精华:特殊平行四边形知识归纳和题型精讲

合集下载

特殊平行四边形知识点归纳

特殊平行四边形知识点归纳

特殊平行四边形知识点归纳1.对角线:特殊平行四边形的对角线分别连接了两对相对顶点,它们相交于一个点,并且该交点将对角线分为两个相等的部分。

2.平行线性质:特殊平行四边形的两对边分别是平行的。

根据平行线的性质,可以推论出特殊平行四边形的一些重要性质,如对边相等和内角和为180度。

3.对角线性质:特殊平行四边形的对角线相等,即对角线BD=AC。

这个性质可以通过两个相似三角形的性质证明得出。

4.垂直线性质:特殊平行四边形的对角线相交于一个垂直点,即∠BOC=90度。

这个性质可以通过垂直线的性质证明得出。

5.邻补角性质:特殊平行四边形的邻补角(共享一条边且内角和为180度的两个角)之和为180度。

这个性质可以通过平行线的性质证明得出。

6.夹角性质:特殊平行四边形的夹角(相邻且共享一条边的两个内角)之和为180度。

这个性质也可以通过夹角的定义和平行线的性质证明得出。

7.对角线中点连线性质:特殊平行四边形的对角线的中点分别连接,即中点E和F相连,则EF平行于对边AB和CD,并且EF=AB=CD。

这个性质可以通过对角线中点连线构造等腰直角三角形的性质证明得出。

特殊平行四边形的这些性质和概念在几何学中有着广泛的应用。

例如,在解决平行四边形的面积、周长、角度和边长等问题时,可以利用这些性质来求解。

特殊平行四边形还与三角形、四边形和多边形等几何图形的关系密切相关,在几何证明和问题求解中起着重要的作用。

总之,特殊平行四边形是一个重要的几何概念,它具有一系列的重要性质和应用。

通过深入理解这些知识点,并善于运用它们来解决问题,可以提高我们的几何学思维能力和分析问题的能力。

特殊的平行四边形章节知识点归纳(全)

特殊的平行四边形章节知识点归纳(全)

5. 矩形的性质
A
D
) )
O
B
C
(1)∵四边形 ABCD 是矩形
∴∠DAB=∠ABC =∠BCD=∠CDA=90°(

(2)∵四边形 ABCD 是矩形 ∴AC=BD( OA=OC= OB=OD(
) )
6. 矩形的判定
A
D
O
B
C
(1)∵四边形 ABCD 是平行四边形,且∠BAD=90°
∴□ABCD 是矩形(
(2)∵四边形 ABCD 是正方形
∴AC=BD(

AC⊥BD,且 OA=OC= OB=OD(
8. 正方形的判定
A
D
) )

O
B
C
(1)∵四边形 ABCD 是平行四边形,且∠BAD=90° ,AB=BC
∴□ABCD 是正方形(

(2)∵四边形 ABCD 是菱形,且∠BAD=90°
∴菱形 ABCD 是正方形(

(2)∵四边形 ABCD 是平行四边形,且 AC=BD
∴□ABCD 是矩形(

(3)∵∠DAB=∠ABC =∠BCD =90°
∴四边形 ABCD 是矩形(

7. 正方形的性质
A
D
O
B
C
(1)∵四边形 ABCD 是正方形 ∴AB= BC =CD=AD( ∠DAB=∠ABC =∠BCD=∠CDA=90°(
(正方形既是菱形也是矩形)
4. 菱形的判定:有一组邻边相等的平行四边形是菱形 对角线互相垂直的平行四边形是菱形; 四条边相等的四边形是菱形.
5. 矩形的判定:有一个角是直角的平行四边形是矩形 对角线相等的平行四边形是矩形; 有三个角是直角的四边形是矩形.

特殊的平行四边形知识梳理+典型例题

特殊的平行四边形知识梳理+典型例题

特殊的平行四边形知识点一:矩形1、概念有一个角是直角的平行四边形叫做矩形2、性质定理(1)矩形的四个角是直角(2)矩形的对角线相等且互相平分(3)矩形既是中心对称图形又是轴对称图形直角三角形的性质定理:直角三角形斜边上的中线等于斜边的一半特殊运用:直角三角形斜边上的中线等于斜边的一半3、判定定理(1)有一个角为直角的平行四边形叫矩形(2)对角线相等平行四边形为矩形(3)有三个角是直角的四边形是矩形推论:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形归纳补充:1、矩形是对称图形,对称中心是,矩形又是对称图形,对称轴有条2、矩形中常见题目是对角线相交成600或1200角时,利用直角三角形、等边三角形等图形的性质解决问题3、矩形的面积S矩形=长×宽=ab知识点二:菱形1、定义:一组邻边相等的平行四边形叫做菱形2、性质定理:(1)菱形的四条边都相等(2)菱形的对角线互相垂直平分,且每条对角线平分一组对角(3)菱形是轴对称图形,两条对角线所在的直线是都是它的对称轴菱形是中心对称图形,对角线的交点是它的对称中心2、判定定理:(1)一组邻边相等的平行四边形是菱形(2)对角线互相垂直的平行四边形是菱形(3)四条边都相等的四边形是菱形※注意:对角线互相垂直的四边形不一定是菱形,对角线互相垂直平分的四边形才是菱形归纳补充:1、菱形被对角线分成四个全等的三角形和两对全等的三角形2、菱形的面积可以用平行四边形面积公式计算,也可以用两对角线积的来计算3、菱形常见题目是内角为1200或600时,利用等边三角形或直角三角形的相关知识解决题目知识点三:正方形1、定义:有一组邻边相等的矩形叫正方形2、性质定理(1)正方形的四条边都相等,四个角是直角。

(2)正方形的两条对角线相等且互相垂直平分,每一组对角线平分一组对角(3)正方形既是中心对称图形,又是轴对称图形3、判定定理(1)有一组邻边相等的矩形是正方形(2)对角线相互垂直的矩形是正方形(3)对角线相等的菱形是正方形(4)有一个角是直角的菱形是正方形方法总结:(1)判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。

特殊的平行四边形初中数学知识点总结

特殊的平行四边形初中数学知识点总结

特别的平行四边形初中数学知识点总结一、特别的平行四边形1.矩形:(1)定义:有一个角是直角的平行四边形。

(2)性质:矩形的四个角都是直角;矩形的对角线均分且相等。

(3)判断定理:①有一个角是直角的平行四边形叫做矩形。

②对角线相等的平行四边形是矩形。

③有三个角是直角的四边形是矩形。

直角三角形的性质:直角三角形中所对的直角边等于斜边的一半。

2.菱形:(1)定义:邻边相等的平行四边形。

(2)性质:菱形的四条边都相等;菱形的两条对角线相互垂直,而且每一条对角线均分一组对角。

(3)判断定理:①一组邻边相等的平行四边形是菱形。

②对角线相互垂直的平行四边形是菱形。

③四条边相等的四边形是菱形。

(4)面积:3.正方形:(1)定义:一个角是直角的菱形或邻边相等的矩形。

(2)性质:四条边都相等,四个角都是直角,对角线相互垂直均分。

正方形既是矩形,又是菱形。

(3)正方形判断定理:①对角线相互垂直均分且相等的四边形是正方形;②一组邻边相等,一个角为直角的平行四边形是正方形;③对角线相互垂直的矩形是正方形;④邻边相等的矩形是正方形⑤有一个角是直角的菱形是正方形;⑥对角线相等的菱形是正方形。

二、矩形、菱形、正方形与平行四边形、四边形之间的联系:1.矩形、菱形和正方形都是特别的平行四边形,其性质都是在平行四边形的基础上扩大来的。

矩形是由平行四边形增添“一个角为90°”的条件获得的,它在角和对角线方面拥有比平行四边形更多的特征;菱形是由平行四边形增添“一组邻边相等”的条件获得的,它在边和对角线方面拥有比平行四边形更多的特征;正方形是由平行四边形增添“一组邻边相等”和“一个角为90°”两个条件获得的,它在边、角和对角线方面都拥有比平行四边形更多的特征。

2.矩形、菱形的判断能够依据出发点不一样而分红两类:一类是以四边形为出发点进行判断,另一类是以平行四边形为出发点进行判断。

而正方形除了上述两个出发点外,还能够从矩形和菱形出发进行判断。

特殊平行四边形知识点总结及题型

特殊平行四边形知识点总结及题型

特殊平行四边形知识点总结及题型特殊平行四边形知识点总结及题型特殊平行四边形是几何学中的重要概念,它包括矩形、菱形和正方形。

这些特殊平行四边形具有一些独特的性质和特征,它们在几何学、晶体学和工程学等领域都有广泛的应用。

本文将总结特殊平行四边形的定义、性质、判定方法和典型题型,以帮助读者更好地理解和掌握这些知识。

一、定义1、矩形:一个内角为直角的平行四边形叫做矩形。

2、菱形:一个内角为锐角的平行四边形叫做菱形。

3、正方形:内角均为直角的平行四边形叫做正方形。

二、性质1、对边平行且相等。

2、对角线互相平分且相等。

3、四个内角均为90度。

4、邻角互补。

5、对角线与邻边组成的三角形为等腰直角三角形。

三、判定方法1、矩形 (1) 内角为直角。

(2) 对边平行且相等。

2、菱形 (1) 内角为锐角。

(2) 对边平行且相等。

3、正方形 (1) 内角均为直角。

(2) 对边平行且相等。

四、典型题型1、求特殊平行四边形的角度和周长。

2、证明特殊平行四边形的性质和判定方法。

3、解决与特殊平行四边形相关的实际问题。

五、扩展知识1、空间几何中的特殊平行四边形,如空间双面平行四边形等。

2、立体几何中的特殊平行四边形,如平行六面体等。

3、相关知识点,如三角函数、向量等在特殊平行四边形中的应用。

总之,特殊平行四边形是一个具有丰富内容和广泛应用的知识点。

理解和掌握这些特殊形状的特点和性质,对于解决相关问题以及进一步学习几何学、物理学等学科都具有重要意义。

希望读者通过阅读本文,能够对这些特殊平行四边形的定义、性质、判定方法和典型题型有更深入的理解和掌握,为进一步学习打下坚实的基础。

平行四边形知识点总结平行四边形知识点总结一、定义平行四边形是一种几何图形,具有两条相互平行的对边和两条对角线。

它是人类生活中常见的形状,具有广泛的应用价值。

二、性质1、平行四边形的对边平行且相等。

2、平行四边形的对角相等。

3、平行四边形的内角和为360度。

新人教版初中数学——特殊的平行四边形-知识点归纳及中考典型题解析

新人教版初中数学——特殊的平行四边形-知识点归纳及中考典型题解析

新人教版初中数学——特殊的平行四边形知识点归纳及中考题型解析一、矩形的性质与判定1.矩形的性质:(1)四个角都是直角;(2)对角线相等且互相平分;(3)面积=长×宽=2S△ABD=4S△AOB.(如图)2.矩形的判定:(1)定义法:有一个角是直角的平行四边形;(2)有三个角是直角;(3)对角线相等的平行四边形.二、菱形的性质与判定1.菱形的性质:(1)四边相等;(2)对角线互相垂直、平分,一条对角线平分一组对角;(3)面积=底×高=对角线乘积的一半.2.菱形的判定:(1)定义法:有一组邻边相等的平行四边形;(2)对角线互相垂直的平行四边形;(3)四条边都相等的四边形.三、正方形的性质与判定1.正方形的性质:(1)四条边都相等,四个角都是直角;(2)对角线相等且互相垂直平分;(3)面积=边长×边长=2S△ABD=4S△AOB.2.正方形的判定:(1)定义法:有一个角是直角,且有一组邻边相等的平行四边形;(2)一组邻边相等的矩形;(3)一个角是直角的菱形;(4)对角线相等且互相垂直、平分.四、联系(1)两组对边分别平行;(2)相邻两边相等;(3)有一个角是直角;(4)有一个角是直角;(5)相邻两边相等;(6)有一个角是直角,相邻两边相等;(7)四边相等;(8)有三个角都是直角.五、中点四边形(1)任意四边形所得到的中点四边形一定是平行四边形.(2)对角线相等的四边形所得到的中点四边形是矩形.(3)对角线互相垂直的四边形所得到的中点四边形是菱形.(4)对角线互相垂直且相等的四边形所得到的中点四边形是正方形.考向一矩形的性质与判定1.矩形除了具有平行四边形的一切性质外,还具有自己单独的性质,即:矩形的四个角都是直角;矩形的对角线相等.2.利用矩形的性质可以推出直角三角形斜边中线的性质,即在直角三角形中,斜边上的中线等于斜边的一半.3.矩形的判定:有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形.典例1 如图,矩形ABCD的对角线交于点O,若∠BAO=55°,则∠AOD等于A.105°B.110°C.115°D.120°【答案】B【解析】∵四边形ABCD是矩形,∴OA=O B.∴∠BAO=∠ABO=55°.∴∠AOD=∠BAO+∠ABO=55°+55°=110°.故选B.典例2 如图,矩形ABCD的对角线AC与数轴重合(点C在正半轴上),AB=5,BC=12,点A表示的数是–1,则对角线AC、BD的交点表示的数A.5.5 B.5 C.6 D.6.5【答案】A【解析】连接BD交AC于E,如图所示:∵四边形ABCD是矩形,∴190,2B AE AC ∠==,∴13AC=,∴AE=6.5,∵点A表示的数是−1,∴OA=1,∴OE=AE−OA=5.5,∴点E表示的数是5.5,即对角线AC、BD的交点表示的数是5.5;故选A.1.如图,四边形ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是A .AB =BC B .AC 垂直BD C .∠A =∠C D .AC =BD2.如图,在平行四边形ABCD 中,对角线AC BD 、交于点O ,并且6015DAC ADB ∠=︒∠=︒,,点E 是AD 边上一动点,延长EO 交于BC 点F ,当点E 从点D 向点A 移动过程中(点E 与点D ,A 不重合),则四边形AFCE 的变化是A .平行四边形→菱形→平行四边形→矩形→平行四边形B .平行四边形→矩形→平行四边形→菱形→平行四边形C .平行四边形→矩形→平行四边形→正方形→平行四边形D .平行四边形→矩形→菱形→正方形→平行四边形考向二 菱形的性质与判定1.菱形除了具有平行四边形的一切性质外,具有自己单独的性质,即:菱形的四条边都相等; 菱形的对角线互相垂直,并且每一条对角线平分一组对角. 2.菱形的判定:四条边都相等的四边形是菱形; 对角线互相垂直的平行四边形是菱形.典例3 菱形具有而平行四边形不具有的性质是 A .两组对边分别平行 B .两组对边分别相等 C .一组邻边相等D .对角线互相平分【答案】C【解析】根据菱形的性质及平行四边形的性质进行比较,可发现A,B,D两者均具有,而C只有菱形具有平行四边形不具有,故选C.【名师点睛】有一组邻边相等的平行四边形是菱形.典例4如图,四边形ABCD的对角线互相垂直,且满足AO=CO,请你添加一个适当的条件_____________,使四边形ABCD成为菱形.(只需添加一个即可)【答案】BO=DO(答案不唯一)【解析】四边形ABCD中,AC、BD互相垂直,若四边形ABCD是菱形,需添加的条件是:AC、BD 互相平分(对角线互相垂直且平分的四边形是菱形).故答案为:BO=DO(答案不唯一).3.已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为A.45°,135°B.60°,120°C.90°,90°D.30°,150°4.如图,在△ABC中,AD是∠BAC的平分线,DE∥AC交AB于E,DF∥AB交AC于F,求证:四边形AEDF是菱形.考向三正方形的性质与判定1.正方形的性质=矩形的性质+菱形的性质.2.正方形的判定:以矩形和菱形的判定为基础,可以引申出更多正方形的判定方法,如对角线互相垂直平分且相等的四边形是正方形.证明四边形是正方形的一般步骤是先证出四边形是矩形或菱形,再根据相应判定方法证明四边形是正方形.典例5面积为9㎝2的正方形以对角线为边长的正方形面积为A.18㎝2B.20㎝2C.24㎝2D.28㎝2【答案】A【解析】∵正方形的面积为9cm2,∴边长为3cm,∴根据勾股定理得对角线长cm,∴以=2=18cm2.故选A.典例6如图,在△ABC中,∠B=90°,AB=BC=4,把△ABC绕点A逆时针旋转45°得到△ADE,过点C作CF⊥AE于F,DE交CF于G,则四边形ADGF的周长是A.8 B.C.D.【答案】D【解析】如图,连接AG,∵∠B=90°,AB=BC=4,∴∠CAB=∠ACB=45°,AC,∵把△ABC绕点A逆时针旋转45°得到△ADE,∴AD=AB=4,∠EAD=∠CAB=45°,∴∠FAB=90°,CD=AC﹣AD﹣4,∵∠B=90°=∠FAB,CF⊥AE,∴四边形ABCF是矩形,且AB=BC=4,∴四边形ABCF是正方形,∴AF=CF=AB=4=AD,∠AFC=∠FCB=90°,∴∠GCD =45°,且∠GDC =90°,∴∠GCD =∠CGD =45°,∴CD =GD ﹣4,∵AF =AD ,AG =AG ,∴Rt △AGF ≌Rt △AGD (HL ),∴FG =GD ﹣4,∴四边形ADGF 的周长=AF +AD +FG +GD ﹣﹣,故选D .5.如图,在正方形ABCD 内一点E 连接BE 、CE ,过C 作CF ⊥CE 与BE 延长线交于点F ,连接DF 、DE .CE =CF =1,DE ,下列结论中:①△CBE ≌△CDF ;②BF ⊥DF ;③点D 到CF 的距离为2;④S 四边形DECF +1.其中正确结论的个数是A .1B .2C .3D .46.如图,在正方形ABCD 中,,2BE FC CF FD ==,AE 、BF 交于点G ,下列结论中错误的是A .AE BF ⊥B .AE BF =C .43BG GE =D .ABGCEGF S S=四边形考向四 中点四边形1.中点四边形一定是平行四边形;2.中点四边形的面积等于原四边形面积的一半.典例7如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形【答案】D【解析】A.当E,F,G,H是四边形ABCD各边中点,且AC=BD时,存在EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B.当E,F,G,H是四边形ABCD各边中点,且AC⊥BD时,存在∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;C.如图所示,当E,F,G,H不是四边形ABCD各边中点时,若EF∥HG,EF=HG,则四边形EFGH 为平行四边形,故C正确;D.如图所示,当E,F,G,H不是四边形ABCD各边中点时,若EF=FG=GH=HE,则四边形EFGH 为菱形,故D错误,故选D.7.顺次连接下列四边形的四边中点所得图形一定是菱形的是A.平行四边形B.菱形C.矩形D.梯形8.如图,我们把依次连接任意四边形ABCD各边中点所得四边形EFGH叫中点四边形.若四边形ABCD的面积记为S1,中点四边形EFGH的面积记为S2,则S1与S2的数量关系是A.S1=3S2B.2S1=3S2C.S1=2S2D.3S1=4S21.如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=A.5 B.4 C.3.5 D.32.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AC=16,则图中长度为8的线段有A.2条B.4条C.5条D.6条3.如图,在长方形ABCD中,AB=3,BC=4,若沿折痕EF折叠,使点C与点A重合,则折痕EF 的长为A.158B.154C.152D.154.如图,菱形ABCD的对角线交于点O,AC=8 cm,BD=6 cm,则菱形的高为A.485cm B.245cm C.125cm D.105cm5.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是A.108°B.72°C.90°D.100°6.如图,在正方形ABCD中,点E,F分别在边BC,CD上,且BE=CF.连接AE,BF,AE与BF 交于点G.下列结论错误的是A.AE=BF B.∠DAE=∠BFCC.∠AEB+∠BFC=90°D.AE⊥BF7.如图,矩形ABCD中将其沿EF翻折后,D点恰落在B处,∠BFE=65°,则∠AEB=____________.8.如图,P为正方形ABCD内一点,且BP=2,PC=3,∠APB=135°,将△APB绕点B顺时针旋转90°得到△CP′B,连接PP′,则AP=_______.9.如图,在ABCD中,AB=6,BC=8,AC=10.(1)求证:四边形ABCD是矩形;(2)求BD的长.10.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.11.如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF是正方形.直接写出答案,不需说明理由.1.下列命题正确的是A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形2.如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于AB.C.D.203.如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是A.0 B.4 C.6 D.84.如图,正方形ABCD中,点E.F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为A.135B.125C.195D.1655.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE.折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.若5DE ,则GE的长为__________.6.如图,把某矩形纸片ABCD沿EF、GH折叠(点E、H在AD边上,点F、G在BC边上),使得点B、点C落在AD边上同一点P处,A点的对称点为A 点,D点的对称点为D点,若FPG,A EP90△的面积为1,则矩形ABCD的面积等于__________.△的面积为4,D PH7.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为__________.8.如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF;(2)若AB=4,DE=1,求AG的长.9.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足.(1)求证:△ABE≌△CDF;(2)求证:四边形AECF是矩形.10.如图,在菱形ABCD中,点E.F分别为A D.CD边上的点,DE=DF,求证:∠1=∠2.11.如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:AF=CE.12.如图,四边形ABCD中,AB=CD,AD=BC,对角线AC,BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.13.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.1.【答案】D【解析】结合选项可知,添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选D.2.【答案】A【解析】点E从D点向A点移动过程中,当∠EOD<15°时,四边形AFCE为平行四边形,当∠EOD=15°时,AC⊥EF,四边形AFCE为菱形,当15°<∠EOD <75°时,四边形AFCE 为平行四边形, 当∠EOD =75°时,∠AEF =90°,四边形AFCE 为矩形, 当75°<∠EOD <105°时,四边形AFCE 为平行四边形,故选A . 3.【答案】B【解析】如图,由题意知AB =BC =AC ,∵AB =BC =AC ,∴△ABC 为等边三角形,即60B ∠=︒,根据平行四边形的性质,18060120.BAD ∠=-=︒︒︒故选B .4.【解析】∵DE ∥AC ,DF ∥AB , ∴四边形AEDF 为平行四边形, ∴∠FAD =∠EDA ,∵AD 是∠BAC 的平分线,∴∠EAD =∠FAD ,∴∠EAD =∠EDA , ∴AE =ED ,∴四边形AEDF 是菱形. 5.【答案】B【解析】∵四边形ABCD 是正方形,∴BC =CD ,∠BCD =90°, ∵CF ⊥CE ,∴∠ECF =∠BCD =90°,∴∠BCE =∠DCF ,在△BCE 与△DCF 中,BC CDBCE DCF CE CF =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△DCF (SAS ),故①正确;∵△BCE ≌△DCF ,∴∠CBE =∠CDF ,∴∠DFB =∠BCD =90°,∴BF ⊥ED , 故②正确,过点D 作DM ⊥CF ,交CF 的延长线于点M ,∵∠ECF =90°,FC =EC =1,∴∠CFE =45°,∵∠DFM +∠CFB =90°,∴∠DFM =∠FDM =45°,∴FM =DM ,∴由勾股定理可求得:EF ,∵DE ,∴由勾股定理可得:DF =2,∵EF 2+BE 2=2BE 2=BF 2,∴DM =FM ∵△BCE ≌△DCF ,∴S △BCE =S △DCF ,∴S 四边形DECF =S △DCF +S △DCE =S △ECF +S △DEF =S △AFP +S △PFB =12B . 6.【答案】C【解析】在正方形ABCD 中,AB =BC ,∠ABE =∠C =90,又∵BE =CF ,∴△ABE ≌△BCF (SAS ),∴AE =BF ,∠BAE =∠CBF ,∴∠FBC +∠BEG =∠BAE +∠BEG =90°,∴∠BGE =90°,∴AE ⊥BF .故A 、B 正确; ∵CF =2FD ,∴CF :CD =2:3,∵BE =CF ,AB =CD ,32AB BE ∴=, ∵∠EBG +∠ABG =∠ABG +∠BAG =90°,∴∠EBG =∠BAG , ∵∠EGB =∠ABE =90°,∴△BGE ∽△ABE ,32BG AB GE BE ∴==,故C 不正确, ∵△ABE ≌△BCF ,∴S △ABE =S △BFC ,∴S △ABE –S △BEG =S △BFC –S △BEG ,∴S 四边形CEGF =S △ABG , 故D 正确.故选C .7.【答案】C【解析】∵顺次连接任意四边形的四边中点所得图形一定是平行四边形, 当对角线相等时,所得图形一定是菱形,故选C . 8.【答案】C【解析】如图,设AC 与EH 、FG 分别交于点N 、P ,BD 与EF 、HG 分别交于点K 、Q , ∵E 是AB 的中点,F 是BC 的中点,∴EF ∥AC , 同理可证EH ∥BD ,∴△EBK ∽△ABM ,△AEN ∽△EBK ,1.【答案】B【解析】∵四边形ABCD 是矩形,∴AC =BD ,OA =OC ,∠BAD =90°, ∵∠ADB =30°,∴AC =BD =2AB =8,∴OC =AC =4.故选B . 2.【答案】D【解析】∵AC =16,四边形ABCD 是矩形, ∴DC =AB ,BO =DO =12BD ,AO =OC =12AC =8,BD =AC , ∴BO =OD =AO =OC =8,∵∠AOD =120°,∴∠AOB =60°,∴△ABO 是等边三角形,∴AB =AO =8,∴DC =8,即图中长度为8的线段有AO 、CO 、BO 、DO 、AB 、DC 共6条,故选D . 3.【答案】B【解析】如图,连接AF .根据折叠的性质,得EF 垂直平分AC ,则设,则,在中,根据勾股定理,得,解得. 在中,根据勾股定理,得AC =5,则AO =2.5.12.AF CF =AF x =4BF x =-Rt △ABF 229(4)x x =+-258x =Rt △ABC在中,根据勾股定理,得 根据全等三角形的性质,可以证明则故选B .4.【答案】B【解析】∵菱形ABCD 的对角线∴AC ⊥BD ,OA =AC =4 cm ,OB =BD =3 cm ,根据勾股定理,(cm ).设菱形的高为h ,则菱形的面积,即,解得,即菱形的高为cm .故选B . 5.【答案】B【解析】如图,连接AP ,∵在菱形ABCD 中,∠ADC =72°,BD 为菱形ABCD 的对角线,∴∠ADP =∠CDP =12∠ADC =36°. ∵AD 的垂直平分线交对角线BD 于点P ,垂足为E ,∴PA =P D. ∴∠DAP =∠ADP =36°.∴∠APB =∠DAP +∠ADP =72°. 又∵菱形ABCD 是关于对角线BD 对称的,∴∠CPB =∠APB =72°.故选B.6.【答案】CRt △AOF 158,OF =,OE OF =154.EF=8cm 6cm AC BD ==,,12125AB ===12AB h AC BD =⋅=⋅15862h =⨯⨯245h =245【解析】∵AD//BC,∴∠DAE=∠AEB,∵BE=CF,AB=BC,∠ABE=∠BCF,∴△ABE≌△BCF,∴AE=BF,∠DAE=∠BFC,∵∠FBC+∠BFC=90°,∠AEB=∠BFC,∴∠FBC+AEB=90°,∴AE ⊥BF,所以A、B、D三个选项正确,∠AEB=∠BFC,故C选项错误,故选C.7.【答案】50°【解析】如图所示,由矩形ABCD可得AD∥BC,∴∠1=∠BFE=65°,由翻折得∠2=∠1=65°,∴∠AEB=180°–∠1–∠2=180°–65°–65°=50°.故答案为:50°.8.【答案】1【解析】∵△BP'C是由△BPA旋转得到,∴∠APB=∠CP'B=135°,∠ABP=∠CBP',BP=BP',AP=CP',∵∠ABP+∠PBC=90°,∴∠CBP'+∠PBC=90°,即∠PBP'=90°,∴△BPP'是等腰直角三角形,∴∠BP'P=45°,∵∠APB=∠CP'B=135°,∴∠PP'C=90°,∵BP=2,∴PP,∵PC=3,∴CP,∴AP=CP′=1,故答案为1.9.【解析】(1)∵AB=6,BC=8,AC=10,∴AB2+BC2=AC2,∴∠ABC=90°,∵四边形ABCD是平行四边形,∴ABCD是矩形.(2)∵四边形ABCD是矩形,∴BD=AC=10.10.【解析】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△ABE,∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴BEBD=BE﹣DE1.11.【解析】(1)OE=OF,理由如下:因为CE平分∠ACB,所以∠1=∠2,又因为MN∥BC,所以∠1=∠3,所以∠3=∠2,所以EO=CO,同理,FO=CO,所以OE=OF.(2)当点O运动到AC的中点时,四边形AECF是矩形,理由如下:因为OE=OF,点O是AC的中点,所以四边形AECF是平行四边形,又因为CF平分∠BCA的外角,所以∠4=∠5,又因为∠1=∠2,所以∠1=∠2,∠2+∠4=11802⨯︒=90°,即∠ECF=90°,所以平行四边形AECF是矩形.(3)当△ABC是直角三角形时,即∠ACB=90°时,四边形AECF是正方形,理由如下:由(2)证明可知,当点O运动到AC的中点时,四边形AECF是矩形,又因为∠ACB=90°,CE,CN分别是∠ACB与∠ACB的外角的平分线,所以∠1=∠2=∠3=∠4=∠5=45°,所以AC⊥MN,所以四边形AECF是正方形.1.【答案】A【解析】A.有一个角为直角的平行四边形是矩形满足判定条件;B.四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;故选A.【名师点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.2.【答案】C【解析】∵菱形ABCD的顶点A,B的坐标分别为(2,0),(0,1),∴AO=2,OB=1,AC⊥BD,∴由勾股定理知:AB==,∵四边形ABCD为菱形,∴AB=DC=BC=AD∴菱形ABCD的周长为:C.【名师点睛】此题主要考查了菱形的性质,勾股定理以及坐标与图形的性质,得出AB的长是解题关键.3.【答案】D【解析】如图,过E点作关于AB的对称点E′,则当E′,P,F三点共线时PE+PF取最小值,∵∠EAP=45°,∴∠EAE′=90°,又∵AE=EF=AE′=4,∴PE+PF的最小值为E′F=,∵满足PE+PF∴在边AB上存在两个P点使PE+PF=9,同理在其余各边上也都存在两个P点满足条件,∴满足PE+PF=9的点P的个数是8,故选D.【名师点睛】本题主要考查了正方形的性质以及根据轴对称求最短路径,有一定难度,巧妙的运用求最值的思想判断满足题意的点的个数是解题关键.4.【答案】A【解析】正方形ABCD 中,∵BC =4, ∴BC =CD =AD =4,∠BCE =∠CDF =90°, ∵AF =DE =1,∴DF =CE =3,∴BE =CF =5,在△BCE 和△CDF 中,BC CD BCE CDF CE DF =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△CDF (SAS ),∴∠CBE =∠DCF , ∵∠CBE +∠CEB =∠ECG +∠CEB =90°=∠CGE , cos ∠CBE =cos ∠ECG =BC CGBE CE=, ∴453CG =,CG =125,∴GF =CF ﹣CG =5﹣125=135, 故选A .【名师点睛】此题主要考查了正方形的性质,全等三角形的判定和性质,勾股定理,锐角三角函数,证明△BCE ≌△CDF 是解本题的关键. 5.【答案】4913【解析】如图,令AE 与BF 的交点为M . 在正方形ABCD 中,∠BAD =∠D =90︒,∴∠BAM +∠FAM =90︒, 在Rt ADE △中,13==A E ,∵由折叠的性质可得ABF GBF △≌△, ∴AB =BG ,∠FBA =∠FBG , ∴BF 垂直平分AG , ∴AM =MG ,∠AMB =90︒, ∴∠BAM +∠ABM =90︒, ∴∠ABM =∠FAM ,∴ABM EAD △∽△,∴AM AB DE AE = ,∴12513AM =,∴AM =6013,∴AG =12013,∴GE =13–120491313=. 【名师点睛】本题考查了正方形与折叠,勾股定理,等腰三角形的性质,以及三角形相似的判定和性质,熟练掌握相关的知识是解题的关键.6.【答案】【解析】∵A 'E ∥PF ,∴∠A 'EP =∠D 'PH ,又∵∠A =∠A '=90°,∠D =∠D '=90°,∴∠A '=∠D ',∴△A 'EP ~△D 'PH , 又∵AB =CD ,AB =A 'P ,CD =D 'P ,∴A 'P = D 'P , 设A 'P =D 'P =x ,∵S △A 'EP :S △D 'PH =4:1,∴A 'E =2D 'P =2x ,∴S △A 'EP =2112422A E A P x x x ''⨯⨯=⨯⨯==, ∵0x >,∴2x =,∴A 'P =D 'P =2,∴A 'E =2D 'P =4,∴EP ==∴1=2PH EP =112DH D H A P ''===,∴415AD AE EP PH DH =+++=+=+ ∴2AB A P '==,∴25)10ABCD S AB AD =⨯=⨯=矩形,【名师点睛】本题考查矩形的性质、折叠的性质,解题的关键是掌握矩形的性质、折叠的性质. 7.【答案】24【解析】∵四边形ABCD 是菱形, ∴AB =BC =CD =AD ,BO =DO , ∵点E 是BC 的中点, ∴OE 是△BCD 的中位线, ∴CD =2OE =2×3=6,∴菱形ABCD 的周长=4×6=24; 故答案为:24.【名师点睛】本题考查了菱形的性质以及三角形中位线定理;熟记菱形性质与三角形中位线定理是解题的关键.8.【解析】(1)∵四边形ABCD是正方形,∴∠BAE=∠ADF=90°,AB=AD=CD,∵DE=CF,∴AE=DF,在△BAE和△ADF中,AB ADBAE ADF AE DF=⎧⎪∠=∠⎨⎪=⎩,∴△BAE≌△ADF(SAS),∴BE=AF;(2)解:由(1)得:△BAE≌△ADF,∴∠EBA=∠FAD,∴∠GAE+∠AEG=90°,∴∠AGE=90°,∵AB=4,DE=1,∴AE=3,∴BE,在Rt△ABE中,12AB×AE=12BE×AG,∴AG=435⨯=125.【名师点睛】本题考查了全等三角形的判定与性质、正方形的性质、勾股定理以及三角形面积公式;熟练掌握正方形的性质,证明三角形全等是解题的关键.9.【解析】(1)∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,AD∥BC,∵AE⊥BC,CF⊥AD,∴∠AEB=∠AEC=∠CFD=∠AFC=90°,在△ABE和△CDF中,B DAEB CFD AB CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CDF(AAS);(2)∵AD∥BC,∴∠EAF=∠AEB=90°,∴∠EAF=∠AEC=∠AFC=90°,∴四边形AECF是矩形.【名师点睛】本题考查了矩形的判定、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质和矩形的判定是解题的关键.10.【解析】∵四边形ABCD是菱形,∴AD=CD,在△ADF和△CDE中,AD CDD D DF DE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△CDE(SAS),∴∠1=∠2.【名师点睛】本题考查了菱形的性质、全等三角形的判定与性质;熟练掌握菱形的性质,证明三角形全等是解题的关键.11.【答案】见解析.【解析】∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=BC,在△ADF和△CBE中,AD CBD B DF BE⎧=∠=∠=⎪⎨⎪⎩,∴△ADF≌△CBE(SAS),∴AF=CE.【名师点睛】本题考查了矩形的性质、全等三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等是解题的关键.12.【答案】见解析.【解析】∵四边形ABCD中,AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴AC=2AO,BD=2OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形.【名师点睛】本题考查了平行四边形的性质和判定,矩形的判定等知识点,能由题中已知信息推出四边形ABCD是平行四边形是关键.13.【解析】(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.【名师点睛】本题考查了菱形的性质,矩形的性质,全等三角形的判定和性质,正确的识别作图是解题的关键.。

特殊的平行四边形专题(题型详细分类)要点

特殊的平行四边形专题(题型详细分类)要点

特殊的平⾏四边形专题(题型详细分类)要点特殊的平⾏四边形讲义知识点归纳矩形,菱形和正⽅形之间的联系如下表所⽰:四边形分类专题汇总专题⼀:特殊四边形的判定矩形菱形正⽅形性质边对边平⾏且相等对边平⾏,四边相等对边平⾏,四边相等⾓四个⾓都是直⾓对⾓相等四个⾓都是直⾓对⾓线互相平分且相等互相垂直平分,且每条对⾓线平分⼀组对⾓互相垂直平分且相等,每条对⾓线平分⼀组对⾓判定 ·有三个⾓是直⾓; ·是平⾏四边形且有⼀个⾓是直⾓; ·是平⾏四边形且两条对⾓线相等. ·四边相等的四边形;·是平⾏四边形且有⼀组邻边相等;·是平⾏四边形且两条对⾓线互相垂直。

·是矩形,且有⼀组邻边相等; ·是菱形,且有⼀个⾓是直⾓。

对称性既是轴对称图形,⼜是中⼼对称图形(1)______________ (2)______________ (3)______________ (4)______________ (5)______________2.矩形的判定⽅法:(1)______________ (2)______________ (3)______________3.菱形的判定⽅法:(1)______________ (2)______________ (3)______________4.正⽅形的判定⽅法:(1)______________ (2)______________ (3)______________5.等腰梯形的判定⽅法:(1)______________ (2)______________ (3)______________【练⼀练】⼀.选择题1.能够判定四边形ABCD是平⾏四边形的题设是().A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AB=CD,AD=BC D.AB=AD,CB=CD2.具备下列条件的四边形中,不能确定是平⾏四边形的为().A.相邻的⾓互补 B.两组对⾓分别相等C.⼀组对边平⾏,另⼀组对边相等 D.对⾓线交点是两对⾓线中点3.下列条件中,能判定四边形是平⾏四边形的条件是( )A.⼀组对边平⾏,另⼀组对边相等B.⼀组对边平⾏,⼀组对⾓相等C.⼀组对边平⾏,⼀组邻⾓互补D.⼀组对边相等,⼀组邻⾓相等4.如下左图所⽰,四边形ABCD的对⾓线AC和BD相交于点O,下列判断正确的是().A.若AO=OC,则ABCD是平⾏四边形;B.若AC=BD,则ABCD是平⾏四边形;C.若AO=BO,CO=DO,则ABCD是平⾏四边形;D.若AO=OC,BO=OD,则ABCD是平⾏四边形5.不能判定四边形ABCD是平⾏四边形的条件是()A.AB=CD,AD=BC B.AB∥CD,AB=CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC6.四边形ABCD的对⾓线AC,BD相交于点O,能判断它为矩形的题设是()A.AO=CO,BO=DO B.AO=BO=CO=DOC.AB=BC,AO=CO D.AO=CO,BO=DO,AC⊥BD7.四边形ABCD的对⾓线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD8.在四边形ABCD中,O是对⾓线的交点,下列条件能判定这个四边形是正⽅形的是()A、AC=BD,AB∥CD,AB=CDB、AD∥BC,∠A=∠CC、AO=BO=CO=DO,AC⊥BDD、AC=CO,BO=DO,AB=BC9.在下列命题中,真命题是()A.两条对⾓线相等的四边形是矩形B.两条对⾓线互相垂直的四边形是菱形C.两条对⾓线互相平分的四边形是平⾏四边形D.两条对⾓线互相垂直且相等的四边形是正⽅形10.在下列命题中,正确的是()11.如图,已知四边形ABCD 是平⾏四边形,下列结论中不正确的是() A .当AB=BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC=900时,它是矩形D .当AC=BD 时,它是正⽅形12.如图,在ABC △中,点E D F ,,分别在边AB ,BC ,CA 上,且DE CA ∥,DF BA ∥.下列四个判断中,不正确...的是() A .四边形AEDF 是平⾏四边形B .如果90BAC ∠=o ,那么四边形AEDF 是矩形C .如果AD 平分BAC ∠,那么四边形AEDF 是菱形D .如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形 13.下列条件中不能判定四边形是正⽅形的条件是()。

特殊的平行四边形知识点总结

特殊的平行四边形知识点总结

知识点总结一、平行四边形1.定义:两组对边分别平行的四边形叫平行四边形2.平行四边形的性质(1)平行四边形的对边平行且相等;(2)平行四边形的邻角互补,对角相等;(3)平行四边形的对角线互相平分;3.平行四边形的判定平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分:第一类:与四边形的对边有关(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;第二类:与四边形的对角有关(4)两组对角分别相等的四边形是平行四边形;第三类:与四边形的对角线有关(5)对角线互相平分的四边形是平行四边形二、矩形1、矩形的定义:有一个角是直角的平行四边形叫做矩形.2、矩形的性质:①矩形具有平行四边形的所有性质;②矩形的四个角都是直角;③矩形的对角线相等;④矩形既是轴对称图形,又是中心对称图形,有两条对称轴,对称中心是对角线的交点.3、矩形的判定:①有一个角是直角的平行四边形是矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形.直角三角形斜边中线定理:直角三角形斜边上的中线等于斜边的一半.三、菱形1)菱形的定义:有一组邻边相等的平行四边形叫做菱形.2)菱形的性质:①菱形具有平行四边形的所有性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角④菱形既是轴对称图形,又是中心对称图形,有两条对称轴,对称中心是对角线交点.3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积:S菱形=底边长×高=两条对角线乘积的一半四、正方形1、定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质;(2)正方形的四个角都是直角,四条边都相等;(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;(4)正方形是轴对称图形,有4条对称轴;(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

特殊平行四边形知识归纳

特殊平行四边形知识归纳

《特殊的平行四边形》 济宁附中李涛一、学习目标:1.深刻理解平行四边形的性质;2.熟练掌握平行四边形的判定方法.二、知识梳理:1.性质:按边、角、对角线三方面分类记忆.平行四边形的性质 ...⎧⎧⎪⎨⎩⎪⎪⎧⎪⎨⎨⎩⎪⎪⎪⎪⎩对边平行;边对边相等对角相等;角邻角互补对角线:对角线互相平分此外:周长问题、面积问题另外,由“平行四边形两组对边分别相等”的性质,可推出下面的推论:夹在两条平行线间的平行线段相等.注:平行四边形是一种特殊而又比较简单的一类四边形,但它有许多的重要性质,如,对边相等、对角相等、对角线互相平分等性质等等.利用平行四边形的这些性质可以证明许多的几何结论.1、证明线段相等. 2、证明两线平行 3、证明两角相等. 4、证明面积相等 5、证明线段倍半. 6、证明线段和差.2.判定方法:同样按边、角、对角线三方面分类记忆.边 ⎧⎪⎨⎪⎩两组对边分别平行一组对边平行且相等两组对边分别相等角:两组对角分别相等对角线:对角线互相平分注:证明一个四边形是平行四边形的思路: 1、当已知条件出现在四边形的一组对边上时,考虑采用“两组对边分别平行或相等的四边形是平行四边形”或“一组对边平行且相等的四边形是平行四边形”. 2、当已知条件出现在四边形的对角线上时,考虑采用“两条对角线互相平分的四边形是平行四边形. 3、当已知条件出现在四边形是对角上时,考虑“采用两组对角分别相等的四边形是平行四边形”.3.注意的问题:平行四边形的判定定理,有的是相应性质定理的逆定理. 学习时注意它们的联系和区别,对照记忆.类比思想三、基本思想方法:研究平行四边形问题的基本思想方法是转化法,即把平行四边形的问题转化为三角形全等及平移、旋转和对称图形的问题来研究.四、平行四边形知识的运用----------是证明矩形、菱形、正方形的基础1.直接运用平行四边形的性质解决某些问题. 如求角的度数、线段的长度、证明角相等或互补、证明线段相等或倍分关系等;2.判定一个四边形是平行四边形,从而判定直线平行等;3.先判定一个四边形是平行四边形,再利用其性质去解决某些问题.《特殊平行四边形》之一---矩形的四边形是 平行四边形一、定义:有一个角是直角的平行四边形叫做矩形.注:定义中矩形必须满足两个条件:1、首先是平行四边形,2、有一个角是直角.二.矩形的性质1.具有平行四边形的所有性质.(边、角、对角线)2.特有性质:(1)矩形的四个角都是直角(90度).(2)矩形对角线相等.(3)矩形是轴对称图形,有2条对称轴.也是中心对称图形.注:矩形对角线把矩形分成:4个大全等直角三角形,4个小等腰三角形。

平行四边形和特殊的平行四边形知识梳理+典型例题

平行四边形和特殊的平行四边形知识梳理+典型例题

平行四边形的性质知识点一、概念1、定义:有两组对边分别平行的四边形叫做平行四边形。

平行四边形不相邻的两个顶点连成的线段是平行四边形的对角线. 理解:只有两组对边都平行时,四边形才是平行四边形,只要是两组对边分别平行的四边形都是平行四边形。

2、平行四边形的基本元素:边、角、对角线3、表示方法:用“口”表示平行四边形,例如:平行四边形ABCD 记作口ABCD ,读作“平行四边形ABCD”,字母注意同一方向,要按顺时针或按逆 时针,中间不能有跳跃。

(顺序性)【典型例题】【例1】如图,在平行四边形ABCD 中,过点P 作线段EF 、GH 分别平行于AB 、BC ,则图中共有 个平行四边形。

【例2】如图,在平行四边形ABCD 中,∠A:∠B=2:7,则∠C 的度数是 .【练习1】在□ABCD 中,对角线AC 、BD 相交于点O ,如果AC=14,BD=8,AB=x ,那么x 的取值范围是 .【练习2】如图,在平行四边形ABCD 中,∠A=130°,在AD 上取DE=DC ,则∠ECB 的度数是 .(例1图) (例2图) (练习1图) (练习2图) 知识点二、平行四边形性质定理平行四边形的有关性质都是从边、角、对角线、对称性四个方面的特征进行:(1)边:平行四边形两组对边分别平行且相等; (2)角:平行四边形的对角相等;邻角互补; (3)对角线:平行四边形的对角线相互平分;(4)对称性:平行四边形是中心对称图形,对称中心是两条对角线的交点。

补充:若一条直线过平行四边形的两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中心,且这条直线二等分平行四边形的面积。

ABCDO如右图:有OE=OF ,且四边形AFED 的面积等于四边形FBCE 的面积。

知识点三、平行线之间的距离定义:两条平行线中,一条直线上的任意一点到另一条直线的 ,叫做这两条平行线间的距离. 注:① 距离是指垂线段的长度,是正值.如右图,若直线a ∥b ,点A 、B 分别在直线a 、b 上,且AB ⊥a,AB ⊥b,则线段AB 的长度叫做直线a 与直线b 之间的距离。

特殊的平行四边形16个必考点全梳理

特殊的平行四边形16个必考点全梳理

考点梳理:特殊的平行四边形16个必考点全梳理(精编Word)一、菱形的性质(求角的度数)掌握菱形的性质是解决此类问题的关键,菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.1.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=33°,则∠OBC的度数为()A.33°B.57°C.59°D.66°2.在菱形ABCD中,若∠B=60°,点E、F分别在AB、AD上,且BE=AF,则∠AEC+∠AFC度数等于3.如图,在菱形ABCD中,AB的垂直平分线EF交对角线AC于点F,垂足为点E,若∠CDF=27°,则∠DAB的度数为.4.如图,在菱形ABCD中,过点A作AH⊥BC,分别交BD,BC于点E,H,F为ED的中点,∠BAF=120°,则∠C的度数为.二、菱形的性质(等面积法)掌握菱形的性质是解决此类问题的关键,菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.5.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,DE ⊥AB 于点E ,若AC =8cm ,BD =6cm ,则DE =()A.53 cmB.25 cmC.245 cmD.485cm 6.如图,在菱形ABCD 中,AB =5,对角线BD =8,过BD 的中点O 作AD 的垂线,交AD 于点E ,交BC 于点F ,连接DF ,则DF 的长度为()A.125B.245C.85 5D.813 57.如图,在菱形ABCD 中,P 是对角线AC 上一动点,过点P 作PE ⊥BC 于点E .PF ⊥AB 于点F .若菱形ABCD 的周长为20,面积为24,则PE +PF 的值为()A.4B.245C.6D.4858.如图,菱形ABCD 的边长为5,对角线AC 的长为8,延长AB 至E ,BF 平分∠CBE ,点G 是BF 上任意一点,则△ACG 的面积为()A.63B.12C.20D.24三、菱形的性质(求点的坐标)掌握菱形的性质是解决此类问题的关键,菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.9.如图,在菱形ABCD 中,点A 在x 轴上,点B 的坐标为(8,2),点D 的坐标为(0,2),则点C 的坐标为()A.(2,2)B.(2,4)C.(4,2)D.(4,4)10.如图,在平面直角坐标系xOy 中,已知菱形ABCD 的顶点A (3,3),C (-1,-1),对角线BD 交AC 于点M ,交x 轴于点N ,若BN =2ND ,则点B 的坐标是()A.(-32 ,72 )B.(-2 ,22 )C.(4,-2)D.(-2,4)11.如图,在菱形OABC 中,点B 在x 轴上,点A 的坐标为(2,23 ),将菱形绕点O 旋转,当点A 落在x 轴上时,点C 的对应点的坐标为() A.(-2,-23 )或(23 ,-2) B.(2,23 ) C.(-2,23 )D.(-2,-23 )或(2,23 )12.如图,在菱形OABC 中,点A 的坐标是(2,1),点B 的横坐标是3,则点C 的坐标是.四、菱形的性质(最值问题)13.如图,菱形ABCD 的的边长为6,∠ABC =60°,对角线BD 上有两个动点E 、F (点E 在点F 的左侧),若EF =2,则AE +CF 的最小值为()A.210B.42C.6D.814.如图,菱形ABCD 的边长为23 ,∠ABC=60°,点E 、F 在对角线BD 上运动,且EF =2,连接AE 、AF ,则△AEF 周长的最小值是() A.4 B.4+3 C.2+23 D.615.如图,菱形ABCD 中,∠ABC =60°,AB =2,E 、F 分别是边BC 和对角线BD 上的动点,且BE =DF ,则AE +AF 的最小值为.16.如图,在菱形ABCD 中,AB =6,∠B =60°,点G 是边CD 边的中点,点E 、F 分别是AG 、AD 上的两个动点,则EF +ED 的最小值是.五、菱形的判定与性质(计算与证明)17.如图,在▱ABCD中,对角线AC,BD交于点O,E是AD上一点,连接EO并延长,交BC于点F.连接AF,CE,EF平分∠AEC.(1)求证:四边形AFCE是菱形;(2)若∠DAC=60°,AC=2,求四边形AFCE的面积.18.如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.19.如图,在△ABC中,BD平分∠ABC交AC于D,EF垂直平分BD,分别交AB,BC,BD于E,F,G,连接DE,DF.(1)求证:四边形BEDF是菱形;(2)若∠BDE=15°,∠C=45°,DE=2,求CF的长.20.如图,在▱ABCD中,M、N分别是AD、BC的中点,∠AND=90°,连接CM交DN于点O.(1)求证:△ABN≌△CDM;(2)求证:四边形CDMN为菱形;(3)过点C作CE⊥MN于点E,交DN于点P,若PE=1,∠1=∠2,求NC的长.六、矩形的性质掌握矩形的性质是解决此类问题的关键,矩形具有平行四边形的一切性质;矩形的四个角都是直角;矩形的对角线相等.21.如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 交AD 于点M ,交BC 于点N ,连结BM 、DN .若AB =4,AD =8,则MD 的长为()A.3B.4C.5D.622.如图,在矩形ABCD 中,AB =2,对角线AC 与BD 相交于点O ,AE ⊥BD ,垂足为E .若BE =EO ,则AD 的长是()A.62B.23C.32D.2523.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若DF ⊥AC ,∠ADF :∠FDC =3:2,则∠BDF =()A.18°B.36°C.27°D.54°24.如图,矩形ABCD 的对角线AC 、BD 交于点E ,∠ACB =52°,AM 平分∠BAC ,交BC 于点M ,过点B 作BF ⊥AM .垂足为点F ,则∠DBF 的度数为()A.43°B.34°C.33°D.19°七、矩形的性质(最值问题)25.如图,在矩形ABCD 中,AB =2,AD =1,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB ,则PB 的最小值是()A.2B.4C.2D.22 26.如图,在矩形ABCD 中,AD =2AB =4,点E 是AD 的中点,点M 是BE 上一动点,取CM 的中点为N ,则AN 的最小值是.27.学习新知:如图1、图2,P 是矩形ABCD 所在平面内任意一点,则有以下重要结论:AP 2+CP 2=BP 2+DP 2.该结论的证明不难,同学们通过勾股定理即可证明.应用新知:如图3,在△ABC 中,CA =4,CB =6,D 是△ABC 内一点,且CD =2,∠ADB =90°,则AB 的最小值为.28.如图,在矩形纸片ABCD 中,AB =8,BC =6,点E 是AD 的中点,点F 是AB 上一动点.将△AEF 沿直线EF 折叠,点A 落在点A '处.在EF 上任取一点G ,连接GC ,GA ',CA ’,则△CGA '的周长的最小值为.八、矩形的判定与性质(计算与证明)矩形的判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形.29.如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于E,CF∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AD=5,BE=3,求线段OE的长.30.如图,在△ABC中,点O是AC边的中点,过点O作BC的平行线交∠ACB的角平分线于点E,交∠ACB的外角平分线于点F.(1)求证:四边形CEAF是矩形;(2)若AE=3,EC=4,AB=12,BC=13,求四边形ABCF的面积.31.如图,已知△OAB中,OA=OB,分别延长AO、BO到点C、D.使得OC=AO,OD=BO,连接AD、DC、CB.(1)求证:四边形ABCD是矩形;(2)以OA、OB为一组邻边作▱AOBE,连接CE,若CE⊥BD,求∠AOB的度数.32.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC,对角线AC、BD交于点O,AO=BO,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=1,求△OEC的面积.九、直角三角形斜边上的中线应用掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.33.如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠DAC=45°,∠BAC=30°,E是AC的中点,连接BE,BD.则∠DBE的度数为()A.10°B.12°C.15°D.18°34.如图,在△ABC中,∠BCA=90°,D为AC边上一动点,O为BD中点,DE⊥AB,垂足为E,连结OE,CO,延长CO交AB于F,设∠BAC=α,则()A.∠EOF=32 αB.∠EOF=2αC.∠EOF=180°-αD.∠EOF=180°-2α35.如图,在△ABC中,∠ABC=90°,∠C=52°,BE为AC边上的中线,AD平分∠BAC,交BC边于点D,过点B作BF⊥AD,垂足为F,则∠EBF的度数为()A.19°B.33°C.34°D.43°36.如图,CE、BF分别是△ABC的高线,连接EF,EF=6,BC=10,D、G分别是EF、BC的中点,则DG的长为.十、正方形的性质掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.37.如图,正方形ABCD 中,AB =2 ,点E 是对角线AC 上一点,EF ⊥AB 于点F ,连结DE ,当∠ADE =22.5°时,EF 的长是()A.1B.22 -2C.2 -1D.1438.如图,已知正方形ABCD 的边长为4,点E ,F 分别在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为()A.2B.2.5C.3D.3.539.如图,正方形ABCD 中,点E 、F 分别在边CD ,AD 上,BE ⊥CF 于点G .若BC =4,AF =1,则CE 的长为()A.3B.125C.195D.16540.如图,正方形ABCD 的边长为4,点E ,F 分别在AB ,AD 上,若CE =25 ,且∠ECF =45°,则CF 的长为()A.4103 B.5103 C.210 D.7103 十一、正方形的性质(最值问题)41.如图,在边长为6的正方形ABCD 中,点M 为对角线BD 上一动点,ME ⊥BC 于E ,MF ⊥CD 于F ,则EF 的最小值为()A.32B.62C.3D.242.如图,在边长为4的正方形ABCD 中,点E 、F 分别是边BC 、CD 上的动点,且BE =CF ,连接BF 、DE ,则BF +DE 的最小值为()A.12B.20C.48D.8043.如图,平面内三点A 、B 、C ,AB =4,AC =3,以BC 为对角线作正方形BDCE ,连接AD ,则AD 的最大值是()A.5B.7C.72D.722 44.如图,在正方形ABCD 中,M ,N 是边AB 上的动点,且AM =BN ,连接MD 交对角线AC 于点E ,连接BE 交CN 于点F ,若AB =3,则AF 长度的最小值为.十二、正方形的判定与性质(计算与证明)45.如图,正方形ABCD中,AB=4,点E是对角线AC上的一点,连接DE.过点E作EF⊥ED,交AB于点F,以DE、EF为邻边作矩形DEFG,连接AG.(1)求证:矩形DEFG是正方形;(2)求AG+AE的值;(3)若F恰为AB中点,连接DF交AC于点M,请直接写出ME的长.46.已知:如图,菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.(1)求证:四边形ABCD是正方形.(2)E是OB上一点,DH⊥CE,垂足为H,DH与OC相交于点F,求证:OE=OF.47.如图,已知四边形ABCD 为正方形,AB =42 ,点E 为对角线AC 上一动点,连接DE 、过点E 作EF ⊥DE .交BC 点F ,以DE 、EF 为邻边作矩形DEFG ,连接CG .(1)求证:矩形DEFG 是正方形;(2)探究:CE +CG 的值是否为定值?若是,请求出这个定值;若不是,请说明理由.48.四边形ABCD 为正方形,点E 为线段AC 上一点,连接DE ,过点E 作EF ⊥DE ,交射线BC 于点F ,以DE 、EF 为邻边作矩形DEFG ,连接CG(1)如图,求证:矩形DEFG 是正方形;(2)若AB =22 ,CE =2,求CG 的长;(3)当线段DE 与正方形ABCD 的某条边的夹角是40°时,直接写出∠EFC 的度数.十三、中点四边形49.如图,在任意四边形ABCD中,M,N,P,Q分别是AB,BC,CD,DA的中点,对于四边形MNPQ的形状,以下结论中,错误的是()A.当∠ABC=90°时,四边形MNPQ为正方形B.当AC=BD时,四边形MNPQ为菱形C.当AC⊥BD时,四边形MNPQ为矩形D.四边形MNPQ一定为平行四边形50.已知:如图,在四边形ABCD中,AB与CD不平行,E,F,G,H分别是AD,BC,BD,AC的中点.(1)求证:四边形EGFH是平行四边形;(2)①当AB与CD满足条件时,四边形EGFH是菱形;②当AB与CD满足条件时,四边形EGFH是矩形.51.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是线段BC、AD、OB、OD的中点,连接EH、HF、FG、GE.(1)求证:四边形GEHF是平行四边形;(2)当EF和BD满足条件时,四边形GEHF是矩形;(3)当EF和BD满足条件时,四边形GEHF是菱形.52.如图,点A,B,C为平面内不在同一直线上的三点.点D为平面内一个动点.线段AB,BC,CD,DA的中点分别为M,N,P,Q.在点D的运动过程中,有下列结论:①存在无数个中点四边形MNPQ是平行四边形;②存在无数个中点四边形MNPQ是菱形;③存在无数个中点四边形MNPQ是矩形;④存在两个中点四边形MNPQ是正方形.所有正确结论的序号是.十四、四边形的判定(动点问题)53.如图,在菱形ABCD中,AB=6,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)①当AM的值为时,四边形AMDN是矩形;②若AM=6,求证:四边形AMDN是菱形.54.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.55.如图,▱ABCD 中,AB =2cm ,AC =5cm ,S ▱ABCD =8cm 2,E 点从B 点出发,以1cm 每秒的速度,在AB 延长线上向右运动,同时,点F 从D 点出发,以同样的速度在CD 延长线上向左运动,运动时间为t 秒.(1)在运动过程中,四边形AECF 的形状是;(2)t =时,四边形AECF 是矩形;(3)求当t 等于多少时,四边形AECF 是菱形.56.如图,平行四边形ABCD 中,AD =9cm ,CD =32 cm ,∠B =45°,点M 、N 分别以A 、C 为起点,1cm /秒的速度沿AD 、CB 边运动,设点M 、N 运动的时间为t 秒(0≤t ≤6)(1)求BC 边上高AE 的长度;(2)连接AN 、CM ,当t 为何值时,四边形AMCN 为菱形;(3)作MP ⊥BC 于P ,NQ ⊥AD 于Q ,当t 为何值时,四边形MPNQ 为正方形.十五、四边形综合(多结论选择题)57.如图,P为正方形ABCD的对角线BD上任一点,过点P作PE⊥BC于点E,PF⊥CD于点F,连接EF.给出以下4个结论,其中,所有正确的结论是()①△FPD是等腰直角三角形;②AP=EF=PC;③AD=PD;④∠PFE=∠BAP.A.①②B.①④C.①②④D.①③④58.如图,在菱形ABCD中,AB=AC=1,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AC于点O,则下列结论:①△ABF≌△CAE;②∠FHC=∠B;③△ADO≌△ACH;④S菱形ABCD =3;其中正确的结论个数是()A.1个B.2个C.3个D.4个59.如图,矩形ABCD中,AC,BD相交于点O,过点B作BF⊥AC交CD于点F,交AC于点M,过点D作DE∥BF交AB于点E,交AC于点N,连接FN,EM.则下列结论:①DN=BM;②EM∥FN;③AE=FC;④当AO=AD时,四边形DEBF是菱形.其中,正确结论的个数是()A.1个B.2个C.3个D.4个60.如图,正方形ABCD中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H作HG⊥BD于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 的周长为8.其中正确的个数是()A.1个B.2个C.3个D.4个十六、边形综合(旋转问题)61.在正方形ABCD中,点E、F分别在边BC、AD上,DE=EF,过D作DG⊥EF于点H,交AB边于点G.(1)如图1,求证:DE=DG;(2)如图2,将EF绕点E逆时针旋转90°得到EK,点F对应点K,连接KG,EG,若H为DG中点,在不添加任何辅助线及字母的情况下,请直接写出图中所有与EG长度相等的线段(不包括EG).62.如图,已知正方形ABCD的边长是2,∠EAF=m°,将∠EAF绕点A顺时针旋转,它的两边分别交BC、CD于点E、F,G是CB延长线上一点,且始终保持BG=DF.(1)求证:△ABG≌△ADF;(2)求证:AG⊥AF;(3)当EF=BE+DF时:①求m的值;②若F是CD的中点,求BE的长.63.已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)64.如图1,在正方形ABCD和正方形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.的值(写出结论,不需要证明);(1)探究PG与PC的位置关系及PGPC(2)如图2,将原问题中的正方形ABCD和正方形BEFG换成菱形ABCD和菱形BEFG,且的值,写出你的猜想并加以证明;∠ABC=∠BEF=60度.探究PG与PC的位置关系及PGPC(3)如图3,将图2中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的边BG恰好与菱形ABCD的边AB在同一条直线上,问题(2)中的其他条件不变.你在(2)中得到的两个结论是否发生变化?写出你的猜想并加以证明.考点梳理:特殊的平行四边形16个必考点全梳理(精编Word )一、菱形的性质(求角的度数)掌握菱形的性质是解决此类问题的关键,菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.1.如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM =CN ,MN 与AC 交于点O ,连接BO .若∠DAC =33°,则∠OBC 的度数为()A.33°B.57°C.59°D.66°【分析】根据菱形的性质以及AM =CN ,利用ASA 可得△AMO ≌△CNO ,可得AO =CO ,然后可得BO ⊥AC ,继而可求得∠OBC 的度数.【解析】∵四边形ABCD 是菱形,∴AB ∥CD ,AB =BC ,∴∠MAO =∠NCO ,∠AMO =∠CNO ,在△AMO 和△CNO 中,∠MAO =∠NCO AM =CN ∠AMO =CNO,∴△AMO ≌△CNO (ASA ),∴AO =CO ,∵AB =BC ,∴BO ⊥AC ,∴∠BOC =90°,∵∠DAC =33°,∴∠BCA =∠DAC =33°,∴∠OBC =90°-33°=57°,选B .【小结】考查菱形性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.2.在菱形ABCD 中,若∠B =60°,点E 、F 分别在AB 、AD 上,且BE =AF ,则∠AEC +∠AFC 度数等于【分析】菱形的四边相等,对角线平分每一组对角,因为∠B =60°,连接AC ,AC 和菱形的边长相等,可证明△ACE ≌△CDF ,可得到一个角为60°的等腰三角形从而可证明EFC 是等边三角形,进而利用四边形的内角和为360°即可得出答案.【解析】连接AC ,∵在菱形ABCD 中,∠B =60°,∴AC =AB =BC =CD =AD ,∵BE =AF ,∴AE =DF ,∵∠B =60°,AC 是对角线,∴∠BAC =60°,∴∠BAC =∠D =60°,∴△ACE ≌△CDF ,∴EC =FC .∠ACE =∠DCF ,∵∠DCF +∠ACF =60°,∴∠ACE +∠ACF =60°,∴△ECF 是等边三角形.故可得出∠ECF =60°,又∠EAF=120°,∴∠AEC +∠AFC =360°-(60°+120°)=180°【小结】本题考查了菱形的性质,四边相等,对角线平分每一组对角,以及等边三角形的判定,有一个角是60°的等腰三角形是等边三角形,难度一般.3.如图,在菱形ABCD中,AB的垂直平分线EF交对角线AC于点F,垂足为点E,若∠CDF=27°,则∠DAB的度数为.【分析】根据菱形的性质求出∠DAB=2∠DAC,AD=CD;再根据垂直平分线的性质得出AF=DF,利用三角形内角和定理可以求得3∠CAD+∠CDF=180°,从而得到∠DAB的度数.【解析】连接BD,BF,∵四边形ABCD是菱形,∴AD=CD,∴∠DAC=∠DCA.∵EF垂直平分AB,AC垂直平分BD,∴AF=BF,BF=DF,∴AF=DF,∴∠FAD=∠FDA,∴∠DAC+∠FAD+∠DCA+∠CDF=180°,即3∠DAC+∠CDF=180°,∵∠CDF=27°,∴3∠DAC+27°=180°,则∠DAC=51°,∴∠DAB=2∠DAC=102°【小结】此题主要考查线段的垂直平分线的性质和菱形的性质,有一定的难度,解答本题时注意先先连接BD,BF,这是解答本题的突破口.4.如图,在菱形ABCD中,过点A作AH⊥BC,分别交BD,BC于点E,H,F为ED的中点,∠BAF= 120°,则∠C的度数为.【分析】根据菱形的性质得出AD∥BC,∠ABD=∠CBD,进而利用三角形的内角和解答即可.【解析】设∠CBD=x,∵四边形ABCD为菱形,∴AD∥BC,∠ABD=∠CBD=x,∴∠ADB=∠CBD=x,∵AH⊥BC,AD∥BC,∴∠DAH=∠AHB=90°,∵F为ED的中点.∴AF=FD,∴∠FAD=∠ADB=x,∵∠BAF=120°,∴∠BAD=120°+x,∵AD∥BC,∴∠BAD+∠ABC=180°,可得:2x+120°+x=180°,解得:x=20°,∴∠BAD=120°+x=140°∵四边形ABCD为菱形,∴∠C=∠BAD=140°.【小结】此题考查菱形的性质,关键是根据菱形的性质得出AD∥BC,∠ABD=∠CBD解答.二、菱形的性质(等面积法)掌握菱形的性质是解决此类问题的关键,菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.5.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,DE ⊥AB 于点E ,若AC =8cm ,BD =6cm ,则DE =()A.53 cmB.25 cmC.245 cmD.485cm 【解析】∵四边形ABCD 是菱形,AC =8cm ,BD =6cm ,∴S 菱形ABCD =12 AC •BD =12×6×8=24,∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =OC =12 AC =4cm ,OB =OD =3cm ,∴在直角三角形AOB 中,AB =OB 2+OA 2 =32+42 =5cm ,∴DH =S 菱形ABCD AB=245 cm .选C .【小结】本题考查了菱形的性质以及勾股定理的应用.注意菱形的面积等于对角线积的一半或底乘以高.6.如图,在菱形ABCD 中,AB =5,对角线BD =8,过BD 的中点O 作AD 的垂线,交AD 于点E ,交BC 于点F ,连接DF ,则DF 的长度为()A.125B.245C.85 5D.813 5【解析】连接AC ,如图:∵四边形ABCD 是菱形,O 是BD 的中点,∴OD =OB =12BD =4,AD =AB =5,AC ⊥BD ,∴OA =52-42 =3,∵OE ⊥AD ,∴△AOD 的面积=12 AD ×OE =12OA ×OD ,∴OE =OA ×OD AD=3×45 =125 ,同理:OF =125 ,∴EF =OE +OF =245 ,∵DE =OD 2-OE 2 =42-(125 )2 =165 ,EF ⊥AD ,∴DF =DE 2+EF 2 =(165 )2+(245)2 =813 5 ;选D7.如图,在菱形ABCD 中,P 是对角线AC 上一动点,过点P 作PE ⊥BC 于点E .PF ⊥AB 于点F .若菱形ABCD 的周长为20,面积为24,则PE +PF 的值为()A.4B.245C.6D.485【分析】连结BP ,如图,根据菱形的性质得BA =BC =5,S △ABC =12S 菱形ABCD =12,然后利用三角形面积公式,由S △ABC =S △PAB +S △PBC ,得到12 ×5×PE +12×5×PF =12,再整理即可得到PE +PF 的值.【解析】连结BP ,如图,∵四边形ABCD 为菱形,菱形ABCD 的周长为20,∴BA =BC =5,S △ABC =12 S 菱形ABCD=12,∵S △ABC =S △PAB +S △PBC ,∴12 ×5×PE +12×5×PF =12,∴PE +PF =245,选B .【小结】本题考查了菱形的性质,三角形的面积的计算,正确的作出辅助线是解题的关键.8.如图,菱形ABCD 的边长为5,对角线AC 的长为8,延长AB 至E ,BF 平分∠CBE ,点G 是BF 上任意一点,则△ACG 的面积为()A.63B.12C.20D.24【分析】连接BD 交AC 于O ,由菱形的性质和勾股定理求出OB =3,得出△ABC 的面积=12,依据∠ACB =∠CBF ,得出AC ∥BF ,进而得出△ACG 的面积=△ABC 的面积=12.【解析】如图所示,连接BD 交AC 于O ,∵四边形ABCD 是菱形,∴∠ACB =12 ∠BCD ,AB =5,OA =12AC =4,AB ∥CD ,AC ⊥BD ,∴∠BCD =∠CBE ,OB =AB 2-OA 2 =52-42 =3,∴△ABC 的面积=12 AC ×OB =12×8×3=12,∵BF 平分∠CBE ,∴∠CBF =12∠CBE ,∴∠ACB =∠CBF ,∴AC ∥BF ,∴△ACG 面积=△ABC 面积=12,三、菱形的性质(求点的坐标)掌握菱形的性质是解决此类问题的关键,菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.9.如图,在菱形ABCD 中,点A 在x 轴上,点B 的坐标为(8,2),点D 的坐标为(0,2),则点C 的坐标为()A.(2,2)B.(2,4)C.(4,2)D.(4,4)【分析】连接AC 、BD 交于点E ,由菱形的性质得出AC ⊥BD ,AE =CE =12 AC ,BE =DE =12BD ,由点B 的坐标和点D 的坐标得出OD =2,求出DE =4,AC =4,即可得出点C 的坐标.【解析】连接AC 、BD 交于点E ,如图所示:∵四边形ABCD 是菱形,∴AC ⊥BD ,AE =CE =12AC ,BE =DE =12BD ,∵点B 的坐标为(8,2),点D 的坐标为(0,2),∴OD =2,BD =8,∴AE =OD =2,DE =4,∴AC =4,∴点C 的坐标为:(4,4);选D .【小结】本题考查了菱形的性质、坐标与图形性质;熟练掌握菱形的性质是解决问题的关键.10.如图,在平面直角坐标系xOy 中,已知菱形ABCD 的顶点A (3,3),C (-1,-1),对角线BD 交AC 于点M ,交x 轴于点N ,若BN =2ND ,则点B 的坐标是()A.(-32 ,72 )B.(-2 ,22 )C.(4,-2)D.(-2,4)【分析】先求出BD 的解析式,设点B (a ,-a +2),则点D (2-a ,a ),由等腰直角三角形的性质和BN =2ND ,可得2 (-a +2)=2×2 ×(-a ),即可求解.【解析】∵点A (3,3),C (-1,-1),∴直线AC 为y =x ,M (1,1),∵四边形ABCD 是菱形,∴AC ⊥BD ,∴设直线BD 为y =-x +b ,∵点M 在直线BD 上,∴1=-1+b ,∴b =2,∴直线BD 为y =-x +2,设点B (a ,-a +2),则点D (2-a ,a ),∵BN =2ND ,∴2 (-a +2)=2×2 ×(-a ),∴a =-2,∴点B (-2,4),选D .11.如图,在菱形OABC 中,点B 在x 轴上,点A 的坐标为(2,23),将菱形绕点O 旋转,当点A 落在x 轴上时,点C 的对应点的坐标为()A.(-2,-23 )或(23 ,-2)B.(2,23 )C.(-2,23 )D.(-2,-23 )或(2,23 )【解析】∵菱形OABC 中,点B 在x 轴上,点A 的坐标为(2,23 ),∴AO =22+(23 )2 =4,OB =4,∴菱形的边长为4,△AOB 是等边三角形,分两种情况讨论:如图所示,当点A 在x 轴正半轴上时,过C 作CD ⊥AO 于D ,则OD =12 CO =2,CD =23 ,∴点C 的坐标为(-2,-23 );如图所示,当点A 在x 轴负半轴上时,过C 作CD ⊥AO 于D ,则OD =12 CO =2,CD =23 ,∴点C 的坐标为(2,23 );综上所述,点C 的对应点的坐标为(-2,-23 )或(2,23 ),选D .12.如图,在菱形OABC 中,点A 的坐标是(2,1),点B 的横坐标是3,则点C 的坐标是.【解析】作AD ⊥x 轴于D ,BF ⊥x 轴于F ,AE ⊥BF 于E ,BG ⊥y 轴于H ,CG ⊥BH 于G ,CM ⊥Y 轴于M ,如图所示:四边形BHOF 是矩形,四边形ADFE 是矩形,四边形GHMC 是矩形,∠ADO =∠AEB =∠C GB =∠CMO =90°,∵点A 的坐标是(2,1),点B 的横坐标是3,∴OD =2,EF =AD =1,BH=3,∴AE =1,∴AE =AD ,∵四边形OABC 是菱形,∴OA =AB =BC =OC ,在Rt △ABE 和Rt △AOD 中,AB =OA AE =AD ,∴Rt △ABE ≌Rt △AOD (HL ),∴BE =OD =2,∴BF =3=BH ,同理可证:△CBG ≌△AOD ,∴CG =AD =1,BG =OD =2,∴HM =1,OM =3-1=2,∴C (1,2);四、菱形的性质(最值问题)13.如图,菱形ABCD 的的边长为6,∠ABC =60°,对角线BD 上有两个动点E 、F (点E 在点F 的左侧),若EF =2,则AE +CF 的最小值为()A.210B.42C.6D.8【解析】如图,连接AC ,作AM ⊥AC ,使得AM =EF =2,连接CM 交BD于F ,∵AC ,BD 是菱形ABCD 的对角线,∴BD ⊥AC ,∵AM ⊥AC ,∴AM ∥BD ,∴AM ∥EF ,∵AM =EF ,AM ∥EF ,∴四边形AEFM 是平行四边形,∴AE =FM ,∴AE +CF =FM +FC =CM ,根据两点之间线段最短可知,此时AE +FC 最短,∵四边形ABCD 是菱形,AB =6,∠ABC =60°,∴BC =AB ,∴△ABC 是等边三角形,∴AC =AB =6,在Rt △CAM 中,CM =AM 2+AC 2 =22+62 =210 ,∴AE +CF 的最小值为210 .选A .14.如图,菱形ABCD 的边长为23 ,∠ABC =60°,点E 、F 在对角线BD 上运动,且EF =2,连接AE 、AF ,则△AEF 周长的最小值是()A.4B.4+3C.2+23D.6【解析】作AH ∥BD ,使得AH =EF =2,连接CH 交BD 于F ,则AE +AF的值最小,即△AEF 的周长最小.∵AH =EF ,AH ∥EF ,∴四边形EFHA 是平行四边形,∴EA =FH ,∵FA =FC ,∴AE +AF =FH +CF =CH ,∵菱形ABCD 的边长为23 ,∠ABC =60°,∴AC =AB =23 ,∵四边形ABCD 是菱形,∴AC ⊥BD ,∵AH ∥DB ,∴AC ⊥AH ,∴∠CAH =90°,在Rt △CAH 中,CH =AC 2+AH 2 =(23 )2+22 =4,∴AE +AF 的最小值4,∴△AEF 的周长的最小值=4+2=6,选D .15.如图,菱形ABCD 中,∠ABC =60°,AB =2,E 、F 分别是边BC 和对角线BD 上的动点,且BE =DF ,则AE +AF 的最小值为.【解析】如图,BC 的下方作∠CBT =30°,在BT 上截取BT ,使得BT =AD ,连接ET ,AT .∵四边形ABCD 是菱形,∠ABC =60°,∴∠ADC =∠ABC =60°,∠ADF =12∠ADC =30°,∵AD =BT ,∠ADF =∠TB E =30°,DF =BE ,∴△ADF ≌△TB E (SAS ),∴AF =ET ,∵∠ABT =∠ABC +∠CBT =60°+30°=90°,AB =AD =BT =2,∴AT =AB 2+BT 2 =22+22 =22 ,∴AE +AF =AE +ET ,∵AE +ET ≥AT ,∴AE +AF ≥22 ,∴AE +AF 的最小值为22,【小结】本题考查菱形的性质,全等三角形的判定和性质,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考填空题中的压轴题.16.如图,在菱形ABCD 中,AB =6,∠B =60°,点G 是边CD 边的中点,点E 、F 分别是AG 、AD 上的两个动点,则EF +ED 的最小值是.【分析】作DH ⊥AC 垂足为H 与AG 交于点E ,点H 关于AG 的对称点为F ,此时EF +ED 最小=DH ,先证明△ADC 是等边三角形,在RT △DCH 中利用勾股定理即可解决问题.【解析】如图作DH ⊥AC 垂足为H 与AG 交于点E ,∵四边形ABCD 是菱形,∴AB =AD =CD =BC =6,∵∠B =60°,∴∠ADC =∠B =60°,∴△ADC 是等边三角形,∵AG 是中线,∴∠GAD =∠GAC∴点F 关于AG 的对称点H 在AC 上,此时EF +ED 最小=DH .在RT △DHC 中,∵∠DHC =90°,DC =6,∠CDH =12 ∠ADC =30°,∴CH =12 DC =3,DH =CD 2-CH 2 =62-32 =33 ,∴EF +DE 的最小值=DH =33 ,故答案为33 .五、菱形的判定与性质(计算与证明)17.如图,在▱ABCD 中,对角线AC ,BD 交于点O ,E 是AD 上一点,连接EO 并延长,交BC 于点F .连接AF ,CE ,EF 平分∠AEC .(1)求证:四边形AFCE 是菱形;(2)若∠DAC =60°,AC =2,求四边形AFCE的面积.【解析】(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,AO =CO ,∴∠AEF =∠CFE ,在△AOE 和△COF 中,∠AEF =∠CFE ∠AOE =∠COF AO =CO,∴△AOE ≌△COF (AAS ),∴OF =OE ,∵AO =CO ,∴四边形AFCE 是平行四边形;∵EF 平分∠AEC ,∴∠AEF =∠CEF ,∴∠CFE =∠CEF ,∴CE =CF ,∴四边形AFCE 是菱形;(2)由(1)得:四边形AFCE 是菱形,∴AC ⊥EF ,AO =CO =12 AC =1,∴∠AOE =90°,∵∠DAC =60°,∴∠AEO =30°,∴OE =3 AO =3 ,∴EF =2OE =23 ,∴四边形AFCE 的面积=12 AC ×EF =12×2×23 =23 .18.如图,在四边形ABCD 中,AD ∥BC ,对角线BD 的垂直平分线与边AD 、BC 分别相交于点M 、N .(1)求证:四边形BNDM 是菱形;(2)若BD =24,MN =10,求菱形BNDM的周长.(1)证明:∵AD ∥BC ,∴∠DMO =∠BNO ,∵MN 是对角线BD 的垂直平分线,∴OB =OD ,MN ⊥BD ,在△MOD 和△NOB 中,∠DMO =∠BNO ∠MOD =∠NOB OD =OB,∴△MOD ≌△NOB (AAS ),∴OM =ON ,∵OB =OD ,∴四边形BNDM 是平行四边形,∵MN ⊥BD ,∴四边形BNDM 是菱形;(2)∵四边形BNDM 是菱形,BD =24,MN =10,∴BM =BN =DM =DN ,OB =12 BD =12,OM =12 MN =5,在Rt △BOM 中,由勾股定理得:BM =OM 2+OB 2 =52+122 =13,∴菱形BNDM 的周长=4BM =4×13=52.19.如图,在△ABC 中,BD 平分∠ABC 交AC 于D ,EF 垂直平分BD ,分别交AB ,BC ,BD 于E ,F ,G ,连接DE ,DF .(1)求证:四边形BEDF 是菱形;(2)若∠BDE =15°,∠C =45°,DE =2,求CF的长.【解析】(1)∵BD 平分∠ABC ,∴∠ABD =∠DBC ,∵EF 垂直平分BD ,∴BE =DE ,BF =DF ,∵∠EBD =∠EDB ,∠FBD =∠FDB ,∴∠EBD =∠BDF ,∠EDB =∠DBF ,∴BE ∥DF ,DE ∥BF ,∴四边形DEBF 是平行四边形,且BE =DE ,∴四边形BEDF 是菱形;(2)过点D 作DH ⊥BC 于点H ,∵四边形BEDF 是菱形,∴BF =DF =DE =2,∴∠FBD =∠FDB =∠BDE =15°,∴∠DFH =30°,且DH ⊥BC ,∴DH =12 DF =1,FH =3 DH 3 ,∵∠C =45°,DH ⊥BC ,∴∠C =∠CDH =45°,∴DH =CH =1,∴FC =FH +CH =3 +1.20.如图,在▱ABCD 中,M 、N 分别是AD 、BC 的中点,∠AND =90°,连接CM 交DN 于点O .(1)求证:△ABN ≌△CDM ;(2)求证:四边形CDMN 为菱形;(3)过点C 作CE ⊥MN 于点E ,交DN 于点P ,若PE =1,∠1=∠2,求NC 的长.【答案】(1)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AD =BC ,∠B =∠CDM ,∵M 、N 分别是AD ,BC 的中点,∴BN =DM ,∵在△ABN 和△CDM 中,AB =CD ∠B =∠CDM BN =DM,∴△ABN ≌△CDM (SAS );(2)证明:∵M 是AD 的中点,∠AND =90°,∴NM =AM =MD ,∵BN =NC =AM =DM ,∴NC =MN =DM ,∵NC ∥DM ,NC =DM ,∴四边形CDMN 是平行四边形,又∵MN =DM ,∴四边形CDMN 是菱形.(3)∵M 是AD 的中点,∠AND =90°,∴MN =MD =12AD ,∴∠1=∠MND ,∵AD ∥BC ,∴∠1=∠CND ,∵∠1=∠2,∴∠MND =∠CND =∠2,∴PN =PC ,∵CE ⊥MN ,∴∠CEN =90°,∠END +∠CNP +∠2=180°-∠CEN =90°,又∵∠END =∠CNP =∠2,∴∠2=∠PNE =30°,∵PE =1,∴PN =2PE =2,∴CE =PC +PE =3,∴NC =23.六、矩形的性质掌握矩形的性质是解决此类问题的关键,矩形具有平行四边形的一切性质;矩形的四个角都是直角;矩形的对角线相等.21.如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 交AD 于点M ,交BC 于点N ,连结BM 、DN .若AB =4,AD =8,则MD 的长为()A.3B.4C.5D.6【分析】根据线段垂直平分线的的性质,求出DM =BM ,在Rt △A MB 中,根据勾股定理得出BM 2=AM 2+AB 2,即可列方程求解.【解析】∵对角线BD 的垂直平分线MN 交AD 于点M ,交BC 于点N ,∴MB =MD ,设MD 长为x ,则MB =DM =x ,在Rt △A MB 中,BM 2=AM 2+AB 2,即x 2=(8-x )2+42,解得:x =5,∴MD 长为5.选C .【小结】本题主要考查了矩形的性质以及勾股定理的运用,解题时注意,线段垂直平分线上任意一点,到线段两端点的距离相等.22.如图,在矩形ABCD 中,AB =2,对角线AC 与BD 相交于点O ,AE ⊥BD ,垂足为E .若BE =EO ,则AD 的长是()A.62B.23C.32D.25【分析】由矩形的性质可得OB =OD =OA =OC ,AC =BD ,由线段垂直平分线的性质可得OA =AB =OB ,可证△OAB 是等边三角形,可得∠ABD =60°,由直角三角形的性质可求解.【解析】∵四边形ABCD 是矩形,∴OB =OD ,OA =OC ,AC =BD ,∴OA =OB ,∵BE =EO ,AE ⊥BD ,∴AB =AO ,∴OA =AB =OB ,即△OAB 是等边三角形,∴∠ABD =60°,∴∠ADE =90°-∠ABD =30°,∴AD =3 AB =23 ,选B .【小结】本题考查了矩形的性质,等边三角形的判定与性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.23.如图,在矩形ABCD中,对角线AC、BD相交于点O,若DF⊥AC,∠ADF:∠FDC=3:2,则∠BDF=()A.18°B.36°C.27°D.54°【分析】根据∠ADC=90°,求出∠CDF和∠ADF,根据矩形性质求出OD=OC,推出∠BDC=∠DCO,求出∠BDC,即可求出答案.【解析】设∠ADF=3x,∠FDC=2x,∵四边形ABCD是矩形,∴∠ADC=90°,∴2x+3x=90°,∴x=18°,即∠FDC=2x=36°,∵DF⊥AC,∴∠DMC=90°,∴∠DCO=90°-36°=54°,∵四边形ABCD是矩形,∴AC=2OC,BD=2OD,AC=BD,∴OD=OC,∴∠BDC=∠DCO=54°,∴∠BDF=∠BDC-∠FDC=54°-36°=18°,选A.【小结】本题考查了矩形性质、三角形的内角和定理、等腰三角形的判定与性质等知识;求出∠BDC和∠CDF的度数是解题的关键.24.如图,矩形ABCD的对角线AC、BD交于点E,∠ACB=52°,AM平分∠BAC,交BC于点M,过点B作BF⊥AM.垂足为点F,则∠DBF的度数为()A.43°B.34°C.33°D.19°【分析】由矩形的性质得∠ABC=90°,AE=BE,求出∠ABD=∠BAC=38°,由角平分线定义得出∠BAM=∠CAM=12 ∠BAC=19°,则∠ABF=90°-∠BAM=71°,由∠DBF=∠ABF-∠ABD即可得出结果.【解析】∵四边形ABCD是矩形,∴∠ABC=90°,AE=BE,∴∠BAC=90°-∠ACB=90°-52°=38°,∴∠ABD=∠BAC=38°,∵AM平分∠BAC,∴∠BAM=∠CAM=12 ∠BAC=12 ×38°=19°,∵BF⊥AM,∴∠ABF=90°-∠BAM=90°-19°=71°,∴∠DBF=∠ABF-∠ABD=71°-38°=33°,选C.【小结】本题考查了矩形的性质、等腰三角形的性质、角平分线定义、三角形内角和定理等知识;熟练掌握矩形的性质和角平分线定义是解题的关键.。

人教八年级数学特殊平行四边形相关知识归纳总结与例题精讲

人教八年级数学特殊平行四边形相关知识归纳总结与例题精讲

人教八年级数学特殊平行四边形相关知识归纳总结与例题精讲龙文学校-----您值得信赖的专业个性化辅导学校特殊平行四边形相关知识的归纳和常见题型精讲附件:矩形菱形广场的性能及判定汇总边性角质对角线矩形对边平行且相等四个角都是直角互相平分且相等有三个角是直角;是平行四边形且有一个角是直角;是平行四边形且两条对角线相等.菱形对边平行,四边相等对角相等互相垂直平分,且每条对角线平分一组对角正方形对边平行,四边相等四个角都是直角互相垂直平分且相等,每条对角线平分一组对角判定四边相等的四边形;是平行四边形且有一是矩形,且有一组邻边相等;组邻边相等;是菱形,且有一个角是直角。

是平行四边形且两条对角线互相垂直。

既是轴对称图形,又是中心对称图形对称性一.矩形矩形的定义:具有直角的平行四边形称为矩形(通常也称为矩形或正方形)矩形是中心对称图形,对称中心是对角线的交点,矩形也是轴对称图形,对称轴是通过对边中点的直线,有两条对称轴;矩形的性质:(具有平行四边形的所有特征)矩形性质1:矩形的四个角都是直角.矩形属性2:矩形的对角线相等且等分如图,在矩形abcd中,ac、bd相交于点o,由性质2有11ac=BD。

因此,我们可以得到直角三角形的一个性质:直角三角形22形斜边上的中线等于斜边的一半.ao=bo=co=do=矩形的判定方法.矩形的确定方法1:对角线相等的平行四边形为矩形。

矩形确定方法2:三个角为直角的四边形为矩形龙文学校-----您值得信赖的专业个性化辅导学校矩形确定方法3:直角平行四边形为矩形矩形判定方法4:(4)对角线相等且互相平分的四边形是矩形.例1:如图所示,矩形ABCD长8cm,对角线比AD边长4cm。

求出AD的长度以及a点到BD的距离AE例2已知:如图,矩形abcd中,e是bc上一点,df⊥ae于f,若ae=bc.求证:ce=ef.例3。

如图所示,在矩形ABCD中,e是ad上的点,f是AB上的点,EF⊥ EC,EF=EC,de=4cm,矩形ABCD的周长为32cm,计算AE的长度例4、如图,在abcd中,e为bc的中点,连接ae并延长交dc的延长线于点f.(1)验证:ab=CF;(2)当bc与af满足什么数量关系时,四边形abfc是矩形,并说明理由.acbefd龙文学校-----您值得信赖的专业个性化辅导学校二、钻石菱形定义:有一组邻边相等的平行四边形叫做菱形.【重点】钻石(1)是一个平行四边形;(2)一组相邻的边是相等的菱形的性质属性1钻石的四边相等;性质2菱形的对角线互相平分,并且每条对角线平分一组对角;钻石的测定菱形判定方法1:对角线互相垂直的平行四边形是菱形.注意,这种方法包括两个条件:(1)它是一个平行四边形;(2)这两条对角线互相垂直菱形判定方法2:四边都相等的四边形是菱形.例1:如图所示,四边形ABCD是菱形,f是AB上的一个点,DF与E中的AC相交。

特殊平行四边形专题总结

特殊平行四边形专题总结

特殊平行四边形专题总结一、菱形(一)菱形的定义:有一组邻边相等的平行四边形叫做菱形(二)菱形的性质:1、菱形既是轴对称图形又是中心对称图形,每条对角线所在的直线都是菱形的对称轴,两条对角线的交点是菱形的对称中心;2、菱形的四条边相等3、菱形的对角线相互垂直(三)菱形的判定:1、对角线相互垂直的平行四边形是菱形2、四条边相等的四边形是菱形注意:1、菱形是特殊的平行四边形,因此菱形具有平行四边形的所有性质2、菱形的两个判定定理有着不同的适用范围,在应用是应要注意区分题型一:求与菱形有关的图形面积例1:已知BD是ABC∆的角平分线,DE//BC,交AB于点E.(1)如图一,求证:BED∆是等腰三角形;(2)如图二,在线段BC上取一点F,使四边形BFDE是菱形,连结EF交BD于点O,在不添加任何辅助线的情况下,请写出与BEF∆面积一定相等的所有三角形(不包括BEF∆本身)。

1、如图,四边形ABCD 是菱形,AB DH DB AC ⊥==,,68与点H ,则=DH ( ) 524.A 512.B 12.C 24.D题型二:综合运用菱形的性质与判定解题例2:如图,F E ,为线段BD 的两个三等分点,四边形AECF 是菱形。

(1)试判断四边形ABCD 的形状,并加以证明;(2)若菱形AECF 的周长为20,BD 的长为24,试求四边形ABCD 的面积。

2、如图,已知F E ,分别是平行四边形ABCD 的边AD BC ,的中点,且︒=∠90BAC(1)求证:四边形AECF 是菱形;(2)若1035==BC AB ,,求菱形AECF 的面积。

题型三:与菱形有关的图形变换问题例3:如图,在ABC ∆和EDC ∆中,︒=∠=∠===09,DCE ACB CD CB CE AC ,AB 与CE 交于点F ,BC AB ED 、与分别交于H M 、.(1)求证:CH CF =;(2)如图2,ABC ∆不动,将EDC ∆绕点C 旋转到︒=∠45BCE 时,试判断四边形ACDM 是什么四边形,并证明你的结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特殊的平行四边形精讲
矩形定义: 有一个角是直角的平行四边形叫做矩形(通常也叫长方形或正方形).
矩形的性质:(具有平行四边形的一切特征)
矩形性质1:矩形的四个角都是直角.矩形性质2: 矩形的对角线相等且互相平分.由此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.矩形的判定方法.
矩形判定方法1:对角钱相等的平行四边形是矩形.
矩形判定方法2:有三个角是直角的四边形是矩形.
矩形判定方法3:有一个角是直角的平行四边形是矩形.
矩形判定方法4:(4)对角线相等且互相平分的四边形是矩形.
例1、已知:如图,矩形ABCD,AB长8 cm ,对角线比AD边长4 cm.求AD的长及点A到BD的距离AE的长.
【变式练习1】已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.
例2.如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC ,DE =4cm ,矩形ABCD 的周长为32cm ,求AE 的长.
【变式练习1】
中,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F .
(1)求证:AB=CF ;
(2)当BC 与AF 满足什么数量关系时,四边形ABFC 是矩形,并说明理由.
菱形定义:有一组邻边相等的平行四边形叫做菱形.【强调】
菱形(1)是平行四边形;
(2)一组邻边相等.
菱形的性质
性质1 菱形的四条边都相等; 性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;
菱形的判定
菱形判定方法1:对角线互相垂直的平行四边形是菱形.
注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.
菱形判定方法2:四边都相等的四边形是菱形.
例3、已知:如图,四边形ABCD 是菱形,F 是AB 上一点,DF 交AC 于E . 求证:∠AFD=∠CBE .
F
E D
C B A
【变式练习】已知:如图ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交
于E 、F .
求证:四边形AFCE 是菱形.
例4、如图,在
ABCD 中,O 是对角线AC 的中点,过点O 作AC 的垂线与边AD 、
BC 分别交于E 、F ,求证:四边形AFCE 是菱形.
【变式练习】已知如图,菱形ABCD
中,E 是BC 上一点,AE 、BD 交于M ,
若AB=AE,∠EAD=2∠BAE 。

求证:AM=BE 。

【变式练习】如图,在菱形ABCD 中,∠A =60°,AB =4,O 为对角线BD 的中点,过O 点作OE ⊥AB ,垂足为E .
(1)求线段BE 的长.
A
B
C
D
E
F
O
1
2
B
M A
D
C
E
正方形是在平行四边形的前提下定义的,它包含两层意思:
①有一组邻边相等的平行四边形(菱形)
②有一个角是直角的平行四边形(矩形)
正方形不仅是特殊的平行四边形,并且是特殊的矩形,又是特殊的菱形.
正方形定义:有一组邻边相等
.....叫做正方形.
......并且有一个角是直角
.......的平行四边形
正方形是中心对称图形,对称中心是对角线的交点,正方形又是轴对称图形,对称轴是对边中点的连线和对角线所在直线,共有四条对称轴;
因为正方形是平行四边形、矩形,又是菱形,所以它的性质是它们性质的综合,正方形的性质总结如下:
边:对边平行,四边相等;
角:四个角都是直角;
对角线:对角线相等,互相垂直平分,每条对角线平分一组对角.
注意:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,这是正方形的特殊性质.
正方形具有矩形的性质,同时又具有菱形的性质.
正方形的判定方法:
•(1)有一个角是直角的菱形是正方形;
•(2)有一组邻边相等的矩形是正方形.
•注意:1、正方形概念的三个要点:
•(1)是平行四边形;
•(2)有一个角是直角;
•(3)有一组邻边相等.
2、要确定一个四边形是正方形,应先确定它是菱形或是矩形,然后再加上相应的条件,确定是正方形.
例5、已知:如图,正方形ABCD中,对角线的交点为O,E是OB上的一点,DG⊥AE
于G,DG交OA于F.
求证:OE=OF.
图 5
E D C B
A 【变式练习】已知:如图,四边形ABCD 是正方形,分别过点A 、C 两点作l 1∥l 2,作
BM ⊥l 1于M ,DN ⊥l 1于N ,直线MB 、DN 分别交l 2于Q 、P 点.
求证:四边形PQMN 是正方形.
【变式练习】如图,在梯形ABCD 中,AB ∥DC , DB 平分∠ADC ,过点A 作AE ∥BD ,交CD 的延长线于点E ,且∠C =2∠E . (1)求证:梯形ABCD 是等腰梯形.
(2)若∠BDC =30°,AD =5,求CD 的长.。

相关文档
最新文档