八年级下学期定理证明

合集下载

八年级数学 勾股定理的经典证明方法总结大全

八年级数学 勾股定理的经典证明方法总结大全

F
正方形. 它的面积等于 c2. ∵ RtΔGDH ≌ RtΔHAE,
c b
c
a
∴ ∠HGD = ∠EHA. ∵ ∠HGD + ∠GHD = 90º,
Aa E
bB
∴ ∠EHA + ∠GHD = 90º.
又∵ ∠GHE = 90º,
∴ ∠DHA = 90º+ 90º= 180º.
∴ ABCD 是一个边长为 a + b 的正方形,它的面积等于 a b2 .
的延长线交 DF 于点 P.
∵ D、E、F 在一条直线上, 且 RtΔGEF ≌ RtΔEBD,
∴ ∠EGF = ∠BED,
∵ ∠EGF + ∠GEF = 90°,
∴ ∠BED + ∠GEF = 90°,
F
∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c,
勾股定理的证明
【证法 1】(课本的证明)
a
b
b
a
a
ac
aa
c
a
b
b c
bc
b
bb
c
c
a
a
b
a
b
做 8 个全等的直角三角形,设它们的两条直角边长分别为 a、b,斜边长为 c,
再做三个边长分别为 a、b、c 的正方形,把它们像上图那样拼成两个正方形.
从图上可以看到,这两个正方形的边长都是 a + b,所以面积相等. 即
A
a HE
∴ ∠HDA = ∠EAB.
∵ ∠HAD + ∠HAD = 90º,
∴ ∠EAB + ∠HAD = 90º,

八年级数学勾股定理课件-证明、简单计算

八年级数学勾股定理课件-证明、简单计算

B.13
C.9
D.不能确定
第2题图
数学
八年级 下册
人教版
第1课时勾股定理(一) —— 证明、简单计算
3.(人教八下P26改编)在平面直角坐标系中有两点A(0,3), B(3,0),则这两点之间的距离为 3 2 .
数学
八年级 下册
人教版
第1课时勾股定理(一) —— 证明、简单计算
知识点1 勾股定理的证明 【例题1】将两个全等的直角三角形按如图所示的方式摆放, 使点A,E,D在同一条直线上.试用图形的面积表达式证明 勾股定理.
CQ=1.5×(t-62)=(1.5t-4.5)cm, ∴AQ=10-(1.5t-4.5)=(-1.5t+14.5)cm, ∴BP+BC+CQ=8-t+6+1.5t-4.5=(0.5t+9.5)cm,AP+AQ =t+(-1.5t+14.5)=(-0.5t+14.5)cm,
数学
八年级 下册
人教版
第1课时勾股定理(一) —— 证明、简单计算
(2)如果a=12,c=13,求b;
(3)如果b=40,c=41,求a. 解:(1)a=6,b=8,则c= a2+b2=10.
(2)a=12,c=13,则b= c2-a2=5.
(3)b=40,c=41,则a= c2-b2=9.
数学
八年级 下册
人教版
第1课时勾股定理(一) —— 证明、简单计算
【变式2】求出如图所示的直角三角形中,未知边AB的长度.
数学
八年级 下册
证明:由图形易得S△ACD=12AC·DE=12b2, S△ABC=12BC·AC=12ab, S△BCD=12BC·(AC-AE)=12a(b-a). 由△ABC≌△DAE,得
∠DAB=∠DAE+∠BAC=90°.

鲁教版数学八年级下册9.5《相似三角形判定定理的证明》说课稿

鲁教版数学八年级下册9.5《相似三角形判定定理的证明》说课稿

鲁教版数学八年级下册9.5《相似三角形判定定理的证明》说课稿一. 教材分析鲁教版数学八年级下册9.5《相似三角形判定定理的证明》这一节,是在学生已经学习了相似三角形的概念和性质之后的内容。

本节课的主要任务是引导学生通过证明过程,理解和掌握相似三角形的判定定理。

教材通过引入实际问题,激发学生的学习兴趣,让学生在解决问题的过程中,自然地引入到相似三角形的判定定理的学习。

教材中提供了丰富的例题和练习题,帮助学生巩固所学知识,提高解题能力。

二. 学情分析在进入这一节的学习之前,学生已经学习了相似三角形的概念和性质,对相似三角形有了初步的认识。

但学生在学习过程中,可能对相似三角形的判定定理的理解和证明过程还存在一定的困难。

因此,在教学过程中,教师需要关注学生的学习情况,针对学生的困惑进行引导和解答。

三. 说教学目标1.知识与技能目标:通过本节课的学习,使学生理解和掌握相似三角形的判定定理,并能运用判定定理解决相关问题。

2.过程与方法目标:通过小组合作、讨论交流的方式,培养学生的合作意识和团队精神,提高学生解决问题的能力。

3.情感态度与价值观目标:激发学生对数学学科的兴趣,培养学生的自信心,使学生感受到数学的乐趣。

四. 说教学重难点1.教学重点:相似三角形的判定定理的理解和运用。

2.教学难点:相似三角形的判定定理的证明过程。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法、讨论交流法等。

2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合学习平台、网络资源等现代教育技术手段。

六. 说教学过程1.导入新课:通过一个实际问题,引导学生思考相似三角形的判定方法,激发学生的学习兴趣。

2.讲解新课:介绍相似三角形的判定定理,并通过示例进行证明。

在此过程中,引导学生参与讨论,解答学生的疑惑。

3.练习巩固:给出一些练习题,让学生运用所学知识进行解答,巩固所学内容。

4.拓展延伸:引导学生思考相似三角形的判定定理在实际问题中的应用,提高学生解决问题的能力。

八年级数学下册《19.2 定理与证明》教案 华东师大版

八年级数学下册《19.2 定理与证明》教案 华东师大版

《19.2 定理与证明》教案教学目标1、知识与技能:了解命题、公理、定理的含义;理解证明的必要性。

2、过程与方法:结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识。

3、情感、态度与价值观:初步感受公理化方法对数学发展和人类文明的价值。

重点与难点 1、重点:知道什么是公理,什么是定理。

2、难点:理解证明的必要性。

教学过程一、复习引入教师讲解:前一节课我们讲过,要证明一个命题是假命题,只要举出一个反例就行了。

这节课,我们将探究怎样证明一个命题是真命题。

二、探究新知(一)公理教师讲解:数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理。

我们已经知道下列命题是真命题:一条直线截两条平行直线所得的同位角相等;两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;全等三角形的对应边、对应角相等。

在本书中我们将这些真命题均作为公理。

(二)定理教师引导学生通过举反例来说明下面两题中归纳出的结论是错误的。

从而说明证明的重要性。

1、教师讲解:请大家看下面的例子:当n=1时,(n2-5n+5)2=1;当n=2时,(n2-5n+5)2=1;当n=3时,(n2-5n+5)2=1。

我们能不能就此下这样的结论:对于任意的正整数(n2-5n+5)2的值都是1呢?实际上我们的猜测是错误的,因为当n=5时,(n2-5n+5)2=25。

2、教师再提出一个问题让学生回答:如果a=b,那么a2=b2.由此我们猜想:当a> b时,a2> b2。

这个命题是真命题吗?[答案:不正确,因为3> -5,但3 2<(-5)2]教师总结:在前面的学习过程中,我们用观察、验证、归纳、类比等方法,发现了很多几何图形的性质。

但由前面两题我们又知道,这些方法得到的结论有时不具有一般性。

也就是说,由这些方法得到的命题可能是真命题,也可能是假命题。

教师讲解:数学中有些命题可以从公理出发用逻辑推理的方法证明它们是正确的,并且可以进一步作为推断其他命题真假的依据,这样的真命题叫做定理。

八年级下册物理定理公式总结A3

八年级下册物理定理公式总结A3

八年级下册物理定理公式总结A3八年级下册物理定理公式总结A3八年物理下知识归纳总结第六章电压电阻一、电压:电压是使电路中的自由电荷发生定向移动形成电流的原因。

电源提供电压,电压形成电流。

(有电流一定有电压,有电压不一定有电流)电压物理量的符号:U。

单位:伏(V)、千伏(kV)、毫伏(mV)、微伏(μV)。

1kV=103V;1V=103mV;1mV=103μV.常见电压值:一节干电池:1.5V;家庭电路:220V;手机:3.6V;一节铅蓄电池:2V;安全电压:不高于36V。

电压表:测量电压(分析电路时,电压表所在的位置相当于断路)。

量程:0-3V(大格:1V,小格:0.1V)0-15V(大格:5V,小格:0.5V)。

使用:1、电压表要并联在电路中;2、电流要从“+”接线柱流入,从“”接线柱流出;3、不要超过电压表的量程。

(用大量程试触,不超小量程,用小量程测量)二、探究串、并联电路的电压的规律串联:各部分电路的电压之和等于总电压。

即U=U1+U2并联:各支路两端的电压相等。

U=U1=U2电池的能量转化:电池放电时:化学能转化为电能。

充电时:电能转化为化学能(因为电池里面储存的是化学能。

)三、电阻电阻:表示导体对电流阻碍作用的大小。

(导体对电流的阻碍作用越大,电阻就越大,通过导体的电流就越小)。

物理量符号:R。

单位:欧姆(Ω);常用的单位有:兆欧(MΩ)、千欧(KΩ)。

1MΩ=103KΩ;1KΩ=103Ω。

决定电阻大小的因素:导体的电阻是导体本身的一种性质,它的大小决定于导体的材料、长度、横截面积和温度(大部分材料温度升高,电阻变大)。

(导体的电阻的大小和长度成正比,和横截面积成反比)。

注意:电阻的大小与电压和电流无关。

控制变量法:物理中对于多个因素(多变量)的问题,常常采用控制因素(变量)的办法,把多因素的问题变成多个单因素的问题,分别加以研究,最后再综合解决,这种方法叫控制变量法。

四、变阻器原理::改变连入电路中电阻线的长度来改变电阻,从而改变电路中的电流的。

人教版八年级下册数学 专题:第18章勾股定理知识点与常见题型总结

人教版八年级下册数学 专题:第18章勾股定理知识点与常见题型总结

八年级下册第18章.勾股定理知识点与常见题型总结1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCB A方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°D CB A ADB CCB DA题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长 分析:直接应用勾股定理222a b c += 解:⑴2210AB AC BC =+=⑵228BC AB AC =-=题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解 解:⑴224AC AB BC =-=, 2.4AC BCCD AB⋅==DBAC⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21EDCBA分析:此题将勾股定理与全等三角形的知识结合起来 解:作DE AB ⊥于E ,12∠=∠,90C ∠=︒ ∴ 1.5DE CD == 在BDE ∆中2290,2BED BE BD DE ∠=︒=-=Rt ACD Rt AED ∆≅∆ AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4. ( 2014•安徽省,第8题4分)如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A .B .C .4 D . 5考点: 翻折变换(折叠问题).分析: 设BN =x ,则由折叠的性质可得DN =AN =9﹣x ,根据中点的定义可得BD =3,在Rt △ABC 中,根据勾股定理可得关于x 的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.例5.已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.解析:解题之前先弄清楚折叠中的不变量。

勾股定理的证明

勾股定理的证明
八年级 数学 八年级 数学
第十八章 第十八章 勾股定理
勾股定理
444
人教版八年级(下)第十八章
八年级 数学 八年级 数学
第十八章 第十八章 勾股定理
勾股定理
444 周公问:“我听说您对数学非常 精通,我想请教一下:天没有梯 子可以上去,地也没法用尺子去 一段一段丈量,那么怎样才能得 到关于天地得到数据呢?” 商高回答说:“数的产生来源于对方和 圆这些形体的认识。其中有一条原理: 当直角三角形‘矩’得到的一条直角边 ‘勾’等于3,另一条直角边‘股’等 于4的时候,那么它的斜边‘弦’就必 定是5。”
勾股定理
444
1
1
美丽的勾股树
八年级 数学 八年级 数学
第十八章 第十八章 勾股定理
勾股定理
小结
①本节课学到了什么数学知识? ②你了解了勾股定理的发现方法了吗? ③你还有什么困惑?
444
作业
教材第77页习题18.1第1、2、3题
八年级 数学 八年级 数学
第十八章 第十八章 勾股定理
勾股定理
444
中国最早的一 部数学著作— —《周髀算经》 的开头,记载 着一段周公向 商高请教数学 知识的对话:
八年级 数学 八年级 数学
第十八章 第十八章 勾股定理
勾股定理
444
八年级 数学 八年级 数学
第十八章 第十八章 勾股定理
勾股定理
看 一 看
444
发们 映 友 现, 直 家 什我 角 作 相 么们 三 客 传 ? 也 角 , 25 来 形 发 00 观三现年 察边朋前 下的友, 面某家一 的种用次 图数砖毕 案量铺达 ,关成哥 看系的拉 看,地斯 你同面去 能学反朋
八年级 数学 八年级 数学

八年级数学下册第六章证明(一)定义与命题

八年级数学下册第六章证明(一)定义与命题
正确的命题称为真命题,不正确的的命题称为假命题. 要说明一个命题是假命题,通常可以举出一个例子, 使之具备命题的条件,而不具备命题的结论,这种例子 称为反例.
小结 拓展
1、定义:对名称和术语的含义加以描述, 作出明确的规定,也就是给出它们的定 义.
2、命题的定义:判断一件事情的句子,叫 做命题.
3、命题的结构:每个命题都由条件和结论 两部分组成.条件是已知事项,结论是由 已事项推断出的事项.
1、原名: 某些数学名词称为原名. 2、公理: 公认的真命题称为公理.
3、证明: 除了公理外,其它真命题的正确性都通过
推理的方法证实.推理的过程称为证明.
4、定理: 经过证明的真命题称为定理.
经过证明的真
一些条件
推理的过程 叫证明
命题叫定理
+
推理
证实其它命 题的正确性
原名、公理 温馨提示:证明所需的定义、公理和其它定理都
语句.像这样判断一件事情的句子,叫做命题.
寻找命题的“共同的结构特征”
观察下列命题,试找出命题的共同的结构特征 (1)如果两个三角形的三条边对应相等,那么这两个三角形全等 (2)如果一个四边形的一组对边平行且相等,那么这个四边形是
平行四边形; (3)如果一个三角形是等腰三角形,那么这个三角形的两个底角
第六章 证明(一)
定义与命题
眼见未必为实!
a
线段a与线段b哪个 比较长?
b
a bc
谁与线段d在 一条直线上?
d
a
a bc
b
线段a与线段b哪个 比较长?
d
谁与线段d在 一条直线上?
a
b
a=b
a bc d
假如用一根比地球赤道长1 米的铁丝将 地球赤道围起来,那么铁丝与赤道之间的间 隙能有多大(把地球看成球形)?

鲁教版数学八年级下册9.5《相似三角形判定定理的证明》教学设计

鲁教版数学八年级下册9.5《相似三角形判定定理的证明》教学设计

鲁教版数学八年级下册9.5《相似三角形判定定理的证明》教学设计一. 教材分析鲁教版数学八年级下册9.5《相似三角形判定定理的证明》是本节课的主要内容。

在学习了相似三角形的性质之后,本节课引导学生通过证明来理解和掌握相似三角形的判定定理,进一步深化对相似三角形知识的理解和应用。

教材通过引入生活中的实例,激发学生的学习兴趣,让学生体会数学与生活的联系。

同时,教材设计了丰富的练习题,帮助学生巩固所学知识。

二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质,对三角形的相关知识有一定的了解。

但学生对证明过程的理解和运用可能还存在一定的困难。

因此,在教学过程中,教师需要关注学生的学习情况,针对学生的实际水平,调整教学难度,引导学生逐步掌握相似三角形的判定定理。

三. 教学目标1.理解相似三角形的判定定理,并会运用判定定理进行证明。

2.培养学生的逻辑思维能力和证明能力。

3.提高学生运用相似三角形知识解决实际问题的能力。

四. 教学重难点1.教学重点:相似三角形的判定定理及其证明。

2.教学难点:相似三角形判定定理的证明过程和运用。

五. 教学方法1.采用问题驱动法,引导学生通过思考和讨论,探索相似三角形的判定定理。

2.运用几何画板等教学软件,直观展示相似三角形的判定过程,帮助学生理解。

3.设计丰富的练习题,让学生在实践中巩固所学知识。

六. 教学准备1.准备相关教学PPT,展示相似三角形的判定定理和实例。

2.准备几何画板等教学软件,用于展示和讲解。

3.准备练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过引入生活中的实例,如相似的图形、建筑物的比例等,激发学生的学习兴趣,引导学生关注相似三角形的判定。

2.呈现(10分钟)教师展示相似三角形的判定定理,并用几何画板等教学软件进行直观展示,让学生理解和掌握判定定理。

3.操练(10分钟)教师设计一些简单的练习题,让学生运用判定定理进行解答,巩固所学知识。

人教版八年级数学下册勾股定理证明方法

人教版八年级数学下册勾股定理证明方法

勾股定理的证明【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即abc ab b a 214214222⨯+=⨯++, 整理得 222c b a =+.【证法2】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF .∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA .∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于(a +∴ ()22214c ab b a +⨯=+. ∴ 222c b a =+.【证法3】(赵爽证明) 以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状.∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB .∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90º.∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2a b -.∴ ()22214c a b ab =-+⨯.∴ 222c b a =+. 【证法4】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC .∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º. ∴ ΔDEC 是一个等腰直角三角形,它的面积等于221c .又∵ ∠DAE = 90º, ∠EBC = 90º,∴ AD ∥BC .∴ ABCD 是一个直角梯形,它的面积等于()221b a +. ∴ ()222121221c ab b a +⨯=+. ∴ 222c b a =+.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P .∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD,∴ ∠EGF = ∠BED ,∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c ,∴ ABEG 是一个边长为c 的正方形. ∴ ∠ABC + ∠CBE = 90º. ∵ Rt ΔABC ≌ Rt ΔEBD, ∴ ∠ABC = ∠EBD .∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º.又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a .∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则,21222ab S b a ⨯+=+ abS c 2122⨯+=,∴ 222c b a =+.【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上.过点Q 作QP ∥BC ,交AC 于点P . 过点B 作BM ⊥PQ ,垂足为M ;再过点 F 作FN ⊥PQ ,垂足为N . ∵ ∠BCA = 90º,QP ∥BC , ∴ ∠MPC = 90º, ∵ BM ⊥PQ ,∴ ∠BMP = 90º, ∴ BCPM 是一个矩形,即∠MBC = 90∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC ,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c , ∴ Rt ΔBMQ ≌ Rt ΔBCA .同理可证Rt ΔQNF ≌ Rt ΔAEF .从而将问题转化为【证法4】(梅文鼎证明). 【证法7】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结BF 、CD . 过C 作CL ⊥DE ,交AB 于点M ,交DE 于点L . ∵ AF = AC ,AB = AD , ∠FAB = ∠GAD , ∴ ΔFAB ≌ ΔGAD , ∵ ΔFAB 的面积等于221aΔGAD 的面积等于矩形ADLM的面积的一半,∴ 矩形ADLM 的面积 =2a 同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB 的面积 ∴ 222b a c += ,即 222c b a =+. 【证法8】(利用相似三角形性质证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .在ΔADC 和ΔACB 中,∵ ∠ADC = ∠ACB = 90º,∠CAD = ∠BAC , ∴ ΔADC ∽ ΔACB .AD ∶AC = AC ∶AB , 即 AB AD AC •=2.同理可证,ΔCDB ∽ ΔACB ,从而有 AB BD BC •=2.∴ ()222AB AB DB AD BC AC =•+=+,即 222c b a =+. 【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R . 过B 作BP ⊥AF ,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H .∵ ∠BAD = 90º,∠PAC = 90º,∴ ∠DAH = ∠BAC .又∵ ∠DHA = 90º,∠BCA = 90º, AD = AB = c ,∴ Rt ΔDHA ≌ Rt ΔBCA .∴ DH = BC = a ,AH = AC = b . 由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌ Rt ΔBCA . 即PB = CA = b ,AP= a ,从而PH = b ―a .∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA . ∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为543212S S S S S c ++++= ①∵()[]()[]a b a a b b S S S -+•-+=++21438 =ab b 212-, 985S S S +=,∴ 824321S ab b S S --=+= 812S S b -- . ②把②代入①,得98812212S S S S b S S c ++--++== 922S S b ++ = 22a b +.∴ 222c b a =+.【证法10】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90º, ∴ ∠TBH = ∠ABE . 又∵ ∠BTH = ∠BEA = 90º, BT = BE = b , ∴ Rt ΔHBT ≌ Rt ΔABE . ∴ HT = AE = a . ∴ GH = GT ―HT = b ―a .又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠∴ ∠GHF = ∠DBC .∵ DB = EB ―ED = b ―a , ∠HGF = ∠BDC = 90º,∴ Rt ΔHGF ≌ Rt ΔBDC . 即 27S S =.过Q 作QM ⊥AG ,垂足是M . 由∠BAQ = ∠BEA = 90º,可知 ∠ABE = ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE . 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58S S =.由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE .∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE , ∴ ∠FQM = ∠CAR .又∵ ∠QMF = ∠ARC = 90º,QM = AR = a ,∴ Rt ΔQMF ≌ Rt ΔARC . 即64S S =.∵ 543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵ 27S S =,58S S =,64S S =,∴ 8736122S S S S S b a ++++=+=52341S S S S S ++++ =2c , 即 222c b a =+.【证法11】(利用切割线定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E ,则BD = BE = BC = a . 因为∠BCA = 90º,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得AD AE AC •=2=()()BD AB BE AB -+=()()a c a c -+= 22a c -,即222a cb -=,∴ 222c b a =+.【证法12】(利用多列米定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c (如图). 过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB •+•=•,∵ AB = DC = c ,AD = BC = a ,AC = BD = b ,∴ 222AC BC AB +=,即 222b a c +=,∴ 222c b a =+.【证法13】(作直角三角形的内切圆证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 作Rt ΔABC 的内切圆⊙O ,切点分别为D 、E 、F (如图),设⊙O 的半径为r .∵ AE = AF ,BF = BD ,CD = CE ,∴ ()()()BF AF CD BD CE AE AB BC AC +-+++=-+= CD CE += r + r = 2r,即 r c b a 2=-+, ∴ c r b a +=+2.∴ ()()222c r b a +=+,即 ()222242c rc r ab b a ++=++,∵ab S ABC 21=∆,∴ ABC S ab ∆=42, 又∵ AOC BOCAOB ABC S S S S ∆∆∆∆++= = br ar cr 212121++ = ()r c b a ++21= ()r c c r ++221= rc r +2,∴()ABC S rc r ∆=+442, ∴ ()ab rc r242=+,∴ 22222c ab ab b a +=++, ∴ 222c b a =+.【证法14】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB •=2=()BD AD AB +=BD AB AD AB •+•可知 AD AB AC •≠2,或者 BD AB BC •≠2. 即 AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB .在ΔADC 和ΔACB 中,∵ ∠A = ∠A ,∴ 若 AD :AC ≠AC :AB ,则∠ADC ≠∠ACB . 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B , ∴ 若BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB.又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴ 222c b a =+.【证法15】(辛卜松证明)设直角三角形两直角边的长分别为a 、b ,斜边的长为c . 作边长是a+b 的正方形ABCD . 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为()ab b a ba 2222++=+;把正方形ABCD划分成上方右图所示的几个部分,则正方形ABCD 的面积为 ()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+.【证法16】(陈杰证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图). 在EH = b 上截取ED = a ,连结DA 、则 AD = c .∵ EM = EH + HM = b + a , ED = a ∴ DM = EM ―ED = ()a b +―a = b . 又∵ ∠CMD = 90º,CM = a , ∠AED = 90º, AE = b , ∴ Rt ΔAED ≌ Rt ΔDMC .∴ ∠EAD = ∠MDC ,DC = AD = c . ∵ ∠ADE + ∠ADC+ ∠MDC =180º,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º, ∴ ∠ADC = 90º.∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形.D∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º, ∴ ∠BAF=∠DAE .连结FB ,在ΔABF 和ΔADE 中,∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE , ∴ ΔABF ≌ ΔADE .∴ ∠AFB = ∠AED = 90º,BF = DE = a . ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中,∵ AB = BC = c ,BF = CG = a , ∴ Rt ΔABF ≌ Rt ΔBCG .∵ 54322S S S S c +++=, 6212S S S b ++=, 732S S a +=,76451S S S S S +===,∴ 6217322S S S S S b a ++++=+=()76132S S S S S ++++=5432S S S S +++ =2c ∴ 222c b a =+.。

沪科版八年级数学下册_18.1 勾股定理

沪科版八年级数学下册_18.1 勾股定理

感悟新知
知3-练
解题秘方:紧扣“同一三角形的面积的两种表示 法”求解 .
感悟新知
解法提醒
知3-练
等面积法:
用不同的方法表示同一个图形的面积.此题是典型的应
用等面积法求直角三角形斜边上高的问题.即△ ABC 的面
积既可以表示为AC2·BC ,又可以表示为AB2·CD ,再利用 同一图形的面积相等解答 .
感悟新知
解:∵∠ ACB=90°, AC=3, BC=4, ∴ AB= AC2+BC2= 32+42 =5.
知3-练

CD

AB,∴
S△
ABC=
1 2
AB·CD=
1 2
AC·BC,
∴ AB·CD=AC·BC,

CD=
AC· BC AB
=
3×4 5
=
12 5
.
感悟新知
知3-练
例5 如图 18.1 - 4所示,∠ C=90°, AM=CM, MP ⊥ AB于点 P.
设大正方形的面积为 S,则 S=c2. 根据“ 出入相补, 以 盈 补 虚” 的原理, 有
S=a2+b2,所以 a2+b2=c2
感悟新知
方法
加菲尔德 总统拼图
毕达哥拉 斯拼图
图形
证明
知2-讲
设梯形的面积为
S,则
S=
1 2
(a+b)
(a+b)=
1 2
a2+
1 2
b2+ab.

S=
1 2
ab+
1 2
ab+
所以∠ CAC′ = ∠ CAB′ + ∠ B′ AC′

人教版八年级数学下第十七章 勾股定理

人教版八年级数学下第十七章 勾股定理

第十七章勾股定理17.1勾股定理第1课时勾股定理(1)了解勾股定理的发现过程,理解并掌握勾股定理的内容,会用面积法证明勾股定理,能应用勾股定理进行简单的计算.重点勾股定理的内容和证明及简单应用.难点勾股定理的证明.一、创设情境,引入新课让学生画一个直角边分别为3 cm和4 cm的直角△ABC,用刻度尺量出斜边的长.再画一个两直角边分别为5和12的直角△ABC,用刻度尺量出斜边的长.你是否发现了32+42与52的关系,52+122与132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2.对于任意的直角三角形也有这个性质吗?由一学生朗读“毕达哥拉斯观察地面图案发现勾股定理”的传说,引导学生观察身边的地面图形,猜想毕达哥拉斯发现了什么?拼图实验,探求新知1.多媒体课件演示教材第22~23页图17.1-2和图17.1-3,引导学生观察思考.2.组织学生小组合作学习.问题:每组的三个正方形之间有什么关系?试说一说你的想法.引导学生用拼图法初步体验结论.生:这两组图形中,每组的大正方形的面积都等于两个小正方形的面积和.师:这只是猜想,一个数学命题的成立,还要经过我们的证明.归纳验证,得出定理(1)猜想:命题1:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.(2)是不是所有的直角三角形都有这样的特点呢?这就需要对一个一般的直角三角形进行证明.到目前为止,对这个命题的证明已有几百种之多,下面我们就看一看我国数学家赵爽是怎样证明这个定理的.①用多媒体课件演示.②小组合作探究:a.以直角三角形ABC的两条直角边a,b为边作两个正方形,你能通过剪、拼把它拼成弦图的样子吗?b.它们的面积分别怎样表示?它们有什么关系?c.利用学生自己准备的纸张拼一拼,摆一摆,体验古人赵爽的证法.想一想还有什么方法?师:通过拼摆,我们证实了命题1的正确性,命题1与直角三角形的边有关,我国把它称为勾股定理.即在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.二、例题讲解【例1】填空题.(1)在Rt△ABC中,∠C=90°,a=8,b=15,则c=________;(2)在Rt△ABC中,∠B=90°,a=3,b=4,则c=________;(3)在Rt△ABC中,∠C=90°,c=10,a∶b=3∶4,则a=________,b=________;(4)一个直角三角形的三边为三个连续偶数,则它的三边长分别为________;(5)已知等边三角形的边长为2 cm,则它的高为________cm,面积为________cm2.【答案】(1)17(2)7(3)68(4)6,8,10(5)3 3【例2】已知直角三角形的两边长分别为5和12,求第三边.分析:已知两边中,较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进行计算.让学生知道考虑问题要全面,体会分类讨论思想.【答案】119或13三、巩固练习填空题.在Rt△ABC中,∠C=90°.(1)如果a=7,c=25,则b=________;(2)如果∠A=30°,a=4,则b=________;(3)如果∠A=45°,a=3,则c=________;(4)如果c=10,a-b=2,则b=________;(5)如果a,b,c是连续整数,则a+b+c=________;(6)如果b=8,a∶c=3∶5,则c=________.【答案】(1)24(2)43(3)32(4)6(5)12(6)10四、课堂小结1.本节课学到了什么数学知识?2.你了解了勾股定理的发现和验证方法了吗?3.你还有什么困惑?本节课的设计关注学生是否积极参与探索勾股定理的活动,关注学生能否在活动中积极思考、能够探索出解决问题的方法,能否进行积极的联想(数形结合)以及学生能否有条理地表达活动过程和所获得的结论等.关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理.第2课时勾股定理(2)能将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.重点将实际问题转化为直角三角形模型.难点如何用解直角三角形的知识和勾股定理来解决实际问题.一、复习导入问题1:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需要多长的梯子?师生行为:学生分小组讨论,建立直角三角形的数学模型.教师深入到小组活动中,倾听学生的想法.生:根据题意,(如图)AC是建筑物,则AC=12 m,BC=5 m,AB是梯子的长度,所以在Rt△ABC中,AB2=AC2+BC2=122+52=132,则AB=13 m.所以至少需13 m长的梯子.师:很好!由勾股定理可知,已知两直角边的长分别为a,b,就可以求出斜边c的长.由勾股定理可得a2=c2-b2或b2=c2-a2,由此可知,已知斜边与一条直角边的长,就可以求出另一条直角边的长,也就是说,在直角三角形中,已知两边就可求出第三边的长.问题2:一个门框的尺寸如图所示,一块长3 m、宽2.2 m的长方形薄木板能否从门框内通过?为什么?学生分组讨论、交流,教师深入到学生的数学活动中,引导他们发现问题,寻找解决问题的途径.生1:从题意可以看出,木板横着进,竖着进,都不能从门框内通过,只能试试斜着能否通过.生2:在长方形ABCD中,对角线AC是斜着能通过的最大长度,求出AC,再与木板的宽比较,就能知道木板是否能通过.师生共析:解:在Rt△ABC中,根据勾股定理AC2=AB2+BC2=12+22=5.因此AC=5≈2.236.因为AC>木板的宽,所以木板可以从门框内通过.二、例题讲解【例1】如图,山坡上两棵树之间的坡面距离是43米,则这两棵树之间的垂直距离是________米,水平距离是________米.分析:由∠CAB=30°易知垂直距离为23米,水平距离是6米.【答案】23 6【例2】教材第25页例2三、巩固练习1.如图,欲测量松花江的宽度,沿江岸取B,C两点,在江对岸取一点A,使AC垂直江岸,测得BC=50米,∠B=60°,则江面的宽度为________.【答案】503米2.某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达地点B 200米,结果他在水中实际游了520米,求该河流的宽度.【答案】约480 m四、课堂小结1.谈谈自己在这节课的收获有哪些?会用勾股定理解决简单的应用题;会构造直角三角形.2.本节是从实验问题出发,转化为直角三角形问题,并用勾股定理完成解答.这是一节实际应用课,过程中要充分发挥学生的主导性,鼓励学生动手、动脑,经历将实际问题转化为直角三角形的数学模型的过程,激发了学生的学习兴趣,锻炼了学生独立思考的能力.第3课时勾股定理(3)1.利用勾股定理证明:斜边和一条直角边对应相等的两个直角三角形全等.2.利用勾股定理,能在数轴上找到表示无理数的点.3.进一步学习将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.重点在数轴上寻找表示2,3,5,…这样的表示无理数的点.难点利用勾股定理寻找直角三角形中长度为无理数的线段.一、复习导入复习勾股定理的内容.本节课探究勾股定理的综合应用.师:在八年级上册,我们曾经通过画图得到结论:斜边和一条直角边对应相等的两个直角三角形全等.你们能用勾股定理证明这一结论吗?学生思考并独立完成,教师巡视指导,并总结.先画出图形,再写出已知、求证如下:已知:如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,AC =A′C′.求证:△ABC≌△A′B′C′.证明:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,根据勾股定理,得BC =AB2-AC2,B′C′=A′B′2-A′C′2.又AB=A′B′,AC=A′C′,∴BC=B′C′,∴△ABC ≌△A′B′C′(SSS).师:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上表示出13所对应的点吗?教师可指导学生寻找像长度为2,3,5,…这样的包含在直角三角形中的线段.师:由于要在数轴上表示点到原点的距离为2,3,5,…,所以只需画出长为2,3,5,…的线段即可,我们不妨先来画出长为2,3,5,…的线段.生:长为2的线段是直角边都为1的直角三角形的斜边,而长为5的线段是直角边为1和2的直角三角形的斜边.师:长为13的线段能否是直角边为正整数的直角三角形的斜边呢?生:设c=13,两直角边长分别为a,b,根据勾股定理a2+b2=c2,即a2+b2=13.若a,b为正整数,则13必须分解为两个平方数的和,即13=4+9,a2=4,b2=9,则a=2,b=3,所以长为13的线段是直角边长分别为2,3的直角三角形的斜边.师:下面就请同学们在数轴上画出表示13的点.生:步骤如下:1.在数轴上找到点A,使OA=3.2.作直线l垂直于OA,在l上取一点B,使AB=2.3.以原点O为圆心、以OB为半径作弧,弧与数轴交于点C,则点C即为表示13的点.二、例题讲解【例1】飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4800米处,过了10秒后,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米?分析:根据题意,可以画出如图所示的图形,A点表示男孩头顶的位置,C,B点是两个时刻飞机的位置,∠C是直角,可以用勾股定理来解决这个问题.解:根据题意,得在Rt△ABC中,∠C=90°,AB=5000米,AC=4800米.由勾股定理,得AB2=AC2+BC2,即50002=BC2+48002,所以BC=1400米.飞机飞行1400米用了10秒,那么它1小时飞行的距离为1400×6×60=504000(米)=504(千米),即飞机飞行的速度为504千米/时.【例2】在平静的湖面上,有一棵水草,它高出水面3分米,一阵风吹来,水草被吹到一边,草尖齐至水面,已知水草移动的水平距离为6分米,问这里的水深是多少?解:根据题意,得到上图,其中D是无风时水草的最高点,BC为湖面,AB是一阵风吹过水草的位置,CD=3分米,CB=6分米,AD=AB,BC⊥AD,所以在Rt△ACB中,AB2=AC2+BC2,即(AC+3)2=AC2+62,AC2+6AC+9=AC2+36,∴6AC=27,AC=4.5,所以这里的水深为4.5分米.【例3】在数轴上作出表示17的点.解:以17为长的边可看作两直角边分别为4和1的直角三角形的斜边,因此,在数轴上画出表示17的点,如下图:师生行为:由学生独立思考完成,教师巡视指导.此活动中,教师应重点关注以下两个方面:①学生能否积极主动地思考问题;②能否找到斜边为17,另外两条直角边为整数的直角三角形.三、课堂小结1.进一步巩固、掌握并熟练运用勾股定理解决直角三角形问题.2.你对本节内容有哪些认识?会利用勾股定理得到一些无理数,并理解数轴上的点与实数一一对应.本节课的教学中,在培养逻辑推理的能力方面,做了认真的考虑和精心的设计,把推理证明作为学生观察、实验、探究得出结论的自然延续,注重数学与生活的联系,从学生的认知规律和接受水平出发,这些理念贯彻到课堂教学当中,很好地激发了学生学习数学的兴趣,培养了学生善于提出问题、敢于提出问题、解决问题的能力.17.2勾股定理的逆定理第1课时勾股定理的逆定理(1)1.掌握直角三角形的判别条件.2.熟记一些勾股数.3.掌握勾股定理的逆定理的探究方法.重点探究勾股定理的逆定理,理解并掌握互逆命题、原命题、逆命题的有关概念及关系.难点归纳猜想出命题2的结论.一、复习导入活动探究(1)总结直角三角形有哪些性质;(2)一个三角形满足什么条件时才能是直角三角形?生:直角三角形有如下性质:(1)有一个角是直角;(2)两个锐角互余;(3)两直角边的平方和等于斜边的平方;(4)在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半.师:那么一个三角形满足什么条件时,才能是直角三角形呢?生1:如果三角形有一个内角是90°,那么这个三角形就为直角三角形.生2:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b与斜边c具有一定的数量关系即a2+b2=c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人是如何做的?问题:据说古埃及人用下图的方法画直角:把一根长绳打上等距离的13个结,然后以3个结、4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.这个问题意味着,如果围成的三角形的三边长分别为3,4,5,有下面的关系:32+42=52,那么围成的三角形是直角三角形.画画看,如果三角形的三边长分别为2.5 cm,6 cm,6.5 cm,有下面的关系:2.52+62=6.52,画出的三角形是直角三角形吗?换成三边分别为4 cm,7.5 cm,8.5 cm,再试一试.生1:我们不难发现上图中,第1个结到第4个结是3个单位长度即AC=3;同理BC =4,AB=5.因为32+42=52,所以我们围成的三角形是直角三角形.生2:如果三角形的三边长分别是2.5 cm,6 cm,6.5 cm.我们用尺规作图的方法作此三角形,经过测量后,发现6.5 cm的边所对的角是直角,并且2.52+62=6.52.再换成三边长分别为4 cm,7.5 cm,8.5 cm的三角形,可以发现8.5 cm的边所对的角是直角,且有42+7.52=8.52.师:很好!我们通过实际操作,猜想结论.命题2如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.再看下面的命题:命题1如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.它们的题设和结论各有何关系?师:我们可以看到命题2与命题1的题设、结论正好相反,我们把像这样的两个命题叫做互逆命题.如果把其中的一个叫做原命题,那么另一个叫做它的逆命题.例如把命题1当成原命题,那么命题2是命题1的逆命题.二、例题讲解【例1】说出下列命题的逆命题,这些命题的逆命题成立吗?(1)同旁内角互补,两条直线平行;(2)如果两个实数的平方相等,那么这两个实数相等;(3)线段垂直平分线上的点到线段两端点的距离相等;(4)直角三角形中30°角所对的直角边等于斜边的一半.分析:(1)每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用;(2)理顺它们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假.解略.三、巩固练习教材第33页练习第2题.四、课堂小结师:通过这节课的学习,你对本节内容有哪些认识?学生发言,教师点评.本节课的教学设计中,将教学内容精简化,实行分层教学.根据学生原有的认知结构,让学生更好地体会分割的思想.设计的题型前后呼应,使知识有序推进,有助于学生理解和掌握;让学生通过合作、交流、反思、感悟的过程,激发学生探究新知的兴趣,感受探索、合作的乐趣,并从中获得成功的体验,真正体现学生是学习的主人.将目标分层后,满足不同层次学生的做题要求,达到巩固课堂知识的目的.第2课时勾股定理的逆定理(2)1.理解并掌握证明勾股定理的逆定理的方法.2.理解逆定理、互逆定理的概念.重点勾股定理的逆定理的证明及互逆定理的概念.难点理解互逆定理的概念.一、复习导入师:我们学过的勾股定理的内容是什么?生:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.师:根据上节课学过的内容,我们得到了勾股定理逆命题的内容:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.师:命题2是命题1的逆命题,命题1我们已证明过它的正确性,命题2正确吗?如何证明呢?师生行为:让学生试着寻找解题思路,教师可引导学生理清证明的思路.师:△ABC的三边长a,b,c满足a2+b2=c2.如果△ABC是直角三角形,它应与直角边是a,b的直角三角形全等,实际情况是这样吗?我们画一个直角三角形A′B′C′,使B′C′=a,A′C′=b,∠C′=90°(如图),把画好的△A′B′C′剪下,放在△ABC上,它们重合吗?生:我们所画的Rt△A′B′C′,(A′B′)2=a2+b2,又因为c2=a2+b2,所以(A′B′)2=c2,即A′B′=c.△ABC和△A′B′C′三边对应相等,所以两个三角形全等,∠C=∠C′=90°,所以△ABC 为直角三角形.即命题2是正确的.师:很好!我们证明了命题2是正确的,那么命题2就成为一个定理.由于命题1证明正确以后称为勾股定理,命题2又是命题1的逆命题,在此,我们就称定理2是勾股定理的逆定理,勾股定理和勾股定理的逆定理称为互逆定理.师:但是不是原命题成立,逆命题一定成立呢?生:不一定,如命题“对顶角相等”成立,它的逆命题“如果两个角相等,那么它们是对顶角”不成立.师:你还能举出类似的例子吗?生:例如原命题:如果两个实数相等,那么它们的绝对值也相等.逆命题:如果两个数的绝对值相等,那么这两个实数相等.显然原命题成立,而逆命题不一定成立.二、新课教授【例1】教材第32页例1【例2】教材第33页例2【例3】一个零件的形状如图所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量出了这个零件各边的尺寸,那么这个零件符合要求吗?分析:这是一个利用直角三角形的判定条件解决实际问题的例子.解:在△ABD中,AB2+AD2=9+16=25=BD2,所以△ABD是直角三角形,∠A是直角.在△BCD中,BD2+BC2=25+144=169=132=CD2,所以△BCD是直角三角形,∠DBC是直角.因此这个零件符合要求.三、巩固练习1.小强在操场上向东走80 m后,又走了60 m,再走100 m回到原地.小强在操场上向东走了80 m后,又走60 m的方向是________.【答案】向正南或正北2.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A,B两个基地前去拦截,6分钟后同时到达C地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,求甲巡逻艇的航向.【答案】解:由题意可知:AC=120×6×160=12,BC=50×6×160=5,122+52=132.又AB=13,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,∴∠CAB=40°,航向为北偏东50°.四、课堂小结1.同学们对本节的内容有哪些认识?2.勾股定理的逆定理及其应用,熟记几组勾股数.本节课我采用以学生为主体,引导发现、操作探究的教学设计,符合学生的认知规律和认知水平,最大限度地调动了学生学习的积极性,有利于培养学生动手、观察、分析、猜想、验证、推理的能力,切实使学生在获取知识的过程中得到能力的培养.。

八年级数学下册第17章《勾股定理》知识点与常见题型总结

八年级数学下册第17章《勾股定理》知识点与常见题型总结

八年级下册 .勾股定理知识点与常见题型总结1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证. c ba HG FEDCB A方法二:b ac b a cca b c a b四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证 a b ccb a E DCB A3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:A B C 30°D CB A AD B CCB D A题型一:直接考查勾股定理例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-=题型二:应用勾股定理建立方程例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解解: ⑴224AC AB BC =-=, 2.4AC BC CD AB⋅==D B AC⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm 例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21E DCBA分析:此题将勾股定理与全等三角形的知识结合起来解:作DE AB ⊥于E ,Q 12∠=∠,90C ∠=︒∴ 1.5DE CD ==在BDE ∆中2290,2BED BE BD DE ∠=︒=-=QRt ACD Rt AED ∆≅∆QAC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4. ( 2014•安徽省,第8题4分)如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A .B .C . 4D . 5考点: 翻折变换(折叠问题).分析: 设BN =x ,则由折叠的性质可得DN =AN =9﹣x ,根据中点的定义可得BD =3,在Rt △ABC 中,根据勾股定理可得关于x 的方程,解方程即可求解.解答: 解:设BN =x ,由折叠的性质可得DN =AN =9﹣x ,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.例5.已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.解析:解题之前先弄清楚折叠中的不变量。

人教版数学八年级下册_名校课堂:期末复习(二)__勾股定理

人教版数学八年级下册_名校课堂:期末复习(二)__勾股定理

期末复习(二) 勾股定理知识结构图重难点1 勾股定理的证明【例1】勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜地发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中90DAB ︒∠=,求证:222a b c +=.证明:连接DB ,过点D 作BC 边上的高DF ,则DF EC b a ==-.21122ACD ABC ADCB S S Sb ab ∴=+=+四边形. 又211()22ADB DCB ADCB S S Sc a b a ∆∴=+=+-四边形, 222221111().2222b ab c a b a a b c ∴+=+-∴+=.请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中90DAB ∠=,求证:222a b c +=.【解答】勾股定理的证明方法是用面积法证明恒等式的方法,通过不同的方式表示同一个图形的面积.变式训练1.如图是用硬纸板做成的四个全等的直角三角形(两直角边长分别是,a b ,斜边长为c )和一个边长为c 的正方形,请你将它们拼成一个能证明勾股定理的图形.(1)画出拼成图形的示意图(2)证明勾股定理.重难点2 勾股定理及其逆定理【例2】如图,每个小正方形的边长为1.(1)求四边形ABCD 的周长;(2)求证:90BCD ︒∠=.【思路点拨】(1)利用勾股定理求出四边形的各边长;(2)求出△BCD 的三边长,利用勾股定理的逆定理证明.【解答】正方形网格中的两个格点之间的距离可以用勾股定理求出.勾股定理的逆定理是证明一个角等于90的一种思路.本题的第(2)问还可以通过两个三角形全等来证明.变式训练2.如图,在正方形ABCD 纸片上有一点,1,2,3P PA PD PC ===.现将△PCD 剪下,并将它拼到如图所示位置(C 与A 重合,P 与G 重合,D 与D 重合).求:(1)线段PG 的长;(2)APD ∠的度数.重难点3 勾股定理在实际生活中的应用【例3】如图,高速公路的同侧有,A B 两个村庄,它们到高速公路所在直线MN 的距离分别为11112km,4km,8km AA BB A B ===.现要在高速公路上11A B 之间设一个出口P ,使,A B 两个村庄到P 的距离之和最短,则这个最短距离是多少千米? 思路点拨】运用“两点之间,线段最短”先确定出P 点在11A B 上的位置,再利用勾股定理求出AP BP +的长.【解答】方法指导解这类题关键在于运用几何知识正确找到适合条件的P 点的位置,会构造Rt △AB E ',勾股定理把三角形中有一个直角的“形”的特征,转化为三边“数”的关系,因此它是数形结合的一个典范.变式训练3.如图,某地方政府决定在相距50km 的,A B 两站之间的公路旁E 点,修建一个土特产加工基地,且使,C D 两村到E 点的距离相等,已知DA AB ⊥于点,A CB AB ⊥于点,30km,20km B DA CB ==,那么基地E 应建在离A 站多少千米的地方?思想方法 方程思想【例4】如图,在Rt △ABC 中,90,3,4B AB BC ︒∠===,将△ABC 折叠,使点B 恰好落在边AC 上,与点B '重合,AE 为折痕,求EB '的长.【解答】方法指导方程思想常在勾股定理与折叠问题中出现,利用折叠的性质,得到边、角相等,进而把条件转化到一个直角三角形中,利用勾股定理构建方程求线段长度. 变式训练4.如图,在长方形ABCD 中,6,3BC CD ==,将△BCD 沿对角线BD 翻折,点C落在点C '处,BC '交AD 于点E ,则线段DE 的长为( )A.3B.154C.5D.152复习自测一、选择题(每小题3分,共30分)1.在Rt △ABC 中,90,8,5C AB AC ︒∠===,则BC 的长是( )A.3B.C.7 2.小新将铁丝剪成九段,分成三个组:①2cm ,3cm4cm ;②3cm ,4cm ,5cm ;③9cm ,40cm ,41cm.分别以每组铁丝围成三角形,能构成直角三角形的有( )A.②B.①②C.①③D.②③3.下列各命题的逆命题成立的是( )A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等C.两直线平行,同位角相等D.如果两个角都是45,那么这两个角相等4.下列选项中,不能用来证明勾股定理的是( )A. B. C. D.5.如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是( )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对6.如图,数轴上点,A B 分别对应1,2,过点B 作PQ AB ⊥,以点B 为圆心,AB 长为半径画弧,交PQ 于点C ,以原点O 为圆心,OC 长为半径画弧,交数轴于点M ,则点M 对应的数是( )B.7.如图,在△ABC 中,AD BC ⊥于点,17,15,6D AB BD DC ===,则AC 的长为( )A.11B.10C.9D.88.设,a b 是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab 的值是( )A.1.5B.2C.2.5D.39.如图是一张探宝图,根据图中的尺寸,起点A 与点B 的距离是( )B.8C.9D.1010.如图,在Rt △ABC 中,90C ∠=,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当4,2AC BC ==时,则阴影部分的面积为( )A.4B.4πC.8πD.8二、填空题(每小题3分,共18分)11.2,那么这个三角形的最大角的度数为_____.12.小红同学先朝正东方向行进了4km ,再朝正北方向行进了8km ,此时小红离出发点的距离是____________.13.如图,在△ABC 中,5,12,13,AC BC AB CD ===是AB 边上的中线,则CD =__________.14.(2019·荆州)如图1,已知正方体1111ABCD A B C D -的棱长为4cm,,,E F G 分别是1,,AB AA AD 的中点,截面EFG 将这个正方体切去个角后得到一个新的几何体(如图2),则图2中阴影部分的面积为__________2cm .15.如图1,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图2,其中四边形ABCD 和四边形EFGH 都是正方形,△ABF ,△BCG ,△CDH ,△DAE 是四个全等的直角三角形.若2EF =,8DE =,则AB 的长为______________.16.课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),90,ACB AC BC ︒∠==,从三角板的刻度可知20cm AB =,小聪很快就知道了砌墙砖块的厚度(每块砖的厚度相等)为_____________cm.三、解答题(共52分)17.(8分)如图,已知某山的高度AC 为800米,在山上A 处与山下B 处各建一个索道口,且1500BC =米,欢欢从山下索道口坐缆车到山顶,已知缆车每分钟走50米,那么大约多少分钟后,欢欢才能达到山顶?18.(10分)在等边△ABC 中,点,D E 分别在边,BC AC 上,若2CD =,过点D 作//DE AB ,过点E 作EF DE ⊥,交BC 的延长线于点F ,求EF 的长.19.(10分)一个零件的形状如图1所示,按规定这个零件中A ∠和DBC ∠都应为直角.工人师傅量得这个零件各边尺寸如图2所示.(1)你认为这个零件符合要求吗?为什么?(2)求这个零件的面积.20.(12分)如图,折叠长方形(四个角都是直角,对边相等)的一边AD 使点D 落在BC 边的点F 处,已知8cm,10cm AB BC ==,求EC 的长.21.(12分)给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC 绕顶点B 按顺时针方向旋转60得到△DBE ,连接,,AD DC CE ,已知30DCB ︒∠=.①求证:△BCE 是等边三角形;②求证:222DC BC AC +=,即四边形ABCD 是勾股四边形.11 / 12参考答案【例1】证明:连接BD ,过点B 作DE 边上的高BF ,则BF b a =-, 2111222ACB ABE ADE ACBED S S S S ab b ab ∆∆∴=++=++五边形,又 2111()222ACB ABD BDE ACBED S S S S ab c a b a ∆∆∆=++=++-五边形, 22222111111().222222ab b ab ab c a b a a b c ∴++=++-∴+=. 【例2】(1)四边形ABCD的周长为(2)证明:连接BD ,22234,BC CD DB BC CD BD ===∴+=.∴△BCD 是直角三角形,即90BCD ︒∠=.【例3】出口P 到,A B 两村庄的距离之和最短是10km.【例4】EB '的长为1.5.变式训练1.解:(1)图略.(2)证明:22221()42c b a ab b a =-+⨯=+. 2.解:(1)PG =(2)135APD ∠=.3.解:基地E 应建在离A 站20km 的地方4.B复习自测1.B2.D3.C4.D5.A6.B7.B8.D 9.D 10.A11.9012. 13.6.514. 15.1017.解:大约34分钟后,欢欢才能达到山顶. 18.解:EF =19.解:(1)这个零件符合要求.2222223425,525AB AD BD +=+===,222,90AB AD BD A ︒∴+=∴∠=.又222222512169,13169BD BC DC +=+===,222.90BD BC DC DBC ∴∠+=∴=.(2)由(1)知90,90,A DBC ︒︒∠=∠=∴这个零件的面积为11345123622⨯⨯+⨯⨯=. 20.解:EC 的长为3cm.12 / 12 21.解:(1)正方形、矩形.(2)①证明:∵△ABC ≌△DBE ,.60BC BE CBE ︒∴=∠=,∴△BCE 是等边三角形.②证明:∵△ABC ≌△DBE ,AC ED ∴=.又∵△BCE 为等边三角形,,60.30,90BC CE BCE DCB DCE ︒︒︒∴=∠=∠=∴∠=.在Rt △DCE 中,222222,.DC CE DE DC BC AC +=∴+=∴四边形ABCD 是勾股四边形.。

八年级数学下册【勾股定理】基础知识+规律方法指导+重要题型!

八年级数学下册【勾股定理】基础知识+规律方法指导+重要题型!

八年级数学下册【勾股定理】基础知识+规律方法指导+重要题型!基础知识点1:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。

1:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。

(即:a2+b2=c2)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题2:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。

要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形(若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2<a2+b2,则△ABC为锐角三角形)。

3:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。

4:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

5:勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理规律方法指导1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。

2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。

北师大版八年级数学(下) 第一章 三角形的证明 第6节 HL定理判定直角三角形全等

北师大版八年级数学(下) 第一章  三角形的证明  第6节  HL定理判定直角三角形全等

以 2/秒的速度沿射线 AN 运动,点 D 为射线 BM 上一动点,随着 E 点运动而运动,且始终保持 ED=CB,当
点 E 运动
秒时,△DEB 与△BCA 全等.
解:①当 E 在线段 AB 上,AC=BE 时,△ACB≌△BED,∵AC=4,∴BE=4, ∴AE=8﹣4=4,∴点 E 的运动时间为 4÷2=2(秒); ②当 E 在 BN 上,AC=BE 时,∵AC=4,∴BE=4,∴AE=8+4=12, ∴点 E 的运动时间为 12÷2=6(秒); ③当 E 在线段 AB 上,AB=EB 时,△ACB≌△BDE,这时 E 在 A 点未动,因此时间为 0 秒; ④当 E 在 BN 上,AB=EB 时,△ACB≌△BDE,AE=8+8=16, 点 E 的运动时间为 16÷2=8(秒), 故答案为:0,2,6,8.
解:∵AX⊥AC,∴∠PAQ=90°,∴∠C=∠PAQ=90°, 分两种情况:
①当 AP=BC=5时,在 Rt△ABC和 Rt△QPA中,
,∴Rt△ABC≌Rt△QPA(HL);
②当 AP=CA=10 时,在△ABC 和△PQA 中,
,∴Rt△ABC≌Rt△PQA(HL);
综上所述:当点 P 运动到 AP=5 或 10 时,△ABC 与△APQ 全等; 故答案为:5 或 10.
练习:如图所示,已知 BE⊥AD,CF⊥AD,垂足分别为 E,F,则在下列条件中选择一组,可以判定 Rt
△ABE≌Rt△DCF 的是
(填入序号)
①AB=DC,∠B=∠C;
②AB=DC,AB∥CD;
③AB=DC,BE=CF;
④AB=DF,BE=CF.
解:∵BE⊥AD,CF⊥AD,∴∠AEB=∠CFD, 选择①可利用 AAS 定理证明 Rt△ABE≌Rt△DCF; 选择②可得∠A=∠D,可利用 AAS 定理证明 Rt△ABE≌Rt△DCF; 选择③可利用 HL 定理证明 Rt△ABE≌Rt△DCF; 选择④不能定理证明 Rt△ABE≌Rt△DCF.故答案为:①②③.

下学期部编版八年级数学勾股定理

下学期部编版八年级数学勾股定理
。它地处湘、黔、川三省边地交界处,山川秀美,民风淳朴,经济落后,人民生活艰辛。沈从文作为有着苗族血统的湘西作家,用一
支有灵性的笔,突出地表现湘西在特定历史条件下形成的浸润着原始民风的特殊人生形式,描绘了湘西下层人民永远用血泪打发日子
2 ,世代相沿的悲苦命运;同时也描绘了他们为生存、为实现其人生权利与尊严所作的努力。
问题1 试问正方形A、B、 的。二十年前贺龙只是一个平常的马夫,二十年后就成了统领千军万军的一方豪杰,“谁个人会注意这个小小节目,谁个人想象得到人
类历史是用什么写成的”。作者又一次提到了“历史”,这样的感叹流露出期盼,希望当地人民能像贺龙一样去创造一段新的历史。表现 出作者对美好新生活的热烈期盼和希望。
继续逃亡,而那个为首的矿工却漏网,那五个青年业已晋升为军官,便自请去引诱他现身。
作者之所以写屈原和贺龙,因为这两个人都是三湘大地上出现的风云人物。屈原毕生为民请命,关注民生疾苦,以他的政治和文学才
能成为当地人们纪念的伟大先贤。人们纪念他,体现出传统的民族文化有绵延已久的旺盛的生命力。对贺龙,作者是充满敬佩和期待
通过陈太丘的行为,我们知道了要做一个言而有信的人;通过元方的言行举止,我们知道了要做一个坚持原则的人;通过友人的行为
6 ,我们知道了要做一个知错就改的人。而友人又作为一个反面教材告诉我们:办事要讲诚信,为人要方正,否则会失去朋友,失去友 5 谊。
不要笑话农家腊酒的浑浊,丰收年份准备丰盛的饭菜招待客人。山重峦叠嶂,水迂回曲折,好像没有了去路时,眼前忽然出现了柳色
169
解:由勾股定理可得 y2+ 144=169,
解得 y=5
例2 已知:Rt△ABC中,AB=4,AC=3,则
BC= 5 或 7.
B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

•1、两点确定一条直线;
•2、两点之间线段最短;
•3、过一点有且只有一条直线与已知直线垂直;
•4、两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;
•5、过直线外一点有且只有一条直线与这条直线平行;
•6、两边及其夹角分别相等的两个三角形全等;(SAS)
•7、两角及其夹边分别相等的两个三角形全等;(ASA)
•8、三边分别相等的两个三角形全等;
等式的基本性质
•1、等式两边分别加上(或减去)同一个整式,等式依然成立;
•2、等式两边分别乘以(或除以)同一个不为0的整式,等式依然成立;
不等式的基本性质
•1、不等式两边同时加上(或减去)同一个整式,不等号的方向不变;
•2、不等式两边同时乘以(或除以)同一个正数,不等号的方向不变;
•3、不等式两边同时乘以(或除以)同一个负数,不等号的方向改变;
证明一
•一、角和边
•1、同角(等角)的补角相等;
•2、同角(等角)的余角相等;
•3、三角形的任意两边之和大于第三边;
•4、对顶角相等;

•二、平行线的判定
•1、内错角相等,两直线平行;
•2、同旁内角互补,两直线平行;
•三、平行线的性质
•1、两直线平行,同位角相等;
•2、两直线平行,内错角相等;
•3、两直线平行,同旁内角互补;

•四、三角形内角和定理:三角形的内角和等于1800.
•五、三角形的外角和定理:
1、三角形的一个外角等于和它不相邻的两个内角的和;
2、三角形的一个外角大于任何一个和它不相邻的内角;
• 一、等腰三角形的定义:两条边相等的三角形是等腰三角形; • 二、等腰三角形的性质:
• 1、等腰三角形的两条边相等;(定义) • 2、等腰三角形的两个底角相等;(等边对等角)几何语言: • 如图所示,在△ABC 中 • ∵AB =AC
• ∴∠B =∠C (等边对等角)
3、等腰三角形的底边上的高线、底边上的中线及顶角的平分线重合。

(等腰三角形的“三线合一”)几何语言:
如图所示,在△ABC 中 ①∵AB =AC ,BD =DC ∴∠1=∠2,AD ⊥BC ②∵AB =AC ,∠1=∠2 ∴AD ⊥BC ,BD =DC ③∵AB =AC ,AD ⊥BC ∴∠1=∠2,BD =DC
D
C
B
C
B
三、等腰三角形的判定:
1、两边相等的三角形是等腰三角形(定义)
2、有两个角相等的三角形是等腰三角形;(等角对等边) ①在△ABC 中 ∵∠B =∠C
∴AB =AC (等角对等边) ② ∵∠B =∠C
∴ △ABC 是等腰三角形(等角对等边) ③ ∵AB =AC
∴ △ABC 是等腰三角形(等腰三角形的定义)
• 四、等边三角形的定义:三条边相等的三角形是等边三角形;(定义) • 五、等边三角形的性质:
• 1、等边三角形的三条边相等;(定义)
• 2、等边三角形的三个内角都相等,并且每个内角都等于60°; • ∵△ABC 是等边三角形 • ∴AB=BC=AC , •
∠A=∠B=∠C=60°
C
B
• 1、三边相等的三角形是等边三角形(定义) • ∵ AB=BC=AC
• ∴ △ABC 是等边三角形
• 2、三个角都相等的三角形是等边三角形; • ∵∠A=∠B=∠C
• ∴△ABC 是等边三角形
• 3、有一个角是60°的等腰三角形是等边三角形; • ∵ △ABC 是等腰三角形,∠A=60° • ∴△ABC 是等边三角形
• 六、直角三角形的性质:
• 1、直角三角形的两个锐角互余;
• ∵△ABC 是直角三角形,∠C=90°; • ∴∠A+∠B=90°
• 2、直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。


几何语言:如图所示
∵在RT △ABC 中,∠B=30° • ∴AC=1/2AB (或AB=2AC ) • 3、勾股定理:直角三角形两条 • 直角边的平方和等于斜边的平方;
A
C
• 1、有两个角互余的三角形是直角三角形; • ∵在△ABC 中, ∠A+∠B=90° • ∴ △ABC 是直角三角形;
• 2、如果两边的平方和等于第三边的平方时,那么这个三角形是直角三角形。

• 几何语言:
• 如图所示,在△ABC 中 • ∵AC2+BC2=AB2
• ∴△ABC 是直角三角形
• 八、两个直角三角形除了可以使用常规的SSS 、SAS 、ASA 、AAS 来证明全等外,
还可以使用 • HL 来证明;
• 定理:斜边和一条直角边分别相等的两个直角三角形全等; • 几何语言:如图所示
• 在RT △ABC 和RT △DEF 中 • ∵{AB=DE ,
• BC=EF (AB=DE ,AC=DF ) • ∴RT △ABC ≌RT △DEF (HL )
E
F
A
B C
A C
• 九、线段的垂直平分线定理:线段垂直平分线上的点在这条线段两个端点的距离相
等;
• 几何语言: • 如图所示
• ∵MN 是线段AB 的垂直平 分线(或MN ⊥AB 于D ,AD =BD ) • ∴CA=CB
• 十、线段垂直平分线定理逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

• (推论)几何语言: • 如图所示 • ∵CA=CB

∴点C 在线段AB 的垂直平分线MN 上
N
M A
B
C
D N
M A
B
C
D
• 十一、角平分线的性质:角的平分线上的点到角的两边的距离相等。

• 几何语言: • 如图所示
• ∵ PF 平分∠APB (或∠APF=∠BPF ),EC ⊥PA 于C ,ED ⊥PB 于D • ∴EC=ED
• 十二、角平分线的推论:在一个的角的内部,到角的两边的距离相等的点在角的平分线上。

• (推论)几何语言: • 如图所示
• ∵EC ⊥PA 于C ,ED ⊥PB 于D ,EC=ED •
∴点E 在∠APB 的平分线上
E F
P
A B
C
D
E F
P
A B
C
D。

相关文档
最新文档