广州市高考数学提分专练:第23题 不等式选讲(选考题)D卷
2020年高考数学(文)母题题源解密23 不等式选讲(全国Ⅱ专版解析版)
专题23 不等式选讲【母题来源一】【2020年高考全国Ⅱ卷文数】已知函数2()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ≥,求a 的取值范围. 【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞.【分析】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果; (2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果. 【解析】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x ax a aa a =-+-+≥---+=-+-=-,当且仅当221a x a -≤≤时取等号,()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞.【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型. 【母题来源二】【2019年高考全国Ⅱ卷文数】已知()|||2|().f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集; (2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围. 【答案】(1)(,1)-∞;(2)[1,)+∞【解析】(1)当a =1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥.所以,不等式()0f x <的解集为(,1)-∞. (2)因为()=0f a ,所以1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----. 所以,a 的取值范围是[1,)+∞.【名师点睛】本题主要考查含绝对值的不等式,熟记分类讨论的方法求解即可,属于常考题型. 【母题来源三】【2018年高考全国Ⅱ卷文数】设函数()5|||2|f x x a x =-+--. (1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤,求a 的取值范围.【答案】(1){|23}x x -≤≤;(2)(,6][2,)-∞-+∞.【解析】(1)当1a =时,24,1,()2,12,26, 2.x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩可得()0f x ≥的解集为{|23}x x -≤≤. (2)()1f x ≤等价于|||2|4x a x ++-≥.而|||2||2|x a x a ++-≥+,且当2x =时等号成立. 故()1f x ≤等价于|2|4a +≥. 由|2|4a +≥可得6a ≤-或2a ≥, 所以a 的取值范围是(,6][2,)-∞-+∞.【命题意图】1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: (1)a b a b +≤+. (2) a b a c c b -≤-+-.(3)会利用绝对值的几何意义求解以下类型的不等式:; ; ax b c ax b c x a x b c +≤+≥-+-≥.2.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.3.主要考查逻辑推理能力、运算求解能力,考查分类讨论、数形结合思想方法,考查逻辑推理、数学运算等核心素养. 【命题规律】从近三年高考情况来看,此类知识点以解答题的形式出现,主要考查绝对值不等式的解法、不等式的证明、求最值问题等. 【方法总结】(一)解绝对值不等式的常用方法有:(1)公式法:对于形如|f (x )|>g (x )或|f (x )|<g (x ),利用公式|x|<a ⇔−a<x<a (a>0)和|x|>a ⇔x>a 或x<−a (a>0)直接求解不等式;(2)平方法:对于形如|f (x )|≥|g (x )|,利用不等式两边平方的技巧,去掉绝对值,需保证不等式两边同正或同负,即|f (x )|≥|g (x )|⇔f (x )2≥g 2(x );(3)零点分段法:对于形如|f (x )|±|g (x )|≥a ,|f (x )|±|g (x )|≤a ,利用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解;(4)几何法:对于形如|x±a|±|x±b|≤c ,|x±a|±|x±b|≥c ,利用绝对值三角不等式的性质求解,即 ①定理1:如果a ,b 是实数,则|a+b|≤|a|+|b|,当且仅当ab ≥0时,等号成立.②定理2:如果a ,b ,c 是实数,那么|a−c|≤|a−b|+|b−c|,当且仅当(a−b )(b−c )≥0时,等号成立. ③推论1:||a|−|b||≤|a+b|. ④推论2:||a|−|b||≤|a−b|.(5)图象法:对于形如|f (x )|+|g (x )|≥a 可构造y=|f (x )|+|g (x )|−a 或y=|f (x )|+|g (x )|与y=a ,在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解或通过移项构造一个函数. (二)含绝对值不等式的恒成立问题的常见类型及其解法:(1)分享参数法运用“max min ()(),()()f x a f x a f x a f x a ≤⇔≤≥⇔≥”可解决恒成立中的参数范围问题.求最值的思路:利用基本不等式和不等式的相关性质解决;将函数解析式用分段函数形式表示,作出函数图象,求得最值;利用性质“||||||||||||a b a b a b -≤±≤+”求最值.(2)更换主元法不少含参不等式恒成立问题,若直接从主元入手非常困难或不可能解决时,可转换思维角度,将主元与参数互换,常可得到简捷的解法.(3)数形结合法在研究曲线交点的恒成立问题时,若能数形结合,揭示问题所蕴含的几何背景,发挥形象思维和抽象思维各自的优势,可直接解决问题. (三)不等式的证明(1)比较法证明不等式最常用的是差值比较法,其基本步骤是:作差—变形—判断差的符号—下结论.其中“变形”是证明的关键,一般通过因式分解或配方将差式变形为几个因式的积或配成几个代数式平方和的形式,当差式是二次三项式时,有时也可用判别式来判断差值的符号.个别题目也可用柯西不等式来证明.(2)基本不等式:如果a ,b>0,那么2a b+≥,当且仅当a=b 时,等号成立.用语言可以表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.(3)算术平均—几何平均定理(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均数不小于它们的几何平均数,即12nn a a a n+++≥当且仅当a 1=a 2=…=a n 时,等号成立.1.(2020·山西省高三)已知函数()|1||2|f x x x a =++-. (1)若1a =,解不等式()4f x <;(2)对任意的实数m ,若总存在实数x ,使得224()m m f x -+=,求实数a 的取值范围.【答案】(1)35(,)22-(2)[2,1]-【分析】(1)分类讨论求解绝对值不等式,即可求得结果;(2)求得()f x 的值域以及224y m m =-+的值域,根据二次函数的值域是()f x 值域的子集,求参数的范围即可.【解析】(1)当1a =时,()4|1||2|4f x x x <⇒++-<,化为123x x <-⎧⎨>-⎩或1234x -≤≤⎧⎨<⎩或2214x x >⎧⎨-<⎩ 解得312x -<<-或12x -≤≤或522x <<, 3522x ∴-<<.即不等式()4f x <的解集为35(,)22-.(2)根据题意,得224m m -+的取值范围是()f x 值域的子集.2224(1)33m m m -+=-+≥又由于()1221f x x x a a =++-≥+,()f x ∴的值域为[|21|,)a ++∞故|21|3a +≤,21a ∴-≤≤. 即实数a 的取值范围为[2,1]-.【点睛】本题考查分类讨论求解绝对值不等式,以及由绝对值三角不等式求解绝对值函数的最小值,属综合性基础题.2.(2020·四川省泸县第二中学高三二模)已知函数()211f x x x =-++. (1)求不等式()2f x x ≤+的解集;(2)若函数()y f x =的最小值记为m ,设0a >,0b >,且有a b m +=.求1212a b +++的最小值. 【答案】(1)[]0,1(2【分析】(1)作出函数图象,数形结合即可得到答案;(2)32a b +=⇒9122a b +++=,()()112121212912a b a b a b ⎛⎫+=++++⎡⎤ ⎪⎣⎦++++⎝⎭,在乘开,利用基本不等式即可. 【解析】(1)因为()3,1,12112,1,213,.2x x f x x x x x x x ⎧⎪-<-⎪⎪=-++=-+-≤≤⎨⎪⎪>⎪⎩从图可知满足不等式()2f x x ≤+的解集为[]0,1.(2)由图可知函数()y f x =的最小值为32,即32m =. 所以32a b +=,从而9122a b +++=,从而()()112121212912a b a b a b ⎛⎫+=++++⎡⎤ ⎪⎣⎦++++⎝⎭()2122263391299a b a b ⎡⎡⎤+⎛⎫++=++≥+=⎢⎢⎥ ⎪++⎢⎢⎥⎝⎭⎣⎦⎣当且仅当()21212a b a b ++=++,即1114,22a b -==时,等号成立,∴1212a b +++ 【点睛】本题考查解绝对值不等式以基本不等式求最值的问题,是一道中档题.3.(2020·深圳市宝安中学(集团)高三月考)已知定义在R 上的函数()|1||2|f x x x =++-的最小值为a .(1)求a 的值.(2)若p ,q ,r 为正实数,且p q r a ++=,求证:2223p q r ++≥.【答案】(1)3;(2)证明见解析【分析】(1)根据绝对值的三角不等式求解即可. (2)根据三元的柯西不等式证明即可.【解析】(1)根据绝对值的三角不等式有()()12123x x x x ++-≥+--=. 当且仅当12x -≤≤ 时取等号.故3a =.(2)证明:由(1)有3p q r ++=.利用三元的柯西不等式有()()()22222222221119p q r p q r p q r ++=++++≥++=.故2223p q r ++≥【点睛】本题主要考查了绝对值的三角不等式与三元的柯西不等式运用,属于基础题. 4.(2020·江西省高三)已知函数()221f x x x =-+-. (1)求不等式()6f x <的解集;(2)若函数()f x 的最小值为m ,且实数a ,b 满足222a b m +=,求34a b +的最大值. 【答案】(1)()1,3-.(2)【分析】(1)首先将()f x 写成分段函数的形式,然后解出即可; (2)首先求出()min 1322f x f ⎛⎫==⎪⎝⎭,然后利用柯西不等式求解即可. 【解析】(1)()133,212211,2233,2x x f x x x x x x x ⎧-+≤⎪⎪⎪=-+-=+<<⎨⎪-≥⎪⎪⎩,()6f x <等价于12336x x ⎧≤⎪⎨⎪-+<⎩或12216x x ⎧<<⎪⎨⎪+<⎩或2336x x ≥⎧⎨-<⎩, 解得112x -<≤或122x <<或23x ≤<. 故不等式()6f x <的解集为()1,3-. (2)由(1)知()f x 在1,2⎛⎫-∞ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,所以()min 1322f x f ⎛⎫==⎪⎝⎭, 则223a b +=,故34a b +≤=(当且仅当a =b =), 即34a b +的最大值为【点睛】本题考查的是含绝对值不等式的解法和利用柯西不等式求最值,考查了分类讨论的思想,属于基础题.5.(2020·山西省高三月考)已知函数()|1|2|2|)(R f x x x x =-+-∈,记()f x 得最小值为m . (1)解不等式()5f x ≤;(2)若2a b m +=,求22a b +的最小值. 【答案】(1)100,3⎡⎤⎢⎥⎣⎦;(2)15. 【分析】(1)利用零点分段法,分1x <,12x ≤≤,2x >三种情况去绝对值,解不等式;(2)利用含绝对值三角不等式求得1m =,即21a b +=,方法一,利用柯西不等式2222(2)(12)()a b a b +≤++,求得22a b +的最小值,方法二,根据12a b =-,代入22a b + ,转化为关于b 的二次函数求最值.【解析】(1)53,1()3,1235,2x x f x x x x x -<⎧⎪=-≤≤⎨⎪->⎩,原不等式可等价于5351x x -≤⎧⎨<⎩,或3512x x -≤⎧⎨≤≤⎩,或3552x x -≤⎧⎨>⎩ 解得:1003x ≤≤, 所以原不等式的解集为100,3⎡⎤⎢⎥⎣⎦(2)由(1)可知()122122f x x x x x x =-+-=-+-+-,()()122121x x x x ≥---+-=+-≥当且仅当2x =时等号成立,所以1m = 即21a b +=方法一 由柯西不等式得2222(2)(12)()a b a b +≤++2215a b ∴+≥, 当且仅当225a b ==时取等号方法二 由题意得12a b =-222222211(12)5415()555a b b b b b b +=-+=-+=-+≥当且仅当12,55a b ==时等号成立.【点睛】本题考查含绝对值不等式的解法,以及含绝对值三角不等式的应用,柯西不等式求最值,意在考查转化与化归的思想,计算能力属于基础题型. 6.(2020·吉林省高三)已知函数()12f x x x =-+(1)在平面直角坐标系中作出函数()f x 的图象,并解不等式()2f x ≥; (2)若不等式()15f x x k +-≥-对任意的x ∈R 恒成立,求证:65k k+≥.【答案】(1)图象见解析,13x x ⎧≤-⎨⎩或}1x ≥;(2)证明见解析.【分析】(1)去掉绝对值号,根据一次函数的图象与性质,即可得到函数()f x 的图象,结合图象,即可求解不等式的解集;(2)不等式()15f x x k +-≥-对任意的x ∈R 恒成立,只需()min 51k f x x -≤⎡+-⎤⎣⎦,求得3k ≥,然后利用作差法,即可证得65k k+≥. 【解析】(1)由题意,函数()31,1121,0131,0x x f x x x x x x x -≥⎧⎪=-+=+<<⎨⎪-+≤⎩,在直角坐标系中作出函数()f x 的图象,如图所示:当13x =-时,可得()2f x =,当1x =时,可得()2f x =,所以根据图象可得解不等式()2f x ≥的解集为13x x ⎧≤-⎨⎩或}1x ≥.(2)由()12222222f x x x x x x +-=-+≥--=,当且仅当()()2220x x -≤,即01x ≤≤时取等号,所以()1f x x +-的最小值为2, 由不等式()15f x x k +-≥-对任意的x ∈R 恒成立, 所以只需()min 512k f x x -≤⎡+-⎤=⎣⎦,可得3k ≥,又由()()22365650k k k k k k k k---++-==≥,所以65k k +≥.【点睛】本题主要考查了绝对值不等式的解法和绝对值不等式恒成立问题,着重考查转化思想和数形结合思想的应用,属于中档试题.7.(2020·山西省高三)已知函数()12f x x x a =++-. (1)若1a =,解不等式()4f x <;(2)对任意的实数m ,若总存在实数x ,使得()224m m f x -+=,求实数a 的取值范围.【答案】(1)35,22⎛⎫-⎪⎝⎭(2)[]2,1- 【分析】(1)根据绝对值定义将不等式化为三个不等式组,最后求并集得结果;(2)先根据绝对值三角不等式得()f x 值域,再根据二次函数性质得值域,最后根据两个值域关系列不等式,解得结果.【解析】(1)当1a =时,()4124f x x x <⇒++-<,化为123x x <-⎧⎨>-⎩或1234x -≤≤⎧⎨<⎩或2214x x >⎧⎨-<⎩, 解得312x -<<-或12x -≤≤或522x <<, ∴3522x -<<.即不等式()4f x <的解集为35,22⎛⎫- ⎪⎝⎭. (2)根据题意,得224m m -+的取值范围是()f x 值域的子集.()2224133m m m -+=-+≥,又由于()1221f x x x a a =++-≥+,∴()f x 的值域为)21,a ⎡++∞⎣ 故213a +≤,∴21a -≤≤.即实数a 的取值范围为[]2,1-【点睛】本题考查分类讨论求解含绝对值不等式、绝对值三角不等式、方程恒有解问题,考查综合分析求解能力,属中档题.8.(2020·山西省太原五中高三月考)已知函数()1211f x x x =-+++(1)求不等式()8f x <的解集;(2)若x R ∀∈,函数()2log f x a ≥恒成立,求实数a 的取值范围.【答案】(1)8,23⎛⎫- ⎪⎝⎭;(2)(]0,8. 【分析】由题意可得()32141131x x f x x x x x +≥⎧⎪=+-<<⎨⎪-≤-⎩,然后分段解不等式可得答案,(2) x R ∀∈,函数()2log f x a ≥恒成立,则()2min log f x a ≥,分段求出函数()f x 的最小值,然后解出答案.【解析】由函数()321121141131x x f x x x x x x x +≥⎧⎪=-+++=+-<<⎨⎪-≤-⎩(1)当1x ≥时,()8f x <,即328x +<,得2x <,所以12x ≤<.当11x -<<时,()8f x <,即48x +<,得4x <,所以11x -<<.当1x ≤-时,()8f x <,即38x -<,得83x >-,所以813x -<≤-所以不等式()8f x <的解集为8,23⎛⎫- ⎪⎝⎭.(2) 若x R ∀∈,函数()2log f x a ≥恒成立,则()2min log f x a ≥ 由()32141131x x f x x x x x +≥⎧⎪=+-<<⎨⎪-≤-⎩,当1x ≥时,()325f x x =+≥,当11x -<<时,()43f x x =+>,当1x ≤-时,()33f x x =-≥所以()min 3f x =,则()2min 3log f x a =≥,可得08a <≤所以x R ∀∈,函数()2log f x a ≥恒成立,则实数a 的取值范围为(]0,8【点睛】本题考查解含绝对值的不等式,不等式恒成立求参数的范围,含绝对值的不等式关键是利用定义打开绝对值,属于中档题.9.(2020·全国高三)设函数()|2|f x x x =+-+,集合M 为不等式()0f x <的解集. (1)求集合M ;(2)当m ,n M ∈时,证明:3mn n ++.【答案】(1){|x x <x >(2)证明见解析;【分析】(1)对x 分三类讨论去掉绝对值,解得结果再相并可得结果;(2)两边平方再作差比较可证不等式成立.【解析】(1)当x <((20x x -++++<,解得x <当3x <-((20x x ++++<, 解得x <当3x -时,原不等式化为((20x x +-++<,解得x >所以{|M x x =<x >.(2)欲证|3||mn m n +>+成立,只需证22(3)||)mn m n +>+成立.因为222222(3)|)339mn m n m n m n +-+=--+.()()2233m n =--.又由m ,n M ∈,得23m >,23n >.所以22(3)|)0mn m n +-+>,即22(3)||)mn m n +>+成立.所以|3|||mn m n +>+成立.【点睛】本题考查了分类讨论法解绝对值不等式,考查了比较法证明不等式,平方后再作差是解题关键,属于中档题.10.(2020·山西省高三)已知不等式23x x -<与不等式()20,x mx n m n R -+<∈的解集相同. (1)求m n -;(2)若(),,0,1a b c ∈,且ab bc ac m n ++=-,求222a b c ++的最小值.【答案】(1)1;(2)1.【分析】(1)解不等式|23|x x -<得出20(,)x mx n m n R -+<∈的解集,从而求得m ,n ;(2)根据题意,利用基本不等式求得222a b c ++的最小值.【解析】(1)当0x ≤时,不等式解集为空集;当0x >时,2323x x x x x -<⇔-<-<,即13x <<,所以1,3是方程20x mx n -+=的两根,所以10,930.m n m n -+=⎧⎨-+=⎩解得4,3.m n =⎧⎨=⎩所以1m n -=.(2)由(1)可知1ab bc ac ++=, 因为222a b ab +≥,222b c bc +≥,222a c ac +≥, 所以222222222222a b b c a c a b c +++++=++ 1ab bc ac ≥++=(当且仅当a b c === 所以222a b c ++的最小值为1.【点睛】本题考查了绝对值不等式的解法,基本不等式的应用,属于中档题.11.(2020·重庆高三)已知函数f (x )=|2x ﹣1|﹣3|x +1|,设f (x )的最大值为M .(1)求M ;(2)若正数a ,b 满足3311a b +=Mab ,证明:a 4b +ab 443≥. 【答案】(1)M =3(2)证明见解析;【分析】(1)由f (x )=|2x ﹣1|﹣3|x +1|=|2x ﹣1|﹣|2x +2|﹣|x +1|,结合绝对值不等式的性质和绝对值的几何意义,可得所求最大值;(2)由(1)可得3311a b +=3ab ,a 4b +ab 4=ab (a 3+b 3)13=(3311a b +)(a 3+b 3),再由基本不等式即可得证.【解析】(1)函数f (x )=|2x ﹣1|﹣3|x +1|=|2x ﹣1|﹣|2x +2|﹣|x +1|≤|2x ﹣1﹣2x ﹣2|﹣|﹣1+1|=3,当x =﹣1时,f (x )取得最大值3,即M =3;(2)证明:正数a ,b 满足3311a b+=3ab , 故a 4b +ab 4=ab (a 3+b 3)13=(3311a b +)(a 3+b 3)13=(1+13333a b b a++)13≥()43=,当且仅当a =b = 故a 4b +ab 443≥.【点睛】此题考查了绝对值不等式,利用基本不等式证明不等式,属于中档题.12.(2020·福建省高三)已知函数()1f x x a x =-+-.(1)当0a =时,求不等式()1f x ≤的解集A .(2)设()32f x x ≤-的解集为B ,若A B ⊆,求这数a 的值. 【答案】(1){|01}A x x =≤≤(2)12 【分析】(1)将0a =代入,则|||1|1x x +-,再利用绝对值不等式的性质即可得解;(2)问题等价于1122x a --在[0x ∈,1]上恒成立,由此建立关于a 的不等式组,解出即可. 【解析】(1)当0a =时,()|||1|f x x x =+-,即解不等式|||1|1x x +-,由绝对值不等式知,|||1||(1)|1x x x x +---=,当且仅当(1)0x x -时取等号,因此()1f x 的解集{|01}A x x =;(2)由A B ⊆,即[0x ∈,1],不等式3()||2f x x -恒成立, 即3||12x a xx -+--,整理得1||2x a -, 故1122x a --在[0x ∈,1]上恒成立, 则1212a x a x ⎧-⎪⎪⎨⎪+⎪⎩在[0x ∈,1]上恒成立,得1212a a ⎧⎪⎪⎨⎪⎪⎩, 故12a =. 【点睛】本题考查含绝对值、参数的不等式有解问题与基本不等式的应用,考查运算求解能力、推理论证能力,考查化归与转化思想等,属于中档题.13.(2020·福建省高三)已知函数()12f x x x =-+-.(1)求不等式()3f x <的解集I ; (2)当a ,b ,c I ∈时,求证:11191111114333a b b c c a ++≤+++---.【答案】(1){}03I x x =<<;(2)见解析.【分析】(1)采用分类讨论的方法,求出各段的范围,然后取并集,可得结果.(2)根据不等式2++≥≤a b a b ,化简式子,可证明该结果. 【解析】(1)当1x ≤时,原不等式化简为323-<x ,即01x <≤;当12x <≤时,原不等式化简为13<,恒成立,即12x <≤;当2x >时,原不等式化简为233x -<,即23x <<. 综上,原不等式的解集{}03I x x =<<.(2)当a ,b ,c I ∈时,a ,b ,c ,3a -,3b -,3c -均为正数, 令111111111333=+++++---T a b b c c a则≤T ()()()33394444+-+-+-≤++=a b b c c a T . 当且仅当32===a b c 时,取等号 【点睛】本题考查绝对值不等式的解法以及基本不等式的应用,熟练使用分类讨论的方法(或零点分段法),同时善于观察,识记基本不等式的使用条件:一正,二定,三相等,属中档题.14.(2020·山西省高三)已知函数()2f x x =. (1)求不等式()1f x >的解集;(2)若正数,,a b c 满足24923a b c f ⎛⎫++=+ ⎪⎝⎭,求149a b c ++的最小值. 【答案】(1)22,3⎛⎫- ⎪⎝⎭;(2)1963. 【分析】(1)化简后根据绝对值中的零点将()f x 转换为分段函数,再求解即可.(2)代入可得()1491149493a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭,再根据柯西不等式求最小值即可. 【解析】(1)化简得321x x -->①当0x ≤时,()()323f x x x x =---=+,由()1f x >即31x +>,解得2x >-,又0x ≤,所以20x -<≤;②当03x <<时,()33f x x =-,由()1f x >,即231x ->,解得23x <,又02x <<,所以203x <<; ③当3x ≥时,()3f x x =--,不满足()1f x >,此时不等式无解;综上,不等式()1f x >的解集为22,3⎛⎫- ⎪⎝⎭. (2)249233a b c f ⎛⎫++=+= ⎪⎝⎭, 所以()1491149493a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭∵,,0a b c >,∴由柯西不等式:上式((22222213⎡⎤⎛⎛⎡⎤⎢⎥=++⋅++ ⎢⎥⎣⎦⎢⎥⎝⎝⎣⎦((213⎡≥⨯⨯⎢⎣()2119614933=++=. 当且仅当314a b c ===时,等号成立. 所以149a b c ++的最小值为1963. 【点睛】本题主要考查了绝对值不等式的求解、柯西不等式求最小值的问题,属于中档题.15.(2020·山西省太原五中高三月考)已知函数()()0, 0f x x a x b a b =-++>>.(1)当1a b ==时,解不等式()2f x x <+;(2)若()f x 的值域为[)3,+∞,证明:()224281a b b a b +++≥+. 【答案】(1){}02x x <<;(2)详见解析.【分析】(1)在1x <-,11x -≤<,1x ≥三种情况下,分别解不等式,最后取并集即可;(2)()f x x a x b a b =-++≥+,结合()f x 的值域为[)3,+∞,可知3a b +=.因此有()()1221a b a b ++≥=⇒++≥⎪⎩()()2218411a b a b ⎧++≥⎪⎨≥⎪+⎩,从而证明出题设不等式. 【解析】(1)当1a b ==时,不等式为112x x x -++<+,当1x <-时,不等式化为2223x x x -<+⇒>-,此时不等式无解; 当11x -≤<时,不等式化为220x x <+⇒>,故01x <<;当1x ≥时,不等式化为222x x x <+⇒<,故12x ≤<.综上可知,不等式的解集为{}02x x <<. (2)()f x x a x b a b =-++≥+,当且仅当x a -与x b +异号时,()f x 取得最小值a b +,∵()f x 的值域为[)3,+∞,且0a >,0b >,故3a b +=.()122a b ++≥=(当且仅当12a b =+=时取等号), ∴()2218a b ++≥.又∵()1a b ++≥12a b =+=时取等号),∴()41a b +≤,∴()411a b +≥, ∴()224(1)91a b a b +++≥+, ∴()224281a b b a b +++≥+. 【点睛】本题主要考查了绝对值不等式的解法,考查了基本不等式的应用,属于中档题. 16.(2020·山西省高三)已知函数()()220f x x a x a a =-++>.(1)求不等式()3f x a ≥的解集;(2)若()f x 的最小值为()20b b ->【答案】(1){0x x ≤或4}3a x ≥;(2)见解析 【分析】(1)首先根据题意得到()3,3,3,x a x a f x x a a x a x a x a -+<-⎧⎪=-+-≤≤⎨⎪->⎩,再对a 分类讨论解不等式即可.(2)首先根据函数()f x 的单调性得到22a b +=,再利用柯西不等式证明即可.【解析】(1)()3,3,3,x a x a f x x a a x a x a x a -+<-⎧⎪=-+-≤≤⎨⎪->⎩,①当x a <-时,由33x a a -+≥,解得x a <-;②当a x a -≤≤时,由33x a a -+≥得0a x -≤≤;③当x a >时,由33x a a -≥得43a x ≥. 综上可得不等式()3f x a ≥的解集为{0x x ≤或4}3a x ≥. (2)由()3,3,3,x a x a f x x a a x a x a x a -+<-⎧⎪=-+-≤≤⎨⎪->⎩,可知:当x a ≤时,()f x 为减函数,当x a >时,()f x 为增函数.所以当x a =时,()f x 取到最小值2a ,所以22a b =-,即22a b +=.== 当12a =,1b=时取等号.≤【点睛】本题第一问考查绝对值不等式的解法,第二问考查不等式的证明,熟练掌握柯西不等式为解题的关键,属于中档题.17.(2020·陕西省西安中学高三)已知,,a b c R +∈,x R ∀∈,不等式|1||2|x x a b c ---≤++恒成立.(1)求证:22213a b c ++≥(2)求证【答案】(1)证明见解析(2)证明见解析【分析】(1)先根据绝对值不等式求得|1||2|x x ---的最大值,从而得到1a b c ++≥,再利用基本不等式进行证明;(2)利用基本不等式222a b ab +≥变形得222()2a b a b ++≥,两边开平方得到新的不等式,利用同理可得另外两个不等式,再进行不等式相加,即可得答案.【解析】(1)∵|1||2||12|1x x x x ---≤--+=,∴1a b c ++≥.∵222a b ab +≥,222b c bc +≥,222c a ac +≥,∴222222222a b c ab bc ac ≥++++,∴2222222333222()1a b c a b c ab bc ac a b c ++≥+++++=++≥, ∴22213a b c ++≥. (2)∵222a b ab +≥,()2222222()a ba ab b a b +≥++=+,即222()2a b a b ++≥||()22a b a b ≥+=+.)2b c ≥+)c a ≥+.)a b c ≥++≥【点睛】本题考查绝对值不等式、应用基本不等式证明不等式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和推理论证能力.18.(2020·江苏省高三)已知x ,y ,z 均为正数,且11131112x y z ++≤+++,求证:4910x y z ++≥. 【答案】详见解析【分析】由x ,y ,z 均为正数,运用柯西不等式和不等式的性质,即可得证;【解析】因为x ,y ,z 均为正数,所以1x +,1y +,1z +均为正数,由柯西不等式得()()()214191111(123)36111x y z x y z ⎛⎫++≥++=⎪+++++++⎡⎭⎤⎣⎦+⎝, 当且仅当222(1)4(1)9(1)x y z +=+=+时,等式成立.因为11131112x y z ++≤+++, 所以2(1)4(1)9(1)36243x y z +++++≥⨯=, 所以4910x y z ++≥.【点睛】本题考查不等式的证明,注意运用柯西不等式和不等式的性质,考查推理和运算能力,属于中档题.19.(2019·四川省高三月考)已知函数f (x )=|2x ﹣1|﹣|x +1|. (1)求不等式f (x )≤﹣1的解集M ;(2)结合(1),若m 是集合M 中最大的元素,且a +b =m (a >0,b >0),求+ 【答案】(1)1,13⎡⎤⎢⎥⎣⎦;(2)5【分析】(1)分段去不等式中的绝对值再求解即可. (2)根据(1)可得1m =,再根据柯西不等式求解最大值即可. 【解析】(1)不等式f (x )≤﹣1即|2x ﹣1|﹣|x +1|≤﹣1,可得11211x x x ≤-⎧⎨-++≤-⎩或1121211x x x ⎧-⎪⎨⎪---≤-⎩<<或122111x x x ⎧≥⎪⎨⎪---≤-⎩, 解得:无解或13≤x 12<或12≤x ≤1, 综上可得13≤x ≤1,即所求解集为[13,1];(2)由(1)可得a +b =1(a ,b >0),由柯西不等式可得(2≤(32+42)(a +b ),即为(2≤25,可得≤5,当且仅当a 925=,b 1625=时取得等号,则5.【点睛】本题主要考查了绝对值不等式的求解以及柯西不等式的运用,属于中等题型. 20.(2020·广东省高三月考) 已知函数()()20,0f x x a x b a b =-++>>. (1)当1a b ==时,解不等式()2f x x ≥-;(2)若函数()f x 的值域为[)2,+∞,求2242a b b a+的最小值. 【答案】(1){3x x ≤-或}1x ≥-;(2)2.【分析】(1)可知所求不等式为122x x x -++≥-,然后分2x -≤、21x -<<、1x ≥三种情况解该不等式,即可得出原不等式的解集;(2)利用绝对值三角不等式可得()min 22f x a b =+=,然后将所求代数式变形为2222442222a b a b b a b a b a ⎛⎫⎛⎫+=+++- ⎪ ⎪⎝⎭⎝⎭,利用基本不等式可求得2242a b b a +的最小值. 【解析】(1)根据题意得原不等式为122x x x -++≥-.当2x -≤时,则有122x x x ---≥-,解得3x ≤-,此时3x ≤-; 当21x -<<时,则有122x x x -++≥-,解得1x ≥-,此时11x -≤<; 当1x ≥时,则有122x x x -++≥-,解得13x ≥,此时1x ≥. 综上所述,不等式()2f x x ≥-的解集为{3x x ≤-或}1x ≥-; (2)()222f x x a x b x a x b a b =-++≥---=+, 当且仅当()()20x a x b -+≤时等号成立,0a >,0b >,函数()y f x =的值域为[)2,+∞,即22a b +=.()2222224442222222a b a b a b a b b a b a b a b a ⎛⎫⎛⎫⎛⎫∴+=+++-=+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()22222a b ≥=+-=,当且仅当21a b ==时取等号,因此,2242a b b a+的最小值为2.【点睛】本题考查绝对值不等式的求解,同时也考查了利用基本不等式求最值,涉及绝对值三角不等式的应用,考查计算能力,属于中等题.21.(2020·宁夏回族自治区银川一中高三)已知()12f x x x =-+-. (1)求使得()2f x >的x 的取值集合M ;(2)求证:对任意实数a ,()0b a ≠,当R x C M ∈时,()a b a b a f x ++-≥恒成立. 【答案】(1)12x x ⎧<⎨⎩或52x ⎫>⎬⎭;(2)见解析 【分析】(1)利用|1||2|x x -+-的几何意义,表示数轴上的x 对应点到1和2对应点的距离之和,分析即得解.(2)把||||||()a b a b a f x ++-≥,转化为()||||||a b a b f x a ++-≤,利用绝对值的性质求得||||||a b a b a ++-得最小值即得解.【解析】(1)由()2f x >,即|1||2|2x x -+->.而|1||2|x x -+-表示数轴上的x 对应点到1和2对应点的距离之和,而数轴上满足|1||2|2x x -+-=的点的坐标为12和52, 故不等式|1||2|2x x -+->的解集为15{|}22x x <>或.(2)证明:要证||||||()a b a b a f x ++-≥,只需证()||||||a b a b f x a ++-≤,∵||||||2||a b a b a b a b a ++-≥++-=,当且仅当()()0a b a b +-≥时取等号,∴||||2||a b a b a ++-≥由(1),当R x C M ∈时,()2f x ≤∴||||()||a b a b f x a ++-≤∴原命题成立..【点睛】本题考查了绝对值不等式得解集及不等式证明,考查了学生综合分析,转化与划归,逻辑推理得能力,属于中档题.22.(2020·河南省高三三模)已知是a ,b ,c 正实数,且21a b c ++=.()1求111abc++的最小值;()2求证:22216a b c ++≥.【答案】()16+;()2证明见解析.【分析】()1根据a ,b ,c 是正实数,且21a b c ++=,可得()1111112a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭,然后利用基本不等式求出111a b c++的最小值即可;()2由柯西不等式可得()()()22222221122a b c a b c ++++≥++,再结合21a b c ++=,即可证明22216a b c ++≥成立. 【解析】()121a b c ++=,∴()11111122b a c a b ca b c a b c a b a⎛⎫++=++++=+++ ⎪⎝⎭ 246a c bc b c+++≥+当且仅当a b ==时,等号成立.又由21a b c ++=,∴a b ==,c =时,等号成立,即111a b c++的最小值为6+. ()2由柯西不等式可得()()()222222211221a b c a b c ++++≥++=即2221 6a b c ++≥当且仅当112a b c==时,等号成立.又由21a b c ++=,∴13c =,16a b ==时,等号成立.∴22216a b c ++≥成立.【点睛】本题考查利用综合法证明不等式,基本不等式和柯西不等式的运用,考查转化思想,属于中档题. 23.(2020·江西省高三三模)已知()|||1|.f x k x x =+- (Ⅰ)若2k =,解不等式()5f x ≤.(Ⅱ)若关于x 的不等式()|1||22|f x x x ≤++-的充分条件是1,22x ⎡∈⎤⎢⎥⎣⎦,求k 的取值范围.【答案】(Ⅰ)4,23⎡⎤-⎢⎥⎣⎦(Ⅱ)(],2-∞. 【分析】(Ⅰ)分区间讨论,去掉绝对值号即可求解;(Ⅱ)由题意可转化为11x x k x ++-≤在1,22x ⎡∈⎤⎢⎥⎣⎦恒成立,根据绝对值不等式可求出11112x x x x x x++-++-≥=,即可求解. 【解析】(Ⅰ)若2k =,不等式()5f x ≤可化为215x x +-≤. 当0x <时,()215x x ---≤,即43x ≥-,∴403x -≤<; 当01x ≤<时,()215x x --≤,即4x ≤,∴01x ≤<; 当1x ≥时,()215x x +-≤,即2x ≤,∴12x ≤≤.故不等式的解集为4,23⎡⎤-⎢⎥⎣⎦.(Ⅱ)关于x 的不等式()122f x x x ≤+++在1,22x ⎡∈⎤⎢⎥⎣⎦恒成立,即1221k x x x x ≤+++--在1,22x ⎡∈⎤⎢⎥⎣⎦恒成立,∴11x x k x ++-≤在1,22x ⎡∈⎤⎢⎥⎣⎦恒成立,∵11112x x x x x x++-++-≥=,等号在1x +,1x -同号时等号成立,所以,所求实数k 的范围是(],2-∞.【点睛】本题主要考查了含绝对值不等式的解法,不等式恒成立求参数取值范围,分类讨论思想,转化思想,属于中档题.24.(2020·河北省高三)已知a ,b ,c 为正实数,且a+b+c=1.(Ⅰ)证明:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭; (Ⅱ)证明:32a b c b c a c a b ++≥+++. 【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析.【分析】(Ⅰ)每个式子通分后把1用a b c ++代换后分子应用基本不等式可证结论;(Ⅱ)变形111a b c a b c a b c a b c b c a c a b b c a c a b ++++++⎛⎫⎛⎫⎛⎫++=-+-+- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭,三个分式中分子a b c ++提取出来并变为()()()12b c a c a b ⎡⎤+++++⎣⎦,即原不等式左边()()()111132b c a c a b b c a c a b ⎛⎫⎡⎤=+++++++- ⎪⎣⎦+++⎝⎭,再用柯西不等式可证得结论.【解析】(Ⅰ)1111111118a b c b c a c a b a b c a b c a b c ---+++⎛⎫⎛⎫⎛⎫---=⋅⋅=⋅⋅≥=⎪⎪⎪⎝⎭⎝⎭⎝⎭,当且仅当“a=b=c ”时取等号; (Ⅱ)111a b c a b c a b c a b c b c a c a b b c a c a b ++++++⎛⎫⎛⎫⎛⎫++=-+-+- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭()()()111132b c a c a b b c a c a b ⎛⎫⎡⎤=+++++++- ⎪⎣⎦+++⎝⎭22113333222≥+-=⨯-=, 当且仅当“a =b =c ”时取等号.【点睛】本题考查用基本不等式和柯西不等式证明不等式成立,解题关键是要凑出基本不等式和柯西不等式的形式,然后才可得出结论,掌握基本不等式和柯西不等式是解题.25.(2020·南昌市新建一中高三)已知函数()21f x x x =---,函数()421g x x x m =---+-. (1)当()0f x >时,求实数x 的取值范围;(2)当()g x 与()f x 的图象有公共点时,求实数m 的取值范围. 【答案】(1)1,2⎛⎫-∞ ⎪⎝⎭;(2)[)1,+∞.【分析】(1)去绝对值,转化为分段函数,解不等式即可;(2)函数()y g x =与()y f x =的图象有公共点,则方程()()f x g x =有解,利用参变量分离法得出224m x x =-+-有解,利用绝对值三角不等式可求得m 的取值范围.【解析】(1)当()0f x >时,即21x x ->+. 当2x ≥时,则21x x ->+,此时x ∈∅; 当2x <时,则21x x ->+,解得12x <,此时12x <. 综上所述,实数x 的取值范围为1,2⎛⎫-∞ ⎪⎝⎭; (2)因为函数()421g x x x m =---+-与函数()y f x =的图象有公共点, 则42121x x m x x ---+-=---有解.即224m x x =-+-有解,由绝对值三角不等式得()24242x x x x -+-≥---=,所以22m ≥,m 1≥. 所以当()y g x =与()y f x =的图象有公共点时,实数m 的取值范围为[)1,+∞.【点睛】本题考查解绝对值不等式,以及函数图象有交点的问题,考查绝对值三角不等式以及分类讨论思想的应用,属于中档题.26.(2020·四川省高三三模)已知函数()||f x x a =-. (1)当1a =时,求不等式11()x f x +>的解集; (2)设不等式|21|()x f x x -+的解集为M ,若1,12M ⎡⎤⊆⎢⎥⎣⎦,求实数a 的取值范围. 【答案】(1)(0,1)(1,)⋃+∞;(2){1}.【分析】(1)将1a =代入,通过讨论x 的范围,去掉绝对值,解各个区间上的x 的范围,取并集即可; (2)问题转化为||1x a x -≤-+,求出x 的范围,得到关于a 的不等式组,解出即可. 【解析】(1)1a =时,111|1|(1)|1|x x x x x +>⇔+>-≠-111x x x >⎧⇔⎨+>-⎩或111x x x <⎧⎨+>-⎩,解之得:1x >或01x <<∴不等式的解集为(0,1)(1,)⋃+∞ (2)不等式的解集为M ,且1,12M ⎡⎤⊆⎢⎥⎣⎦,依题意不等式21x x a x -+-≤在1,12x ⎡⎤∈⎢⎥⎣⎦上恒成立,∴210x -≥,∴|21|()21||x f x x x x a x -+≤⇔-+-≤||111x a x x x a x ⇔-≤-+⇔-≤-≤-+112a a x ≤⎧⎪∴⎨+≤⎪⎩,当1a >时,M 为∅,显然不满足1,12M ⎡⎤⊆⎢⎥⎣⎦; 当1a ≤时,1,2a M +⎛⎤=-∞ ⎥⎝⎦1,12M ⎡⎤⊆⎢⎥⎣⎦,112a +∴≥即1a ≥,1a综上,a 的取值范围为{1}.【点睛】本题主要考查了解绝对值不等式问题,考查分类讨论思想,属于中档题. 27.(2020·福建省高三)已知函数()212f x x x =--+,()221g x x m x =-++. (1)求不等式()2f x <的解集;(2)若存在1x ,2x ∈R ,使得()()120f x g x +=,求m 的取值范围. 【答案】(1){}15x x -<<;(2)73,44⎡⎤-⎢⎥⎣⎦【分析】(1)根据分类讨论的方法,讨论2x -≤,122x -<<,12x ≥三种情况,分别求解,即可得出结果;(2)根据题意,先得到A B ⋂≠∅,其中集合(){},A y y f x x ==∈R ,(){},B y y g x x ==-∈R ,根据绝对值三角不等式,分别求出A ,B ,再由集合间的关系,即可求出结果. 【解析】(1)因为()2f x <,2,2122,x x x ≤-⎧⇔⎨-+++<⎩或12,22122,x x x ⎧-<<⎪⎨⎪-+--<⎩或1,22122x x x ⎧≥⎪⎨⎪---<⎩2,1,x x ≤-⎧⇔⎨>⎩或12,21,x x ⎧-<<⎪⎨⎪>-⎩或1,25x x ⎧≥⎪⎨⎪<⎩ x ⇔∈∅或112x -<<或15152x x ≤<⇔-<<, 所以()2f x <的解集为{}15x x -<<.(2)因为存在1x ,2x ∈R ,使得()()12f x g x =-成立,所以A B ⋂≠∅,其中集合(){},A y y f x x ==∈R ,(){},B y y g x x ==-∈R . 因为()1212222f x x x x x =--+=--+ 11222x x x =-+--+ ()150222x x ⎛⎫≥---+=- ⎪⎝⎭,当且仅当12x =时,“=”成立, 所以52A y y ⎧⎫=≥-⎨⎬⎩⎭.因为()()2221g x x m x -=--++()222121x m x m ≤---+=-+, 当且仅当()()22210x m x -+≤时,“=”成立, 所以{}21B y y m =≤-+ 所以5212m -+≥-,即5212m +≤,即552122m -≤+≤, 解得7344m -≤≤,所以m 的取值范围为73,44⎡⎤-⎢⎥⎣⎦. 【点睛】本题主要考查绝对值不等式的解法,以及绝对值三角不等式求函数的最值问题,属于常考题型. 28.(2020·青海省高三)设函数()21|1|f x x x =---. (1)求不等式()3f x <的解集;(2)若方程2()f x x ax =+有两个不等实数根,求a 的取值范围.【答案】(1)(,3)-∞;(2)()()03-∞⋃+∞,,. 【分析】(1)函数()f x 写成分段函数的形式,分类讨论不等式的解集取并集即可;(2)方程2()f x x ax=+有两个不等实数根等价于2211x x x a x-+---=有两个不等实数根,利用基本不等式求出当x <0时23x x--+的范围,然后数形结合求出a 的取值范围. 【解析】(1)321()21|1|1x x f x x x x x -≤⎧=---=⎨>⎩,,,∵()3f x <,∴3231x x -<⎧⎨≤⎩或31x x <⎧⎨>⎩,∴1x ≤或13x <<,即3x <,∴不等式的解集为(,3)-∞;(2)方程2()f x x ax =+,即221|1|x x x ax ---=+,显然0x =不是方程的根,故2211x x x a x-+---=,令[)()()211211()23001x x x x x g x x x x x ⎧-∈+∞-+---⎪==⎨--+∈-∞⋃⎪⎩,,,,,, 当x <0时,22333x x x x ⎛⎫--+=-++≥ ⎪-⎝⎭,当且仅当x = 作出()g x 的图象,如图所示:∵方程2()f x x ax =+有两个不等实数根,∴由图象可知()()03a ∈-∞⋃+∞,,. 【点睛】本题考查绝对值不等式的解法、根据方程的根的个数求参数的取值范围、分段函数的图象与性质,属于中档题.29.(2020·贵州省高三)设函数()16f x x x a =++--.(1)当2a =时,求不等式()0f x ≤的解集;(2)若()23f x a ≥-,求a 的取值范围.【答案】(1)5722x x ⎧⎫-≤≤⎨⎬⎩⎭;(2)4,3⎛⎤-∞- ⎥⎝⎦. 【分析】(1)分类讨论x 的值,解不等式()0f x ≤即可;(2)利用绝对值三角不等式得出()min f x ,再解不等式()min 23f x a ≥-,即可得出a 的取值范围.【解析】(1)当2a =时,()|1||2|6f x x x =++--当1x <-时,()(1)(2)625f x x x x =-+---=--当12x -≤≤时,()1(2)63f x x x =+---=-当2x >时,()12627f x x x x =++--=-则()25,13,1227,2x x f x x x x --<-⎧⎪=--≤≤⎨⎪->⎩()0f x ≤等价于1250x x <-⎧⎨--≤⎩或1230x -≤≤⎧⎨-≤⎩或2270x x >⎧⎨-≤⎩ 解得5722x -≤≤,则不等式()0f x ≤的解集为5722x x ⎧⎫-≤≤⎨⎬⎩⎭. (2)要使()23f x a ≥-,只需()min 23f x a ≥-即可.又()1616f x x x a a =++--≥+-,且当()()10x x a +-≤时等号成立.∴()min 1623f x a a =+-≥-,则123a a +≥+当230a +≤,即32a ≤-时,123a a +≥+恒成立 当230a +>,即32a >-时,()22123a a +≥+,得231080a a ++≤ 故423a -≤≤-,从而3423a -<≤- 综上,4,3a ⎛⎤∈-∞- ⎥⎝⎦. 【点睛】本题主要考查了分类讨论解绝对值不等式以及求绝对值不等式中参数的范围,属于中档题. 30.(2020·重庆高三)已知函数()22f x x x =+-的最小值为m .(1)求m 的值;(2)若实数a ,b 满足22a b m +=,求221112a b +++的最小值. 【答案】(1)2m =;(2)45【分析】(1)由绝对值三角不等式可得()()222f x x x x x ≥+--=+≥,即可得解;(2)由柯西不等式可得()222221112(11)12a b ab ⎛⎫++++≥+ ⎪++⎝⎭,结合222a b +=即可得解. 【解析】(1)由题意()()2222f x x x x x x x x =++-≥+--=+≥,当且仅当0x =时等号成立,故2m =;(2)由题意222a b +=, 由柯西不等式得()222221112(11124)a b a b ⎛⎫++++≥+⎪++⎭=⎝, 当且仅当232a =,212b =时,等号成立, ∴222211441235a b a b +≥=++++, 故221112a b +++的最小值为45. 【点睛】本题考查了绝对值三角不等式与柯西不等式的应用,属于中档题.31.(2020·广州市天河外国语学校高三月考)已知函数()123f x x x =--+.(1)求不等式()1f x <的解集;。
高三数学不等式选讲试题答案及解析
高三数学不等式选讲试题答案及解析1.不等式的解集是.【答案】【解析】由绝对值的几何意义,数轴上之间的距离为,结合图形,当落在数轴上外时.满足不等式,故答案为.【考点】不等式选讲.2.不等式的解集是【答案】【解析】原不等式可化为,解得.考点:绝对值不等式解法3.已知函数(Ⅰ)证明:;(Ⅱ)求不等式:的解集.【答案】(Ⅰ)祥见解析;(Ⅱ).【解析】(Ⅰ)通过对x的范围分类讨论将函数f(x)=|x-2|-|x-5|中的绝对值符号去掉,转化为分段函数,即可解决;(Ⅱ)结合(1)对x分x≤2,2<x<5与x≥5三种情况讨论解决即可.试题解析:(Ⅰ)当所以(Ⅱ)由(1)可知,当的解集为空集;当时,的解集为:;当时,的解集为:;综上,不等式的解集为:;【考点】绝对值不等式的解法.4.设函数=(1)证明:2;(2)若,求的取值范围.【答案】(2)【解析】本题第(1)问,可由绝对值不等式的几何意义得出,从而得出结论;对第(2)问,由去掉一个绝对值号,然后去掉另一个绝对值号,解出的取值范围.试题解析:(1)证明:由绝对值不等式的几何意义可知:,当且仅当时,取等号,所以.(2)因为,所以,解得:.【易错点】在应用均值不等式时,注意等号成立的条件:一正二定三相等.【考点】本小题主要考查不等式的证明、绝对值不等式的几何意义、绝对值不等式的解法、求参数范围等不等式知识,熟练基础知识是解答好本类题目的关键.5.(5分)(2011•陕西)(请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)若不等式|x+1|+|x﹣2|≥a对任意x∈R恒成立,则a的取值范围是.B.(几何证明选做题)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE= .C.(坐标系与参数方程选做题)直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建极坐标系,设点A,B分别在曲线C1:(θ为参数)和曲线C2:p=1上,则|AB|的最小值为.【答案】(﹣∞,3] 2 1【解析】A.首先分析题目已知不等式|x+1|+|x﹣2|≥a恒成立,求a的取值范围,即需要a小于等于|x+1|+|x﹣2|的最小值即可.对于求|x+1|+|x﹣2|的最小值,可以分析它几何意义:在数轴上点x 到点﹣1的距离加上点x到点2的距离.分析得当x在﹣1和2之间的时候,取最小值,即可得到答案;B.先证明Rt△ABE∽Rt△ADC,然后根据相似建立等式关系,求出所求即可;C.先根据ρ2=x2+y2,sin2+cos2θ=1将极坐标方程和参数方程化成直角坐标方程,根据当两点连线经过两圆心时|AB|的最小,从而最小值为两圆心距离减去两半径.解:A.已知不等式|x+1|+|x﹣2|≥a恒成立,即需要a小于等于|x+1|+|x﹣2|的最小值即可.故设函数y=|x+1|+|x﹣2|.设﹣1、2、x在数轴上所对应的点分别是A、B、P.则函数y=|x+1|+|x﹣2|的含义是P到A的距离与P到B的距离的和.可以分析到当P在A和B的中间的时候,距离和为线段AB的长度,此时最小.即:y=|x+1|+|x﹣2|=|PA|+|PB|≥|AB|=3.即|x+1|+|x﹣2|的最小值为3.即:k≤3.故答案为:(﹣∞,3].B.∵∠B=∠D,AE⊥BC,∠ACD=90°∴Rt△ABE∽Rt△ADC而AB=6,AC=4,AD=12,根据AD•AE=AB•AC解得:AE=2,故答案为:2C.消去参数θ得,(x﹣3)2+y2=1而p=1,则直角坐标方程为x2+y2=1,点A在圆(x﹣3)2+y2=1上,点B在圆x2+y2=1上则|AB|的最小值为1.故答案为:1点评:A题主要考查不等式恒成立的问题,其中涉及到绝对值不等式求最值的问题,对于y=|x﹣a|+|x﹣b|类型的函数可以用分析几何意义的方法求最值.本题还考查了三角形相似和圆的参数方程等有关知识,同时考查了转化与划归的思想,属于基础题.6.(2012•广东)不等式|x+2|﹣|x|≤1的解集为_________.【答案】【解析】∵|x+2|﹣|x|=∴x≥0时,不等式|x+2|﹣|x|≤1无解;当﹣2<x<0时,由2x+2≤1解得x≤,即有﹣2<x≤;当x≤﹣2,不等式|x+2|﹣|x|≤1恒成立,综上知不等式|x+2|﹣|x|≤1的解集为故答案为7.设函数,若,则实数的取值范围是()A.B.C.D.【答案】C【解析】由的图象,可知在处取得最小值,∵, ,即,或.∴实数的取值范围为,选C.8.已知不等式的解集与不等式的解集相同,则的值为()A.B.C.D.【答案】C【解析】解不等式得或,所以的两个根为和,由根与系数的关系知.故选.【考点】绝对值不等式的解法,一元二次不等式的解法.9.设函数,其中。
高考第23题 不等式选讲
(2)求不等式|f(x)|>1 的解集. 解:由 f(x)的函数表达式及图象可知,
当 f(x)=1 时,可得 x=1 或 x=3; 1 当 f(x)=-1 时,可得 x= 或 x=5. 3 故 f(x)>1 的解集为{x|1<x<3}, f(x)<-1
1 的解集为xx<3或x>5 .
2 由题设得 (a+1)2>6,故 a>2. 3 所以 a 的取值范围为(2,+∞).
题型一
含绝对值的不等式解法及应用
[学规范] (1)当 a=1 时,不等式 f(x)≥g(x)等价于 x2-x+|x+1|+|x-1|-4≤0. ①……………………1 分
当 x<-1 ,①式化为 x2-3x-4≤0❶,无解;………2 分 当-1≤x≤1 时,①式化为 x2-x-2≤0❷, 从而-1≤x≤1;3 分 当 x>1 时,①式化为 x2+x-4≤0❸, [防失误]
(2)若不等式 f(x)≥x2-x+m 的解集非空,求 m 的取值范围.
解:由 f(x)≥x2-x+m,得 m≤|x+1|-|x-2|-x2+x. 而 |x+ 1|- |x - 2|- x +x≤|x|+ 1+ |x|- 2- x 5 5 + ≤ , 4 4 3 5 2 且当 x= 时,|x+1|-|x-2|-x +x= . 2 4 故m
所以|f(x)|>1 的解集为
1 xx< 或1<x<3或x>5 3 .
3.(2015· 全国卷Ⅰ)已知函数 f(x)=|x+1|-2|x-a|,a>0. (1)当 a=1 时,求不等式 f(x)>1 的解集; (2)若 f(x)的图象与 x 轴围成的三角形面积大于 6,求 a 的 取值范围. 解:(1)当 a=1 时,f(x)>1 化为|x+1|-2|x-1|-1>0.
高三数学不等式选讲试题
高三数学不等式选讲试题1.设函数(m>0)(1)证明:f(x)≥4;(2)若f(2)>5,求m的取值范围.【答案】(1)见解析;(2)(0,1)∪(,+∞)【解析】(1)利用绝对值基本性质:|x-a|+|x-b|≥|a-b|及基本不等式可得;(2)分类写出f(2)关于m的解析式,解相关分式不等式即可试题解析:(Ⅰ)由m>0,有f(x)=|x-|+|x+m|≥|-(x-)+x+m|=+m≥4,当且仅当=m,即m=2时取“=”.所以f(x)≥4. 4分(Ⅱ)f(2)=|2-|+|2+m|.当<2,即m>2时,f(2)=m-+4,由f(2)>5,得m>.当≥2,即0<m≤2时,f(2)=+m,由f(2)>5,0<m<1.综上,m的取值范围是(0,1)∪(,+∞). 10分考点:绝对值不等式2.设,且满足:,,求证:.【答案】详见解析【解析】根据题中所给条件:,,结合柯西不等式可得出:,由此可推出:,即可得出三者的关系:,问题即可求解.,,,又,,. 10分【考点】不等式的证明3.已知关于x的不等式(其中),若不等式有解,则实数a的取值范围是()A.B.C.D.【答案】C【解析】∵设故,即的最小值为,所以有解,则解得,即的取值范围是,选C.4.对一切实数x,不等式x2+a|x|+1≥0恒成立,则实数a的取值范围是()A.[-2,+∞)B.(-∞,-2)C.[-2,2]D.[0,+∞)【答案】A【解析】由题意a|x|≥-x2-1,∴a≥=(x≠0).∵≤-2,∴a≥-2.当x=0时,a∈R,综上,a≥-2,选A5.设函数,其中。
(1)当时,求不等式的解集;(2)若不等式的解集为,求a的值。
【答案】(1)或(2)【解析】(1)当时,可化为。
由此可得或。
故不等式的解集为或。
(2)由得此不等式化为不等式组或即或因为,所以不等式组的解集为由题设可得= ,故6.不等式x2﹣4x+a<0存在小于1的实数解,则实数a的取值范围是()A.(﹣∞,4)B.(﹣∞,4]C.(﹣∞,3)D.(﹣∞,3]【答案】C【解析】不等式x2﹣4x+a<0可化为:x2﹣4x<﹣a,设y=x2﹣4x,y=﹣a,分别画出这两个函数的图象,如图,由图可知,不等式x2﹣4x+a<0存在小于1的实数解,则有:﹣a>﹣3.故a<3.故选C.7.已知,,,.求证.【答案】详见解析【解析】利用分析法或作差法证明不等式. 即,而显然成立,【证明】因为,,所以,所以要证,即证.即证, 5分即证,而显然成立,故. 10分【考点】不等式相关知识8.若不等式的解集为,则的取值范围为________;【答案】【解析】令,则;若不等式的解集为,则的取值范围为.【考点】绝对值不等式的解法、恒成立问题.9.已知,且,求的最小值.【答案】1.【解析】观察已知条件与所求式子,考虑到柯西不等式,可先将条件化为,此时,由柯西不等式得,即,当且仅当,即,或时,等号成立,从而可得的最小值为1.试题解析:, ,,,当且仅当,或时的最小值是1.【考点】柯西不等式.10.若a,b,c∈R,a>b,则下列不等式成立的是(填上正确的序号).①<;②a2>b2;③>;④a|c|>b|c|.【答案】③【解析】①,当a是正数,b是负数时,不等式<不成立,②当a=-1,b=-2时,a>b成立,a2>b2不成立;当a=1,b=-2时,a>b成立,a2>b2也不成立,当a,b是负数时,不等式a2>b2不成立.③在a>b两边同时除以c2+1,不等号的方向不变,故③正确,④当c=0时,不等式a|c|>b|c|不成立.综上可知③正确.11.已知-1<a+b<3,且2<a-b<4,求2a+3b的取值范围.【答案】-<2a+3b<【解析】设2a+3b=x(a+b)+y(a-b)=(x+y)a+(x-y)b.则解得所以2a+3b=(a+b)-(a-b).因为-1<a+b<3,2<a-b<4,所以-<(a+b)<,-2<-(a-b)<-1.所以--2<2a+3b<-1,即-<2a+3b<.12.设x,y∈R,且x+y=5,则3x+3y的最小值为()A.10B.6C.4D.18【答案】D【解析】选D.3x+3y≥2=2=2=18,当且仅当x=y=2.5时,等号成立.13.已知等比数列{an}的各项均为正数,公比q≠1,设P=,Q=,则P与Q的大小关系是()A.P>Q B.P<QC.P=Q D.无法确定【答案】A【解析】选A.由等比知识,得Q==,而P=,且a3>0,a9>0,q≠1,a 3≠a9,所以>,即P>Q.14.若a,b,c为正数,且a+b+c=1,则++的最小值为()A.9B.8C.3D.【答案】A【解析】选A.因为a,b,c为正数,且a+b+c=1,所以a+b+c≥3,所以0<abc≤,≥27,所以++≥3≥3=9.当且仅当a=b=c=时等号成立.15.已知x+2y+3z=6,则2x+4y+8z的最小值为()A.3B.2C.12D.12【答案】C【解析】选C.因为2x>0,4y>0,8z>0,所以2x+4y+8z=2x+22y+23z≥3=3=3×4=12.当且仅当2x=22y=23z,即x=2y=3z,即x=2,y=1,z=时取等号.16.当0≤x≤时,函数y=x2(1-5x)的最大值为()A.B.C.D.无最大值【答案】C【解析】选C.y=x2(1-5x)=x2=x·x·.因为0≤x≤,所以-2x≥0,所以y≤=,=.当且仅当x=-2x,即x=时,ymax17.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是()A.|a+b|+|a-b|>2B.|a+b|+|a-b|<2C.|a+b|+|a-b|=2D.不能比较大小【答案】B【解析】选B.当(a+b)(a-b)≥0时,|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2,当(a+b)(a-b)<0时,|a+b|+|a-b|=|(a+b)-(a-b)|=2|b|<2.18.若关于x的不等式|x-2|+|x+3|<a的解集为,则实数a的取值范围为()A.(-∞,1]B.(-∞,1)C.(-∞,5]D.(-∞,5)【答案】C【解析】选C.因为|x-2|+|x+3|≥|x-2-x-3|=5,又关于x的不等式|x-2|+|x+3|<a的解集为,所以a≤5.19.已知函数f(x)=x2-x+13,|x-a|<1.求证:|f(x)-f(a)|<2(|a|+1).【答案】见解析【解析】证明:|f(x)-f(a)|=|x2-x+13-(a2-a+13)|=|x2-a2-x+a|=|(x-a)(x+a-1)|=|x-a||x+a-1|<|x+a-1|=|x-a+2a-1|≤|x-a|+|2a-1|<1+|2a|+1=2(|a|+1),所以|f(x)-f(a)|<2(|a|+1).20.若关于实数x的不等式|x-5|+|x+3|<a无解,求实数a的取值范围.【答案】(-∞,8]【解析】因为不等式|x-5|+|x+3|的最小值为8,所以要使不等式|x-5|+|x+3|<a无解,则a≤8,即实数a的取值范围是(-∞,8].21.已知x,y,z∈R+,且x+y+z=1(1)若2x2+3y2+6z2=1,求x,y,z的值.(2)若2x2+3y2+tz2≥1恒成立,求正数t的取值范围.【答案】(1)x=,y=,z=(2)t≥6【解析】(1)∵(2x2+3y2+6z2)()≥(x+y+z)2=1,当且仅当时取“=”.∴2x=3y=6z,又∵x+y+z=1,∴x=,y=,z=.=.(2)∵(2x2+3y2+tz2)≥(x+y+z)2=1,∴(2x2+3y2+tz2)min∵2x2+3y2+tz2≥1恒成立,∴≥1.∴t≥6.22.若关于x的不等式的解集为(-1,4),则实数a的值为_________.【答案】【解析】由已知得,,,当时,不等式解集为,故,无解;当时,不等式解集为,故,解得.【考点】绝对值不等式解法.23.设a,b,c均为正数,证明:++≥a+b+c.【答案】见解析【解析】证明:方法一:+++a+b+c=(+b)+(+c)+(+a)≥2a+2b+2c,当且仅当a=b=c时等号成立.即得++≥a+b+c.方法二:利用柯西不等式的一般形式得|a1b1+a2b2+a3b3|≤.取a1=,a2=,a3=,b1=,b2=,b3=代入即证.24.已知正数x,y,z满足5x+4y+3z=10.(1)求证:++≥5.(2)求+的最小值.【答案】(1)见解析 (2) 18【解析】(1)根据柯西不等式,得[(4y+3z)+(3z+5x)+(5x+4y)](++)≥(5x+4y+3z)2,当且仅当==,即x=,y=,z=时取等号.因为5x+4y+3z=10,所以++≥=5.(2)根据平均值不等式,得+≥2=2·,当且仅当x2=y2+z2时,等号成立.根据柯西不等式,得(x2+y2+z2)(52+42+32)≥(5x+4y+3z)2=100,即x2+y2+z2≥2,当且仅当==时,等号成立.综上,+≥2·32=18.当且仅当x=1,y=,z=时,等号成立.所以+的最小值为18.25.设n∈N*,求证:++…+<.【答案】见解析【解析】证明:由=<=(-)可知<(1-),<(-),…,<(-),从而得++…+<(1-)<.26.设0< a,b,c <1,求证:(1-a)b,(1-b)c,(1-c)a,不可能同时大于.【答案】见解析【解析】证明:假设(1-a)b >,(1-b)c >,(1-c)a>,则三式相乘:(1-a)b·(1-b)c·(1-c)a>①.又∵0< a,b,c <1,∴0<(1-a)a≤[]2=.同理:(1-b)b≤,(1-c)c≤,以上三式相乘:(1-a)a·(1-b)b·(1-c)c≤,与①矛盾,∴(1-a)b,(1-b)c,(1-c)a不可能同时大于.27.设函数f(x)=|x+1|+|x-a|(a>0).若不等式f(x)≥5的解集为(-∞,-2]∪(3,+∞),则a的值为________.【答案】a=2【解析】由题意知,f(-2)=f(3)=5,即1+|2+a|=4+|3-a|=5,解得a=2.28.已知函数f(x)=|2x-a|+a.若不等式f(x)≤6的解集为{x|-2≤x≤3},则实数a的值为________.【答案】a=1【解析】由|2x-a|+a≤6得,|2x-a|≤6-a,∴a-6≤2x-a≤6-a,即a-3≤x≤3,∴a-3=-2,∴a=1.29.若对任意的a∈R,不等式|x|+|x-1|≥|1+a|-|1-a|恒成立,则实数x的取值范围是________.【答案】x≤-或x≥【解析】由|1+a|-|1-a|≤2得|x|+|x-1|≥2,当x<0时,-x+1-x≥2,x≤-;当0≤x≤1时,x+1-x≥2,无解;当x>1时,x+x-1≥2,x≥.综上,x≤-或x≥30.已知a,b,m,n均为正数,且a+b=1,mn=2,则(am+bn)(bm+an)的最小值为________.【答案】2【解析】由柯西不等式(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时“=”成立,得(am+bn)(bm+an)≥=mn(a+b)2=2.31.若正数x,y满足x+3y=5xy,则3x+4y的最小值是().A.B.C.5D.6【答案】C【解析】∵x>0,y>0,由x+3y=5xy,得=5.∴5(3x+4y)=(3x+4y) =13+≥13+2=25.因此3x+4y≥5,当且仅当x=2y时等号成立.∴当x=1,y=时,3x+4y的最小值为5.32.(Ⅰ)(坐标系与参数方程)直线与圆相交的弦长为.(Ⅱ)(不等式选讲)设函数>1),且的最小值为,若,则的取值范围【答案】(Ⅱ)【解析】解:将直线2ρcosθ=1化为普通方程为:2x=1.∵ρ=2cosθ,∴ρ2=2ρcosθ,化为普通方程为:x2+y2=2x,即(x-1)2+y2=1.∴直线与圆相交的弦长=解:∵函数f(x)=|x-4|+|x-a|≥|x-4+a-x|=|a-4|,∵f(x)的最小值为3,∴|a-4|=3,∴a=1或7,∵a>1,∴a=7,∴f(x)=|x-4|+|x-7|≤5,①若x≤4,f(x)=4-x+7-x=11-2x≤5,解得x≥3,故3≤x≤4;②若4<x<7,f(x)=x-4+7-x=3,恒成立,故4<x<7;③若x≥7,f(x)=x-4+x-7=2x-11≤5,解得x≤8,故7≤x≤8;综上3≤x≤8,故答案为:3≤x≤8.【考点】坐标系与参数方程,不等式选讲点评:主要是考查了不等式选讲以及坐标系与参数方程的运用,属于基础题。
高考数学压轴专题新备战高考《不等式选讲》经典测试题及答案解析
【高中数学】数学《不等式选讲》试卷含答案一、141.不等式842x x --->的解集为( ) A .{}|4x x ≤ B .{|5}x x <C .{|48}x x <≤D .{|45}x x <<【答案】B 【解析】 【分析】分三种情况讨论:4x ≤,48x <<以及8x ≥,去绝对值,解出各段不等式,即可得出所求不等式的解集. 【详解】当4x ≤时,()()848442x x x x ---=-+-=>成立,此时4x ≤; 当48x <<时,()()84841222x x x x x ---=---=->,解得5x <,此时45x <<;当8x ≥时,()()848442x x x x ---=---=-<,原不等式不成立. 综上所述,不等式842x x --->的解集为{}5x x <,故选B. 【点睛】本题考查绝对值不等式的解法,常用零点分段法,利用取绝对值进行分段讨论,进而求解不等式,也可以采用绝对值的几何意义来进行求解,考查分类讨论数学思想,属于中等题.2.已知点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,点(,)M a b 为平面上一点,O 为坐标原点,则当OM 取最小值时,椭圆的离心率为( )A B .13C .2D 【答案】D 【解析】 【分析】点(3,1)P 在椭圆22221(0)x y a b a b +=>>上,可得22911a b +=,(,)M a b 为平面上一点,||OM =a ,b 关系,代入即可.【详解】解:点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,可得22911a b +=,(,)M a b 为平面上一点,||OM =所以222222291||()()(31)4OM a b a b a b=+=+++=…,当且仅当223a b =时,取等号, 222213b e a =-=,6e =. 故选D . 【点睛】考查椭圆的性质,柯西不等式的应用,求椭圆的离心率,中档题.3.已知,,则使不等式一定成立的条件是A .B .C .D .【答案】D 【解析】因为若,则,已知不等式不成立,所以,应选答案D 。
2018年高考数学提分专练:第23题 不等式选讲(选考题)
2018年高考数学提分专练:第23题不等式选讲(选考题)一、解答题(共12题;共120分)1.(10分)已知函数f(x)=|x−2|+|2x+1|.(1)(5分)解不等式f(x)>5;(2)(5分)若关于x的方程1f(x)−4=a的解集为空集,求实数a的取值范围.2.(10分)选修4-5:不等式选讲已知函数f(x)=|x+3|−|m−x|(m∈R).(1)(5分)当m=2时,求不等式f(x)≥3的解集;(2)(5分)若不等式f(x)≤6对任意实数x恒成立,求m的取值范围.3.(10分)已知函数f(x)=|x−2|.(1)(5分)求不等式f(x)+f(2+x)≤4的解集;(2)(5分)若g(x)=f(x)−f(2+x)的最大值为m,对任意不想等的正实数a,b,证明:af(b)+bf(a)≥m|a−b|.4.(10分)已知函数f(x)=k−|x−4|,x∈R,且f(x+4)≥0的解集为[−1,1].(1)(5分)求k的值;(2)(5分)若a,b,c是正实数,且1ka+12kb+13kc=1,求证:19a+29b+39c≥1. 5.(10分)已知f(x)=|x+a|(a∈R).(1)(5分)若f(x)≥|2x+3|的解集为[−3,−1],求a的值;(2)(5分)若对任意x∈R,不等式f(x)+|x−a|≥a2−2a恒成立,求实数a的取值范围.6.(10分)设函数f(x)=|x−1|,g(x)=|x−2|.(1)(5分)解不等式f(x)+g(x)<2;(2)(5分)对于实数x,y,若f(x)≤1,g(y)≤1,求证:|x−2y+1|≤5.7.(10分)选修4-5:不等式选讲已知函数f(x)=|2x−1|.(1)(5分)若不等式f(x+12)≤2m+1(m>0)的解集为[−2,2],求实数m的值;(2)(5分)若不等式f(x)≤2y+a2y+|2x+3|,对任意的实数x,y∈R恒成立,求实数a的最小值.8.(10分)选修4-5:不等式选讲已知f(x)=|x−1|+|x+3|.(1)(5分)求不等式f(x)≤4的解集M;(2)(5分)若a,b∈M,证明:(a2+2a−3)(b2+2b−3)≥0.9.(10分)选修4-5:不等式选讲已知函数f(x)=|2x+1|.(1)(5分)求不等式f(x)≤10−|x−3|的解集;(2)(5分)若正数m,n满足m+2n=mn,求证:f(m)+f(−2n)≥16.10.(10分)已知函数f(x)=|x+1|+|m﹣x|(其中m∈R).(Ⅰ)当m=3时,求不等式f(x)≥6的解集;(Ⅱ)若不等式f(x)≥8对任意实数x恒成立,求m的取值范围.11.(10分)已知函数f(x)=|x|+|x+1|.(1)(5分)解关于x的不等式f(x)>3;(2)(5分)若∀x∈R,使得m2+3m+2f(x)≥0成立,试求实数m的取值范围.12.(10分)选修4﹣5:不等式选讲已知函数f(x)=|x+2|+|2x﹣4|(1)(5分)求f(x)<6的解集;(2)(5分)若关于x的不等式f(x)≥m2﹣3m的解集是R,求m的取值范围.二、真题演练(共3题;共30分)13.(10分)已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)(5分)当a=1时,求不等式f(x)≥g(x)的解集;(2)(5分)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.14.(10分)已知a>0,b>0,a3+b3=2,证明:(Ⅰ)(a+b)(a5+b5)≥4;(Ⅱ)a+b≤2.15.(10分)已知函数f(x)=|x+1|﹣|x﹣2|.(Ⅰ)求不等式f(x)≥1的解集;(Ⅱ)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.答案解析部分1.【答案】(1)解:解不等式|x﹣2|+|2x+1|>5,x≥2时,x﹣2+2x+1>5,解得:x>2;﹣12<x<2时,2﹣x+2x+1>5,无解,x≤﹣12时,2﹣x﹣2x﹣1>5,解得:x<﹣43,故不等式的解集是(﹣∞,﹣43)∪(2,+∞)(2)解:f(x)=|x﹣2|+|2x+1|={3x+1,x≥2x+3,−12<x<2−3x+1,x≤12,故f(x)的最小值是52,所以函数f(x)的值域为[ 52,+∞),从而f(x)﹣4的取值范围是[﹣32,+∞),进而1f(x)−4的取值范围是(﹣∞,﹣23]∪(0,+∞).根据已知关于x的方程1f(x)−4=a的解集为空集,所以实数a的取值范围是(﹣23,0]【解析】【分析】(Ⅰ)根据题目中所给的条件的特点,分类讨论求得原不等式解集.|x-a|+|x-b|≥c(c >0)和|x-a|+|x-b|≤c(c>0)型不等式的解法:方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.(Ⅱ)由分段函数可得f(x)的单调性,得函数f(x)的值域.再根据关于x的方程的解集为空集,求得实数a的取值范围.2.【答案】(1)解:当m=2时,f(x)≥3,即|x+3|−|2−x|≥3,①当x<−3时,得−5≥3,所以x∈∅;②当−3≤x≤2时,得x+3+x−2≥3,即x≥1,所以1≤x≤2;③当x>2时,得5≥3,成立,所以x>2.故不等式f(x)≥3的解集为{x|x≥1}(2)解:因为|x+3|−|m−x|≤|x+3+m−x|=|m+3|,由题意得|m+3|≤6,则−6≤m+3≤6,解得−9≤m≤3,故 m 的取值范围是 [−9,3]【解析】【分析】(1)当m=2时,f (x )≥3,即 | x + 3 | − | 2 − x | ≥ 3,通过讨论x 的范围,从而求得不等式f (x )≥3的解集;(2)由绝对值不等式的性质求得f (x )的最大值为|m+3|,由题意得|m+3|≤6,由此求得m 的范围.3.【答案】(1)解:不等式 f(x)+f(2+x)≤4 ,即 |x −2|+|x|≤4 ,此不等式等价于 {x ≤0,2−x −x ≤4, 或 {0<x ≤2,2−x +x ≤4, 或 {x >2,x −2+x ≤4.解得 −1≤x ≤0 ,或 0<x ≤2 ,或 2<x ≤3 .所以不等式 f(x)+f(2+x)≤4 的解集为 {x|−1≤x ≤3} .(2)解: f(x)=f(x)−f(2+x)=|x −2|−|x| ,因为 |x −2|−|x|≤|(x −2)−x|=2 ,当且仅当 x ≤0 时,取等号,所以 g(x)≤2 ,即 m =2 ,因为 a,b 为正实数,所以 af(b)+bf(a)=a|b −2|+b|a −2|=|ab −2a|+|ab −2b|≥|(ab −2a)−(ab −2b)|=2|a −b|=m|a −b| 当且仅当 (b −2)(a −2)≤0 时,取等号.即 af(b)+bf(a)≥m|(a −b)| .【解析】【分析】(1) 根据题意去绝对值符号得到关于x 的不等式组,解出x 的取值范围即可。
2023广东高考数学不等式选择题,2篇
2023广东高考数学不等式选择题,2篇(完整文档)广东高考数学不等式选择题11.不等式ax2+bx+20的解集是,则a+b的值是()A.10B.-10C.14D.-14答案:D命题立意:本题考查一元二次不等式与二次方程的关系,难度中等.解题思路:由题意知ax2+bx+2=0的两个根为-,,-+=-,__=,a=-12,b=-2,a+b=-14.2.函数y=ax+3-2(a0,a≠1)的图象恒过定点A,若点A在直线+=-1上,且m0,n0,则3m+n的最小值为()A.13B.16C.11+6D.28答案:B解题思路:函数y=ax+3-2的图象恒过A(-3,-1),由点A在直线+=-1上可得,+=-1,即+=1,故3m+n=(3m+n)×=10+3.因为m0,n0,所以+≥2=2,故3m+n=10+3≥10+3×2=16,故选B.3.已知变量x,y满足约束条件则z=的取值范围为()A.[1,2]B.C. D.答案:B命题立意:本题是线性规划问题,首先准确作出可行域,然后明确目标函数的几何意义是可行域内的点与点(-1,-1)连线的斜率,最后通过计算求出z的取值范围.解题思路:由已知约束条件,作出可行域如图中阴影部分所示,其中A(1,1),B(1,2),目标函数z=的几何意义为可行域内的点与点P(-1,-1)连线的斜率,kPA=1,kPB=,故选B.4.设x,y满足约束条件若目标函数z=ax+by(a0,b0)的最大值为12,则+的最小值为()A. B.C. D.4答案:B解题思路:画出不等式组表示的可行域,如图所示.当直线ax+by=z过直线__y+2=0与直线3__y-6=0的交点(4,6)时,取得最大值12,即4a+6b=12,即2a+3b=6.而+==+≥+2=,故选B.5.若实数x,y满足则z=3x+2y的最小值为()A.0B.1C.D.9答案:B解题思路:可行域是由点,(0,1),(0,0)为边界的三角形区域,z=3x+2y的最小值在m=x+2y取得最小值时取得,m=x+2y在经过(0,0)时取得最小值,即z=3x+2y最小值为30=1,故选B.6.已知函数f(x)=则不等式f(a2-4)f(3a)的解集为()A.(2,6)B.(-1,4)C.(1,4)D.(-3,5)答案:B命题立意:本题以分段函数为载体,考查了函数的单调性以及不等式等知识,考查了数形结合的思想.解题时首先作出函数f(x)的图象,根据图象得到函数的单调性,进而得到不等式的解集.解题思路:作出函数f(x)的图象,如图所示,则函数f(x)在R 上是单调递减的.由f(a2-4)f(3a),可得a2-43a,整理得a2-3a-40,即(a+1)(a-4)0,解得-17.(呼和浩特第一次统考)已知正项等比数列{an}满足S8=17S4,若存在两项am,an使得=4a1,则+的最小值为()A. B.C. D.答案:C命题立意:本题考查等比数列的通项公式及前n 项和公式与均值不等式的综合应用,难度中等.解题思路:由已知S8=17S4=1+q4=17,又q0,解得q=2.因为各项均为正项,因此==a1=4a1,整理得2m+n-2=16m+n=6.由均值不等式得+==≥=,当且仅当m=n=3时,取得最小值.8.定义区间(a,b),[a,b),(a,b],[a,b]的长度均为d=b-a,多个区间并集的长度为各区间长度之和,例如,(1,2)[3,5)的长度d=(2-1)+(5-3)=3.用[x]表示不超过x的最大整数,记{x}=__[x],其中xR.设f(x)=[x]·{x},g(x)=__1,当0≤x≤k时,不等式f(x)A.6B.7C.8D.9答案:B命题立意:本题考查函数与不等式知识以及对已知信息的理解和迁移能力,难度中等.解题思路:f(x)=[x]·{x}=[x]·(__[x])=[x]__[x]2,由f(x)1,不合题意;当x[1,2)时,[x]=1,不等式为00,无解,不合题意;当x≥2时,[x]1,所以不等式([x]-1)x[x]2-1等价于x[x]+1,此时恒成立,所以此时不等式的解为2≤x≤k.因为不等式f(x)9.设变量x,y满足约束条件则目标函数z=2x+y的最小值为()A.1B.2C.3D.8答案:C解题思路:作出约束条件的可行域,知(1,1)为所求最优解,zmin=2×1+1=3.10.设曲线x2-y2=0的两条渐近线与抛物线y2=-4x的准线围成的三角形区域(包含边界)为D,P(x,y)为D内的一个动点,则目标函数z=__2y+5的最大值为()A.4B.5C.8D.12答案:C解题思路:由x2-y2=0得曲线为y=±x.抛物线的准线为x=1,所以它们围成的三角形区域为三角形BOC.由z=__2y+5得y=x+(5-z),作直线y=x,*移直线y=x,当直线y=x+(5-z)经过点C时,直线y=x+(5-z)的截距最小,此时z最大.由得x=1,y=-1,即C(1,-1),代入z=__2y+5得z=8.广东高考数学不等式选择题21.函数或方程或不等式的题目,先直接思考后建立三者的联系。
专题23 不等式选讲-备战2022年高考数学(理)母题题源解密(全国乙卷)(解析版)
专题23 不等式选讲【母题来源】2021年高考乙卷【母题题文】已知函数()3f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.【答案】(1)(][),42,-∞-+∞.(2)3,2⎛⎫-+∞ ⎪⎝⎭.【试题解析】(1)当1a =时,()13f x x x =-++,13x x -++表示数轴上的点到1和3-的距离之和, 则()6f x ≥表示数轴上的点到1和3-的距离之和不小于6,当4x =-或2x =时所对应的数轴上的点到13-,所对应的点距离之和等于6, ∴数轴上到13-,所对应的点距离之和等于大于等于6得到所对应的坐标的范围是4x ≤-或2x ≥, 所以()6f x ≥的解集为(][),42,-∞-+∞.(2)依题意()f x a >-,即3a x a x -+>-+恒成立,333x a x x a a x -++-+=≥++,当且仅当()()30a x x -+≥时取等号,()3min f x a ∴=+, 故3a a +>-,所以3a a +>-或3a a +<, 解得32a >-.所以a的取值范围是3,2⎛⎫-+∞ ⎪⎝⎭.【点睛】解绝对值不等式的方法有零点分段法、几何意义法.解含有两个绝对值,且其中的x的系数相等时,可以考虑利用数轴上绝对值的几何意义求解;利用绝对值三角不等式求最值也是常见的问题,注意表述取等号的条件.【命题意图】1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:(1)a b a b+≤+.(2)a b a c c b-≤-+-.(3)会利用绝对值的几何意义求解以下类型的不等式:; ;ax b c ax b c x a x b c+≤+≥-+-≥.2.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.3.主要考查逻辑推理能力、运算求解能力,考查分类讨论、数形结合思想方法,考查逻辑推理、数学运算等核心素养.【命题方向】从近三年高考情况来看,此类知识点以解答题的形式出现,主要考查绝对值不等式的解法、不等式的证明、求最值问题等.【得分要点】(一)解绝对值不等式的常用方法有:(1)公式法:对于形如|f(x)|>g(x)或|f(x)|<g(x),利用公式|x|<a⇔−a<x<a(a>0)和|x|>a⇔x>a或x<−a(a>0)直接求解不等式;(2)平方法:对于形如|f(x)|≥|g(x)|,利用不等式两边平方的技巧,去掉绝对值,需保证不等式两边同正或同负,即|f(x)|≥|g(x)|⇔f(x)2≥g2(x);(3)零点分段法:对于形如|f(x)|±|g(x)|≥a,|f(x)|±|g(x)|≤a,利用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解;(4)几何法:对于形如|x±a|±|x±b|≤c,|x±a|±|x±b|≥c,利用绝对值三角不等式的性质求解,即①定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.②定理2:如果a ,b ,c 是实数,那么|a−c|≤|a−b|+|b−c|,当且仅当(a−b )(b−c )≥0时,等号成立.③推论1:||a|−|b||≤|a+b|.④推论2:||a|−|b||≤|a−b|.(5)图象法:对于形如|f (x )|+|g (x )|≥a 可构造y=|f (x )|+|g (x )|−a 或y=|f (x )|+|g (x )|与y=a ,在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解或通过移项构造一个函数.(二)含绝对值不等式的恒成立问题的常见类型及其解法:(1)分享参数法运用“max min ()(),()()f x a f x a f x a f x a ≤⇔≤≥⇔≥”可解决恒成立中的参数范围问题.求最值的思路:利用基本不等式和不等式的相关性质解决;将函数解析式用分段函数形式表示,作出函数图象,求得最值;利用性质“||||||||||||a b a b a b -≤±≤+”求最值.(2)更换主元法不少含参不等式恒成立问题,若直接从主元入手非常困难或不可能解决时,可转换思维角度,将主元与参数互换,常可得到简捷的解法.(3)数形结合法在研究曲线交点的恒成立问题时,若能数形结合,揭示问题所蕴含的几何背景,发挥形象思维和抽象思维各自的优势,可直接解决问题.(三)不等式的证明(1)比较法证明不等式最常用的是差值比较法,其基本步骤是:作差—变形—判断差的符号—下结论.其中“变形”是证明的关键,一般通过因式分解或配方将差式变形为几个因式的积或配成几个代数式平方和的形式,当差式是二次三项式时,有时也可用判别式来判断差值的符号.个别题目也可用柯西不等式来证明.(2)基本不等式:如果a ,b>0,那么2a b +≥a=b 时,等号成立.用语言可以表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.(3)算术平均—几何平均定理(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均数不小于它们的几何平均数,即123n n n a a a a n +++≥,当且仅当a 1=a 2=…=a n 时,等号成立.1.(2021·全国高三其他模拟(理))已知函数()()1a x a x x f =-++∈R .(1)当6a =时,解不等式()9f x ≥;(2)若()220f x a -≥对任意x ∈R 成立,求实数a 的最大值. 【答案】(1)(][),27,-∞-+∞;(2)1. 【分析】 (1)根据题意,讨论去绝对值即可求解;(2)由题意得,()2min 2f x a ≥,结合绝对值的三角不等式即可求出()min f x ,进而可得实数a 的最大值. 【详解】(1)当6a =时,()6161f x x x x x =-++=-++,此时不等式()9f x ≥为619x x -++≥,∴6,619x x x >⎧⎨-++≥⎩或16,619x x x -≤≤⎧⎨-++≥⎩或1,619x x x <-⎧⎨---≥⎩, 解得7x ≥或2x -≤,即所求不等式解集为(][),27,-∞-+∞. (2)∴11a x x a x x -++≥-++, ∴11a x x a -++≥+,又()220f x a -≥对任意x ∈R 成立, ∴212a a +≥,∴112a -≤≤, ∴所求实数a 的最大值为1.2.(2021·新安县第一高级中学高三其他模拟(理))已知函数()|21||2|,()|1|||f x x x g x x x a a =-++=+--+.(1)解不等式f (x )>3;(2)对于∀x 1,x 2∈R ,使得f (x 1)>g (x 2)成立,求a 的取值范围.【答案】(1)2(,0),3⎛⎫-∞⋃+∞ ⎪⎝⎭;(2)34a ≤. 【分析】 (1)通过讨论x 的范围得到关于x 的不等式组,解出即可;(2)依题意即()()min max f x g x ≥,所以求出()min f x 和()max g x ,得到关于a 的不等式,解出即可.【详解】解:(1)由2313x x ≤-⎧⎨-->⎩或12233x x ⎧-<<⎪⎨⎪-+>⎩或12313x x ⎧≥⎪⎨⎪+>⎩,解得0x <或23x >, ∴()3f x >的解集为()2,0,3⎛⎫-∞+∞ ⎪⎝⎭. (2)因为()|21||2|,()|1|||f x x x g x x x a a =-++=+--+所以()|21||2|f x x x =-++函数图象如下所示:所以当12x =时,()min 52f x =; ()()()|1|||11g x x x a a x x a a a a =+--+≤+--+=++当且仅当()()10x x a +-≥时成立,即()max 1g x a a =++.由题意,得()()min max f x g x ≥,即512a a ++≤,即512a a +≤-, ∴225025(1)()2a a a ⎧-⎪⎪⎨⎪+-⎪⎩,解得34a ≤. ∴的取值范围是3,4⎛⎤-∞ ⎥⎝⎦. 3.(2021·甘肃白银市·高三其他模拟(理))已知函数()|6||8|f x x x =---.(1)解不等式()1f x >;(2)记()f x 的最大值为t ,若||,||m t n t <<,求证:42mn m n+>+. 【答案】(1)15,2⎛⎫+∞⎪⎝⎭;(2)证明见解析. 【分析】 (1)由()1f x >,得到|6||8|1x x --->,分类讨论,即可求解;(2)由绝对值三角不等式,求得()2f x ≤,得到2t =,即||2,||2m n <<,要证42mn m n+>+,只需证22(4)4()mn m n +>+,结合比较法,即可求解.【详解】(1)由题意,函数()|6||8|f x x x =---,因为()1f x >,即|6||8|1x x --->,可得6681x x x ≤⎧⎨-+->⎩或68681x x x <<⎧⎨-+->⎩或8681x x x ≥⎧⎨--+>⎩, 解得x 无实根或1582x <<或8x ≥, 综上可得,不等式()1f x >的解集为15,2⎛⎫+∞ ⎪⎝⎭.(2)由()|6||8||68|2f x x x x x =---≤--+=,当且仅当(6)(8)0x x --≥,且|6||8|x x ->-,即8x ≥时取等号,所以2t =,即||2,||2m n <<, 要证42mn m n+>+, 只需证|4|2||mn m n +>+,即证22(4)4()mn m n +>+,(22222(4)4()8164mn m n m n mn m +-+=++-+)22n mn +()()222222441644m n m n m n =--+=--.又224,4m n <<,所以()()22440m n -->, 所以22(4)4()mn m n +>+,即|4|2||mn m n +>+,所以42mn m n+>+. 4.(2021·四川遂宁市·高三三模(理))已知函数()|1||2|f x x x =-++∣(1)求不等式()9f x ≤的解集;(2)当()f x 取最小值时,求使得21mx m x -=+成立的正实数m 的取值范围.【答案】(1)[]5,4-;(2)10,4⎛⎤ ⎥⎝⎦. 【分析】(1)根据零点分段讨论法进行分类讨论解不等式;(2)利用绝对值不等式的性质求出当()f x 取最小值时x 的取值范围,并对式子21mx m x -=+进行变形,从而可求正实数m 的取值范围.【详解】(1)由不等式()9f x ≤,可得()129f x x x =-++≤,可化为2129x x x <-⎧⎨---≤⎩或21129x x x -≤≤⎧⎨-++≤⎩或1129x x x >⎧⎨-++≤⎩, 解,得52x -≤<-或21x -≤≤或14x <≤,综上知不等式的解集为[]5,4-.(2)因为()1212123f x x x x x x x =-++=-++≥-++=,当且仅当(1)(2)0x x -+≤,即21x -≤≤时,等号成立.故当21x -≤≤时,min ()3f x =,法一:当()f x 取最小值时,21mx m x -=+,即211m x m +=-, 所以021211m m m >⎧⎪+⎨-≤≤⎪-⎩,即021212111m m m m m ⎧⎪>⎪+⎪≥-⎨-⎪+⎪≤⎪-⎩,解得104m <≤, 故所求m 的取值范围10,4⎛⎤ ⎥⎝⎦. 法二:13122x m x x +==+-- 因为21x -≤≤,所以421x -≤-≤-,所以11124x -≤≤--, 所以33324x -≤≤--,即312124x -≤+≤-,所以104m <≤, 故所求m 的取值范围10,4⎛⎤ ⎥⎝⎦ 5.(2021·安徽池州市·池州一中高三其他模拟(理))已知函数()()21f x x a x a R =-++∈. (1)当2a =时,解不等式()4f x <;(2)记关于x 的不等式()5f x x ≤+的解集为M ,若[]1,2M -⊆,求a 的取值范围. 【答案】(1)71,3⎛⎫ ⎪⎝⎭;(2)[]0,1. 【分析】(1)分类讨论去绝对值符号,然后解不等式即可;(2)首先根据x 的范围,确定10x +≥,50x +>,然后解不等式得到22a x a -≤≤+.,进而根据集合的包含关系得到不等式组,解不等式组即可.【详解】解:(1)当2a =时,()221f x x x =-++,原不等式可化为14214x x x <-⎧⎨---<⎩,或124214x x x -≤≤⎧⎨-++<⎩或22414x x x >⎧⎨-++<⎩,解得x ∈∅或12x <≤或723x <<, ∴原不等式的解集为71,3⎛⎫⎪⎝⎭. (2)若()5f x x ≤+的解集包含[]1,2-,即当[]1,2x ∈-时,215x a x x -++≤+恒成立,由于在[]1,2-上,10x +≥,50x +>, ∴11x x +=+,55x x +=+, ∴()5f x x ≤+,等价于24x a -≤, 即2x a -≤,22x a -≤-≤,∴22a x a -≤≤+.由于当[]1,2x ∈-时该不等式恒成立,∴21a -≤-且22a +≥,∴01a ≤≤,即a 的取值范围为[]0,1.6.(2021·河南高三其他模拟(理))已知函数()32x x a f a =-+.(1)当1a =-时,求不等式()5f x ≤的解集;(2)设函数()1g x x =-,当x ∈R 时,()()39f x g x +≥,求a 的取值范围.【答案】(1)823x x ⎧⎫-≤≤⎨⎬⎩⎭;(2)[)4,+∞. 【分析】(1)将所求不等式变形为317x +≤,解此不等式即可得解;(2)利用三角不等式可得()()min 3f x g x +⎡⎤⎣⎦,可得出关于实数a 的不等式,由此可解得实数a 的取值范围.【详解】(1)当1a =-时,()312f x x =+-. 由3125x +-≤,得317x +≤,整理得7317x -≤+≤,解得823x -≤≤, 因此不等式()5f x ≤的解集为823x x ⎧⎫-≤≤⎨⎬⎩⎭; (2)当x ∈R 时,()()33233333232f x g x x a a x x a x a a a +=-++-≥--++=-+. 所以当x ∈R 时,()()39f x g x +≥等价于329a a -+≥.∴当3a ≤时,∴等价于39a +≥,无解;当3a >时,∴等价于329a a -+≥,解得4a ≥.所以a 的取值范围是[)4,+∞.7.(2021·黑龙江高三其他模拟(理))设函数()121f x x x =--+的最大值为m . (1)作出函数()f x 的图像;(2)若22223a c b m ++=,求2ab bc +的最大值.【答案】(1)图像见详解;(2)34 【分析】(1)去绝对值将函数写成分段函数的形式,接着画出函数图像即可;(2)由(1)知32m =,接着利用基本不等式求2ab bc +的最大值即可.【详解】 (1)12,21()1213,122,1x x f x x x x x x x ⎧+≤-⎪⎪⎪=--+=--<<⎨⎪--≥⎪⎪⎩, 作出函数()f x 的图像如下:(2)由(1)可知:函数()121f x x x =--+的最大值为13()22m f =-=, 所以()22222223232242m a c b a b c b ab bc ==++=+++≥+, 当且仅当12a b c ===时等号成立, 所以3242ab bc ≥+,即324ab bc +≤, 所以2ab bc +的最大值为34. 8.(2021·正阳县高级中学高三其他模拟(理))已知函数()42f x x m x m =---,m ∈R . (1)若2m =,求不等式()1f x x >+的解集;(2)若关于x 的不等式()23f x m ≤-恒成立,求m 的取值范围. 【答案】(1)(),3-∞;(2)(][),33,-∞-+∞.【分析】 (1)分4x <、48x ≤≤、8x >讨论去绝对值,解不等式可得答案;(2)利用a b a b -≤-解不等式可得答案.【详解】(1)当2m =时,不等式()1f x x >+,即841x x x --->+,∴当4x <时,841x x x -+->+,解得3x <,故3x <;∴当48x ≤≤时,841x x x --+>+,解得113x <,故此时无解; ∴当8x >时,841x x x --+>+,解得5x <-,故此时无解;综上,不等式()1f x x >+的解集为(),3-∞.(2)∴()42422f x x m x m x m x m m =---≤--+=,∴由不等式()23f x m ≤-恒成立,得223m m ≤-, 即2230m m --≥,即3m ≥,解得3m ≥或3m ≤-.∴实数m 的取值范围为(][),33,-∞-+∞.9.(2021·吉林高三其他模拟(理))已知0a >,函数()12f x x x a =++-,()g x ax a =+ (1)当1a =时,解不等式()2f x ≤;(2)若函数()y f x =的图象恒在()y g x =的图象的上方,求实数a 的取值范围.【答案】(1)20,3⎡⎤⎢⎥⎣⎦;(2)(]0,1. 【分析】(1)由零点分区间法和绝对值的意义,去绝对值,解不等式,求并集,可得所求解集;(2)由题意可得不等式()120x x a ax a a ++->+>恒成立.去绝对值,结合不等式恒成立思想和一次函数的单调性,解不等式可得所求范围.解:【详解】(1)当1a =时,不等式()2f x ≤即为1212x x ++-≤, 等价为11122x x x ≤-⎧⎨--+-≤⎩或1121122x x x ⎧-<<⎪⎨⎪++-≤⎩或121212x x x ⎧≥⎪⎨⎪++-≤⎩, 解得x ∈∅或102x ≤<或1223x ≤≤,所以原不等式的解集为20,3⎡⎤⎢⎥⎣⎦; (2)若函数()y f x =的图象恒在()y g x =的图象的上方, 则不等式()120x x a ax a a ++->+>恒成立.当1x ≤-时,12x a x ax a --+->+,即为()13a x ->+恒成立,可得()13a ->-+,解得2a >-,则0a >; 当12a x -<<时,12x a x ax a ++->+,即为()11a x >+恒成立, 可得()112a a +⋅≥,解得20a -≤≤,则01a <≤; 由上面可得01a <≤, 又当2a x ≥时,12x x a ax a ++->+,即为()123a a x ->-恒成立, 由于01a <≤,30a -<,可得()()332a a x a --≤, 则()1232a a a ->-, 解得21a -≤≤,则01a <≤.所以,a 的取值范围是(]0,1.10.(2021·河南商丘市·高三月考(理))已知,,a b c 均为正数,且满足 1.abc =证明:(1)3ab bc ca ++;(2)333a b c ab bc ac ++++.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)由基本不等式可以直接证出;(2)由基本不等式得33333313,13,13a b ab b c bc a c ac ++++++,再用不等式得基本性质即可证得.【详解】(1)由基本不等式可知322233ab bc ac a b c ++=,当且仅当1a b c ===时,等号成立.(2)因为33333313,13,13a b ab b c bc a c ac ++++++,所以三式相加可得()()33323 3.a b c ab bc ac ++++-故只需证明()()332ab bc ac ab bc ac ++-++,即证 3.ab bc ac ++由(1)可知上式成立,故不等式333a b c ab bc ac ++++当且仅当1a b c ===时,等号成立. 11.(2021·黑龙江佳木斯市·佳木斯一中高三三模(理))已知函数()222f x x x =+--.(1)解不等式()6f x ≥.(2)已知0a >,0b >,()()1g x f x x =-+的最大值m ,11m a b +=,求22a b +的最小值. 【答案】(1){10x x ≤-或}2x ≥;(2)最小值为89. 【分析】(1)分2x >,12x -≤≤和1x <-三种情况解不等式;(2)先利用绝对值三角不等式求出()g x 的最大值为3m =,从而得113a b+=,所以()222221119a b a b a b ⎛⎫+=+⋅+ ⎪⎝⎭,化简后利用基本不等式求解即可 【详解】解:(1)函数()4,22223,124,1x x f x x x x x x x +>⎧⎪=+--=-≤≤⎨⎪--<-⎩,当2x >时,不等式()6f x ≥即为46+≥x ,解得2x ≥,所以2x >;当12x -≤≤时,不等式()6f x ≥即为36x ≥,解得2x ≥,所以2x =;当1x <-时,不等式()6f x ≥即为46x --≥,解得10x ≤-,所以10x ≤-.综上所述,不等式()6f x ≥的解集为{10x x ≤-或}2x ≥;(2)()()()()112123=-+=+--≤+--=g x f x x x x x x ,所以()g x 的最大值为3m =, 则113a b+=, 故()222222222111122299⎛⎫⎛⎫+=+⋅+=++++ ⎪ ⎪⎝⎭⎝⎭b a a b a b a b a b a b b a18299⎛≥+= ⎝, 当且仅当2222a b b a=且22a b b a =,即23a b ==时取等号, 故22a b +的最小值为89. 12.(2021·福建省永春第一中学高三其他模拟)已知函数()|22||1|f x x x =++-.(1)在图中的坐标系中画出()y f x =的图象;(2)若()y f x =的最小值为m ,当正数a ,b 满足22a b m +=,证明:2a b ab +≥.【答案】(1)函数图象见解析;(2)证明见解析;【分析】(1)将函数解析式转化成分段函数,再根据函数解析式画出函数图象;(2)由(1)可得2m =,再利用基本不等式和不等式的传递性,即可得证.【详解】解:(1)()31,12213,1131,1x x f x x x x x x x --<-⎧⎪=++-=+-⎨⎪+>⎩,其图象如图所示(2)由(1)可知,()(1)2min f x f =-=,2m ∴=所以222a b +=,0a >,0b >,因为222a b ab +,所以1ab ,2a b ab +,则12, 即有122ababa b +,当且仅当a b =时,取等号. 所以2a b ab +.13.(2021·全国高三其他模拟(理))已知函数f (x )=|x ﹣m |+|x +2m |.(1)当m =﹣1时,求不等式f (x )≤7的解集;(2)若不等式f (x )≤9有解,求实数m 的取值范围.【答案】(1)[﹣3,4];(2)[﹣3,3].【分析】(1)代入m 的值,用零点分段讨论法求解即可;(2)用三角不等式求得()f x 的最小值,进而可得结果.【详解】(1)m =﹣1时,f (x )=|x +1|+|x ﹣2|=21,23,1212,1x x x x x -⎧⎪-<⎨⎪-<-⎩,∴ x ≥2时,2x ﹣1≤7,解得:2≤x ≤4,x <﹣1时,1﹣2x ≤7,解得:﹣3≤x <﹣1,﹣1≤x <2时,3<7成立,解得:﹣1≤x <2,故不等式的解集是[﹣3,4];(2)因为()2()(2)33f x x m x m x m x m m m =-++≥--+=-=, 所以min ()3f x m =,依题意可得39m ≤,解得33m -≤≤,即实数m 的取值范围是[3,3]-.【点睛】结论点睛:对于不等式有解问题,常用到以下两个结论:(1)()a f x ≥有解min ()a f x ⇔≥;(2)()a f x ≤有解max ()a f x ⇔≤.14.(2021·黑龙江高三其他模拟(理))已知函数()|2|||f x x x a =---.(1)当1a =时,求不等式()3f x ≥的解集;(2)若()1f x ≤,求a 的取值范围.【答案】(1)空集;(2)[1,3].【分析】(1)根据零点分段法即可解出;(2)根据绝对值三角不等式求出函数()f x 的最大值为|2|a -,再解不等式|2|1a -≤即可求出.【详解】(1)1a =时,()|2||1|f x x x =---当2x ≥时,()|2||1|1f x x x =---=-当12x ≤≤时,()|2||1|21323f x x x x x x =---=--+=-≥,无解当1x ≤时,()|2||1|1f x x x =---=不等式()3f x ≥的解集是空集;(2)若()1f x ≤,()|2||||(2)()||2|f x x x a x x a a =---≤---=-所以max ()|2|f x a =-,即有|2|112113a a a -≤⇔-≤-≤⇔≤≤a 的取值范围是[1,3].15.(2021·山西太原市·太原五中高三二模(理))已知函数())||2|1|(f x x a x a R =-++∈.(1)当4a =时,解不等式()8f x <;(2)记关于x 的不等式()2|3|f x x ≤-的解集为M ,若[4,1]M --⊆,求a 的取值范围.【答案】(1)()2,2-;(2)[]9,4-.【分析】(1)当4a =时23,1()6,1432,4x x f x x x x x -<-⎧⎪=+-≤≤⎨⎪->⎩,进而分类讨论求解即可;(2)根据题意得当[4,1]x ∈--时,2123x a x x -++≤-恒成立,进而得||8x a -≤恒成立,再结合[4,1]x ∈--即可得答案.【详解】解:(1)当4a =时,()421f x x x =-++,不等式可转化为23,1()6,1432,4x x f x x x x x -<-⎧⎪=+-≤≤⎨⎪->⎩,若()8f x <,1238x x <-⎧⎨-<⎩或1468x x -≤≤⎧⎨+<⎩或4328x x >⎧⎨-<⎩ 解得:21x -<<-或12x -≤<或x ∈∅,综上,不等式的解集是()2,2-.(2)若[]4,1M --⊆,()23f x x ≤-,即当[]4,1x ∈--时,2123x a x x -++≤-恒成立,在[4,1]--上,10x +≤,30x -≤, |1|1x x ∴+=--,|3|3x x -=-,()23f x x ∴≤-等价于8x a -≤,即88x a -≤-≤,当[]4,1x ∈--时该不等式恒成立, 1848a a --≤⎧∴⎨--≥-⎩,解得94a -≤≤. 即a 的范围是[]9,4-.【点睛】本题考查分类讨论解绝对值不等式,根据解集求参数,考查运算求解能力,回归转化思想,是中档题.本题第二问解题的关键在于根据题意,将解不等式转化为恒成立问题求解.。
2023年高考数学真题分训练 不等式选讲(含答案含解析)
专题 35 不等式选讲 十年大数据x 全景展示年 份题号考 点考 查 内 容不等式选 讲 2011文理 24绝对值不等式的解法不等式选 讲 2023 文理 24文理 24绝对值不等式的解法,不等式恒成立参数取值范围问题的解法绝对值不等式的解法,不等式恒成立参数取值范围问题的解法多元不等式的证明不等式选 讲 卷 12023不等式选讲 卷 2文理 24卷 1文理 24卷 2文理 24卷 1文理 24卷 2文理 24卷 1 文理 24不等式选讲 根本不等式的应用20232023不等式选讲 绝对值不等式的解法不等式选讲 绝对值不等式的解法,不等式恒成立参数取值范围问题的解法不等式的证明不等式选讲 不等式选讲 分段函数的图像,绝对值不等式的解法绝对值不等式的解法,绝对值不等式的证明绝对值不等式的解法,不等式恒成立参数取值范围问题的解法绝对值不等式的解法,不等式恒成立参数取值范围问题的解法不等式的证明不等式选 讲 2023 卷 2 文理 24卷 3 文理 24 不等式选 讲 不等式选讲 卷 1 文理 23不等式选 讲 2023 卷 2 文理 23不等式选讲 卷 3文理 23 绝对值不等式的解法,绝对值不等式解集非空的参数取值范围问题 绝对值不等式的解法,不等式恒成立参数取值范围问题的解法2023卷 1文理 23不等式选讲不等式选讲卷2 文理23卷3 文理23 绝对值不等式的解法,不等式恒成立参数取值范围问题的解法绝对值函数的图象,不等式恒成立参数最值问题的解法三元条件不等式的证明不等式选讲不等式选讲2023 卷1 文理23卷2 文理23 不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法三元条件最值问题的解法,三元条件不等式的证明绝对值函数的图像,绝对值不等式的解法不等式选讲卷3 文理23不等式选讲卷1 文理23不等式选讲2023 卷2 文理23卷3 文理23 绝对值不等式的解法,不等式恒成立参数取值范围问题的解法三元条件不等式的证明不等式选讲大数据分析x预测高考出现频率考点2023 年预测考点120 绝对值不等式的求解23 次考4 次2023 年主要考查绝对值不等式的解法、绝对值考点121 含绝对值不等式的恒成立问题23 次考12 次不等式的证明,不等式恒成立参数取值范围问题的解法等.考点122 不等式的证明23 次考7 次十年真题分类x探求规律考点120绝对值不等式的求解f x 3x 1 2 x 11.(2023 全国Ⅰ文理22)已知函数.y f x(1)画出的图像;(2)求不等式 f x f x 1 的解集.x 1 x 3,1 x 1 ,作出图像,如下图: f x5x 1, (解析)(1)∵ 31 x 3, x3 (2)将函数的图像向左平移1个单位,可得函数f x 1的图像,如下图:f x 7 76x 3 5 x 1 1, x ,∴不等式的解集为 .由 ,解得 62.(2023 江苏 23)设 x R ,解不等式2 | x 1| | x | 4 .2 32, (答案)(思路导引)依据绝对值定义化为三个不等式组,解得结果.x 1 1 x 0 x 0或(解析) 或 , 2x 2 x 4 2x 2 x 4 2x 2 x 4222 x 1或 1 x 0或0 x 2, ,∴解集为 .33 3.(2023 全国 I 文理)已知函数 f (x ) | x 1| | 2x 3|.(I)在图中画出 y f (x ) 的图像; (II)求不等式| f (x ) | 1的解集.(解析)(1)如下图:4,x ≤ 1 x3 2, f x 1.(2) f x 3x 2, 1 x 3 24 x ,x ≥当 x ≤ 1, x 4 1,解得 x 5 或 x 3 ,∴x ≤ 1;31 3 1 3 3 2当 1 x , 3x 2 1,解得 x 1或 x,∴ 1 x 或1 x ; 2 3 3当 x ≥ , 4 x 1,解得 x 5 或 x 3 ,∴ ≤x 3或 x 5 .2 2 11 , ,, .综上, x 或1 x 3 或 x 5 , f x∴,解集为 1 1 3 5 3 31 4.(2023 全国 II 文理)设函数 f x = x x a (a 0)a(Ⅰ)证明: f x ≥2;(Ⅱ)假设 f 3 5,求a 的取值范围.11 1 (解析)(I)由a 0,有 f (x ) x x a x (x a ) a 2,∴ f (x ) ≥2.a a a1 (Ⅱ) f (3) 3 3 a .a15 21当时a >3 时, f (3) = a ,由 f (3) <5 得 3< < a; a 21 1 5当 0<a ≤3 时, f (3) = 6 a ,由 f (3) <5 得<a ≤3. a 21 5 5 21综上:a 的取值范围是(, ). 2 25.(2011 新课标文理)设函数 f (x ) x a 3x ,其中 f (x ) 3x 2的解集;a 0 .(Ⅰ)当a 1时,求不等式(Ⅱ)假设不等式 f (x ) 0的解集为 x | x f (x ) 3x 2可化为| x 1| 2,由此可得 x 3 或 x 11,求 a 的值.(解析)(Ⅰ)当a 1时, .故不等式 f (x ) 3x 2的解集为(x | x 3或 x 1).x a ( Ⅱ) 由 f (x ) 0 得 x a 3x 0 ,此不等式化为不等式组 x aa x 3x 0 或, x a 3x 0x ≥a x ≤ax |x ,由题设可得 a =1,故a 2a 即 a 或 x ≤ 4 a ,因为a 0 ,∴不等式组的解集为 . x ≤ 2 2 2 考点 121 含绝对值不等式的恒成立问题6.(2023 全国Ⅱ文理 22)已知函数 f x x 2 x 2a 1 .a (1)当a 2时,求不等式 f x 4 的解集; (2)假设 f x 4 ,求a 的取值范围.3 2 11 2 x xx ;(2) , 1 3,.(答案)(1) 或 (思路导引)(1)分别在x 3、3 x 4和 x 4三种情况下解不等式求得结果;2(2)利用绝对值三角不等式可得到 f x a 1 ,由此构造不等式求得结果. f x x 4 x 3(解析)(1)当a 2时,.3 x 当x 3时, f x 4 x 3 x 7 2x 4 ,解得: ,无解; ; ; 2f x 4 x x 3 1 4当3 x 4时, 112f x x 4 x 3 2x 7 4 当 x 4 时, x ,解得:4的解集为 3 2 112 f xx 或 x x . 综上所述: 2f x x a 2 x 2a 1 x a 2 x 2a 1 a 2 2a 1 a 1 (当且仅当 (2) 2a 1 x a 2 时取等号), a 1 2,解得:a 1或a 3, a 的取值范围为 , 1 3, . 47.(2023 全国 II 文理 23)选修 4-5:不等式选讲](10 分) f (x ) | x a | x | x 2 | (x a ). 已知 (1)当a 1时,求不等式 f (x ) 0 的解集; x ( ,1) 时, f (x ) 0a,求 的取值范围.(2)假设(解析)(1)当 a=1 时, f (x )=|x 1| x +|x 2|(x 1) .当 x 1时, f (x ) 2(x 1) 0 ;当 x 1时, f (x ) 0,∴不等式 f (x ) 0的解集为( ,1).2(2)因为 f (a )=0 ,∴a 1.当a 1, x ( ,1) 时, f (x )=(a x ) x +(2 x )(x a )=2(a x )(x 1)<0 ∴a 的取值范围是1, ) . 8.(2023 全国Ⅰ文理)已知 f (x ) | x 1| | ax 1|.(1)当a 1时,求不等式 f (x ) 1的解集;(2)假设x (0,1)时不等式 f (x ) xa成立,求 的取值范围.2, x ≤ 1,(解析)(1)当a 1时, f (x ) | x 1| | x 1|f (x ) 2x , 1 x 1, ,即2, x ≥1.1 故不等式f (x ) 1的解集为(x | x ) .2(2)当 x (0,1)时| x 1| | ax 1| x 成立等价于当 x (0,1)时| ax 1| 1成立. 假设a ≤0,则当 x (0,1)时| ax 1|≥1;2 2,假设a 0 | ax 1| 1的解集为 (0, 2. 0 x,∴ ≥1,故0 a ≤2. a aa综上, 的取值范围为9.(2023 全国Ⅱ文理)设函数 f (x ) 5 | x a | | x 2 |. (1)当a 1时,求不等式 f (x )≥0 的解集; (2)假设 f (x )≤1,求a 的取值范围.2x 4, x ≤ 1,(解析)(1)当a 1时, f (x ) 2, 1 x ≤2,2x 6, x 2.可得 f (x )≥0 的解集为(x | 2≤ x ≤3). (2) f (x )≤1等价于| x a | | x 2 |≥4.而| x a | | x 2 |≥| a 2 | ,且当 x 2时等号成立.故 f (x )≤1等价于| a 2 |≥4. 由| a 2 |≥4可得a ≤ 6或a ≥2,∴a 的取值范围是( , 6] 2, ). 10.(2023 全国Ⅲ文理)设函数 f (x ) | 2x 1| | x 1| . (1)画出 y f (x ) 的图像;(2)当x 0, )时,f(x)≤ax b,求a b的最小值.13x, x ,21f(x) x 2, ≤x 1,(解析)(1)23x, x≥1.y f(x) 的图像如下图.(2)由(1)知,y f(x) 的图像与y轴交点的纵坐标为2,且各局部所在直线斜率的最大值为3,故当且仅当a≥3且b≥2 时,f(x)≤ax b在0, ) 成立,因此a b的最小值为5.211.(2023 江苏)假设x,y,z为实数,且x 2y 2z 6,求x2 y z2 的最小值.(解析)由柯西不等式,得(x 2y 2 z 2 )(1 22 2 2 2)≥(x 2y 2z ) .2x y z 2 4 4 因为 x 2y 2z =6 ,∴ x2y 2 z 2 ≥4,当且仅当 时,不等式取等号,此时 x ,y ,z ,1 2 2 3 3 3∴ x 2 y 2 z 的最小值为 4.2 f (x ) x ax 4 , g (x ) | x 1| | x 1|.212.(2023 全国Ⅰ文理)已知函数 (1)当a 1时,求不等式 f (x )≥ g (x ) 的解集;(2)假设不等式 f (x )≥ g (x ) 的解集包含 1,1],求a 的取值范围. (解析)(1)当a 1时,不等式 f (x )≥ g (x ) 等价于 2x x | x 1| | x 1| 4 ≤0 .①当 x 1时,①式化为2x 3x 4≤0 ,无解;当 1≤x ≤1时,①式化为 x 2x 2≤0,从而 1≤x ≤1;1 17当 x 1时,①式化为 x 2x 4≤0 ,从而1 x ≤,∴ f (x )≥ g (x ) 的解集为 21 17(x | 1 x ≤). 2(2)当 x 1,1]时, g (x ) 2 ,∴ f (x )≥ g (x ) 的解集包含 1,1],等价于当 x 1,1]时 f (x )≥2 . 又 f (x ) 在 1,1]的最小值必为 f ( 1)与 f (1)之一,∴ f ( 1)≥2且 f (1)≥2,得 1≤a ≤1,∴a 的取 值范围为 1,1].13.(2023 全国Ⅲ文理)已知函数 f (x ) | x 1| | x 2 |. (1)求不等式 f (x )≥1的解集;f (x )≥x x m 的解集非空,求m 的取值范围.2(2)假设不等式 3, x 1(解析)(1) f (x ) 2x 1, 1≤x ≤2 ,3, x 2当 x 1时, f x ≥1无解;当 1≤x ≤2时,由 f x ≥1得,2x 1≥1,解得1≤ ≤2;x 当 x >2时,由 f x ≥1解得 >2. x∴ f x ≥1的解集为 x x ≥1 .x m 得m ≤ x 1 x 2 x(2)由 f x ≥ x 2 2x ,而23 5 5 x 1 x 2 x 2x ≤ x +1+ x 2 x 2x =- x - + ≤ ,2 4 4355 4且当 x 时, x 1 x 2 x 2x = ,故 m 的取值范围为 - , . 2 4 14.(2023 全国 III 文理)已知函数 f (x ) | 2x a | a (Ⅰ)当 a=2 时,求不等式 f (x )≤6 的解集;(Ⅱ)设函数 g (x ) | 2x 1| ,当 x R 时, f (x ) g (x )≥3,求 a 的取值范围. (解析)(Ⅰ)当a 2时, f (x ) | 2x 2 | 2.解不等式| 2x 2 | 2 6 ,得 1 x 3,因此 f (x ) 6的解集为(x | 1 x 3). (Ⅱ)当 x R 时, f (x ) g (x ) | 2x a | a |1 2x |1| 2x a 1 2x | a |1 a | a ,当 x 时等号成立,2∴当 x R 时, f (x ) g (x ) 3等价于|1 a | a 3. ① 当a 1时,①等价于1 a a 3 ,无解. 当a 1时,①等价于a 1 a 3 ,解得a 2 . ∴a 的取值范围是2, ) .15.(201 5 全国 I 文理)已知函数 f (x ) | x 1| 2 | x a | ,a 0. (Ⅰ)当a 1时,求不等式 f (x ) 1的解集;(Ⅱ)假设 f (x ) 的图像与 x 轴围成的三角形面积大于 6,求a 的取值范围. (解析)(Ⅰ)当a 1时,不等式 f (x ) 1化为| x 1| 2 | x 1| 1 0, 当 x ≤ 1时,不等式化为 x 4 0,无解;2 当 1 x 1时,不等式化为3x 2 0 ,解得 x 1; 3当 x ≥1时,不等式化为 x 2 0,解得1≤x 2. 2 ∴ f (x ) 1的解集为(x | x 2).3x 1 2a , x 1 (Ⅱ)有题设可得, f (x ) 3x 1 2a , 1≤ x ≤a ,∴函数 f (x ) 图象与 x 轴围成的三角形的三个顶点分别x 1 2a , x a2a 1 2 2 3, 0), B (2a 1, 0),C (a ,a 1) , (a 1) 6 ,故a 2.∴ 2 为 A ( ABC 的面积为 (a 1) 2 .有题设得 3 3 a 的取值范围为(2, ) .1 116.(2023 全国 I 文理)假设a 0,b 0 ,且 ab .a b a 3 b 3 的最小值;(Ⅰ)求 (Ⅱ)是否存在a ,b ,使得2a 3b 6?并说明理由.1 1 (解析)(I)由 ab a b 2,得ab 2 ,且当a b 2 时取等号.ab 故a ∴a 3 3 b 3 2 a 3 b 3 4 2 ,且当a b 2 时取等号.b 3 的 最小值为4 2 .(II)由(I)知,2a 3b 2 6 ab 4 3 .由于4 3 6 ,从而不存在a ,b ,使得2a 3b 6 .f (x ) | 2x 1| | 2x a |g (x ) x 3 .16.(2023 全国 I 文理)已知函数 = , = a f (x ) < g (x ) (Ⅰ)当 =-2 时,求不等式 的解集;a 1 2 a x ,求 的取值范围.f (x ) ≤g (x ) a(Ⅱ)设 >-1,且当 ∈ , )时, 2 a =f (x ) <g (x ) 化为| 2x 1| | 2x 2 | x 3 0 ,(解析)(Ⅰ)当 2时,不等式 125x , x 1 x 1,设函数 y =| 2x 1| | 2x 2 | x 3 y x 2, , = 23x 6, x 1x (0, 2) y时, <0, 其图像如下图,从图像可知,当且仅当∴原不等式解集是(x | 0 x 2) . a 1 2x f (x ) =1 a f (x ) ≤ g (x ) 化为1 a ≤x 3, (Ⅱ)当 ∈ , )时, ,不等式 2a 1 a 4 ∴ x ≥a 2 对 ∈ x , )都成立,故 ≥a 2 ,即a ≤ , 2 2 2 34 3a 1, ∴ 的取值范围为( ]. 17.(2023 新课标文理)已知函数 f (x ) | x a | | x 2 | .(Ⅰ)当a 3|时,求不等式 f (x ) 3的解集;(Ⅱ)假设 f (x ) | x 4 | 的解集包含1,2],求a 的取值范围.(解析)(1)当a 3时, f (x ) 3 x 3 x 2 3 x 2 2 x 3 x 3 x 3 x 2 33或 3 x x 2 3 或 3 x 2 x x 1或 x 4.(2)原命题 f (x ) x 4 在1, 2]上恒成立x a 2 x 4 x 在1, 2]上恒成立2 x a 2 x 在1, 2]上恒成立3 a 0.考点 122 不等式的证明18.(2023 全国Ⅲ文理 23)设a , b , c R , a b c 0 , abc 1.(1)证明:ab bc ca 0 ;(2)用max a , b , c 表示a , b , c 的最大值,证明:max a , b , c 4 .3 (答案)(1)证明见解析(2)证明见解析.(思路导引)(1)依据题设条件a b c 0,两边平方,再利用均值不等式证明即可;max (a ,b ,c ) a ,由题意得出a 0,b ,c 0 (2)思路一:不妨设 ,2 b c b 2 c 2 2bc 由a3 a 2 a ,结合根本不等式,即可得出证明. bc bc思路二:假设出a ,b ,c 中最大值,依据反证法与根本不等式推出矛盾,即可得出结论. (解析)(1)证明:0,a b c a b c 2 0. a 2 b 2 c 2 2ab 2ac 2ca 0, 即2ab 2bc 2ca a2 b 2 c 2 2ab 2bc 2ca 0, ab bc ca 0.(2)证法一:不妨设max (a ,b ,c ) a ,由a b c 0,abc 1可知,a 0,b 0,c 0 ,1 2 b c 2bc 2bc 2bc b c 2 2 a b c ,a , a 3 a 2 a , 4 bc bc bc bc当且仅当b c 时,取等号, a,即max (a ,b ,c ) 4 . 3 3 4 11 3 , a b c 3 4, 而 证法二:不妨设a b 0 c 4 ,则ab c 3 42 13 214 矛盾,∴命题得证.3 4 a b 2 ab 3 6 4 19.(2023 全国 I 文理 2 3)已知 a ,b ,c 为正数,且满足 abc=1.证明:1 1 1a ab c2 b 2 c 2 (1) (2) ; (a b ) (b c )3 3 (c a ) b 2ab ,b ab bc ca 3 24 .(解析)(1)因为a 2 2 2 c2 2bc ,c 2 a 2 2ac ,又abc 1, 1 1 1 1 ab bc ca 1 1 故有a 2 b 2 c 2 ,∴ a 2 b c 2 .2 abc a b c a b c (2)因为a , b , c 为正数且abc 1,故有(a b ) (b c ) (c a ) 3 (a b ) 3 (2 ab ) (2 bc ) (2 ac ) =24.(b c ) (c a ) 24.3 3 3 3 3 (b c ) 3 (a c ) =3(a +b )(b +c )(a +c ) 3 ∴(a b ) 3 3 3x , y , z R ,且 x y z 1.20.(2023 全国 III 文理 23)设 (x 1) 2 (y 1) 2 (z 1)2 的最小值; (1)求 (2)假设 1(x 2) 2 (y 1) 2 (z a ) 2 成立,证明:a 3 或a 1 .3 (解析)(1)由于(x 1) (y 1) (z 1)] 2 (x 1) 2 (y 1) 2 (z 1) 2(x 1)(y 1) (y 1)(z 1) (z 1)(x 1)]2 3 (x 1) 2 (y 1) 2 (z 1) 2, 4 35 1 z 1 故由已知得(x 1) 2 (y 1) 2 (z 1) 2 ,当且仅当x= ,y=– , 时等号成立. 3 3 3 4 ∴(x 1) (2)由于(x 2) (y 1) (z a )] (x 2) (y 1) (z a ) 2(x 2)(y 1) (y 1)(z a ) (z a )(x 2)] 2 (y 1) 2 (z 1)2 的最小值为 . 322 2 23 (x 2)2 (y 1) 2 (z a ) 2 , (2 a ) 2 4 a 1 a 2a 2 故由已知(x 2) 2 2 (y 1) 2 (z a ) 2,当且仅当 x y z , , 时等号成 3 3 3 3 (2 a ) 2 立,因此(x 2) (y 1) 2 (z a )2 的最小值为. 3 (2 a ) 2 1 ,解得a 3 或a 1. 由题设知 3 321.(2023 全国Ⅱ文理)已知a 0,b 0, a3 b 2 ,证明: 34 ; (1) a b a b(2) a b 2.(解析)(1)(a b )(a 5 524.5 b 5 ) a6 2 ab 5 a 5 b b 6 (a 3 b 3 ) 2 2a 3 b 3 ab (a 4 b 4 ) 4 ab a 2 b 2 3(a b ) 2 3(a b ) 3 (a b ) 3 a 3 3a 2 b 3ab b 3 2 3ab (a b ) 2 (a b ) 2 , (2)∵ 4 4∴(a b ) 8 ,因此a b 2. 3 22.(2023 江苏)已知a ,b ,c ,d 为实数,且 a 2 b2 4 ,c 2 d 16 ,证明ac bd 8. 2(解析)证明:由柯西不等式可得:(ac bd ) 2 ≤(a 2 b 2 )(c 2 d 2 ) , 因为a 2 b 2 4,c 2 d 2 16, ∴(ac bd ) 2 ≤64 ,因此 ac bd 8.≤ 1 1 2 x ,M 为不等式 f x 2的解集.23.(2023 全国 II 文理)已知函数 f x x 2 (I)求 M ;(II)证明:当 a ,b M 时, a b 1 ab . 1 f x x x 2x 1 1 ,假设 1 x 1 (解析)(I)当 x 时, ; 2 2 2 21 1 1 1 当 ≤ x ≤ 时, f x x x 12 恒成立;2 2 2 2 1 1 当 x 时, f x 2x ,假设 f x 2, < x 1. 22 综上可得,Mx | 1 x 1., , 时,有 a (Ⅱ)当a b 1 1 2 1 b 2 1 0 ,即a 2 b 2 1 a 2 b , 2 2 b 2 2ab 1 a 2 2ab b 2 ,则 ab 1 2 a b ,即 a b ab 1 ,证毕. 2则a 24.(2023 全国 II 文理)设a ,b ,c ,d 均为正数,且a b c d ,证明: (Ⅰ)假设ab > cd ,则 a b c d ;(Ⅱ) a b c d 是| a b | | c d | 的充要条件. (解析)(Ⅰ)∵( a b ) 由题设a b c d ,ab cd 得( a b ) (ab ) (cd )2 ,即(a b ) 因为a b c d ,∴ab cd ,由(Ⅰ) 得 a b c d . ( a b ) ( c d )2 ,即a b 2 ab c d 2 cd . (a b ) 4ab (c d ) 4cd (c d )2 . 2 a b 2 ab ,( c d ) ( c d )2 ,因此 a b c d .4ab (c d ) 4cd . 2 c d 2 cd ,2 (Ⅱ)(ⅰ)假设| a b | | c d |,则 2 2 2 (ⅱ)假设 a b c d , 则 因为a +b =c +d ,∴ab >cd ,于是(a b )因此| a b | | c d |.综上 a b c d 是| a b | | c d |的充要条件.a ,b ,c 2 2 2 2 25.(2023 全国 II 文理)设 均为正数,且 a b c 1,证明:1 3ab bc ca (Ⅰ) ; a 2 b 2 c 2 (Ⅱ) 1. b c a(解析)(Ⅰ) a 2 b 2 2ab ,b 2 c 2 2bc ,c 2 a 2 2ca 得a 2 b 2 c ab bc ca ,2 由题设得 a b c2 2 2 2 1,即a bc 2ab 2bc 2ca 1, 1 ∴3 ab bc ca 1,即ab bc ca. 3a 2b 2c 2 a 2 b 2 c 2 (Ⅱ)∵ b 2a , c 2b , a 2c ,∴ (a b c ) 2(a b c ) , b c a b c aa 2b 2c 2 a 2 b 2 c 2 即 a b c ,∴ 1. b c a b c a。
高中数学不等式证明题目训练卷及答案
高中数学不等式证明题目训练卷及答案一、选择题1、若\(a > b > 0\),则下列不等式中一定成立的是()A \(a +\frac{1}{b} > b +\frac{1}{a}\)B \(\frac{b + 1}{a + 1} >\frac{b}{a}\)C \(a \frac{1}{b} > b \frac{1}{a}\)D \(\frac{2a + b}{a + 2b} >\frac{a}{b}\)答案:A解析:因为\(a > b > 0\),所以\(a b > 0\)。
A 选项:\((a +\frac{1}{b})(b +\frac{1}{a})=(a b) +(\frac{1}{b} \frac{1}{a})=(a b) +\frac{a b}{ab}> 0\),所以\(a +\frac{1}{b} > b +\frac{1}{a}\),A 选项正确。
B 选项:\(\frac{b + 1}{a + 1} \frac{b}{a} =\frac{a(b+ 1) b(a + 1)}{a(a + 1)}=\frac{a b}{a(a + 1)}\),因为\(a(a + 1) > 0\),但\(a b\)的正负不确定,所以\(\frac{b + 1}{a + 1}\)与\(\frac{b}{a}\)大小不确定,B 选项错误。
C 选项:\((a \frac{1}{b})(b \frac{1}{a})=(a b) (\frac{1}{b} \frac{1}{a})=(a b) \frac{a b}{ab}\),当\(ab > 1\)时,\((a b) \frac{a b}{ab} < 0\),C 选项错误。
D 选项:\(\frac{2a + b}{a + 2b} \frac{a}{b} =\frac{b(2a + b) a(a + 2b)}{b(a + 2b)}=\frac{b^2 a^2}{b(a +2b)}\),因为\(b^2 a^2 < 0\),\(b(a + 2b) > 0\),所以\(\frac{2a + b}{a + 2b} \frac{a}{b} < 0\),D 选项错误。
高考数学压轴专题广州备战高考《不等式选讲》单元汇编及答案解析
【高中数学】数学复习题《不等式选讲》知识点练习一、141.不等式230x x -<的解集为( )A .{}03x x << B .{}3003x x x -<<<<或C .{}30x x -<<D .{}33x x -<<【答案】B 【解析】 【分析】将不等式表示为230x x -<,得出03x <<,再解该不等式可得出解集. 【详解】将原不等式表示为230x x -<,解得03x <<,解该不等式可得30x -<<或03x <<.因此,不等式230x x -<的解集为{}3003x x x -<<<<或,故选:B.【点睛】本题考查二次不等式的解法与绝对值不等式的解法,考查运算求解能力,属于中等题.2.已知点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,点(,)M a b 为平面上一点,O 为坐标原点,则当OM 取最小值时,椭圆的离心率为( )A B .13C .2D 【答案】D 【解析】 【分析】点(3,1)P 在椭圆22221(0)x y a b a b +=>>上,可得22911a b +=,(,)M a b 为平面上一点,||OM =a ,b 关系,代入即可.【详解】解:点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,可得22911a b +=,(,)M a b 为平面上一点,||OM =所以||4OM ==,当且仅当223a b =时,取等号, 222213b e a =-=,e =. 故选D . 【点睛】考查椭圆的性质,柯西不等式的应用,求椭圆的离心率,中档题.3.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是 ( ) A .|a+b|+|a-b|>2 B .|a+b|+|a-b|<2 C .|a+b|+|a-b|=2 D .不能比较大小【答案】B 【解析】选B.当(a+b)(a-b)≥0时,|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2, 当(a+b)(a-b)<0时,|a+b|+|a-b|=|(a+b)-(a-b)|=2|b|<2.4.已知2(3)f x x x =+,若1x a -≤,则下列不等式一定成立的是( ) A .33()()f x f a a -≤+ B .24()()f x f a a -≤+ C .()()5f x f a a -≤+ D .2|()()2|(1)f x f a a -≤+【答案】B 【解析】 【分析】先令a=0,排除A ,C,D,再利用绝对值三角不等式证明选项B 成立 【详解】令a=0,则1x ≤,即-1≤x≤1,()()()()()0?f x f a f x f f x -=-=≤4,此时A,C,D 不成立,下面证明选项B 成立()()22 33f x f a x x a a -=+--=()() 3x a x a -++≤()()3x a x a -++≤()3x a ++=23x a a -++≤23x a a -++≤24a +故选:B . 【点睛】本题考查了绝对值三角不等式的应用,特值法,结合二次函数最值分析问题,准确推理计算是关键,是基础题.5.已知,,x y z R +∈,且1x y z ++=,则222x y z ++的最小值是( ) A .1 B .13C .12D .3【答案】B 【解析】利用柯西不等式得出()()()2222222111xy z x y z ++++≥++,于此可得出222x y z ++的最小值。
河北省衡水市高考数学提分专练:第23题 不等式选讲(选考题)
河北省衡水市高考数学提分专练:第23题不等式选讲(选考题)姓名:________ 班级:________ 成绩:________一、解答题 (共12题;共120分)1. (10分) (2018高二下·抚顺期末) 【选修4-5:不等式选讲】已知函数(1)当 =1时,求不等式的解集;(2)设函数 .当时,,求实数的取值范围.2. (10分)证明:sin20°<.3. (10分)(2018·中原模拟) 选修4-5:不等式选讲已知函数.(1)解不等式:;(2)若函数的解集包含,求实数的取值范围.4. (10分)(2017·西安模拟) 已知函数f(x)=|2x﹣1|,x∈R,(1)解不等式f(x)<x+1;(2)若对于x,y∈R,有|x﹣y﹣1|≤ ,|2y+1|≤ ,求证:f(x)<1.5. (10分)(2017·重庆模拟) 设函数f(x)=|2x﹣1|+|2x﹣3|,x∈R.(1)解不等式f(x)≤5;(2)若f(x)+m≠0恒成立,求实数m的取值范围.6. (10分)设函数f(x)=|2x+1|﹣|x﹣4|.(1)解不等式f(x)>0;(2)若f(x)+3|x﹣4|≥m对一切实数x均成立,求m的最大值.7. (10分)(2016·城中模拟) 已知实数a>0,b>0,函数f(x)=|x﹣a|﹣|x+b|的最大值为3.(I)求a+b的值;(Ⅱ)设函数g(x)=﹣x2﹣ax﹣b,若对于∀x≥a均有g(x)<f(x),求a的取值范围.8. (10分)(2013·新课标Ⅱ卷理) 【选修4﹣﹣5;不等式选讲】设a,b,c均为正数,且a+b+c=1,证明:(1)(2).9. (10分) (2018高二上·六安月考) 已知函数f(x)=(1)若对,f(x) 恒成立,求a的取值范围;(2)已知常数a R,解关于x的不等式f(x) .10. (10分)已知函数f(x)=|a﹣3x|﹣|2+x|.(1)若a=2,解不等式f(x)≤3;(2)若存在实数a,使得不等式f(x)≥1﹣a+2|2+x|成立,求实数a的取值范围.11. (10分)(2017·湘潭模拟) 已知函数f(x)=|x﹣a|+2|x+b|(a>0,b>0)的最小值为1.(1)求a+b的值;(2)若恒成立,求实数m的最大值.12. (10分)对任意实数x,|x+1|+|x﹣2|>a恒成立,求a的取值范围.二、真题演练 (共3题;共30分)13. (10分) (2016高二上·沭阳期中) 给出如图算法:试问:当循环次数为n(n∈N*)时,若S<M对一切n(n∈N*)都恒成立,求M的最小值.14. (10分)(2017·江苏模拟) 已知a,b,c为正数,且a+b+c=3,求 + + 的最大值.15. (10分)(2020·河南模拟) 已知函数,记不等式的解集为 .(1)求;(2)设,证明: .参考答案一、解答题 (共12题;共120分)1-1、1-2、2-1、3-1、3-2、4-1、4-2、5-1、5-2、6-1、6-2、7-1、8-1、8-2、9-1、9-2、10-1、10-2、11-1、11-2、12-1、二、真题演练 (共3题;共30分)13-1、14-1、15-1、15-2、。
高考数学压轴专题新备战高考《不等式选讲》经典测试题含答案
【高中数学】数学《不等式选讲》试卷含答案一、141.不等式21x x a <-+的解集是区间()3,3-的子集,则实数a 的取值范围是( )A .5a ≤B .554a -≤≤C .574a -≤≤D .7a ≤【答案】A 【解析】 【分析】原不等式等价于210x x a ---<,设()21f x x x a =---,则由题意得()()350370f a f a ⎧-=-≥⎪⎨=-≥⎪⎩,解之即可求得实数a 的取值范围. 【详解】不等式等价于210x x a ---<,设()21f x x x a =---,因为不等式21x x a <-+的解集是区间()3,3-的子集,所以()()350370f a f a ⎧-=-≥⎪⎨=-≥⎪⎩,解之得5a ≤.故选:A. 【点睛】本题主要考查绝对值不等式的解法、二次函数的性质,体现化归与等价转化思想,属中等难度题.2.若函数()(0)1af x ax a x =+>-在(1,)+∞上的最小值为15,函数()1=+++g x x a x ,则函数()g x 的最小值为( ).A .2B .6C .4D .1【答案】C 【解析】 【分析】当1x >,0a >时,由基本不等式可得()3≥f x a ,又()f x 最小值为15,可得出5a =,再由绝对值三角不等式()()()g =5151=4+++≥+-+x x x x x ,即可得出结果. 【详解】当1x >,0a >时,()()111=+=+-+--a a f x ax a x a x x≥a 3=a ,当且仅当2x =时等号成立,由题可得315a =,即5a =,所以()1=+++g x x a x ()()=5151=4+++≥+-+x x x x ,当且仅当()()510++≤x x 即51x -≤≤-时等号成立,所以函数()g x 的最小值为4.故选:C 【点睛】本题主要考查基本不等式:)0,0a b ab +?>,当且仅当a b =时等号成立,绝对值的三角不等式: +≥-a b a b ,当且仅当0ab ≤时等号成立.3.关于x 不等式2x x a a -+-≥在R 上恒成立,则实数a 的最大值是 A .0 B .1C .-1D .2【答案】B 【解析】由于|x -2|+|x -a |≥|a -2|,∴等价于|a -2|≥a ,即a ≤1.故实数a 的最大值为1.4.已知集合{}|11A x x =-<,1|10B x x ⎧⎫=-≥⎨⎬⎩⎭,则A B =∩( ) A .{}|12x x ≤< B .{}|02x x << C .{}|01x x <≤ D .{}|01x x <<【答案】A 【解析】1111102x x x -<⇔-<-<⇔<<,()1011100{0x x x x x x -≥--≥⇒≥⇒≠,解得0,1x x <≥,故[)1,2A B ⋂=.点睛:本题主要考查绝对值不等式的解法,考查分式不等式的解法,考查集合交集等知识.解含有一个绝对值不等式,只需要按照口诀“大于在两边,小于在中间”来解即可.解分式不等式主要方法就是通过通分后,转化为整式不等式来求解,在转化的过程中要注意分母不为零这个特殊情况.5.2018年9月24日,英国数学家M.F 阿帝亚爵在“海德堡论坛”展示了他“证明”黎曼猜想的过程,引起数学界震动,黎曼猜想来源于一些特殊数列求和.记无穷数列21n ⎧⎫⎨⎬⎩⎭的各项的和222111123S n L L =+++++,那么下列结论正确的是( ) A .413S << B .5443S << C .322S << D .2S >【答案】C 【解析】 【分析】由2n ≥时,()2111111n n n n n<=---,由裂项相消求和以及不等式的性质可得2S <,排除D ,再由前3项的和排除A ,B ,从而可得到结论. 【详解】由2n ≥时,()2111111n n n n n<=---, 可得222111111111...11...232231n S n n n =++++<+-+-++--12n=-, n →+∞时,2S →,可得2S <,排除D ,由22111341123363++=+>,可排除,A B ,故选C. 【点睛】本题主要考查裂项相消法求数列的和,以及放缩法和排除法的应用,属于中档题. 用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法. 若结果为定值,则可采用此法. 特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性.6.设x ∈R ,则“2x <”是4<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】D 【解析】 【分析】首先求解绝对值不等式和根式不等式,然后分别考查充分性和必要性是否成立即可. 【详解】由2x <可得22x -<<4<可得016x ≤<,22x -<<是016x ≤<的既不充分也不必要条件,“2x <”是4<”的既不充分也不必要条件. 本题选择D 选项. 【点睛】本题主要考查绝对值不等式的解法,充分条件和必要条件的判定等知识,意在考查学生的转化能力和计算求解能力.7.设,x y ∈R ,且0xy ≠,则222241x y y x ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为( ) A .9- B .9C .10D .0【答案】B 【解析】 【分析】利用柯西不等式得出最小值. 【详解】 (x 224y +)(y 221x+)≥(x 12y x y ⋅+⋅)2=9.当且仅当xy 2xy=即xy= 时取等号. 故选:B . 【点睛】本题考查了柯西不等式的应用,熟记不等式准确计算是关键,属于基础题.8.已知,,x y z R +∈,且1x y z ++=,则222x y z ++的最小值是( ) A .1 B .13C .12D .3【答案】B 【解析】 【分析】利用柯西不等式得出()()()2222222111xy z x y z ++++≥++,于此可得出222x y z ++的最小值。
高考数学压轴专题最新备战高考《不等式选讲》经典测试题附答案解析
【最新】数学《不等式选讲》试卷含答案一、141.不等式222log 2log x x x x -<+的解集为( ) A .()1,2 B .()0,1C .()1,+∞D .()2,+∞【答案】C 【解析】 【分析】由题意得出0x >,分2log 0x >和2log 0x ≤两种情况讨论,结合222log 2log x x x x -<+可得出2log 0x >,解出该不等式即可.【详解】由题意得出0x >,当2log 0x ≤时,则222log 2log x x x x -=+. 当2log 0x >时,222log 2log x x x x -<+,解不等式2log 0x >得1x >. 因此,不等式222log 2log x x x x -<+的解集为()1,+∞. 故选:C. 【点睛】本题考查绝对值不等式的求解,同时也考查绝对值三角不等式的应用,考查推理能力与运算求解能力,属于中等题.2.猜测使2n a n >对任意正整数n 恒成立的最小正整数a 的值为( ) A .2 B .3 C .4 D .5【答案】B 【解析】 【分析】由题意结合选项利用特殊值排除选项A ,然后利用数学归纳法证明选项B 正确即可. 【详解】注意到当2,4a n ==时,2n a n >不成立,则2a =不合题意, 当3a =时,不等式即23n n >, 当1n =时,不等式即31>, 当2n =时,不等式即94>,下面用数学归纳法证明该式对于*,3n N n ∈≥成立, 当3n =时,不等式即279>,明显成立, 假设()*3,n k k k N=≥∈时不等式成立,即23kk >,则当1n k =+时,123333k k k +=⋅>, 而()()222*31221k k k k k N-+=--∈,结合二次函数的性质可知,当2k >时,22221222210k k -->⨯-⨯->,故当*3,k k N ≥∈时,()()2222310,31k k k k -+>>+.综上可得,23n n >对任意的n 均成立. 则最小正整数a 的值为3. 故选:B . 【点睛】本题主要考查数学归纳法的应用,排除法处理选择题的技巧等知识,意在考查学生的转化能力和计算求解能力.3.若关于x 的不等式222213x t x t t t +-+++-<无解,则实数t 的取值范围是( )A .1,15⎡⎤-⎢⎥⎣⎦B .(],0-∞C .(],1-∞D .(],5-∞ 【答案】C 【解析】 【分析】先得到当0t ≤时,满足题意,再当0t >时,根据绝对值三角不等式,得到22221x t x t t +-+++-的最小值,要使不等式无解,则最小值需大于等于3t ,从而得到关于t 的不等式,解得t 的范围 【详解】关于x 的不等式222213x t x t t t +-+++-<无解, 当0t ≤时,可得此时不等式无解, 当0t >时,()2222221221x t x t t x t x t t +-+++-+--++-≥21t =--,所以要使不等式无解,则213t t --≥, 平方整理后得20541t t ≤--, 解得115t ≤≤-, 所以01t <≤,综上可得t 的范围为(],1-∞, 故选:C. 【点睛】本题考查绝对值的三角不等式的应用,根据不等式的解集情况求参数的范围,属于中档题.4.若函数()(0)1af x ax a x =+>-在(1,)+∞上的最小值为15,函数()1=+++g x x a x ,则函数()g x 的最小值为( ).A .2B .6C .4D .1【答案】C 【解析】 【分析】当1x >,0a >时,由基本不等式可得()3≥f x a ,又()f x 最小值为15,可得出5a =,再由绝对值三角不等式()()()g =5151=4+++≥+-+x x x x x ,即可得出结果. 【详解】当1x >,0a >时,()()111=+=+-+--a a f x ax a x a x x≥a 3=a ,当且仅当2x =时等号成立,由题可得315a =,即5a =,所以()1=+++g x x a x ()()=5151=4+++≥+-+x x x x ,当且仅当()()510++≤x x 即51x -≤≤-时等号成立,所以函数()g x 的最小值为4.故选:C 【点睛】本题主要考查基本不等式:)0,0a b ab +?>,当且仅当a b =时等号成立,绝对值的三角不等式: +≥-a b a b ,当且仅当0ab ≤时等号成立.5.已知点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,点(,)M a b 为平面上一点,O 为坐标原点,则当OM 取最小值时,椭圆的离心率为( )A B .13C D 【答案】D 【解析】 【分析】点(3,1)P 在椭圆22221(0)x y a b a b +=>>上,可得22911a b +=,(,)M a b 为平面上一点,||OM =a ,b 关系,代入即可.【详解】解:点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,可得22911a b +=,(,)M a b 为平面上一点,||OM =所以222222291||()()(31)4OM a b a b a b=+=+++=…,当且仅当223a b =时,取等号, 222213b e a =-=,6e =. 故选D . 【点睛】考查椭圆的性质,柯西不等式的应用,求椭圆的离心率,中档题.6.已知命题p :不等式11x m ->-的解集为R ,命题q :()(52)x f x m =--是减函数,若p ∨q 为真命题,p ∧q 为假命题,则实数m 的取值范围是( ) A .1≤m≤2 B .1≤m<2C .1<m≤2D .1<m<2【答案】B 【解析】 【分析】若p ∨q 为真命题,p ∧q 为假命题,可知p 真q 假或p 假q 真,化简p,q 为真时,对应m 的取值范围,然后按p 真q 假或p 假q 真求解即可. 【详解】若p 为真时,10m -<,即1m < ,若q 为真时,521m ->,即2m <,若p ∨q 为真命题,p ∧q 为假命题,可知p 真q 假或p 假q 真,当p 真q 假时,12m m <⎧⎨≥⎩ ,无解,若p 假q 真时,12m m ≥⎧⎨<⎩,即 12m ≤<,故选B.【点睛】本题主要考查了含且、或命题的真假,及含绝对值不等式恒成立,指数型函数的增减性,属于中档题.7.已知,,则使不等式一定成立的条件是A .B .C .D .【答案】D 【解析】因为若,则,已知不等式不成立,所以,应选答案D 。
高考第23题不等式选讲精选ppt版本
2.(2015·全国卷Ⅰ)已知函数 f(x)=|x+1|-2|x-a|,a>0. (1)当 a=1 时,求不等式 f(x)>1 的解集; (2)若 f(x)的图象与 x 轴围成的三角形面积大于 6,求 a 的取 值范围. 解:(1)当 a=1 时,f(x)>1 化为|x+1|-2|x-1|-1>0. 当 x≤-1 时,不等式化为 x-4>0,无解; 当-1<x<1 时,不等式化为 3x-2>0,解得23<x<1; 当 x≥1 时,不等式化为-x+2>0,解得 1≤x<2. 所以 f(x)>1 的解集为x23<x<2.
2.(2016·全国丙卷)已知函数 f(x)=|2x-a|+a. (1)当 a=2 时,求不等式 f(x)≤6 的解集; (2)设函数 g(x)=|2x-1|,当 x∈R 时,f(x)+g(x)≥3,求 a 的取值范围. 解:(1)当 a=2 时,f(x)=|2x-2|+2. 解不等式|2x-2|+2≤6,得-1≤x≤3. 因此 f(x)≤6 的解集为{x|-1≤x≤3}.
(2)f(3)=3+1a+|3-a|.
当 a>3 时,f(3)=a+1a,
由
f(3)<5
得
5+ 3<a< 2
21 .
当 0<a≤3 时,f(3)=6-a+1a,
由 f(3)<5 得1+2 5<a≤3.
综上,a 的取值范围是1+2 5,5+2 21.
4.(2013·全国卷Ⅱ)设 a,b,c 均为正数,且 a+b+c=1,证明:
(2)函数 f(x)的图象恒在函数 g(x)图象的上方, 即|x-2|>-|x+3|+m 对任意实数 x 恒成立, 即|x-2|+|x+3|>m 对任意实数 x 恒成立, 由于|x-2|+|x+3|≥|(x-2)-(x+3)|=5, 故只需 m<5. 所以 m 的取值范围是(-∞,5).
高考数学压轴专题最新备战高考《不等式选讲》真题汇编含答案解析
新高考数学《不等式选讲》练习题一、141.已知()()31f x x x R =+∈,若()4f x a -<的充分条件是()1,0x b a b -<>,则a 、b 之间的关系是( )A .3b a ≤B .3a b ≤C .3a b >D .3b a >【答案】B 【解析】 【分析】解出不等式()4f x a -<和1x b -<,根据题中充分条件关系得出两解集之间的包含关系,然后得出不等式组,即可得出a 、b 之间的关系. 【详解】()31f x x =+Q ,且0a >,0b >,解不等式()4f x a -<,即33x a -<,解得1133a a x -<<+, 解不等式1xb -<,得11b x b -<<+.由于()4f x a -<的充分条件是1x b -<,则()1,11,133a a b b ⎛⎫-+⊆-+ ⎪⎝⎭, 113113a b ab ⎧-≥-⎪⎪∴⎨⎪+≤+⎪⎩,可得3a b ≤.故选:B. 【点睛】本题考查绝对值不等式的求解,同时也考查了利用充分条件关系求参数之间的关系,一般转化为集合的包含关系来处理,考查化归与转化思想的应用,属于中等题.2.若不等式23x a x -≤+对任意[]0,2x ∈恒成立,则实数a 的取值范围是( ) A .()1,3- B .[]1,3-C .()1,3D .[]1,3【答案】B 【解析】 【分析】将不等式去掉绝对值符号,然后变量分离转为求函数的最值问题. 【详解】不等式23x a x -≤+去掉绝对值符号得323x x a x --≤-≤+,即3223x x a x a x --≤-⎧⎨-≤+⎩对任意[]0,2x ∈恒成立,变量分离得333a x a x ≤+⎧⎨≥-⎩,只需min max (33)(3)a x a x ≤+⎧⎨≥-⎩,即31a a ≤⎧⎨≥-⎩所以a 的取值范围是[]1,3- 故选:B 【点睛】本题考查绝对值不等式的解法和恒成立问题的处理方法,属于基础题.3.设2sin1sin 2sin 222n n na =++⋅⋅⋅+,对任意正整数m 、n (m >n )都成立的是( ). A .12n m ma a -< B .12n m ma a ->C .12n m na a -<D .12n m na a ->【答案】C 【解析】 【分析】先作差,再根据三角函数有界性放缩,进而根据等比数列求和确定选项. 【详解】212sin1sin 2sin sin(1)sin(2)sin 222222n m n n n n mn n n ma a a ++++=++⋅⋅⋅+∴-=++⋅⋅⋅+Q 12sin(1)sin(2)sin ||||222m n n n mn n ma a ++++∴-=++⋅⋅⋅+ 12sin(1)sin(2)sin ||||||222n n mn n m ++++≤++⋅⋅⋅+ 11211(1)11111122122222212n m n n n m n m n +-++-≤++⋅⋅⋅+==-<- 故选:C 【点睛】本题考查三角函数有界性、等比数列求和以及放缩法,考查综合分析求解与论证能力,属中档题.4.已知f (x )=|x +2|+|x -4|的最小值为n ,则二项式1nx x ⎛⎫- ⎪⎝⎭展开式中x 2项的系数为( ) A .11 B .20C .15D .16【答案】C【解析】 【分析】由题意利用绝对值三角不等式求得n=6,在二项展开式的通项公式中,令x 的幂指数等于0,求出r 的值,即可求得展开式中x 2项的系数. 【详解】∵f (x )=|x+2|+|x ﹣4|≥|(x+2)﹣(x ﹣4)|=6,故函数的最小值为6, 再根据函数的最小值为n ,∴n=6. 则二项式(x ﹣1x )n =(x ﹣1x)6 展开式中的通项公式为 T r+1=6rC •(﹣1)r •x 6﹣2r , 令6﹣2r=2,求得r=2,∴展开式中x 2项的系为26C =15, 故选:C . 【点睛】本题主要考查绝对值三角不等式的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数,属于中档题.5.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是 ( ) A .|a+b|+|a-b|>2 B .|a+b|+|a-b|<2 C .|a+b|+|a-b|=2 D .不能比较大小【答案】B 【解析】选B.当(a+b)(a-b)≥0时,|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2, 当(a+b)(a-b)<0时,|a+b|+|a-b|=|(a+b)-(a-b)|=2|b|<2.6.设a >0,b >0,且ab -(a +b)≥1,则( )A .a ++1)B .a ++1C .a -1)2D .a +b >+1)【答案】A 【解析】 【分析】2a b +.所以ab≤14 (a +b)2,所以14(a +b)2-(a +b)≥ab -(a +b)≥1,再解不等式 (a +b) 2-4(a +b)-4≥0得解. 【详解】2a b +.所以ab≤14(a +b)2. 所以14(a +b)2-(a +b)≥ab -(a +b)≥1. 所以(a +b) 2-4(a +b)-4≥0.因为a >0,b >0,所以a +b≥2+22. 故答案为:A 【点睛】本题主要考查基本不等式和不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.7.如果关于x 的不等式34x x a -+-<的解集不是空集,则参数a 的取值范围是( ) A .()1,+∞ B .[)1,+∞C .(),1-∞D .(],1-∞ 【答案】A 【解析】 【分析】先求|x-3|+|x-4|的最小值是1,即得解. 【详解】由题得|x-3|+|x-4|<a 有解,由绝对值三角不等式得|x-3|+|x-4|≥|x -3-x+4|=1, 所以|x-3|+|x-4|的最小值为1, 所以1<a,即a >1. 故选:A 【点睛】本题主要考查绝对值三角不等式求最值,考查不等式的有解问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.若存在x ,∈R ,使2x a 23x 1-+-≤成立,则实数a 的取值范围是( )A .[]75--,B .()57,C .[]57,D .][()57∞∞-⋃+,, 【答案】C 【解析】 【分析】先利用绝对值三角不等式求223x a x -+-的最小值,即得实数a 的取值范围. 【详解】由题得223=262|6|x a x x a x a -+--+-≥-, 所以|6|1,161,57a a a -≤∴-≤-≤∴≤≤. 故选C 【点睛】本题主要考查绝对值三角不等式和绝对值不等式的能成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.不等式|1||2|x x a +--<无实数解,则a 的取值范围是( ) A .(,3)-∞ B .(3,)-+∞ C .(,3]-∞- D .(,3)-∞-【答案】C 【解析】 【分析】利用绝对值不等式的性质||||||a b a b -≤-,因此得出||||a b -的范围, 再根据无实数解得出a 的范围。
高考数学压轴专题新备战高考《不等式选讲》真题汇编附答案
数学《不等式选讲》试卷含答案一、141.不等式222log 2log x x x x -<+的解集为( ) A .()1,2 B .()0,1C .()1,+∞D .()2,+∞【答案】C 【解析】 【分析】由题意得出0x >,分2log 0x >和2log 0x ≤两种情况讨论,结合222log 2log x x x x -<+可得出2log 0x >,解出该不等式即可.【详解】由题意得出0x >,当2log 0x ≤时,则222log 2log x x x x -=+. 当2log 0x >时,222log 2log x x x x -<+,解不等式2log 0x >得1x >. 因此,不等式222log 2log x x x x -<+的解集为()1,+∞. 故选:C. 【点睛】本题考查绝对值不等式的求解,同时也考查绝对值三角不等式的应用,考查推理能力与运算求解能力,属于中等题.2.设2sin1sin 2sin 222n n na =++⋅⋅⋅+,对任意正整数m 、n (m >n )都成立的是( ). A .12n m m a a -< B .12n m m a a ->C .12n m n a a -<D .12n m na a ->【答案】C 【解析】 【分析】先作差,再根据三角函数有界性放缩,进而根据等比数列求和确定选项. 【详解】212sin1sin 2sin sin(1)sin(2)sin 222222n m n n n n mn n n ma a a ++++=++⋅⋅⋅+∴-=++⋅⋅⋅+Q 12sin(1)sin(2)sin ||||222m n n n mn n ma a ++++∴-=++⋅⋅⋅+ 12sin(1)sin(2)sin ||||||222n n mn n m ++++≤++⋅⋅⋅+ 11211(1)11111122122222212n m n n n m n m n +-++-≤++⋅⋅⋅+==-<-故选:C 【点睛】本题考查三角函数有界性、等比数列求和以及放缩法,考查综合分析求解与论证能力,属中档题.3.设a >0,b >0,且ab -(a +b)≥1,则( ) A .a ++1) B .a ++1 C .a -1)2 D .a +b >+1)【答案】A 【解析】 【分析】2a b +.所以ab≤14 (a +b)2,所以14(a +b)2-(a +b)≥ab -(a +b)≥1,再解不等式 (a +b) 2-4(a +b)-4≥0得解. 【详解】2a b +.所以ab≤14(a +b)2. 所以14(a +b)2-(a +b)≥ab -(a +b)≥1. 所以(a +b) 2-4(a +b)-4≥0.因为a >0,b >0,所以a +b≥2+故答案为:A 【点睛】本题主要考查基本不等式和不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.4.设n *∈N) A>BC=D .不能确定【答案】B 【解析】 【分析】把两个代数式进行分子有理化,比较分母的大小可以比较出大小关系. 【详解】22-===.22-===.*n N∈42,31n n n n+>++>+>>><<成立,因此本题选B.【点睛】对于二次根式的加減运算,分母有理化是常见的运算要求,但是有时分子有理化会起到意想不到的作用,尤其是在比较二个二次根式减法算式之间的大小关系时,经常会用到分子有理化这个方法.当然不等式的性质也是很重要的.5.若关于x的不等式43x x a-++<有实数解,则实数a的取值范围是( ) A.(7,)+∞B.[)7,+∞C.(1,)+∞D.(1,7)【答案】A【解析】【分析】利用绝对值的意义可求得43x x-++的最小值为7,由此可得实数a的取值范围,得到答案.【详解】由题意43x x-++表示数轴上的x对应点到4和3-对应点的距离之和,其最小值为7,再由关于x的不等式43x x a-++<有实数解,可得7a>,即实数x的取值范围是(7,)+∞,故选A.【点睛】本题主要考查了绝对值的意义,以及函数绝对值不等式的有解问题,其中根据绝对值的意义,求得43x x-++的最小值为7是解得关键,着重考查了推理与运算能力,属于中档试题.6.空间中两条不相交的直线与另外两条异面直线都相交,则这两条直线的位置关系是()A.平行或垂直B.平行C.异面D.垂直【答案】C【解析】【分析】利用反证法证明得解. 【详解】不妨设空间中不相交的两条直线为a b ,,另外两条异面直线为c d ,, 由于a b ,不相交,故a b ,平行或异面, 设a c ,确定的平面为α.不妨设a b ∥,①当b α⊂时,则a b ,与直线d 的交点都在α内,故d α⊂,而这与c d ,为异面直线矛盾;②当b α⊄时,由a b ∥可知b P α,又c α⊂,故b c ,没有公共点,与b c ,相交矛盾. 由①②知假设a b ∥错误,故a b ,为异面直线. 故选C. 【点睛】本题主要考查异面直线的判定和反证法,意在考查学生对这些知识的理解掌握水平和分析推理能力.7.设,x y ∈R ,且0xy ≠,则222241x y y x ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为( )A .9-B .9C .10D .0【答案】B 【解析】 【分析】利用柯西不等式得出最小值. 【详解】 (x 224y +)(y 221x+)≥(x 12y x y ⋅+⋅)2=9.当且仅当xy 2xy=即xy= 时取等号. 故选:B . 【点睛】本题考查了柯西不等式的应用,熟记不等式准确计算是关键,属于基础题.8.设x ∈R ,则“31x <”是“1122x -<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】分别求解三次不等式和绝对值不等式确定x 的取值范围,然后考查充分性和必要性是否成立即可. 【详解】 由31x <可得1x <, 由1122x -<可得01x <<, 据此可知“31x <”是“1122x -<”的必要而不充分条件. 故选B . 【点睛】本题主要考查不等式的解法,充分性与必要性的判定等知识,意在考查学生的转化能力和计算求解能力.9.猜测使2n a n >对任意正整数n 恒成立的最小正整数a 的值为( ) A .2 B .3 C .4 D .5【答案】B 【解析】 【分析】由题意结合选项利用特殊值排除选项A ,然后利用数学归纳法证明选项B 正确即可. 【详解】注意到当2,4a n ==时,2n a n >不成立,则2a =不合题意, 当3a =时,不等式即23n n >, 当1n =时,不等式即31>, 当2n =时,不等式即94>,下面用数学归纳法证明该式对于*,3n N n ∈≥成立, 当3n =时,不等式即279>,明显成立, 假设()*3,n k k k N=≥∈时不等式成立,即23kk >,则当1n k =+时,123333k k k +=⋅>, 而()()222*31221k k k k k N-+=--∈,结合二次函数的性质可知,当2k >时,22221222210k k -->⨯-⨯->,故当*3,k k N ≥∈时,()()2222310,31k k k k -+>>+.综上可得,23n n >对任意的n 均成立. 则最小正整数a 的值为3. 故选:B . 【点睛】本题主要考查数学归纳法的应用,排除法处理选择题的技巧等知识,意在考查学生的转化能力和计算求解能力.10.已知,,x y z ∈R ,2221x y z ++=,则22x y z ++的最大值为( ) A .9 B .3C .1D .27【答案】B 【解析】 【分析】由已知2221x y z ++=,可利用柯西不等式2222222()()()a b c e f g ae bf cg ++++≥++,构造柯西不等式,即可求解.【详解】由已知,可知,,x y z ∈R ,2221x y z ++=,利用柯西不等式2222222()()()a b c e f g ae bf cg ++++≥++, 可构造得2222222(122)()(22)x y x x y z ++++≥++, 即2(22)9x y z ++≤,所以22x y z ++的最大值为3,故选B . 【点睛】本题主要考查了柯西不等式的应用,其中解答中熟记柯西不等式,合理构造柯西不等式求解是解答的关键,着重考查了推理与运算能力,属于中档试题.11.若关于x 的不等式|x-1|+|x-3|≤a 2-2a-1在R 上的解集为⌀,则实数a 的取值范围是( ) A .(-∞,-1)∪(3,+∞) B .(-∞,0)∪(3,+∞)C .(-1,3)D .[-1,3]【答案】C 【解析】 【分析】表示数轴上的对应点到1和3对应点的距离之和,其最小值为2,再由,解得的取值范围.【详解】表示数轴上的对应点到1和3对应点的距离之和,其最小值为2,由题意的解集为空集, 可得恒成立,所以有,整理得,解得,所以的范围是, 故选C. 【点睛】该题考查的是有关根据不等式的解集为求参数的取值范围的问题,在解题的过程中,注意对不等式的转化,对应恒成立问题向最值靠拢,属于简单题目.12.已知函数()f x 是R 上的增函数,它的图像经过点()0,2A -,()3,2B,则不等式()2f x ≥的解集为( )A .[]0,3B .(),3-∞C .[)3,+∞D .(][),03,-∞⋃+∞【答案】D 【解析】 【分析】首先不等式等价于()2f x ≥或()2f x ≤-,然后再根据函数的单调性解不等式. 【详解】不等式()()22f x f x ≥⇒≥或()2f x ≤-Q 函数()f x 是R 上的增函数,它的图像经过点()0,2A -,()3,2B ,()23f x x ∴≥⇒≥,()20f x x ≤-⇒≤∴不等式的解集是(][),03,-∞⋃+∞.故选:D 【点睛】本题考查根据函数的单调性解不等式,意在考查含绝对值不等的解法,考查基本计算能力,属于基础题型.13.设0x >,则()2142f x x x =--的最大值为( )A .4B .4C .不存在D .52【答案】D 【解析】 【分析】化简得到()214222x xf x x ⎛⎫=-++ ⎪⎝⎭,再利用均值不等式计算得到答案. 【详解】()2211544422222x x f x x x x ⎛⎫=--=-++≤-= ⎪⎝⎭当21222x x x ==即1x =时等号成立 故选:D 【点睛】本题考查了利用均值不等式求函数最值,意在考查学生对于均值不等式的灵活运用.14.对任意x ∈R ,不等式22|sin ||sin |x x a a +-≥恒成立,则实数a 的取值范围是( )A .01a ≤≤B .11a -≤≤C .12a -≤≤D .22a -≤≤【答案】B 【解析】 【分析】解法一:(换元法)设sin t x =,则原不等式可化为22||||t t a a +-≥.求函数()||||||f t t t t a =++-的最小值,从而不等式2||a a ≥可得11a -≤≤.解法二:(特殊值法)代入2a =, 1a =-,排除错误选项即可. 【详解】解:解法一:(换元法)设sin t x =,则原不等式可化为22||||t t a a +-≥.令()||||||f t t t t a =++-,则min [()](0)||f t f a ==, 从而解不等式2||a a ≥可得11a -≤≤.故选B . 解法二:(特殊值法)当2a =时,因为2|sin ||sin 2|2sin 2|sin |2|sin |2x x x x x +-=-+≥+≥, 当且仅当sin 0x =时,等号成立. 此时2|sin ||sin 2|4x x +-≥不恒成立, 所以2a =不合题意,可以排除C 、D .当1a =-时,因为2|sin ||sin 1|1sin 2|sin |1|sin |1x x x x x ++=++≥+≥, 当且仅当sin 0x =时,等号成立. 此时2|sin ||sin 1|1x x ++≥恒成立, 所以1a =-符合题意,可以排除A. 故选:B 【点睛】本题考查绝对值不等式的参数问题,属于中档题,利用函数求最值的方法或者特殊值排除法都可以解题.15.若,,a b c ∈R ,则下列结论中: (1)2211a a a a+≥+; (2)a b a c b c -≤-+-; (3)若a b >,则11a ba b>++;(4)若1a b +=,则2221a b a b +++的最小值为 其中正确结论的个数为( )A .1B .2C .3D .4【答案】B【解析】 【分析】利用函数知识、换元法、绝对值不等式等知识,对选项进行一一推理证明,即可得答案. 【详解】 对(1),2221111()()20a a a a a a a a +≥+⇔+-+-≥,∴12a a +≥或11a a+≤-, ∵12a a +≥或12a a+≤-,∴原不等式成立,故(1)正确;对(2),∵()()a b a c b c a c b c -=---≤-+-,故(2)正确; 对(3),令1,52a b =-=-,则51,114a b a b =-=++,显然11a b a b>++不成立,故(3)错误;对(4),∵1a b +=,∴222222(1)231111a b b b b a b b b b +-+++=+=+-+-,当1b >时,2301b b+<-,∴2221a b a b +++的最小值为4)错误. 故选:B. 【点睛】本题考查函数与不等式的知识,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意消元法、换元法的使用.16.已知()f x 是定义在R 上的偶函数,且在区间(],0-∞上单调递增,若实数m 满足321(log (211))(log )2f m f -+>,则m 的取值范围是( )A .13(,)(,)22-∞-+∞U )B .3(,)2-∞ C .1(,)2-+∞ D .13(,)22-【答案】D 【解析】 【分析】不等式等价于()()()3log 2111f m f -+>,利用函数是偶函数和其单调性可知()3log 2111m -+<,转化为解对数和含绝对值的不等式.【详解】()f x Q 是偶函数,()()21log 112f f f ⎛⎫∴=-= ⎪⎝⎭,即不等式等价于()()()3log 2111f m f -+>()3log 2110m -+≥Q ,Q ()f x 是定义在R 上的偶函数,且在区间(],0-∞上单调递增,()f x ∴在[)0,+∞单调递减, ()3log 2111m ∴-+<,即2113m -+<,整理为:212m -< ,2212m ∴-<-<,解得:1322m -<<.故选:D 【点睛】本题考查利用函数的性质解不等式,主要考查转化与化归的思想和计算能力,属于中档题型,一般利用函数是偶函数,并且已知函数在区间上的单调性时,()()()()1212f x f x f x f x >⇒>,然后利用()0,∞+或[)0,+∞的单调性解不等式.17.若不等式53x x a -+->恒成立,则a 的取值范围是( ) A .2a > B .2a ≥C .2a ≤D .2a <【答案】D 【解析】 【分析】先求出不等式53x x -+-的最小值,即可得解。
高考数学压轴专题最新备战高考《不等式选讲》基础测试题及答案
数学《不等式选讲》试卷含答案一、141.已知集合{|||2}A x x =≥,2{|30}B x x x =->,则A B =I ( ) A .∅B .{|3x x >或2}x ?C .{|3x x >或0}x <D .{|3x x >或0}x <【答案】B 【解析】 【分析】可以求出集合A ,B ,然后进行交集的运算即可. 【详解】∵A ={x |x ≤﹣2,或x ≥2},B ={x |x <0,或x >3}, ∴A ∩B ={x |x ≤﹣2,或x >3}. 故选:B . 【点睛】考查描述法的定义,绝对值不等式和一元二次不等式的解法,以及交集的运算.2.函数y =|x -3|-|x +1|的( ) A .最小值是0,最大值是4 B .最小值是-4,最大值是0 C .最小值是-4,最大值是4 D .没有最大值也没有最小值【答案】C 【解析】因为y =|x -3|-|x +1|4,322,134,1x x x x -≥⎧⎪=--<<⎨⎪≤-⎩,所以最小值是-4,最大值是4,选C.点睛:分段函数的最值由于分段函数在定义域不同的子区间上对应不同的解析式,因而求其最值的常用方法是先求出分段函数在每一个子区间上的最值,然后取各区间上最大值中的最大者作为分段函数的最大值,各区间上最小值中的最小者作为分段函数的最小值.3.猜测使2n a n >对任意正整数n 恒成立的最小正整数a 的值为( ) A .2 B .3C .4D .5【答案】B 【解析】 【分析】由题意结合选项利用特殊值排除选项A ,然后利用数学归纳法证明选项B 正确即可. 【详解】注意到当2,4a n ==时,2n a n >不成立,则2a =不合题意,当3a =时,不等式即23n n >, 当1n =时,不等式即31>, 当2n =时,不等式即94>,下面用数学归纳法证明该式对于*,3n N n ∈≥成立, 当3n =时,不等式即279>,明显成立, 假设()*3,n k k k N=≥∈时不等式成立,即23kk >,则当1n k =+时,123333k k k +=⋅>, 而()()222*31221k k k k k N-+=--∈,结合二次函数的性质可知,当2k >时,22221222210k k -->⨯-⨯->,故当*3,k k N ≥∈时,()()2222310,31k k k k -+>>+.综上可得,23n n >对任意的n 均成立. 则最小正整数a 的值为3. 故选:B . 【点睛】本题主要考查数学归纳法的应用,排除法处理选择题的技巧等知识,意在考查学生的转化能力和计算求解能力.4.若不等式23x a x -≤+对任意[]0,2x ∈恒成立,则实数a 的取值范围是( ) A .()1,3- B .[]1,3-C .()1,3D .[]1,3【答案】B 【解析】 【分析】将不等式去掉绝对值符号,然后变量分离转为求函数的最值问题. 【详解】不等式23x a x -≤+去掉绝对值符号得323x x a x --≤-≤+,即3223x x a x a x --≤-⎧⎨-≤+⎩对任意[]0,2x ∈恒成立, 变量分离得333a x a x ≤+⎧⎨≥-⎩,只需min max (33)(3)a x a x ≤+⎧⎨≥-⎩,即31a a ≤⎧⎨≥-⎩所以a 的取值范围是[]1,3- 故选:B 【点睛】本题考查绝对值不等式的解法和恒成立问题的处理方法,属于基础题.5.设2sin1sin 2sin 222n n na =++⋅⋅⋅+,对任意正整数m 、n (m >n )都成立的是( ). A .12n m ma a -< B .12n m ma a ->C .12n m na a -<D .12n m na a ->【答案】C 【解析】 【分析】先作差,再根据三角函数有界性放缩,进而根据等比数列求和确定选项. 【详解】212sin1sin 2sin sin(1)sin(2)sin 222222n m n n n n mn n n ma a a ++++=++⋅⋅⋅+∴-=++⋅⋅⋅+Q 12sin(1)sin(2)sin ||||222m n n n mn n ma a ++++∴-=++⋅⋅⋅+ 12sin(1)sin(2)sin ||||||222n n mn n m ++++≤++⋅⋅⋅+ 11211(1)11111122122222212n m n n n m n m n +-++-≤++⋅⋅⋅+==-<- 故选:C 【点睛】本题考查三角函数有界性、等比数列求和以及放缩法,考查综合分析求解与论证能力,属中档题.6.已知a ,b 均为正数,且20ab a b --=,则22214a b a b-+-的最小值为( )A .6B .7C .8D .9 【答案】B 【解析】 【分析】a ,b 均为正数,且ab ﹣a ﹣2b =0,可得21a b+=1,根据柯西不等式求出代数式的最小值即可. 【详解】∵a ,b 均为正数,且ab ﹣a ﹣2b =0, ∴21a b+=1. 则22214a b a b-+-24a =+b 2﹣1, 又因为2a +b =(21a b +)(2a +b )22b a a b=++2≥2+2=4,当且仅当a =4,b =2时取等号.∴(24a +b 2)(1+1)≥(2a +b )2≥16,当且仅当a =4,b =2时取等号.∴24a +b 2≥8, ∴224a a-+b 2214a b -=+b 2﹣1≥7.故选:B . 【点睛】本题考查“乘1法”、基本不等式的性质、柯西不等式,考查了推理能力与计算能力,属于中档题.7.已知a +b +c =1,且a , b , c >0,则 222a b b c a c +++++ 的最小值为( ) A .1 B .3C .6D .9【答案】D 【解析】2221,a b c a b b c c a ++=∴+++++Q ()1112++a b c a b b c c a ⎛⎫=⋅++ ⎪+++⎝⎭()()()()21111119a b b c c a a b b c c a ⎛⎫⎡⎤=+++++⋅++≥++= ⎪⎣⎦+++⎝⎭,当且仅当13a b c ===时等号成立,故选D.【易错点晴】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).8.在平面内,已知向量(1,0)a =v ,(0,1)b =v ,(1,1)c =v,若非负实数,,x y z 满足1x y z ++=,且23p xa yb zc =++v v v v,则( )A .p vB .p v的最大值为C .p vD .p v的最大值为【答案】A 【解析】 【分析】求出p v 的坐标,表示p v ,即:p v柯西不等式即可求得其最小值,问题得解. 【详解】因为()1,0a =v ,()0,1b =v ,()1,1c =v,所以23p xa yb zc =++v v v v=()3,23x z y z ++,又非负实数,,x y z 满足1x y z ++=,所以01z ≤≤,所以p v==5≥==≥=, 当且仅当()()31232,0x z y z z +⨯=+⨯=时,等号成立. 即:当且仅当41,,055x y z ===时,等号成立.所以p v, 故选A. 【点睛】本题主要考查了柯西不等式的应用,还考查了向量的模及坐标运算,考查构造能力,属于中档题.9.已知1a >,且函数()2224f x x x a x x a =-++-+.若对任意的()1,x a ∈不等式()()1f x a x ≥-恒成立,则实数a 的取值范围为( )A .[]4,25B .(]1,25C .(]1,16D .[]4,16【答案】C 【解析】 【分析】由题目得已知函数和要求解的不等式中都含有待求的参数,且已知函数中含有两个绝对值符号,直接求解难度很大,因此考虑用排除法,代值验证可得解. 【详解】当25a =时,()22252425f x x x x x =-++-+且22250,4250x x x x -+≥-+≥ 所以()23975f x x x =-+,此时()()1f x a x ≥-化为()24f x x ≥,即2397524x x x -+≥,所以212250x x -+≥在()1,25x ∈不是恒成立的.故A 、B 不对;当3a =时,()223243f x x x x x =-++-+,当()1,3x ∈时,2230,430x x x x -+>-+<,所以()()222324373f x x x x x x x =-+--+=-+-,此时()()1f x a x ≥-化成()27331x x x -+-≥-,即2530x x -+-≥满足()1,3x ∈恒成立,所以当3a =时成立, 故D 不对,C 正确; 故选C. 【点睛】本题考查了含绝对值不等式恒成立的问题,考查了小题小做的技巧方法,属于中档题.10.已知命题P:2log (1)1x -<;命题q:21x -<,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】先化简命题p 和q,再利用充要条件的定义判断得解. 【详解】由题得命题p:1<x <3,命题q:1<x <3. 所以命题p 是命题q 的充要条件. 故选C 【点睛】本题主要考查对数不等式和绝对值不等式的解法,考查充要条件的判断,意在考查学生对这些知识的理解掌握水平和分析推理能力.11.若关于x 的不等式|x-1|+|x-3|≤a 2-2a-1在R 上的解集为⌀,则实数a 的取值范围是( ) A .(-∞,-1)∪(3,+∞) B .(-∞,0)∪(3,+∞)C .(-1,3)D .[-1,3]【答案】C 【解析】【分析】表示数轴上的对应点到1和3对应点的距离之和,其最小值为2,再由,解得的取值范围.【详解】表示数轴上的对应点到1和3对应点的距离之和,其最小值为2,由题意的解集为空集, 可得恒成立,所以有,整理得,解得,所以的范围是, 故选C. 【点睛】该题考查的是有关根据不等式的解集为求参数的取值范围的问题,在解题的过程中,注意对不等式的转化,对应恒成立问题向最值靠拢,属于简单题目.12.设全集U =R ,已知23{|0}2x A x x +=>-,{||1|2}B x x =-<,则()U A B =I ð( ) A .3(,1)2-- B .(12]-, C .(23], D .[2)3,【答案】B 【解析】 【分析】解分式不等式求得集合A ,由此求得U A ð,解绝对值不等式求得集合B ,由此求得()U A B I ð.【详解】由A 中不等式变形得:()()2320x x +->, 解得:32x <-或2x >,即3,(2,)2A ⎛⎫=-∞-+∞ ⎪⎝⎭U ,∴U3A ,22⎡⎤=-⎢⎥⎣⎦ð, 由B 中不等式变形得:212x -<-<,解得:13x -<<,即1()3B =-,, ∴()(]12U A B =-I ,ð, 故选:B . 【点睛】本小题主要考查集合交集交集、补集的概念和运算,考查分式不等式、绝对值不等式的解法,属于基础题.13.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A 【解析】 【分析】 【详解】因为:1213p x x x +>⇔><-或,p ⌝:31x -≤≤;22:5656023q x x x x x ->⇔-+<⇔<<,q ⌝:23x x ≤≥或, 因此从集合角度分析可知p ⌝是q ⌝的充分不必要条件,选A.14.设0x >,则()2142f x x x=--的最大值为( ) A .242-B .42C .不存在D .52【答案】D 【解析】 【分析】化简得到()214222x xf x x ⎛⎫=-++ ⎪⎝⎭,再利用均值不等式计算得到答案. 【详解】()32221115444322222222x x x x f x x x x x ⎛⎫=--=-++≤-⋅⋅= ⎪⎝⎭当21222x x x ==即1x =时等号成立 故选:D 【点睛】本题考查了利用均值不等式求函数最值,意在考查学生对于均值不等式的灵活运用.15.“31a -<<”是“存在x ∈R ,使得|||1|2x a x -++<”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件【答案】C 【解析】【分析】设:31p a -<<,1:,|||2x R x a x q ∃∈-++<,考虑命题“若p 则q ”及其逆命题的真假后可得两者之间的条件关系. 【详解】设:31p a -<<,||:|1|2q x a x -++<,当31a -<<时,|||1|1x a x a -++≥+总成立,而12a +<, 故|||1|2x a x -++<在R 上有解,故,|||1|2x R x a x ∃∈-++<, 所以“若p 则q ”为真命题.若,|||1|2x R x a x ∃∈-++<,则()min21x a x >-++,由绝对值不等式可知11x a x a -++≥+,当且仅当()()10x a x --≤时等号成立, 所以1x a x -++的最小值为1a +,故21a >-即31a -<<,所以“若q 则p ”为真命题.综上,“31a -<<”是“存在x ∈R ,使得|||1|2x a x -++<”的充要条件. 故选:C. 【点睛】充分性与必要性的判断,可以依据命题的真假来判断,若“若p 则q ”是真命题,“若q 则p ”是假命题,则p 是q 的充分不必要条件;若“若p 则q ”是真命题,“若q 则p ”是真命题,则p 是q 的充分必要条件;若“若p 则q ”是假命题,“若q 则p ”是真命题,则p 是q 的必要不充分条件;若“若p 则q ”是假命题,“若q 则p ”是假命题,则p 是q 的既不充分也不必要条件.16.设不等式3412xx a +->-对所有的[1,2]x ∈均成立,则实数a 的取值范围是( )A .15a <-或47a >B .15a <-C .47a >或01a <<D .15a <-或1064a <<【答案】A 【解析】 【分析】根据不等式3412xx a +->-对所有的[1,2]x ∈均成立,取2x =时,可得2431a ->,解得15a <-或47a >,利用换元法把不等式换为281t a t ->-,分47a >和15a <-两种情况讨论2()81h t t t =+-的最大值即可求得实数a 的取值范围.【详解】解:因为不等式3412x x a +->-对所有的[1,2]x ∈均成立,当2x =时,312x +-有最大值31,不等式显然要成立,即2431a ->,解得15a <-或47a >, 当[1,2]x ∈时,令2[2,4]xt =∈, 则24[4,16]xt =∈,328[16,32]x t +=∈,所以3412x x a +->-等价于281t a t ->-,①当47a >时,即281a t t ->-在[2,4]t ∈恒成立, 即281()a t t h t >+-=,即求2()81h t t t =+-的最大值,max ()(4)47h t h ==,所以47a >; ②当15a <-时,281t a t ->-在[2,4]t ∈恒成立, 即281()a t t f t <-+=,即求2()81f t t t =-+的最小值,min ()(4)15f t f ==-;综上:15a <-或47a >. 故选:A 【点睛】本题考查利用二次函数的最值求绝对值不等式中的参数问题,利用换元法是关键,属于中档题.17.已知,,a b c R +∈ ,则()()()222222a abc b b ac c c ab -+-+- 的正负情况是( )A .大于零B .大于等于零C .小于零D .小于等于零【答案】B 【解析】 【分析】设0a b c >厖,所以333a b c 厖,根据排序不等式即可得出答案.【详解】设0a b c >厖,所以333a b c 厖根据排序不等式得333333a a b b c c a b b c c a ⋅+⋅+⋅++…又ab ac bc 厖,222a b c 厖,所以333222a b b c c a a bc b ca c ab ++++….所以444222a b c a bc b ca c ab ++++… 即()()()2222220aabc b b ac c c ab -+-+-….故选:B 【点睛】本题主要考查了排序不等式的应用,属于中档题.18.定义在R 上的偶函数()y f x =在[)0,+∞上递减,且()10f =,则满足12log 0f x ⎛⎫< ⎪⎝⎭的x 的取值范围是( )A .()10,2,2⎛⎫+∞ ⎪⎝⎭UB .()1,11,22⎛⎫ ⎪⎝⎭U C .()1,2,2⎛⎫-∞+∞ ⎪⎝⎭U D .()1,12,2⎛⎫⋃+∞ ⎪⎝⎭【答案】A【解析】【分析】 利用函数()f x 的奇偶性和单调性化简不等式12log 0f x ⎛⎫< ⎪⎝⎭,得到12log 1x >,解绝对值不等式和对数不等式,求得x 的取值范围.【详解】偶函数()y f x =在[)0,+∞上递减,且()10f =, 所以()y f x =在(),0-∞上递增,且()10f -=,且距离对称轴越远,函数值越小,由12log 0f x ⎛⎫< ⎪⎝⎭可得12log 1x >, 所以12log 1x >或12log 1x <-,解可得,102x <<或2x >. 故选:A.【点睛】 本小题主要考查利用函数的奇偶性的单调性解抽象函数不等式,考查绝对值不等式、对数不等式的解法,属于中档题.19.为使关于x 的不等式|x -1|+|x -2|≤a 2+a +1(a ∈R)的解集在R 上为空集,则a 的取值范围是( )A .(0, 1)B .(-1, 0)C .(1, 2)D .(-∞, -1)【答案】B【解析】由绝对值几何意义可知,最小值为1,则当,即时,满足题意20.设n *∈N 43n n ++21n n ++ )A 4321n n n n ++>++B 4321n n n n ++++C 4321n n n n ++=++D .不能确定 【答案】B【解析】【分析】把两个代数式进行分子有理化,比较分母的大小可以比较出大小关系.【详解】22-===.22-===.*n N∈42,31n n n n+>++>+>>><<成立,因此本题选B.【点睛】对于二次根式的加減运算,分母有理化是常见的运算要求,但是有时分子有理化会起到意想不到的作用,尤其是在比较二个二次根式减法算式之间的大小关系时,经常会用到分子有理化这个方法.当然不等式的性质也是很重要的.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广州市高考数学提分专练:第23题不等式选讲(选考题)D卷
姓名:________ 班级:________ 成绩:________
一、解答题 (共12题;共120分)
1. (10分) (2019高三上·洛阳期中) 已知函数.
(1)求不等式的解集;
(2)若的最大值为,、、为正数且,求证:.
2. (10分)(2017·襄阳模拟) 已知函数f(x)=|x|+|x+1|.
(1)若∀x∈R,恒有f(x)≥λ成立,求实数λ的取值范围;
(2)若∃m∈R,使得m2+2m+f(t)=0成立,试求实数t的取值范围.
3. (10分) (2018高三上·重庆期末) 已知关于的不等式有解。
(I)求实数的取值范围;
(II)已知,证明:。
4. (10分)(2017·厦门模拟) 设函数f(x)=|x+ |+|x﹣2a|.
(1)证明:f(x)≥2 ;
(2)若a>0,且f(2)<5,求a的取值范围.
5. (10分) (2016高三上·成都期中) 已知关于x的不等式|x+1|+|x﹣1|<4的解集为M.
(1)设Z是整数集,求Z∩M;
(2)当a,b∈M时,证明:2|a+b|<|4+ab|.
6. (10分)(2017·南阳模拟) 设函数f(x)=|2x﹣a|+|x+a|(a>0).
(1)当a=1时,求f(x)的最小值;
(2)若关于x的不等式在x∈[1,2]上有解,求实数a的取值范围.
7. (10分)当x∈[0,1]时,不等式ax3﹣x2+4x+3≥0恒成立,求实数a的取值范围.
8. (10分) (2015高三上·天水期末) 已知函数.
(1)函数f(x)在区间(0,+∞)上是增函数还是减函数?证明你的结论;
(2)当x>0时,恒成立,求整数k的最大值;
(3)试证明:(1+1•2)•(1+2•3)•(1+3•4)•…•(1+n(n+1))>e2n﹣3.
9. (10分) (2018高二上·嘉兴期末) 已知,, .
(1)求证:;
(2)求的最小值.
10. (10分)已知函数f(x)=|2x﹣1|+|x+1|.
(1)解不等式f(x)<4;
(2)若存在实数x0,使得f(x0)<log2 成立,求实数t的取值范围.
11. (10分) (2017高二下·宾阳开学考) 设f(x)=|x﹣3|+|x﹣4|.
(1)解不等式f(x)≤2;
(2)若存在实数x满足f(x)≤ax﹣1,试求实数a的取值范围.
12. (10分)(2016·江苏) 【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.(1)
A.【选修4—1几何证明选讲】
如图,在△ABC中,∠ABC=90°,BD⊥AC,D为垂足,E是BC的中点,求证:∠EDC=∠ABD.
(2)
B.【选修4—2:矩阵与变换】
已知矩阵A= 矩阵B的逆矩阵B﹣1= ,求矩阵AB.
(3)
【选修4—4:坐标系与参数方程】在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(为参数).设直线l与椭圆C相交于A,B两点,求线段AB的长.
(4)
D. 设a>0,|x﹣1|<,|y﹣2|<,求证:|2x+y﹣4|<a.
二、真题演练 (共3题;共30分)
13. (10分) (2016高一下·揭阳期中) 已知f(x)=x2﹣ax,g(x)=lnx,h(x)=f(x)+g(x)
(1)若f(x)≥g(x)对于公共定义域内的任意x恒成立,求实数a的取值范围;
(2)设h(x)有两个极值点x1,x2,且x1∈(0,),若h(x1)﹣h(x2)>m恒成立,求实数m的最大值.
14. (10分)(2017·四川模拟) 设不等式|x+1|+|x﹣1|≤2的解集为M.
(Ⅰ)求集合M;
(Ⅱ)若x∈M,|y|≤ ,|z|≤ ,求证:|x+2y﹣3z|≤ .
15. (10分)已知函数f(x)=|x+2|﹣2|x﹣1|
(1)解不等式f(x)≥﹣2;
(2)对任意x∈[a,+∞),都有f(x)≤x﹣a成立,求实数a的取值范围.
参考答案一、解答题 (共12题;共120分)
1-1、
1-2、
2-1、
2-2、
3-1、4-1、
4-2、5-1、5-2、
6-1、6-2、
7-1、8-1、
8-2、
8-3、9-1、9-2、10-1、10-2、11-1、
11-2、
12-1、12-2、
12-3、12-4、
二、真题演练 (共3题;共30分) 13-1、
13-2、
14-1、
15-1、
第11 页共11 页。