数列二轮复习专题一
2023新教材高考数学二轮专题复习第一部分专题攻略专题一小题专攻第一讲集合常用逻辑用语不等式课件
则A∪B=( )
A.(0,1)
B.(1,2)
C.(-∞,2)
D.(0,+∞)
答案: C 解析:因为B={x|x(x-2)<0}={x|0<x<2},则A∪B={x|x<2}.
3.[2022·新高考Ⅱ卷]已知集合A={-1,1,2,4},B={x||x-
1|≤1},则A∩B=( )
A.{-1,2}
B.{1,2}
3.[2022·浙江卷]设x∈R,则“sin x=1”是“cos x=0”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
答案:A
解析:由sin x=1,得cos x=0,因此“sin x=1”是“cos x=0”的充分条件, 当cos x=0时,x=π2+kπ(k∈Z).当k为偶数时,sin x=1;当k为奇数时,sin x=- 1,因此“sin x=1”不是“cos x=0”的必要条件.所以“sin x=1”是“cos x=0” 的充分不必要条件.故选A.
则A∩B={x|x<-1或1<x<2}∩{x|x>-2}={x|-2<x<-1或1<x<2}.
(2)[2022·山东济南二模]已知集合A={1,2},B={2,4},C={z|z=
xy,x∈A,y∈B},则C中元素的个数为( )
A.1
B.2
C.3
D.4
答案:C
解析:由题意,当x=1时,z=xy=1,当x=2,y=2时,z=xy=4, 当x=2,y=4时,z=xy=16, 即C中有三个元素.
保分题 1.[2022·山东肥城模拟]命题p:有的等差数列是等比数列,则( ) A.¬p:有的等差数列不是等比数列 B.¬p:有的等比数列是等差数列 C.¬p:所有的等差数列都是等比数列 D.¬p:所有的等差数列都不是等比数列
高考数学二轮复习第一部分微专题强化练习题:数列求和及综合应用含解析
第一部分 一 10一、选择题1.(文)(2015·新课标Ⅱ文,5)设S n 是等差数列{}a n 的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .5B .7C .9D .11[答案] A[解析] 考查等差数列的性质及求和公式.a 1+a 3+a 5=3a 3=3⇒a 3=1,S 5=5(a 1+a 5)2=5a 3=5.故选A.(理)(2015·新课标Ⅰ文,7)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=( )A.172 B.192 C .10 D .12 [答案] B[解析] 本题主要考查等差数列的通项及求和公式.由题可知:等差数列{a n }的公差d =1,因为等差数列S n =a 1n +n (n -1)d2,且S 8=4S 4,代入计算可得a 1=12;等差数列的通项公式为a n =a 1+(n -1)d ,则a 10=12+(10-1)×1=192.故本题正确答案为B.[方法点拨] 数列求和的类型及方法技巧(1)公式法:直接应用等差、等比数列的求和公式求和. (2)错位相减法这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n }、{b n }分别是等差数列和等比数列. (3)倒序相加法这是在推导等差数列前n 项和公式时所用的方法,也就是将一个数列倒过来排列(反序),当它与原数列相加时若有公因式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和.(4)裂项相消法利用通项变形,将通项分裂成两项或几项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.(5)分组转化求和法有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,可先分别求和,然后再合并.2.(文)设{a n }是等比数列,函数y =x 2-x -2013的两个零点是a 2、a 3,则a 1a 4=( ) A .2013 B .1 C .-1 D .-2013[答案] D[解析] 由条件得,a 1a 4=a 2a 3=-2013.(理)已知数列{a n }满足a n +2-a n +1=a n +1-a n ,n ∈N *,且a 5=π2.若函数f (x )=sin2x +2cos 2x2,记y n =f (a n ),则数列{y n }的前9项和为( )A .0B .-9C .9D .1 [答案] C[解析] 据已知得2a n +1=a n +a n +2,即数列{a n }为等差数列,又f (x )=sin2x +2×1+cos x2=sin2x +1+cos x ,因为a 1+a 9=a 2+a 8=…=2a 5=π,故cos a 1+cos a 9=cos a 2+cos a 8=…=cos a 5=0,又2a 1+2a 9=2a 2+2a 8=…=4a 5=2π,故sin2a 1+sin2a 9=sin2a 2+sin2a 8=…=sin2a 5=0,故数列{y n }的前9项之和为9,故选C.3.(2014·辽宁协作联校三模)已知数列{a n }的通项公式a n =2014sin n π2,则a 1+a 2+…+a 2014=( )A .2012B .2013C .2014D .2015 [答案] C[解析] 数列{a n }的周期为4,且a 1+a 2+a 3+a 4=2014(sin π2+sinπ+sin 3π2+sin2π)=0,又∵2014=4×503+2,∴a 1+a 2+…+a 2014=a 1+a 2=2014sin π2+2014sinπ=2014.4.(文)已知函数f (x )满足f (x +1)=32+f (x )(x ∈R ),且f (1)=52,则数列{f (n )}(n ∈N *)前20项的和为( )A .305B .315C .325D .335[答案] D[解析] ∵f (1)=52,f (2)=32+52,f (3)=32+32+52,…,f (n )=32+f (n -1),∴{f (n )}是以52为首项,32为公差的等差数列.∴S 20=20×52+20(20-1)2×32=335.(理)设y =f (x )是一次函数,若f (0)=1,且f (1),f (4),f (13)成等比数列,则f (2)+f (4)+…+f (2n )等于( )A .n (2n +3)B .n (n +4)C .2n (2n +3)D .2n (n +4)[答案] A[解析] 设f (x )=kx +1(k ≠0),则(4k +1)2=(k +1)×(13k +1)⇒k =2,f (2)+f (4)+…+f (2n )=(2×2+1)+(2×4+1)+(2×6×1)+…+(2×2n +1)=2n 2+3n . [方法点拨] 解决数列与函数知识结合的题目时,要明确数列是特殊的函数,它的图象是群孤立的点,注意函数的定义域等限制条件,准确的进行条件的转化,数列与三角函数交汇时,数列通常作为条件出现,去除数列外衣后,本质是三角问题.5.(文)已知数列{a n }是等比数列,且每一项都是正数,若a 1、a 49是2x 2-7x +6=0的两个根,则a 1·a 2·a 25·a 48·a 49的值为( )A.212 B .93 C .±9 3 D .35[答案] B[解析] ∵{a n }是等比数列,且a 1,a 49是方程2x 2-7x +6=0的两根, ∴a 1·a 49=a 225=3.而a n >0,∴a 25= 3.∴a 1·a 2·a 25·a 48·a 49=a 525=(3)5=93,故选B.(理)(2015·江西质检)如果数列{a n }中,相邻两项a n 和a n +1是二次方程x 2n +2nx n +c n =0(n =1,2,3,…)的两个根,当a 1=2时,c 100的值为( )A .-9984B .9984C .9996D .-9996[答案] C[解析] 由根与系数关系,a n +a n +1=-2n ,则(a n +1+a n +2)-(a n +a n +1)=-2.即a n +2-a n =-2,∴a 1,a 3,a 5,…和a 2,a 4,a 6,…都是公差为-2的等差数列,∵a 1=2,a 1+a 2=-2,∴a 2=-4,即a 2k =-2k -2,∴a 100=-102,a 2k -1=-2k +4,∴a 101=-98.∴c 100=a 100·a 101=9996.6.等差数列{a n }中,a 1>0,公差d <0,S n 为其前n 项和,对任意自然数n ,若点(n ,S n )在以下4条曲线中的某一条上,则这条曲线应是( )[答案] C[解析] ∵S n =na 1+n (n -1)2d ,∴S n =d 2n 2+(a 1-d 2)n ,又a 1>0,公差d <0,所以点(n ,S n )所在抛物线开口向下,对称轴在y 轴右侧.[点评] 可取特殊数列验证排除,如a n =3-n .7.(2015·南昌市一模)已知无穷数列{a n },如果存在常数A ,对于任意给定的正数ε(无论多小),总存在正整数N ,使得n >N 时,恒有|a n -A |<ε成立,就称数列{a n }的极限为A ,则四个无穷数列:①{(-1)n ×2};②{n };③⎩⎨⎧⎭⎬⎫1+12+122+123+…+12n -1;④{2n +1n },其极限为2的共有( )A .4个B .3个C .2个D .1个[答案] C[解析] 对于①,|a n -2|=|(-1)n ×2-2|=2×|(-1)n -1|,当n 是偶数时,|a n -2|=0,当n 是奇数时,|a n -2|=4,所以不符合数列{a n }的极限的定义,即2不是数列{(-1)n ×2}的极限;对于②,由|a n -2|=|n -2|<ε,得2-ε<n <2+ε,所以对于任意给定的正数ε(无论多小),不存在正整数N ,使得n >N 时,恒有|a n -2|<ε,即2不是数列{n }的极限;对于③,由|a n -2|=|1+12+122+123+…+12n -1-2|=⎪⎪⎪⎪⎪⎪1×⎝⎛⎭⎫1-12n 1-12-2=22n<ε,得n >1-log 2ε,即对于任意给定的正数ε(无论多小),总存在正整数N ,使得n >N 时,恒有|a n -2|<ε成立,所以2是数列⎩⎨⎧⎭⎬⎫1+12+122+123+…+12n -1的极限;对于④,由|a n -2|=⎪⎪⎪⎪2n +1n -2=1n <ε,得n >1ε,即对于任意给定的正数ε(无论多小),总存在正整数N ,使得n >N 时,恒有|a n -2|<ε成立,所以2是数列⎩⎨⎧⎭⎬⎫2n +1n 的极限.综上所述,极限为2的共有2个,即③④. 二、填空题8.(文)若数列{a n }满足1a n +1-1a n=d (n ∈N *,d 为常数),则称数列{a n }为“调和数列”.已知正项数列{1b n}为“调和数列”,且b 1+b 2+…+b 9=90,则b 4·b 6的最大值是________.[答案] 100[解析] 由调和数列的定义知{b n }为等差数列,由b 1+b 2+…+b 9=9b 5=90知b 5=10, ∵b n >0,∴b 4b 6≤(b 4+b 62)2=b 25=100.(理)(2014·河南十所名校联考)对于各项均为整数的数列{a n },如果a i +i (i =1,2,3,…)为完全平方数,则称数列{a n }具有“P 性质”,不论数列{a n }是否具有“P 性质”,如果存在与{a n }不是同一数列的{b n },且{b n }同时满足下面两个条件:①b 1,b 2,b 3,…,b n 是a 1,a 2,a 3,…,a n 的一个排列;②数列{b n }具有“P 性质”,则称数列{a n }具有“变换P 性质”,下面三个数列:①数列{a n }的前n 项和为S n =n3(n 2-1);②数列1,2,3,4,5;③数列1,2,3,…,11.其中具有“P 性质”或“变换P 性质”的有________(填序号).[答案] ①②[解析] S n =n 3(n 2-1),S n -1=n -13[(n -1)2-1](n ≥2),∴a n =S n -S n -1=n3(n -1)(n +1)-n -13(n 2-2n )=n3(n -1)(n +1-n +2)=n (n -1)(n ≥2),又a 1=S 1=0,∴a 1+1=1=12,a 2+2=4=22,a 3+3=9=32,…,a n +n =n 2,∴数列{a n }具有“P 性质”;数列1,2,3,4,5排为3,2,1,5,4,则a 1+1=4=22,a 2+2=4=22,a 3+3=4=22,a 4+4=9=32,a 5+5=9=32,∴数列1,2,3,4,5具有“变换P 性质”,同理可验证数列1,2,3,…,11不具有“P 性质”和“变换P 性质”.[方法点拨] 脱去新定义的外衣,将问题化为基本数学模型,用相应的知识方法解答是解决此类问题的基本方法.9.(2015·安徽文,13)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.[答案] 27[解析] 考查1.等差数列的定义;2.等差数列的前n 项和. ∵n ≥2时,a n =a n -1+12,且a 1=1,∴{a n }是以1为首项,12为公差的等差数列.∴S 9=9×1+9×82×12=9+18=27.10.已知向量a =(2,-n ),b =(S n ,n +1),n ∈N *,其中S n 是数列{a n }的前n 项和,若a ⊥b ,则数列{a na n +1a n +4}的最大项的值为________.[答案] 19[解析] ∵a ⊥b ,∴a ·b =2S n -n (n +1)=0, ∴S n =n (n +1)2,∴a n =n ,∴a n a n +1·a n +4=n(n +1)(n +4)=1n +4n+5,当n =2时,n +4n 取最小值4,此时a na n +1a n +4取到最大值19.三、解答题11.(文)(2015·云南省检测)已知等比数列{a n }的前n 项和是S n ,S 18S 9=78. (1)求证:S 3,S 9,S 6依次成等差数列;(2)a 7与a 10的等差中项是否是数列{a n }中的项?如果是,是{a n }中的第几项?如果不是,请说明理由.[解析] (1)证明:设等比数列{a n }的公比为q ,若q =1,则S 18=18a 1,S 9=9a 1, S 18S 9=21≠78.∴q ≠1.∴S 18=a 11-q (1-q 18),S 9=a 11-q (1-q 9),S 18S 9=1+q 9.∴1+q 9=78,解得q =-2-13.∴S 3=a 1(1-q 3)1-q =32×a 11-q ,S 6=a 1(1-q 6)1-q=34×a 11-q. S 9=a 11-q(1-q 9)=98×a 11-q .∵S 9-S 3=-38×a 11-q ,S 6-S 9=-38×a 11-q ,∴S 9-S 3=S 3-S 9.∴S 3,S 9,S 6依次成等差数列.(2)a 7与a 10的等差中项等于a 7+a 102=14a 1-18a 12=a 116.设a 7与a 10的等差中项是数列{a n }中的第n 项,则 a 1(-2-13)n -1=a 116,化简得(-2)-n -13=(-2)-4,则-n -13=-4,解得n =13.∴a 7与a 10的等差中项是数列{a n }中的第13项.(理)(2015·唐山一模)设数列{a n }的前n 项和为S n ,满足(1-q )S n +qa n =1,且q (q -1)≠0. (1)求{a n }的通项公式;(2)若S 3,S 9,S 6成等差数列,求证:a 2,a 8,a 5成等差数列. [解析] (1)当n =1时,由(1-q )S 1+qa 1=1,∴a 1=1,当n ≥2时,由(1-q )S n +qa n =1,得(1-q )S n -1+qa n -1=1,两式相减得 (1-q )a n +q (a n -a n -1)=0,∴a n =qa n -1,∵a 1=1,q (q -1)≠0,∴a n =q n -1, 综上a n =q n -1. (2)由(1)可知a na n -1=q ,所以{a n }是以1为首项,q 为公比的等比数列. 所以S n =1-a n q 1-q ,又S 3+S 6=2S 9,得1-a 3q 1-q +1-a 6q 1-q =2(1-a 9q )1-q ,化简得a 3+a 6=2a 9,两边同除以q 得a 2+a 5=2a 8. 故a 2,a 8,a 5成等差数列.[方法点拨] 1.在处理数列求和问题时,一定要先读懂题意,分清题型,区分等差数列与等比数列,不是基本数列模型的注意运用转化思想化归为等差、等比数列,在利用分组求和时,要特别注意项数.2.在处理等差与等比数列的综合问题时,先要看所给数列是等差数列还是等比数列,再依据条件建立方程求解.12.(文)已知函数f (x )在(-1,1)上有定义,f ⎝⎛⎭⎫12=-1,且满足对任意x 、y ∈(-1,1),有f (x )+f (y )=f ⎝⎛⎭⎪⎫x +y 1+xy ,数列{x n }中,x 1=12,x n +1=2x n 1+x 2n.(1)证明:f (x )在(-1,1)上为奇函数; (2)求数列{f (x n )}的通项公式; (3)求证:1f (x 1)+1f (x 2)+…+1f (x n )>-2n +5n +2. [分析] (1)要证f (x )为奇函数,只需证明f (-x )+f (x )=0,只需在条件式中令y =-x ,为了求f (0),令x =y =0即可获解.(2)利用f (x )+f (y )=f (x +y1+xy)可找出f (x n +1)与f (x n )的递推关系,从而求得通项.(3)由f (x n )的通项公式确定数列{1f (x n )}的求和方法,求和后利用放缩法可证明.[解析] (1)证明:令x =y =0,∴2f (0)=f (0), ∴f (0)=0.令y =-x ,则f (x )+f (-x )=f (0)=0, ∴f (-x )=-f (x ),∴f (x )在(-1,1)上为奇函数. (2)f (x 1)=f ⎝⎛⎭⎫12=-1,f (x n +1)=f ⎝⎛⎭⎫2x n 1+x 2n =f ⎝ ⎛⎭⎪⎫x n +x n 1+x n ·x n =2f (x n), ∴f (x n +1)f (x n )=2,即{f (x n )}是以-1为首项,2为公比的等比数列,∴f (x n )=-2n -1. (3)1f (x 1)+1f (x 2)+…+1f (x n ) =-⎝⎛⎭⎫1+12+122+…+12n -1=-1-12n1-12=-⎝⎛⎭⎫2-12n -1=-2+12n -1>-2,而-2n +5n +2=-⎝⎛⎭⎫2+1n +2=-2-1n +2<-2. ∴1f (x 1)+1f (x 2)+…+1f (x n )>-2n +5n +2. (理)在直角坐标平面上有一点列P 1(x 1,y 1),P 2(x 2,y 2),…,P n (x n ,y n ),…,对于每个正整数n ,点P n 均位于一次函数y =x +54的图象上,且P n 的横坐标构成以-32为首项,-1为公差的等差数列{x n }.(1)求点P n 的坐标;(2)设二次函数f n (x )的图象C n 以P n 为顶点,且过点D n (0,n 2+1),若过D n 且斜率为k n 的直线l n 与C n 只有一个公共点,求T n =1k 1k 2+1k 2k 3+…+1k n -1k n的表达式;(3)设S ={x |x =2x n ,n 为正整数},T ={y |y =12y n ,n 为正整数},等差数列{a n }中的任一项a n ∈(S ∩T ),且a 1是S ∩T 中最大的数,-225<a 10<-115,求数列{a n }的通项公式.[解析] (1)由题意知x n =-32-(n -1)=-n -12,y n =-n -12+54=-n +34,∴P n ⎝⎛⎭⎫-n -12,-n +34.(2)由题意可设二次函数f n (x )=a ⎝⎛⎭⎫x +n +122-n +34,因为f n (x )的图象过点D n (0,n 2+1), 所以a ⎝⎛⎭⎫n +122-n +34=n 2+1,解得a =1, 所以f n (x )=x 2+(2n +1)x +n 2+1.由题意可知,k n =f ′n (0)=2n +1,(n ∈N *).所以T n =1k 1k 2+1k 2k 3+…+1k n -1k n =13×5+15×7+…+1(2n -1)(2n +1)=1213-15+15-17+…+12n -1-12n +1=12⎝⎛⎭⎫13-12n +1=16-14n +2. (3)由题意得S ={x |x =-2n -1,n 为正整数},T ={y |y =-12n +9,n 为正整数}, 所以S ∩T 中的元素组成以-3为首项,-12为公差的等差数列, 所以a 1=-3,则数列{a n }的公差为-12k (k ∈N *), 若k =1,则a n =-12n +9,a 10=-111∉(-225,-115); 若k =2,则a n =-24n +21,a 10=-219∈(-225,-115); 若k ≥3,则a 10≤-327,即a 10∉(-225,-115).综上所述,数列{a n }的通项公式为a n =-24n +21(n 为正整数).[方法点拨] 1.数列与函数的综合性试题通常用到函数与方程、化归与转化、分类与整合等思想.注意数列是特殊的函数、等差、等比数列更是如此,因此求解数列与函数的综合性题目时,注意数列与函数的内在联系,将所给条件向a n 与n 的关系转化.2.数列还常与不等式交汇命题,不等式常作为条件或证明、求解的一问呈现,解答时先将数列的基本问题解决,再集中解决不等式问题,注意放缩法、基本不等式、裂项、累加法的运用.13.(文)(2015·山东文,19)已知数列{a n }是首项为正数的等差数列,数列⎩⎨⎧⎭⎬⎫1a n ·a n +1的前n 项和为n2n +1.(1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n .[解析] 考查1.等差数列的通项公式;2.“错位相减法”求和及运算求解能力. (1)设数列{a n }的公差为d , 令n =1,得1a 1a 2=13,得到a 1a 2=3.令n =2,得1a 1a 2+1a 2a 3=25,所以a 2a 3=15.解得a 1=1,d =2,所以a n =2n -1.(2)由(1)知b n =2n ·22n -1=n ·4n ,所以T n =1·41+2·42+…+n ·4n ,所以4T n =1·42+2·43+…+(n -1)·4n +n ·4n +1, 两式相减,得-3T n =41+42+…+4n -n ·4n +1 =4(1-4n )1-4-n ·4n +1=1-3n 3×4n +1-43,所以T n =3n -19×4n +1+49=4+(3n -1)·4n +19.(理)(2015·河南八市质检)已知数列{a n }的前n 项和为S n ,对于任意的正整数n ,直线x +y =2n 总是把圆(x -n )2+(y -S n )2=2n 2平均分为两部分,各项均为正数的等比数列{b n }中,b 6=b 3b 4,且b 3和b 5的等差中项是2a 3.(1)求数列{a n },{b n }的通项公式; (2)若c n =a n b n ,求数列{c n }的前n 项和T n .[解析] (1)由于x +y =2n 总是把圆(x -n )2+(y -S n )2=2n 2平均分为两部分,所以直线过圆心,所以n +S n =2n ,即S n =n 2, 所以a 1=S 1=1.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,经检验n =1时也成立,所以a n =2n -1.等比数列{b n }中,由于b 6=b 3b 4,所以b 1q 5=b 21q 5, 因为b 1>0,q >0,所以b 1=1,因为b 3和b 5的等差中项是2a 3,且2a 3=10,所以b 3+b 5=20, 所以q 2+q 4=20,解得q =2,所以b n =2n -1. (2)由于c n =a n b n ,所以T n =a 1b 1+a 2b 2+…+a n b n . T n =1+3×2+5×22+…+(2n -1)2n -1 ① 2T n =2+3×22+5×23+…+(2n -1)2n ② 所以-T n =1+2(2+22+…+2n -1)-(2n -1)2n =1+2×2(1-2n -1)1-2-(2n -1)2n=-3+2×2n -(2n -1)2n =-3+(3-2n )2n , T n =3+(2n -3)2n .14.(文)政府决定用“对社会的有效贡献率”对企业进行评价,用a n 表示某企业第n 年投入的治理污染的环保费用,用b n 表示该企业第n 年的产值.设a 1=a (万元),且以后治理污染的环保费用每年都比上一年增加2a 万元;又设b 1=b (万元),且企业的产值每年比上一年的平均增长率为10%.用P n =a n b n100ab表示企业第n 年“对社会的有效贡献率”.(1)求该企业第一年和第二年的“对社会的有效贡献率”; (2)试问从第几年起该企业“对社会的有效贡献率”不低于20%?[解析] (1)∵a 1=a ,b 1=b ,P n =a n b n 100ab, ∴P 1=a 1b 1100ab=1%, P 2=a 2b 2100ab =3a ×1.1b 100ab=3.3%. 故该企业第一年和第二年的“对社会的有效贡献率”分别为1%和3.3%.(2)由题意,得数列{a n }是以a 为首项,以2a 为公差的等差数列,数列b n 是以b 为首项,以1.1为公比的等比数列,∴a n =a 1+(n -1)d =a +(n -1)·2a =(2n -1)a ,b n =b 1(1+10%)n -1=1.1n -1b .又∵P n =a n b n 100ab, ∴P n =(2n -1)a ×1.1n -1b 100ab=(2n -1)×1.1n -1100. ∵P n +1P n =2n +12n -1×1.1=⎝⎛⎭⎫1+22n -1×1.1>1, ∴P n +1>P n ,即P n =(2n -1)×1.1n -1100单调递增. 又∵P 6=11×1.15100≈17.72%<20%, P 7=13×1.16100≈23.03%>20%. 故从第七年起该企业“对社会的有效贡献率”不低于20%.(理)甲、乙两大超市同时开业,第一年的全年销售额都为a 万元,由于经营方式不同,甲超市前n 年的总销售额为a 2(n 2-n +2)万元,乙超市第n 年的销售额比前一年的销售额多(23)n -1a 万元.(1)求甲、乙两超市第n 年销售额的表达式;(2)若其中某一超市的年销售额不足另一超市的年销售额的50%,则该超市将被另一超市收购,判断哪一超市有可能被收购?如果有这种情况,将会出现在第几年.[解析] (1)设甲、乙两超市第n 年销售额分别为a n 、b n ,又设甲超市前n 年总销售额为S n ,则S n =a 2(n 2-n +2)(n ≥2),因n =1时,a 1=a , 则n ≥2时,a n =S n -S n -1=a 2(n 2-n +2)-a 2[(n -1)2-(n -1)+2]=a (n -1),故a n =⎩⎪⎨⎪⎧a ,n =1,(n -1)a ,n ≥2, 又因b 1=a ,n ≥2时,b n -b n -1=(23)n -1a , 故b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=a +23a +(23)2a +…+(23)n -1a =[1+23+(23)2+…+(23)n -1]a =1-(23)n 1-23a =[3-2·(23)n -1]a , 显然n =1也适合,故b n =[3-2·(23)n -1]a (n ∈N *) (2)当n =2时,a 2=a ,b 2=53a ,有a 2>12b 2; n =3时,a 3=2a ,b 3=199a ,有a 3>12b 3; 当n ≥4时,a n ≥3a ,而b n <3a ,故乙超市有可能被收购.当n ≥4时,令12a n >b n , 则12(n -1)a >[3-2·(23)n -1]a ⇒n -1>6-4·(23)n -1, 即n >7-4·(23)n -1. 又当n ≥7时,0<4·(23)n -1<1, 故当n ∈N *且n ≥7时,必有n >7-4·(23)n -1. 即第7年乙超市的年销售额不足甲超市的一半,乙超市将被甲超市收购.[方法点拨] 1.用数列知识解相关的实际问题,关键是合理建立数学模型——数列模型,弄清所构造的数列的首项是什么,项数是多少,然后转化为解数列问题.求解时,要明确目标,即搞清是求和,还是求通项,还是解递推关系问题,所求结论对应的是一个解方程问题,还是解不等式问题,还是一个最值问题,然后进行合理推算,得出实际问题的结果.2.数列的实际应用问题一般文字叙述较长,反映的事物背景陌生,知识涉及面广,因此要解好应用题,首先应当提高阅读理解能力,将普通语言转化为数学语言或数学符号,实际问题转化为数学问题,然后再用数学运算、数学推理予以解决.3.正确区分等差与等比数列模型,正确区分实际问题中的量是通项还是前n 项和.15.(文)定义:若数列{A n }满足A n +1=A 2n ,则称数列{A n }为“平方递推数列”.已知数列{a n }中,a 1=2,点(a n ,a n +1)在函数f (x )=2x 2+2x 的图象上,其中n 为正整数.(1)证明:数列{2a n +1}是“平方递推数列”,且数列{lg(2a n +1)}为等比数列;(2)设(1)中“平方递推数列”的前n 项之积为T n ,即T n =(2a 1+1)(2a 2+1)…(2a n +1),求T n 关于n 的表达式;(3)记b n =log2a n +1T n ,求数列{b n }的前n 项之和S n ,并求使S n >2012成立的n 的最小值.[解析] (1)证明:由题意得a n +1=2a 2n +2a n ,∴2a n +1+1=4a 2n +4a n +1=(2a n+1)2. 所以数列{2a n +1}是“平方递推数列”.令c n =2a n +1,所以lg c n +1=2lg c n .因为lg(2a 1+1)=lg5≠0,所以lg (2a n +1+1)lg (2a n +1)=2. 所以数列{lg(2a n +1)}为等比数列.(2)由(1)知lg(2a n +1)=(lg5)×2n -1,∴2a n +1=10(lg5)×2n -1=52n -1,∴T n =520×521×522×…×52n -1=520+21+…+2n -1=52n -1.(3)∵b n =log2a n +1T n =2n -12n -1=2-(12)n -1, ∴S n =b 1+b 2+…+b n =2n -1×(1-12n )1-12=2n -2+12n -1, 由2n -2=2012得n =1007,∴S 1006=2×1006-2+121005∈(2010,2011),S 1007=2×1007-2+121006∈(2012,2013). 故使S n >2012成立的n 的最小值为1007.(理)已知曲线C :xy =1,过C 上一点A n (x n ,y n )作一斜率为k n =-1x n +2的直线交曲线C 于另一点A n +1(x n +1,y n +1),点列{A n }的横坐标构成数列{x n },其中x 1=117. (1)求x n 与x n +1的关系式;(2)令b n =1x n -2+13,求证:数列{b n }是等比数列; (3)若c n =3n -λb n (λ为非零整数,n ∈N *),试确定λ的值,使得对任意n ∈N *,都有c n +1>c n 成立.[分析] (1)由直线方程点斜式建立x n 与y n 关系,而(x n ,y n )在曲线xy =1上,有x n y n =1,消去y n 得x n 与x n +1的关系;(2)由定义证b n +1b n为常数;(3)转化为恒成立的问题解决. [解析] (1)过点A n (x n ,y n )的直线方程为y -y n =-1x n +2(x -x n ), 联立方程⎩⎪⎨⎪⎧ y -y n =-1x n +2(x -x n )xy =1,消去y 得 1x n +2x 2-⎝⎛⎭⎫y n +x n x n +2x +1=0. 解得x =x n 或x =x n +2x n. 由题设条件知x n +1=x n +2x n. (2)证明:b n +1b n =1x n +1-2+131x n -2+13=1x n +2x n -2+131x n -2+13=x n 2-x n +131x n -2+13=3x n +2-x n 3(2-x n )3+x n -23(x n -2)=-2. ∵b 1=1x 1-2+13=-2≠0,∴数列{b n }是等比数列. (3)由(2)知,b n =(-2)n ,要使c n +1>c n 恒成立,由c n +1-c n =[3n +1-λ(-2)n +1]-[3n -λ(-2)n ]=2·3n +3λ(-2)n >0恒成立,即(-1)n λ>-⎝⎛⎭⎫32n -1恒成立.①当n 为奇数时,即λ<⎝⎛⎭⎫32n -1恒成立.又⎝⎛⎭⎫32n -1的最小值为1,∴λ<1.②当n 为偶数时,即λ>-⎝⎛⎭⎫32n -1恒成立,又-⎝⎛⎭⎫32n -1的最大值为-32,∴λ>-32, 即-32<λ<1.又λ为非零整数, ∴λ=-1,使得对任意n ∈N *,都有c n +1>c n .。
二轮专题复习
二轮专题复习建议第一部分:专题突破方略专题一、集合、常用逻辑用语、不等式、函数与导数1、 函数综合问题(1)二次函数综合(2)高次函数综合(3)分式函数综合(4)抽象函数综合2、 导数综合问题(1)“三次或四次型”导数(2)“指数与一次或二次联袂型”导数(3)“对数数与一次或二次联袂型”导数(4)导数综合专题二、三角函数与平面向量专题三、数列1、数列性质综合2、函数与数列典例1:等差数列{}()*n a n N ∈的前n 项和为n S ,已知10150,25S S ==,则n nS 的最小值为多少?3、数列与不等式4、点列问题专题四、立体几何专题五、解析几何专题六、概率、统计、复数、算法第二部分:应试夺分策略专题一、数学思想方法1、函数与方程思想(1)显化函数关系典例2:(08年江苏)满足条件2,AB AC =的三角形ABC 的面积的最大值 .(2)转化函数关系(3)构造函数关系(4)转化方程关系(5)构造方程形式(6)联用函数与方程思想典例3:(08年天津)设1a >,若仅有一个常数c ,使得对于任意的[],2x a a ∈,都有2,y a a ⎡⎤∈⎣⎦满足方程log log a a x y c +=,这时,a 的取值集合为 .2、分类讨论思想(1)函数中的分数讨论(2)不等式中的分类讨论(3)数列中的分类讨论(4)解析几何中的分轮讨论(5)计数问题与概率中的分类讨论3、数形结合思想(1)数形结合在集合中的应用(2)数形结合在函数中的应用(3)数形结合在不等式中的应用(4)数形结合在数列中的应用(5)数形结合在向量中的应用典例3:(10年浙江)已知平面向量(),,0αβααβ≠≠满足1β=,且α与β-α的夹角为120︒,则α的取值范围为 .【变式1】:已知11,,602==⋅=---=︒a b a b a c,b c .则max =a . 【变式2】:已知向量a,b 为单位向量,若0⋅a b =,且2-+-=c a c b 2+∈c a .(6)数形结合在解析几何中的应用(7)数形结合在立体几何中的应用4、化归与转化思想(1)变量与变量的转化(2)高维与低维的转化(3)特殊与一般的转化(4)局部与整体的转化(5)化归与转化的综合应用专题二、客观题解法(1)直接法(2)特例法(3)排除法(4)图解法(数形结合法)(5)估算法。
2025年高考数学二轮复习模块1数列专题-特技大招1-特殊值秒解数列选填【含解析】
2025年高考数学二轮复习模块1数列专题-特技大招1-特殊值秒解数列选填大招总结当数列的选择填空题中只有一个条件时,在不违背题意的条件下,我们可以直接利用特殊值,令其公差为0或者公比为1,即令数列为常数列,每一项设为x ,只需5秒搞定一道题.题目本身难度其实也不大,但用此方法更快.注意:一定检验是否符合题意,题目中如果出现公差不为0或者公比不为1,则慎用此法.另外,如果问题是求取值范围,则此方法失效.如果问题是求固定值,则可放心使用,详细用法,我们通过例题讲解.典型例题例1.设等差数列{}n a 前n 项和为n S ,若972S =,则249a a a ++=()A.12B.18C.24D.36解方法1:等差数列{}n a 前n 项和为n S ,()199597292a a S a +===,58a ∴=.故24915312324a a a a d a ++=+==,故选C.方法2:令每一项为x ,972S =,即972x =,8x =,249324a a a x ++==,故选C.例2.在等差数列{}n a 中,912162a a =+,则数列{}n a 的前11项和11S =()A.24B.48C.66D.132解方法1:数列{}n a 为等差数列,设其公差为d ,912162a a =+,()11181162a d a d ∴+=++,1512a d ∴+=,即612a =.∴数列{}n a 的前11项和111211S a a a =+++()()()111210576611132a a a a a a a a =+++++++==.故选D.方法2:令每一项为x ,912162a a =+,162x x =+,12x =,1111132S x ==,故选D.已知数列{}n a 是等差数列,且1472a a a π++=,则()35tan a a +的值为()A.3B.C.D.33-方法1:数列{}n a 是等差数列,且1472a a a π++=,147432a a a a π∴++==,423a π∴=,()()3544tan tan 2tantan 33a a a ππ∴+====,故选C.方法2:令每一项为x ,14732a a a x π++==,23x π=,()()354tan tan 2tantan 33a a x ππ∴+====,故选C.例4.已知数列{}n a 是等差数列,n S 是数列{}n a 的前n 项和,269S a +=,则5S 的值为()A.10B.15C.30D.3解方法1:设等差数列{}n a 的公差为d ,269S a +=,1369a d ∴+=,化为:1323a d a +==,则()155355152a a S a +===.故选B.方法2:令每一项为x ,2629S a x x +=+=,3x =,515S =,故选B.例5.已知{}n a 为等差数列,且6154a a +=,若数列{}n a 的前m 项的和为40,则正整数m 的值为()A.10B.20C.30D.40解方法1:由题意可得,()()120206152010402a a S a a +==+=,所以20m =.故选B.方法2:令每一项为x ,61524a a x +==,2x =,240m S m ==,所以20m =.故选B.例6.已知数列{}n a 为正项等比数列,且13355724a a a a a a ++=,则24a a +=()A.1B.2C.3D.4方法1:数列{}n a 为正项等比数列,且13355724a a a a a a ++=,数列{}n a 为正项等比数列,262a a ∴+=.故选B.()222133557226626224a a a a a a a a a a a a ∴++=++=+=,方法2:令每一项为x ,则222133557224a a a a a a x x x ++=++=, 1.x =2622a a x +==,故选B.例7.已知等比数列{}n a 的各项圴为正数,且39a =,则313233log log log a a a +++3435log log a a +=()A.52B.53C.10D.15方法1:()553138333415312345333log log log log log log log log 910a a a a a a a a a a a ++++====,故选C.方法2:不妨令数列为常数项,每一项n 39a a ==,3132333435log log log log log 2a a a a a ++++=+222210+++=,故选C.例8.已知等比数列{}n a 的各项均为正数,且212227log log log a a a +++=7,则2635a a a a +=()A.16B.14C.8D.4解方法1:等比数列{}n a 的各项均为正数,且212227log log log 7a a a +++=,(212log a a ⋅)77a =,71272a a a ∴⋅=,7742a ∴=,42a ∴=,22635428a a a a a ∴+==,故选C.方法2:令每一项为x ,则2122272log log log 7log 7a a a x ++==,2x =,222635a a a a x x +=+=8,故选C.例9.已知{}n a 为等差数列,公差2d =,24618a a a ++=,则57a a +=()A.8B.12C.16D.20解方法1:根据题意知,4262a a a =+,57424a a a d +=+,24618a a a ++=,4318a ∴=,4 6.a ∴=∴57424264220a a a d +=+=⨯+⨯=.故选D.方法2:此题为反例,题干中明确说了公差2d =,所以不能用特殊值的方法,令公差为0,故不能用大招.例10.在等比数列{}n a 中,若3212a a a =+,则2538a a a 的值为()A.12或1-B.12-或1C.2或1-D.12解方法1:根据题意,设等比数列{}n a 的公比为q ,若3212a a a =+,则220q q --=,解可得2q =或1-,若2q =,则22851273811112a a q a a a q a q q ===,若1q =-,则2285127381111a a q a a a q a q q ===-,故2538a a a 的值为12或1-,故选A .方法2:此题为反例,若令每一项为x ,则3212a a a =+变为2x x x =+,0x =,等比数列中0n a ≠,故不能用大招.例11.在各项均为正数的等比数列{}n a 中,226598225a a a a ++=,则113a a 的最大值是()A.25B.254C.5D.25解方法1:等比数列{}n a 的各项都为正数,()2222265986688682225a a a a a a a a a a ∴++=++=+=,6a ∴85a +=,268113682524a a a a a a +⎛⎫∴==⎪⎝⎭,当且仅当6852a a ==时取等号,113a a ∴的最大值是254.故选B.方法2:此题为反例,题目问的是“最大值”,而不是定值,故不能用特殊值这种大招.例12.已知数列{}{},n n a b 满足n 2n b =log a ,n N +∈,其中{}n b 是等差数列,1020112a a =,则122020b b b +++=________.解方法1:数列{}{},n n a b 满足2log n n b a =,n N +∈,其中{}n b 是等差数列,2bn n a ∴=是等比数列,1020112a a =,122020212222020log log log b b b a a a ∴+++=+++()2122020log a a a =⨯⨯⨯=方法2:令数列{}n a 每一项为x ,则21020112a a x ==,n a x ==,21log 2n n b a ==,1220201202010102b b b +++=⨯=.自我检测1.已知等差数列{}n a 的前n 项和n S ,若23109a a a ++=,则9S =()A.27B.18C.9D.3【解析】方法1:设公差为d ,则13129a d +=,1543a d a ∴+==,95927S a ∴==,故选A.方法2:令每一项为x ,则23109a a a x x x ++=++=,3x =,927S =.故选A.2.在等差数列{}n a 中,18153120a a a ++=,则9102a a -的值为()A.20B.22C.24D.8-【解析】方法1:在等差数列{}n a 中,18153120a a a ++=,85120a ∴=,824a ∴=,910182724a a a d a -=+==.故选C.方法2:令每一项为x ,181535120a a a x ++==,24x =,故选C.3.等差数列{}n a 中,若81126a a =+,则19a a +等于()A.54C.10D.6【解析】方法1:设等差数列{}n a 的公差为d ,等差数列{}n a 中,81126a a =+,()1127610a d a d ∴+=++,解得146a d +=.191182612a a a a d ∴+=++=⨯=.故选B.方法2:令每一项为x ,81126a a =+,26x x =+,6x =,19212a a x +==,故选B.4.已知数列{}n a 是等差数列,且23451a a a a +++=,则16a a +=()A.14B.12D.2【解析】方法1:数列{}n a 是等差数列,且23451a a a a +++=,()23451621a a a a a a ∴+++=+=,解得16a a +12=.故选B.方法2:令每一项为x ,234541a a a a x +++==,14x =,16122a a x +==,故选B.5.已知数列{}n a 是等差数列,且31120a a +=,则11152a a -=()A.10B.9C.8D.7【解析】方法1:数列{}n a 是等差数列,且31120a a +=,则1121020a d a d +++=,即1610a d +=,则11152a a -=11122014610a d a d a d +--=+=,故选A.方法2:令每一项为x ,311220a a x +==,10x =,则11152210a a x x x -=-==,故选A.6.在等差数列{}n a 中,3456a a a ++=,则()17 a a +=A.2B.3C.4D.5【解析】方法1:由等差数列的性质,得345436a a a a ++==,解得42a =,17424a a a ∴+==,故选C.方法2:令每一项为x ,34536a a a x ++==,2x =,则1724a a x +==,故选C.7.等差数列{}n a 中,5101530a a a ++=,则22162a a -的值为()A.10-B.20-C.10D.20【解析】方法1:设等差数列{}n a 的公差为d ,5101530a a a ++=,10330a ∴=,1010a ∴=,221610212a a a d ∴-=+()10102610a d a -+=-=-,故选A.方法2:令每一项为x ,51015330a a a x ++==,10x =,则22162210a a x x x -=-=-=-,故选A.8.设n S 是等差数列{}n a 的前n 项和,若152a a +=,则5S =()A.5B.7C.9D.11【解析】方法1:因为数列{}n a 为等差数列,设其公差为d ,前n 项和为n S ,则()2121n n S n a -=-.所以535S a =,又152a a +=,所以31a =,所以5355S a ==,故选A.方法2:令每一项为x ,1522a a x +==,1x =,则555S x ==,故选A .9.已知数列{}n a 是等差数列,57918a a a ++=,则其前13项的和是()A.45B.56C.65D.78【解析】方法1:在等差数列{}n a 中,57918a a a ++=,5797318a a a a ∴++==,解得76a =,∴该数列的前13项之和:()1311371313136782S a a a =⨯+==⨯=,故选D.方法2:令每一项为x ,579318a a a x ++==,6x =,则131378S x ==,故选D.10.公比为2的等比数列{}n a 的各项都是正数,且31116a a =,则5a =()A.4B.2C.1D.8【解析】方法1:公比为2的等比数列{}n a 的各项都是正数,且31116a a =,210112216a a ∴⋅⋅⋅=,且10a >,解得1412a =,4541212a ∴=⋅=.故选C .方法2:题目中提到公比为2,所以不能用大招.11.已知各项均为正数的等比数列{}n a ,若543264328a a a a +--=,则7696a a +的最小值为()A.12C.24D.32【解析】方法1:由题意知等比数列{}n a 中0n a >,则公比0q >,因为543264328a a a a +--=,所以432111164328a q a q a q a q ⋅+⋅-⋅-⋅=,即()432164328a q q q q +--=,所以()()2132218a q q q +-=,所以1(3a q q 282)21q +=-,所以()654476111224824969633232121a a a q a q q a q q q q q q+=⋅+⋅=⋅+=⋅=--,设x =21q,则0x >,22242121(1)1y x x x q q =-=-=-- ,所以2421q q -取最大值1时,7696a a +取到最小值24.故选C.方法2:此题为反例,题目问的是“最小值”,而不是定值,故不能用特殊值这种大招.12.已知正项等比数列{}n a ,满足21232527log log log log 4a a a a +++=,则(226log ) a a +的最小值为()A.1B.2D.4【解析】由对数的运算性质可得,()2123252721357log log log log log 4a a a a a a a a +++==,135716a a a a ∴=,由等比数列的性质可知,413574a a a a a =且40a >,42a ∴=,()226224log log log 22a a a ∴+= ,故(22log a )6a +的最小值为2,故选B.方法2:此题为反例,题目问的是“最小值”,而不是定值,故不能用特殊值这种大招.13.在等差数列{}n a 中,已知3810a a +=,则573a a +=__________.【解析】方法1:由等差数列的性质得:()()()()5755756563832222220a a a a a a a a a a a +=++=+=+=+=,故答案为:20.方法2:令每一项为x ,3810a a +=,5x =,57320a a +=,故答案为:20.14.等比数列{}n a 的各项均为正数,且1516a a =,则2122232425log log log log log a a a a a ++++=__________.【解析】方法1:等比数列{}n a 的各项均为正数,且1516a a =,2122232425log log log log log a a a a a ∴++++=()521252log log 410a a a ⨯⨯⨯==.故答案为:10.方法2:令每一项为x ,1516a a =,4x =,2122232425log log log log log 10a a a a a ++++=,故答案为:10.15.在前n 项和为n S 的等差数列{}n a 中,若()()1536932a a a a a ++++18=,则8__________.S =【解析】解:方法1:由等差数列的性质有366618a a +=,有363a a +=,则()()1883684122a a S a a +==+=.故答案为:12.方法2:令每一项为x ,()()()()153********a a a a a x x x x x ++++=++++=,1218x =,32x =,所以83812.2S =⨯=。
高三数学二轮复习数列[1]
高三数学二轮复习教学案——等差数列与等比数列一、【填空】1.已知各项均为实数的数列{a n }为等比数列,且满足a 1+a 2=12,a 2a 4=1,则a 1=_______.2. 在等差数列{a n }中,若a 1,a 2 011为方程x 2-10x +16=0的两根,则a 2+a 1 006+a 2 010=__________________.3.若数列{a n }的通项公式是a n =(-1)n(3n -2),则a 1+a 2+…+a 10=______________. 4.已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为---------------5.等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =____________.6. 已知等比数列{}n a 中,214S ,23a 33==,则1a =_____________________. 二、【解答】7. 成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列.8.设{}n a 数列为等比数列,{}n b 数列为等差数列,且10b =,n n n c a b =+,若{}n c 是1,1,2,, 求{}n c 的前10项和.9. 等比数列{a n}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.(1)求数列{a n}的通项公式;(2)若数列{b n}满足:b n=a n+(-1)n ln a n,求数列{b n}的前n项和S n.10. 已知数列{a n}满足如下图所示的程序框图.(1)写出数列{a n}的一个递推关系式;(2)证明:{a n+1-3a n}是等比数列,并求{a n}的通项公式;(3)求数列{n(a n+3n-1)}的前n项和T n.。
高三二轮复习--数列
高三二轮复习-数列【例1】S n为等差数列{a n}的前n项和,且a1=1,S7=28.记b n=[lg a n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg 99]=1.(1)求b1,b11,b101;(2)求数列{b n}的前1 000项和.‘【例2】已知数列{a n}的前n项和为S n,且有a1=2,3S n=5a n-a n-1+3S n-1(n≥2).(1)求数列{a n}的通项公式;(2)若b n=(2n-1)a n,求数列{b n}的前n项和T n.【例3】等比数列{a n}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.(1)求数列{a n}的通项公式;(2)若数列{b n}满足:b n=a n+(-1)n ln a n,求数列{b n}的前n项和S n.【例4】设等差数列{a n }的前n 项和为S n ,a 22-3a 7=2,且1a 2,S 2-3,S 3成等比数列,n ∈N *.(1)求数列{a n }的通项公式;(2)令b n =2a n a n +2,数列{b n }的前n 项和为T n ,若对于任意的n ∈N *,都有8T n <2λ2+5λ成立,求实数λ的取值范围.【例5】数列的综合问题已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6. (1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ恒成立,求实数λ的取值范围.【例6】数列与其他的综合问题设f n (x )=x +x 2+…+x n -1,x ≥0,n ∈N ,n ≥2. (1)求f n ′(2);(2)证明:f n (x )在⎪⎭⎫⎝⎛320,内有且仅有一个零点(记为a n ),且0<a n -12<13(32)n .【例2】已知等差数列{a n}的公差d>0,其前n项和为S n,若S3=12,且2a1,a2,1+a3成等比数列.(1)求数列{a n}的通项公式;(2)记b n=1a n a n+1(n∈N*),且数列{b n}的前n项和为T n,证明:14≤T n<13.【例3】设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(1)求数列{x n}的通项公式;(2)记T n=x21x23…x22n-1,证明:T n≥1 4n.【例4】自从祖国大陆允许台湾农民到大陆创业以来,在11个省区设立了海峡两岸农业合作试验区和台湾农民创业园,台湾农民在那里申办个体工商户可以享受“绿色通道”的申请、受理、审批一站式服务,某台商第一年年初到大陆就创办了一座120万元的蔬菜加工厂M,M的价值在使用过程中逐年减少,从第二年到第六年,每年年初M的价值比上年年初减少10万元,从第七年开始,每年年初M的价值为上年年初的75%.(1)求第n年年初M的价值a n的表达式;(2)设A n=a1+a2+…+a nn,若A n大于80万元,则M继续使用,否则须在第n年年初对M更新,证明:必须在第九年年初对M更新.练习1.设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3,n ∈N *. (1)证明:a n +2=3a n ; (2)求S n .2.已知正项数列{a n }的前n 项和S n 满足:4S n =(a n -1)(a n +3)(n ∈N *). (1)求a n ;(2)若b n =2n ·a n ,求数列{b n }的前n 项和T n .3.已知数列{a n }的前n 项和S n 满足S n =a (S n -a n +1)(a 为常数,且a >0),且4a 3是a 1与2a 2的等差中项. (1)求{a n }的通项公式;(2)设b n =2n +1a n ,求数列{b n }的前n 项和T n .4.已知数列{a n }的前n 项和为S n ,且S n -1=3(a n -1),n ∈N *. (1)求数列{a n }的通项公式; (2)设数列{b n }满足13()2n na b n a ⋅+=,若b n ≤t 对于任意正整数n 都成立,求实数t 的取值范围.5.已知数列{a n }是等比数列,并且a 1,a 2+1,a 3是公差为-3的等差数列. (1)求数列{a n }的通项公式;(2)设b n =a 2n ,记S n 为数列{b n }的前n 项和,证明:S n <163.6.设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列. (1)求数列{a n }的通项公式; (2)记数列}1{na 的前n 项和为T n ,求使得|T n -1|<11 000成立的n 的最小值.7.已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.7.已知数列{a n }的前n 项和为S n ,且(a -1)S n =a (a n -1)(a >0)(n ∈N *). (1)求证数列{a n }是等比数列,并求其通项公式;(2)已知集合A ={x |x 2+a ≤(a +1)x },问是否存在实数a ,使得对于任意的n ∈N *,都有S n ∈A ?若存在,求出a 的取值范围;若不存在,说明理由.8.已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a n b n +1+b n +1=nb n .(1)求{a n }的通项公式; (2)求{b n }的前n 项和.9.已知{a n }是各项均为正数的等差数列,公差为d ,对任意的n ∈N *,b n 是a n 和a n +1的等比中项.(1)设c n =b 2n +1-b 2n ,n ∈N *,求证:数列{c n }是等差数列;(2)设a 1=d ,T n =∑2nk =1 (-1)k b 2k ,n ∈N *,求证:∑nk =11T k <12d 2.10.在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n⎝⎛⎭⎫S n -12. (1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .11.已知数列{a n }满足a n +2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(1)求q 的值和{a n }的通项公式;(2)设b n =log 2a 2na 2n -1,n ∈N *,求数列{b n }的前n 项和.12.已知数列{a n }的前n 项和S n =a n +n 2-1,数列{b n }满足3n b n +1=(n +1)a n +1-na n ,且b 1=3. (1)求a n ,b n ;(2)设T n 为数列{b n }的前n 项和,求T n ,并求满足T n <7时n 的最大值.13.(17年高考真题文)记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6.(1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列。
2025届高考数学二轮复习-数列题型解答题专项训练【含解析】
2025届高考数学二轮复习-数列题型解答题专项训练一、解答题1.已知数列{}n a 的前n 项和为n S ,且()113n n S a =-.(1)求1a ,2a ;(2)证明:数列{}n a 是等比数列.答案:(1)112a =-;214a =(2)数列{}n a 是首项和公比均为12-的等比数列解析:(1)当1n =时,()111113a S a ==-,所以112a =-.当2n =时,()22211123S a a =-+=-,所以214a =.(2)由()113n n S a =-,得()1111(2)3n n S a n --=-≥,所以()111(2)3n n n n n a S S a a n --=-=-≥,所以11(2)2n n a a n -=-≥.又112a =-,所以数列{}n a 是首项和公比均为12-的等比数列.所以数列{}n a 是以3为首项,2为公差的等差数列.(2)由(1)知()32121n a n n =+-=+.3.在数列{}n a 中,14a =,1431n n a a n +=-+,*n ∈N .(1)设n n b a n =-,求证:数列{}n b 是等比数列;(2)求数列{}n a 的前n 项和n S .答案:(1)见解析(2)()1412n n n ++-解析:(1)证明:1431,n n a a n +=-+11(1)43114()4,n n n n n b a n a n n a n b ++∴=-+=-+--=-=又111413,b a =-=-=∴数列{}n b 是首项为3、公比为4的等比数列;(2)由(1)可知134n n a n --=⨯,即134n n a n -=+⨯,()()()31411412142n n n n n n n S -++∴=+=--.4.在数列{}n a 中,616a =,点()()1,n n a a n *+∈N 在直线30x y -+=上.(1)求数列{}n a 的通项公式;(2)若2n n n b a =,求数列{}n b 的前n 项和n T .答案:(1)32n a n =-(2)见解析解析:(1)依题意,130n n a a +-+=,即13n n a a +-=,因此数列{}n a 是公差为3的等差数列,则63(6)32n a a n n =+-=-,所以数列{}n a 的通项公式是32n a n =-.(2)由(1)得(32)2n n b n =-⋅,则132421242(32)2n n T n =⨯+⨯+⋅⋅⋅+-⨯+⨯,于是23121242(35)2(32)2n n n T n n +=⨯+⨯+⋅⋅⋅+-⨯+-⨯,两式相减得2123112(12))23(222(32)22(312)232n n n n n T n n ++--=+++⋅⋅⋅+--⋅--⋅-=+⋅-1(532)10n n +⋅=--,所以1(35)210n n T n +=-⋅+.5.已知公差不为0的等差数列{}n a 的前n 项和为n S ,且636S =,1a ,3a ,13a 成等比数列.(1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若不等式4n kT <对任意的*n ∈N 都成立,求实数k的取值范围.答案:(1)21n a n =-(2)2k ≥.解析:(1)设等差数列{}n a 公差为d ,由题意1211161536(2)(12)a d a d a a d +=⎧⎨+=+⎩,0d ≠,解得112a d =⎧⎨=⎩,所以12(1)21n a n n =+-=-;(2)由(1)111111()(21)(21)22121n n a a n n n n +==--+-+,所以1111111111(1)()((12323522121221n T n n n =-+-++-=--++,易知n T 是递增的且12n T <,不等式4n k T <对任意的*n ∈N 都成立,则142k ≥,所以2k ≥.6.已知数列{}n a 的前n 项和n S 满足24(1)n S n =+,n +∈N .(1)求数列{}n a 的通项公式;(2)记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若对任意的n +∈N ,不等式25n T a a <-恒成立,求实数a 的取值范围.答案:(1) 1, 1 21, 24n n a n n =⎧⎪=⎨+≥⎪⎩(2)3a ≤-或4a ≥解析:(1)24(1)n S n =+当1n =时,214(11)a =+,即11a =当2n ≥时,由1n n n a S S -=-,故224(1)21n a n n n =+-=+,得214n n a +=.易见11a =不符合该式,故 1 121, 24n n a n n =⎧⎪=⎨+=⎪⎩,(2)由0n a >,易知n T 递增;112145T a a ==当2n ≥时,()()111611821232123n n a a n n n n +⎛⎫==- ⎪++++⎝⎭.从而41111111281285577921235235n T n n n ⎛⎫=+-+-++-=-< ⎪+++⎝⎭.又由25n T a a <-,故212a a ≤-,解得3a ≤-或4a ≥即实数a 的取值范围为3a ≤-或4a ≥7.记n S 为数列{}n a 的前n 项和,已知112a =,n n S a ⎧⎫⎨⎬⎩⎭是公差为12的等差数列.(1)求{}n a 的通项公式;(2)设()1nn n b a =-,求{}n b 的前2n 项和2n T .答案:(1)12n a n =(2)2n解析:(1)由n n S a ⎧⎫⎨⎬⎩⎭是公差为12的等差数列,且111S a =,则()11111222n n S n n a =+-⨯=+,即()21n n S n a =+,当2n ≥时,112n n S na --=,两式相减可得:()121n n n a n a na -=+-,整理可得11n n a na n -=-,故121121121121212n n n n n a a a n n a a n n a a a n ----=⋅⋅⋅⋅=⨯⨯⨯⨯-=-,将1n =代入上式,12n a =,故{}n a 的通项公式为12n a n =.(2)由()1nn n b a =-,则21212342221n n n n a a T b a a a a b b -=-+-+-+-+++=()()()()22121242132122n n n n n a a n a a a a a a a a --++=+++-+++=-()111122*********n nn n ⎡⎤=⨯+⨯-⨯-⨯⎢⎥⎦=-⎣.8.已知数列{}n a 是各项均为正数的等比数列,且11a =,34a =,数列{}n b 中()*221log log n n n b a a n +=+∈N .(1)求数列{}n b 的通项公式;(2)若数列{}n b 的前n 项和为n S ,数列{}n c 满足141n n c S =-,求数列{}n c 的前n 项和n T .答案:(1)21n b n =-(2)21n nT n =+解析:(1)正项等比数列{}n a 的公比为q ,由231a a q =,得24q =,而0q >,解得2q =,于是1112n n n a a q --==,由221log log n n n b a a +=+,得12222log o 21l g n n n n b -=+=-,所以数列{}n b 的通项公式21n b n =-.(2)由(1)知,21n b n =-,显然数列{}n b 是等差数列,21(21)2n n S n n +-=⋅=,2111111(4141(21)(21)22121n n c S n n n n n ====----+-+,所以11111111[(1)()()](1)2335212122121n nT n n n n =-+-++-=-=-+++.9.已知等差数列{}n a 前n 项和为n S ,满足33a =,410S =.数列{}n b 满足12b =,112n n n nb a b a ++=,*n ∈N .(1)求数列{}n a ,{}n b 的通项公式;(2)设数列{}n c 满足()1(1)32n n n n n c a b +-+=,*n ∈N ,求数列{}n c 的前n 项和n T .答案:(1)见解析(2)见解析解析:(1)设数列{}n a 的公差为d ,11234610a d a d +=⎧∴⎨+=⎩,解得11a =,1d =,n a n ∴=.()121n n n b b n ++=,112n n b n b n++∴=,且121b =,所以n b n ⎧⎫⎨⎬⎩⎭是等比数列,2n nb n∴=,2n n b n ∴=⋅(2)()()()()1111(1)3211(1)(1)(1)12212212n n n nn n n n n n n c n n n n n n ++++⎛⎫-+--==-+=- ⎪ ⎪+⋅⋅+⋅⋅+⋅⎝⎭,()1111(1)212n n n T n ++∴=---+⋅10.已知各项为正的数列{}n a 的首项为2,26a =,22211122n n n n n n n n a a a a a a a a +++++-=--.(1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和n S ,求数列{}28n n S a +-(其中*n ∈N )前n 项和的最小值.答案:(1)42n a n =-(2)最小值为38-解析:(1)因为22211122n n n n n n n n a a a a a a a a +++++-=--,所以有()()12120n n n n n a a a a a +++++-=,而0n a >,10n n a a +∴+≠,所以2120n n n a a a +++-=,则211121n n n n n n a a a a a a a a +++--=-=-=⋅⋅⋅=-,又12a =,26a =,∴214a a -=,由等差数列定义知数列{}n a 是以2为首项,4为公差的等差数列.∴数列{}n a 的通项公式为42n a n =-.(2)由(1)有2(1)=2+4=22n n n S n n -⨯,()()2282430253n n S a n n n n ∴+-=+-=+-,令280n n S a +->,有4,5,6,n =⋅⋅⋅;280n n S a +-<,有1,2n =;280n n S a +-=,有3n =.所以{}28n n S a +-前n 项和的最小值为()()()()215132252338+-++-=-,当且仅当2n =,3时取到.11.记n S 为数列{}n a 的前n 项和,已知2n S n =,等比数列{}n b 满足11b a =,35b a =.(1)求{}n a 的通项公式;(2)求{}n b 的前n 项和n T .答案:(1)()*21n a n n =-∈N (2)当3q =时,3122n n T =-;当3q =-时,1(3)44n n T -=-.解析:(1)当1n =时,111a S ==,当2n ≥时,1n n n a S S -=-22(1)n n =--21n =-,因为11a =适合上式,所以()*21n a n n =-∈N .(2)由(1)得11b =,39b =,设等比数列{}n b 的公比为q ,则2319b b q =⋅=,解得3q =±,当3q =时,()113311322n n nT ⋅-==--,当3q =-时,11(3)1(3)1(3)44nn n T ⎡⎤⋅---⎣⎦==---.12.记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若4a ,7a ,9a 成等比数列,求n S 的最小值.答案:(1)证明见解析(2)12n =或13时,n S 取得最小值,最小值为-78解析:(1)由221nn S n a n+=+,得2n n 22S n a n n +=+,①所以2112(1)2(1)(1)n n S n a n n ++++=+++,②②-①,得112212(1)21n n n a n a n a n ++++=+-+,化简得11n n a a +-=,所以数列{}n a 是公差为1的等差数列.(2)由(1)知数列{}n a 的公差为1.由2749a a a =,得()()()2111638a a a +=++,解得112a =-.所以22(1)251256251222228n n n n n S n n --⎛⎫=-+==-- ⎪⎝⎭,所以当12n =或13时,n S 取得最小值,最小值为-78.13.已知数列{}n a 满足11a =,11,,22,n n n a n n a a n n +⎧+⎪=⎨⎪-⎩为奇数为偶数,数列{}n b 满足22n n b a =-.(1)求2a ,3a .(2)求证:数列{}n b 是等比数列,并求其通项公式.(3)已知12log n n c b =,求证:122311111n nc c c c c c -+++<.答案:(1)232a =,352a =-(2)证明见解析(3)证明见解析解析:(1)由数列{}n a 的递推关系,知2113122a a =+=,325222a a =-⨯=-.(2)()12221212211112(21)2(21)4(21)12222n n n n n n b a a n a n a n n a ++++=-=++-=+-=-+-=-()211222n n a b =-=.因为12122b a =-=-,所以数列{}n b 的各项均不为0,所以112n n b b +=,即数列{}n b 是首项为12-,公比为12的等比数列,所以1111222n nn b -⎛⎫⎛⎫=-=- ⎪⎪⎝⎭⎝⎭.(3)由(2)知11221log log 2nn n c b n ⎛⎫=== ⎪⎝⎭.所以12231111n nc c c c c c -+++1111223(1)n n =+++⨯⨯-1111112231n n=-+-++--11n=-1<.14.已知数列{}n a 是公比为2的等比数列,2a ,3a ,44a -成等差数列.(1)求数列{}n a 的通项公式;(2)若21log nn na b a +=,设数列{}n b 的前n 项和为n T ,求证:13n T ≤<.答案:(1)2n n a =(2)证明见解析解析:(1)因为2a ,3a ,44a -成等差数列,所以32424a a a =+-,又因为数列{}n a 的公比为2,所以2311122224a a a ⨯=+⨯-,即1118284a a a =+-,解得12a =,所以1222n n n a -=⨯=.(2)由(1)知2nn a =,则221log 1log 2122n n n nn n a n b a +++===,所以2323412222n nn T +=++++,①231123122222n n n n n T ++=++++,②①-②得23111111122222n nn n T ++⎛⎫=++++- ⎪⎝⎭212111111111122221111221122n n n n n n -+++⎛⎫-- ⎪++⎝⎭=+-=+---11112133122222n n n n n +++++=+--=-.所以3332n nn T +=-<.又因为102n n n b +=>,所以{}n T 是递增数列,所以11n T T ≥=,所以13n T ≤<.15.在①221n n b b =+,②212a b b =+,③1b ,2b ,4b 成等比数列这三个条件中选择符合题意的两个条件,补充在下面的问题中,并求解.已知数列{}n a 中,11a =,13n n a a +=,公差不等于0的等差数列{}n b 满足__________,__________求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n S .答案:选①②;选②③解析:因为11a =,13n n a a +=,所以{}n a 是以1为首项,3为公比的等比数列,所以13n n a -=.方案一:选①②.设数列{}n b 的公差为d ,因为23a =,所以123b b +=.因为221n n b b =+,所以1n =时,2121b b =+,解得123b =,273b =,所以53d =,所以533n n b -=,满足221n n b b =+,所以533n n n b n a -=,所以12123122712533333n n nn b b b n S a a a -=+++=++++,所以2341127125853333333n n n n n S +--=+++++,两式相减,得23111122111532515533109533333336233223n n n n n n n n n S ++++--+⎛⎫=++++-=+--=- ⎪⨯⨯⎝⎭,所以9109443n n n S +=-⨯.方案二:选②③.设数列{}n b 的公差为d ,因为2133a a ==,所以123b b +=,即123b d +=.因为1b ,2b ,4b 成等比数列,所以2214b b b =,即()()21113b d b b d +=+,化简得21d b d =.因为0d ≠,所以11d b ==,所以n b n =,所以13n n n b n a -=,所以120121121233333n n n n b b b n S a a a -=+++=++++,所以123111231333333n n nn n S --=+++++,两式相减,得1231211113132311333333233223n n n n n n n n n S -+⎛⎫=+++++-=--=- ⎪⨯⎝⎭,所以1923443n n n S -+=-⨯.方案三:选①③.设数列{}n b 的公差为d ,因为221n n b b =+,所以1n =时,2121b b =+,所以11d b =+.又1b ,2b ,4b 成等比数列,所以2214b b b =,即()()21113b d b b d +=+,化简得21d b d =.因为0d ≠,所以1b d =,此式与11d b =+矛盾.所以等差数列{}n b 不存在,故不符合题意.。
2023年高考数学二轮复习(新高考版) 第1部分 专题突破 专题3 微重点10 子数列问题
跟踪演练1 (2022·山东学期联考)已知数列{an}满足an-1-an=an-an+1(n≥2),
且a1=1,a7=13;数列{bn}的前n项和为Sn,且Sn=
3n-1 2.
(1)求数列{an}和{bn}的通项公式;
由已知可得,2an=an-1+an+1(n≥2), 则数列{an}为等差数列,设其公差为d, 由a7=a1+6d=13,解得d=2, ∴an=2n-1, 在数列{bn}中,当n=1时,b1=S1=1, 当 n≥2 时,bn=Sn-Sn-1=3n-2 1-3n-21-1=3n-1,
1234
4.(2022·山东联考)已知数列{an}中,a1=1,a2=2,an+2=kan(k≠1), n∈N*,a2+a3,a3+a4,a4+a5成等差数列. (1)求k的值和{an}的通项公式;
当n=1时,满足上式,∴bn=3n-1.
(2)若数列 cn=abnn, ,nn为 为奇 偶数 数, , 求数列{cn}的前 n 项和 Tn.
因为 cn=abnn, ,nn为 为奇 偶数 数, ,
则当n为偶数时,Tn=c1+c2+c3+…+cn =1+5+…+2n-3+3+…+3n-1 =n21+22n-3+3-1-3n9+1=n2-2 n+3n+81-3,
专题三 数 列
微重点10 子数列问题
子数列问题包括数列中的奇偶项、公共数列以及分段数列,是近几年高 考的重点和热点,一般方法是构造新数列,利用新数列的特征(等差、等比或 其他特征)求解原数列.
内容索引
考点一 奇数项、偶数项 考点二 两数列的公共项 考点三 分段数列
专题强化练
考点一
奇数项、偶数项
方法一 由题意知,2n≤m,即n≤log2m, 当m=1时,b1=0. 当m∈[2k,2k+1-1)时,bm=k,k∈N*, 则S100=b1+(b2+b3)+(b4+b5+…+b7)+…+(b32+b33+…+b63)+ (b64+b65+…+b100) =0+1×2+2×4+3×8+4×16+5×32+6×37=480. 方法二 由题意知bm=k,m∈[2k,2k+1), 因此,当m=1时,b1=0; 当m∈[2,4)时,bm=1;
高考数学二轮复习专题过关检测—数列(含解析)
高考数学二轮复习专题过关检测—数列一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021·内蒙古包头一模)在数列{a n }中,a 1=2,a n+1-a n -2=0,则a 5+a 6+…+a 14=( ) A.180B.190C.160D.1202.(2021·北京朝阳期末)已知等比数列{a n }的各项均为正数,且a 3=9,则log 3a 1+log 3a 2+log 3a 3+log 3a 4+log 3a 5=( ) A.52B.53C.10D.153.(2021·湖北荆州中学月考)设等比数列{a n }的前n 项和为S n ,若S10S 5=12,则S15S 5=( )A.12B.13C.23D.344.(2021·北京师大附属中学模拟)我国明代著名乐律学家明宗室王子朱载堉在《律学新说》中提出十二平均律,即是现代在钢琴的键盘上,一个八度音程从一个c 键到下一个c 1键的8个白键与5个黑键(如图),从左至右依次为:c ,#c ,d ,#d ,e ,f ,#f ,g ,#g ,a ,#a ,b ,c 1的音频恰成一个公比为√212的等比数列的原理,也即高音c 1的频率正好是中音c 的2倍.已知标准音a 的频率为440 Hz,则频率为220√2 Hz 的音名是( )A.dB.fC.eD.#d5.(2021·四川成都二诊)已知数列{a n}的前n项和S n=n2,设数列{1a n a n+1}的前n项和为T n,则T20的值为()A.1939B.3839C.2041D.40416.(2021·河南新乡二模)一百零八塔位于宁夏吴忠青铜峡市,是始建于西夏时期的喇嘛式实心塔群,是中国现存最大且排列最整齐的喇嘛塔群之一.一百零八塔,因塔群的塔数而得名,塔群随山势凿石分阶而建,由下而上逐层增高,依山势自上而下各层的塔数分别为1,3,3,5,5,7,…,该数列从第5项开始成等差数列,则该塔群最下面三层的塔数之和为()A.39B.45C.48D.517.(2021·陕西西安铁一中月考)在1到100的整数中,除去所有可以表示为2n(n∈N*)的整数,则其余整数的和是()A.3 928B.4 024C.4 920D.4 9248.已知函数f(n)={n2,n为奇数,-n2,n为偶数,且a n=f(n)+f(n+1),则a1+a2+a3+…+a100等于()A.0B.100C.-100D.10 200二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2021·辽宁沈阳三模)已知等比数列{a n}的前n项和S n=4n-1+t,则()A.首项a1不确定B.公比q=4C.a2=3D.t=-1410.(2021·山东临沂模拟)已知等差数列{a n}的前n项和为S n,公差d=1.若a1+3a5=S7,则下列结论一定正确的是()A.a5=1B.S n的最小值为S3C.S1=S6D.S n存在最大值11.已知数列{a n}是等差数列,其前30项和为390,a1=5,b n=2a n,对于数列{a n},{b n},下列选项正确的是() A.b10=8b5 B.{b n}是等比数列C.a1b30=105D.a3+a5+a7a2+a4+a6=20919312.(2021·广东广州一模)在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;……第n(n∈N*)次得到数列1,x1,x2,x3,…,x k,2.记a n=1+x1+x2+…+x k+2,数列{a n}的前n项和为S n,则()A.k+1=2nB.a n+1=3a n-3C.a n =32(n 2+3n )D.S n =34(3n+1+2n-3) 三、填空题:本题共4小题,每小题5分,共20分.13.(2021·山西太原检测)在等差数列{a n }中,若a 2,a 2 020为方程x 2-10x+16=0的两根,则a 1+a 1 011+a 2 021等于 .14.(2021·江苏如东检测)已知数列{a n }的前n 项和为S n ,且S n =2a n -2,则数列{log 2a n }的前n 项和T n = .15.将数列{2n-1}与{3n-2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为 .16.(2021·新高考Ⅰ,16)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20 dm ×12 dm 的长方形纸,对折1次共可以得到10 dm ×12 dm,20 dm ×6 dm 两种规格的图形,它们的面积之和S 1=240 dm 2,对折2次共可以得到5 dm ×12 dm,10 dm ×6 dm,20 dm ×3 dm 三种规格的图形,它们的面积之和S 2=180 dm 2,以此类推.则对折4次共可以得到不同规格图形的种数为 ;如果对折n 次,那么∑k=1nS k =dm 2.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)(2021·海南海口模拟)已知正项等比数列{a n },a 4=116,a 5a 7=256. (1)求数列{a n }的通项公式; (2)求数列{|log 2a n |}的前n 项和.18.(12分)(2021·全国甲,理18)已知数列{a n}的各项均为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等差数列;②数列{√S n}是等差数列;③a2=3a1.19.(12分)(2021·山东济宁二模)已知数列{a n}是正项等比数列,满足a3是2a1,3a2的等差中项,a4=16.(1)求数列{a n}的通项公式;(2)若b n=(-1)n log2a2n+1,求数列{b n}的前n项和T n.20.(12分)(2021·山东临沂一模)在①S nn =a n+12,②a n+1a n=2S n,③a n2+a n=2S n这三个条件中任选一个,补充在下面的问题中,并解答该问题.已知正项数列{a n}的前n项和为S n,a1=1,且满足.(1)求a n;(2)若b n=(a n+1)·2a n,求数列{b n}的前n项和T n.21.(12分)(2021·山东泰安一中月考)为了加强环保建设,提高社会效益和经济效益,某市计划用若干年更换1万辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,更换的新车为电力型车和混合动力型车.今年年初投入了电力型公交车128辆,混合动力型公交车400辆,计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入a 辆.(1)求经过n 年,该市被更换的公交车总数F (n );(2)若该市计划用7年的时间完成全部更换,求a 的最小值.22.(12分)(2021·广东广州检测)已知数列{a n }满足a 1=23,且当n ≥2时,a 1a 2…a n-1=2a n-2.(1)求证:数列{11−a n}是等差数列,并求数列{a n }的通项公式;(2)记T n =12a 1a 2…a n ,S n =T 12+T 22+…+T n 2,求证:当n ∈N *时,a n+1-23<S n .答案及解析1.B 解析 因为a n+1-a n =2,a 1=2,所以数列{a n }是首项为2,公差为2的等差数列.所以a n =2+(n-1)×2=2n.设{a n }的前n 项和为S n ,则S n =n(2+2n)2=n 2+n.所以a 5+a 6+…+a 14=S 14-S 4=190.2.C 解析 因为等比数列{a n }的各项均为正数,且a 3=9,所以log 3a 1+log 3a 2+log 3a 3+log 3a 4+log 3a 5=log 3(a 1a 2a 3a 4a 5)=log 3(a 35)=log 3(95)=log 3(310)=10.3.D 解析 由题意可知S 5,S 10-S 5,S 15-S 10成等比数列.∵S 10S 5=12,∴设S 5=2k ,S 10=k ,k ≠0,∴S 10-S 5=-k ,∴S 15-S 10=k2,∴S 15=3k2,∴S 15S 5=3k22k =34. 4.D 解析 因为a 的音频是数列的第10项,440=220√2×212=220√2×(2112)10−4,所以频率为220√2 Hz 是该数列的第4项,其音名是#d.5.C 解析 当n=1时,a 1=S 1=1;当n ≥2时,a n =S n -S n-1=n 2-(n-1)2=2n-1.而a 1=1也符合a n =2n-1,所以a n =2n-1.所以1an a n+1=1(2n-1)(2n+1)=12(12n-1-12n+1),所以T n =12(1−13+13-15+⋯+12n-1-12n+1)=121-12n+1=n2n+1,所以T 20=202×20+1=2041. 6.D 解析 设该数列为{a n },依题意,可知a 5,a 6,…成等差数列,且公差为2,a 5=5.设塔群共有n 层,则1+3+3+5+5(n-4)+(n-4)(n-5)2×2=108,解得n=12.故最下面三层的塔数之和为a 10+a 11+a 12=3a 11=3×(5+2×6)=51.7.D 解析 由2n ∈[1,100],n ∈N *,可得n=1,2,3,4,5,6,所以21+22+23+24+25+26=2×(1−26)1−2=126.又1+2+3+ (100)100×1012=5 050,所以在1到100的整数中,除去所有可以表示为2n (n ∈N *)的整数,其余整数的和为5 050-126=4 924.8.B 解析 由已知得当n 为奇数时,a n =n 2-(n+1)2=-2n-1,当n 为偶数时,a n =-n 2+(n+1)2=2n+1.所以a 1+a 2+a 3+…+a 100=-3+5-7+…+201=(-3+5)+(-7+9)+…+(-199+201)=2×50=100.9.BCD 解析 当n=1时,a 1=S 1=1+t ,当n ≥2时,a n =S n -S n-1=(4n-1+t )-(4n-2+t )=3×4n-2.由数列{a n }为等比数列,可知a 1必定符合a n =3×4n-2, 所以1+t=34,即t=-14.所以数列{a n }的通项公式为a n =3×4n-2,a 2=3, 数列{a n }的公比q=4.故选BCD . 10.AC 解析 由已知得a 1+3(a 1+4×1)=7a 1+7×62×1,解得a 1=-3.对于选项A,a 5=-3+4×1=1,故A 正确.对于选项B,a n =-3+n-1=n-4,因为a 1=-3<0,a 2=-2<0,a 3=-1<0,a 4=0,a 5=1>0,所以S n 的最小值为S 3或S 4,故B 错误.对于选项C,S6-S1=a2+a3+a4+a5+a6=5a4,又因为a4=0,所以S6-S1=0,即S1=S6,故C正确.对于选项D,因为S n=-3n+n(n-1)2=n2-7n2,所以S n无最大值,故D错误.11.BD解析设{a n}的公差为d,由已知得30×5+30×29d2=390,解得d=1629.∴a n=a1+(n-1)d=16n+12929.∵b n=2a n,∴b n+1b n =2a n+12a n=2a n+1-a n=2d,故数列{b n}是等比数列,B选项正确.∵5d=5×1629=8029≠3,∴b10b5=(2d)5=25d≠23,∴b10≠8b5,A选项错误.∵a30=a1+29d=5+16=21,∴a1b30=5×221>105,C选项错误.∵a4=a1+3d=5+3×1629=19329,a5=a1+4d=5+4×1629=20929,∴a3+a5+a7a2+a4+a6=3a53a4=a5a4=209193,D选项正确.12.ABD解析由题意,可知第1次得到数列1,3,2,此时k=1,第2次得到数列1,4,3,5,2,此时k=3,第3次得到数列1,5,4,7,3,8,5,7,2,此时k=7,第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时k=15,……第n次得到数列1,x1,x2,x3,…,x k,2,此时k=2n-1,所以k+1=2n,故A项正确.当n=1时,a 1=1+3+2=6,当n=2时,a 2=a 1+2a 1-3=3a 1-3,当n=3时,a 3=a 2+2a 2-3=3a 2-3,……所以a n+1=3a n -3,故B 项正确. 由a n+1=3a n -3,得a n+1-32=3(a n -32),又a 1-32=92,所以{a n -32}是首项为92,公比为3的等比数列,所以a n -32=92×3n-1=3n+12,即a n =3n+12+32,故C 项错误.S n =(322+32)+(332+32)+…+(3n+12+32)=343n+1+2n-3,故D 项正确.13.15 解析 因为a 2,a 2 020为方程x 2-10x+16=0的两根,所以a 2+a 2 020=10.又{a n }为等差数列,所以a 1+a 2 021=a 2+a 2 020=2a 1 011=10,即a 1 011=5. 所以a 1+a 1 011+a 2 021=3a 1 011=15. 14.n(n+1)2解析 因为S n =2a n -2,所以当n ≥2时,S n-1=2a n-1-2,两式相减,得a n =2a n -2a n-1,即a n =2a n-1.当n=1时,可得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,所以a n =2n . 所以log 2a n =n ,所以T n =n(n+1)2.15.3n 2-2n 解析 数列{2n-1}的项均为奇数,数列{3n-2}的所有奇数项均为奇数,所有偶数项均为偶数,并且显然{3n-2}中的所有奇数均能在{2n-1}中找到,所以{2n-1}与{3n-2}的所有公共项就是{3n-2}的所有奇数项,这些项从小到大排列得到的新数列{a n }是以1为首项,以6为公差的等差数列.所以{a n }的前n 项和为S n =n×1+n(n-1)2×6=3n 2-2n.16.5 240(3−n+32n) 解析 对折3次共可以得到52 dm ×12 dm,5 dm ×6 dm,10 dm ×3 dm,20dm ×32dm 四种规格的图形,面积之和S 3=4×30=120 dm 2;对折4次共可以得到54 dm ×12 dm,52dm ×6 dm,5 dm ×3 dm,10 dm ×32dm,20 dm ×34dm 五种规格的图形,S 4=5×15=75 dm 2.可以归纳对折n 次可得n+1种规格的图形,S n =(n+1)·2402ndm 2.则∑k=1nS k =S 1+S 2+…+S n =240221+322+423+…+n+12n . 记T n =221+322+423+…+n+12n , ① 则12T n =222+323+…+n2n +n+12n+1.②①与②式相减,得T n -12T n =12T n =221+122+123+…+12n −n+12n+1=32−n+32n+1. 故T n =3-n+32n .故∑k=1nS k =240·T n =240(3−n+32n).17.解 (1)设正项等比数列{a n }的公比为q (q>0).由等比数列的性质可得a 5a 7=a 62=256,因为a n >0,所以a 6=16.所以q 2=a6a 4=256,即q=16.所以a n =a 6q n-6=16×16n-6=16n-5. (2)由(1)可知log 2a n =log 216n-5=4n-20,设b n =|log 2a n |=|4n-20|,数列{b n }的前n 项和为T n . ①当n ≤5,且n ∈N *时,T n =n(16+20-4n)2=18n-2n 2;②当n ≥6,且n ∈N *时,T n =T 5+(4+4n-20)(n-5)2=18×5-2×52+(2n-8)(n-5)=2n 2-18n+80.综上所述,T n={18n-2n2,n≤5,且n∈N*,2n2-18n+80,n≥6,且n∈N*.18.证明若选①②⇒③,设数列{a n}的公差为d1,数列{√S n}的公差为d2.∵当n∈N*时,a n>0,∴d1>0,d2>0.∴S n=na1+n(n-1)d12=d12n2+(a1-d12)n.又√S n=√S1+(n-1)d2,∴S n=a1+d22(n-1)2+2√a1d2(n-1)=d22n2+(2√a1d2-2d22)n+d22-2√a1d2+a1,∴d12=d22,a1-d12=2√a1d2-2d22,d22-2√a1d2+a1=0,∴d22=d12,d2=√a1,即d1=2a1,∴a2=a1+d1=3a1.若选①③⇒②,设等差数列{a n}的公差为d.因为a2=3a1,所以a1+d=3a1,则d=2a1,所以S n=na1+n(n-1)2d=na1+n(n-1)a1=n2a1,所以√S n−√S n-1=n√a1-(n-1)√a1=√a1.所以{√S n}是首项为√a1,公差为√a1的等差数列.若选②③⇒①,设数列{√S n}的公差为d,则√S2−√S1=d,即√a1+a2−√a1=d.∵a2=3a1,∴√4a1−√a1=d,即d=√a1,∴√S n=√S1+(n-1)d=√a1+(n-1)√a1=n√a1,即S n =n 2a 1,当n ≥2时,a n =S n -S n-1=n 2a 1-(n-1)2a 1=(2n-1)a 1, 当n=1时,a 1符合式子a n =(2n-1)a 1,∴a n =(2n-1)a 1,n ∈N *,∴a n+1-a n =2a 1, 即数列{a n }是等差数列.19.解 (1)设正项等比数列{a n }的公比为q (q>0).因为a 3是2a 1,3a 2的等差中项,所以2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q ,因为a 1≠0,所以2q 2-3q-2=0,解得q=2或q=-12(舍去).所以a 4=a 1q 3=8a 1=16,解得a 1=2.所以a n =2×2n-1=2n . (2)由(1)可知a 2n+1=22n+1,所以b n =(-1)n log 2a 2n+1=(-1)n log 222n+1=(-1)n (2n+1), 所以T n =(-1)1×3+(-1)2×5+(-1)3×7+…+(-1)n (2n+1), -T n =(-1)2×3+(-1)3×5+(-1)4×7+…+(-1)n+1·(2n+1), 所以2T n =-3+2[(-1)2+(-1)3+…+(-1)n]-(-1)n+1(2n+1)=-3+2×1−(−1)n-12+(-1)n (2n+1)=-3+1-(-1)n-1+(-1)n (2n+1)=-2+(2n+2)(-1)n ,所以T n =(n+1)(-1)n -1. 20.解 (1)若选①,则2S n =na n+1.当n=1时,2S 1=a 2,又S 1=a 1=1,所以a 2=2. 当n ≥2时,2S n-1=(n-1)a n ,所以2a n =na n+1-(n-1)a n ,即(n+1)a n =na n+1,所以an+1n+1=a n n(n ≥2).又a 22=1,所以当n ≥2时,an n =1,即a n =n.又a 1=1符合上式,所以a n =n.若选②,则当n=1时,2S 1=a 2a 1,可得a 2=2. 当n ≥2时,2S n-1=a n a n-1,可得2a n =a n a n+1-a n a n-1. 由a n >0,得a n+1-a n-1=2.又a 1=1,a 2=2,所以{a 2n }是首项为2,公差为2的等差数列,{a 2n-1}是首项为1,公差为2的等差数列,所以a n =n.若选③,因为a n 2+a n =2S n ,所以当n ≥2时,a n-12+a n-1=2S n-1,两式相减得a n 2+a n -a n-12-a n-1=2a n ,即(a n +a n-1)(a n -a n-1-1)=0.由a n >0,得a n -a n-1-1=0,即a n -a n-1=1,所以{a n }是首项为1,公差为1的等差数列,所以a n =n.(2)由(1)知b n =(n+1)·2n ,所以T n =2×2+3×22+4×23+…+(n+1)·2n , 2T n =2×22+3×23+4×24+…+(n+1)·2n+1, 两式相减,得-T n =4+22+23+ (2)-(n+1)·2n+1=4+4(1−2n-1)1−2-(n+1)·2n+1=4-4+2n+1-(n+1)·2n+1=-n·2n+1,所以T n =n·2n+1.21.解 (1)设a n ,b n 分别为第n 年投入的电力型公交车、混合动力型公交车的数量,依题意,数列{a n }是首项为128,公比为1+50%=32的等比数列,数列{b n }是首项为400,公差为a 的等差数列.所以数列{a n }的前n 项和S n =128×[1−(32)n ]1−32=256[(32)n-1],数列{b n }的前n 项和T n =400n+n(n-1)2a.所以经过n 年,该市被更换的公交车总数F (n )=S n +T n =256[(32)n-1]+400n+n(n-1)2a.(2)若用7年的时间完成全部更换,则F (7)≥10 000, 即256[(32)7-1]+400×7+7×62a ≥10 000,即21a ≥3 082,所以a ≥3 08221.又a ∈N *,所以a 的最小值为147.22.证明 (1)因为当n ≥2时,a 1a 2…a n-1=2a n-2,所以a 1a 2…a n =2an+1-2,两式相除,可得a n =1a n+1-11a n-1,所以11−a n=a n+11−a n+1=11−an+1-1,所以11−an+1−11−a n=1(n ≥2).又a 1=23,所以a 2=34,11−a 1=3,11−a 2=4,所以11−a 2−11−a 1=1,所以11−an+1−11−a n=1(n ∈N *),所以数列{11−a n}是首项为3,公差为1的等差数列.所以11−a n=3+(n-1)×1=n+2,所以a n =n+1n+2.(2)因为T n =12a 1a 2…a n =12×23×34×…×n+1n+2=1n+2,所以T n 2=1(n+2)2>1(n+2)(n+3)=1n+2−1n+3,所以S n=T12+T22+…+T n2>13−14+14−15+…+1n+2−1n+3=13−1n+3=1-1n+3−23=n+2 n+3−23=a n+1-23,所以当n∈N*时,a n+1-23<S n.。
等差数列与等比数列+课件-2024届高三数学二轮复习专题
5
为 ak+1+ak+2+…+ak+10=2 -2 ,所以
5
10
k+1
5
+ (- )
-
15
5
k+1
10
=2 -2 ,即 2 (2 -
1)=2 (2 -1),所以 2 =2 ,所以 k+1=5,所以 k=4.故选 C.
4.[等差数列基本量](2023·全国甲卷)记Sn为等差数列
列{an}中,a1=2,am+n=aman.若ak+1+ak+2+…+ak+10=215-25,则
k等于(
A.2
)
B.3
C.4
√
D.5
解析:因为 a1=2,am+n=aman,令 m=1,则 an+1=a1an=2an,所以{an}是
n-1
n
以 a1=2 为首项,2 为公比的等比数列,所以 an=2×2 =2 .又因
可得
即
- = ,
(- ) = ,
= ,
5
解得
所以 a6=a1q =3.故选 D.
= ,
法二
设等比数列{an}的首项为 a1,公比为 q,由题意可得
+ + = ,
- = ,
(- )
即
-
= ,
(- ) = ,
所以{an}是以 a1 为首项,2a1 为公差的等差数列.
考法聚焦 讲练突破
热点一
等差、等比数列的基本运算
典例 1
(2023·新课标Ⅰ卷)设等差数列{an}的公差为 d,且
2023届新高考数学二轮复习:专题(数列中的复杂递推式问题)提分练习(附答案)
2023届新高考数学二轮复习:专题(数列中的复杂递推式问题)提分练习【总结】1、叠加法:+-=1()n n a a f n ;2、叠乘法:+=1()n na f n a ;3、构造法(等差,等比):①形如+=+1n n a pa q (其中,p q 均为常数-≠(1)0pq p )的递推公式,()+-=-1n n a t p a t ,其中=-1qt p,构造+-=-1n n a t p a t,即{}-n a t 是以-1a t 为首项,p 为公比的等比数列.②形如+=+1n n n a pa q (其中,p q 均为常数,-≠()0pq q p ),可以在递推公式两边同除以+1n q ,转化为+=+1n n b mb t 型.③形如++=-11n n n n a a d a a ,可通过取倒数转化为等差数列求通项.4、取对数法:+=1t n n a a .5、由n S 和n a 的关系求数列通项(1)利用-⎧=⎪⎨≥⎪⎩,-,111=2n n n S n a S S n ,化n S 为n a . (2)当n a 不易消去,或消去n S 后n a 不易求,可先求n S ,再由-⎧=⎪⎨≥⎪⎩,-,111=2n n n S n a S S n 求n a .6、数列求和:(1)错位相减法:适用于一个等差数列和一个等比数列(公比不等于1)对应项相乘构成的数列求和=⋅n n n c a b 型 (2)倒序相加法 (3)裂项相消法 常考题型数列的通项公式裂项方法【典型例题】例1.已知数列{}n a 满足14a =且121n n a a a a +++⋯+=,设2log n n b a =,则122320172018111b b b b b b ++⋯+的值是( ) A.20174038B.30254036C.20172018D.20162017例2.已知数列{}n a 的通项公式为*)n a n N =∈,其前n 项和为n S ,则在数列1S ,2S ,⋯,2019S 中,有理数项的项数为( )A.42 B.43 C.44 D.45例3.对于*n N ∈,2314121122232(1)2n n n n +⨯+⨯+⋯+⨯=⨯⨯+ .例4.设曲线1()n y x n N ++=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则201712017220172016log log log x x x ++⋯+的值为 .例5.在数1和2之间插入n 个正数,使得这2n +个数构成递增等比数列,将这2n +个数的乘积记为n A ,令2log n n a A =,*n N ∈.(1)数列{}n a 的通项公式为n a = ;(2)2446222tan tan tan tan tan tan n n n T a a a a a a +=⋅+⋅+⋯+⋅= .例6.数列{}n a 中,*111,()2(1)(1)n n n na a a n N n na +==∈++,若不等式2310n ta n n++…恒成立,则实数t 的取值范围是 .【过关测试】 一、单选题1.(2023·江西景德镇·统考模拟预测)斐波那契数列{}n a 满足121a a ==,()*21n n n a a a n ++=+∈N ,设235792023k a a a a a a a +++++⋅⋅⋅+=,则k =( )A.2022 B.2023 C.2024 D.20252.(2023·全国·模拟预测)1678年德国著名数学家莱布尼兹为了满足计算需要,发明了二进制,与二进制不同的是,六进制对于数论研究有较大帮助.例如123在六进制下等于十进制的32162636306⨯+⨯+⨯=.若数列n a 在十进制下满足21n n n a a a +++=,11a =,23a =,n n b a =,则六进制1232022b b b b 转换成十进制后个位为( ) A.2B.4C.6D.83.(2023秋·广东·高三统考期末)在数列{}n a 中,11,0n a a =>,且()221110n n n n na a a n a ++--+=,则20a 的值为( ) A.18B.19C.20D.214.(2023秋·江西·高三校联考期末)设,a b ∈R ,数列{}n a 中,11a =,1n n a ba a +=+,*N n ∈,则下列选项正确的是( )A.当1a =,1b =-时,则101a =B.当2a =,1b =时,则22n S n n =-C.当0a =,2b =时,则2n n a =D.当1a =,2b =时,则21nn a =-5.(2023·全国·高三专题练习)已知数列{}n a 满足21112nn n a a a +++=,且11a =,213a =,则2022a =( )A.12021B.12022C.14043D.140446.(2023·安徽淮南·统考一模)斐波那契数列因以兔子繁殖为例子而引入,故又称为“兔子数列”.此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用,斐波那契数列{}n a 可以用如下方法定义:21n n n a a a ++=+,且121a a ==,若此数列各项除以4的余数依次构成一个新数列{}n b ,则数列{}n b 的前2023项的和为( ) A.2023B.2024C.2696D.26977.(2023秋·江苏扬州·高三校考期末)已知数列{}n a 满足1122n n n n a a a a ++++=,且11a =,213a =,则2022a =( ) A.12021B.12022C.14043D.140448.(2023·全国·高三专题练习)已知数列{}n a 满足211232n n n n n n a a a a a a ++++-=,且1231a a ==,则7a =( ) A.163B.165C.1127D.1129一、倒数变换法,适用于1nn n Aa a Ba C+=+(,,A B C 为常数)二、取对数运算 三、待定系数法 1、构造等差数列法 2、构造等比数列法①定义构造法。
二轮复习【数列专题】专题1数列的单调性微点2数列单调性的判断方法(二)——作差比较法、作商比较法
=
3 8
,
an+1
=
1 8
an2
+
3 8
n N
试判断数列的单调性.
例 4.(2023·湖南省临澧县第一中学高二开学考试)
4.已知公比 q 1 的等比数列{ an }满足 a52 = a10 , 2 (an + an+2 ) = 5an+1 .若
试卷第 2 页,共 5 页
( ) bn = (n − ) an n N* ,且数列bn是递增数列,则实数 的取值范围是 .
) ,则an 为递增数列”为假命
题的数列an 的通项公式可以为 an =
.
例6
6.已知数列xn
满足:
x1
= 1,
xn+1
=
1 2
xn
+
3 xn
,
n
N
,求证:数列 xn ( n
2)
是单调
递减数列.
例7
7.已知数列an的通项公式是 an
=
9n
(n +1)
10n
,试讨论此数列的单调性.
【针对训练】
8.已知数列 an 的通项公式是
an
=
3n 4n +
2
,则 an (
)
A.不是单调数列 B.是递减数列
C.是递增数列
D.是常数列
9.设等差数列{an}的公差为 d,若数列{2a1an } 为递减数列,则
A. d 0
B. d 0
C. a1d 0
D. a1d 0
(2023·天津·高三期中)
10.数列an 的通项公式为 an = n2 + kn ,则“ k −2 ”是“an 为递增数列”的( )
高考数学二轮复习常考题型大通关(全国卷理数)解答题:数列
高考数学二轮复习常考题型大通关(全国卷理数)解答题:数列1.等比数列{}n a 中,已知142,16a a ==(1)求数列{}n a 的通项公式;(2)若35,a a 分别为等差数列{}n b 的第3项和第5项,试求数列{}n b 的通项公式及前n 项和n S 。
2.已知等差数列{}n a 的前n 项和为n S ,且满足:3576,24a a a =+=.(1)求等差数列{}n a 的通项公式;(2)求数列1{}nS 的前n 项和n T .3.已知数列{}n a 和{}n b 满足112,1a b ==,()12N n n a a n *+=∈,()12311111N 23n n b b b b b n n *+++++=-∈ .(1)求n a 与n b ;(2)记数列{}n n a b 的前n 项和为n T ,求n T .4.已知等差数列{}n a 满足36a =,前7项和为749S =.(1)求{}n a 的通项公式;(2)设数列{}n b 满足()33n n n b a =-⋅,求{}n b 的前n 项和n T .5.已知{}n a 是递增的等比数列,11a =,且22a 、332a 、4a 成等差数列.(1)求数列{}n a 的通项公式;(2)设21231log log n n n b a a ++=⋅,n *∈N ,求数列{}n b 的前n 项和n S .6.已知公差不为0的等差数列{}n a 的前3项和39S =,且125,,a a a 成等比数列.(1)求数列{}n a 的通项公式.(2)设n T 为数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,求证12n T <.7.已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T .若113a b ==,42a b =,4212S T -=.(1)求数列{}n a 与{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和.8.设数列{}n a 的前n 项和为n S ,()112,2*n n a a S n N +==+∈.(1)求数列{}n a 的通项公式;(2)令112(1)(1)n n n n b a a -+=--,求数列{}n b 的前n 项和n T ,求证:12n T <.答案以及解析1.答案:(1)设{}n a 的公比为q ,由已知得3162q =,解得2q =,∴112.n n n a a q -==(2)由(1)得358,32a a ==,则358,32b b ==,设{}n b 的公差为d ,则有1128432b d b d +=⎧⎨+=⎩解得11612b d =-⎧⎨=⎩∴1612112)2(8n b n n =+--=-,∴数列{}n b 的前n 项和2(161228)6222n n n S n n -+-==-.2.答案:(1设等差数列{}n a 的首项为1a 、公差为d ,3576,24a a a =+= ,()()111264624a d a d a d +=⎧∴⎨+++=⎩,解得:122d a =⎧⎨=⎩,(2122)n a n n ∴=+-⨯=;(2由(1)得:()1(22)(1)22n n n a a n n S n n ++===+,所以1211111111 11223(1)(1)n n n T S S S S n n n n =++++=++++-⨯⨯-+ 11111111112233411n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1111n n n =-=++.3.答案:(1)由112,2n n a a a +==,知0n a ≠,故12n n a a +=,即{}n a 是以2为首项,2为公比的等比数列,得()2N n n a n *=∈.由题意知,当1n =时,121b b =-,故22b =.当2n ≥时,11n n n b b b n +=-,整理得11n n b b n n +=+,所以n b n ⎧⎫⎨⎬⎩⎭是以1为首项,1为公比的等比数列,即1n b n =,所以()N n b n n *=∈.(2)由(1)知2n n n a b n =⋅.因此231222322n n T n =⋅+⋅+⋅+⋅⋅⋅+⋅,①23412222322n n T n +=+⋅+⋅+⋅⋅⋅+⋅,②①-②得23122222n n n T n +-=+++⋅⋅⋅+-⋅.故()()1122N n n T n n +*=-+∈.4.答案:(1)由()177477492a a S a ⨯+===,得47a =,因为36a =,所以11.4d a ==,故3n a n =+.(2)()333n n n n b a n =-⋅=⋅,所以1231323333n n T n =⨯+⨯+⨯+⋯+⨯①23131323(1)33n n n T n n +=⨯+⨯+⋯+-⨯+⨯②由①-②得1231133233333313n n n n n T n n +++--=++++-⨯=-⨯- ,所以1(21)334n n n T +-⨯+=.5.答案:(1)设数列{}n a 的公比为q ,由题意及11a =,知1q >.22a 、332a 、4a 成等差数列成等差数列,34232a a a ∴=+,2332q q q ∴=+,即2320q q -+=,解得2q =或1q =(舍去),2q ∴=.∴数列{}n a 的通项公式为1112n n n a a q --==;(2)()212311111log log 222n n n b a a n n n n ++⎛⎫===- ⎪⋅++⎝⎭ ,11111111111232435112n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-+-+⋅⋅⋅+-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.()()13113232212431114122221n n n n n n n ⎛⎫=-+ ⎪++⎝⎭+⎛⎫=--=- ⎪++++⎝⎭.6.答案:(1)由3S 9=得13a d +=①;125,,,a a a 成等比数列得:()()21114a a d a d +=+②;联立①②得11,2a d ==;故21n a n =-.(2)111111(21)(21)22121n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭ 11111111111233521212212n T n n n ⎛⎫⎛⎫∴=-+-+⋯+-=-< ⎪ ⎪-++⎝⎭⎝⎭.7.答案:(1)由1142,a b a b ==,则()()421234122312S T a a a a b b a a -=+++-+=+=,设等差数列{}n a 的公差为d ,则231236312a a a d d +=+=+=,所以2d =.所以32(1)21n a n n =+-=+.设等比数列{}n b 的公比为q ,由题249b a ==,即2139b b q q ===,所以3q =.所以3n n b =;(2)(21)3n n n a b n +=++,所以{}n n a b +的前n 项和为()()1212n n a a a b b b +++++++ ()2(3521)333n n =++++++++ ()()313331(321)(2)2132n n n n n n --++=+=++-8.答案:(1)()12,*n n a S n N +=+∈,①当1n =时,212a S =+,即24a =,当2n ≥时,12n n a S -=+,②由①-②可得11n n n n a a S S +--=-,即12n n a a +=,∴2222,2n n n a a n -=⨯=≥当1n =时,1122a ==,满足上式,∴()2n n a n N *=∈(2)由(1)得1112111()(21)(21)22121n n n n n n b -++==-----∴1111111111(1)(1)23372121221n n n n T ++=-+-++-=---- ∴12n T <。
高考数学二轮复习第一部分微专题强化练习题:等差数列与等比数列含解析
第一部分 一 9一、选择题1.(文)(2014·东北三省三校联考)等差数列{a n }的前n 项和为S n ,若a 2+a 4+a 6 =12,则S 7的值是( )A .21B .24C .28D .7[答案] C[解析] ∵a 2+a 4+a 6=3a 4=12,∴a 4=4, ∴2a 4=a 1+a 7=8,∴S 7=7(a 1+a 7)2=7×82=28.[方法点拨] 1.熟记等差、等比数列的求和公式. 2.形如a n +1=a n +f (n )的递推关系用累加法可求出通项; 3.形如a n +1=a n f (n )的递推关系可考虑用累乘法求通项a n ;4.形如a n +1=ka n +b (k 、b 为常数)可通过变形,设b n =a n +bk -1构造等比数列求通项a n .(理)在等比数列{a n }中,a 1=a ,前n 项和为S n ,若数列{a n +1}成等差数列,则S n 等于( ) A .a n +1-a B .n (a +1) C .na D .(a +1)n -1[答案] C[解析] 利用常数列a ,a ,a ,…判断,则存在等差数列a +1,a +1,a +1,…或通过下列运算得到:2(aq +1)=(a +1)+(aq 2+1),∴q =1,S n =na .2.(文)已知S n 为等差数列{a n }的前n 项和,若S 1=1,S 4S 2=4,则S 6S 4的值为( )A.94 B.32 C.53 D .4[答案] A[解析] 由等差数列的性质可知S 2,S 4-S 2,S 6-S 4成等差数列,由S 4S 2=4得S 4-S 2S 2=3,则S 6-S 4=5S 2,所以S 4=4S 2,S 6=9S 2,S 6S 4=94.(理)(2014·全国大纲文,8)设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( )A .31B .32C .63D .64[答案] C[解析] 解法1:由条件知:a n >0,且⎩⎪⎨⎪⎧a 1+a 2=3,a 1+a 2+a 3+a 4=15, ∴⎩⎪⎨⎪⎧a 1(1+q )=3,a 1(1+q +q 2+q 3)=15,∴q =2. ∴a 1=1,∴S 6=1-261-2=63.解法2:由题意知,S 2,S 4-S 2,S 6-S 4成等比数列,即(S 4-S 2)2=S 2(S 6-S 4),即122=3(S 6-15),∴S 6=63.[方法点拨] 下标成等差的等差、等比数列的项或前n 项和的问题,常考虑应用等差、等比数列的性质求解.3.(2015·浙江理,3)已知{a n }是等差数列,公差d 不为零,前n 项和是S n .若a 3,a 4,a 8成等比数列,则( )A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0 [答案] B[解析] 考查等差数列的通项公式及其前n 项和;等比数列的概念. ∵{a n }为等差数列,且a 3,a 4,a 8成等比数列, ∴(a 1+3d )2=(a 1+2d )(a 1+7d )⇒ a 1=-53d ,∴S 4=2(a 1+a 4)=2(a 1+a 1+3d )=-23d ,∴a 1d =-53d 2<0,dS 4=-23d 2<0,故选B.4.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A.13 B .-13C.19 D .-19[答案] C[解析] ∵S 3=a 2+10a 1,∴a 1+a 2+a 3=a 2+10a 1,a 3=9a 1=a 1q 2,∴q 2=9, 又∵a 5=9,∴9=a 3·q 2=9a 3,∴a 3=1, 又a 3=9a 1,故a 1=19.[方法点拨] 求基本量的问题,熟记等差、等比数列的定义、通项及前n 项和公式,利用公式、结合条件,建立方程求解.5.(2015·江西省质检)已知数列{a n }满足a 1=1,a 2=3,a n +2=3a n (n ∈N *),则数列{a n }的前2015项的和S 2015等于( )A .31008-2B .31008-3C .32015-2D .32015-3[答案] A[解析] 因为a 1=1,a 2=3,a n +2a n=3, 所以S 2015=(a 1+a 3+…+a 2015)+(a 2+a 4+…+a 2014)=1-310081-3+3(1-31007)1-3=31008-2.6.(文)(2014·新乡、许昌、平顶山调研)设{a n }是等比数列,S n 是{a n }的前n 项和,对任意正整数n ,有a n +2a n +1+a n +2=0,又a 1=2,则S 101的值为( )A .2B .200C .-2D .0[答案] A[解析] 设公比为q ,∵a n +2a n +1+a n +2=0,∴a 1+2a 2+a 3=0,∴a 1+2a 1q +a 1q 2=0,∴q 2+2q +1=0,∴q =-1,又∵a 1=2,∴S 101=a 1(1-q 101)1-q =2[1-(-1)101]1+1=2.(理)(2014·哈三中二模)等比数列{a n },满足a 1+a 2+a 3+a 4+a 5=3,a 21+a 22+a 23+a 24+a 25=15,则a 1-a 2+a 3-a 4+a 5的值是( )A .3 B. 5 C .- 5 D .5[答案] D[解析] 由条件知⎩⎪⎨⎪⎧a 1(1-q 5)1-q=3a 21(1-q10)1-q2=15,∴a 1(1+q 5)1+q=5,∴a 1-a 2+a 3-a 4+a 5=a 1[1-(-q )5]1-(-q )=a 1(1+q 5)1+q=5.7.(文)在等差数列{a n }中,a 1+a 2+a 3=3,a 18+a 19+a 20=87,则此数列前20项的和等于( )A .290B .300C .580D .600[答案] B[解析] 由a 1+a 2+a 3=3,a 18+a 19+a 20=87得, a 1+a 20=30,∴S 20=20×(a 1+a 20)2=300.(理)已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 8+a 9a 6+a 7=( )A .1+ 2B .1- 2C .3+2 2D .3-2 2 [答案] C[解析] 由条件知a 3=a 1+2a 2, ∴a 1q 2=a 1+2a 1q , ∵a 1≠0,∴q 2-2q -1=0, ∵q >0,∴q =1+2, ∴a 8+a 9a 6+a 7=q 2=3+2 2. 8.(2015·福建理,8)若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于( )A .6B .7C .8D .9[答案] D[解析] 由韦达定理得a +b =p ,a ·b =q ,因为p >0,q >0,则a >0,b >0,当a ,b ,-2适当排序后成等比数列时,-2必为等比中项,故a ·b =(-2)2=4,故q =4,b =4a .当适当排序后成等差数列时,-2必不是等差中项,当a 是等差中项时,2a =4a -2,解得a =1,b =4,;当b 是等差中项时,8a =a -2,解得a =4,b =1,综上所述,a +b =p =5,所以p +q =9,选D.9.已知数列{a n },{b n }满足a 1=b 1=1,a n +1-a n =b n +1b n=2,n ∈N +,则数列{ba n }的前10项的和为( )A.43(49-1) B.43(410-1) C.13(49-1) D.13(410-1) [答案] D[解析] 由a 1=1,a n +1-a n =2得,a n =2n -1, 由b n +1b n=2,b 1=1得b n =2n -1, ∴ba n =2a n -1=22(n -1)=4n -1,∴数列{ba n }前10项和为1×(410-1)4-1=13(410-1).10.(文)若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1等于( )A .1-14nB.23(1-14n ) C .1-12nD.23(1-12n ) [答案] B[解析] 因为a n =1×2n -1=2n -1,所以a n ·a n +1=2n -1·2n =2×4n -1, 所以1a n a n +1=12×(14)n -1,所以{1a n a n +1}也是等比数列,所以T n =1a 1a 2+1a 2a 3+…+1a n a n +1=12×1×(1-14n )1-14=23(1-14n ),故选B.(理)(2014·唐山市一模)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n( )A .4n -1B .4n -1 C .2n -1 D .2n -1[答案] C[解析] 设公比为q ,则a 1(1+q 2)=52,a 2(1+q 2)=54,∴q =12,∴a 1+14a 1=52,∴a 1=2.∴a n =a 1q n -1=2×(12)n -1,S n =2[1-(12)n ]1-12=4[1-(12)n ],∴S n a n =4[1-(12)n ]2×(12)n -1=2(2n -1-12)=2n -1.[点评] 用一般解法解出a 1、q ,计算量大,若注意到等比数列的性质及求S na n,可简明解答如下:∵a 2+a 4=q (a 1+a 3),∴q =12,∴S na n =a 1(1-q n )1-q a 1q n -1=1-q n (1-q )·qn -1=1-12n 12·12n -1=2n -1. 11.给出数列11,12,21,13,22,31,…,1k ,2k -1,…,k1,…,在这个数列中,第50个值等于1的项的序号..是( ) A .4900 B .4901 C .5000 D .5001[答案] B[解析] 根据条件找规律,第1个1是分子、分母的和为2,第2个1是分子、分母的和为4,第3个1是分子、分母的和为6,…,第50个1是分子、分母的和为100,而分子、分母的和为2的有1项,分子、分母的和为3的有2项,分子、分母的和为4的有3项,…,分子、分母的和为99的有98项,分子、分母的和为100的项依次是:199,298,397,…,5050,5149,…,991,第50个1是其中第50项,在数列中的序号为1+2+3+…+98+50=98(1+98)2+50=4901.[点评] 本题考查归纳能力,由已知项找到规律,“1”所在项的特点以及项数与分子、分母的和之间的关系,再利用等差数列求和公式即可.二、填空题12.(文)(2015·广东理,10)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.[答案] 10[解析] 本题考查等差数列的性质及简单运算,属于容易题.因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25 即a 5=5,a 2+a 8=2a 5=10.(理)(2015·湖南理,14)设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.[答案] 3n -1[解析] 考查等差数列与等比数列的性质.∵3S 1,2S 2,S 3成等差数列,∴4S 2=3S 1+S 3,∴4(a 1+a 2)=3a 1+a 1+a 2+a 3⇒a 3=3a 2⇒q =3.又∵{a n }为等比数列,∴a n =a 1q n -1=3n -1.[方法点拨] 条件或结论中涉及等差或等比数列中的两项或多项的关系时,先观察分析下标之间的关系,再考虑能否应用性质解决,要特别注意等差、等比数列性质的区别.13.(文)(2015·安徽理,14)已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________.[答案] 2n -1[解析] 考查1.等比数列的性质;2.等比数列的前n 项和公式.由题意,⎩⎪⎨⎪⎧ a 1+a 4=9,a 2·a 3=8.∴⎩⎪⎨⎪⎧a 1+a 4=9,a 1·a 4=8,解得a 1=1,a 4=8或者a 1=8,a 4=1,而数列{a n }是递增的等比数列,所以a 1=1,a 4=8,即q 3=a 4a 1=8,所以q =2,因而数列{a n }的前n 项和S n =a 1(1-q n )1-q =1-2n 1-2=2n -1.(理)(2015·江苏,11)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.[答案]2011[解析] 考查数列通项,裂项求和.由题意得:a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n +(n -1)+…+2+1=n (n +1)2,所以1a n =2(1n -1n +1),S n =2(1-12)+2(12-13)+…+2(1n -1n +1)=2(1-1n +1)=2nn +1,S 10=2011.三、解答题14.(文)设数列{a n }的前n 项和为S n ,且S n =4a n -p (n ∈N *),其中p 是不为零的常数. (1)证明:数列{a n }是等比数列;(2)当p =3时,若数列{b n }满足b n +1=a n +b n (n ∈N *),b 1=2,求数列{b n }的通项公式. [解析] (1)证明:因为S n =4a n -p (n ∈N *), 则S n -1=4a n -1-p (n ∈N *,n ≥2),所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1, 整理得a n =43a n -1.由S n =4a n -p ,令n =1,得a 1=4a 1-p ,解得a 1=p3.所以{a n }是首项为p 3,公比为43的等比数列.(2)因为a 1=1,则a n =(43)n -1,由b n +1=a n +b n (n =1,2,…),得b n +1-b n =(43)n -1,当n ≥2时,由累加法得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1) =2+1-(43)n -11-43=3(43)n -1-1,当n =1时,上式也成立.∴b n =3·(43)n -1-1.[方法点拨] 证明数列是等差(等比)数列时,应用定义分析条件,结合性质进行等价转化. (理)(2015·河南高考适应性测试)已知数列{a n }的各项均为正数,且a 1=2,a n =a 2n +1+4a n +1+2.(1)令b n =log 2(a n +2),证明:数列{b n }是等比数列. (2)设c n =nb n ,求数列{c n }的前n 项和S n .[解析] (1)由a n =a 2n +1+4a n +1+2,得a n +2=a 2n +1+4a n +1+4=(a n +1+2)2.因为a n >0,所以a n +2=a n +1+2. 因为b n +1b n =log 2(a n +1+2)log 2(a n +2)=log 2a n +2log 2(a n +2)=12,又b 1=log 2(a 1+2)=2,所以数列{b n }是首项为2,公比为12的等比数列.(2)由(1)知,b n =2·⎝⎛⎭⎫12n -1,则c n =2n ⎝⎛⎭⎫12n -1. S n =2×⎝⎛⎭⎫120+4×⎝⎛⎭⎫121+…+2(n -1)⎝⎛⎭⎫12n -2+2n ⎝⎛⎭⎫12n -1,① 12S n =2×⎝⎛⎭⎫121+4×⎝⎛⎭⎫122+…+2(n -1)⎝⎛⎭⎫12n -1+2n ⎝⎛⎭⎫12n .② ①-②得:12S n =2×⎝⎛⎭⎫120+2×⎝⎛⎭⎫121+2×⎝⎛⎭⎫122+…+2×⎝⎛⎭⎫12n -1-2n ·⎝⎛⎭⎫12n =21-⎝⎛⎭⎫12n1-12-2n ·⎝⎛⎭⎫12n =4-(4+2n )⎝⎛⎭⎫12n . 所以S n =8-(n +2)⎝⎛⎭⎫12n -2.15.(2015·南昌市一模)已知等差数列{a n }的前n 项和为S n ,a 1=1,S 3=6,正项数列{b n }满足b 1·b 2·b 3·…·b n =2S n .(1)求数列{a n },{b n }的通项公式;(2)若λb n >a n 对n ∈N *均成立,求实数λ的取值范围.[解析] (1)等差数列{a n },a 1=1,S 3=6,∴d =1,故a n =n⎩⎪⎨⎪⎧b 1·b 2·b 3·…·b n =2S n (1)b 1·b 2·b 3·…·b n -1=2S n -1 (2),(1)÷(2)得b n =2S n -S n -1=2a n =2n (n ≥2), b 1=2S 1=21=2,满足通项公式,故b n =2n(2) 设λb n >a n 恒成立⇒λ>n 2n 恒成立,设c n =n 2n ⇒c n +1c n =n +12n当n ≥2时,c n <1,{c n }单调递减, ∴(c n )max =c 1=12,故λ>12.16.(文)(2014·湖北理,18)已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式;(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.[分析] (1)设数列{a n }的公差为d ,利用等比数列的性质得到a 22=a 1·a 5,并用a 1、d 表示a 2、a 5,列等式求解公差d ,进而求出通项,注意对公差d 分类讨论;(2)利用(1)的结论,对数列{a n }的通项分类讨论,分别利用通项公式及等差数列的前n 项和公式求解S n ,然后根据S n >60n +800列不等式求解.[解析] (1)设数列{a n }的公差为d ,依题意,2,2+d,2+4d 成等比数列,故有(2+d )2=2(2+4d ).化简得d 2-4d =0,解得d =0或d =4. 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2,从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立, 当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2,令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去).此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的n ;当a n =4n -2时,存在满足题意的n ,其最小值为41.[方法点拨] 存在型探索性问题解答时先假设存在,依据相关知识(概念、定理、公式、法则、性质等),结合所给条件进行推理或运算,直到得出结果或一个明显成立或错误的结论,从而断定存在与否.(理)(2014·新课标Ⅰ理,17)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.[分析](1)利用a n+1=S n+1-S n用配凑法可获证;(2)假设存在λ,则a1,a2,a3应成等差数列求出λ的值,然后依据a n+2-a n=λ推证{a n}为等差数列.[解析](1)由题设:a n a n+1=λS n-1,a n+1a n+2=λS n+1-1,两式相减得a n+1(a n+2-a n)=λa n+1.由于a n+1≠0,所以a n+2-a n=λ.(2)由题设,a1=1,a1a2=λS1-1,可得a2=λ-1.由(1)知,a3=λ+1,令2a2=a1+a3,解得λ=4.故a n+2-a n=4,由此可得{a2n-1}是首项为1,公差为4的等差数列,a2n-1=4n-3;{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得数列{a n}为等差数列.。
高三数学二轮复习-第1讲等差数列、等比数列专题攻略课件-理-新人教版
4.(2010年高考北京卷)已知{an}为等差数列,且a3 =-6,a6=0. (1)求{an}的通项公式; (2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3, 求{bn}的前n项和公式. 解:(1)设等差数列{an}的公差为 d.
因为 a3=-6,a6=0,
所以aa11+ +25dd= =-0,6, 解得ad=1=2-. 10,
A.6
B.7
Hale Waihona Puke C.8D.9解析:选 A.∵{an}是等差数列, ∴a4+a6=2a5=-6, 即 a5=-3,d=a55- -a11=-34+11=2,得{an}是首 项为负数的递增数列,所有的非正项之和最 小.∵a6=-1,a7=1,∴当 n=6 时,Sn 取最小 值,故选 A.
3.(2010 年高考辽宁卷)设{an}是由正数组成的等
比数列,Sn 为其前 n 项和.已知 a2a4=1,S3=7,
则 S5=( )
15
31
A. 2
B. 4
33 C. 4
17 D. 2
解析:选 B.an>0,a2a4=a21q4=1①,S3=a1+a1q+ a1q2=7②. 解得 a1=4,q=12或-13(舍去), S5=a111--qq5=4×1-1-12312=341,故选 B.
(1)求通项an及Sn; (2)设{bn-an}是首项为1,公比为3的等比数 列,求数列{bn}的通项公式及前n项和Tn.
【解】 (1)∵{an}是首项为 a1=19,公差为 d =-2 的等差数列,
∴an=19-2(n-1)=21-2n, Sn=19n+12n(n-1)×(-2)=20n-n2. (2)由题意得 bn-an=3n-1,即 bn=an+3n-1,∴ bn=3n-1-2n+21,Tn=Sn+(1+3+…+3n-1)=- n2+20n+3n-2 1.
蒋王中学2014高三数学二轮复习专题 数列(1)
数列(1)1、(2011年重庆11)在等差数列{}n a 中,3737a a +=,则2468a a a a +++=2、(2010年浙江5)设n s 为等比数列{}n a 的前n 项和,2580a a +=则52S S = 3、(2011年四川9)数列{a n }的前n 项和为S n ,若a 1=1,a n+1 =3S n ,则a 6= 4、(2011年辽宁5)若等比数列{a n }满足a n a n+1=16n ,则公比为例题1成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{}n b 中的b 、b 、b 。
(I) 求数列{}n b 的通项公式;(II) 数列{}n b 的前n 项和为nS ,求证:数列54n S ⎧⎫+⎨⎬⎩⎭是等比数列。
例2(山东省济南市2011年2月高三教学质量调研理科20题)已知}{n a 为等比数列,256,151==a a ;n S 为等差数列}{n b 的前n 项和,,21=b 8525S S =. (1) 求}{n a 和}{n b 的通项公式;(2) 设n T n n b a b a b a ++=2211,求n T .练习1:辽宁理17.(本小题满分12分)已知等差数列{a n }满足a 2=0,a 6+a 8=-10(I )求数列{a n }的通项公式;(II )求数列⎭⎬⎫⎩⎨⎧-12n n a 的前n 项和.练习2:(2010年山东18)已知等差数列{}n a 满足:37a =,5726a a +=.{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ;(Ⅱ)令211n n b a =-(n N +∈),求数列{}n b 的前n 项和n T .例3.(2011年理科19)已知公差不为0的等差数列{}n a 的首项1a a = (a R ∈),设数列的前n 项和为n S ,且11a ,21a ,41a 成等比数列(Ⅰ)求数列{}n a 的通项公式及n S (Ⅱ)记1231111...n n A S S S S =++++,212221111...nn B a a a a =++++,当2n ≥时,试比较n A 与n B 的大小.例题4已知数列{}n a 与{}n b 满足:1123(1)0,2nn n n n n n b a a b a b ++++-++==, *n ∈N ,且122,4a a ==.(Ⅰ)求345,,a a a 的值;(Ⅱ)设*2121,n n n c a a n N -+=+∈,证明:{}n c 是等比数列;练习:已知数列{}n a 的前n 项和为n S ,且585n n S n a =--,*n N ∈(1)证明:{}1n a -是等比数列;(2)求数列{}n S 的通项公式,并求出使得1n n S S +>成立的最小正整数n .1、若数列}{n a 的通项公式是()()n a n =-13-2g ,则a a a 1210++=L 2、已知数列{n a }的前n 项和n S 满足:n m n m S S S ++=,且1a =1.那么10a = 3、数列{}n a 的首项为3,{}n b 为等差数列且1(*)n n n b a a n N +=-∈ .若则32b =-,1012b =,则8a =4、已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =5、数列{}n a 的通项222(cossin )33n n n a n ππ=-,其前n 项和为n S ,则30S 为 6、若数列2(4)()3n n n ⎧⎫+⎨⎬⎩⎭中的最大项是第k 项,则k =_______。
高考数学大二轮复习刷题首选卷第一部分刷考点考点十一等差数列与等比数列课件理
则( )
A.A+B=C
B.B2=AC
C.A+B-C=B3 D.A2+B2=A(B+C)
答案 D
解析 由等比数列的性质可知,当公比 q≠-1 时,A,B-A,C-B 成
等比数列,所以(B-A)2=A(C-B),所以 A2+B2=AC+AB=A(B+C),当 q
=-1 时,易验证此等式成立,故选 D.
4.设等差数列{an}的前 n 项和为 Sn,a1=4,S5≥S4≥S6,则公差 d 的取 值范围是( )
(2)由(1)得,令 Cn=bncos(anπ)=(-1)n2n-1, ∴Cn+1=(-1)n+12n, ∴CCn+n 1=-2,又 C1=-1, ∴数列{bncos(anπ)}是以-1 为首项、-2 为公比的等比数列, ∴Tn=-1×[11+-2-2n]=-13[1-(-2)n]=-23n-1.
a22+…+an2等于( )
A.(2n-1)2
B.31(2n-1)
C.4n-1
D.13(4n-1)
答案 D
解析 当 n=1 时,a1=2-1=1;当 n≥2,n∈N*时,an=(2n-1)-(2n- 1-1)=2n-1,n=1 时也符合,所以 an=2n-1(n∈N*).所以 a2n=4n-1(n∈N*)也 是等比数列,所以 a21+a22+…+an2=1+4+42+…+4n-1=11--44n=4n-3 1,故 选 D.
第一部分 刷考点 考点十一 等差数列.已知数列{an}为等比数列,且 a3=-4,a7=-16,则 a5=( )
A.-8
B.8
C.±8
D.±4 2
答案 A
解析 选 A.
由aa73=q4 得 q4=4,则 q2=2,所以 a5=a3·q2=-4×2=-8,故
数列二轮复习专题一、二参考答案
课前预习案:1、B 2、D 3、A 4、B 课内探究学案:例1:74 变式1:D 例2:A 变式2:B 例3:33 变式3:A当堂检测:1--5:C D A C B 6--10:B D A A B 11—15:C C D C C 16—18:A A A 课后训练案:1—5:A A B A D6—10:D B B D A 11—12:A B 13、7 14、3115、答案 (Ⅰ) 解:012,2,221121213=--∴+=∴+=d d d a a d a a a a 21,1-=∴≠d d (Ⅱ) 解:,25221)1(2+-=⎪⎭⎫⎝⎛-⋅-+=n n b n,492)(21nn b b n S n n +-=+=4)10)(1()252(492---=+--+-=-∴n n n n n b S n n ;101n n b S n n ===∴时,或;,92n n b S n >≤≤时n n b S ,n <≥时11.16、课前预习案:1、21n+ 2、18 3、1342n -⎛⎫⋅ ⎪⎝⎭4、25、(1)(4)课内探究学案: 例4:略 变式4:例5:解:(I )解:设等差数列{}n a 的公差为d ,由2214111(),a a a =⋅得2111()(3)a d a a d +=+ 因为0d ≠,所以d a =所以1(1),.2n n an n a na S +==(II )解:因为1211()1n S a n n =-+,所以 123111121(1)1n n A S S S S a n =++++=-+因为1122n n a a--=,所以21122211()11111212(1).212n nn nB a a a a a a --=++++=⋅=--当0122,21n nn n n n n C C C C n ≥=++++>+ 时, 即1111,12n n -<-+所以,当0,;n n a A B ><时当0,.n n a A B <>时变式5:(Ⅰ)解:由1*3(1),2n n b n N -+-=∈,可得2,,1,n n b n ⎧=⎨⎩为奇数为偶数,又()1121nn n n n b a b a +++=-+,当121231,21,2,;2n a a a a =+=-==-时由可得当2332,25,8.n a a a =+==时可得(Ⅱ)证明:对任意*n N ∈ 21212221n n n a a --+=-+ ①2221221n n n a a ++=+ ②②-①,得21211212132,32,4n n n n n n nc a a c c --++--=⨯=⨯=即于是所以{}n c 是等比数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
临朐第七中学高三数学学科导学案
【课内探究学案】
探究一:等差等比数列的概念及性质
例 1. (2011年重庆卷理科11)在等差数列
{}
n a 中,3737a a +=,则
2468a a a a +++= .
变式1、(2010浙江理数)设n S 为等比数列{}n a 的前n 项和,2580a a +=,则
5
2
S S =( )
(A )11 (B )5 (C )8- (D )11-
小结:在等差、等比数列中,已知五个元素1n a ,a ,n,d 或q ,n S 中的任意三个,运用方程的
思想,便可求出其余两个,即“知三求二”。
本着化多为少的原则,解题时需抓住首项1a 和公差(或公比q )。
另外注意等差、等比数列的性质的运用.例如
(1)等差数列{}n a 中,若m n p q +=+,则m n p q a a a a +=+;等比数列{}n a 中,若
m n p q +=+,则m n p q a a a a = .
(2)等差数列{}n a 中,()n 2n n 3n 2n kn k n 1S ,S S ,S S ,S S ,
----成等差数列。
其中n S 是等差数列的
前n 项和;等比数列{}n a 中(q 1≠-),()n 2n n 3n 2n kn k n 1S ,S S ,S S ,S S ,----成等比数列。
其中n
S 是等比数列的前n 项和;
(3)在等差数列{}n a 中,项数n 成等差的项n a 也称等差数列. (4)在等差数列{}n a 中,()2n 1n S 2n 1a -=-;()2n n n 1S n a a +=+ .
在复习时,要注意深刻理解等差数列与等比数列的定义及其等价形式.注意方程思想、整体思想、分类讨论思想、数形结合思想的运用. 探究二:数列的递推关系式的理解与应用
例2、(2011年四川卷文科9)数列{a n }的前n 项和为S n ,若a 1=1, a n+1 =3S n (n ≥1),则a 6=( )
(A )3 ×44
(B )3 × 44
+1 (C) 44
(D )44
+1 变式2.(2011年辽宁卷文科5)若等比数列{a n }满足a n a n+1=16n ,则公比为( )
(A )2 (B )4 (C )8 (D )16
在解答给出的递推关系式的数列问题时,要对其关系式进行适当的变形,转化为常见的类型进行解题。
如“逐差法”可把各个差列出来进行求和,可得到数列{ a n }的通项;“逐商法”可把各个商列出来求积。
自我反思
5
10,55S ,则过22,)
n a ( 4 D .1
{}n a 是公差为正数的等差数列,15=,12380a a a =,则)
120
【课后训练案】
1.已知等差数列的前项和为
,若
,且A 、B 、C 三点共线(该
直线不过原点
),则=( )
A .100 B. 101 C. 200 D. 201
2.在等差数列{}n a 中,351024a a a ++=,则此数列的前13项的和等于( ) A .13 B .26 C .8 D .16 1
3.在等比数列{}n a 中,已知13118a a a =,那么28a a = ( )
(A )3 (B )4 (C )12 (D )16
4.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( ).13A 项 .12B 项 .11C 项 .10D 项 5.已知等差数列{}n a 的前n 项和为n S ,且3711315a a a ++=,则13S =( )
A . 104
B . 78
C . 52
D . 39
6.如果数列
103*,8,,)}({a a a a a N n m R a a n m n m n n 那么且满足对任意=⋅=∈∈+等于
( )A .256
B .510
C .512
D . 1024
7.已知数列{}n a 满足1133,2,+-==n n a a a n 则n a
n
的最小值为 ( )
A .10
B .10.5
C .9
D .8
8.等差数列{}n a 满足:296a a a +=,则9S = ( ) ( )
A .2-
B .0
C .1
D .2
9.在数列{}n a 中,*
111001,,(),n n a a a n n N a +=-=∈则的值为 ( )
( ) A .55050 B .5051 C .4950 D .4951
10.在等差数列{a n }中,a 1+3a 8+a 15=120,则2a 6-a 4的值为 A .24 B .22 C .20 D .-8 11.若{a n }为等差数列,且a 2+a 5+a 8=39,则a 1+a 2+…+a 9的值为
A .117
B .114
C .111
D .108
12.已知a b c d ,,,成等比数列,且曲线2
23y x x =-+的顶点是()b c ,,则ad 等于( )
A.3
B.2
C.1
D.2-
13.已知等差数列{}n a 的前n 项和为n S ,且13140,0,S S ><若10t t a a +<则t = .
14.已知等比数列{}n a 各项均为正数,前n 项和为n S ,若22a =,1516a a =.则
5S = .。