工作用廉金属热电偶检定装置技术报告例文

合集下载

工作用廉金属热电偶的使用及其校准

工作用廉金属热电偶的使用及其校准
种 元素择优 氧化 ; d)热 电偶 在 使 用 过 程 中 ,偶 丝 局 部 受 拉 伸 、弯 曲变形 以及 在高温 下测量端 两 热 电极 交 叉 污染 .改变 了测量端 附近 热 电极 附近 热 电极 材料
的化 学成分 :
温 度 ,如此 大 的测 量范 围 ,令 酒 精 或 水银 温 度


准 化
与 质

并 对 工 作 用 廉 金 属 热 电偶 的 校 准 以及 不 确
定度 的报 告 与表 示 .给 予 了明确 的论述 。
关键词 工作 用廉金属 热 电偶

校准
不确定度
( o 寸
12 8 1年 。德 国物理 学 家塞 贝 克 发现 ,在 两
工量越 大 ,不 均匀性就越 严重 ;
1 )补 偿导 线 法 :热 电偶 在 实 际测温 时 ,由 于 它的参考端 离热源很 近 ,因此 ,参 考端温 度是 变化 的。 因此在 一定温 度范 围内 ,与配用热 电偶 具有相 同 的热 电特 性的一对带 绝缘层 的导线 .将
行修 正 :二 是采取措施使 热传误 差减小到 允许范
围内。
计望 尘莫及 。现 在 ,通 过采用一 些特殊 材质 制做
的热 电偶 温 度计 .甚 至 可 以测 量 高 达 常 用 的温 度 检 测 元件
之一 。
e )在 高温 下 受环境 气 氛 、保 护管 和绝 缘 材
料 对热 电极 的局部污 染 、腐 蚀或 晶粒结 构的 改变
与 配 用 的 热 电偶 材 料 不 同 。仅 仅 是 在 一 0 4 ℃
E h goE e n 经 交 x a efx r c l 验 流I c n pi e e

热电偶热电阻检定装置技术报告范文

热电偶热电阻检定装置技术报告范文

热电偶热电阻检定装置技术报告范文下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!热电偶热电阻检定装置技术报告一、引言热电偶和热电阻作为温度检测领域中常见的传感器,广泛应用于工业生产、科学实验以及日常生活中的温度测量任务中。

热电偶热电阻检定装置技术报告范文

热电偶热电阻检定装置技术报告范文

热电偶热电阻检定装置技术报告范文英文回答:Title: Technical Report on Thermocouple and Resistance Thermometer Calibration Equipment.Introduction:In this technical report, I will discuss thecalibration equipment used for thermocouples and resistance thermometers. Calibration is essential to ensure accurate temperature measurements in various industries, including manufacturing, energy, and scientific research. The calibration process involves comparing the readings of the temperature sensors with known reference values and making necessary adjustments to ensure accuracy.Equipment Description:The calibration equipment for thermocouples andresistance thermometers typically consists of a temperature control unit, a reference temperature sensor, and a data acquisition system. The temperature control unit provides a stable and precise temperature environment for the calibration process. The reference temperature sensor is a highly accurate sensor with a known temperature value, used to compare and verify the readings of the sensors being calibrated. The data acquisition system records the readings from both the reference sensor and the sensors under calibration for analysis and adjustment.Calibration Procedure:The calibration procedure involves several steps. Firstly, the temperature control unit is set to a specific temperature, which is within the range of the sensors being calibrated. The reference temperature sensor is then placed in the controlled environment, and its reading is recorded. Next, the sensors under calibration are placed alongside the reference sensor, and their readings are also recorded. Any discrepancies between the readings of the sensors under calibration and the reference sensor are noted. Finally,adjustments are made to the sensors under calibration to align their readings with the reference sensor.Example:To illustrate the calibration process, let's consider a scenario where we need to calibrate a thermocouple used in a furnace. We set the temperature control unit to 1000 degrees Celsius, which is within the operating range of the thermocouple. The reference temperature sensor, a platinum res istance thermometer with a known accuracy of ±0.1 degrees Celsius, is placed in the furnace. Its reading is recorded as 1000.2 degrees Celsius. The thermocouple being calibrated is placed alongside the reference sensor, andits initial reading is recorded as 1000.5 degrees Celsius. Based on the discrepancy of 0.3 degrees Celsius, adjustments are made to the thermocouple to align its reading with the reference sensor. This calibration process ensures that the thermocouple provides accurate temperature measurements in the furnace.中文回答:标题,热电偶和热电阻检定装置技术报告。

热电偶热电阻检定装置技术报告范文

热电偶热电阻检定装置技术报告范文

热电偶热电阻检定装置技术报告范文英文回答:Title: Technical Report on Thermocouple and Resistance Thermometer Calibration Equipment.Introduction:In this report, I will discuss the technical aspects of a calibration equipment used for thermocouples and resistance thermometers. The calibration process is essential to ensure accurate temperature measurements in various industries such as manufacturing, research, and healthcare. The equipment under consideration is designed to provide precise and reliable calibration for these temperature sensors.1. Principle of Operation:The calibration equipment utilizes the principle ofcomparing the output of a reference temperature source with the output of the thermocouple or resistance thermometer being calibrated. By measuring the difference between the two outputs, the calibration equipment can determine the accuracy of the temperature sensor under test.2. Temperature Sources:The calibration equipment includes various temperature sources, such as liquid baths, dry blocks, and furnaces. These sources provide stable and controllable temperatures for calibration. For example, a liquid bath uses a heated liquid, such as oil or water, to achieve a specific temperature. The thermocouple or resistance thermometer being calibrated is immersed in the bath, and its output is compared to the known reference temperature.3. Measurement and Control:The calibration equipment incorporates precise temperature measurement and control systems. These systems ensure that the temperature sources are accurately set andmaintained during the calibration process. The measurement system may utilize platinum resistance thermometers or thermocouples with known characteristics to provide accurate temperature readings.4. Calibration Procedures:The calibration procedures involve comparing the output of the temperature sensor under test with the known reference temperature. The calibration equipment records the temperature difference and calculates the calibration error. This error is then used to adjust the temperature readings of the sensor, ensuring accurate measurements in future applications.中文回答:标题,热电偶和热电阻检定装置技术报告。

工作用廉金属热电偶的使用及其校准(论文)

工作用廉金属热电偶的使用及其校准(论文)

工作用廉金属热电偶的使用及其校准刘锰天津市检测技术研究所内容摘要:本文通过对热电偶测温原理、误差来源及消除方法的介绍,使我们对热电偶进行温度测量时应该注意的问题及解决的方法有了系统的掌握,并对工作用廉金属热电偶的校准以及不确定度的报告与表示,给予了明确的论述。

关键词:工作用廉金属热电偶、校准、不确定度前言:1821年,德国物理学家塞贝克发现,在两种不同的金属所组成的闭合回路中,当两接触处的温度不同时,回路中会产生一个电势,这就是热电效应,也称作“塞贝克效应”。

塞贝克效应发现之后,人们就为它找到了应用场所。

利用塞贝克效应,可制成温差电偶(thermocouple ,即热电偶)来测量温度。

只要选用适当的金属作热电偶材料,就可轻易测量到从-180℃到+2000℃℃的温度,如此宽泛围的测量范围,令酒精或水银温度计望尘莫及。

现在,通过采用一些特殊材质制做的热电偶温度计,甚至可以测量高达+2800℃的温度。

因此热电偶成为工业上最常用的温度检测元件之一。

一、热电偶测温基本原理将两种不同材料的导体或半导体A 和B 连接起来,构成一个闭合回路,这就构成了热电偶。

如图1所示,温度t 端是感温端称为测量端, 温度t 0端是连接仪表端称为参考端或冷端,当导体A 和B 的两个点t 和t 0之间存在温差时,就在回路中产生电动势E AB (t,t 0), 因而在回路中形成电流,这种现象称为“热电效应”。

这个电动势称为热电势,热电偶就是利用这一效应来工作的。

热电势的大小与t 和t 0之差的大小有关,当热电偶的两个热电极材料已知时,由热电偶回路热电势的分布理论得知热电偶两端的热电势差可以用下式表示()()()00,t E t E t t E AB AB AB -=式中:()0,t t E AB -热电偶的热电势; ()t E AB -温度为t 时工作端的热电势; ()0t E AB -温度为t 0时冷端的热电势。

从上式可看出,当工作端的被测介质温度发生变化时,热电势随之发生变化,因此,只要测出()0,t t E AB 和知道()0t E AB 就可得到()t E AB ,将热电势送入显示仪表进行指示或记录,或送入微机进行处理,即可获得测量端温度t 值。

34.热电偶检定校准结果测量不确定度评定报告

34.热电偶检定校准结果测量不确定度评定报告

陕西XXXX技术有限公司廉金属热电偶检定/校准结果测量不确定度评定报告编制:审核:批准:2020年06月06日检定/校准结果测量不确定度评定报告一、概述1、预评估对象:E 型热电偶, 10#(西安天虹仪表)2、校准方法:JJF 1637-2017《廉金属热电偶》3、校准项目:示值误差4、校准环境:温度20℃;湿度52%RH5、校准用计量标准器:二等标准铂电阻温度计二 测量结果不确定的评定1、校准方法及原理按JJF1637-2017《廉金属热电偶校准规范》要求,按直接测量法进行测量。

被测对象为Ⅱ级E 型热电偶,其最大允许误差±2.5℃。

2、 数学模型补被被被)(e S t dtdW W W e t e n t t tn +⨯-+=)( 其中:tp t t R R W = 式中: nt 被校点的温度点,℃; t W温度t 时的电阻比; t R 标准温度计在温度t 时测得的电阻值的平均值,Ω;tp R标准温度计在水三相点的温度值,Ω; tnW 、tn t dt dW )( 标准温度计分度表给出的温度对应的电阻比和电阻比随温度的变化率,℃-1;)(t e 被被校热电偶在某校准点的热电动势值,mV ; 被e 被校热电偶在某校准点附近,测得的电动势算术平均值,mV ; 补e 补偿导线修正值,mV 。

3、标准不确定度分量3.1被校热电偶重复测量引入标准不确定度评定1u在100℃点进行连续10次测量,得到如下结果:6.356mV 、6.359mV 、6.326mV 、6.329mV 、6.246mV 、6.329mV 、6.296mV 、6.352mV 、6.351mV 、6.326mV 。

其标准偏差计算如下:mV n x x s i i r 0343.01)(1012=--=∑= 则:V s e u r μ9.1010)(==被 3.2电测设备测量被校热电偶引入的标准不确定度2u电测设备使用的是KEITHLEY2010型数字万用表,其测量的误差按一年内的准确度量程)读数661091037(--⨯+⨯±计算,对应校准点读数取6.350mV ,量程100mV,误差±0.91μV 。

热电偶检定报告范文

热电偶检定报告范文

热电偶检定报告范文一、检定目的热电偶时常需要进行检定,以验证其测量准确性和可靠性。

本次热电偶检定的目的是评估热电偶的温度测量误差,并确定其测量范围和准确度。

二、检定方法本次检定采用了比对法进行,即将要检定的热电偶与一组已知准确度的标准热电偶进行比较。

三、检定步骤1.准备工作:检定仪器,包括标准热电偶、温度计、电压表等;2.校准标准热电偶:使用标准温度计对标准热电偶进行校准,确保其准确度;3.校准待测热电偶:将待测热电偶与标准热电偶的连接头进行连接,并接通相应的测温仪器和电压表;4.记录测量数据:依次设置不同的温度值,记录标准热电偶和待测热电偶的电压输出值,并计算出它们之间的差值;5.统计数据分析:根据记录的数据进行统计分析,计算出测量误差和可靠度指标,并绘制相应的曲线和图表;6.检定结论:根据数据分析结果,给出热电偶的测量准确度和可靠性评估。

四、检定结果根据本次检定的数据,分析得出以下结果:1.温度测量误差:记录的数据显示,待测热电偶的测量误差范围在±0.5°C内,符合相关精确度要求;2.可靠性评估:热电偶的可靠性指标表明,对同一温度点的多次测量结果相对稳定,且标准差较小;五、数据分析1.温度测量误差分析:对于待测热电偶,在不同温度点上与标准热电偶的测量误差范围在±0.5°C内。

该误差范围符合产品精确度要求;2.可靠性分析:对于待测热电偶进行多次测量,在同一温度点上,测量结果的标准差较小,表明待测热电偶在重复测量过程中的可靠性较高。

六、结论与改进意见根据本次检定的结果,得出如下结论:1.待测热电偶的测量准确度在±0.5°C范围内,符合产品规格要求;2.待测热电偶的可靠性较高,在重复测量过程中具有较小的变化量。

改进意见:1.对待测热电偶的测量结果进行数据处理,进一步提高测量准确度;2.继续对热电偶进行定期检定,以确保其测量结果的可靠性。

热电偶热电阻检定装置技术报告范文

热电偶热电阻检定装置技术报告范文

热电偶热电阻检定装置技术报告范文英文回答:Title: Technical Report on Thermocouple and Resistance Thermometer Calibration Equipment.Introduction:In this technical report, I will discuss thecalibration equipment used for thermocouples and resistance thermometers. I will provide a detailed explanation of the equipment, its functions, and the calibration process. Additionally, I will share my personal experiences and examples to illustrate the importance and effectiveness of this equipment.Equipment Description:The calibration equipment used for thermocouples and resistance thermometers consists of a temperature source, areference thermometer, and a data acquisition system. The temperature source, often a precision furnace or a temperature bath, is used to generate known temperatures. The reference thermometer, which is a highly accurate instrument, is used to measure the temperature generated by the source. The data acquisition system records the temperature readings from the reference thermometer.Calibration Process:The calibration process involves comparing the readings of the thermocouple or resistance thermometer being calibrated with the readings of the reference thermometer. The temperature source is set to a specific temperature, and the reference thermometer is used to measure this temperature. The readings of the thermocouple or resistance thermometer are then compared with the reference thermometer readings. Any discrepancies are noted and adjustments are made to ensure accurate measurements.Importance of Calibration Equipment:Using calibrated thermocouples and resistance thermometers is crucial for ensuring accurate temperature measurements in various industries such as manufacturing, pharmaceuticals, and food processing. Without proper calibration, these instruments may provide inaccurate readings, leading to faulty processes and potential safety hazards.Personal Experience:During my work as a quality control engineer in a food processing plant, I encountered a situation where an uncalibrated thermocouple led to incorrect temperature measurements during the cooking process. This resulted in undercooked food products, which had to be discarded, causing a significant financial loss for the company. After this incident, the management invested in a calibration equipment to avoid such issues in the future.Conclusion:In conclusion, the calibration equipment forthermocouples and resistance thermometers plays a vitalrole in ensuring accurate temperature measurements. It consists of a temperature source, a reference thermometer, and a data acquisition system. The calibration process involves comparing the readings of the instrument being calibrated with the reference thermometer. Calibrated instruments are essential for maintaining product quality and safety. My personal experience highlights theimportance of using calibrated instruments to avoid costly mistakes.中文回答:标题,热电偶和热电阻检定装置技术报告。

新版工作用廉金属热电偶测量结果不确定度评定

新版工作用廉金属热电偶测量结果不确定度评定

新版工作用廉金属热电偶测量结果不确定度评定新版工作用廉金属热电偶是一种常用的测量温度的装置,它由两种不同金属制成的两个臂构成,通过典型的“热电效应”来测量温度。

为了保证温度测量的准确性,我们需要评定其测量结果的不确定度。

不确定度是对测量结果的一种评估,它表示了测量结果的可信度范围。

在评定新版工作用廉金属热电偶测量结果的不确定度时,我们需要考虑以下几个因素:1. 廉金属热电偶的特性:不同种类的廉金属热电偶具有不同的温度特性,这会对测量结果造成影响。

我们需要了解廉金属热电偶的温度响应特点,以确定其在不同温度下的测量不确定度。

2. 测量设备的精度:测量设备的精度会影响到测量结果的准确性。

我们需要使用经过校准的测量设备,并确保其精度满足测量要求。

3. 测量场景的环境条件:测量场景的环境条件,如温度梯度、辐射效应等,也会对测量结果产生不确定度的影响。

我们需要合理选择测量场景,并对环境条件进行评估和控制,以减小不确定度。

4. 测量过程的操作技能:操作人员的技能水平和操作规范程度也会对测量结果产生影响。

我们需要培训和规范操作人员,确保他们准确、规范地使用廉金属热电偶进行温度测量。

评定新版工作用廉金属热电偶测量结果不确定度的方法有多种,常用的方法有:1. 标准不确定度法:根据廉金属热电偶的特性和测量设备的精度,计算出每个测量结果的标准不确定度。

2. 组合不确定度法:将各个不确定度来源的标准不确定度合成为测量结果的综合不确定度。

这需要考虑不同不确定度来源之间的相关性,并使用相应的合成公式进行计算。

3. 重复性试验法:通过重复进行测量,得到一系列的测量结果,再根据这些结果计算出测量结果的标准差,作为测量结果的不确定度。

评定新版工作用廉金属热电偶测量结果不确定度的过程需要严格按照相关标准和规范进行操作,确保评定结果的准确性和可靠性。

通过合理评定不确定度,我们可以提高测量结果的可信度,为温度控制和监测提供更准确的数据支持。

热电偶定标实验报告

热电偶定标实验报告

热电偶定标实验报告热电偶定标实验报告引言:热电偶是一种常用的温度测量传感器,可广泛应用于工业控制、实验室研究等领域。

本次实验旨在通过对热电偶的定标实验,了解其工作原理以及验证其准确性和稳定性。

一、实验原理热电偶是利用两种不同金属的热电效应产生电动势,从而实现温度测量的仪器。

热电偶由两根不同金属的导线组成,两端焊接在一起形成一个回路。

当两端温度不同时,由于两种金属的热电效应不同,就会产生电动势。

二、实验装置本次实验采用了标准的热电偶测温系统,包括热电偶、测温仪、恒温槽等。

热电偶选用了铜-铜镍合金热电偶,测温仪采用了数字显示仪表。

三、实验步骤1. 准备工作:将热电偶插头与测温仪连接,确保连接牢固。

2. 温度校准:将热电偶的测温端插入恒温槽中,调节恒温槽的温度,待温度稳定后,记录测温仪的示数。

3. 温度变化测量:将热电偶的测温端分别插入不同温度的介质中,记录测温仪的示数,并观察示数的变化趋势。

4. 数据处理:根据测温仪示数和对应的温度值,绘制热电偶的温度特性曲线。

四、实验结果与分析通过实验测量,我们得到了热电偶的温度特性曲线。

曲线显示出热电偶的输出电动势与温度之间的线性关系,符合热电偶的工作原理。

同时,我们还观察到在不同温度下,热电偶的输出电动势有所变化,这与热电偶的特性相符。

在实验过程中,我们还注意到热电偶的响应速度较快,能够迅速感知温度的变化。

这使得热电偶在工业控制领域得到广泛应用,能够满足对温度变化快速响应的需求。

五、实验误差分析在实验中,由于测量设备的精度限制以及环境因素的影响,可能会产生一定的误差。

例如,温度梯度对热电偶的测量结果会产生影响,因此在实验过程中要尽量减小温度梯度。

此外,由于热电偶的材料和制造工艺不同,不同型号的热电偶具有不同的特性,因此在实际应用中,需要根据具体情况选择适合的热电偶。

六、实验结论通过本次热电偶定标实验,我们深入了解了热电偶的工作原理,并验证了其准确性和稳定性。

实验结果表明,热电偶能够快速、准确地测量温度,并具有良好的线性特性。

热电偶技术报告

热电偶技术报告
0.001
41.277 41.275 41.276 41.275 41.275 41.277 41.273 41.275 41.277 41.273 41.275
41.277 41.277 41.275 41.276 41.276 41.275 41.276 41.275 41.277 41.275 41.276
3
u13(300)= 4.14/ 3 =2.39(μv) u13(700)= 4.19/ 3 =2.42 (μv) u13(1100)= 3.78/ 3 =2.18(μv)
此分量可信度80%,v5=12
4.1.4被检热电偶检定时炉温波动引入的测量结果不确定度分量u 14属B类分量,反正弦分布 检定时,每一组独立测量,炉温实际波动为0.05℃,换算成300℃,700℃和1100℃的热电动势 值分别为2.07μv、2.10μv和1.89μv,取半宽分别为1.04μv、1.05μv和0.94μv,按均匀 分布, 包含因子k=
五、环境条件 序 号 1 2 3 4 5 6
项目
温度
要求
(20±5)℃
实际情况
(20±3)℃
结论
合格
湿度
≤80%RH
(30-56)%RH
合格
六、计量标准的量值溯源和传递框图 上 一 级 计 量 器 具
比较(或直接)测量
计量标准名称:标准铂铑-铂热电偶; 不确定度或准确度等级或最大允许误差: 一等 保存机构:中国测试技术研究院
2
2 2 2 2 2 2 u 1 (1100) = u 11 +u 12 +u 13 +u 14 +u 15 +u 16
3 ,根据34420A准确度指标,100mV档年变化量为:

工作用廉金属热电偶检定装置建标技术报告

工作用廉金属热电偶检定装置建标技术报告

计量标准技术报告
计量标准名称:工作用廉金属热电偶检定装置计量标准负责人:
建标单位名称(公章):
填写日期: 2023年02月04日
目录
一、建立计量标准的目的 (1)
二、计量标准的工作原理及其组成 (1)
三、计量标准器及重要的配套设备 (2)
四、计量标准的重要技术指标 (3)
五、环境条件 (3)
六、计量标准的量值溯源和传递框图 (4)
七、计量标准的测量反复性实验 (5)
八、计量标准的稳定性考核 (6)
九、检定或校准结果的测量不拟定度评估 (7)
十、检定或校准结果的验证 (9)
十一、结论 (10)
十二、附加说明 (10)。

热电偶技术报告

热电偶技术报告

热电偶技术报告概述热电偶是一种常用的温度测量设备,利用热电效应将温度转换为电压信号,广泛应用于工业、科研和生活中。

本技术报告将介绍热电偶的原理、结构、工作特性以及应用领域。

原理热电偶原理基于热电效应,即当两个不同材料的接触点处于温度差时,会产生电动势。

热电偶由两种不同材料的导线组成,分别称为热电偶的两根引线。

当热电偶的两个引线的接触点处于不同温度下时,由于材料的热电性质不同,会产生一个微弱的电压信号。

结构热电偶通常由两根不同材料的导线组成,其中一根导线称为热电对(hot junction),另一根导线称为冷端(cold junction)。

热电对处于被测温度环境中,将温度转化为电压信号。

冷端通常与参考温度保持一致,用于补偿环境温度对测量的影响。

热电对和冷端导线通过电缆与仪表连接。

工作特性温度测量范围不同型号的热电偶有不同的温度测量范围,常见的热电偶类型有K型、J型、T型等。

其中,K型热电偶是最常用的一种,可测量范围通常在-200°C至1370°C之间。

灵敏度和响应速度热电偶的灵敏度和响应速度取决于热电对材料的热电特性,一般来说,热电对材料的热电势系数越大,灵敏度越高。

不同的热电偶类型有不同的灵敏度和响应速度。

线性度和精度热电偶的线性度和精度对于温度测量的准确性至关重要。

热电偶的线性度通常在一定范围内是比较好的,但在极低温度或极高温度下可能出现较大的误差。

精度取决于热电对材料和热电偶的加工精度,以及仪表的精度。

应用领域热电偶广泛应用于各个领域的温度测量和控制中,主要包括以下方面: - 工业自动化:热电偶可用于工业过程中的温度测量和控制,如炉温控制、液体流量控制等。

- 科研实验:热电偶常用于科研实验中的温度测量,如化学反应的温度监控、材料性能测试等。

- 生活用品:热电偶也应用在生活用品中,如温度计、电热水壶等。

总结热电偶技术以其简单、可靠的特点,在温度测量领域发挥着重要作用。

新版工作用廉金属热电偶测量结果不确定度评定

新版工作用廉金属热电偶测量结果不确定度评定

新版工作用廉金属热电偶测量结果不确定度评定摘要:本文通过对新版工作用廉金属热电偶测量结果不确定度的评定进行研究,分析了影响不确定度的主要因素,并提出了相应的评定方法和措施。

通过实验对新版工作用廉金属热电偶的温度测量结果进行了分析,并计算了不确定度。

结果表明,新版工作用廉金属热电偶的测量结果不确定度较低,能够满足实际工作需求。

1. 引言工作用廉金属热电偶是广泛应用于工业领域的一种温度测量装置,具有响应速度快、测量范围广等优点。

由于测量装置和测量环境的影响,工作用廉金属热电偶的测量结果存在一定的不确定度。

对工作用廉金属热电偶的测量结果不确定度进行评定,对于确保温度测量结果的准确性和可靠性具有重要意义。

2. 不确定度评定方法2.1 确定主要影响因素在评定工作用廉金属热电偶测量结果的不确定度之前,需要明确主要的影响因素。

常见的影响因素包括测量设备的精度、环境温度的影响、电磁场的干扰等。

通过分析这些主要影响因素,可以为后续的不确定度评定提供基础。

2.2 选择合适的评定方法不确定度的评定方法有很多种,比如测量重复性法、综合测量法等。

在评定工作用廉金属热电偶测量结果的不确定度时,可以使用重复测量法。

重复测量法要求多次测量同一物理量,通过统计分析得到测量结果的平均值和标准偏差,进而计算出不确定度。

3. 实验与结果分析本文选择了新版工作用廉金属热电偶作为研究对象,进行了一系列的温度测量实验。

通过多次测量同一温度,并使用统计方法计算出平均值和标准偏差,得到了实验结果数据。

通过对实验结果数据的分析,发现新版工作用廉金属热电偶的测量结果具有较高的重复性和稳定性。

经过计算,得到了工作用廉金属热电偶测量结果的标准偏差为0.05℃。

根据不确定度的定义,可以得到不确定度为0.05/√n,其中n为实验测量次数。

热电偶技术报告

热电偶技术报告

建立计量标准技术报告
计量标准名称:二等铂铑10—铂热电偶标准装置计量标准代码:43481223
建立计量标准负责人:
建立计量标准单位名称:
二零零一年四月二十八日
说明
1.建立计量标准技术报告由申请计量标准考核的计量技术机构撰写,随“计量标准考核申请表”一并上报主持计量标准考核单位。

2.建立计量标准技术报告的附录栏主要内容包括:采用的检定规程或国家标准,试验数据的原始记录,计量标准装置操作规程,数据对比记录等,由申请考核单位现场提供给标准考评小组。

3.建立计量标准技术报告的撰写方法详见《如何组织计量标准考核工作》一书。

热电偶计量标准技术报告

热电偶计量标准技术报告

计量标准技术报告
计 量 标 准 名 称二等标准铂铑10-铂热电偶检定装置
建标单位名称(章)甘肃 刘化 (集团)有 限 责 任 公 司
计 量 标 准 负责人 刘 秋 萍
填 写 日 期 一九八年
目录
一、概述……………………………………………………………………………………( )
二、计量标准的工作原理及其组成………………………………………………………( )
三、选用的计量标准器及主要配套设备…………………………………………………( )
四、计量标准的主要技术指标……………………………………………………………( )
五、环境条件………………………………………………………………………………( )
六、计量标准的量值溯源和传递框图……………………………………………………( )
七、计量标准的测量重复性考核…………………………………………………………( )
八、计量标准的稳定性考核………………………………………………………………( )
九、计量检定或校准结果的不确定度评定………………………………………………( )
十、计量标准的测量不确定度验证………………………………………………………( ) 十一、结论…………………………………………………………………………………( ) 十二、附加说明……………………………………………………………………………( )。

工作用廉金属热电偶检定装置技术报告例文

工作用廉金属热电偶检定装置技术报告例文
2 2 u(E 标)= u ( E 标1 ) u ( e标 2 ) 8.1 μ V
υ (E 标 2)=50
υ (E 标)=100
3.3 输入量 e 标(t’)的标准不确定度 u(e 标)的评定 输入量 e 标(t’)的标准不确定度 u(e 标)主要来源于标准热电偶测量不重复性、数字表测量误差、测量回路寄生电 势以及热电偶参考端温度不均。 3.3.1 标准不确定度 u(e 标 1)的评定 标准不确定度 u (e 标 1) 来源于被测热电偶测量不重复性, 采用 A 类方法进行评定。 以 1000℃测量情况为例分析。 在 1000℃点测量Ⅱ级工作用镍铬-镍硅热电偶 10 次,测得标准热电偶电动势数据为 9.582、9.582、9.582、9.582、 9.582、9.583、9.583、9.583、9.583mV。则 S1=0.75μ V 实际测量时,测量次数为 4 次,以测量值的平均值为测量结果。则该结果的标准不确定度为: u(e 被)=
3 ,半宽为 0.00152 mV
υ (e 被 2)=50
0.00152 3
=0.00088mV=0.88μ V
3.1.3 标准不确定度 u(e 被 3)的评定 8
标准不确定度 u(e 被 3)来源于检定炉温场分布不均,采用 B 类方法进行评定。由检定炉温场分布不均引起的最 大误差不超过 20μ V,覆盖因子 K= u(e 被 3)=
二、计量标准的工作原理及其组成
本装置采用双极法检定工作用热电偶。 即将被检热电偶与标准一等热电偶捆扎在一 起,工作端平齐,并使工作端置于检定炉的最高温区。在设定的温度下,由数表测出被 检热电偶和标准热电偶的热电势值。经数据处理,得到各设定点被检热电偶的热电势修 正值,并换算成温度值。
自动检测装置

计量标准技术报告-热电偶检定装置201505

计量标准技术报告-热电偶检定装置201505

计量标准技术报告计量标准名称一等铂铑10-铂热电偶标准装置建立计量计量标准单位中航试金石检测科技有限公司计量标准负责人侯克峰筹建起止日期2013.06—2013.08说明1.申请建立计量标准应填写《计量标准技术报告》。

计量标准考核合格后由申请单位存档。

2.《计量标准技术报告》由计量标准负责人填写。

3.《计量标准技术报告》用计算机打印或墨水笔填写,要求字迹工整清晰。

目录一、建立计量标准的目的-------------------------------------------------------------------------------------------(1)二、计量标准的工作原理及其组成-------------------------------------------------------------------------------(2)三、选用的计量标准器及主要配套设备------------------------------------------------------------------------(3)四、计量标准的主要技术指标----------------------------------------------------------------------------------(4)五、环境条件-------------------------------------------------------------------------------------------------------(4)六、计量标准的量值溯源和传递框图-------------------------------------------------------------------------(5)七、计量标准的测量重复性考核--------------------------------------------------------------------------------(6)八、计量标准的稳定性考核--------------------------------------------------------------------------------------(9)九、测量不确定度评定--------------------------------------------------------------------------------------------(10)十、计量标准的测量不确定度验证-----------------------------------------------------------------------------(37)十一、结论-----------------------------------------------------------------------------------------------------------(38)十二、附加说明-----------------------------------------------------------------------------------------------------(38)。

热电偶检定记录范文

热电偶检定记录范文

热电偶检定记录范文以下是一份热电偶检定记录示例,其中包括了热电偶的基本信息、检定过程以及检定结果。

1.基本信息:热电偶型号:热电偶编号:检定日期:检定人员:2.检定前准备:-确认热电偶表面无损伤或腐蚀。

-清洁热电偶表面,去除可能影响测量结果的尘埃或油脂。

-确认热电偶连接线无损伤或断裂,已正确连接到测量设备。

3.检定过程:-将热电偶连接到校准装置上,并根据校准装置的说明书进行正确的操作。

-设置校准装置的参考温度,并等待一段时间以确保温度稳定。

-使用校准装置中的标准热电偶对待校准的热电偶进行比较测量,记录两者的温度值。

-重复上述步骤,对不同温度范围内的热电偶进行测量。

4.检定结果:-检定温度范围:(例如-100°C至1000°C)-温度值记录表(以0.1°C为单位):温度(°C)待校准热电偶读数(°C)标准热电偶读数(°C)-100-99.9-99.8-90-89.7-89.6...100100.1100.2-温度值偏移:(待校准热电偶读数-标准热电偶读数)的平均值-温度致敏误差:(待校准热电偶读数-标准热电偶读数)的最大值-鉴定结果:合格/不合格5.检定结论:根据热电偶的检定结果,判断热电偶的准确度和可靠性。

如果热电偶的偏移值和致敏误差在可接受的范围内,判定为合格;否则判定为不合格,并采取相应的修复或更换措施。

6.检定记录存档:将以上检定结果及结论记录,并将检定记录存档,以便日后参考和追溯。

以上是一份热电偶检定记录的示例,具体内容和格式可以根据实际需要进行调整。

通过定期的热电偶检定,可以确保热电偶的测量结果准确可靠,从而为工况监控和过程控制提供可靠的温度数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、计量标准的工作原理及其组成
本装置采用双极法检定工作用热电偶。 即将被检热电偶与标准一等热电偶捆扎在一 起,工作端平齐,并使工作端置于检定炉的最高温区。在设定的温度下,由数表测出被 检热电偶和标准热电偶的热电势值。经数据处理,得到各设定点被检热电偶的热电势修 正值,并换算成温度值。
自动检测装置
油槽
9
在区间内可认为服从均匀分布,覆盖因子 K= u(e 标 2)=
3 ,半宽为 0.78
μ V
0.78 3
=0.45μ V
υ (e 被 2)=50
3.3.3 标准不确定度 u(e 标 3)的评定 标准不确定度 u(e 标 3)来源于测量回路寄生电势。由寄生电势测试结果可得,其寄生电势不超过±0.4μ V。 u(e 被 4)=
8 3
V υ (e 被 5)=12
u(e 被 5)=
4.62 μ V
3.1.6 标准不确定度 u(e 被)的合成
2 2 2 2 2 u(e 被)= u ( e被1 ) u ( e被 2 ) u ( e被3 ) u ( e被 4 ) u ( e被5 ) 7.5μ V
υ (e 被)=70
0.75 4
=0.38μ V
υ (e 被)=9
3.3.2 标准不确定度 u(e 标 2)的评定 标准不确定度 u(e
标2
)来源于数表测量误差,采用 B 类方法进行评定。当检测点为 1000℃时,测量示值接近
10mV,根据数表检定结果可知,最大示值误差为=±(37ppm*rdg+6ppm*200)=±1.57μ V。
V
υ (e 被 4)=12
3.1.5 标准不确定度 u(e 被 5)的评定 标准不确定度 u(e 被 5)来源于热电偶参考端温度测量误差引起,采用 B 类方法进行评定。 按照经验和试验可得,由参考端温度测量误差带来的最大误差为±8μ V。在区间内可认为服从均匀分布,覆 盖因子 K=
3 ,半宽 a=8μ
3.输入量的标准不确定度评定 3.1 输入量 e 被(t’)的标准不确定度 u(e 被)的评定 输入量 e 被(t’)的标准不确定度 u(e 被)不确定度来源于被测热电偶测量不重复性、数字表测量误差、检定炉温场 分布不均、测量回路寄生电势以及热电偶参考端温度不均。 3.1.1 标准不确定度 u(e 被 1)的评定 标准不确定度 u (e 被 1) 来源于被测热电偶测量不重复性, 采用 A 类方法进行评定。 以 1000℃测量情况为例分析。 在 1000℃点测量Ⅱ级工作用镍铬-镍硅热电偶 10 次, 测得数据为 41.320、 41.320、 41.321、 41.322、 41.322、 41.322、 41.323、41.324、41.325、41.324mV。则 S1=0.0017mV 实际测量时,测量次数为 4 次,以测量值的平均值为测量结果。则该结果的标准不确
υ (e 被 4)=12
3.3.4 标准不确定度 u(e 标 4)的评定 标准不确定度 u(e 标 4)来源于热电偶参考端温度测量误差引起,采用 B 类方法进行评定。 按照经验和试验可得,由参考端温度测量误差带来的最大误差为± 0.4μ V。在区间内可认为服从均匀分布, 覆盖因子 K=
41.2762
热电偶 1000℃检定的重复性 检 2
41.2773
定 5

果 6
mV 7 8
41.2758
3
41.2767
4
41.2749
9
41.2773
10
41.2749
41.2765
n
41.2771 41.2755
2
标准偏 差
( x x)
S=1000×
i 1 i
n 1
=
0.92 μV
计量标准技术报告
计 量 标

名 称
工作用廉金属热电偶检定装置
计 量 标 准 负 责 人 建标单位名称(公章) 填 写 日 期


一、 建立计量标准的目的…………………………………………………… (2) 二、 计量标准的工作原理及其组成………………………………………… (2) 三、 计量标准器及主要配套设备…………………………………………… (3) 四、 计量标准的主要技术指标……………………………………………… (4) 五、 环境条件………………………………………………………………… (4) 六、 计量标准的量值溯源和传递框图……………………………………… (5) 七、 计量标准的重复性试验………………………………………………… (6) 八、 计量标准的稳定性考核………………………………………………… (7) 九、 检定或校准结果的测量不确定度评定………………………………… (8) 十、检定或校准结果的验证………………………………………………(11) 十一、结论…………………………………………………………………(13) 十二、附加说明……………………………………………………………(13)
( x x)
S= 1000×
i 1 i
n
2
n 1
= 0.92 μV
< S1 = 1.7μV
实测值 S= 0.92 μV,小于不确定度评定中引用数值(S1=0.0017mV) ,装置的检定 重复性符合要求。
6
八、计量标准的稳定性考核 热电偶测量稳定性考核:以一支 K 型Ⅰ级热电偶作为被检对象,每隔 1 个半月,用 该计量标准装置在 1000℃进行检定,共测试四组数据。取这四组中对应的检定结果最大 值与最小值之差作为该计量标准装置在这一段时间内的稳定性。 被检编号 第一次检定结果(mV) 第二次检定结果(mV) 第三次检定结果(mV) S12-1-47 41.2768 41.2753 41.2762
7
九、检定或校准结果的测量不确定度评定
一、工业热电偶 1.概述 1.1 测量依据:JJG351-1996《工作用廉金属热电偶检定规程》 1.2 环境条件:温度(15-35)℃,相对湿度:30%-80% 1.3 测量标准 一等标准铂铑 10—铂热电偶;7 位半数表。 1.4 测量对象 Ⅰ级工作用镍铬-镍硅热电偶。 1.5 测量方法 比较法 2.数学模型
2 2 u(E 标)= u ( E 标1 ) u ( e标 2 ) 8.1 μ V
υ (E 标 2)=50
υ (E 标)=100
3.3 输入量 e 标(t’)的标准不确定度 u(e 标)的评定 输入量 e 标(t’)的标准不确定度 u(e 标)主要来源于标准热电偶测量不重复性、数字表测量误差、测量回路寄生电 势以及热电偶参考端温度不均。 3.3.1 标准不确定度 u(e 标 1)的评定 标准不确定度 u (e 标 1) 来源于被测热电偶测量不重复性, 采用 A 类方法进行评定。 以 1000℃测量情况为例分析。 在 1000℃点测量Ⅱ级工作用镍铬-镍硅热电偶 10 次,测得标准热电偶电动势数据为 9.582、9.582、9.582、9.582、 9.582、9.583、9.583、9.583、9.583mV。则 S1=0.75μ V 实际测量时,测量次数为 4 次,以测量值的平均值为测量结果。则该结果的标准不确定度为: u(e 被)=
第四次检定结果(mV) 41.2759 最大值与最小值之差(mV) 0.0015 最大值与最小值之差为: 0.0015mV (1.5uV) ,即为: 0.0385℃, 小于检定规程 JJG75-1995 中要求的一等标准铂铑 10-铂热电偶 3 uV 的稳定性要求。且小于Ⅰ级 K 型热电偶最小允许 误差绝对值:1.5×1/5=0.3℃。同时也小于扩展不确定度 1.2℃。 所以本装置热电偶测量部分稳定性,符合要求。
e被 (t) e被 (t )
E标 (t) e标 (t ) S被 (t) S标 (t)
( t) 式中 e被 ------被测热电偶在需测量温度点 t 的热电动势 e被 (t ) ------被测热电偶在测量时(温度为 t’)的热电动势 E标 (t) ------标准热电偶在需测量温度点 t 的热电动势 e标 (t ) ------标准热电偶在测量时(温度为 t’)的热电动势 S标 ( t) ( t) 、 S被 -------标准、被检偶在需测量点温度 t 的微分热电动势
比较法
下一 级计 量器 具
K、N、E、T 型热电偶 (0~1200)℃ Ⅰ级、Ⅱ级
5
七、计量标准的重复性试验 选用两支热电偶,一等标准热电偶和 K 型Ⅰ级热电偶,一等标准热电偶为标准,另 一支作为被检,在本装置上,在 1000℃进行 10 次等精度检定。测量结果填入下表,计 算求出本标准装置的标准差 S 值。 测试 名称 1
3 ,半宽为 0.00152 mV
υ (e 被 2)=50
0.00152 3
=0.00088mV=0.88μ V
3.1.3 标准不确定度 u(e 被 3)的评定 8
标准不确定度 u(e 被 3)来源于检定炉温场分布不均,采用 B 类方法进行评定。由检定炉温场分布不均引起的最 大误差不超过 20μ V,覆盖因子 K= u(e 被 3)=
3.2 输入量 E 标(t)的标准不确定度 u (E 标)的评定 u (E 标)来源于二等标准热电偶分度值的不确定度和年稳定性,用 B 类方法进行评定。 3.2.1 标准不确定度 u (E 标 1)的评定 u (E 标)来源于二等标准热电偶分度值的不确定度。由不确定度分析报告可知,其不确定度为 7.4μ V。 所以 u(E 标 1)=7.4μ V υ (E 标 1)=50 3.2.2 标准不确定度 u(E 标 2)的评定 标准不确定度 u(E 标 2 )主要来源于二等标准热电偶的年不稳定性,采用 B 类方法进行评定。合格期内的二等 热电偶热电势的变化一般不超过±10μ V,在区间内可认为服从正态分布,覆盖因子 K=3,半宽 a=10μ V。 所以 u(E 标 2)=10/3=3.3μ V 3.2.1 标准不确定度 u(E 标)的合成
相关文档
最新文档