九年级数学中考复习-函数及其图像专题-二次函数的图像1教案
九年级数学中考一轮复习教学案:第12课时 二次函数的图像与性质(一)
第12课时 二次函数的图像与性质(一)【复习目标】1.通过对实际问题的分析,体会二次函数的意义.2.会用描点法画出二次函数的图象,通过图象了解二次函数的性质.3.会用配方法将数字系数的二次函数的解析式化为y =a(x -h)2+k 的形式,并能由此得到二次函数图象的顶点坐标,知道图象的开口方向,会画出图象的对称轴,知道二次函数的增减性,并掌握二次函数图象的平移规律.【知识梳理】1.一般地,形如_______的函数叫做二次函数,当a_______ ,b________时,是一次函数. 2.二次函数y =ax 2+bx +c 的图象是_______,对称轴是_______,顶点坐标是_______. 3.抛物线的开口方向由a 确定,当a>0时,开口_______;当a<0时,开口_______;越大,开口越_______.4.抛物线与y 轴的交点坐标为_______.当c>0时,与y 轴的_______半轴有交点;当c<0时,与y 轴的_______半轴有交点;当c =0时,抛物线过________. 5.若a_______0,当x =2ba -时,y 有最小值,为_______; 若a_______0,当x =2ba-时,y 有最大值,为_______.6.当a>0时,在对称轴的左侧,y 随x 的增大而_______,在对称轴的右侧,y 随x 的增大而_______;当a<0时,在对称轴的左侧,y 随x 的增大而_______,在对称轴的右侧.y 随x 的增大而_______.7.当m>0时,二次函数y =ax 2的图象向_______平移_______个单位得到二次函数y =a (x +m)2的图象;当k>0时,二次函数y =ax 2的图象向_______平移_______个单位得到二次函数y =ax 2+k 的图象.平移的口诀:左“+”右 “-”;上“+”下“-”.【考点例析】考点一 二次函数的有关概念例1已知二次函数y =x 2-4x +5的顶点坐标为 ( ) A .(-2,-1) B .(2,1) C .(2,- 1)D (-2,1)提示由配方可得y=x2-4x+5=(x-2)2+1,从而求得抛物线的顶点坐标.考点二抛物线的平移例2 将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为 ( )A.y=3(x+2)2+3 B.y=3(x-2)2+3C.y=3(x+2)2-3 D.y=3(x-2)2-3提示由平移规律“上加下减.左加右减”,根据抛物线y=3x2向上平移3个单位,再向左平移2个单位得到平移后抛物线的解析式.考点三同一坐标系下二次函数与其他函数图象的共存问题例 3 在同一坐标系中°一次函数y=ax+1与二次函数y=x2+a的图象可能是( )提示本题主要考查一次函数和二次函数图象位置的确定,由一次函数y=ax+1可知其图象经过(0,1),与y轴交于正半轴.又二次函数y=x2+a.当a>0时,一次函数经过第一、二、三象限,二次函数图象的开口向上,顶点在y轴正半轴上,没有选项符合;当a<0时,一次函数的图象经过第一、二、四象限.二次函数开口向上,顶点在y轴负半轴上,从而确定正确选项.考点四利用二次函数的增减性比较坐标大小例4设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+m上的三点,则y1、y2、y3的大小关系为 ( )A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y2>y1>y3提示本题根据二次函数图象在对称轴两边的增减性解题,要注意所有点必须先放在对称轴同一侧,然后进行比较.【反馈练习】1.抛物线y=-2x2+1的对称轴是 ( )A.直线y=12B.直线x=-12C.y轴D.直线x=22.已知二次函数y=2(x-3)2+1,下列说法:①其图象的开口向下;②其图象的对称轴为直线x=-3;③其图象的顶点坐标为(3,-1);④当x<3时,y随x的增大而减小.其中说法正确的有 ( )A.1个B.2个C.3个D.4个3.抛物线y=(x+2)2-3可以由抛物线y=x2平移得到,则下列平移过程正确的是 ( ) A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位4.(2012.上海)将抛物线y=x2+x向下平移2个单位.所得新抛物线的解析式是________.5.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x-1)2+1的图象上,若x1>x2>1,则y1_______y2.6.已知二次函数y=-12x2-x+32.(1)在给定的直角坐标系中,画出这个函数的图象;(2)根据图象,写出当y<0时,x的取值范围;(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式.。
二次函数及其图像教案
二次函数及其图像教案一、教学目标:1. 让学生理解二次函数的概念,掌握二次函数的一般形式;2. 培养学生利用配方法、顶点式求解二次函数的能力;3. 让学生熟悉二次函数的图像特点,理解二次函数图像与系数之间的关系;4. 培养学生解决实际问题的能力,提高学生对二次函数的应用意识。
二、教学内容:1. 二次函数的概念及一般形式;2. 配方法求解二次函数;3. 顶点式求解二次函数;4. 二次函数的图像特点;5. 二次函数图像与系数之间的关系。
三、教学重点与难点:1. 教学重点:二次函数的概念、一般形式,配方法、顶点式求解二次函数,二次函数的图像特点;2. 教学难点:配方法、顶点式求解二次函数的运用,二次函数图像与系数之间的关系。
四、教学方法:1. 采用问题驱动法,引导学生探究二次函数的性质;2. 利用数形结合法,让学生直观地理解二次函数的图像特点;3. 运用实例分析法,培养学生解决实际问题的能力。
五、教学过程:1. 导入新课:通过复习一次函数、正比例函数的图像,引导学生思考二次函数的概念及图像特点;2. 讲解二次函数的概念及一般形式,让学生掌握二次函数的基本知识;3. 运用配方法求解二次函数,让学生理解配方法的原理及步骤;4. 运用顶点式求解二次函数,让学生掌握顶点式的运用方法;5. 分析二次函数的图像特点,让学生了解二次函数图像的形状及对称性;6. 探讨二次函数图像与系数之间的关系,让学生理解系数对图像的影响;7. 运用实例分析,让学生解决实际问题,提高应用意识;8. 课堂小结,梳理本节课的主要知识点;9. 布置作业,巩固所学内容。
六、教学活动:1. 让学生通过数学软件或图形计算器绘制二次函数图像,观察图像与系数之间的关系;2. 组织小组讨论,让学生分享各自绘制二次函数图像的心得,探讨如何快速判断二次函数的图像特点;3. 安排课堂练习,让学生运用所学知识解决实际问题,如:抛物线射击、最大(小)值问题等。
初中数学_二次函数复习(1)教学设计学情分析教材分析课后反思
九年级人教版《二次函数复习》教学设计一、教材分析二次函数是中考的重点内容之一,二次函数的应用是培养学生数学建模和数学思想的重要素材,是每年必考的压轴题。
本部分包括了初中代数的所有数学思想和方法,复习时必须高度重视。
二次函数在学习函数内容上起着承上启下的作用,与前面学习的二次三项式、一元二次方程有着密切联系,为今后学习高中的函数和不等式打下基础,积累经验,提供可以借鉴的方法。
通过对二次函数的复习,加深学生对函数知识的理解和应用。
二、复习目标:知识与技能:1、理解二次函数的意义,会画二次函数的图象,会求二次函数的解析式。
2、会用配方法把二次函数的表达式化为顶点式,并能利用性质解决简单的实际问题,体会模型思想。
3、会利用二次函数的图象求一元二次方程的近似解。
过程与方法:1、通过观察、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力。
2、学生亲自经历巩固二次函数相关知识点的过程,体会利用数形结合线索解决问题策略的多样性。
情感、态度与价值观:经历探索二次函数相关题目的过程,体会数形结合思想、化归思想在数学中的广泛应用,同时感受数学知识来源于实际生活,反之,又服务于实际生活.复习重点:二次函数的图象、性质和应用。
复习难点:二次函数的应用和图象法解一元二次方程。
二、教材处理针对初四复习时间紧、任务重的实际情况,我决定利用以题代纲的复习方法,以问题组的形式展开复习,每一道题让学生说出知识点和考点及其解题的思路,每一部分在整个知识体系中的位置等等,刚开始学生说不全,其他同学再补充,时间长了,学生就能掌握。
在复习时将二次函数部分分为四个模块,(一)二次函数的图象和性质(二)二次函数的平移(三)二次函数解析式的求法(四)二次函数的应用。
对学生容易出错的知识点,可进行形式多样的变式练习,以提高学生运用知识分析问题、解决实际问题的能力。
三、教法分析以题代纲,梳理知识;查漏补缺,讲练结合;归纳总结,提升能力。
二次函数及其图像 教案
课题26.1二次函数及其图像教学目标重点难点教学方法教具知识技能1、认识理解二次函数的定义及其开口方向,顶点,对称轴。
2、会用描点法画二次函数的图象。
3、二次函数图象性质。
数学思考解决问题情感态度1、在对称图形的探索过程中,体会建模思想。
2、通过画图活动,体验数形结合思想。
3、体会从实践中来,到实践中去的认识论规律。
1、通过画图活动,体验数形结合思想。
2、学生自主动手操作描绘函数图像,加深对函数性质的理解。
3、借助几何画板展示二次函数的图像哪些性质由哪些系数决定的。
1.通过对称和平移图像发现数学的规律美。
2.在探究活动中,体验应用所学知识解决实际问题后成功的快乐。
1、二次函数的定义和定义域。
2、二次函数图象的平移。
3、图像与二次函数解析式的对应关系。
如何把图像的顶点,对称轴与二次函数解析式的对应关系联系起来。
1、教法说明:以教学目标为框架,让学生初步掌握将实际问题转化为数学模型,解决问题的方法,和渗透数形结合思想。
2、学法指导:主要用渗透式教给学生观察、抓关键的方法;用发现式教学生自己发现规律,回归问题,形成新知识。
3、教学手段:(1)借助多媒体教学描绘函数的图像,提高教学效率,增强教学效果。
(2)通过例题和练习题,让学生自己动手描绘图像,加深对函数图像和函数相关性质的理解。
黑板、课件、多媒体课室等教学过程教学环节教学内容教师活动学生活动引入回忆如何描绘一次函数的图像。
题目:画出y=2x+3函数图象。
1、启发学生回忆如何描绘一次函数的图像。
2、总结如何画函数图象:先列表格后描点画图.回忆如何描绘一次函数的图像,并在练习本上画出一次函数的图像提出新问题画函数y=x²-2x+3图象。
结合引入,指导学生对新问题的注意。
1、并观察学生画y=x²-2x+3图象的情况。
学生思考如何画函数y=x²-2x+3的图象。
导入新题二次函数的定义1、展现函数y=x²-2x+3图象。
初中数学_二次函数图象与性质的复习(第1课时)教学设计学情分析教材分析课后反思
“二次函数图象与性质的复习”( 第1课时)教学设计一、教学目标1.通过本节教与学的活动,使学生掌握二次函数的定义、图象和性质,并达到灵活应用。
2.通过专题练习,达到知识的熟练运用,并在解决问题的过程中培养分类讨论、数形结合、划归与转化、函数与方程的思想.3.通过具体问题的解决,培养学生思维的深刻性。
二、教学重、难点重点:掌握二次函数的图象和性质,并熟练应用;学生掌握分类讨论、数形结合、划归与转化、函数与方程的思想。
难点:分类讨论、数形结合、划归与转化、函数与方程的思想的掌握。
三、支持条件分析教学中恰当利用PPT 的演示功能四、教学过程设计活动一:出示二次函数图象,引入课题。
引入:这是什么的图象?设计目的:以二次函数图象直接引入课题,让学生明确本节课的学习任务。
问题(1)二次函数的定义:例:下列函数是二次函数的有_________________(填序号)221)1(x y -=;22)2(xy =;c bx ax y ++=2)3(;122)4(23-+=x x y ;(5) y=2(x+3)2-2x 2.设计目的:一、让学生明确学习函数的顺序:定义、图象与性质、应用。
二、巩固了二次函数的定义知识。
活动方式:学生口答,引导学生归纳:1)等式右边是一个整式;(2)在辨析一个函数是不是二次函数时,若二次项系数含有字母,须注明它不等于0;(3)等式右边化到最简,须满足最高次项的次数是二次。
活动二:根据函数图象,回忆与二次函数有关的性质设计目的:学生通过独立思考与小组合作交流形式复习二次函数的基础知识,有助于学生整理零碎、杂乱的知识,做到知识的梳理、整化、强化,加深理解。
活动方式:学生口答,教师板书知识框架的方式。
主要研究开口方向、对称轴、顶点、最值情况、增减性、与坐标轴交点、平移这些性质,使学生意识到数形结合思想。
其中在解析式这一环节找一生板书,并采用口答形式说出另两种求解析式的方法。
教师总结:对于二次函数的图象与性质,我们一般就从开口方向、对称轴、顶点、最值情况、增减性、与坐标轴交点、平移等方面来进行分析,并指出顶点式中的三种特殊形式。
二次函数及其图像教案
二次函数及其图像教案教学目标:1. 理解二次函数的概念和一般形式;2. 学会求解二次方程;3. 能够绘制二次函数的图像并理解其性质;4. 能够应用二次函数解决实际问题。
教学内容:第一章:二次函数的概念1.1 引入二次函数的概念1.2 二次函数的一般形式1.3 二次函数的图像特点第二章:求解二次方程2.1 引入二次方程的概念2.2 求解二次方程的公式2.3 求解二次方程的步骤第三章:绘制二次函数的图像3.1 绘制二次函数图像的方法3.2 二次函数图像的性质3.3 特殊情况下二次函数图像的特点第四章:二次函数的顶点4.1 顶点的概念4.2 顶点的求解方法4.3 顶点对二次函数图像的影响第五章:二次函数的单调性5.1 单调性的概念5.2 判断二次函数单调性的方法5.3 单调性对二次函数图像的影响教学方法:1. 采用讲授法,讲解二次函数的概念、一般形式、图像特点等内容;2. 采用案例分析法,通过具体例子讲解求解二次方程的步骤和方法;3. 采用实践操作法,引导学生动手绘制二次函数的图像,观察其性质;4. 采用小组讨论法,让学生分组讨论二次函数的顶点和单调性,并进行交流分享。
教学评价:1. 课堂问答:通过提问的方式检查学生对二次函数概念的理解程度;2. 练习题:布置相关的练习题,检查学生对二次方程求解方法的掌握情况;3. 图像绘制:让学生独立绘制二次函数的图像,并分析其性质,检查学生对图像特点的理解程度;4. 小组讨论:评价学生在小组讨论中的表现,检查学生对二次函数顶点和单调性的理解程度。
教学资源:1. 教学PPT:展示二次函数的概念、一般形式、图像特点等内容;2. 练习题:提供相关的练习题供学生练习;3. 图像绘制工具:如几何画板等,用于学生绘制二次函数的图像;4. 小组讨论材料:提供相关材料供学生在小组讨论中参考。
教学步骤:第一章:1.1 引入二次函数的概念:通过举例说明二次函数的定义;1.2 二次函数的一般形式:介绍一般形式的表达式;1.3 二次函数的图像特点:分析二次函数图像的开口方向、顶点位置等特点。
九年级下册《二次函数的图像与性质》数学教案
九年级下册《二次函数的图像与性质》数学教案标题:九年级下册《二次函数的图像与性质》数学教案
一、教学目标
1. 知识目标:理解并掌握二次函数的概念、图像及其性质。
2. 技能目标:能够通过描点法绘制二次函数图像,通过观察图像判断函数的性质。
3. 情感态度价值观目标:培养学生分析问题、解决问题的能力,提高他们对数学的兴趣。
二、教学重难点
1. 教学重点:理解和掌握二次函数的图像和性质。
2. 教学难点:通过图像理解和应用二次函数的性质。
三、教学方法
采用启发式教学法、讲授法和实践操作法相结合的方式进行教学。
四、教学过程
1. 导入新课:通过复习一次函数的知识,引导学生思考如何将一次函数推广到二次函数,激发学生的学习兴趣。
2. 新课讲解:
(1) 二次函数的概念和表达式;
(2) 二次函数的图像:a>0, a=0, a<0三种情况下的图像特征;
(3) 二次函数的性质:顶点坐标、对称轴、开口方向等。
3. 实践操作:让学生分组合作,通过描点法绘制不同类型的二次函数图像,并讨论其性质。
4. 总结反馈:教师总结本节课的主要内容,对学生的表现进行反馈。
五、作业布置
设计一些习题,包括画图题和计算题,以帮助学生巩固所学知识。
六、教学反思
在教学结束后,反思本节课的教学效果,找出存在的问题,以便改进。
九年级二次函数一轮复习教案-图像性质、系数、解析式
精锐教育学科教师辅导讲义学员编号:年级: 九年级课时数:3学员姓名:辅导科目:数学学科教师:许晶晶授课类型C二次函数的图像与性质C 二次函数的图像与系数的关系C二次函数解析式的求法授课日期时段教学内容一、专题精讲1.二次函数的定义:形如cbxaxy++=2(a≠0,a,b,c为常数)的函数为二次函数.2.二次函数的图象及性质:⑴二次函数y=ax2(a≠0)的图象是一条抛物线,其顶点是原点,对称轴是y轴;当a>0时,抛物线开口向上,顶点是最低点;当a<0时,抛物线开口向下,顶点是最高点;a越小,抛物线开口越大.y=a(x-h)2+k的对称轴是x=h,顶点坐标是(h,k)。
⑵二次函数cbxaxy++=2的图象是一条抛物线.顶点为(-2ba,244ac ba-),对称轴x=-2ba;当a>0时,抛物线开口向上,图象有最低点,且x>-2ba,y随x的增大而增大,x<-2ba,y随x的增大而减小;当a<0时,抛物线开口向下,图象有最高点,且x>-2ba,y随x的增大而减小,x<-2ba,y随x的增大而增大.注意:分析二次函数增减性时,一定要以对称轴为分界线。
首先要看所要分析的点是否是在对称轴同侧还是异侧,然后再根据具体情况分析其大小情况。
解题小诀窍:二次函数上两点坐标为(yx,1),(yx,2),即两点纵坐标相等,则其对称轴为直线221xxx+=。
⑶当a>0时,当x=-2ba时,函数有最小值244ac ba-;当a<0时,当 x=-2ba时,函数有最大值244ac b a-。
3.图象的平移:将二次函数y=ax 2 (a ≠0)的图象进行平移,可得到y=ax 2+c ,y=a(x -h)2,y=a(x -h)2+k 的图象.⑴ 将y=ax 2的图象向上(c >0)或向下(c< 0)平移|c|个单位,即可得到y=ax 2+c 的图象.其顶点是(0,c ),形状、对称轴、开口方向与抛物线y=ax 2相同.⑵ 将y=ax 2的图象向左(h<0)或向右(h >0)平移|h|个单位,即可得到y=a(x -h)2的图象.其顶点是(h ,0),对称轴是直线x=h ,形状、开口方向与抛物线y=ax 2相同.⑶ 将y=ax 2的图象向左(h<0)或向右(h >0)平移|h|个单位,再向上(k>0)或向下(k<0)平移|k|个单位,即可得到y=a(x -h)2+k 的图象,其顶点是(h ,k ),对称轴是直线x=h ,形状、开口方向与抛物线y=ax 2相同.注意:二次函数y=ax 2 与y=-ax 2的图像关于x 轴对称。
二次函数及其图像教案
二次函数及其图像教案第一章:引言1.1 学习目标了解二次函数的概念和重要性理解二次函数的一般形式能够列出二次函数的几个特殊形式1.2 教学内容二次函数的定义二次函数的一般形式:f(x) = ax^2 + bx + c二次函数的特殊形式:f(x) = a(x h)^2 + k1.3 教学活动引入二次函数的概念,通过实际例子让学生感受二次函数的存在引导学生通过观察和分析实际例子,总结出二次函数的一般形式讲解二次函数的特殊形式,并让学生通过图形直观地理解特殊形式的含义1.4 作业与练习完成练习题,包括识别和转换二次函数的一般形式和特殊形式第二章:二次函数的图像2.1 学习目标了解二次函数图像的特点和性质能够绘制二次函数的图像能够从图像中获取二次函数的信息2.2 教学内容二次函数图像的形状:开口向上/向下二次函数图像的顶点:最小值/最大值二次函数图像的对称轴2.3 教学活动讲解二次函数图像的形状,通过实际例子让学生观察和理解开口向上/向下的情况引导学生通过观察和分析实际例子,找出二次函数图像的顶点和对称轴让学生通过绘制二次函数图像,进一步理解和掌握二次函数图像的性质2.4 作业与练习完成练习题,包括绘制给定二次函数的图像和分析图像的性质第三章:二次函数的性质3.1 学习目标了解二次函数的增减性和奇偶性能够分析二次函数的增减区间和奇偶性3.2 教学内容二次函数的增减性:开口向上/向下的影响二次函数的奇偶性:f(x) = f(-x)3.3 教学活动讲解二次函数的增减性,通过实际例子让学生观察和理解开口向上/向下的影响引导学生通过观察和分析实际例子,判断二次函数的奇偶性让学生通过绘制二次函数图像,进一步理解和掌握二次函数的增减性和奇偶性3.4 作业与练习完成练习题,包括分析给定二次函数的增减性和奇偶性第四章:二次函数的应用4.1 学习目标了解二次函数在实际问题中的应用能够将实际问题转化为二次函数问题能够求解二次函数问题4.2 教学内容二次函数在实际问题中的应用:面积、体积、最值等求解二次函数问题:解方程、求极值等4.3 教学活动讲解二次函数在实际问题中的应用,通过实际例子让学生理解和掌握引导学生将实际问题转化为二次函数问题,并求解让学生通过实际问题,进一步理解和掌握二次函数的应用4.4 作业与练习完成练习题,包括解决给定的实际问题,转化为二次函数问题并求解第五章:总结与复习5.1 学习目标总结二次函数及其图像的主要内容和性质巩固所学的知识和技能5.2 教学内容回顾二次函数及其图像的定义、性质和应用巩固二次函数的图像绘制和分析方法5.3 教学活动引导学生回顾和总结二次函数及其图像的主要内容和性质让学生通过绘制和分析二次函数图像,巩固所学的知识和技能5.4 作业与练习完成练习题,包括绘制和分析给定的二次函数图像第六章:二次函数的图像分析6.1 学习目标学会使用二次函数图像分析问题能够通过图像确定函数的零点能够判断函数的增减区间6.2 教学内容利用图像确定二次函数的零点判断二次函数的增减区间分析二次函数的顶点坐标的实际意义6.3 教学活动讲解如何通过图像确定二次函数的零点引导学生观察图像判断函数的增减区间分析顶点坐标与实际问题的关系6.4 作业与练习完成练习题,包括通过图像确定二次函数的零点和判断增减区间第七章:二次函数与一元二次方程7.1 学习目标理解二次函数与一元二次方程的关系学会通过函数图像求解一元二次方程能够利用一元二次方程求解函数的零点7.2 教学内容二次函数与一元二次方程的转化关系利用函数图像求解一元二次方程一元二次方程的求解方法7.3 教学活动讲解二次函数与一元二次方程的转化关系引导学生利用函数图像求解一元二次方程讲解一元二次方程的求解方法7.4 作业与练习完成练习题,包括将一元二次方程转化为二次函数图像求解第八章:二次函数的实际应用8.1 学习目标学会将实际问题转化为二次函数问题能够利用二次函数求解实际问题能够分析实际问题的最优解8.2 教学内容实际问题与二次函数的转化方法利用二次函数求解实际问题分析实际问题的最优解8.3 教学活动讲解如何将实际问题转化为二次函数问题引导学生利用二次函数求解实际问题分析实际问题的最优解8.4 作业与练习完成练习题,包括将实际问题转化为二次函数问题并求解第九章:二次函数的综合应用9.1 学习目标学会将二次函数与其他数学知识综合应用能够解决复杂的二次函数问题能够分析二次函数在实际问题中的应用9.2 教学内容二次函数与其他数学知识的综合应用解决复杂的二次函数问题分析二次函数在实际问题中的应用9.3 教学活动讲解如何将二次函数与其他数学知识综合应用引导学生解决复杂的二次函数问题分析二次函数在实际问题中的应用9.4 作业与练习完成练习题,包括将二次函数与其他数学知识综合应用解决实际问题第十章:总结与复习10.1 学习目标总结二次函数及其图像的主要内容和性质巩固所学的知识和技能10.2 教学内容回顾二次函数及其图像的定义、性质和应用巩固二次函数的图像绘制和分析方法10.3 教学活动引导学生回顾和总结二次函数及其图像的主要内容和性质让学生通过绘制和分析二次函数图像,巩固所学的知识和技能10.4 作业与练习完成练习题,包括绘制和分析给定的二次函数图像重点解析本文主要介绍了二次函数及其图像的相关知识和应用。
二次函数的图像与性质(教案)
二次函数的图像与性质(教案)教学目标:一. 知识与技能:1. 通过对二次函数性质习题的讲评,使学生熟练掌握二次函数的图像与性质2. 懂得从图像中获取有关的性质信息。
3. 使学生会通过图像求二次函数的解析式。
二. 过程与方法:通过数形结合理解二次函数的性质。
三. 情感态度与价值观:培养数形结合思想,体验函数具体解决现实问题的功能。
教学重点:如何在图像中获取有用的信息。
教学难点:性质的综合应用 教学过程:一. 引入:华罗庚说过:“数缺形时少直观,形少数时难入微”要真正的研究数学就应该数形结合,研究函数就是用数形结合的思想二次函数是函数问题中的主要内容,中考试题中年年考查,可以出简单题、中档题甚至于综合性难题,但实际上有相当一部分的题型都跟二次函数的图像与性质有关,本节课通过对我们做过的习题进行讲评,使同学们熟练掌握二次函数的图像与性质二.讲评: 一. 抛物线y=ax²+bx+c(a≠0)的性质: 1.图像位置一题.5. 在同一坐标系中,函数y=-x-1和y=x²+2x+1 的图像可能是()总结抛物线()20y ax bx c a =++≠的性质:b 同号 b=0 b 异号 0 040ac 40ac = 抛物线与40ac抛物线与A. C.24,24b ac b a a ⎛⎫-- ⎪⎝⎭ 决定顶点位置 0a 时,顶点纵坐标244ac b a-是二次函数的最小值。
0a 时,顶点纵坐标244ac b a-是二次函数的最大值。
242b b aca -±- 决定抛物线与x 轴交点的横坐标 当0y =时,即20ax bx c ++=,则抛物线与x轴的交点坐标为2244,0,,022b b ac b b ac a a ⎛⎫⎛⎫-+----⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【练习】已知反比例函数xy =的图像如下右图所示,则二次函数222k x kx y +-=的图像大致为( )【总结】灵活运用二次函数中24a b c b ac -、、、的性质在图像中解题,也就是根据抛物线确定二次函数解析式中字母系数的取值范围,很好地体现了数形结合的数学思想,这就需要大家对于二次函数的性质与图像要比较熟悉,并能在图像中从这些性质来思考解决问题的思路。
人教版九年级数学上册22.1.3-二次函数的图像和性质(第1课时)一等奖优秀教学设计
人教版九年级数学上册22.1.3-二次函数的图
像和性质(第1课时)
一等奖优秀教学设计-CAL-FENGHAI.-(YICAI)-Company One1
人教版义务教育课程标准实验教科书九年级上册
22.1.3. 二次函数的图像和性质教学设计
一、教材分析 1、地位作用:
二次函数y=ax 2+k 的图像和性质是人教版九年级数学上册第二十一章第三节第一课时的内容,是在学生学习了二次函数的基本概念及y=ax 2的图像和性质之后引入的新内容。
本节课的教学内容既是对y=ax 2的图像和性质的引申,也是后面研究y=a(x-h)2+k 和一般形式的二次函数图像性质的基础。
所以,学习本节内容我们既要对前段的内容进行升华,又要对后段内容进行启发。
2、教学目标:
(1)能够准确绘制y=ax 2+k 二次函数图像;通过图像发现和研究二次函数y=ax 2+k 的性质。
(2)会应用二次函数的性质解决问题.
(3)经历观察,推理和交流等过程,获得研究问题与合作交流的方法和经验;体验数学活动中的探索性和创造性。
3、教学重、难点
教学重点:用描点法画二次函数的图像;探索二次函数y=ax 2+k 的图像特点和性质。
教学难点:二次函数y=ax 2+k 的性质的应用。
突破难点的方法:类比一次函数的平移和二次函数2ax y 的性质学习,构建一个知识体系。
二、教学准备:多媒体课件,几何画板.。
二次函数及其图像教案
二次函数及其图像教案第一章:二次函数的定义与标准形式1.1 二次函数的定义引导学生理解二次函数的概念,即函数的形式为f(x) = ax^2 + bx + c,其中a、b、c 是常数,且a ≠0。
1.2 二次函数的标准形式解释二次函数的标准形式,即f(x) = a(x h)^2 + k,其中(h, k) 是顶点的坐标。
演示如何将一般形式转换为标准形式。
第二章:二次函数的图像2.1 顶点的概念与性质介绍顶点的定义,即二次函数图像的最低点或最高点。
解释顶点的坐标与a 的关系。
2.2 开口的方向引导学生理解二次函数图像的开口方向与a 的正负有关。
分析不同情况下的开口方向和图像形状。
第三章:二次函数的性质3.1 单调性解释二次函数的单调性,即函数图像的上升或下降趋势。
分析不同情况下的单调性。
3.2 最大值和最小值引导学生理解二次函数的最大值或最小值出现在顶点处。
解释如何确定函数的最大值或最小值。
第四章:二次函数的图像与解析式的关系4.1 图像的平移解释二次函数图像的平移现象,即如何通过改变顶点的坐标来平移图像。
演示如何通过解析式的变化来实现图像的平移。
4.2 图像的拉伸与压缩引导学生理解二次函数图像的拉伸与压缩现象。
解释如何通过解析式的变化来实现图像的拉伸与压缩。
第五章:实际问题中的应用5.1 抛物线与物体的运动分析抛物线在物体运动中的应用,如抛物线运动的速度和加速度。
解释如何通过二次函数来描述物体的运动。
5.2 抛物线与几何问题引导学生理解二次函数在几何问题中的应用。
分析如何通过二次函数来解决几何问题,如抛物线与直线的交点等。
第六章:二次函数的根与判别式6.1 根的定义与性质解释二次函数的根,即函数图像与x 轴交点的横坐标。
引导学生理解根的性质,如根的个数与判别式的关系。
6.2 判别式的计算与应用介绍判别式的概念,即Δ= b^2 4ac。
分析判别式的大小与根的性质的关系。
第七章:二次函数的图像与坐标系7.1 坐标系的认识复习坐标系的基本概念,包括x 轴、y 轴和象限。
《二次函数的图像和性质》第一课时教案 (1)
5.4二次函数的图像和性质(1)教材分析:本节内容是在学生已经学习过的一次函数、反比例函数的图象与性质,以及二次函数的有关概念的基础上进行的,它既是前面所学知识的应用、拓展,又是对前面所学一次函数、反比例函数图象与性质的一次升华,还是今后学习的基础,在教材中起着非常重要的作用. 教学设计:本课一开始先让学生回忆用描点法画函数图象的一般步骤和方法,然后根据表中的各对对应值,在直角坐标系中描出相应的各点,用光滑的曲线连接,画出图象.通过画出图象,让学生分析、归纳二次函数的图象与性质.学习目标:知识与技能:1.掌握二次函数的图象的作法及其性质,会根据图象用数学语言表达图象的性质.2.能分清当a>0,a<0时图象之间有什么共同点与不同点. 过程与方法:通过对二次函数图象与性质的发现,提高分析、归纳等能力,体验数学中的数形结合思想的应用.情感态度和价值观:引导学生养成全面看问题,分类讨论的学习习惯,通过直观多媒体演示和学生动手作图、分析,激发学生学习数学的积极性.学习重难点:重点:能在直角坐标系中,正确画出二次函数的图象,并能说出二次函数的图象的性质. 难点:作二次函数图象时要选取适当的点,选取适当数目的点.课前准备教具准备 教师准备PPT 课件教学过程:知识回顾:一次函数:y =kx +b (k ≠0) 图象:直线反比例函数: (k ≠0)图象:双曲线 问:1.如何画出函数图象呢?2.如何得到相应的性质呢?【设计意图】:通过对一次函数和反比例函数解析式、图象的回顾,一方面巩固学生的旧知,另一方面对本节课的学习起到类比作用.合作探究一: 二次函数y=ax 2(a>0)的图象请同学们用描点法按下列要求画图: k y x请A组同学同桌合作画函数y=x2的图象;请B组同学同桌合作画函数y= 1/2x2的图象归纳: 二次函数y=ax2 (a>0)的性质合作探究二: 二次函数y=ax2 (a<0)的图象请同学们用描点法按下列要求画图:请A组的同学同桌合作在和抛物线y=x2同一坐标系中画函数y=-x2的图象,并观察;请B组同学同桌合作在和抛物线y=-1/2 x2同一坐标系中画函数y=-1/2 x2的图象,并观察.归纳: 二次函数y=ax2 (a<0)的性质【设计意图】:在探索性质时,利用课件展示给学生图形,在验证学生图形画的准确的前提下,给出学生一定的提示,从那几个方面进行探索,并先让学生自己探索,然后再与同学交流,这样即锻炼了学生的自学与归纳能力,又培养了学生的合作意识.当堂检测:1.对于函数y=2x2,下列结论正确的是( )A.当x取任何实数时,y的值总是正的 B.x的值增大,y的值也随着增大C.x的值增大,y的值随着减小 D.图像关于y轴对称2.分别说出抛物线y=4x2与y=-5x2的开口方向,对称轴与顶点坐标.3.如何根据函数的图象,(1)根据图象,求当y=2时,对应的x的值(精确到0.1);(2)利用图象,求的√3值(精确到0.1).4.已知二次函数y=ax2的图象如图,x1<x2,则对应的y值y1,y2大小关系为y1____y25.观察上面画的图象回答:(1)在对称轴右边,y随x的增大而______(2)在对称轴左边y随x的增大而______课堂小结:本节课学习了二次函数y=ax2的图象和性质作业:课本 P.33第1,2题板书设计:5.4二次函数的图像和性质(1) 知识回顾:合作探究一:二次函数y=ax2(a>0)的图象归纳:二次函数y=ax2(a>0)的性质合作探究二:二次函数y=ax2(a<0)的图象归纳:二次函数y=ax2(a<0)的性质。
5.2二次函数的图像与性质(1)教案-苏科版九年级数学下册
集体备课教案纸教学内容5.2二次函数的图像与性质(1)课型 新课 主备教师备课时间12.24使用教师教学目标1、用列表描点法作出二次函数的图像,从中获得研究函数图像性质的经验;2、能准确的说出二次函数图像的形状、开口方向、顶点坐标、对称轴及增减性等性质;教学重点 在用列表描点法作图像过程中获得研究函数图像和性质的经验教学难点 归纳二次函数图像的性质教具ppt活动一:探究函数和的图像问题1:大家还记得画函数图像的一般步骤吗?列表、描点、连线。
问题2:画出函数和的图像: ……………………二次备课学生自学共研的内容方法(按环节设计自学、讨论、训练、探索、创新等内容)回顾知识点,仔细思考。
从每一个知识点入手OyxOyx活动二:利用图像探究和的性质观察这两个图像,你能说说函数和有什么性质吗?请你与同学交流。
活动三:类比探究的性质(1)猜想一下:对函数图像有什么影响吗?(2)请观看课件,你能结合上面的讨论归纳函数的性质吗?图像开口方向顶点坐标对称轴增减性最值教师施教提要(启发、精讲、活动等让每一位学生都能够融入到课堂中来。
课堂检测 填表图像特征函数的最值开口方向顶点坐标 对称轴增减性 23y x -= 当x = y 最( )值= 231x y =当x = y 最( )值=年级:九年级 科 目:数学 单元: 二次函数板书设计教 后 感会用描点法画函数y =ax 2能根据图像认识和理解二次函数y =ax 2的性质; 体会数学研究问题由具体到抽象.....、特殊到一般.....的思想方法§5.2二次函数 图像性质1一、自主先学: 学生活动1 数学思想… … … … … … 二、合作互学: 学生活动2 教师点拨… … … … … …。
2024年人教版九年级数学上册教案及教学反思全册第22章 二次函数的图象和性质第1课时教案
22.1二次函数的图象和性质22.1.3二次函数y=a(x-h)²+k的图象和性质(第1课时)一、教学目标【知识与技能】1.能画出二次函数y=ax2+k的图象;2.掌握二次函数y=ax2与y=ax2+k图象之间的联系;3.掌握二次函数y=ax2+k的图象及其性质.【过程与方法】通过画二次函数y=2x2+1与y=2x2-1的图象,感受它们与y=2x2的联系,并由此得到y=ax2与y=ax2+k的图象及性质的联系和区别.【情感态度与价值观】在通过类比的方法获取二次函数y=ax2+k的图象及其性质过程中,进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.二、课型新授课三、课时第1课时,共3课时。
四、教学重难点【教学重点】1.二次函数y=ax2与y=ax2+k的图象之间的联系;2.二次函数y=ax2+k的图象及其性质.【教学难点】二次函数y=ax2+k的性质的基本应用.五、课前准备课件、三角尺、铅笔等六、教学过程(一)导入新课这个函数的图象是如何画出来呢?(出示课件2)(二)探索新知探究一二次函数y=ax2+k图象的画法在同一直角坐标系中,画出二次函数y=x2,y=x2+1,y=x2-1的图象.(出示课件4)学生自主操作,画图,教师加以巡视,纠正画图过程中可能出现的失误,并引导他们进行分析,发现规律,获得感性认识.1.列表:x…-3-2-10123…y=x2…9410149…y=x2+1…105212510…y=x2-1…830-1038…2.描点,连线:(出示课件5)教师问:抛物线y=x2、y=x2+1、y=x2-1的开口方向、对称轴、顶点各是什么?(出示课件6)学生独立思考并整理.抛物线开口方向对称轴顶点坐标y=x2向上x=0(0,0)y=x2+1向上x=0(0,1)y=x2-1向上x=0(0,-1)出示课件7:例在同一直角坐标系中,画出二次函数y=2x2+1,y=2x2-1的图象.学生自主操作,画图,教师加以巡视.解:先列表:x…-2-1.5-1-0.500.51 1.52…y=2x2+1…9 5.53 1.51 1.53 5.59…y=2x2-1…7 3.51-0.5-1-0.51 3.57…然后描点画图:(出示课件8)教师问:抛物线y=2x2+1,y=2x2-1的开口方向、对称轴和顶点各是什么?(出示课件9)学生独立思考并整理.抛物线开口方向对称轴顶点坐标y=2x2+1向上x=0(0,1)y=2x2-1向上x=0(0,-1)探究二二次函数y=ax2+k的性质教师归纳:(出示课件10)二次函数y=ax2+k(a>0)的性质:开口方向:向上.对称轴:x=0.顶点坐标:(0,k).最值:当x=0时,有最小值,y=k.增减性:当x<0时,y 随x 的增大而减小;当x>0时,y 随x 的增大而增大.出示课件11:在同一坐标系中,画出二次函数212y x =-,2122y x =-+,2122y x =--的图像,并分别指出它们的开口方向,对称轴和顶点坐标.学生自主操作,画图,并整理.解:如图所示.抛物线开口方向对称轴顶点坐标y =12-x 2向下x =0(0,0)y =12-x 2+2向下x =0(0,2)y =12-x 2-2向下x =0(0,-2)出示课件12:在同一坐标系内画出下列二次函数的图象:231x y -=;23121--=x y ;23122+-=x y .学生自主操作,画图,教师巡视加以指导.出示课件13,14:根据图象回答下列问题:(1)图象的形状都是;(2)三条抛物线的开口方向_______;(3)对称轴都是__________;(4)从上而下顶点坐标分别是_____________________;(5)顶点都是最____点,函数都有最____值,从上而下最大值分别为_______、_______﹑________;(6)函数的增减性都相同:____________________________.学生独立思考并口答.⑴抛物线;⑵向下;⑶直线x=0;⑷(0,2),(0,0),(0,-2);⑸高;大;y=2,y=0,y=-2;⑹对称轴左侧y随x增大而增大,对称轴右侧y随x增大而减小师生共同归纳:二次函数y=ax2+k(a≠0)的性质(出示课件15)y=ax2+k a>0a<0开口方向向上向下对称轴y轴(x=0)y轴(x=0)顶点坐标(0,k)(0,k)出示课件16:已知二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x=x1+x2时,其函数值为________.学生独立思考后,师生共同解答.解:由二次函数y=ax2+c图象的性质可知,x1,x2关于y轴对称,即x1+x2=0.把x=0代入二次函数表达式求出纵坐标为c.教师归纳:方法总结:二次函数y=ax2+c的图象关于y轴对称,因此左右两部分折叠可以重合,函数值相等的两点的对应横坐标互为相反数.出示课件17:抛物线y=−2x2+3的顶点坐标是________,对称轴是________,在________侧,y随着x的增大而增大;在________侧,y随着x的增大而减小.学生口答:(0,3);y轴;对称轴左;对称轴右探究三二次函数y=ax2+k的图象及平移出示课件18:从数的角度探究:出示课件19:从形的角度探究:观察图象可以发现,把抛物线y=2x2向_____平移1个单位长度,就得到抛物线_____;把抛物线y=2x2向_____平移1个单位长度,就得到抛物线y=2x2-1.学生观察图象并解答:上;y=2x2+1;下师生共同归纳:二次函数y=ax2与y=ax2+k(a≠0)的图象的关系(出示课件20)二次函数y=ax2+k的图象可以由y=ax2的图象平移得到:当k>0时,向上平移k个单位长度得到.当k<0时,向下平移k个单位长度得到.教师强调:上下平移规律:平方项不变,常数项上加下减.出示课件21:二次函数y=-3x2+1的图象是将()A.抛物线y=-3x2向左平移3个单位得到B.抛物线y=-3x2向左平移1个单位得到C.抛物线y=3x2向上平移1个单位得到D.抛物线y=-3x2向上平移1个单位得到学生独立思考并口答:D出示课件22:想一想:教师问1.二次函数y=ax2+k图象的画法分几步?学生答:第一种方法:平移法,分两步,即第一步画y=ax2的图象;第二步把y=ax2的图象向上(或向下)平移︱k︱单位.第二种方法:描点法,分三步即列表、描点和连线.教师问2.抛物线y=ax2+k中的a决定什么?怎样决定的?k决定什么?它的对称轴是什么?顶点坐标怎样表示?学生答:a决定开口方向和大小;k决定顶点的纵坐标.(三)课堂练习(出示课件23-27)1.将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是.2.抛物线y=2x2向下平移4个单位,就得到抛物线.3.填表:函数开口方向顶点对称轴有最高(低)点y=3x2y=3x2+1y=-4x2-54.已知点(m,n)在y=ax2+a(a不为0)的图象上,点(-m,n)___(填“在”或“不在”)y=ax2+a(a不为0)的图象上.5.若y=x2+(k-2)的顶点是原点,则k____;若顶点位于x轴上方,则k____;若顶点位于x轴下方,则k____.6.不画函数y=-x2和y=-x2+1的图象回答下面的问题:⑴抛物线y=-x2+1经过怎样的平移才能得到抛物线y=-x2.(2)函数y=-x2+1,当x_____时,y随x的增大而减小;当x_____时,函数y有最大值,最大值y是_____,其图象与y轴的交点坐标是_____,与x轴的交点坐标是_____.(3)试说出抛物线y=x2-3的开口方向、对称轴和顶点坐标.7.对于二次函数y=(m+1)x m2-m+3,当x>0时y随x的增大而增大,则m=____.8.已知二次函数y=(a-2)x2+a2-2的最高点为(0,2),则a=____.9.抛物线y=ax2+c与x轴交于A(-2,0)﹑B两点,与y轴交于点C(0,-4),则三角形ABC的面积是_______.参考答案:1.y=x2+22.y=2x2-43.函数开口方向顶点对称轴有最高(低)点y=3x2向上(0,0)y轴有最低点y=3x2+1向上(0,1)y轴有最低点y=-4x2-5向下(0,-5)y轴有最高点4.在5.=2;>2;<26.⑴向下平移1个单位.⑵>0;=0;1;(0,1);(-1,0),(1,0)⑶开口方向向上,对称轴是y轴,顶点坐标(0,-3).7.28.-29.8(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(22.1.3第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本课时教学重点在于培养学生的比较能力,旨在希望学生通过对比发现函数图象的性质,从而进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.。
二次函数的复习课教案
二次函数复习课(1)复习目标:1、通过复习使学生对二次函数知识的理解系统化;2、通过复习进一步强化对二次函数概念的理解;2、熟练运用二次函数的图像、性质,借助数形结合解决有关问题;4、灵活掌握二次函数解析式的求法。
复习重点:1、二次函数的图像与性质。
2、二次函数解析式的确定。
复习难点:如何正确利用图像信息解决二次函数的相关问题。
复习方法:讲练结合教学用具:多媒体辅助教学复习过程小结:①知识点考察:二次函数的概念②出题的两种题型③再次强调次数与系数三、二次函数的图像与性质1.(1)已知二次函数图象如图,你能直观从图中得到哪些信息?答:a<0,b>0,c>0,△>0小结:复习a、b、c、△的作用:a——开口方向a、b——对称轴c——与y轴交点△——与x轴交点个数1.已知二次函数图象如图,函数图象与x轴的两个交点(-1,0)和(3,0),你还能从此函数图像中得到哪些信息?答:对称轴:x=1增减性:当x<1时,y随x的增大而增大当x≥1时,y随x的增大而减小当-1<x<3时,y>0当x<-1或x>3时,y<02.刚才通过图像得到了a、b、c、△的范围,下面如果给出a、b、c能否得到函数的图像?学生独立完成,然后回答问题,教师小结学生看图回答问题复习a、b、c、△的作用回答问题两道题分别是考题中经常出现的类型,再次总结关键在于二次项的次数与系数,时间关系不再展开。
通过二次函数的大致图像得到a、b、c、△的范围,这是第一层次的要求通过具体的题来复习a、b、c、△的作用通过增加条件来复习二次函数的性质-1 3练习:二次函数y=x 2+2x-1图象的大致位置是( )A B C D 小结:由a 、b 、c 的符号确定图像 四、解析式的确定刚才我们由函数图像得到了开口方向、对称轴,增减性等,那么如果我们再增加一个条件,能否得到它的解析式。
1.(3)你能否根据此函数图像求出函数的解析式? 答案:复习:解析式的三种形式:一般式、顶点式、两根式 此题分组分别采取三种方法解答。
二次函数图像及其性质_教案
二次函数及其图像 九年级 第一课时 提供者 斯波
二次函数是最基本的一类初等函数,也是初中数学的重要的内容之一。本章内 容,既是对之前所学函数知识的一个补充,对函数知识系统的一个完善,也是以后 学习高等函数知识的一个基础。因此,本章的内容在学生的知识系统中起着一个承 上启下的作用,是函数知识螺旋发展的一个重要环节。 二次函数是描述变量之间关系的重要的数学模型,它既是其他学科研究时所 用的重要方法之一,也是某些单变量最优化问题的数学模型。二次函数的图像---抛物线,既是人们最为熟悉的曲线之一,同时抛物线形状在建筑上也有着广泛的应 用。这为学生进一步学习函数、体会函数思想奠定基础和积累经验 。 二、教学目标(知识、情感态度、价值观) 数学教学应以学生的发展为本, 学生的能力培养为重, 尤其是创新、 创造能力, 以及培养学生良好的个性品质和数学素养。根据以上指导思想,同时参照义务教育 阶段《数学课程标准》的要求,确定本节课的教学目标如下: 【知识目标】 a. 理解二次函数的概念,能判断用解析式表示出来的两个变量之间的关系是不是 二次函数; b. 对简单的实际问题,能根据具体情景中两个变量之间的依赖关系列出函数析 式,并能确定函数的定义域; 【情感目标】 a. 在从问题出发到列二次函数解析式的过程中,体验用函数思想去描述、研究变 量之间变化规律的意义. b. 通过对二次函数概念的学习,体会函数思想的基本研究方法思路,提高学生分 析、解决问题的能力; 【能力目标】 a. 通过与一次函数等函数知识的比较认识,提高学生归纳类比的学习能力。 b. 通过学生的交流合作,提高学生的合作学习能力。 三、教学重难点
3
【知识点总结】
y=ax2 开口方 向 顶点 对称轴 最值 增减性 (对称 轴左 侧)
二次函数及其图像教案
课堂练习
1、教师巡视,指导学生解 图像,并分别指出他
题,
们的开口方向和开口
10 分钟 5 分钟
2、评讲练习,反馈矫正。 大小,顶点以及对称
轴:y=1/2x²,y=-2x²,
y=2x²,y=2(x+1)²,
精 讲 点 拨
(2)
y=2(x+1)²
3、二 次 函 数 y=a (x+h)²+k 及图像的(抛物
(抛物线)开口 不同而变化。
值不同而变化。
方向,顶点,对 2、通过图形的对折确定图 2、思考 a 的值决定
称轴。
像的对称轴的位置。
二次函数哪些性质。
2、二 次 函 数 3、提问 a 的值决定二次函 3、认真听老师总结函
y=ax²的性质。 数哪些性质。
数的性质
4、总结函数 y=ax²的性质。
画出下列二次函数的
质。
a,h 和 k 分别决定图像哪些 结果。
性质。
3、认真听老师总结
布 1、思考二次函数 y=ax²+bx+c(a>0)的图像是怎样的,并写出抛物线的方向,顶
置 点以及对称轴
作 2、课本 12 页,第 1,3,5,9 题。
业
可修改
精选文档
板书设计 26.1 二次函数及其图像
1、二次函数的定义:..................................
精选文档
学院
数学与信息科学学院
年 级 三年级 学 科
数学
讲课人
授课时间
四十分钟
教材
义务教育课程标准实验教科书 数学 九年级下册
课题
26.1 二次函数及其图像
1、认识理解二次函数的定义及其开口方向,顶点,对称轴。
《二次函数的图像与性质复习》(第一课)教学设计
《二次函数的图像与性质复习》(第一课)教学设计【教材分析】二次函数是中考的重点内容之一,主要考查二次函数的图像与性质,求二次函数的解析式以及二次函数的实际应用。
近年中考在二次函数方面,难度有稍降的趋势,所以复习时必须重视基础知识,再通过一些应用性的题目提升学生的能力。
本节课重点复习二次函数的图像与性质,它是综合应用的基础。
这一节课中蕴含多种数学思想方法,如方程与函数思想,数形结合思想,划归与转化思想(如过关训练第6题中转化为两点之间线段最短的问题),分类讨论思想(练习第7题中分类讨论动点产生的等腰三角形问题),在复习时要多向学生渗透,强调。
二次函数在学习函数内容上起着承上启下的作用,与前面学习的二次三项式、一元二次方程有着密切联系,为今后学习高中的函数打下基础,积累经验,提供可以借鉴的方法。
【学情分析】二次函数内容比较抽象,学生较难理解。
另外二次函数题目与图形结合紧密,学生的读图能力不强,因此大部分学生掌握得不好。
但此前已复习了一次函数,对函数的认识有了一定程度的加深,学生熟悉建立函数模型过程,会用待定系数法求函数解析式,有利于复习的开展。
在复习时要针对学生的实际,注重基础知识的掌握,设置针对性练习达到熟练的程度,再通过一些应用性的题目提升学生的能力。
【教学目标】✧知识与技能(1)掌握二次函数的概念以及图像与性质;(2)会建立二次函数模型,并利用二次函数的图像与性质解决简单问题。
✧过程与方法经历探究、交流、归纳过程,体会数形结合、划归和转化以及方程与函数、分类讨论等思想,学会总结解题规律,提高分析和解决问题的能力。
✧情感态度与价值观(1)通过合作学习,提高竞争意识,提高数学学习兴趣;(2)通过讲解题目,培养学生严谨的数学思维和准确的语言组织能力。
【教学重点】:二次函数图象与性质,能熟练运用二次函数的性质解决问题。
【教学难点、关键】提高读图、识图的能力,建立函数模型并求解。
【教学方法】以题代纲,梳理知识;查漏补缺,讲练结合;归纳总结,提升能力【教学手段】计算机、PPT【教学过程设计】【教学过程】一、独立练习,知识梳理,(学生独立练习,互相批改)1、二次函数的概念(1)若y =(m +1)xm2-6m -5是二次函数,则m =(2)已知正方形的边长是x,面积是y,则y 与x 的函数关系式是 当x= 32 时,y 的值是2、画函数图像请用描点法画出函数y=x 2-4x+3的图像(在给定的平面直角坐标系中)3、二次函数的图像特征(1)开口方向、对称轴、顶点坐标(2)与x 轴、y 轴的交点坐标抛物线y=x 2+4x-5与y 轴的交点坐标是 ,与x 轴的交点坐标是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、素质教育目标
(一)知识教学点:1.使学生知道二次函数的意义;2.使学生会用描点法画出二次函数y=x2的图象,并结合y=x2的图象,初步理解抛物线及其有关概念.
(二)能力训练点:1.进一步培养学生用描点法画函数图象的能力;2.向学生进行数形结合的数学思想方法的教育.
(三)德育渗透点:通过对几个特殊的二次函数的讲解,向学生进行一般与特殊的辩证唯物主义教育.
二、教学重点、难点和疑点
1.教学重点:二次函数的意义及二次函数y=x2的图象的画法.因为它们是研究二次函数的重要基础.
2.教学难点:正确画出二次函数y=x2的图象.因为它的图象是一条曲线,画起来较复杂,而且学生在画图之前,尚不清楚二次函数y=x2的图象的具体形状和变化趋势,所以不易把握.
三、教学步骤
(一)明确目标
我们已经在介绍了函数的一些基本知识的基础上介绍了一种特殊的函数——一次函数(包括正比例函数),从今天开始,我们将来介绍另一种特殊的函数——二次函数.(板书)(二)整体感知
首先,我们来看两个实际问题:(出示幻灯)
1.圆的半径是R,它的面积为S,你能否写出S与R之间的函数关系式?
这个问题由学生举手回答,可找层次较低的学生完成,培养他们的参与意识和自信心.然后把答案写在黑板上留用.
2.已知一个矩形场地的周长是60,一边长为,请你写出这个矩形场地的面积S与这条边长之间的函数关系式.
这个问题其实就是13.2中的例1,可由学生得出结论,若学生给出的是S=(30-),再继续提问:你能否把函数关系式中的括号去掉?然后把所得的结论写在黑板上.提问:比较S=πR2与S=30-这两个函数,都是用自变量的几次式来表示的?
用这个问题,引出二次函数,在学生回答之后,教师加以总结,板书:
一般地,如果y=ax2+bx+c(a、b、c是常数,a≠0),那么,y叫做x的二次函数.
2.对于二次函数y=ax2+bx+c中的b和c可否为0?若b和c各自为0或均为0,上述函数的式子可以改写成怎样?你认为它们还是不是二次函数?
3.由问题1和2,你能否总结:一个函数是否是二次函数,关键看什么?
由这三个问题加深学生对二次函数意义的理解,也同时给出了二次函数的三个特例:y=ax2+bx (a≠0);y=ax2+c(a≠0);y=ax2(a≠0),使学生深刻理解:看一个函数是否是二次函数的关键是看二次项的系数是否为0.
4.二次函数的解析式,与我们所学过的什么知识相类似?
通过这个问题,使学生能把二次函数与一元二次方程初步搭上联系即可,为以后的教学做好铺垫.
练习题1、2口答,注意第1题要让学生说明不是二次函数的原因.
提问:根据我们所学知道,一次函数的图象是条直线,那么二次函数的图象又是什么样的呢?
这个问题主要是为了引起学生的兴趣,不必回答,教师也不用给出答案.
我们研究任何问题都最好由最简单的入手,根据刚才对二次函数的介绍,你认为最简单的二次函数是什么?
这个问题一方面可以使学生自然过渡到要先研究y=x2.另一方面也使同学认识到研究问题要由简到繁的基本方法.
所以第三个问题是,由我们学习的画函数的图象方法与步骤,我们应怎样画二次函数y=x2的图象呢?
可由学生先回答画函数图象的三个步骤:(1)列表;(2)描点;(3)连线.然后分步骤来研究这个图象的方法.
(1)列表:①自变量x的取值范围是什么?
②要画这个图,你认为x取整数还是取其它数较好?
③看x2,它是一个数的平方形式,它的结论与x的值有什么关系?
学生可能有多种答法,引导学生回答:当x取互为相反数时,x2的值相同.
④若选7个点画图,你准备怎样选?
通过这4个问题可以使学生很顺利地想到为什么要先取书上给出的这7个点,而且也使学生初步学会画二次函数图象时选点的技巧.
(2)描点:①在画坐标系时x轴的正、负半轴和y轴的正、负半轴是否都要画一样的长?
②怎样画就可以了呢?
答:x轴的正,负半轴画的一样长,y的正半轴画的较长,负半轴画的较短就可以.
通过这两个问题可培养学生的作图技巧.
(2)连线:①观察这7个点的位置,它们是否在一条直线上?
②我们应怎样连接这7个点?
让学生先连一次试试,然后教师演示.关于原点附近的变化趋势,最好能用动画演示,增强学生的直观认识,或看书也可以.
注意:我们所画的只是近似图象.
接下来,让学生观察这个函数图象提问:
1.函数y=x2的图象有什么特点?
答:是轴对称图形.
2.你是怎样判断函数y=x2的图象有上述特征的?
这个问题,按不同的层次,有三种得出方法:(1)观察图;(2)看列表;(3)直接根据解析式,看学生层次定讲解的深度.
学生回答完上面的问题之后就可指出:函数y=x2的图象是一条关于y轴对称的曲线,这条曲线叫做抛物线.实际上,二次函数的图象都是抛物线.
(板书)
在此处,可大致解释一下抛物线是由物理中的问题而来的,不要深讲.
再结合图象指出:抛物线y=x2是开口向上的,y轴是它的对称轴,对称轴与抛物线的交点是抛物线的顶点,即(0,0)点.
关于抛物线的顶点,可按不同层次的学生进行不同层次的解释:
从图象上直观得到:抛物线y=x2的顶点是图象的最低点;从解析式上看,当x=0时,y=x2取得最小值0,(0,0)就是抛物线y=x2的顶点坐标.。