材力第7章 弯曲变形分析
材料力学第2版 课后习题答案 第7章 弯曲变形
250
−qx l⎞ ⎛ 9l 3 − 24lx 2 + 16 x 3 ) ⎜ 0 ≤ x ≤ ⎟ ( 384 EJ 2⎠ ⎝ − ql ⎛l ⎞ y2 = −l 3 + 17l 2 x − 24lx 2 + 8 x 3 ) ⎜ ≤ x ≤ l ⎟ ( 384 EJ ⎝2 ⎠
y1 =
41ql 4 ( x = 0.25l ) 1536 EJ 5ql 4 ⎛l⎞ y⎜ ⎟ = − 768EJ ⎝2⎠
习 题 7-1 用积分法求图示各悬臂梁自由端的挠度和转角,梁的抗弯刚度EI为常量。
7-1 (a) M( x) = M 0
∴ EJy '' = M 0 1 EJy ' = M 0 x + C EJy = M 0 x 2 + Cx + D 2 边界条件: x = 0 时 y = 0 ; y' = 0
代入上面方程可求得:C=D=0
(c)
l−x q0 l q0 1 3 ⎛l−x⎞ M ( x) = − q( x) ( l − x ) ⎜ ⎟ = − ( l − x) 2 6l ⎝ 8 ⎠ q 3 ∴ EJy '' = 0 ( l − x ) 6l q 4 EJy ' = − 0 ( l − x ) + C 24l q 5 EJy = 0 ( l − x ) + Cx + D 120l y = 0 ; y' = 0 边界条件: x = 0 时 q( x) =
)
(c)解:
q0 x l q x2 EJy ''' = 0 + C 2l q0 x3 '' EJy = + Cx + D 6l q x 4 Cx 2 EJy ' = 0 + + Dx + A 24l 2 q0 x5 Cx 3 Dx 2 ' EJy = + + + Ax + B 120l 6 2 ⎧y=0 ⎧y=0 边界条件: x = 0 ⎨ '' x = l ⎨ '' ⎩y = 0 ⎩y = 0 ql D=0 ∴C = − 0 6 7q l 3 A= 0 B=0 360 EJy '''' =
材料力学第七章课后题答案 弯曲变形
(a) (b)
7
该梁的位移边界条件为:
在x 0处, w0 dw 在x 0处, 0 dx 将条件(c)与(d)分别代入式(b)和(a),得 D 0,C 0 4.建立挠曲轴方程 将所得 C 与 D 值代入式(b),得挠曲轴的通用方程为
1 Fa 2 F 3 3Fa [ x x xa EI 4 6 4 由此得 AC 段、 CD 段和 DB 段的挠曲轴方程依次为 w
5.计算 wC 和 θ B 将 x a 代入上述 w1或w2 的表达式中,得截面 C 的挠度为
41qa 4 ( ) 240EI 将以上所得 C 值和 x 2a 代入式(a),得截面 B 的转角为 wC θB qa 3 7 4 16 1 187 203qa 3 [ ] EI 24 24 24 720 720 EI ()
(4)
D1 0 , C1
由条件(4) 、式(a)与(c) ,得
qa 3 12 EI
C2
由条件(3) 、式(b)与(d) ,得
qa 3 3EI
D2
7qa 4 24 EI
3. 计算截面 C 的挠度与转角 将所得积分常数值代入式(c)与(d) ,得 CB 段的转角与挠度方程分别为
q 3 qa 3 x2 6 EI 3EI 3 q qa 7 qa 4 4 w2 x2 x2 24 EI 3EI 24 EI 将 x2=0 代入上述二式,即得截面 C 的转角与挠度分别为
5.计算 wC 和 θ B 将 x a 代入上述 w1 或 w2 的表达式中,得截面 C 的挠度为
Fa 3 ( ) 12 EI 将以上所得 C 值和 x 3a 代入式(a),得截面 B 的转角为 wC
材料力学面试重点概念36题
材料力学面试重点概念36题第一章绪论1.什么是强度、刚度、稳定性?答:(1)强度:抵抗破坏的能力(2)刚度:抵抗变形的能力(3)稳定性:细长压杆不失稳。
2、材料力学中的物性假设是?答:(1)连续性;物体内部的各物理量可用连续函数表示。
(2)均匀性:构件内各处的力学性能相同。
(3)各向同性:物体内各方向力学性能相同。
3.材料力学与理论力学的关系答:相同点:材力与理力:平衡问题,两者相同不同点:理论力学描述的是刚体,而材料力学描述的是变形体。
4.变形基本形式有答:拉伸或压缩、剪切、扭转、弯曲。
5.材料力学中涉及到的内力有哪些?通常用什么方法求解内力?答:(1)轴力,剪力,弯矩,扭矩。
(2)用截面法求解内力。
6,变形可分为?答:1)、弹性变形:解除外力后能完全消失的变形2)、塑性变形:解除外力后不能消失的永久变形7,什么是切应力互等定理答:受力构件内任意一点两个相互垂直面上,切应力总是成对产生,它们的大小8,什么是纯剪切?答:单元体各侧面上只有切应力而无正应力的受力状态,称为纯剪切应力状态。
9、材料力学中有哪些平面假设1)拉(压)杆的平面假设实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。
2)圆轴扭转的平面假设实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。
横截面上正应力为零。
3)纯弯曲梁的平面假设实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维;正应力成线性分布规律。
第二、三章轴向拉压应力表嘻10、轴向拉伸或压缩有什么受力特点和变形特点。
答:(1)受力特点:外力的合力作用线与杆的轴线重合。
(2)变形特点:沿轴向伸长或缩短。
11,什么叫强度条件?利用强度条件可以解决哪些形式的强度问题?要使杆件能正常工作,杆内(构件内)的最大工作应力不超过材料的许用应力,即≤[σ],称为强度条件。
σmax=F NmaxA利用强度条件可以解决:1)结构的强度校核;2)结构的截面尺寸设计;3)估算结构所能承受的最大外荷载。
木材力学性能(参考)
及含水率有关。
(3)蠕变与松弛对工程的影响
(4)木材蠕变特性研究简介
木材的蠕变特性曲线是一 粘弹性曲线。
(t ) J (t ) 0
木材的蠕变变形由三个部 分组成:
第一部分 是由木材内部高度结晶的微纤丝构架而引起的 弹性变形,这种变形是瞬间完成;
(4)木材蠕变特性研究简介
第二部分是链段的伸展而 引起的延迟弹性 变形,这种变形 是随时间而变化 的; 第三部分是高分子的相 互滑移引起的 粘性流动。
木材横纹抗压强度测定试样与受力方向 1-径向全部抗压 2-径向局部抗压
针叶材及阔叶树环孔材径向受压 时应力与应变间的关系
5.2.3 木材的抗弯强度
5.2.3.1 木梁承受弯曲荷载时应力的分布特点 木材抗弯强度是指木材承受逐渐施加弯曲荷载的最大能力, 可以用曲率半径的大小来度量。它与树种、树龄、部位、含 水率和温度等有关。 木材抗弯强度亦称静曲强度,或弯曲强度,是重要的木材力 学性质之一,主要用于家具中各种柜体的横梁、建筑物的桁 架、地板和桥梁等易于弯曲构件的设计。静力荷载下,木材 弯曲特性主要决定于顺纹抗拉和顺纹抗压强度之间的差异。 因为木材承受静力抗弯荷载时,常常因为压缩而破坏,并因 拉伸而产生明显的损伤。对于抗弯强度来说,控制着木材抗 弯比例极限的是顺纹抗压比例极限时的应力,而不是顺纹抗 拉比例极限时应力。
材料力学习题册1-14概念答案
第一章绪论之迟辟智美创作一、是非判断题1.1 资料力学的研究方法与理论力学的研究方法完全相同.( ×)1.2 内力只作用在杆件截面的形心处. ( × )1.3 杆件某截面上的内力是该截面上应力的代数和.( × )1.4 确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况. ( ∨)1.5 根据各向同性假设,可认为资料的弹性常数在各方向都相同. ( ∨ )1.6 根据均匀性假设,可认为构件的弹性常数在各点处都相同. ( ∨ )1.7 同一截面上正应力σ与切应力τ必相互垂直. ( ∨)1.8 同一截面上各点的正应力σ肯定年夜小相等,方向相同. (×)1.9 同一截面上各点的切应力τ必相互平行.(×)1.10 应变分为正应变ε和切应变γ. ( ∨)1.11 应酿成无量纲量. ( ∨)1.12 若物体各部份均无变形,则物体内各点的应变均为零.( ∨)1.13 若物体内各点的应变均为零,则物体无位移.(×)1.14 平衡状态弹性体的任意部份的内力都与外力坚持平衡. ( ∨ )1.15 题1.15图所示结构中,AD 杆发生的变形为弯曲与压缩的组合变形.( ∨)1.16 题1.16图所示结构中,AB 杆将发生弯曲与压缩的组合变形.(×)二、. 1.2 1.3 剪切的受力特征是,变形特征是.1.4 扭转的受力特征是,变形特征是. 1.5 弯曲的受力特征是,变形特征是. 1.6 组合受力与变形是指. 1.7 构件的承载能力包括,和三个方面. 所谓,是指资料或构件抵当破坏的能力.所谓,是指构件抵当变形的能力.所谓,是指资料或构件坚持其原有平衡形B题5图 题6图 外力的合力作用线通过杆轴线 杆件 应力应变 沿杆轴线伸长或缩短 受一对等值,反向,作用线距离很近的力的作用 沿剪切面发生相对错动外力偶作用面垂直杆轴线 任意二横截面发生绕杆轴线的相对转动 外力作用线垂直杆轴线,外力偶作用面通过杆轴线 梁轴线由直线酿成曲线 包括两种或两种以上基本变形的组合 强度 刚度 稳定性强度 刚度 稳定性式的能力.1.9 根据固体资料的性能作如下三个基本假设,,.认为固体在其整个几何空间内无间隙地布满了组成该物体的物质,这样的假设称为.根据这一假设构件的、和就可以用坐标的连续函数来暗示.填题 1.11图所示结构中,杆1发生变形,杆2发生变形,杆3发生变形. 1.12 下图 (a)、(b)、(c)分别为构件内某点处取出的单位体,变形后情况如虚线所示,则单位体(a)的切应变γ=;单位体(b)的切应变γ=;单位体(c)的切应变γ=.三、选择题 ABC ,作用力P 后移至AB ’C ’,但右半段BCDE 的形状不发生变动.试分析哪一种谜底正确.1、AB 、BC 两段都发生位移.2、AB 、BC 两段都发生变形. α>βα αα α α β (a)(b)(c) 填题1.11图 ’ 连续性 均匀性 各向同性连续性假设 应力 应变 变形拉伸 压缩 弯曲2α α-β 0正确谜底是1.1.2 选题1.2图所示等截面直杆在两端作用有力偶,数值为M,力偶作用面与杆的对称面一致.关于杆中点处截面A —A在杆变形后的位置(对左端,由 A’—A’暗示;对右端,由A”—A”暗示),有四种谜底,试判断哪一种谜底是正确的.正确谜底是C.1.3 等截面直杆其支承和受力如图所示.关于其轴线在变形后的位置(图中虚线所示),有四种谜底,根据弹性体的特点,试分析哪一种是合理的.正确谜底是C .第二章拉伸、压缩与剪切一、是非判断题因为轴力要按平衡条件求出,所以轴力的正负与坐标轴的指向一致. (×)2.2 轴向拉压杆的任意截面上都只有均匀分布的正应力.( × ) 2.3 强度条件是针对杆的危险截面而建立的.( ×)2.4. 位移是变形的量度.( × )2.5 甲、乙两杆几何尺寸相同,轴向拉力相同,资料分歧,2.6 空心圆杆受轴向拉伸时,在弹性范围内,其外径与壁厚的变形关系是外径增年夜且壁厚也同时增年夜. ( × )已知低碳钢的σp =200MPa ,E =200GPa ,现测得试件上的应变ε=0.002,则其应力能用胡克定律计算为:σ=Eε=200×103×0.002=400MPa. ( × )2.9 图示三种情况下的轴力图是不相同的. ( × )的三个等分点.在杆件变形过程中,此三点的位移相等. ( × )2.11考虑. ( × )连接件发生的挤压应力与轴向压杆发生的压应力是不相同的.( ∨ )二、填空题2.1 轴力的正负规定为.2.2 受轴向拉伸或压缩的直杆,其最年夜正应力位于横截面,计算公式为,最年夜切应力位于450截面,计算公式拉力为正,压力为负 maxmax )(A F N =σmax max max )(A F N 22==στ为.2.3 拉压杆强度条件中的不等号的物理意义是最年夜工作应力σmax不超越许用应力[σ],强度条件主要解决三个方面的问题是(1)强度校核;(2)截面设计;(3)确定许可载荷.2.4 轴向拉压胡克定理的暗示形式有2种,其应用条件是σmax≤σp.2.5 由于平安系数是一个__年夜于1_____数,因此许用应力总是比极限应力要___小___.2.6 两拉杆中,A1=A2=A;E1=2E2;υ1=2υ2;若ε1′=ε2′(横向应变),则二杆轴力F N1_=__F N2.2.7 低碳钢在拉伸过程中依次暗示为弹性、屈服、强化、局部变形四个阶段,其特征点分别是σp,σe,σs,σb.衡量资料的塑性性质的主要指标是延伸率δ、断面收缩率ψ.2.9 延伸率δ=(L1-L)/L×100%中L1指的是拉断后试件的标距长度.2.10 塑性资料与脆性资料的判别标准是塑性资料:δ≥5%,脆性资料:δ<5%.图示销钉连接中,2t2>t1,销钉的切应力τ=2F/πd2,销钉的最年夜挤压应力σbs =F/dt1.螺栓受拉力F 作用,尺寸如图.若螺栓资料的拉伸许用应力为[σ],许用切应力为[τ],按拉伸与剪切等强度设计,螺栓杆直径d 与螺栓头高度h 的比值应取d/h =4[τ]/[σ].木榫接头尺寸如图示,受轴向拉力F 作用.接头的剪切面积A =hb ,切应力τ=F/hb ;挤压面积A bs =cb ,挤压应力σbs =F/cb .两矩形截面木杆通过钢连接器连接(如图示),在轴向力F 作用下,木杆上下两侧的剪切面积A =2lb ,切应力τ=F/2lb ;挤压面积A bs =2δb ,挤压应力σbs =F/2δb . 挤压应力作用在构件的外概况,一般不是均匀分布;压杆中的压应力作用在杆的横截面上且均匀分布.2.16图示两钢板钢号相同,通过铆钉连接,钉与板的钢号分歧.对铆接头的强度计算应包括:铆钉的剪切、挤压计算;钢板的挤压和拉伸强度计算. 若将钉的排列由(a )改为(b ),上述计算中发生改变的是.对(a )、(b )两种排列,铆接头能接受较年夜拉力的是(a ).(建议画板的轴力图分析)三、选择题钢板的拉伸强度计算为提高某种钢制拉(压)杆件的刚度,有以下四种办法:(A) 将杆件资料改为高强度合金钢; (B) 将杆件的概况进行强化处置(如淬火等);(C) 增年夜杆件的横截面面积; (D) 将杆件横截面改为合理的形状.正确谜底是C甲、乙两杆,几何尺寸相同,轴向拉力F 相同,资料分歧,它们的应力和变形有四种可能:(Al 都相同;(B) l 相同;(C l 分歧;(D) △l 分歧.正确谜底是C长度和横截面面积均相同的两杆,一为钢杆,另一为铝杆,在相同的轴向拉力作用下,两杆的应力与变形有四种情况;(A )铝杆的应力和钢杆相同,变形年夜于钢杆; (B) 铝杆的应力和钢杆相同,变形小于钢杆;(C )铝杆的应力和变形均年夜于钢杆; (D) 铝杆的应力和变形均小于钢杆.正确谜底是A∵ E s > E a在弹性范围内尺寸相同的低碳钢和铸铁拉伸试件,在同样载(A;(B(C(D)不能确定.正确谜底是B2.5 等直杆在轴向拉伸或压缩时,横截面上正应力均匀分布是根据何种条件得出的.(A)静力平衡条件;(B)连续条件;(C)小变形假设;(D平面假设及资料均匀连续性假设.正确谜底是D第三章扭转一、是非判断题3.1 单位体上同时存在正应力和切应力时,切应力互等定理不成立. (×)3.2 空心圆轴的外径为D、内径为d,其极惯性矩和扭转截面系数分别为×)∵E ms > E ci3.3 资料分歧而截面和长度相同的二圆轴,在相同外力偶作用下,其扭矩图、切应力及相对扭转角都是相同的. ( ×)3.4 连接件接受剪切时发生的切应力与杆接受轴向拉伸时在斜截面上发生的切应力是相同的. ( ×)二、填空题3.1 图示微元体,已知右侧截面上存在与z 方向成θ 角的切应力τ,试根据切应力互等定理画出另外五个面上的切应力.3.2 试绘出圆轴横截面和纵截面上的扭转切应力分布图.3.3 坚持扭矩不变,长度不变,圆轴的直径增年夜一倍,则最年夜切应力τmax 是原来的1/ 8倍,单位长度扭转角是原来的1/ 16倍.两根分歧资料制成的圆轴直径和长度均相同,所受扭矩也相同,两者的最年夜切应力_________相等 __,单位长度扭转_分歧___ _______. 3.5 的适用范围是等直圆轴; τmax ≤τp .y对实心轴和空心轴,如果二者的资料、长度及横截面的面积相同,则它们的抗扭能力空心轴年夜于实心轴;抗拉(压)能力相同.3.7 当轴传递的功率一按时,轴的转速愈小,则轴受到的外力偶距愈__年夜__,当外力偶距一按时,传递的功率愈年夜,则轴的转速愈 年夜.3.8两根圆轴,一根为实心轴,直径为D 1,另一根为空心轴,内径为d 2,外径为D 2,.3.9 等截面圆轴上装有四个皮带轮,合理安插应为D 、C 轮位置对换.3.10 图中T3.1145º螺旋面断裂;图(c ),发生非常年夜的扭角后沿横截面断开;图(d ),概况呈现纵向裂纹.据此判断试件的资840134.-=α料为,图(b ):灰铸铁;图(c ):低碳钢,图(d ):木材.若将一支粉笔扭断,其断口形式应同图(b ).三、选择题3.1 图示圆轴,已知GI p ,当m 为何值时,自由真个扭转角为零. (B )A. 30 N ·m ;B. 20 N ·m ;C. 15 N ·m ;D. 10 N ·m .3.2 三根圆轴受扭,已知资料、直径、扭矩均相同,而长度分别为L ;2L ;4L ,则单位扭转角θ必为 D .A.第一根最年夜;B.第三根最年夜;C.第二根为第一和第三之和的一半; D.相同.3.3 实心圆轴和空心圆轴,它们的横截面面积均相同,受相同扭转作用,则其最年夜切应力 是 C .AD. 无法比力.α= d /D 的空心圆轴,扭转时横截面上的最年夜切应力为τ,则内圆周处的切应力为 B .实空)()(t t W W >A. τ;B. ατ;C. (1-α3)τ;D. (1-α4)τ;3.5 满足平衡条件,但切应力超越比例极限时,下列说法正确的是D.A B C D切应力互等定理:成立不成立不成立成立剪切虎克定律:成立不成立成立不成立3.6 在圆轴扭转横截面的应力分析中,资料力学研究横截面变形几何关系时作出的假设是C.A.资料均匀性假设; B.应力与应酿成线性关系假设;C.平面假设.3.7 图示受扭圆轴,若直径d不变;长度l不变,所受外力偶矩M不变,仅将资料由钢酿成铝,则轴的最年夜切应力(E),轴的强度(B),轴的扭转角(C),轴的刚度(B).A.提高 B.降低 C.增年夜 D.减小 E.不变第四章弯曲内力一、是非判断题4.1 杆件整体平衡时局部纷歧定平衡. (×)4.2 不论梁上作用的载荷如何,其上的内力都按同一规律变动. (×)4.3 任意横截面上的剪力在数值上即是其右侧梁段上所有荷载的代数和,向上的荷载在该截面发生正剪力,向下的荷载在该截面发生负剪力. (×)4.4 若梁在某一段内无载荷作用,则该段内的弯矩图肯定是一直线段. (∨)简支梁及其载荷如图所示,假想沿截面 m-m将梁截分为二,若取梁的左段为研究对象,则该截面上的剪力和弯矩与q、M无关;若取梁的右段为研究对象,则该截面上的剪力和弯矩与F无关.(×)二、填空题4.1 外伸梁ABC接受一可移动的载荷如图所示.设F、l均为已知,为减小梁的最年夜弯矩值则外伸段的合理长度∵Fa = F(l - a) / 4a=l/5.4.2 图示三个简支梁接受的总载荷相同,但载荷的分布情况分歧.在这些梁中,最年夜剪力F Qmax=F/2;发生在三个梁的支座截面处;最年夜弯矩M max=F l/4;发生在(a)梁的C 截面处.三、选择题4.1 梁受力如图,在B 截面处D .A. F s 图有突变,M 图连续光滑; B . F s 图有折角(或尖角),M 图连续光滑;C . F s 图有折角,M 图有尖角;D . F s 图有突变,M 图有尖角.4.2 图示梁,剪力即是零截面位置的x 之值为D .A. 5a /6;B. 5a /6;C. 6a /7;D. 7a /6.在图示四种情况中,截面上弯矩 M 为正,剪力F s 为负的是(B).在图示梁中,集中力F 作用在固定于截面B 的倒 L 刚臂上.梁上最年夜弯矩 M max 与 C 截面上弯矩M C 之间的关系是B .题图 BFCAqxqa BaC3a 题图qAF sMF sMF sF s M(A)(B) (C) (D)4.5 在上题图中,如果使力 F 直接作用在梁的C 截面上,则梁上maxM与max s F 为C .A .前者不变,后者改变B .两者都改变C .前者改变,后者不变D .两者都不变附录I 平面图形的几何性质一、是非判断题 I.1静矩即是零的轴为对称轴.(× )I.2 在正交坐标系中,设平面图形对y 轴和z 轴的惯性矩分别为I y 和I z ,则图形对坐标原点的极惯性矩为I p = I y 2+ I z 2. ( × )I.3 若一对正交坐标轴中,其中有一轴为图形的对称轴,则图形对这对轴的惯性积一定为零.∵M C =F D a = 2 a F/ 3 M max = F D 2a = 4 a F/32F /3F /3(∨)二、填空题I.1 任意横截面对形心轴的静矩即是___0________.I.2 在一组相互平行的轴中,图形对__形心_____轴的惯性矩最小.三、选择题I.1 矩形截面,C 为形心,阴影面积对z C其余部份面积对z C 轴的静矩为(S z )B ,(S z )间的关系正确的是D .A. (S z )A >(S z )B ;B. (S z )A <(S z )B ;C.(S z )A =(S z )B ;D. (S z )A =-(S z )B .I.2 图示截面对形心轴z C 的W Zc A. bH 2/6-bh 2/6;B. (bH 2/6)〔1-(h /H )3〕;C. (bh 2/6)〔1-(H /h )3〕;D. (bh 2/6)〔1-(H /h )4〕.I.3 已知平面图形的形心为C ,面积为 A ,对z 轴的 惯性矩为I z ,则图形对在z 1轴的惯性矩正确的是D .选题图C选题图yA. I z+b2A;B. I z+(a+b)2A;C. I z+(a2-b2) A;D. I z+( b2-a2) A.第五章弯曲应力一、是非判断题5.1 平面弯曲变形的特征是,梁在弯曲变形后的轴线与载荷作用面同在一个平面内. (∨)5.2 在等截面梁中,正应力绝对值的最年夜值│σ│max必呈现在弯矩值│M│ma最年x夜的截面上.(∨)静定对称截面梁,无论何种约束形式,其弯曲正应力均与资料的性质无关. (∨)二、填空题5.1 直径为d 的钢丝绕在直径为D 的圆筒上,若钢丝仍处于弹性范围内,此时钢丝的最年夜弯曲正应力σmax =;为了减小弯曲正应力,应减小___钢丝___的直径或增年夜 圆筒的直径.5.2 圆截面梁,坚持弯矩不变,若直径增加一倍,则其最年夜正应力是原来的1/8倍.5.3 横力弯曲时,梁横截面上的最年夜正应力发生在截面的上下边缘处,梁横截面上的最年夜切应力发生在中性轴处.矩形截面的最年夜切应力是平均切应力的3/2倍.5.4 矩形截面梁,若高度增年夜一倍(宽度不变),其抗弯能力为原来的4倍;若宽度增年夜一倍(高度不变),其抗弯能力为原来的2倍;若截面面积增年夜一倍(高宽比不变),其抗弯能力为原来的倍.5.5 从弯曲正应力强度的角度考虑,梁的合理截面应使其资料分布远离中性轴.5.6 两梁的几何尺寸和资料相同,按正应力强度条件,(B )AB(a )dD Ed dD E +=⨯+12222(b)第六章 弯曲变形一、是非判断题6.1正弯矩发生正转角,负弯矩发生负转角. ( ×)6.2 弯矩最年夜的截面转角最年夜,弯矩为零的截面上转角为零. ( × )6.3 弯矩突变的处所转角也有突变. ( × )6.4 弯矩为零处,挠曲线曲率必为零. ( ∨ )6.5 梁的最年夜挠度必发生于最年夜弯矩处. ( × )二、填空题6.1 梁的转角和挠度之间的关系是 .6.2 梁的挠曲线近似微分方程的应用条件是 等直梁、线弹性范围内和小变形.6.3 画出挠曲线的年夜致形状的根据是 约束和弯矩图.判断挠曲线的凹凸性与拐点位置的根据是 弯矩的正负;正负弯矩的分界处.6.4 用积分法求梁的变形时,梁的位移鸿沟条件及连续性条)()(,x w x =θ件起确定积分常数的作用.6.5 梁在纯弯时的挠曲线是圆弧曲线,但用积分法求得的挠曲线却是抛物线,其原因是用积分法求挠曲线时,用的是挠曲线近似方程.6.6 两悬臂梁,其横截面和资料均相同,在梁的自由端作用有年夜小相等的集中力,但一梁的长度为另一梁的2倍,则长梁自由真个挠度是短梁的8倍,转角又是短梁的4倍.6.7 应用叠加原理的条件是线弹性范围内和小变形.6.8 试根据填题6.8图所示载荷及支座情况,写出由积分法求解时,积分常数的数目及确定积分常数的条件.积分常数6个;支承条件w A = 0,θA = 0,w B = 0.连续条件是w CL = w CR ,w BL = w BR,θBL = θBR.6.9试根据填题6.9图用积分法求图示挠曲线方程时,需应用的支承条件是w A = 0,w B = 0,w D = 0;连续条件是w CL = w CR ,w BL = w BR,θBL = θBR.填题图填题图一、是非判断题7.1纯剪应力状态是二向应力状态. (∨)7.2 一点的应力状态是指物体内一点沿某个方向的应力情况.(×)轴向拉(压)杆内各点均为单向应力状态. (∨)7.4单位体最年夜正应力面上的切应力恒即是零. (∨)7.5 单位体最年夜切应力面上的正应力恒即是零. (×)7.6 等圆截面杆受扭转时,杆内任一点处沿任意方向只有切应力,无正应力. (×)7.7 单位体切应力为零的截面上,正应力必有最年夜值或最小值. (×)7.8 主方向是主应力所在截面的法线方向. (∨)7.9 单位体最年夜和最小切应力所在截面上的正应力,总是年夜小相等,正负号相反.(×)一点沿某方向的正应力为零,则该点在该方向上线应变也必为零. (×) 二、填空题7.1 一点的应力状态是指过一点所有截面上的应力集合,一点的应力状态可以用单位体和应力圆暗示,研究一点应力状态的目的是解释构件的破坏现象;建立复杂应力状态的强度条件.7.2 主应力是指主平面上的正应力;主平面是指τ=0的平面三对相互垂直的平面上τ= 0的单位体.7.3 对任意单位体的应力,那时是单向应力状态;当时是二向应力状态;那时是三向应力状态;那时是纯剪切应力状态.7.4 在二个主应力相等的情况下,平面应力状态下的应力圆退化为一个点圆;在纯剪切情况下,平面应力状态下的应力圆的圆心位于原点;在单向应力状态情况下,平面应力状态下的应力圆与τ轴相切.7.5 应力单位体与应力圆的对应关系是:点面对应;转向相同;转角二倍.三个主应力中有二个不为0三个主应力都不为0单位体各正面上只有切应力7.6 对图示受力构件,试画出暗示A 点应力状态的单位体.C .A. 15 MPaB. 65 MPaC. 40 MPaD. 25 MPa图示各单位体中(d )为单向应力状态, (a )为纯剪应力状态.(a) (b) (c) (d)7.3 单位体斜截面上的正应力与切应力的关系中A . A. 正应力最小的面上切应力必为零; B. 最年夜切应力面上的正应力必为零; C. 正应力最年夜的面上切应力也最年夜; D. 最年夜切应力面上的正应力却最小.第八章组合变形一、是非判断题8.1 资料在静荷作用下的失效形式主要有脆性断裂和塑性屈服两种. (∨)8.2 砖、石等脆性资料的试样在压缩时沿横截面断裂.(×)8.3 在近乎等值的三向拉应力作用下,钢等塑性资料只可能发生断裂. (∨)8.4 分歧的强度理论适用于分歧的资料和分歧的应力状态.(∨)8.5 矩形截面杆接受拉弯组合变形时,因其危险点的应力状态是单向应力,所以不用根据强度理论建立相应的强度条件. ( ∨ )8.6 圆形截面杆接受拉弯组合变形时,其上任一点的应力状态都是单向拉伸应力状态.( ×)8.7拉(压)弯组合变形的杆件,横截面上有正应力,其中性轴过形心. (×)8.8设计受弯扭组合变形的圆轴时,应采纳分别按弯曲正应力强度条件及扭转切应力强度条件进行轴径设计计算,然后取二者中较年夜的计算结果值为设计轴的直径.(×)8.9 弯扭组合圆轴的危险点为二向应力状态.(∨)8.10立柱接受纵向压力作用时,横截面上只有压应力.偏心压缩呢?(×)二、填空题8.1铸铁制的水管在冬季常有冻裂现象,这是因为σ1>0且远远年夜于σ2,σ3;σbt 较小.8.2 将沸水倒入厚玻璃杯中,如果发生破坏,则必是先从外侧开裂,这是因为外侧有较年夜拉应力发生且σbt 较小.8.3 弯扭组合构件杆件资料应为8.4塑性资料制的圆截面折杆及其受力如图所示,杆的横截面面积为A ,抗弯截面模量为W ,则图(a)的危险点在A (b)的危险点在AB 段内任意截面的后边缘点,对应的强度条件为;试分别画出两图危险点的应力状态.所有受( × )[]σ≤+Z W Fa Fl 22)()([]σ≤Z[]σ≤ F(b)(a)C上下在临界载荷作用下,压杆既可以在直线状态坚持平衡,也可引起压杆失稳的主要原因是外界的干扰力. (×)所有两端受集中轴向力作用的压杆都可以采纳欧拉公式计算其临界压力. ( × )两根压杆,只要其资料和柔度都相同,则他们的临界力和临界应力也相同. ( × )临界压力是压杆丧失稳定平衡时的最小压力值.( ∨ )用同一资料制成的压杆,其柔度(长细比)愈年夜,就愈容易失稳.( ∨ )9.8 只有在压杆横截面上的工作应力不超越资料比例极限的前提下,才华用欧拉公式计算其临界压力. ( × )9.9 满足强度条件的压杆纷歧定满足稳定性条件;满足稳定性条件的压杆也纷歧定满足强度条件.( ∨ )低碳钢经过冷作硬化能提高其屈服极限,因而用同样的方法也可以提高用低碳钢制成的细长压杆的临界压力. ( ×)二、填空题 压杆的柔度λ综合地反映了压杆的对临界应力的影响. 柔度越年夜的压杆,其临界应力越小,越容易失稳.长度(l ),约束(μ),横截面的形状和年夜小(i )有应力集中时22)(l EI F cr μπ=影响细长压杆临界力年夜小的主要因素有E ,I ,μ,l . 如果以柔度λ的年夜小对压杆进行分类,则当λ≥λ1的杆称为年夜柔度杆,当λ2 <λ<λ1的杆称为中柔度杆,当λ≤λ2的杆称为短粗杆.年夜柔度杆的临界应力用欧拉公式计算,中柔度杆的临界应力用经验公式计算,短粗杆的临界应力用强度公式计算.两端为球铰支承的压杆,其横截面形状分别如图所示,试画出压杆失稳时横截面绕其转动的轴. 两根细长压杆的资料、长度、横截面面积、杆端约束均相同,一杆的截面形状为正方(矩)形,另一杆的为圆形,则先丧失稳定的是圆截面的杆. 三、选择题9.1 图示a ,b ,c,d 四桁架的几何尺寸、圆杆的横截面直径、资料、加力点及加力方向均相同.关于四行架所能接受的最年夜外力F Pmax 有如下四种结论,则正确谜底是A .(a)(c)(e)22λπσE cr =λσb a cr -=)(cr σσσ=I min 的轴34144126412222244πππππ=⨯⨯⨯⨯==d d a a d a I I R S / RS I I >∴(A(B(C(D9.2同样资料、同样截面尺寸和长度的两根管状细长压杆两端由球铰链支承,接受轴向压缩载荷,其中,管a内无内压作用,管b内有内压作用.关于二者横截面上的真实应力σ(a)与σ(b)、临界应力σcr(a)与σcr(b)之间的关系,有如下结论.则正确结论是.(A)σ(a)>σ(b),σcr(a)=σcr(b);(B)σ(a)=σ(b),σcr(a)<σcr(b)(C)σ(a)<σ(b),σcr(a)<σcr(b); (D)σ(a)<σ(b),σcr(a)=σcr(b)9.3 提高钢制细长压杆承载能力有如下方法.试判断哪一种是最正确的.(A)减小杆长,减小长度系数,使压杆沿横截面两形心主轴方向的长细比相等;(B)增加横截面面积,减小杆长;(C)增加惯性矩,减小杆长;(D)采纳高强度钢.A正确谜底是A .9.4 圆截面细长压杆的资料及支领情况坚持不变,将其横向及轴向尺寸同时增年夜1倍,压杆的A .(A )临界应力不变,临界力增年夜;(B )临界应力增年夜,临界力不变;(C )临界应力和临界力都增年夜; (D )临界应力和临界力都不变.第十章 动载荷一、是非题只要应力不超越比例极限,冲击时的应力和应变仍满足虎克定律. (∨)凡是运动的构件都存在动载荷问题. (×) 能量法是种分析冲击问题的精确方法. (× ) 不论是否满足强度条件,只要能增加杆件的静位移,就能提高其抵当冲击的能力.(×) 二、填空题10.1 图示各梁的资料和尺寸相同,但支承分歧,受相同的冲击载荷,则梁内最年夜冲击应力由年夜到小的排列顺序是(a)、(c)、(b).应在弹性范围内22λπσE cr =dlil ⋅=⋅=μμλ4夜一倍时,梁内的最年夜动应力增年夜倍?当H 增年夜一倍时,梁内的最年夜动应力增年夜倍?当L 增年夜一倍时,梁内的最年夜动应力增年夜倍?当b 增年夜一倍时,梁内的最年夜动应力增年夜倍?11.1 构件在交变应力下的疲劳破坏与静应力下的失效实质是相同的. ( ×)11.2 通常将资料的耐久极限与条件疲劳极限统称为资料的疲劳极限. ( ∨)11.3 资料的疲劳极限与强度极限相同. ( × )11.4 资料的疲劳极限与构件的疲劳极限相同. ( ×)(a)(b)(c)P121-lHEPb b Pl Pl HEb WPl EI Pl H H K st stst d d 32343223343===∆==max max max σσσ 1)P 增年夜一倍时: 2)H 增年夜一倍时:3)l 增年夜一倍时:4)b 增年夜一倍时: maxmax'd d σσ21=。
弯曲应力(剪应力6月9日)(1)
[1 12
16
283
16
28
(14
13)2 ]
[1 12
8 103
18 10
(19
13)2 ]
26200cm4
Wz
Iz ym a x
26200 (28 13)
1748cm3
(3)正应力校核
max
M Wz
1.2 105 1748 106
1.0 1.04 1.12 1.57 2.30
(四)切应力强度条件
max
(
FQ Sz,max
I z
)max
[
]
对于等宽度截面, m ax发生在中性轴上;对于宽度变化的截面,
m ax不一定发生在中性轴上。
在进行梁的强度计算时,需注意以下问题: (1)对于细长梁的弯曲变形,正应力的强度条件是主要的,剪应
S
* z
:y以外面积对中性轴的静矩
I z :整个截面对中性轴的惯性矩
b:y处的宽度
c
yc
y
z h
b
对于矩形:
S* z
A*
yc
b(h 2
y) [ y
h 2
2
y
]
b (h2 24
y2)
弯曲应力/弯曲时的剪应力
而
Iz
1 bh3 12
6FQ bh3
( h2 4
y2)
力的强度条件是次要的。但对于较粗短的梁,当集中力较大 时,截面上的剪力较大而弯矩较小,或是薄壁截面梁时,也 需要较核剪应力强度。
材料力学试卷答案
一、低碳钢试件的拉伸图分为、、、四个阶段。
(10分)二、三角架受力如图所示。
已知F=20kN,拉杆BC采用Q235圆钢,[σ钢]=140MPa,压杆AB采用横截面为正方形的松木,[σ木]=10MPa,试用强度条件选择拉杆BC的直径d和压杆AB的横截面边n=180 r/min,材料的许用四、试绘制图示外伸梁的剪力图和弯矩图,q、a均为已知。
(15分)2五、图示为一外伸梁,l=2m,荷载F=8kN,材料的许用应力[σ]=150MPa,试校核该梁的正应力强度。
(15分)=200mm。
b=180mm,h=300mm。
求σmax和σmin。
(15分)八、图示圆杆直径d =100mm ,材料为Q235钢,E =200GPa , p =100,试求压杆的临界力F cr 。
1)答案及评分标准一、 弹性阶段、屈服阶段、强化阶段、颈缩断裂阶段。
评分标准:各2.5分。
二、 d =15mm; a =34mm .评分标准:轴力5分,d结果5分,a结果5分。
三、τ=87.5MPa, 强度足够.评分标准:T 3分,公式4分,结果3分。
四、评分标准:受力图、支座反力5分,剪力图5分,弯矩图5分。
五、σmax=155.8MPa>[σ]=100 MPa ,但没超过许用应力的5%,安全.评分标准:弯矩5分,截面几何参数3分,正应力公式5分,结果2分。
六、(1)σ1=141.42 MPa,σ=0,σ3=141.42 MPa;(2)σr4=245 MPa。
评分标准:主应力5分,相当应力5分。
七、σmax=0.64 MPa,σmin=-6.04 MPa。
评分标准:内力5分,公式6分,结果4分。
1..5qaF S图M图F S图——+M图qa2qa2/2八、Fc r =53.39kN评分标准:柔度3分,公式5分,结果2分。
一、什么是强度失效、刚度失效和稳定性失效?二、如图中实线所示构件内正方形微元,受力后变形 为图中虚线的菱形,则微元的剪应变γ为 ? A 、 α B 、 α-090C 、 α2900- D 、 α2答案:D三、材料力学中的内力是指( )。
材料力学教程-7.弯曲变形
根据需要,对数据进行计算、 绘图等处理,以便更好地理解 和分析实验结果。
结果分析
结合实验数据和理论分析,评 估材料的弯曲性能,并探讨影 响材料弯曲性能的因素。
结论总结
总结实验结果,得出结论,并 提出改进和优化材料弯曲性能
的建议。
04
弯曲变形的工程应用实例
桥梁的弯曲变形分析
总结词
桥梁的弯曲变形分析是确保桥梁安全的重要环节,通过分析桥梁在不同载荷下的弯曲变形程度,可以评估桥梁的 承载能力和安全性。
转角
梁在弯曲变形后,其横截 面绕其中性轴旋转的角度 称为转角。转角是衡量梁 横截面旋转程度的量。
弯曲变形的物理关系
弯矩
由于外力作用在梁上,使梁产生弯曲变形的力矩 称为弯矩。弯矩是引起梁弯曲变形的力。
剪力
在梁弯曲变形过程中,垂直于轴线的横向剪切力 称为剪力。剪力使梁产生剪切变形。
扭矩
当外力作用在梁的某一侧时,会使梁产生扭转变 形,这种使梁产生扭转变形的力矩称为扭矩。
详细描述
高层建筑由于其高度和规模,对风载和地震等外部载荷非常敏感。因此,在高层建筑设 计阶段,需要进行详细的弯曲变形分析。这包括对建筑物的整体结构和各个楼层在不同 载荷下的弯曲变形进行模拟和分析,以确保建筑物在各种外部载荷下的安全性和稳定性。
机械零件的弯曲变形分析
要点一
总结词
机械零件的弯曲变形分析是确保机械系统正常运行的关键 环节。通过对机械零件在不同工作载荷下的弯曲变形进行 分析,可以优化零件的设计和加工工艺,提高其工作性能 和寿命。
通过实例分析和习题练习,学生可以加深对弯曲 变形的理解,提高解决实际问题的能力。
弯曲变形的未来研究方向
弯曲变形的非线性行为
材料力学弯曲变形
材料力学弯曲变形
材料力学中的弯曲变形是指物体在受到外力作用下发生的一种变形形式。
当材料受到垂直于其长度方向的外力时,会产生弯矩,使得物体产生弯曲变形。
弯曲变形的原理可以通过材料力学中的悬臂梁模型进行解释。
在悬臂梁中,一个固定的端点支撑着一根梁,梁的另一端受到外力作用,使得梁产生弯曲。
在悬臂梁的弯曲变形中,梁上部的纤维受到拉力,而下部的纤维受到压力。
由于力的作用,纤维之间会相互滑动,从而产生弯曲变形。
弯曲变形可以通过材料的弹性性质进行描述。
弯曲变形的程度取决于材料的弯曲刚度,即弹性模量,以及外力的大小和作用点的位置。
与拉伸变形不同,弯曲变形的应变分布不是均匀的,而是随着离中轴线的距离而变化。
中轴线上的纤维经历的应变为零,而离中轴线较远的纤维经历的应变较大。
弯曲变形是材料工程中常见的一种变形形式,它在很多结构中都会发挥作用。
例如,在桥梁和楼板等结构中,弯曲变形可以帮助承受外部荷载并保持结构的稳定性。
在材料设计和工程应用中,科学家和工程师常常要考虑材料的弯曲性能,以确保结构的强度和稳定性。
材料力学弯曲内力
材料力学弯曲内力材料力学是研究物质受力和变形的科学。
在工程学中,材料力学的应用非常广泛,其中弯曲内力是一个重要的研究对象。
弯曲内力是指在材料受到外力作用下,产生的弯曲应力和弯曲应变。
了解和分析材料的弯曲内力对于工程设计和材料选用具有重要意义。
首先,我们来了解一下弯曲内力的产生原因。
在工程结构中,由于外力的作用,材料会产生弯曲变形,这时就会产生弯曲内力。
弯曲内力的大小和方向取决于外力的大小、作用点的位置以及材料的几何形状和材料性质。
在工程实践中,我们需要通过理论分析和实验测试来确定材料的弯曲内力,以便进行结构设计和材料选用。
其次,我们需要了解弯曲内力的计算方法。
在弯曲内力的计算中,我们通常采用弯矩和剪力图的方法。
弯矩图是描述材料在受弯曲作用下,不同位置上的弯矩大小和方向的图形,而剪力图则是描述材料在受弯曲作用下,不同位置上的剪力大小和方向的图形。
通过分析弯矩和剪力图,我们可以得到材料在不同位置上的弯曲内力大小和方向,从而进行合理的结构设计和材料选用。
此外,材料的弯曲内力还与材料的强度和刚度密切相关。
在工程设计中,我们需要根据材料的弯曲内力来选择合适的材料,以保证结构的安全性和稳定性。
一般来说,材料的抗弯强度和弯曲刚度越大,其受力性能越好,适用范围也越广。
因此,在工程实践中,我们需要充分考虑材料的强度和刚度对弯曲内力的影响,从而进行合理的材料选用和结构设计。
最后,我们需要注意弯曲内力对材料的影响。
在工程实践中,弯曲内力会对材料的疲劳寿命、变形性能和使用安全性产生重要影响。
因此,我们需要通过理论分析和实验测试来充分了解材料的弯曲内力特性,从而进行合理的结构设计和材料选用,以保证工程结构的安全可靠性。
总之,材料力学弯曲内力是工程设计和材料选用中的重要内容。
了解和分析材料的弯曲内力对于工程实践具有重要意义。
通过深入研究材料的弯曲内力特性,我们可以更好地进行结构设计和材料选用,从而保证工程结构的安全可靠性。
材料力学 第七章 弯曲变形
,
FA
3FP 4
(↑)
3FP
FP
FC
FP 4
(↑)
4
4
明德行远 交通天下
材料力学
(2)分段列梁的弯矩方程
AB段:
M1(x)
3 4
FP x
0x l 4
3
l
BC段:
M 2 ( x)
4
FP x
-
FP (x
-
) 4
l xl 4
(3)积分法求梁的挠曲线
挠曲线近似微分方程
EI
d 2w1 dx2
=
-
M1(x)
-
wC- wC
P
A (b)
图(b): wA 0 A 0
或写成w C
左
wC右
光滑条件
C- C
或写成 C 左 C 右
明德行远 交通天下
材料力学
讨论: ①适用于小变形、线弹性材料、细长构件的平面弯曲。 ②可求解各种载荷作用下等截面或变截面梁上任意位置处的位移。 ③积分常数由挠曲线变形的几何相容条件(边界条件、光滑连续条件)确定。 ④优点:使用范围广,直接求出较精确; 缺点:计算较繁。
(2)
EIzw=EIz = -
q(x)dx3
1 2
C1x2
C2
x
C3
(3)
明德行远 交通天下
材料力学
例题7-1如图所示,受集中荷载的简支梁AC。已知EI、l、FP。试写出梁的挠 度方程和转角方程,并求截面A和C处的转角及B截面处的挠度。
明德行远 交通天下
y
FP
A
B
θA wB
l 4
EI
3l 4
C
θC
材料力学梁的弯曲变形第3节 用叠加法求梁的变形
M ( x) y EI
• 叠加原理:当梁为小变形时,梁的挠度和转角均是 载荷的线性函数,可以使用叠加法计算梁的转角和 挠度,即梁在几个载荷同时作用下产生的挠度和转 角等于各个载荷单独作用下梁的挠度和转角的叠加 和,这就是计算梁弯曲变形的叠加原理。 • 叠加原理的步骤: ①分解载荷;②分别计算各载荷 单独作用时梁的变形;③叠加得最后结果。 • 梁在简单载荷作用下的变形,可查表8-1。
5ql yCq 38EI 3 3 ql ql Aq Bq 24EI 24EI
4
+
查表 6-1 得 M 单独作用时梁跨中点 C 的挠度、支座 A、B 处的转角分别为:
y CM
Ml 2 16 EI
AM
Ml 6 EI
4
BM
Ml 3EI
(2)运用叠加原理,得
qx 3 y (l 2lx 2 x3 ) 24EI
ql3 A B 24EI 5ql 4 l x ymax 2 384EI
例6-5 悬臂梁AB上作用有均布载荷q,自由端作 用有集中力F = ql,梁的跨度为l,抗弯刚度为EI,如 图所示。试求截面B的挠度和转角。
3
补充例 悬臂梁跨度为 l =2m,截面为矩形,宽b = 100mm,高h =120mm,材料的弹性模量E=210GPa, 梁上载荷如图所示,求自由端A的挠度。 解: 1)分解载荷 2)查表分别得到三种载荷 引起自由端A的挠度
5ql Ml 2 3.91 mm yC yCq yCM ( ) 384 EI 16 EI 3 ql Ml o A Aq AM 1.19 (顺时针) 24 EI 6 EI
B Bq BM
复合材料力学答案
复合材料力学答案【篇一:材料力学】教程第二版 pdf格式下载单辉祖主编本书是单辉祖主编《材料力学教程》的第2版。
是根据高等工业院校《材料力学教学基本要求》修订而成。
可作为一般高等工业院校中、少学时类材料力学课程的教材,也可作为多学时类材料力学课程基本部分的教材,还可供有关工程技术人员参考。
内容简介回到顶部↑本教村是普通高等教育“十五”国家级规划教材。
. 本教材仍保持第一版模块式的特点,由《材料力学(Ⅰ)》与《材料力学(Ⅱ)》两部分组成。
《材料力学(Ⅰ)》包括材料力学的基本部分,涉及杆件变形的基本形式与组合形式,涵盖强度、刚度与稳定性问题。
《材料力学(Ⅱ)》包括材料力学的加深与扩展部分。
本书为《材料力学(Ⅱ)》,包括非对称弯曲与特殊梁能量法(二)、能量法(二)、静不定问题分析、杆与杆系分析的计算机方法、应力分析的实验方法、疲劳与断裂以及考虑材料塑性的强度计算等八章。
各章均附有复匀题与习题,个别章还安排了利用计算机解题的作业。
..与第一版相同,本教材具有论述严谨、文字精炼、重视基础与应用、重视学生能力培养、专业面宽与教学适用性强等特点,而且,在选材与论述上,特别注意与近代力学的发展相适应。
本教材可作为高等学校工科本科多学时类材料力学课程教材,也可供高职高专、成人高校师生以及工程技术人员参考。
以本教材为主教材的相关教学资源,尚有《材料力学课堂教学多媒体课件与教学参考》、《材料力学学习指导书》、《材料力学网上作业与查询系统》与《材料力学网络课程》等。
...作译者回到顶部↑本书提供作译者介绍单辉祖,北京航空航天大学教。
1953年毕业于华东航空学院飞机结构专业,1954年在北京航空学院飞机结构专业研究生班学习。
1992—1993年,在美国特拉华大学复合材料中心.从事合作研究。
.历任教育部工科力学教材编审委员、国家教委工科力学课程指导委员会委员、中国力学学会教育工作委员会副主任委员、北京航空航天大学校务委员会委员、校学科评审组成员与校教学指导委员会委员等。
材料力学试卷及答案
一、低碳钢试件的拉伸图分为、、、四个阶段。
(10分)二、三角架受力如图所示。
已知F=20kN,拉杆BC采用Q235圆钢,[钢]=140MPa,压杆AB采用横截面为正方形的松木,[木]=10MPa,试用强度条件选择拉杆BC的直径d和压杆AB的横截面边长a。
(15分)三、实心圆轴的直径D=60 mm。
传递功率P=70 kW,轴的转速n=180 r/min,材料的许用切应力[]=100 MPa,试校核该轴的强度。
(10分)四、试绘制图示外伸梁的剪力图和弯矩图,q、a均为已知。
(15分)qa a2qa2 qaABC五、图示为一外伸梁,l=2m,荷载F=8kN,材料的许用应力[]=150MPa,试校核该梁的正应力强度。
(15分)FCAB六、单元体应力如图所示,试计算主应力,并求第四强度理论的相当应力。
(10分)七、图示矩形截面柱承受压力F 1=100kN 和F 2=45kN 的作用,F 2与轴线的偏心距e =200mm 。
b =180mm , h =300mm 。
求max和min。
(15分)σx =100MPaτx =100MPaσy =100MPalllFAB DC4F 100m m100mm60mm八、图示圆杆直径d =100mm ,材料为Q235钢,E =200GPa ,p=100,试求压杆的临界力F cr 。
(10分)《材料力学》试卷(1)答案及评分标准一、 弹性阶段、屈服阶段、强化阶段、颈缩断裂阶段。
评分标准:各 2.5分。
二、 d =15mm; a =34mm .评分标准:轴力5分, d 结果5分,a 结果5分。
三、 =87.5MPa, 强度足够.评分标准:T 3分,公式4分,结果3分。
四、评分标准:受力图、支座反力5分,剪力图5分,弯矩图5分。
五、max =155.8MPa >[]=100 MPa ,但没超过许用应力的5%,安全. 评分标准:弯矩5分,截面几何参数 3分,正应力公式5分,结果2分。
理论力学中的圆环梁的弯曲分析
理论力学中的圆环梁的弯曲分析引言理论力学是研究物体受力学作用下运动和变形规律的学科,圆环梁则是一种常见的结构。
本文旨在对理论力学中的圆环梁的弯曲分析进行探讨,重点介绍圆环梁的基本原理、计算方法以及应用。
一、圆环梁的基本原理圆环梁是一种环形断面的梁材,在受到弯曲力作用下会发生变形。
为了研究圆环梁的弯曲分析,我们首先需要了解圆环梁的基本原理。
1.1 圆环梁受力特点在应用中,圆环梁常常承受径向负载和弯曲力矩。
与直线梁相比,圆环梁由于其特殊的断面形状,具有一些独特的受力特点,比如材料密度不均匀、分布不规则的孔洞等。
这些特点会影响到圆环梁的弯曲分析。
1.2 圆环梁的变形规律在受到弯曲力作用下,圆环梁会发生弯曲变形。
通过应变-位移关系和材料的本构关系,我们可以得到圆环梁的变形规律。
这对于圆环梁的弯曲分析具有重要意义。
二、圆环梁的计算方法在实际工程中,我们需要用到合适的计算方法来分析圆环梁的弯曲性能。
下面介绍两种常用的计算方法。
2.1 基于解析解的计算方法基于解析解的计算方法是指通过求解适当的微分方程,得到圆环梁的弯曲解析解。
这种方法在一些简单情况下可以得到较为准确的结果,但对于复杂情况则相对困难。
2.2 基于数值计算的计算方法基于数值计算的计算方法是指利用计算机进行离散化计算,对圆环梁的受力和变形进行数值模拟。
这种方法相对灵活,可以适用于各种复杂情况,但需要注意选取合适的数值计算模型和参数。
三、圆环梁的应用领域由于圆环梁具有独特的结构特点和力学行为,它在许多领域都有重要的应用。
3.1 圆环梁在建筑结构中的应用在建筑结构中,圆环梁常常应用于拱桥、建筑穹顶等。
通过对圆环梁的弯曲分析,可以确保结构的强度和稳定性。
3.2 圆环梁在机械设计中的应用在机械设计中,圆环梁常常用于轴承支撑、发动机悬挂等部件。
通过对圆环梁的弯曲分析,可以优化设计,提高机械系统的性能和可靠性。
结论本文对理论力学中的圆环梁的弯曲分析进行了探讨,介绍了圆环梁的基本原理、计算方法以及应用。
木材弯曲的计算公式
木材弯曲的计算公式在木材工程中,木材的弯曲性能是一个重要的参数。
木材在受到外部力作用时会发生弯曲变形,因此需要对其弯曲性能进行计算和分析。
本文将介绍木材弯曲的计算公式,以及对这些公式的应用和分析。
弯曲是指木材在受到外部力作用时,沿着纵向方向发生的曲线形变。
在木材工程中,弯曲性能是评价木材材料性能的重要指标之一。
通常情况下,我们需要通过一些计算公式来评估木材的弯曲性能。
在弯曲计算中,最常用的公式是梁的弯曲方程。
这个方程描述了梁在受到外部力作用时的弯曲变形情况。
梁的弯曲方程可以表示为:M = -EI(d^2y/dx^2)。
其中,M是梁的弯矩,E是梁的弹性模量,I是梁的惯性矩,y是梁的挠度,x 是梁的位置坐标。
在这个方程中,弯矩M是梁在受到外部力作用时的一个重要参数。
弹性模量E 是描述材料弹性性能的参数,惯性矩I描述了梁在弯曲时的截面形状。
挠度y描述了梁在弯曲时的形变情况,位置坐标x描述了梁上不同位置的弯曲情况。
通过这个弯曲方程,我们可以对木材的弯曲性能进行定量分析。
例如,我们可以通过测量木材的弹性模量和惯性矩等参数,然后将这些参数代入弯曲方程中,就可以计算出木材在受到外部力作用时的弯曲情况。
这对于木材的工程设计和使用具有重要的意义。
除了梁的弯曲方程之外,还有一些其他的公式可以用来计算木材的弯曲性能。
例如,对于梁的弯曲情况,我们还可以使用梁的挠度方程来描述梁在受到外部力作用时的挠度情况。
梁的挠度方程可以表示为:δ = (FL^3)/(3EI)。
其中,δ是梁的挠度,F是梁的受力,L是梁的长度,E和I同样是梁的弹性模量和惯性矩。
通过这个挠度方程,我们可以计算出木材在受到外部力作用时的挠度情况。
这对于评估木材的弯曲性能具有重要的意义。
例如,在木材的工程设计中,我们需要对木材的挠度进行合理的评估,以确保木材在使用过程中不会发生过大的变形。
除了上述的两个公式之外,还有一些其他的公式可以用来计算木材的弯曲性能。
例如,对于不同形状和材质的木材,我们还可以使用不同的弯曲方程来描述其弯曲性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AC段:
1(x)
1 EI
M1(x)dx
C1
1 EI
1 16
qlx2
C1
v1(x)
1 EI
1(x)dx
D1
1 EI
1 48
qlx3
C1x
D1
CB段:
2 (x)
1 EI
M 2 (x)dx
C2
1 EI
[1 16
qlx2
1 6
q(x
l 2
)3
]
C2
v2 (x)
1 EI
2 (x)dx
D2
1 EI
[1 48
7
【例7-1】 【解】
1)先求弯矩方程
AC段 CB段
b M 1 (x) l Px, (0 x a)
M
2
(x)
b l
Px
P(xC段
1 ( x)
1 EI
M1 ( x)dx
C1
Pbx2 2EIl
C1
v1(x)
1 ( x)dx
D1
1 EI
Pb 6l
x3
C1x
D1
CB段
2 ( x)
1 EI
M 2 (x)dx
C2
P EI
[b 2l
x2
1 2
(x
a)2 ]
C2
v2 (x)
2 (x)dx
D2
P EI
[b 6l
x3
1 6
(x
a)3] C2x
D2
2020年10月17日星期六
北京邮电大学自动化学院
8
【例7-1】 【解】
3)用边界条件和连续条件确定四
个积分常数C1、D1、C2、D2 。
北京邮电大学自动化学院
3
转角和挠曲线
v
变形前梁截面:平面
C v
P x
C1
dv(x) tan (x) (x)
dx
确定梁的位移,关键是确定挠曲线方程v(x)。
2020年10月17日星期六
北京邮电大学自动化学院
4
§7-2 小挠度曲线微分方程
1 M (x)
(x) EI
d 2v
1
dx 2
d 2v
(由于假设a>b,可以判断出 vmax将发生在AC段内) ,
解得:
x0
l2 b2 3
Pb(l 2 b 2 ) 3 / 2 vmax 9 3 lEI
2020年10月17日星期六
北京邮电大学自动化学院
10
【例7-2】
求图示简支梁的挠曲线方程,并求|v|max和|θ|max。
2020年10月17日星期六
D
M (x) EI
dxdx
Cx
D
其中C、D为积分常数,由边界条件和连续条件确定。 注意:积分是不定积分!
2020年10月17日星期六
北京邮电大学自动化学院
6
【例7-1】
简支梁AB受力如图所示(图中a > b)。求梁的转 角方程和挠度方程,并确定挠度的最大值。
2020年10月17日星期六
北京邮电大学自动化学院
查表9-1 课本P222
Pl 3 ml 3
qlx3
1 24
q(x
l )4] 2
C2 x
D2
2020年10月17日星期六
北京邮电大学自动化学院
13
(3)确定积分常数
【例7-2】 【解】
根据连续条件:
x
l 2
处,1
2;v1
v2
C1
C2; D1
D2
根据边界条件:
x 0; v1 0 D1 D2 0
x
l; v2
0
C1
C2
7ql3 784 EI
2020年10月17日星期六
北京邮电大学自动化学院
1
7 第
章
弯曲变形
(课本第9章的内容)
2020年10月17日星期六
北京邮电大学自动化学院
2
§7-1 梁的变形和位移
v
变形前梁截面:平面
C v
P x
C1
变形后梁轴线挠曲线
变形后梁截面:仍为平面
梁截面转角: ,正负定义
挠度:v ,正负定义
2020年10月17日星期六
北京邮电大学自动化学院
11
【例7-2】 【解】
(1)求支座反力,列弯矩方程
AC段:
0
x
l 2
,
M
1
(
x)
1 qlx 8
CB段:
l 2
x
l,
M2
(x)
1 8
qlx
1 2
q(x
l )2 2
2020年10月17日星期六
北京邮电大学自动化学院
12
【例7-2】 【解】
(2)列出挠曲线近似微分方程, 并进行积分
北京邮电大学自动化学院
15
1、范钦珊课本 习题9-3 P238 (C点改为滑动支座约束,作为 一道作业题,求最大转角和最 大挠度。)
2020年10月17日星期六
北京邮电大学自动化学院
16
1、蒋平课本 例11-2 P344 2、范钦珊课本 图9-13 P235
2020年10月17日星期六
北京邮电大学自动化学院
§7-4 用叠加法求梁的位移
在材料服从胡克定律和小变形的条件下,由小挠度 曲线微分方程得到的挠度和转角均与载荷成线性关 系。因此,当梁承受复杂载荷时,可将其分解成几 种简单载荷,利用梁在简单载荷作用下的位移计算 结果,叠加后得到梁在复杂载荷作用下的挠度和转 角,这就是叠加法。
2020年10月17日星期六
( x) [1 ( dv ) 2 ]3 / 2
dx 2
dx
d 2v M (x)
dx 2 EI
注意:坐标的选取与正负号的关系
2020年10月17日星期六
北京邮电大学自动化学院
5
§7-3 用积分法求梁的位移
梁的转角方程和挠度方程:
(x)
dv( x) dx
M (x) EI
dx
C
v(x)
( x)dx
2020年10月17日星期六
北京邮电大学自动化学院
14
【例7-3】 悬臂梁受力如 图所示.求梁的转角方程 和挠度方程,并确定最大 转角 和最大挠度。
边界条件的思考
【例7-4】简支梁在左端 支座处承受集中力偶作用, 如图所示.求梁的转角方 程和挠度方程,并确定最 大转角 和最大挠度。
2020年10月17日星期六
17
积分法求弯曲位移的解题步骤:
(1)用整体平衡条件求出梁的支座反力; (2)用截面法求出梁的弯矩方程; (3)对挠曲线近似微分方程进行不定积分得到转角
方程和挠度方程; (4)利用边界条件和连续条件确定积分常数; (5)求出设定截面的挠度和转角;
2020年10月17日星期六
北京邮电大学自动化学院
18
北京邮电大学自动化学院
19
【例7-5】
简支梁AB受力如图所示。试用叠加法求梁中 点的挠度 和A支座处的转角 。
2020年10月17日星期六
北京邮电大学自动化学院
20
vc vcP vcM
A AP AM
vcP
Pl3 48EI
AP
Pl3 16EI
vcm
ml3 16EI
Am
ml 3EI
【例7-5】【解】
边界条件 连续条件
vv12((0l ))
0 0
v1(a) v2 (a)
1(a) 2(a)
解得
D1 D2 0
C1
C2
1 EI
Pb (l 2 b 2 ) 6l
连续条件存在于分段的情况! 边界条件所有情况都存在!
2020年10月17日星期六
北京邮电大学自动化学院
9
【例7-1】 【解】
4)为求vmax , 令θ1(x)=0