∠BAC .【点睛】此题考查垂径定理、圆周角定理.此题难度不大,注意掌握辅助线的作法与数形结合思想的应用.24.(1)证明见解析;(2)6π-【分析】(1)连接BO 并延长交⊙O 于点E ,连接DE .由圆周角定理得出∠BDE=90°,再求出∠EBD+∠DBC=90°,根据切线的判定定理即可得出BC 是⊙O 的切线;(2)分别求出等边三角形DOB 的面积和扇形DOB 的面积,即可求出答案.【详解】(1)证明:连接BO 并延长交⊙O 于点E ,连接DE,∵BE 是直径,∴∠EDB =90°,∴∠E +∠EBD =90°∵=,∴∠E =∠A又∵∠DBC =∠BAC ,∴∠DBC =∠E∴∠DBC +∠EBD =90°,∴∠EBC =90°,∴BC ⊥EB.又∵OB 是半径(B 在⊙O 上),∴BC 与⊙O 相切.(2)∵=,∴∠BOD =2∠A =60°S 阴影= S 扇形OBD -S △OBD =π36×60360-6π-【点睛】本题考查了切线的判定,圆周角定理,扇形面积,等边三角形的性质和判定的应用,关键是求出∠EBD+∠DBC=90°和分别求出扇形DOB 和三角形DOB 的面积.25.(1)45°;(2)26°.【分析】(1)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;(2)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.【详解】(1)∵AB是⊙O的直径,∠BAC=38°,∴∠ACB=90°,∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,∵D为弧AB的中点,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(2)连接OD,∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°,∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,∵∠AOD是△ODP的一个外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.【点睛】本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.。

人教版九年级上册数学第24章测试题附答案

人教版九年级上册数学第24章测试题附答案

人教版九年级上册数学第24章测试题附答案(时间:120分钟 满分:120分)姓名:______ 班级:______ 分数:______一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.过圆上一点可以作出圆的最长弦的条数是 ( A )A .1条B .2条C .3条D .无数条2.如图,点O 为线段BC 的中点,点A ,C ,D 到点O 的距离相等,若∠ABC =40°,则∠ADC 的度数是 ( B )A .130°B .140°C .150°D .160°第2题图 第4题图 第5题图3.一元钱硬币的直径约为24 mm ,则用它能完全覆盖住的正六边形的边长最大不能超过 ( A )A .12 mmB .12 3 mmC .6 mmD .6 3 mm4.如图,AD 是⊙O 的直径,BC 是弦,四边形OBCD 是平行四边形,AC 与OB 相交于点P ,下列结论错误的是( A )A .AP =2OPB .CD =2OPC .OB ⊥ACD .AC 平分OB5.如图,扇形OAB 中,∠AOB =100°,OA =12,点C 是OB 的中点,CD ⊥OB 交AB ︵于点D ,以OC 为半径的CE ︵交OA 于点E ,则图中阴影部分的面积是 ( C )A .12π+18 3B .12π+363C .6π+18 3D .6π+3636.如图,C 是以AB 为直径的半圆O 上一点,连接AC ,BC ,分别以AC ,BC 为边向外作正方形ACDE ,BCFG .DE ,FG ,AC ︵,BC ︵的中点分别是M ,N ,P ,Q .若MP +NQ =14,AC +BC =18,则AB 的长为 ( C )A .9 2 B.907 C .13 D .16第6题图 第7题图 第8题图二、填空题(本大题共6小题,每小题3分,共18分)7.如图,点A ,B ,C 在⊙O 上,∠AOB =72°,则∠ACB =__36°__.8.如图,在⊙O 中,弦AB ⊥AC ,OD ⊥AB 于点D ,OE ⊥AC 于点E .若AB =8 cm ,AC =6 cm ,则⊙O 的半径OA 的长为__5__cm.9.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何?”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步?”该问题的答案是__6__步.10.如图是一个圆环形黄花梨木摆件的残片的示意图,为求其外圆的半径,小林在外圆上任取一点A ,然后过点A 作AB 与残片的内圆相切于点D ,作CD ⊥AB 交外圆于点C ,测得CD =15 cm ,AB =60 cm ,则这个摆件的外圆半径是__37.5__ cm.第10题图 第11题图 第12题图11.如图,⊙O 与正五边形ABCDE 的边AB ,DE 分别相切于点B ,D ,则劣弧BD ︵所对的圆心角∠BOD 的大小为__144__度.12.如图,⊙O 的半径为2,圆心O 到直线l 的距离为4,有一内角为60°的菱形,当菱形的一边在直线l 上,另有两边所在的直线恰好与⊙O相切,此时菱形的边长为33. 三、(本大题共5小题,每小题6分,共30分)13.(1)在平面直角坐标系中,以原点O 为圆心,5为半径作⊙O ,已知A ,B ,C 三点的坐标分别为(3,4),(-3,-3),(4,-10),试判断A ,B ,C 三点与⊙O 的位置关系;解:∵由勾股定理,得OA =32+42=5,OB =(-3)2+(-3)2=32<5,OC =42+(-10)2=26>5,∴点A 在⊙O 上,点B 在⊙O 内,点C 在⊙O 外.(2)小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5 cm ,弧长是6π cm ,求这个圆锥的高.解:圆锥底面半径为6π÷π÷2=3 cm.∴圆锥的高为52-32=4 cm.答:圆锥的高为4 cm.14.如图,小明同学用一把直尺和一块三角板测量一个光盘的直径,他将直尺,光盘和三角板如图放置于桌面上,并量出AB=3 cm,求此光盘的直径.解:设光盘的圆心为O,三角板的另外两顶点为C,D,连接OB,OA.∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC,∠ABO=90°,∴∠OAB=12∠CAB=60°,∴∠AOB=30°,∵AB=3 cm,∴OA=6 cm,由勾股定理得OB=33cm,∴光盘的直径为6 3 cm.15.按要求画图:①仅用无刻度的直尺;②保留必要的画图痕迹.(1)如图甲,画出⊙O的一个内接矩形;(2)如图乙,AB是⊙O的直径,CD是⊙O的弦,且CD∥AB,画出⊙O的一个内接正方形.甲 乙解:(1)如图甲所示;(2)如图乙所示.16.如图,三角形ABC 中,AB =AC ,BD 是∠ABC 的平分线,过A ,B ,D 三点的圆与BC 相交于点E ,你认为AD =CE 吗?如果不能,请举反例;如果AD =CE ,请说明理由.解:AD =CE ,理由:连接DE.∵BD 平分∠ABC ,∴∠ABD =∠CBD.∴AD ︵=DE ︵,∴AD =DE.∵四边形ABED 是圆内接四边形,∴∠ABC +∠ADE =180°.又∵∠EDC +∠ADE =180°,∴∠ABC =∠EDC.又∵AB =AC ,∴∠ABC =∠C ,∴∠EDC =∠C ,∴CE =DE.∵AD =DE ,CE =DE ,∴AD =CE.17.如图,四边形ABCD 内接于⊙O ,点E 在对角线AC 上,EC =BC =DC .(1)若∠CBD =39°,求∠BAD 的度数;(2)求证:∠1=∠2.(1)解:∵BC =DC ,∴BC ︵=DC ︵,∴∠BAC =∠CDB =∠CBD =39°,∴∠BAD =∠BAC +∠CAD =39°+39°=78°.(2)证明:∵EC =BC ,∴∠CEB =∠CBE .∵∠CEB =∠2+∠BAE ,∠CBE =∠1+∠CBD ,∴∠2+∠BAE =∠1+∠CBD .∵∠BAE =∠CBD ,∴∠1=∠2.四、(本大题共3小题,每小题8分,共24分)18.如图,四边形ABCD 是矩形,以AD 为直径的⊙O 交BC 边于点E ,F ,AB =4,AD =12.求线段EF 的长.解:作OM ⊥BC 于M ,连接OE.∴ME=MF=12EF.∵AD=12,∴OE=6.在矩形ABCD中,OM⊥BC,∴OM=AB=4.在△OEM中,∠OME=90 °,∴ME=OE2-OM2=62-42=2 5.∴EF=2ME=45.19.如图①,OA,OB是⊙O的两条半径,且OA⊥OB,C是OB延长线上一点,过C点作CD切⊙O于点D,连接AD交OC于点E.(1)试探究线段CD与CE的数量关系,并予以证明;(2)若将图①中的半径OB所在直线向上平移到⊙O外的直线CF的位置,点E是DA延长线与CF的交点(如图②),其他条件不变,试判断①中结论是否仍然成立,并予以证明.解:(1)CD=CE.证明:连接OD.∵CD是⊙O的切线,∴∠ODA+∠ADC=90°.∵OA⊥OB,∴∠A+∠OEA=90°.又∵OA=OD,∴∠A=∠ODE,∴∠AEO=∠CDE.又∵∠AEO=∠CED,∴∠CDE=∠CED,∴EC=CD.(2)(1)中结论仍然成立,证明略.分别20.如图,在△ABC 中,以AB 为直径的⊙OD 作与BC ,AC 相交于D ,E ,BD =CD ,过点⊙O 的切线交边AC 于点F.(1)求证:DF ⊥AC ;(2)若⊙O 的半径为5,∠CDF =30°,求BD ︵的长(结果保留π).(1)证明:连接OD ,∵DF 是⊙O 的切线,D 为切点,∴OD ⊥DF ,∴∠ODF =90°.∵BD =CD ,OA =OB ,∴OD 是△ABC 的中位线,∴OD ∥AC ,∴∠CFD =∠ODF =90°,∴DF ⊥AC .(2)解:∵∠CDF =30°,由(1)得∠ODF =90°,∴∠ODB =180°-∠CDF -∠ODF =60°.∵OB =OD ,∴△OBD 是等边三角形,∴∠BOD =60°,∴lBD ︵=n πR 180=60π× 5180=53π.五、(本大题共2小题,每小题9分,共18分)21.如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,分别与AC ,BC 相交于点M ,N.(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.证明:(1)连接ON,则OC=ON,∴∠DCB=∠ONC.∵在Rt△ABC中,D为斜边AB的中点,∴CD=DB,∴∠DCB=∠B,∴∠ONC=∠B,∴ON∥AB.∵NE是⊙O的切线,∴NE⊥ON,∴NE⊥AB.(2)连接ND.∵∠ACB=90°=∠CMD=∠CND,∴四边形CMDN是矩形,∴MD=CN.由(1)知,CD=BD,∵DN⊥BC,∴CN=NB,∴MD=NB.22.如图,AB是圆O的直径,O为圆心,AD,BD是半圆的弦,且∠PDA=∠PBD,延长PD交圆的切线BE于点E.(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PD=3,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O 上,如图②,求证:四边形DFBE为菱形.(1)解:直线PD为⊙O的切线.证明:连接OD,∵AB是圆O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD,∵∠PDA=∠PBD,∴∠BDO=∠PDA,∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,∴直线PD为⊙O的切线.(2)解:∵BE是⊙O的切线,∴∠EBA=90°,∵∠BED=60°,∴∠P=30°.∵PD为⊙O的切线,∴∠PDO=90°.在Rt△PDO中,∠P=30°,PD=3,解得OD=1.∴PO=PD2+OD2=2,∴PA=PO-AO=2-1=1.(3)证明:如图②,依题意得∠ADF=∠PDA,∠APD=∠AFD,∵∠PDA=∠PBD,∠ADF=∠ABF,∠PAD=∠DAF,∴∠ADF=∠AFD=∠BPD=∠ABF,∴AD=AF,BF∥PD,∴DF⊥PB,∵BE为切线,∴BE⊥PB,∴DF∥BE.∴四边形DFBE为平行四边形,∵PE,BE为切线,∴BE=DE,∴四边形DFBE为菱形.六、(本大题共12分)23.如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C,D两点,直径AB⊥CD,点M是直线CD上异于点C,O,D的一个动点,AM所在的直线交⊙O于点N,点P是直线CD上另一点,且PM=PN.(1)当点M在⊙O内部,如图①,试判断PN与⊙O的关系,并写出证明过程;(2)当点M在⊙O外部,如图②,其他条件不变时,(1)中的结论是否还成立?请说明理由;(3)当点M在⊙O外部,如图③,∠AMO=15°,求图中阴影部分的面积.解:(1)PN与⊙O相切.证明:连接ON,则∠ONA=∠OAN.∵PM=PN,∴∠PNM=∠PMN.又∵∠AMO=∠PMN,∴∠PNM=∠AMO.∴∠PNO=∠PNM+∠ONA=∠AMO+∠OAN=90°,即PN与⊙O相切.(2)成立.理由如下,连接ON,则∠ONA=∠OAN.∵PM=PN,∴∠PNM=∠PMN.在Rt△AOM中,∠OMA+∠OAM=90°.∴∠PNM+∠ONA=90°,∴∠PNO=180°-90°=90°.即PN与⊙O相切.(3)连接ON,由(2)可知∠PNO=90°,∵∠AMO=15°,PM=PN,∴∠PNM=15°,∠OPN=30°,∴∠PON=60°,∠AON=30°.过点N作NE⊥OD,垂足为点E,则OE=12.∴NE=32.∴S阴影=S△AOC+S扇形AON-S△CON=12OC·OA+30360·π·12-12CO·NE=12×1×1+π12-12×1×32=12+π12-34,∴图中阴影部分的面积为12+π12-34.。

人教版九年级上册数学第二十四章测试题(附答案)

人教版九年级上册数学第二十四章测试题(附答案)

人教版九年级上册数学第二十四章测试题(附答案)一、单选题(共12题;共24分)1.圆内接正六边形的边长为3,则该圆的直径长为( )A. 3B. 3C. 3D. 62.下列说法正确的是( )A. 相等的圆心角所对的弧相等B. 90°的角所对的弦是直径C. 等弧所对的弦相等D. 圆的切线垂直于半径3.一个扇形的半径为8cm,弧长为cm,则扇形的圆心角为()A. 60°B. 120°C. 150°D. 180°4.已知⊙O的半径为6cm,圆心O到直线l的距离为5cm,则直线l与⊙O的交点个数为()A. 0B. 1C. 2D. 无法确定5.下列说法正确的是()A. 经过三点可以作一个圆B. 三角形的外心到这个三角形的三边距离相等C. 等弧所对的圆心角相等D. 相等的圆心角所对的弧相等6.如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为()A. 30°B. 35°C. 40°D. 45°7.△ABC中,∠C=90°,AC=6,BC=8,△ABC的外接圆半径为R,内切圆半径为r,则R与r的比值是()A. B. C. 2 D.8.如图,已知圆周角,则圆心角 =()A. 130°B. 115°C. 100°D. 50°9.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是()A. 25°B. 40°C. 50°D. 65°10.下列说法正确的是()A. 平分弦的直径垂直于弦B. 半圆(或直径)所对的圆周角是直角C. 相等的圆心角所对的弧相等D. 若两个圆有公共点,则这两个圆相交11.如图,正五边形ABCDE的边长为2,连结AC、AD、BE,BE分别与AC和AD相交于点F、G,连结DF,给出下列结论:①∠FDG=18°;②FG=3﹣;③(S四边形CDEF)2=9+2 ;④DF2﹣DG2=7﹣2 .其中结论正确的个数是()A. 1B. 2C. 3D. 412.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S1,正八边形外侧八个扇形(阴影部分)面积之和为S2,则=()A. B. C. D. 1二、填空题(共6题;共12分)13.如图,,,是上三点,若,的半径为2,则劣弧的长为________.14.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C 中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是________.15.如图,AB与⊙O相切于点B,AO=6cm,AB=4cm,则⊙O的半径为________16.如图,△ABC内接于⊙O,∠ABC=70º,∠CAB=50º,点D在弧AC上,则∠ADB的大小为________.17.如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为________cm2.(结果保留π)18.如图,四边形ABCD是⊙O的内接四边形,点D是的中点,点E是上的一点,若∠CED=40°,则∠ADC=________度.三、解答题(共4题;共25分)19.如图所示,已知F是以O为圆心,BC为直径的半圆上任一点,A是弧BF的中点,AD⊥BC于点D,求证:AD= BF.20.如图所示,BD,CE是△ABC的高,求证:E,B,C,D四点在同一个圆上.21.如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且AB=26m,OE⊥CD于点E.水位正常时测得OE:CD=5:24(1)求CD的长;(2)现汛期来临,水面要以每小时4m的速度上升,则经过多长时间桥洞会刚刚被灌满?22.一张圆心角为45°的扇形纸板和圆形纸板按如图方式各剪得一个正方形,边长都为1,求扇形纸板和圆形纸板的面积比.四、作图题(共1题;共9分)23.如图,在△ABC中,已知∠ABC=120°,AC=4,(1)用直尺和圆规作出△ABC的外接圆⊙O (不写作法,保留作图痕迹);(2)求∠AOC的度数;(3)求⊙O的半径.五、综合题(共4题;共40分)24.如图1,在平面直角坐标系内,A,B为x轴上两点,以AB为直径的⊙M交y轴于C,D两点,C为的中点,弦AE交y轴于点F,且点A的坐标为(2,0),CD=8(1)求⊙M的半径;(2)动点P在⊙M的圆周上运动.①如图1,当FP的长度最大时,点P记为P,在图1中画出点P0,并求出点P0横坐标a的值;②如图1,当EP平分∠AEB时,求EP的长度;③如图2,过点D作⊙M的切线交x轴于点Q,当点P与点A,B不重合时,请证明为定值.25.如图,正方形OABC的顶点O与原点重合,点A,C分别在x轴与y轴的正半轴上,点A的坐标为(4,0),点D在边AB上,且tan∠AOD=,点E是射线OB上一动点,EF⊥x轴于点F,交射线OD于点G,过点G作GH∥x轴交AE于点H.(1)求B,D两点的坐标;(2)当点E在线段OB上运动时,求∠HDA的大小;(3)以点G为圆心,GH的长为半径画⊙G.是否存在点E使⊙G与正方形OABC的对角线所在的直线相切?若不存在,请说明理由;若存在,请求出所有符合条件的点E的坐标.26.如图,在Rt△ABC中,∠BAC=90°,∠C=30°,以边上AC上一点O为圆心,OA为半径作⊙O,⊙O恰好经过边BC的中点D,并与边AC相交于另一点F.(1)求证:BD是⊙O的切线.(2)若AB= ,E是半圆上一动点,连接AE,AD,DE.填空:①当的长度是________时,四边形ABDE是菱形;②当的长度是________时,△ADE是直角三角形.27.已知,⊙O的两条弦AB、CD相交于点E,(1)如图1,若BE=DE,求证:= ;(2)如图2,在(1)的条件下,连接OC,AP为⊙O的直径,PQ为⊙O的弦,且PQ∥AB,求证:∠OCD=∠APQ;(3)如图3,在(2)的条件下,连接BD分别与OA、OC交于点G、H,连接DQ,设CD与AP交于点F,若PQ=2CF,BH=5GH,DQ=4,求⊙O的半径.答案一、单选题1. D2. C3. B4. C5. C6. D7. A8.C9.B 10. B 11. B 12.B二、填空题13. 14.3<r<5 15.cm 16.60°17.π 18. 100三、解答题19.证明:连接OA,交BF于点E,∵A是弧BF的中点,O为圆心,∴OA⊥BF,∴BE= BF,∵AD⊥BC于点D,∴∠ADO=∠BEO=90°,在△OAD 与△OBE中,,∴△OAD≌△OBE(AAS),∴AD=BE,∴AD= BF20.证明:如图所示,取BC的中点F,连接DF,EF.∵BD,CE是△ABC的高,∴△BCD和△BCE都是直角三角形.∴DF,EF分别为Rt△BCD和Rt△BCE斜边上的中线,∴DF=EF=BF=CF.∴E,B,C,D四点在以F点为圆心,BC为半径的圆上.21.解:(1)∵直径AB=26m,∴OD=AB=X26=13m,∵OE⊥CD,∴DE=CD,∵OE:CD=5:24,∴OE:ED=5:12,∴设OE=5x,ED=12x,∴在Rt△ODE中(5x)2+(12x)2=132,解得x=1,∴CD=2DE=2×12×1=24m;(2)由(1)得OE=1×5=5m,延长OE交圆O于点F,∴EF=OF﹣OE=13﹣5=8m,∴(小时),即经过2小时桥洞会刚刚被灌满.22.解:如图,在扇形纸板中连接OF,在Rt△OCD中,∵∠COD=45°,∴△OCD是等腰直角三角形,∴OD=CD=1.∴OE=OD+DE=1+1=2,在Rt△OEF中,根据勾股定理可得:OF2=OE2+EF2=22+12=5,∴扇形的面积等于= = .在圆形纸板中连接AC,易知AC是直径,由勾股定理得AC= ,∴OA= ,∴圆的面积等于π = . ∴扇形纸板和圆形纸板的面积比是∶=5∶4.四、作图题23. (1)解:如图,⊙O即为所求;(2)解:在优弧AC上取点P,连接AP,PC,∵∠ABC=120°,∴∠P=180°﹣120°=60°,∴∠AOC=2∠P=120°(3)解:过点O作OD⊥AC于点D,∵AC=4,∴AD= AC=2.∵∠AOC=120°,OA=OC.∴∠OAC= =30°,∴OA=五、综合题24. (1)解:如图(1):连接OD,∵直径AB⊥CD,CD=8,∴OD=CD=4,连接MD设MD=MA=r,在Rt△OMD中.由OM2+OD2=MD2,得(r﹣2)2+42=r2.解得r=5(2)解:①如图1(1),连接FM并延长交⊙M于点P记作P0,FP长度最大.∵直径AB⊥CD,C为的中点,∴.∴∠ACF =∠CAF,∴AF=CF,在Rt△AFO中,OA=2,AF=CF=4﹣OF,∴OF2+22=(4﹣OF)2,解得:OF=,∴MF=,过P点作PH⊥OB,∴△OFM∽△HPM,∴,∴,∴MH=,∴点P0横坐标a的值等于3+ .②如图1(2)∵.∴,∴AE=CD=8,∵AB是直径,∴∠AEB=90°,过P点作PG⊥AE,连接AP、BP.当EP平分∠AEB时,∠BAP=∠BEP=∠AEP=∠ABP=45°,△BAP和△EGP均为等腰直角三角形,∵AB=10,∴AP=,设EG=PG=b,在Rt△AGP中,PG2+AG2=AP2,即:,解得:b=7,b=1(舍去).∴EP=EG=.③如图2:连接PM、DM,∵DQ与⊙M于D点,∴∠MDQ=90°=∠DOM,∴∠QMD=∠DMO,∴△QMD∽△MDO,∴,又∵MD=MP,∴,又∵∠OMP=∠PMQ,∴△QMP∽△PMQ,∴.25. (1)解:∵A(4,0),∴OA=4,∵四边形OABC为正方形,∴AB=OA=4,∠OAB=90°,∴B(4,4),在Rt△OAD中,∠OAD=90°,∵tan∠AOD=,∴AD=OA=×4=2,∴D(4,2)(2)解:如图1,在Rt△OFG中,∠OFG=90°∴tan∠GOF==,即GF=OF,∵四边形OABC为正方形,∴∠AOB=∠ABO=45°,∴OF=EF,∴GF=EF,∴G为EF的中点,∵GH∥x轴交AE于H,∴H为AE的中点,∵B(4,4),D(4,2),∴D为AB的中点,∴DH是△ABE的中位线,∴HD∥BE,∴∠HDA=∠ABO=45°(3)解:①若⊙G与对角线OB相切,如图2,当点E在线段OB上时,过点G作GP⊥OB于点P,设PG=x,可得PE=x,EG=FG=x,OF=EF=2 x,∵OA=4,∴AF=4﹣2 x,∵G为EF的中点,H为AE的中点,∴GH为△AFE的中位线,∴GH=AF=×(4﹣2 x)=2﹣x,则x=2﹣x,解得:x=2 ﹣2,∴E(8﹣4 ,8﹣4 ),如图3,当点E在线段OB的延长线上时,x=x﹣2,解得:x=2+ ,∴E(8+4 ,8+4 );②若⊙G与对角线AC相切,如图4,当点E在线段BM上时,对角线AC,OB相交于点M,过点G作GP⊥OB于点P,设PG=x,可得PE=x,EG=FG=x,OF=EF=2 x,∵OA=4,∴AF=4﹣2 x,∵G为EF的中点,H为AE的中点,∴GH为△AFE的中位线,∴GH=AF=×(4﹣2 x)=2﹣x,过点G作GQ⊥AC于点Q,则GQ=PM=3x﹣2 ,∴3x﹣2 =2﹣x,∴,∴;如图5,当点E在线段OM上时,GQ=PM=2 ﹣3x,则2 ﹣3x=2﹣x,解得,∴;如图6,当点E在线段OB的延长线上时,3x﹣2 =x﹣2,解得:(舍去);综上所述,符合条件的点为(8﹣4 ,8﹣4 )或(8+4 ,8+4 )或或.26. (1)证明:如图1,连接OD,∵在Rt△ABC中,∠BAC=90°,∠C=30°,∴AB= BC,∵D是BC的中点,∴BD= BC,∴AB=BD,∴∠BAD=∠BDA,∵OA=OD,∴∠OAD=∠ODA,∴∠ODB=∠BAO=90°,即OD⊥BC,∴BD是⊙O的切线.(2)π;π或π27. (1)证明:连接AD、BC,∵= ,∴∠B=∠D,在△AED和△CEB中,,∴△AED≌△CEB,∴AD=BC,∴=(2)证明:连接AC.∵= ,∴∠BAC=∠ACD,∵OA=OC,∴∠OAC=∠OCA,∴∠BAO=∠OCD,∵PQ∥AB,∴∠BAO=∠APQ,∴∠COD=∠APQ(3)连接AD、AH、BP、BQ、DP,延长CO交PQ于M,作AN⊥BD于N.∵∠OCD=∠APQ.OC=OP,∠AOC=∠POM,∴△COF≌△POM,∴CF=PM,∴PQ=2PM,∴M是PQ的中点,∴OM⊥PQ,∴∠CFO=∠PMO=90°∴AP⊥CD,∴= ,PQ∥AB,∴∠OMP=∠AKM=90°,∴OC⊥AB,∴= ,∴AK=BK,∴= = ,OC垂直平分AB,设GH=a,∴BH=5GH=5a,∵OC垂直平分AB,∴AH=BH=5a,∠HAB=∠HBA,∴∠AHD=2∠ABH,∵= = ,∴∠ADC=∠CDB=∠ABD,∴∠ADH=2∠ADC=2∠ABH=∠AHD,∴AH=AD=5a,∵CD⊥AP,∴∠AFD=∠GFD=90°,∵DF=DF,∠ADC=∠CDB,∴△ADF≌△GDF,∴AD=DG=5a,∴DH=6a,BD=11a,∵AH=AD,AN⊥DH,∴NH= DH=3a,AN= =4a,BN=BH+NH=8a,在Rt△ABN中,tan∠ABD= = = ,∵= ,∴∠ABD=∠APD,∴tan∠ABD=tan∠APD= ,∵AP是直径,∴= ,∴PD=2AD=10a,AP= =5 a,∵AP为直径,∴∠ABP=90°,∵PQ∥AB,∴∠ABP+∠BPQ=180°,∵∠ABP=90°,∴∠BPQ=90°,∴BQ为⊙O的直径,∴BQ=5 a,∵BQ为⊙O的直径,∴∠BDQ=90°,∴DQ= =2a,∵DQ=4,∴2a=4,∴a=2,AP=5 a=10 ,∴⊙O的半径OA= AP=5。

人教版九年级上册数学第二十四章测试题及答案

人教版九年级上册数学第二十四章测试题及答案

人教版九年级上册数学第二十四章测试卷一、单选题1.下列说法:(1)长度相等的弧是等弧,(2)相等的圆心角所对的弧相等,(3)劣弧一定比优弧短,(4)直径是圆中最长的弦.其中正确的有( )A .1个B .2个C .3个D .4个2.如图,CD 为圆O 的直径,弦AB ⊥CD ,垂足为E ,CE=1,半径为25,则弦AB 的长为A .24B .14C .10D .73.如图,,AB CD 是O 的直径,AE BD ,若32AOE ︒∠=,则COE ∠的度数是( )A .32°B .60°C .68°D .64°4.如图,圆的两条弦,AB CD 相交于点E ,且弧AD =弧CB ,40A ∠=︒,则CEB ∠的度数为A .50︒B .80︒C .70︒D .90︒5.如图,以O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,点P 为切点.若大圆半径为2,小圆半径为1,则AB 的长为( )A .B .CD .26.已知正六边形的边长是2,则该正六边形的边心距是( )A.1 B C.2 D7.如图,A、B.C是半径为4的⊙O上的三点.如果∠ACB=45°,那么弧AB的长为()A.πB.2πC.3πD.4π8.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC =5,则△ABC的周长为()A.16 B.14 C.12 D.109.如图,AB是⊙O的直径,C,D为⊙O上的点,AD CD,如果∠CAB=40°,那么∠CAD 的度数为()A.25°B.50°C.40°D.80°10.如图,已知AB是⊙O直径,∠AOC=130°,则∠D等于()A.65°B.25°C.15°D.35°二、填空题11.如图,在⊙O中,弧AB=弧CD,∠AOB与∠COD的关系是_____.12.如图,AB是⊙O的直径,D是AB延长线上一点,DC切⊙O于C,连接AC,若∠CAB =30°,则∠D=_____度.13.如图,⊙O的内接正六边形的半径是4,则这个正六边形的边长为_____.14.如图,将三角形AOC绕点O顺时针旋转120°得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_____.(结果保留π)15.王江泾是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为9m,水面宽AB为6m,则桥拱半径OC为_____m.16.如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P=40°,则∠ACB=_____°.17.如图,边长为6的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴.将正六边形绕原点逆时针旋转n次,每次旋转60°,当n=2019时,顶点A的坐标为_____.18.如图,在△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=2,则扇形BDE的面积为______.三、解答题19.已知,如图,AB是⊙O的直径,弦CD⊥AB,E为弧AC上一点,AE、DC的延长线相交于点F,求证:∠AED=∠CEF20.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.21.如图,正方形ABCD内接于⊙O,M为弧AD中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求∠BOM的度数.22.如图,点C在以AB为直径的半圆⊙O上,AC=BC.以B为圆心,以BC的长为半径画圆弧交AB于点D.(1)求∠ABC的度数;(2)若AB=2,求阴影部分的面积.23.如图,D、E分别是⊙O两条半径OA、OB的中点,AC=CB.(1)求证:CD=CE.(2)若∠AOB=120°,OA=x,四边形ODCE的面积为y,求y与x的函数关系式.24.如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.25.如图,四边形ABCD内接于⊙O,∠BAD=90°,AD、BC的延长线交于点F,点E在CF 上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)当AB=AC时,若CE=2,EF=3,求⊙O的半径.参考答案1.A【解析】根据等弧、等圆、弦的定义即可一一判断.【详解】(1)长度相等的弧是等弧,错误;(2)在同圆或等圆中,相等的圆心角所对的弧相等,错误;(3)在同圆或等圆中,劣弧一定比优弧短,错误;(4)直径是圆中最长的弦,正确;故选A.【点睛】考查圆周角定理以及圆心角、弧、弦的关系,解答此类问题注意前提条件是在同圆或等圆中. 2.B【分析】连接OA,根据垂径定理得到AE=EB,根据勾股定理求出AE,得到答案.【详解】连接OA,∵CD为圆O的直径,弦AB⊥CD,∴AE=EB,由题意得,OE=OC-CE=24,在Rt△AOE中,,∴AB=2AE=14,故选B.【点睛】本题考查的是垂径定理和勾股定理的应用,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.3.D【分析】根据已知条件和圆心角、弧、弦的关系,可知32∠=∠=,然后根据对顶角相等BOD AOE︒即可求解.【详解】=,AE BD∴∠=∠=.32BOD AOE︒BOD AOC∠=∠,∴∠=︒,32AOCCOE︒︒︒∴∠=+=,323264故选:D.【点睛】本题主要考查圆心角、弧、弦的关系、对顶角相等,较简单,掌握基本概念是解题关键.4.B【分析】根据圆周角定理得到∠A=∠C=40°,由三角形外角的性质即可得到结论.【详解】∵弧AD=弧CB,∴∠A=∠C.∵∠A=40°,∴∠CEB=∠A+∠C=80°.故选B.【点睛】本题考查了圆周角定理,熟记圆周角定理是解题的关键.5.A【分析】连接OA、OB、OP,OP即为小圆半径,易证△OAP≌△OBP,通过构建直角三角形,可解答.【详解】解:连接OA、OB、OP,OP即为小圆半径,∵OA=OB,∠OAB=∠OBA,∠OPA=∠OPB=90°,∴△OAP≌△OBP,∴在直角△OPA中,OA=2,OP=1,∴∴故选A.【点睛】本题主要考查了切线、勾股定理的应用,本题综合性较强;掌握其定理、性质,才能熟练解答.6.B【分析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出.【详解】如图,连接OA,作OM⊥AB.∵正六边形ABCDEF的边长为2,∴∠AOM=30°,AM12=AB12=⨯2=1,∴正六边形的边心距是OM tanAMAOM∠===故选B.【点睛】本题考查了正多边形的计算,正多边形的计算常用的方法是转化为直角三角形的计算.7.B【解析】【分析】根据圆周角定理可得出∠AOB=90°,再根据弧长公式计算即可.【详解】如图,连接OA、OB.∵∠ACB=45°,∴∠AOB=90°.∵OA=4,∴弧AB的长=90π4180⨯=2π.故选B.【点睛】本题考查了弧长的计算以及圆周角定理,解题的关键是掌握弧长公式lπ180n r .8.B【分析】根据切线长定理进行求解即可.【详解】∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,故选B.【点睛】本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键.9.A【分析】先求出∠ABC=50°,进而判断出∠ABD=∠CBD=25°,最后用同弧所对的圆周角相等即可得出结论.【详解】如图,连接BC,BD.∵AB为⊙O的直径,∴∠ACB=90°.∵∠CAB=40°,∴∠ABC=50°.∵弧AD=弧CD,∴∠ABD=∠CBD12∠ABC=25°,∴∠CAD=∠CBD=25°.故选A.【点睛】本题考查了圆周角定理,直径所对的圆周角是直角,直角三角形的性质,解答本题的关键是作出辅助线.10.B【分析】根据邻补角的定义求出∠BOC的度数,然后根据同弦所对的圆周角等于对应圆心角的一半即可解答.【详解】解:∵∠AOC=130°,∴∠BOC=50°,∴∠D=12∠BOC=25°,故选:B.【点睛】本题考查的是圆周角定理,掌握同弧或等弧所对的圆周角都等于这条弧所对的圆心角的一半是解答本题的关键.11.∠AOB=∠COD【解析】【分析】直接利用圆心角、弧、弦的关系求解.【详解】∵弧AB=弧CD,∴∠AOB=∠COD.故答案为:∠AOB=∠COD.【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.12.30【分析】连接OC,如图,根据切线的性质得∠OCD=90°,再根据等腰三角形的性质和三角形外角性质得到∠COD=60°,然后利用互余计算∠D的度数.【详解】连接OC,如图,∵DC切⊙O于C,∴OC⊥CD,∴∠OCD=90°.∵OA=OC,∴∠ACO=∠CAB=30°,∴∠COD=∠ACO+∠CAB=60°,∴∠D=90°﹣∠COD=90°﹣60°=30°.故答案为30.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的性质.13.4【分析】连接OA,OB,证出△BOA是等边三角形,【详解】解:如图所示,连接OA、OB∵多边形ABCDEF是正六边形,∴∠AOB=60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OA=OB=4故答案为4【点睛】本题考查正六边形和圆,等边三角形的判定与性质,解题关键是熟练掌握正六边形的性质.14.5π【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积,利用扇形的面积公式计算即可求解.【详解】∵△AOC ≌△BOD ,∴阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积2212041201360360ππ⨯⨯⨯⨯=-=5π. 故答案为5π.【点睛】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积是解题的关键.15.5【分析】连接OA ,根据垂径定理求出AD .在Rt △AOD 中,根据勾股定理列式计算即可.【详解】连接OA .∵OD ⊥AB ,∴AD 12=AB =3.在Rt △AOD 中,OA 2=OD 2+AD 2,即OC 2=(9﹣OC )2+32,解得:OC =5.故答案为5.【点睛】本题考查了勾股定理和垂径定理的应用,掌握垂直于弦的直径平分弦是解题的关键. 16.70【分析】连接OA 、OB ,如图,根据切线的性质得∠OAP =∠OBP =90°,再利用四边形的内角和计算出∠AOB 的度数,然后根据圆周角定理计算∠ACB 的度数.【详解】连接OA 、OB ,如图,∵P A ,PB 分别与⊙O 相切于A ,B 两点,∴OA ⊥P A ,OB ⊥PB ,∴∠OAP=∠OBP=90°,∴∠AOB=180°﹣∠P=180°﹣40°=140°,∴∠ACB12=∠AOB12=⨯140°=70°.故答案为70.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.17.(3,-【分析】将正六边形ABCDEF绕原点O逆时针旋转2019次时,点A所在的位置就是原D点所在的位置.【详解】2019×60°÷360°=336…3,即与正六边形ABCDEF绕原点O逆时针旋转3次时点A的坐标是一样的.当点A按逆时针旋转180°时,与原D点重合.连接OD,过点D作DH⊥x轴,垂足为H;由已知ED=6,∠DOE=60°(正六边形的性质),∴△OED是等边三角形,∴OD=DE=OE=6.∵DH⊥OE,∴∠ODH=30°,OH=HE=3,HD=∵D在第四象限,∴D(3,﹣,即旋转2019后点A的坐标是(3,﹣.故答案为(3,﹣.【点睛】本题考查了正多边形和圆、旋转变换的性质,掌握正多边形的性质、旋转变换的性质是解题的关键.18.9π . 【分析】解答时根据扇形面积公式带入数值进行计算即可得到答案【详解】扇形面积:S=2360ar π在△ABC 中,D 为BC 的中点∴BD=DCBD 长为半径画一弧交AC 于E 点∴BD=DE∠A =60°,∠B =100°∴∠C =20°=∠DEC∴∠BDE=∠C+∠DEC=40°=aBC =2 r=1∴S=24013603609ar πππ=⨯︒⨯= 故答案为9π 【点睛】此题重点考察学生对扇形面积公式的理解,正确选择面积公式是解题的关键19.见解析【分析】连结AD ,如图,根据垂径定理由CD ⊥AB 得到弧AC=弧AD ,再根据圆周角定理得∠ADC=∠AED ,然后根据圆内接四边形的性质得∠CEF=∠ADC ,于是利用等量代换即可得到结论.【详解】证明:连结AD ,如图,∵CD⊥AB,∴弧AC=弧AD,∴∠ADC=∠AED,∵∠CEF=∠ADC,∴∠AED=∠CEF.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和圆内接四边形的性质.20.证明见解析【分析】连接OC,根据切线的性质得到OC⊥CD,根据平行线的性质、等腰三角形的性质得到∠EAC=∠CAO,即AC平分∠BAE.【详解】如图:连接OC.∵DE切⊙O于点C,∴OC⊥DE.又∵AE⊥DC,∴OC∥AE,∴∠ACO=∠EAC.∵OA=OC,∴∠ACO=∠OAC,∴∠EAC=∠OAC,∴AC平分∠BAE.【点睛】本题考查了切线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.21.(1)答案见解析;(2)135°.【分析】(1)根据正方形的性质得到AB =CD ,根据圆心角、弧、弦的关系得到AB CD =,得到BM CM =,即可得到结论;(2)连接OA 、OB 、OM ,根据正方形的性质求出∠AOB 和∠AOM ,计算即可.【详解】(1)∵四边形ABCD 是正方形,∴AB =CD ,∴AB CD =.∵M 为AD 的中点,∴AM DM =,∴BM CM =,∴BM =CM ;(2)连接OA 、OB 、OM .∵四边形ABCD 是正方形,∴∠AOB =90°.∵M 为弧AD 的中点,∴∠AOM =45°,∴∠BOM =∠AOB +∠AOM =135°.【点睛】本题考查了正多边形的性质、圆心角、弧、弦的关系定理,掌握正方形的性质、圆心角、弧、弦的关系定理是解题的关键.22.(1)45°;(2)14π-. 【分析】(1)根据圆周角定理得到∠ACB =90°,根据等腰三角形的性质即可得到结论;(2)根据阴影部分的面积=S △ABC -S 扇形DBC 即可得到结论.【详解】(1)∵AB 为半圆⊙O 的直径,∴∠ACB =90°.∵AC =BC ,∴∠ABC =45°;(2)∵AC =BC ,∴∠ABC =45°,∴△ABC 是等腰直角三角形.∵AB=2,∴BC,∴阴影部分的面积=S△ABC-S扇形DBC=1214π=-.【点睛】本题考查了不规则图形面积的计算,圆周角定理,等腰直角三角形的性质,熟练掌握扇形的面积公式是解题的关键.23.(1)证明见解析;(2)2.【分析】(1)连接OC,根据圆心角、弧、弦的关系定理得到∠COA=∠COB,证明△COD≌△COE,根据全等三角形的性质证明;(2)连接AC,根据全等三角形的判定定理得到△AOC为等边三角形,根据正切的定义求出CD,根据三角形的面积公式计算即可.【详解】(1)证明:连接OC,∵AC=CB,∴∠COA=∠COB,∵D、E分别是⊙O两条半径OA、OB的中点,∴OD=OE,在△COD和△COE中,OD OECOD COEOC OC⎧⎪∠∠⎨⎪⎩===,∴△COD≌△COE(SAS)∴CD=CE;(2)连接AC,∵∠AOB=120°,∴∠AOC=60°,又OA=OC,∴△AOC为等边三角形,∵点D是OA的中点,∴CD⊥OA,OD=12OA=12x,在Rt△COD中,CD=OD•tan∠∴四边形ODCE的面积为y=12×OD×CD×2.【点睛】本题考查的是圆心角、弧、弦的关系定理,全等三角形的判定和性质,等边三角形的性质,掌握圆心角、弧、弦的关系定理,全等三角形的判定定理和性质定理是同角的关键.24.(1)2(2)见解析【详解】解:(1)连接OB,∵弦AB⊥OC,劣弧AB的度数为120°,∴弧BC与弧AC的度数为:60°.∴∠BOC=60°.∵OB=OC,∴△OBC是等边三角形.∵OC =2,∴BC=OC=2.(2)证明:∵OC=CP,BC=OC,∴BC=CP.∴∠CBP=∠CPB.∵△OBC是等边三角形,∴∠OBC=∠OCB=60°.∴∠CBP=30°.∴∠OBP=∠CBP+∠OBC=90°.∴OB⊥BP.∵点B在⊙O上,∴PB是⊙O的切线.(1)连接OB,由弦AB⊥OC,劣弧AB的度数为120°,易证得△OBC是等边三角形,则可求得BC的长.(2)由OC=CP=2,△OBC 是等边三角形,可求得BC=CP ,即可得∠P=∠CBP ,又由等边三角形的性质,∠OBC=60°,∠CBP=30°,则可证得OB ⊥BP ,从而证得PB 是⊙O 的切线.25.(1)证明见解析;(2 【解析】【分析】(1)先判断出BD 是圆O 的直径,再判断出BD ⊥DE ,即可得出结论;(2)根据余角的性质和等腰三角形的性质得到∠F =∠EDF ,根据等腰三角形的判定得到DE =EF =3,根据勾股定理得到CD△CDE ∽△DBE ,根据相似三角形的性质即可得到结论.【详解】(1)如图,连接BD .∵∠BAD =90°,∴点O 必在BD 上,即:BD 是直径,∴∠BCD =90°,∴∠DEC +∠CDE =90°. ∵∠DEC =∠BAC ,∴∠BAC +∠CDE =90°.∵∠BAC =∠BDC ,∴∠BDC +∠CDE =90°,∴∠BDE =90°,即:BD ⊥DE .∵点D 在⊙O 上,∴DE 是⊙O 的切线;(2)∵∠BAF =∠BDE =90°,∴∠F +∠ABC =∠FDE +∠ADB =90°.∵AB =AC ,∴∠ABC =∠ACB .∵∠ADB =∠ACB ,∴∠F =∠FDE ,∴DE =EF =3.∵CE =2,∠BCD =90°,∴∠DCE =90°,∴CD∵∠BDE =90°,CD ⊥BE ,∴∠DCE =∠BDE =90°.∵∠DEC =∠BED ,∴△CDE ∽△DBE ,∴CD BD CE DE =,∴BD ==∴⊙O 的半径=【点睛】本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定,勾股定理,求出DE=EF是解答本题的关键.21。

人教版九年级上册数学第二十四章测试卷

人教版九年级上册数学第二十四章测试卷

第二十四章圆周周测5一、选择题(每小题5分,共50分)1. 已知O的半径为4cm,如果圆心O到直线l的距离为3.5cm,那么直线l与O的位置关系是()A. 相交B. 相切C. 相离D. 不确定2. 如图,线段AB与O相切于点B,线段AO与O相交于点C,AB=12,AC=8,则O的半径长()B. 5C. 6D. 103. 如图,∠DCE是圆内接四边形ABCD的一个外角,如果∠DCE=75°,那么∠BAD的度数是()A. 65°B. 75°C. 85°D. 105°第2题第3题第4题第7题4. 如图AB是O的直径,直线PA与O相切于点A,PO交O于点C,连接BC. 若∠P=50°,则∠ABC的度数为()A. 25°B. 40°C. 20°D. 15°5. △ABC的三边长分别为6、8、10,则其外接圆的半径是()A. 3B. 4C. 5D. 106. O的半径是13,弦AB∥CD,AB=24,CD=10,则AB与CD的距离是()A. 7B. 17C. 7或17D. 7或137. 如图,O是△ABC的外接圆,弦AB=4,∠C=30°,则O的直径为()A. 23B. 4C. 6D. 88. 如图,圆的半径是6,空白部分的圆心角分别是60°与30°,则阴影部分的面积是()A. 9πB. 27πC. 6πD. 3π第8题第9题第10题9. 如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD为()A. 1B. 85C. 32D. 5210. 如图,在平面直角坐标系xOy中,直线AB过点A(-4,0)、B (0,4),O的半径为1(O为坐标原点),点P在直线AB上,过点P作O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A. 7B. 210C. 3D. 2二、填空题(每小题5分,共20分)11. 已知某扇形的圆心角为60°,半径为1,则该扇形的弧长为__________.12. 如图,四边形ABCD是O的外切四边形,且AB=10,CD=12,则四边ABCD的周长为__________.第12题 第13题 第14题13. 如图,已知半圆O 中,直径AB=10,弦AC=6,点D 是弧BC 的中点,连接AD ,则AD 的长为__________.14. 如图,直线364y x =-+交x 轴于点B ,交y 轴于点A ,以AB 为直径作圆,点C 是弧AB 的中点,连接OC 交直径AB 于点E ,则OC 的长为__________.三、解答题(共30分)15. (12分)如图,点C 是以AB 为直径的O 上一点,直线AC 与过点B 的切线相交于点D ,点E 是BD 的中点,直线CE 交直线AB 于点F.(1)求证:CF 是O 的切线; (2)若33tan 24ED F ==,,求O 的直径.16. (18分)如图,CB 为O 的直径,CB 的延长线与过点A 的切线相交于点P ,PA=10,PB=5,∠BAC 的平分线与BC 和O 分别相交于点D 和E.求(1)圆O 的半径;(2)sin BAP ∠的值;(3)ED ·EA 的值.答题方法:试卷检查五法重视答案,要对结果负责不少同学都说,明明题目都会做,然而考试时却不是这里出错就是那里出错,总是拿不了高分。

人教版数学九年级上册第24章达标检测卷及答案

人教版数学九年级上册第24章达标检测卷及答案

第二十四章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分) 1.下列命题为真命题的是( )A .两点确定一个圆B .度数相等的弧相等C .垂直于弦的直径平分弦D .相等的圆周角所对的弧相等,所对的弦也相等 2.已知⊙O 的半径为5,点P 到圆心O 的距离为6,那么点P 与⊙O 的位置关系是( )A .点P 在⊙O 外B .点P 在⊙O 内C .点P 在⊙O 上D .无法确定 3.如图,⊙O 是△ABC 的外接圆,∠BOC =120°,则∠BAC 的度数是( ) A .70° B .60° C .50° D .30°(第3题)(第4题)(第6题)(第7题)4.如图,⊙O 的弦AB =8,M 是AB 的中点,且OM =3,则⊙O 的半径等于( ) A .8 B .4 C .10 D .55.直线l 与半径为r 的⊙O 相交,且圆心到直线l 的距离为5,则半径r 的取值范围是( )A .r >5B .r =5C .0<r <5D .0<r ≤56.如图,⊙O 与矩形ABCD 的边相切于点E ,F ,G ,点P 是EFG ︵上一点,则∠P 的度数是( )A .45°B .60°C .30°D .无法确定7.如图,在△ABC 中,∠ACB =90°,∠ABC =30°,AB =2.将△ABC 绕直角顶点C 逆时针旋转60°得△A′B′C ,则点B 转过的路径长为( )A .π3B .3π3C .2π3D .π 8.如图,如果从半径为9 cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为( )A .6 cmB .3 5 cmC .8 cmD .5 3 cm(第8题)(第9题)(第10题)9.如图,在平面直角坐标系中,⊙P 的圆心坐标是(3,a)(a >3),半径为3,函数y =x 的图象被⊙P 截得的弦AB 的长为42,则a 的值是( )A .4B .3+ 2C .3 2D .3+ 310.如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切……按这样的规律进行下去,正六边形A 10B 10C 10D 10E 10F 10的边长为( )A .23429B .81329C .8129D .81328 二、填空题(每题3分,共30分)11.如图,点A ,B ,C 在⊙O 上,∠AOC =60°,则∠ABC 的度数是________. 12.如图,已知⊙O 的半径为3,点O 到l 的距离为OA =5,将直线l 沿射线AO 方向平移m 个单位长度时,⊙O 与直线l 相切,则m =________.13.如图,AD 为⊙O 的直径,AD =6 cm ,∠DAC =∠ABC ,则AC =________.(第11题)(第12题)(第13题)(第14题)(第16题)14.如图,A,B是⊙O上的两点,AC是过点A的一条直线,若∠AOB=120°,则当∠CAB等于________时,AC才能成为⊙O的切线.15.直角三角形的两边长分别为16和12,则此三角形的外接圆半径是________.16.如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=________°.17.如图,水平放置的圆柱形油槽的截面直径是52 cm,装入油后,油深CD为16 cm,那么油面宽度AB=________cm.(第17题)(第18题)(第19题)(第20题)18.如图,在扇形OAB 中,∠AOB =90°,点C 为OA 的中点,CE ⊥OA 交AB ︵于点E ,以点O 为圆心,OC 的长为半径作CD ︵交OB 于点 D.若OA =2,则阴影部分的面积为________.19.如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB =30°,点E ,F 分别是AC ,BC 的中点,直线EF 与⊙O 交于G ,H 两点,若⊙O 的半径是7,则GE +FH 的最大值是________.20.如图所示,在⊙O 中,C ,D 分别是OA ,OB 的中点,MC ⊥AB ,ND ⊥AB ,M ,N 在⊙O 上.下列结论:①MC =ND ;②AM ︵=MN ︵=NB ︵;③四边形MCDN 是正方形;④MN =12AB ,其中正确的结论是________.(填序号)三、解答题(21、22题每题8分,23、24题每题10分,其余每题12分,共60分) 21.如图,AB 是⊙O 的一条弦,OD ⊥AB ,垂足为点C ,交⊙O 于点D ,点E 在⊙O 上.(1)若∠AOD =52°,求∠DEB 的度数; (2)若OC =3,OA =5,求AB 的长.(第21题)22.“不在同一条直线上的三个点确定一个圆”.请你判断平面直角坐标系内的三个点A(2,3),B(-3,-7),C(5,11)是否可以确定一个圆.23.如图,在△ABC中,∠ACB=90°,D是AB边上的一点,且∠A=2∠DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO,求BD的长.(第23题)24.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D.以AB上一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°,①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD,BE与劣弧DE所围成的阴影部分的面积.(结果保留根号和π)(第24题)25.如图,一拱形公路桥,圆弧形桥拱的水面跨度AB=80米,桥拱到水面的最大高度为20米.(1)求桥拱的半径.(2)现有一艘宽60米,顶部截面为长方形且高出水面9米的轮船要经过这座拱桥,这艘轮船能顺利通过吗?请说明理由.(第25题)26.如图①,AB是⊙O的直径,且AB=10,C是⊙O上的动点,AC是弦,直线EF 和⊙O相切于点C,AD⊥EF,垂足为D.(1)求证:∠DAC=∠BAC;(2)若AD和⊙O相切于点A,求AD的长;(3)若把直线EF向上平行移动,如图②,EF交⊙O于G,C两点,题中的其他条件不变,试问这时与∠DAC相等的角是否存在,并证明.(第26题)答案一、1.C 2.A 3.B 4.D 5.A6.A 点拨:连接OE ,OG ,易得OE ⊥AB ,OG ⊥AD.∵四边形ABCD 是矩形,∴∠A =90°,∴∠EOG =90°,∴∠P =12∠EOG =45°.7.B 点拨:∵∠ACB =90°,∠ABC =30°,AB =2,∴AC =12AB =1.∴BC =AB 2-AC 2=22-12= 3.∴点B 转过的路径长为60π·3180=3π3. ∴点B 转过的路径长为33π. 8.B 点拨:∵留下的扇形的弧长为23×2π×9=12π(cm ).∴围成圆锥的底面圆半径r=12π2π=6(cm ).又∵圆锥母线长l =9 cm ,∴h =l 2-r 2=92-62=35(cm ). 9.B10.D 点拨:∵正六边形A 1B 1C 1D 1E 1F 1的边长为2=(3)1-121-2,∴正六边形A 2B 2C 2D 2E 2F 2的外接圆的半径为3,则正六边形A 2B 2C 2D 2E 2F 2的边长为3=(3)2-122-2,同理,正六边形A 3B 3C 3D 3E 3F 3的边长为32=(3)3-123-2,…,正六边形A n B n C n D n E n F n 的边长为(3)n-12n -2,则当n =10时,正六边形A 10B 10C 10D 10E 10F 10的边长为(3)10-1210-2=(3)8·328=34·328=81328,故选D . 二、11.150° 12.2或8 13.3 2 cm 14.60° 15.8或1016.215 点拨:∵A ,B ,C ,D 四点共圆,∴∠B +∠ADC =180°.又∵A ,C ,D ,E 四点共圆,∴∠E +∠ACD =180°.∴∠ACD +∠ADC +∠B +∠E =360°.∵∠ACD +∠ADC =180°-35°=145°,∴∠B +∠E =360°-145°=215°.17.48 18.32+π12 点拨:连接OE.∵点C 是OA 的中点,∴OC =12OA =1,∵OE =OA =2,∴OC =12OE =1.∵CE ⊥OA ,∴∠OEC =30°,∴∠COE =60°.在Rt △OCE 中,CE =OE 2-OC 2=3,∴S △OCE =12OC·CE =32.∵∠AOB =90°,∴∠BOE =∠AOB -∠COE =30°,∴S 扇形OBE =30π×22360=π3.又S 扇形OCD =90π×12360=π4.因此S 阴影=S 扇形OBE +S △OCE -S 扇形OCD=π3+32-π4=π12+32. 19.10.520.①②④ 点拨:连接OM ,ON ,易证Rt △OMC ≌Rt △OND.可得MC =ND ,故①正确.在Rt △MOC 中,CO =12MO.得∠CMO =30°,所以∠MOC =60°.易得∠MOC =∠NOD =∠MON =60°,所以AM ︵=MN ︵=NB ︵.故②正确.易得CD =12AB =OA =OM ,∵MC <OM ,易得四边形MCDN 是矩形,故③错误.易得MN =CD =12AB ,故④正确.三、21.解:(1)∵OD ⊥AB , ∴AD ︵=DB ︵.∴∠DEB =12∠AOD =26°.(2)在Rt △AOC 中,OC =3,OA =5,由勾股定理得AC =4. ∴AB =2AC =8.22.解:设经过A ,B 两点的直线的解析式为y =kx +b. ∵A(2,3),B(-3,-7),∴⎩⎪⎨⎪⎧2k +b =3,-3k +b =-7.解得⎩⎪⎨⎪⎧k =2,b =-1. ∴经过A ,B 两点的直线的解析式为y =2x -1. 当x =5时,y =2×5-1=9≠11, ∴点C(5,11)不在直线AB 上, 即A ,B ,C 三点不在同一条直线.∴平面直角坐标系内的三个点A(2,3),B(-3,-7),C(5,11)可以确定一个圆. 23.(1)证明:连接OD ,∴∠BOD =2∠DCB. 又∵∠A =2∠DCB , ∴∠A =∠DOB. 又∵∠A +∠B =90°, ∴∠DOB +∠B =90°. ∴∠BDO =90°. ∴OD ⊥AB.又∵点D 在⊙O 上, ∴AB 是⊙O 的切线.(2)解:过点O 作OM ⊥CD 于点M.∵OD =OE =BE =12BO ,∠BDO =90°,∴∠B =30°. ∴∠DOB =60°. ∴∠DCB =30°. ∴OC =2OM =2. ∴OD =2,BO =4. ∴由勾股定理得BD =2 3.(第24题)24.解:(1)相切.理由如下: 如图,连接OD. ∵AD 平分∠BAC , ∴∠1=∠2.∵OA =OD ,∴∠1=∠3. ∴∠2=∠3. ∴OD ∥AC.又∠C =90°,∴OD ⊥BC. 又∵点D 在⊙O 上, ∴BC 与⊙O 相切. (2)①设⊙O 的半径为r.∵AC =3,∠B =30°,∴AB =6. 又OA =OD =r ,∴OB =2r.∴2r +r =6,解得r =2.即⊙O 的半径是2.②由①得OD =2,OB =4,则BD =23,又易知∠DOE =60°,则S 阴影=S △OBD -S 扇形ODE =12×23×2-60π×22360=23-2π3. 25.解:(1)如图,点E 是桥拱所在圆的圆心.过点E 作EF ⊥AB 于点F ,延长EF 交⊙E 于点C ,连接AE , 则CF =20米.由垂径定理知,F 是AB 的中点,∴AF =FB =12AB =40米.设圆的半径是r ,由勾股定理,得AE 2=AF 2+EF 2=AF 2+(CE -CF)2,即r 2=402+(r -20)2.解得r =50. ∴桥拱的半径为50米.(第25题)(2)这艘轮船能顺利通过.理由如下:宽60米的轮船可通过拱桥的最大高度为图中MN 所示.连接EM ,EC 与MN 的交点为D ,设MD =30米. ∵DE ⊥MN ,∴DE =EM 2-DM 2=502-302=40(米). ∵EF =EC -CF =50-20=30(米), ∴DF =DE -EF =40-30=10(米). ∵10米>9米,∴这艘轮船能顺利通过. 26.(1)证明:如图①,连接OC. ∵直线EF 和⊙O 相切于点C , ∴OC ⊥EF. ∵AD ⊥EF , ∴OC ∥AD. ∴∠DAC =∠OCA. ∵OA =OC , ∴∠BAC =∠OCA. ∴∠DAC =∠BAC.(2)解:∵AD 和⊙O 相切于点A , ∴OA ⊥AD.∵AD ⊥EF ,OC ⊥EF ,∴∠OAD =∠ADC =∠OCD =90°. ∴四边形OADC 是矩形. ∵OA =OC ,∴矩形OADC 是正方形. ∴AD =OA.∵AB=2OA=10,∴AD=OA=5.(第26题)(3)解:存在,∠BAG=∠DAC.证明如下:如图②,连接BC.∵AB是⊙O的直径,∴∠BCA=90°.∴∠ACD+∠BCG=90°.∵∠ADC=90°,∴∠ACD+∠DAC=90°.∴∠DAC=∠BCG.∵∠BCG=∠BAG,∴∠BAG=∠DAC.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十四章达标测试卷一、选择题(每题3分,共30分)1.如图,A,B,C是⊙O上的三点,且∠ABC=70°,则∠AOC的度数是() A.35°B.140°C.70°D.70°或140°(第1题)(第2题)(第3题)(第4题)2.如图,⊙O的直径AB=4,点C在⊙O上,∠ABC=30°,则AC的长是() A.1 B. 2 C. 3 D.23.如图,在平面直角坐标系中,以原点为圆心,半径为5的圆内有一点P(0,-3),那么经过点P的所有弦中,最短的弦的长为()A.4 B.5 C.8 D.104.如图,P A,PB是⊙O的切线,A,B是切点,点C是劣弧AB上的一点,若∠P=40°,则∠ACB等于()A.80°B.110°C.120°D.140°5.在矩形ABCD中,AB=8,BC=35,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD的长为半径的圆,那么下列判断正确的是() A.点B,C均在圆P外B.点B在圆P外,点C在圆P内C.点B在圆P内,点C在圆P外D.点B,C均在圆P内6.在△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的全面积是()A.25 π B.65 π C.90 π D.130 π7.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧,其中正确的有( )A .4个B .3个C .2个D .1个8.如图,某宾馆大厅要铺圆环形的地毯,工人师傅只测量了与小圆相切的大圆的弦AB 的长,就计算出了圆环的面积,若测量得AB 的长为20 m ,则圆环的面积为( )A .10 m 2B .10 π m 2C .100 m 2D .100 π m 2(第8题)(第9题) (第10题)9.如图,在⊙O 内有折线OABC ,其中OA =8,AB =12,∠A =∠B =60°,则BC 的长为( )A .19B .16C .18D .2010.如图,Rt △ABC 的内切圆⊙O 与两直角边AB ,BC 分别相切于点D ,E ,过劣弧D E(不包括端点D ,E)上任一点P 作⊙O 的切线MN ,与AB ,BC 分别交于点M ,N ,若⊙O 的半径为r ,则Rt △MBN 的周长为( )A .r B.32r C .2r D.52r二、填空题(每题3分,共24分)11.如图,已知点A ,B ,C 在⊙O 上,AC ∥OB ,∠BOC =40°,则∠ABO =________.(第11题) (第14题)(第16题)(第17题)12.用反证法证明:“△ABC 中至少有两个锐角”,第一步假设为____________________.13.已知圆的半径是23,则该圆的内接正六边形的面积是________.14.如图,点A,B,C,D都在⊙O上,∠ABC=90°,AD=3,CD=2,则⊙O 的直径的长是________.15.已知圆锥形工件的底面直径是40 cm,母线长30 cm,其侧面展开图圆心角的度数为________.16.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD =6,则BC=________.(第18题)17.如图,四边形OABC是菱形,点B,C在以点O为圆心的弧EF上,且∠1=∠2,若扇形O EF的面积为3π,则菱形OABC的边长为________.18.如图,在平面直角坐标系中,直线l对应的函数解析式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2;以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3;以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4……按此做法进行下去,其中P2017O2018的长为________.三、解答题(19~21题每题8分,25题12分,其余每题10分,共66分)(第19题)19.如图,四边形ABDC是⊙O的内接四边形,AB是⊙O的直径,OD⊥BC于E.(1)请你写出四个不同类型的正确结论;(2)若B E=4,AC=6,求D E的长.20.如图,AB是⊙O的切线,A为切点,AC是⊙O的弦,过O作O H⊥AC于H.若O H=2,AB=12,BO=13.求:(1)⊙O的半径;(2)AC的长.(第20题)21.如图,AD是⊙O的弦,AB经过圆心O,交⊙O于另一点C,∠A=∠B=30°.(1)直线BD是否与⊙O相切,为什么?(2)连接CD,若CD=5,求AB的长.(第21题)22.如图,P A,PB是⊙O的切线,A,B为切点,AC是⊙O的直径,AC,PB的延长线相交于点D.(1)若∠1=20°,求∠APB的度数.(2)当∠1为多少度时,OP=OD?并说明理由.(第22题)︵23.如图,AB是⊙O的切线,B为切点,圆心O在AC上,∠A=30°,D为BC的中点.求证:(1)AB=BC;(2)四边形BOCD是菱形.(第23题)24.如图,以等边三角形ABC一边AB为直径的⊙O与边AC,BC分别交于点D,E,过点D作D F⊥BC,垂足为点F.(1)求证:D F为⊙O的切线;(2)若等边三角形ABC的边长为4,求D F的长;(3)求图中阴影部分的面积.(第24题)25.如图,菱形ABCD的顶点A,B在x轴上,点A在点B的左侧,点D在y 轴的正半轴上,∠BAD=60°,点A的坐标为(-2,0).(1)求直线AD对应的函数解析式;(2)动点P从点A出发,以每秒1个单位长度的速度,按照A→D→C→B→A的顺序在菱形的边上匀速运动一周,设运动时间为t秒,当t为何值时,以点P 为圆心、以1为半径的圆与对角线AC相切?(第25题)答案一、 1.B 2.D 3.C 4.B 5.C 6.C7.B 8.D 9.D 10.C二、11.20° 12.△ABC 中至多有一个锐角13.183 14.13 15.240°16.6 17.3 18.22 015π三、19.解:(1)四个不同类型的正确结论分别为:∠ACB =90°;B E =C E ;BD ︵=CD ︵;OD ∥AC .(答案不唯一)(2)∵OD ⊥BC ,B E =4,∴B E =C E =4,∴BC =2B E =8.∵AB 为⊙O 的直径,∴∠ACB =90°.在Rt △ABC 中,AC =6,BC =8,根据勾股定理得:AB =10.∴OB =5.∴OD =OB =5.在Rt △OB E 中,OB =5,B E =4,根据勾股定理得:O E =3.∴D E =OD -O E =5-3=2.20.解:(1)连接OA ,∵AB 是⊙O 的切线,A 为切点,∴OA ⊥AB .在Rt △AOB 中,AO =OB 2-AB 2=132-122=5, ∴⊙O 的半径为5.(2)∵O H ⊥AC ,∴在Rt △AO H 中,A H =AO 2-OH 2=52-22=21.又∵O H ⊥AC ,∴AC =2A H =221.21.解:(1)直线BD 与⊙O 相切.理由:连接OD .∵OA =OD ,∴∠ODA =∠A =30°.∴∠ODB =180°-∠ODA -∠A -∠B =180°-30°-30°-30°=90°,即OD ⊥BD .∴直线BD 与⊙O 相切.(2)由(1)知,∠ODA =∠A =30°.∴∠DOB =∠ODA +∠A =60°.又∵OC =OD ,∴△DOC 是等边三角形.∴OC =OD =OA =CD =5.又∵∠B =30°,∠ODB =90°,∴OB =2OD =10.∴AB =OA +OB =5+10=15.22.解:(1)∵P A 是⊙O 的切线,∴P A ⊥OA ,∴∠BAP =90°-∠1=70°.又∵P A ,PB 是⊙O 的切线,∴P A =PB ,∴∠ABP =∠BAP =70°.∴∠APB =180°-70°×2=40°.(2)当∠1=30°时,OP =OD .理由:当∠1=30°时,由(1)知∠BAP =∠ABP =60°,∴∠APB =180°-60°×2=60°.∵P A ,PB 是⊙O 的切线,∴∠OPB =12∠APB =30°.又∵∠D =∠ABP -∠1=60°-30°=30°,∴∠OPB =∠D ,∴OP =OD .23.证明:(1)∵AB 是⊙O 的切线,B 为切点,∴∠OBA =90°,∴∠AOB =90°-30°=60°.∵OB =OC ,∴∠OBC =∠OCB .又∵∠AOB =∠OBC +∠OCB ,∴∠OCB =30°=∠A .∴AB =BC .(2)连接OD 交BC 于点M .∵D 是BC ︵的中点,∴OD 垂直平分BC .∴BM =CM ,OD ⊥BC .在Rt △OMC 中,∵∠OCM =30°,∴OC =2OM =OD ,∴OM =DM .∴四边形BOCD 是平行四边形.又∵OD ⊥BC ,∴四边形BOCD 是菱形.24.(1)证明:连接DO ,∵△ABC 是等边三角形,∴∠A =∠C =60°.∵OA =OD ,∴△OAD 是等边三角形,∴∠ADO =60°.∵D F ⊥BC ,∴∠CD F =90°-∠C =30°,∴∠F DO =180°-∠ADO -∠CD F =90°,∴D F 为⊙O 的切线.(2)解:∵△OAD 是等边三角形,∴AD =AO =12AB =2,∴CD =AC -AD =2.在Rt △CD F 中,∵∠CD F =30°,∴C F =12CD=1.∴D F =CD 2-CF 2= 3.(3)解:连接O E ,易知△E OB 是等边三角形,由(2)同理可知C E =2,∵C F =1,∴EF =1.又∵∠DO E =180°-∠AOD -∠E OB =60°,∴S 直角梯形F DO E =12(EF +OD )·D F =332,S 扇形O E D =60π×22360=2π3,∴S 阴影=S 直角梯形F DO E -S 扇形O E D =332-2π3.25.解:(1)∵点A 的坐标为(-2,0),∠BAD =60°,∠AOD =90°,∴OA =2,∠ADO =30°,∴AD =2OA =4.∴OD =23,∴点D 的坐标为(0,23).设直线AD 对应的函数解析式为y =kx +b ,则⎩⎨⎧-2k +b =0,b =23,解得⎩⎨⎧k =3,b =2 3.∴直线AD 对应的函数解析式为y =3x +2 3.(2)如图,∵四边形ABCD是菱形,∠BAD=60°,(第25题)∴∠1=∠2=∠3=∠4=30°,AD=DC=CB=BA=4.①点P在AD上时,AP1=2r=2,∴t1=2.②点P在DC上时,CP2=2r=2,∴AD+DP2=6,∴t2=6.③点P在BC上时,CP3=2r=2,∴AD+DC+CP3=10,∴t3=10.④点P在AB上时,AP4=2r=2,∴AD+DC+CB+BP4=14,∴t4=14,∴当t=2,6,10,14时,以点P为圆心、以1为半径的圆与对角线AC相切.。

相关文档
最新文档