“三个二次”之间的关系表

合集下载

谈三个二次关系及及综合运用--

谈三个二次关系及及综合运用--

谈“三个二次”关系及其综合运用济钢高级中学 杨同才 2011年7月17日 12:29隋宇为于11-7-17 16:02推荐杨老师的文章从最基本的问题入手,通过数形结合的方法将“三个二次”的问题说的很清楚很全面,很有参考价值。

邵丽云于11-7-19 14:28推荐杨老师的“三个二次”关系及其综合运用这篇文章,以二次函数为主线充分论述三个二次间的关系,并对相关问题进行了总结归纳,可见杨老师平时教学的用心,值得学习。

一、”三个二次”的关系”三个二次”指一元二次函数、一元二次方程、一元二次不等式,是中学数学的重要内容,具有丰富的内涵和广泛的应用,在研究二次曲线与直线的位置关系、运用导数解决复杂函数性质等问题时,常常转化成二次方程、二次函数、二次不等式的问题。

”三个二次”将等与不等、数与形紧密的结合在一起,对数形结合思想、函数方程思想、等价转化思想有较高的要求。

因而在高考试题中将近占一半的试题与“三个二次”问题有关,作为教师进一步澄清三者的内在联系对提高学生数学思维水平有很大帮助!“三个二次”中,一元二次函数最为重要,在初中学生就专题学习了二次函数,研究了二次函数的定义、图像、性质和实际问题中的最值,往往作为中考试题的最后一个压轴题。

初中也学习了一元二次方程及其规范解法,如公式法、配方法、因式分解法等。

只有一元二次不等式及解法在初中仅是初步了解。

初中阶段对函数、方程、不等式的学习都是彼此独立的,对于“三个二次”的横向联系缺乏认识。

升入高中才真正揭开三者的内在联系,逐步形成用函数、方程、不等式“三位一体”的思考方式审视问题、解决问题。

在“三个二次”中一元二次函数2y=a +b +c x x 是重点,从它的配方形式22b 4ac-b y=a ++ 2a 4x a ⎛⎫ ⎪⎝⎭中充分反映了函数值y 随自变量x 的变化而变化的规律,可以容易的观察出何时取最值,也能考查出自变量x 取关于2b a-对称值时函数值的取值特点。

二次函数与一元二次方程、不等式知识点总结与例题讲解

二次函数与一元二次方程、不等式知识点总结与例题讲解

二次函数与一元二次方程、不等式知识点总结与例题讲解一、本节知识点(1)一元二次不等式的概念. (2)三个二次的关系. (3)一元二次不等式的解法. 知识点拓展:(4)分式不等式的解法. (5)高次不等式的解法. 二、本节题型(1)解不含参数的一元二次不等式. (2)解含参数的一元二次不等式. (3)三个二次之间的关系.(4)简单高次不等式、分式不等式的解法. (5)不等式恒成立问题. (6)一元二次不等式的应用. 三、知识点讲解.知识点 一元二次不等式的概念我们把只含有1个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.即形如02>++c bx ax (≥0)或02<++c bx ax (≤0)(其中0≠a )的不等式叫做一元二次不等式.元二次不等式的解与解集使一元二次不等式成立的x 的值,叫做这个一元二次不等式的解,其解的集合,叫做这个一元二次不等式的解集.注意 一元二次不等式的解集要写成集合或区间的形式. 知识点 三个二次的关系一元二次不等式的解集、一元二次方程的解以及二次函数的图象之间有着紧密的联系.一元二次方程()002≠=++a c bx ax 与二次函数()002≠=++=a c bx ax y 的关系是:(1)当ac b 42-=∆≥0时,一元二次方程()002≠=++a c bx ax 有实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有交点,且方程的解是交点的横坐标,交点的横坐标亦是方程的解;①当0>∆时,一元二次方程()002≠=++a c bx ax 有两个不相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴有两个不同的交点;②当0=∆时,一元二次方程()002≠=++a c bx ax 有两个相等的实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴只有一个交点(即抛物线的顶点).(2)当042<-=∆ac b 时,一元二次方程()002≠=++a c bx ax 无实数根,二次函数()002≠=++=a c bx ax y 的图象与x 轴没有交点.具体关系见下页表(1)所示.一元二次不等式与二次函数()002≠=++=a c bx ax y 的关系是:(1)一元二次不等式02>++c bx ax (≥0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴上方(包括x 轴)的部分所对应的自变量的取值范围;(2)一元二次不等式02<++c bx ax (≤0)的解集就是二次函数()002≠=++=a c bx ax y 的图象位于x 轴下方(包括x 轴)的部分所对应的自变量的取值范围.由表可知 一元二次不等式的解集的端点值就是对应的一元二次方程的解. 知识点 一元二次不等式的解法解一元二次不等式的一般步骤是:(1)利用不等式的性质,将二次项系数化为正数; (2)计算ac b 42-=∆的值,并判断∆的符号; (3)当∆≥0时,求出相应的一元二次方程的根; (4)画出对应的二次函数的简图;(5)根据一元二次不等式的形式,结合简图,写出其解集.注意 一元二次不等式的解集结构与二次项系数的符号有着直接的关系.其中,①当0>∆时,一元二次不等式()002>>++a c bx ax 的解集在“两根之外”,即“大于大根或小于小根”;一元二次不等式()002><++a c bx ax 的解集在“两根之内”,即“大于小根且小于大根”,简记为“大于0取两边,小于0取中间”;②当0=∆时,一元二次不等式()002>>++a c bx ax 的解集为⎭⎬⎫⎩⎨⎧-≠a b x x 2;一元二次不等式()002><++a c bx ax 的解集为∅;③当0<∆时,一元二次不等式()002>>++a c bx ax 的解集为R ;一元二次不等式()002><++a c bx ax 的解集为∅.表(1)一元二次方程、二次函数以及一元二次不等式的关系:一元二次不等式在R 上恒成立的问题(1)02>++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆>0402ac b a 或⎩⎨⎧>==00c b a ; (2)02<++c bx ax 在R 上恒成立,则有:⎩⎨⎧<-=∆<0402ac b a 或⎩⎨⎧<==00c b a ;(3)一元二次不等式c bx ax ++2≥0在R 上恒成立,则有:⎩⎨⎧≤-=∆>0402ac b a ; (4)一元二次不等式c bx ax ++2≤0在R 上恒成立,则有:⎩⎨⎧≤-=∆<0402ac b a . 补充概念 二次函数的零点我们把使一元二次方程02=++c bx ax 的实数x 叫做二次函数c bx ax y ++=2的零点. 对零点的理解(1)二次函数的零点即相应一元二次方程02=++c bx ax 的实数根;(2)根据数形结合,二次函数的零点,即二次函数的图象与x 轴的交点的横坐标,且交点的个数等于零点的个数;(3)并非所有的二次函数都有零点.当ac b 42-=∆≥0时,一元二次方程有实数根,相应二次函数存在零点.知识点 分式不等式的解法 分式不等式的概念分母中含有未知数的不等式叫做分式不等式.利用不等式的性质,可将分式不等式化为以下标准形式: ①0)()(>x g x f ; ②)()(x g x f ≥0; ③0)()(<x g x f ; ④)()(x g x f ≤0. 分式不等式的解法解分式不等式的思路是把其转化为整式不等式求解.解分式不等式时,要先把分式不等式转化为标准形式. 各标准形式的分式不等式的解法为: (1)0)()(>x g x f 与不等式组⎩⎨⎧>>0)(0)(x g x f 或⎩⎨⎧<<0)(0)(x g x f 同解,与不等式0)()(>⋅x g x f 同解; (2))()(x g x f ≥0与不等式组⎩⎨⎧≠≥⋅0)(0)()(x g x g x f 同解;(3)0)()(<x g x f 与不等式组⎩⎨⎧<>0)(0)(x g x f 或⎩⎨⎧><0)(0)(x g x f 同解,与不等式0)()(<⋅x g x f 同解;(4))()(x g x f ≤0与不等式组⎩⎨⎧≠≤⋅0)(0)()(x g x g x f .由以上解法可以看出:将分式不等式转化为标准形式后,再将其转化为不等式组或同解整式不等式进行求解.知识点 高次不等式的解法解高次不等式,一般用“数轴标根法”,也叫“穿根引线法”,其步骤如下:(1)把高次不等式化为左边是几个因式的乘积,右边是0的形式,注意每个因式最高次项的系数必须为正;(2)把不等号换成等号,求出所得方程的所有实数根; (3)标根: 把各个实数根在数轴上标出;(4)画穿根线: 从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,如此一上一下依次穿过各根.但要注意偶次根不穿过,即奇过偶不过;(5)写出解集: 若不等号为“ > ”,则取数轴上方穿根线以内的范围;若不等号为“ < ”,则取数轴下方穿根线以内的范围.四、例题讲解例1. 解不等式0452>-+-x x .分析 先把不等式的二次项系数化为正数,再进行求解.注意不等式的解集要写成区间或集合的形式.解: 原不等式可化为:0452<+-x x .对于方程0452=+-x x ,∵()0941452>=⨯⨯--=∆∴该方程有两个不相等的实数根,解之得:4,121==x x . ∴不等式0452>-+-x x 的解集为{}41<<x x .点评 在求解一元二次不等式时,先观察二次项系数是否为正,若为负,则先把不等式的二次项系数化为正数(利用不等式的基本性质).例2. 已知关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ,求不等式022>-+-a x cx 的解集.分析 先根据一元二次不等式与相应一元二次方程之间的关系,利用根与系数的关系定理,求出c a ,的值.注意 一元二次不等式的解集的端点值是对应一元二次方程的根. 解: 由题意可知:0<a .∵关于x 的不等式022>++c x ax 的解集为⎭⎬⎫⎩⎨⎧<<-2131x x ∴21,3121=-=x x 是方程022=++c x ax 的两个实数根由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-213121312a c a ,解之得:⎩⎨⎧=-=212c a . ∴022>-+-a x cx 即012222>++-x x ∴062<--x x ,解之得:32<<-x .∴不等式022>-+-a x cx 的解集为{}32<<-x x .例3. 一元二次不等式()()052>-+x x 的解集为 【 】 (A ){}52>-<x x x 或 (B ){}25>-<x x x 或 (C ){}52<<-x x (D ){}25<<-x x分析 本题可用数轴标根法求解.使用该方法时,要把乘积中所有因式的最高次项的系数化为正数.解: 原不等式可化为:()()052<-+x x .∵方程()()052=-+x x 的根为5,221=-=x x .∴不等式()()052<-+x x 的解集为{}52<<-x x ,即原不等式的解集. ∴选择答案【 C 】.例4. 已知不等式042<++ax x 的解集为空集,则实数a 的取值范围是 【 】 (A ){}44≤≤-a a (B ){}44<<-a a (C ){}44≥-≤a a a 或 (D ){}44>-<a a a 或分析 本题考查一元二次不等式与相应的二次函数之间的关系,同时问题还可以转化为一元二次不等式恒成立的问题.不等式042<++ax x 的解集为空集,即相应的二次函数42++=ax x y 的图象位于x 轴上及其上方,或者不等式42++ax x ≥0在R 上恒成立.解: ∵不等式042<++ax x 的解集为空集∴162-=∆a ≤0,解之得:4-≤a ≤4. ∴实数a 的取值范围是{}44≤≤-a a . ∴选择答案【 A 】.例5. 若关于x 的不等式()()021>--x mx 的解集为⎭⎬⎫⎩⎨⎧<<21x m x ,则实数m 的取值范围是 【 】 (A ){}0>m m (B ){}20<<m m(C )⎭⎬⎫⎩⎨⎧>21m m (D ){}0<m m分析 本题由题意可知:0<m . 解: ∵()()021>--x mx∴()02122>++-x m mx .∵其解集为⎭⎬⎫⎩⎨⎧<<21x m x ∴0<m .∴实数m 的取值范围是{}0>m m . ∴选择答案【 D 】.例6. 已知函数182++=bx ax y 的定义域为[]6,3-,则实数a 的值为_________,实数b 的值为_________.解: ∵函数182++=bx ax y 的定义域为[]6,3-∴一元二次不等式182++bx ax ≥0的解集为[]6,3-. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-631863aab ,解之得:⎩⎨⎧=-=31b a . ∴实数a 的值为1-,实数b 的值为3. 例7. 已知函数m x x y +-=2.(1)当2-=m 时,求不等式0>y 的解集; (2)若0,0<>y m 的解集为{}b x a x <<,,求ba 41+的最小值. 解:(1)2-=m 时,22--=x x y .∵0>y ,∴()()02122>-+=--x x x x 解之得:1-<x 或2>x .∴不等式0>y 的解集为{}21>-<x x x 或;(2)∵02<+-=m x x y 的解集为{}21>-<x x x 或 ∴m ab b a ==+,1,且041>-=∆m ,解之得:41<m . ∵0>m ,∴0,0>>b a ,410<<m . ∴()a b b a b a b a b a ++=⎪⎭⎫ ⎝⎛++=+454141≥9425=⋅+a b b a . 当且仅当a b b a =4,即32,31==b a 时,等号成立.此时41923231<=⨯=m ,符合题意. ∴ba 41+的最小值为9. 例8. 解关于x 的不等式02>-x ax (0≠a ).分析 本题考查含有参数的一元二次不等式的解法.当二次项系数含有参数时,要对二次项系数的正负进行讨论(一元二次不等式解集的结构与二次项系数的符号有关).解: ∵02>-x ax ,∴()01>-ax x∴01>⎪⎭⎫ ⎝⎛-a x ax .∵0≠a ,∴分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或;②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x .另解: 解方程02=-x ax (0≠a )得:ax x 1,121==. 分为两种情况:①当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或; ②当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 综上所述,当当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>01x a x x 或,当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<01x a x . 点评 不等式02>-x ax (0≠a )可化为01>⎪⎭⎫⎝⎛-a x ax .当0>a 时,根据不等式的性质可知,原不等式同解于不等式01>⎪⎭⎫⎝⎛-a x x ;当0<a 时,原不等式同解于不等式01<⎪⎭⎫⎝⎛-a x x .例9. 若对于0>∀x ,132++x x x≤a 恒成立,则实数a 的取值范围是 【 】 (A )⎭⎬⎫⎩⎨⎧≥31a a (B )⎭⎬⎫⎩⎨⎧>31a a (C )⎭⎬⎫⎩⎨⎧>51a a (D )⎭⎬⎫⎩⎨⎧≥51a a . 解: ∵132++x x x≤a 恒成立 ∴只需a ≥max213⎪⎭⎫ ⎝⎛++x x x 即可. ∵0>∀x ∴311132++=++x x x x x≤513121=+⋅xx . 当且仅当xx 1=,即1=x 时,等号成立. ∴5113max 2=⎪⎭⎫ ⎝⎛++x x x . ∴a ≥51,即实数a 的取值范围是⎭⎬⎫⎩⎨⎧≥51a a .∴选择答案【 D 】.例10.(1)若关于x 的不等式0232>+-x ax (∈a R )的解集为{}b x x x ><或1(∈b R ),求b a ,的值;(2)解关于x 的不等式ax x ax ->+-5232(∈a R ).解:(1)由题意可知:0>a .一元二次方程0232=+-x ax 的根为b x x ==21,1.由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=baba1213,解之得:⎩⎨⎧==21b a .∴a 的值为1,b 的值为2;(2)∵ax x ax ->+-5232(∈a R ) ∴()0332>--+x a ax .当0=a 时,原不等式为523>+-x ,解之得:1-<x . ∴原不等式的解集为{}1-<x x ;当0≠a 时,原不等式可化为()031>⎪⎭⎫ ⎝⎛-+a x x a . ①若0>a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或; ②若03<<-a 时,原不等式同解于()031<⎪⎭⎫ ⎝⎛-+a x x ,且13-<a ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; ③若3-=a ,原不等式为()0132<+x ,其解集为∅;④若3-<a ,则13->a ,则原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 综上所述,当0=a 时, 原不等式的解集为{}1-<x x ;当0>a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<>13x a x x 或;当03<<-a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<<13x a x ; 当3-=a 时,原不等式的解集为∅; 当3-<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<-a x x 31. 例11.已知关于x 的不等式08322<-+kx kx . (1)若不等式的解集为⎭⎬⎫⎩⎨⎧<<-123x x ,求实数k 的值;(2)若不等式08322<-+kx kx 恒成立,求实数k 的取值范围. 解:(1)由题意可知:0>k .一元二次方程08322=-+kx kx 的根是1,2321=-=x x . 由根与系数的关系定理:123283⨯-=-k ,解之得:81=k .∴实数k 的值为81;(2)当0=k 时,083<-恒成立,符合题意;当0≠k 时,由题意可知:⎪⎩⎪⎨⎧<⎪⎭⎫ ⎝⎛-⨯⨯-=∆<08324022k k k ,解之得:03<<-k . 综上所述,实数k 的取值范围为{}03≤<-k k .例12. 若∀1≤x ≤4,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.分析 本题考查一元二次不等式在给定闭区间上的恒成立问题,要把问题转化为相应二次函数在闭区间上的最值问题.解: ∵()422++-x a x ≥1--a∴()1-x a ≤522+-x x . ∵1≤x ≤4∴当1=x 时,显然0⨯a ≤4521=+-成立,∴∈a R ; 当x <1≤4时,01>-x∴a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.此时3=x []4,1∈,符合题意.∴a ≤4.综上所述,实数a 的取值范围是(]4,∞-. 例13. 已知不等式012<--mx mx .(1)当∈x R 时不等式恒成立,求实数m 的取值范围; (2)当∈x {}31≤≤x x 时不等式恒成立,求实数m 的取值范围.解:(1)当0=m 时,01<-恒成立,符合题意;当0≠m 时,则有⎩⎨⎧<+=∆<0402m m m ,解之得:04<<-m . 综上,实数m 的取值范围是(]0,4-;(2)当0=m 时,显然∈x {}31≤≤x x 时,01<-恒成立,符合题意; 当0≠m 时,()11<-x mx .若1=x ,显然10<恒成立,此时∈m R ; 若x <1≤3,则()01>-x x ∴()11-<x x m 恒成立,只需()min11⎥⎦⎤⎢⎣⎡-<x x m 即可. ∵()4121111122-⎪⎭⎫ ⎝⎛-=-=-x x x x x ≥614121312=-⎪⎭⎫ ⎝⎛- ∴()6111min=⎥⎦⎤⎢⎣⎡-<x x m . 综上所述,实数m 的取值范围为⎪⎭⎫⎝⎛∞-61,.例14. 解关于x 的不等式()m x m mx --+122≥0.解: 当0=m 时,x -≥0,解之得:x ≤0.∴原不等式的解集为{}0≤x x ;当0≠m 时,原不等式可化为()()m x mx +-1≥0∴()[]m x m x m --⎪⎭⎫⎝⎛-1≥0.方程()m x m mx --+122的两个实数根分别为m x mx -==21,1. 当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1; 当0<m 时,原不等式同解于()[]m x m x --⎪⎭⎫ ⎝⎛-1≤0,且m m -<1. ∴原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 综上所述,当0=m 时,原不等式的解集为{}0≤x x ;当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≥m x m x x 或1;当0<m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-≤≤m m m x 1. 例15. 已知关于x 的不等式222->-x kx kx . (1)当2=k 时,解不等式; (2)当∈k R 时,解不等式.解:(1)当2=k 时,2422->-x x x∴02522>+-x x ∴()()0212>--x x . 解之得:2>x 或21<x . ∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>212x x x 或;(2)原不等式可化为()02122>++-x k kx . 当0=k 时,02>+-x ,解之得:2<x . ∴原不等式的解集为{}2<x x ;当0≠k 时,原不等式可化为()()012>--kx x∴()012>⎪⎭⎫⎝⎛--k x x k .方程222->-x kx kx 的根为kx x 1,221==. 当0<k 时,原不等式同解于()012<⎪⎭⎫ ⎝⎛--k x x ,且21<k .∴原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当0>k 时,原不等式同解于()012>⎪⎭⎫⎝⎛--k x x .①若21>k ,则21<k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或; ②若21=k ,则21=k,∴原不等式的解集为{}2≠x x ; ③若210<<k ,则21>k ,∴原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或.综上所述,当0=k 时,原不等式的解集为{}2<x x ;当0<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x k x ; 当210<<k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>21x k x x 或;当21=k 时,原不等式的解集为{}2≠x x ; 当21>k 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>k x x x 12或.例16. 已知关于x 的不等式0622<+-k x kx .(1)若不等式的解集为{}23->-<x x x 或,求实数k 的取值; (2)若不等式的解集为R ,求实数k 的取值范围.解:(1)由题意可知:0<k .一元二次方程0622=+-k x kx 的两个实数根分别为2,321-=-=x x .由根与系数的关系定理可得:232--=--k ,解之得:52-=k . ∴实数k 的值为52-;(2)当0=k 时,原不等式的解集为{}0>x x ,不符合题意;当0≠k 时,则有:⎩⎨⎧<-=∆<024402k k ,解之得:66-<k . 综上所述,实数k 的取值范围是⎭⎬⎫⎩⎨⎧-<66k k .例17. 已知122++ax ax ≥0恒成立,解关于x 的不等式022<+--a a x x .解:∵122++ax ax ≥0恒成立∴当0=a 时,1≥0恒成立,符合题意;当0≠a 时,则有:⎩⎨⎧≤-=∆>04402a a a ,解之得:a <0≤1. 综上,实数a 的取值范围是[]1,0. 对于不等式022<+--a a x x当0≤a ≤1时,原不等式可化为()()01<-+-a x a x∴()()[]01<---a x a x ,方程022=+--a a x x 的根为a x a x -==1,21.①若a <21≤1,则a a ->1,∴原不等式的解集为{}a x a x <<-1; ②若21=a ,则a a -=1,∴原不等式的解集为∅;③若210<<a ,则a a -<1,∴原不等式的解集为{}a x a x -<<1.综上所述,对于不等式022<+--a a x x :当a <21≤1时,不等式的解集为{}a x a x <<-1; 当21=a 时,不等式的解集为∅;当0≤21<a 时,不等式的解集为{}a x a x -<<1.例18. 不等式()()xa c xb x -++≤0的解集为{}321≥<≤-x x x 或,则=+c b 【 】(A )5- (B )2- (C )1 (D )3解: 原不等式可化为()()ax c x b x -++≥0,同解于()()()⎩⎨⎧≠-≥++-00a x c xb x a x .方程()()0=-++ax c x b x 的解为c x b x -=-=21,.∵该不等式的解集为{}321≥<≤-x x x 或∴2=a ,⎩⎨⎧=--=-31c b 或⎩⎨⎧-=-=-13c b ,∴⎩⎨⎧-==31c b 或⎩⎨⎧=-=13c b .∴2-=+c b . ∴选择答案【 B 】.例19. 已知函数b ax x y +=2(b a ,为常数),且方程012=+-x y 的两个根为31=x ,42=x .(1)求b a ,的值;(2)设1>k ,解关于x 的不等式()xkx k y --+<21.解:(1)由题意可得:⎪⎪⎩⎪⎪⎨⎧=+-+=+-+0124416012339b a b a ,整理得:⎪⎪⎩⎪⎪⎨⎧-=+-=+142131ba ba ,解之得:⎩⎨⎧=-=21b a . ∴a 的值为1-,b 的值为2;(2)由(1)可知:xx y -=22.∵()x kx k y --+<21,∴()xkx k x x --+<-2122. ∴()()()021212<---=-++-xk x x x k x k x . 原不等式同解于()()()021>---k x x x .∵1>k∴当21<<k 时,原不等式的解集为{}21><<x k x x 或; 当2=k 时,()()0212>--x x ,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.综上所述,当21<<k 时,原不等式的解集为{}21><<x k x x 或;当2=k 时,原不等式的解集为{}21≠>x x x 且;当2>k 时,原不等式的解集为{}k x x x ><<或21.例20. 已知集合()()[]{}0132<+--=a x x x A ,()⎭⎬⎫⎩⎨⎧<+--=012a x a x x B . (1)当2=a 时,求B A ;(2)若A B ⊆,求实数a 的取值范围.解:(1)当2=a 时∵()(){}{}72072<<=<--=x x x x x A ,{}52052<<=⎭⎬⎫⎩⎨⎧<--=x x x x x B∴{}52<<=x x B A ;(2)∵∈∀a R ,恒有a a >+12,()()()[]{}010122<+--=⎭⎬⎫⎩⎨⎧<+--=a x a x x a x a x x B ∴{}12+<<=a x a x B . 当213>+a ,即31>a 时,{}132+<<=a x x A . ∵A B ⊆,∴⎩⎨⎧+≤+≥13122a a a ,解之得: 2≤a ≤3.∴实数a 的取值范围是[]3,2;当213=+a ,即31=a 时,(){}∅=<-=022x x A ,显然不符合题意; 当213<+a ,即31<a 时,{}213<<+=x a x A .∵A B ⊆,∴⎩⎨⎧≤+≤+21132a aa ,解之得: 1-≤a ≤21-.∴实数a 的取值范围是⎥⎦⎤⎢⎣⎡--21,1. 综上所述,实数a 的取值范围是[]3,221,1 ⎥⎦⎤⎢⎣⎡--. 例21. 已知不等式442-+>+m x mx x .(1)若对任意实数x 不等式恒成立,求实数m 的取值范围; (2)若对于0≤m ≤4不等式恒成立,求实数x 的取值范围.解:(1)∵442-+>+m x mx x∴()0442>-+-+m x m x . ∵对任意实数x 不等式恒成立∴()()04442<---=∆m m ,解之得: 40<<m .∴实数m 的取值范围是()4,0; (2)∵442-+>+m x mx x ∴()04412>+-+-x x m x . ∵对[]4,0∈∀m ,不等式恒成立∴()()⎩⎨⎧>+-+⨯->+-+⨯-044410440122x x x x x x ,解之得:0≠x 且2≠x . ∴实数x 的取值范围是{}2200><<<x x x x 或或.点评 解决恒成立问题时一定要清楚谁是主元,谁是参数.一般情况下,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数,构造以主元为变量的函数,根据主元的取值范围求解.例22. 设()12--=mx mx x f ,求使()0<x f ,且m ≤1恒成立的x 的取值范围.解: ∵()0<x f ,m ≤1,∴012<--mx mx ,[]1,1-∈m .∴()012<--m x x 对[]1,1-∈m 恒成立. 设()()12--=m x x m g ,则有:()()()()()⎩⎨⎧<-⨯-=<--⨯-=-0111011122x x g x x g ,解之得:251251+<<-x .∴实数x 的取值范围是⎪⎪⎭⎫⎝⎛+-251,251.重要结论 一次函数()b kx x f +=()0≠k 在区间[]n m ,上的恒成立问题:(1)若()0>x f 恒成立,则()()⎩⎨⎧>>00n f m f ;(2)若()0<x f 恒成立,则()()⎩⎨⎧<<0n f m f .例23. 设函数()12--=mx mx x f ()0≠m ,若对于[]3,1∈x ,()5+-<m x f 恒成立,求m 的取值范围.解: ∵()5+-<m x f 在[]3,1∈x 上恒成立∴062<-+-m mx mx 在[]3,1∈x 上恒成立. 令()62-+-=m mx mx x g ,只需()0max <x g 即可. 函数()x g 图象的对称轴为直线212=--=m m x . 当0>m 时,()x g 在[]3,1上单调递增 ∴()()0673max <-==m g x g ,解之得:76<m . ∴760<<m ; 当0<m 时,()x g 在[]3,1上单调递减 ∴()()061max <-==m g x g ,解之得:0<m .综上所述,m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或.另解: ∵062<-+-m mx mx 在[]3,1∈x 上恒成立∴()612<+-x x m 在[]3,1∈x 上恒成立.∵04321122>+⎪⎭⎫ ⎝⎛-=+-x x x ∴162+-<x x m 在[]3,1∈x 上恒成立.只需761336162min 2=+-=⎪⎭⎫ ⎝⎛+-<x x m 即可. ∵0≠m∴m 的取值范围是⎭⎬⎫⎩⎨⎧<<<7600m m m 或. 例24. 已知集合{}042≤-=t t A ,对于任意的A t ∈,使不等式122->-+x t tx x 恒成立的x 的取值范围是_____________.解: {}{}22042≤≤-=≤-=t t t t A .∵当A t ∈时,不等式122->-+x t tx x 恒成立 ∴()01212>+-+-x x t x 恒成立. 设()()1212+-+-=x x t x t f ,则有:()()⎩⎨⎧>-=>+-=-012034222x f x x f ,解之得:1-<x 或3>x . ∴x 的取值范围是{}31>-<x x x 或.例25. 对一切实数x ,不等式12++x a x ≥0恒成立,则实数a 的取值范围是_____________.解: 当0=x 时,显然对∈∀a R 成立;当0≠x 时,a ≥⎪⎭⎫ ⎝⎛+-=--=--x x x x x x 1112,只需a ≥max 1⎪⎭⎫ ⎝⎛+-x x 即可.∵⎪⎭⎫ ⎝⎛+-x x 1≤212-=⋅-x x∴21max -=⎪⎭⎫ ⎝⎛+-x x ,∴a ≥2-.∴实数a 的取值范围是[)+∞-,2.例26. 已知0,0>>y x ,且()()()144152++--+y x m y x ≥0恒成立,则实数m 的取值范围是_____________.解: ∵0,0>>y x ,∴0>+y x .∵()()()144152++--+y x m y x ≥0恒成立∴15-m ≤()y x y x yx y x +++=+++1441442恒成立,只需15-m ≤min144⎪⎭⎫ ⎝⎛+++y x y x 即可. ∵y x y x +++144≥()241442=+⋅+yx y x (当且仅当12=+y x 时,等号成立) ∴24144min =⎪⎭⎫ ⎝⎛+++y x y x ,∴15-m ≤24,解之得:m ≤5.∴实数m 的取值范围是(]5,∞-. 例27. 已知61>k ,对任意正实数y x ,,不等式ky x k +⎪⎭⎫ ⎝⎛-213≥xy 2恒成立,求实数k 的取值范围.解: ∵61>k ,∴0213>-k . ∴ky x k +⎪⎭⎫ ⎝⎛-213≥xy k k ky x k ⎪⎭⎫⎝⎛-=⋅⎪⎭⎫ ⎝⎛-213221322.当且仅当ky x k =⎪⎭⎫⎝⎛-213,即x kk y 213-=时,等号成立.∴ky x k +⎪⎭⎫ ⎝⎛-213的最小值为xy k k ⎪⎭⎫⎝⎛-21322∵不等式ky x k +⎪⎭⎫⎝⎛-213≥xy 2恒成立∴xy k k ⎪⎭⎫ ⎝⎛-21322≥xy 2∴xy k k ⎪⎭⎫ ⎝⎛-21342≥xy 2,解之得:k ≥21.∴实数k 的取值范围是⎪⎭⎫⎢⎣⎡+∞,21.例28. 若关于x 的不等式()()0121122>+++-+-x x x k x k 的解集为R ,则实数k 的取值范围是_____________.解: ∵04321122>+⎪⎭⎫ ⎝⎛+=++x x x 在R 上恒成立 ∴原不等式同解于不等式()()02112>+-+-x k x k ,其解集为R 当1=k 时,02> 在R 上恒成立,符合题意;当1≠k 时,则有:()()⎩⎨⎧<---=∆>-0181012k k k ,解之得:91<<k . 综上所述,实数k 的取值范围是[)9,1.例29.(1)解关于x 的不等式()422++-x a x ≤a 24-(∈a R );(2)若x <1≤4时,不等式()422++-x a x ≥1--a 恒成立,求实数a 的取值范围.解:(1)∵()422++-x a x ≤a 24-∴()()a x x --2≤0.当2>a 时,原不等式的解集为{}a x x ≤≤2; 当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x .综上所述,当当2>a 时,原不等式的解集为{}a x x ≤≤2;当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ;当2<a 时,原不等式的解集为{}2≤≤x a x . (2)由题意可知,当(]4,1∈x 时,不等式()5212+---x x a x ≥0恒成立.∴当(]4,1∈x 时,a ≤1522-+-x x x 恒成立,只需a ≤min2152⎪⎭⎫⎝⎛-+-x x x 即可.∵(]4,1∈x ,∴()14114115222-+-=-+-=-+-x x x x x x x ≥()41412=-⋅-x x . 当且仅当141-=-x x ,即3=x 时,等号成立.∴4152min 2=⎪⎭⎫ ⎝⎛-+-x x x .∴a ≤4,即实数a 的取值范围为(]4,∞-.例30.(1)已知命题∈∀x p :R ,a x x +-22≥0,命题∈∃x q :R ,0122=-++a x x ,若p 为真命题,q 为假命题,求实数a 的取值范围;(2)已知a ≥21,二次函数c ax x a y ++-=22,其中c a ,均为实数,证明对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.解:(1)∵命题∈∀x p :R ,a x x +-22≥0为真命题∴()a a 44422-=--=∆≤0,解之得: a ≥1.∵命题∈∃x q :R ,0122=-++a x x 为假命题 ∴⌝q :∈∀x R ,0122≠-++a x x 为真命题. ∴()01241<--=∆a ,解之得:85>a . ∴实数a 的取值范围是[)+∞,1;(2)证明: 二次函数c ax x a y ++-=22图象的对称轴为直线aa a x 2122=--=. ∵a ≥21,∴a210<≤1. ∵[]1,0∈∀x ,02<-a∴函数c ax x a y ++-=22的最大值在顶点处取得,即4144222max +=---=c a a c a y . 充分性: ∵c ≤43,∴41+c ≤14143=+,即max y ≤1. ∴y ≤1;必要性: ∵[]1,0∈∀x ,均有y ≤1成立. ∴max y ≤1,即41+c ≤1,解之得: c ≤43. 综上所述, 对任意x (0≤x ≤1),均有y ≤1成立的充要条件是c ≤43.例31.已知关于x 的不等式222++-m mx x ≤0(∈m R )的解集为M . (1)当M 为空集时,求m 的取值范围;(2)在(1)的条件下,求1522+++m m m 的最小值;(3)当M 不为空集,且{}41≤≤⊆x x M 时,求实数m 的取值范围.解:(1)∵不等式222++-m mx x ≤0(∈m R )的解集为M 为空集∴()()084424222<--=+--=∆m m m m ,解之得:21<<-m .∴m 的取值范围是{}21<<-m m ;(2)由(1)可知: 21<<-m ,∴310<+<m .∴()14114115222+++=+++=+++m m m m m m m ≥()41412=+⋅+m m . 当且仅当141+=+m m ,即1=m 时,等号成立. ∴1522+++m m m 的最小值为4;(3)由题意可知,方程0222=++-m mx x 的两个实数根均在[]4,1内 设()222++-=m mx x x f ,则有:()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤--≤≥++-=≥++-=≥+--=∆42210281640221102422m m m f m m f m m ,解之得: 2≤m ≤718. ∴实数m 的取值范围是⎥⎦⎤⎢⎣⎡718,2. 例32. 当10<<x 时,若关于x 的二次方程m mx x 2122-=++有两个不相等的实数根,求实数m 的取值范围.分析 本题考查的是一元二次方程的K 分布:两根均在()21,k k 内. 解: ∵m mx x 2122-=++∴01222=+++m mx x . 设()1222+++=m mx x x f .∵该方程在()1,0内有两个不相等的实数根∴()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧>+++=>+=<-<>+-=∆01221101201220012422m m f m f m m m ,解之得:2121-<<-m . ∴实数m 的取值范围是⎪⎭⎫ ⎝⎛--21,21.重要结论 一元二次方程的实数根的K 分布:一元二次方程02=++c bx ax (0>a )的两个实数根分别为21,x x ,且21x x <.(1)若k x x <<21,则有:()⎪⎪⎩⎪⎪⎨⎧><->∆020k f k a b; (2)若21x x k <<,则有:()⎪⎪⎩⎪⎪⎨⎧>>->∆020k f k a b; (3)若21x k x <<,则有:()0<k f ;(4)若2211k x x k <<<,即两根21,x x 在()21,k k 内,则有:()()⎪⎪⎩⎪⎪⎨⎧>><-<>∆00202121k f k f k a b k(5)若11k x <,且22k x >(21k k <),则有:()()⎩⎨⎧<<021k f k f ; (6)()()212211,,,k k x k k x ∈∈中只有一个成立,即方程只有一个实数根在()21,k k 内,则有:()()021<k f k f或⎪⎩⎪⎨⎧<-<=∆2120k ab k . 例33. 已知二次函数1222-+-=t tx x y (∈t R ).(1)若该二次函数有两个互为相反数的零点,解不等式1222-+-t tx x ≥0; (2)若关于x 的方程01222=-+-t tx x 的两个实数根均大于2-且小于4,求实数t 的取值范围.解:(1)∵二次函数1222-+-=t tx x y 有两个互为相反数的零点∴方程01222=-+-t tx x 有两个互为相反数的实数根,设为21,x x ,∴021=+x x . 由根与系数的关系定理可得:0221==+t x x ,解之得:0=t .∵1222-+-t tx x ≥0∴12-x ≥0,解之得:x ≥1或x ≤1-. ∴该不等式的解集为{}11-≤≥x x x 或;(2)∵()()044441422222>=+-=---=∆t t t t∴∈∀t R ,该方程总有两个不相等的实数根. ∵方程的两个实数根均大于2-且小于4∴()()⎪⎪⎩⎪⎪⎨⎧>+-=>++=-<--<-015840342422222t t f t t f t ,解之得:31<<-t .∴实数t 的取值范围是()3,1-. 例34. 已知二次函数12+-=bx ax y .(1)是否存在实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ?若存在,求实数b a ,的值,若不存在,请说明理由;(2)若a 为整数,2+=a b ,且方程012=+-bx ax 在{}12-<<-∈x x x 上恰有一个实数根,求a 的值.解:(1)假设存在这样的实数b a ,.∵不等式012>+-bx ax 的解集是{}21<<x x ∴0<a ,方程012=+-bx ax 的两个实数根分别为2,1. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=--21121aa b ,解之得:⎪⎪⎩⎪⎪⎨⎧==2321b a . ∵021>=a ,与0<a 矛盾 ∴不存在这样的实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ; (2)∵2+=a b ∴()0122=++-x a ax .∵()[]()0314242222>+-=+-=-+-=∆a a a a a∴方程()0122=++-x a ax 总有两个不相等的实数根.∵方程()0122=++-x a ax 在{}12-<<-∈x x x 上恰有一个实数根 ∴()()[]()[]0121122222<+++-⨯⨯+++-⨯a a a a整理得:()()03256<++a a ,解之得:6523-<<-a . ∵a 为整数 ∴a 的值为1-.例35. 已知不等式052>+-b ax x 的解集为{}14<>x x x 或. (1)求实数b a ,的值; (2)若10<<x ,()xbx a x f -+=1,求函数()x f 的最小值. 分析 (1)一元二次不等式的解的结构与二次项系数的符号有关,且一元二次不等式解集的端点值就是其对应的一元二次方程的两个实数根;(2)注意到()11=-+x x ,且01,10>-<<x x ,考虑利用基本不等式求函数()x f 的最小值.解:(1)∵不等式052>+-b ax x 的解集为{}14<>x x x 或∴方程052=+-b ax x 的两个实数根分别4和1. 由根与系数的关系定理可得:⎩⎨⎧⨯=+=14145b a ,解之得:⎩⎨⎧==41b a . ∴a 的值为1,b 的值为4; (2)由(1)可知:4,1==b a . ∴()xx x f -+=141. ∵10<<x ,∴01>-x . ∴()()[]x x x x x x x x x x x f -+-+=⎪⎭⎫ ⎝⎛-+-+=-+=11451411141 ≥911425=-⋅-+xxx x . 当且仅当x x x x -=-114,即31=x 时,等号成立. ∴函数()x f 的最小值为9.。

3.3 一元二次不等式及其解法 Word版含解析

3.3 一元二次不等式及其解法 Word版含解析

3.3 一元二次不等式及其解法1.掌握一元二次不等式的解法.(重点)2.能根据“三个二次”之间的关系解决简单问题.(难点)[基础·初探]教材整理1 一元二次不等式的概念阅读教材P74~P74倒数第四行,完成下列问题.1.一元二次不等式的概念一般地,含有一个未知数,且未知数的最高次数为2的整式不等式,叫做一元二次不等式.2.一元二次不等式的一般形式(1)ax2+bx+c>0(a≠0).(2)ax2+bx+c≥0(a≠0).(3)ax2+bx+c<0(a≠0).(4)ax2+bx+c≤0(a≠0).3.一元二次不等式的解与解集使一元二次不等式成立的未知数的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集.判断(正确的打“√”,错误的打“×”)(1)mx2-5x<0是一元二次不等式.()(2)若a>0,则一元二次不等式ax2+1>0无解.()(3)x=1是一元二次不等式x2-2x+1≥0的解.()(4)x2-x>0为一元二次不等式.()【解析】(1)×.当m=0时,是一元一次不等式;当m≠0时,它是一元二次不等式.(2)×.因为a>0,所以不等式ax2+1>0恒成立,即原不等式的解集为R.(3)√.因为x=1能使不等式x2-2x+1≥0成立.故该说法正确.(4)×.因为一元二次不等式是整式不等式,而不等式中含有x,故该说法错误.【答案】(1)×(2)×(3)√(4)×教材整理2 一元二次不等式、二次函数、二次方程间的关系阅读教材P74倒数第三行~P78练习A以上内容,完成下列问题.三个“二次”的关系:1.不等式x2≤1的解集为________.【解析】令x2-1=0,其两根分别为-1,1,故x2≤1的解集为{x|-1≤x≤1}.【答案】{x|-1≤x≤1}2.不等式2x≤x2+1的解集为________.【解析】2x≤x2+1⇔x2-2x+1≥0⇔(x-1)2≥0,∴x∈R.【答案】R3.设集合M={x|x2-x<0},N={x|x2<4},则M与N的关系为________.【解析】因为M={x|x2-x<0}={x|0<x<1},N={x|x2<4}={x|-2<x<2},所以M N.【答案】M N4.二次函数y=ax2+bx+c(x∈R)的部分对应值如下表:【解析】可根据图表求得两个零点为x1=-2,x2=3,结合二次函数的图象(略)求解.【答案】{x|x<-2或x>3}[小组合作型](1)x2-5x>6;(2)4x2-4x+1≤0;(3)-x2+7x>6.【精彩点拨】【自主解答】 (1)由x 2-5x >6,得 x 2-5x -6>0.∵x 2-5x -6=0的两根是x =-1或6. ∴原不等式的解集为{x |x <-1,或x >6}. (2)4x 2-4x +1≤0,即(2x -1)2≤0, 方程(2x -1)2=0的根为x =12. ∴4x 2-4x +1≤0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =12. (3)由-x 2+7x >6,得x 2-7x +6<0, 而x 2-7x +6=0的两个根是x =1或6. ∴不等式x 2-7x +6<0的解集为 {x |1<x <6}.1.在解一元二次不等式中,需求所对应的一元二次方程的根,可借用求根公式法,或“十字相乘法”求解,根据数形结合写出解集.2.解不含参数的一元二次不等式的一般步骤(1)化标准.通过对不等式的变形,使不等式右侧为0,使二次项系数为正. (2)判别式.对不等式左侧因式分解,若不易分解,则计算对应方程的判别式. (3)求实根.求出相应的一元二次方程的根或根据判别式说明方程有无实根. (4)画草图.根据一元二次方程根的情况画出对应的二次函数的草图. (5)写解集.根据图象写出不等式的解集.[再练一题]1.解下列不等式:(1)2x2-x+6>0;(2)-12x2+3x-5>0;(3)(5-x)(x+1)≥0.【解】(1)∵方程2x2-x+6=0的判别式Δ=(-1)2-4×2×6<0,函数y=2x2-x+6的图象开口向上,与x轴无交点.∴原不等式的解集为R.(2)原不等式可化为x2-6x+10<0,∵Δ=62-40=-4<0,∴原不等式的解集为∅.(3)原不等式可化为(x-5)(x+1)≤0,∴原不等式的解集为{x|-1≤x≤5}.【精彩点拨】因式分解→比较根的大小→分类讨论求解【自主解答】原不等式转化为(x-2a)(x+a)<0.对应的一元二次方程的根为x1=2a,x2=-a.(1)当a>0时,x1>x2,不等式的解集为{x|-a<x<2a};(2)当a=0时,原不等式化为x2<0,无解;(3)当a<0时,x1<x2,不等式的解集为 {x |2a <x <-a }.综上所述,原不等式的解集为: a >0时,{x |-a <x <2a }; a =0时,x ∈∅; a <0时,{x |2a <x <-a }.1.含参数的不等式的解题步骤 (1)将二次项系数转化为正数;(2)判断相应方程是否有根(如果可以直接分解因式,可省去此步); (3)根据根的情况写出相应的解集(若方程有相异根,为了写出解集还要分析根的大小).2.解含参数的一元二次不等式(1)若二次项系数含有参数,则需对二次项系数大于0与小于0进行讨论; (2)若求对应一元二次方程的根需用公式,则应对判别式Δ进行讨论; (3)若求出的根中含有参数,则应对两根的大小进行讨论.[再练一题]2.解关于x 的不等式:ax 2-2≥2x -ax (a <0).【导学号:18082046】【解】 原不等式移项得ax 2+(a -2)x -2≥0, 化简为(x +1)(ax -2)≥0. ∵a <0,∴(x +1)⎝ ⎛⎭⎪⎫x -2a ≤0.当-2<a <0时,2a ≤x ≤-1; 当a =-2时,x =-1;当a <-2时,-1≤x ≤2a . 综上所述, 当-2<a <0时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2a ≤x ≤-1; 当a =-2时,解集为{x |x =-1}; 当a <-2时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1≤x ≤2a. [探究共研型]集合分别是什么?这说明二次函数与二次方程、二次不等式有何关系?【提示】 y =x 2-2x -3的图象如图所示.函数y =x 2-2x -3的值满足y >0时自变量x 组成的集合,亦即二次函数y =x 2-2x -3的图象在x 轴上方时点的横坐标x 的集合{x |x <-1或x >3};同理,满足y <0时x 的取值集合为{x |-1<x <3},满足y =0时x 的取值集合,亦即y =x 2-2x -3图象与x 轴交点横坐标组成的集合{-1,3}.这说明:方程ax 2+bx +c =0(a ≠0)和不等式ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0)是函数y =ax 2+bx +c (a ≠0)的一种特殊情况,它们之间是一种包含关系,也就是当y =0时,函数y =ax 2+bx +c (a ≠0)就转化为方程,当y >0或y <0时,就转化为一元二次不等式.探究2 方程x 2-2x -3=0与不等式x 2-2x -3>0的解集分别是什么?观察结果你发现什么问题?这又说明什么?【提示】 方程x 2-2x -3=0的解集为{-1,3}.不等式x 2-2x -3>0的解集为{x |x <-1或x >3},观察发现不等式x 2-2x -3>0解集的端点值恰好是方程x 2-2x -3=0的根.这说明:一元二次不等式ax 2+bx +c >0(a >0)和ax 2+bx +c <0(a >0)的解集分别为{x |x <x 1或x >x 2},{x |x 1<x <x 2}(x 1<x 2),则⎩⎪⎨⎪⎧x 1+x 2=-ba ,x 1x 2=ca ,即不等式的解集的端点值是相应方程的根.若不等式ax 2+bx +c ≥0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-13≤x ≤2,求不等式cx 2+bx+a <0的解集.【精彩点拨】 一元二次不等式解集的两个端点值是一元二次方程的两个根.【自主解答】 法一:由ax 2+bx +c ≥0的解集是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-13≤x ≤2,知a <0, 又⎝ ⎛⎭⎪⎫-13×2=c a <0,则c >0.又-13,2为方程ax 2+bx +c =0的两个根, ∴-b a =53.∴b a =-53.又c a =-23,∴b =-53a ,c =-23a . ∴不等式变为⎝ ⎛⎭⎪⎫-23a x 2+⎝ ⎛⎭⎪⎫-53a x +a <0,即2ax 2+5ax -3a >0.又∵a <0,∴2x 2+5x -3<0.所求不等式的解集为⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫-3<x <12.法二:由已知得a <0 且⎝ ⎛⎭⎪⎫-13+2=-b a ,⎝ ⎛⎭⎪⎫-13×2=c a ,知c >0,设方程cx 2+bx +a =0的两根分别为x 1,x 2, 则x 1+x 2=-b c ,x 1·x 2=ac ,其中a c =1⎝ ⎛⎭⎪⎫-13×2,-b c =-b a c a =⎝ ⎛⎭⎪⎫-13+2⎝ ⎛⎭⎪⎫-13×2=1⎝ ⎛⎭⎪⎫-13+12,∴x 1=1⎝ ⎛⎭⎪⎫-13=-3,x 2=12. ∴不等式cx2+bx +a <0(c >0)的解集为⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫-3<x <12.已知以a ,b ,c 为参数的不等式(如ax 2+bx +c >0)的解集,求解其他不等式的解集时,一般遵循:(1)根据解集来判断二次项系数的符号;(2)根据根与系数的关系把b ,c 用a 表示出来并代入所要解的不等式; (3)约去 a, 将不等式化为具体的一元二次不等式求解.[再练一题]3.已知不等式ax 2+bx +c >0的解集为{x |2<x <3},求不等式cx 2-bx +a >0的解集.【解】 由题意知⎩⎪⎨⎪⎧2+3=-b a ,2×3=ca, a <0,即⎩⎪⎨⎪⎧b =-5a ,c =6a , a <0.代入不等式cx 2-bx +a >0, 得6ax 2+5ax +a >0(a <0). 即6x 2+5x +1<0, 解得-12<x <-13,所以所求不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13.1.不等式6x 2+x -2≤0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-23≤x ≤12 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-23或x ≥12 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥12 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-23 【解析】 因为6x 2+x -2≤0⇔(2x -1)·(3x +2)≤0,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-23≤x ≤12. 【答案】 A 2.不等式2x +1<1的解集是( ) A.(-∞,-1)∪(1,+∞) B.(1,+∞)C.(-∞,-1)D.(-1,1)【解析】 ∵2x +1<1,∴2x +1-1=2-x -1x +1<0,即x -1x +1>0,∴(x -1)(x +1)>0解得x >1或x <-1,∴不等式2x +1<1的解集为(-∞,-1)∪(1,+∞). 【答案】 A3.二次函数y =x 2-4x +3在y <0时x 的取值范围是________.【导学号:18082047】【解析】 由y <0,得x 2-4x +3<0,∴1<x <3.【答案】 (1,3)4.若不等式ax 2+bx +2>0的解集为{x |-1<x <2},则实数a =________,实数b =________.【解析】 由题意可知-1,2是方程ax 2+bx +2=0的两个根.由根与系数的关系得⎩⎪⎨⎪⎧ -1+2=-b a ,-1×2=2a ,解得a =-1,b =1.【答案】 -1 15.解下列不等式:(1)x (7-x )≥12;(2)x 2>2(x -1).【解】 (1)原不等式可化为x 2-7x +12≤0,因为方程x 2-7x +12=0的两根为x 1=3,x 2=4.所以原不等式的解集为{x |3≤x ≤4}.(2)原不等式可以化为x2-2x+2>0,因为判别式Δ=4-8=-4<0,方程x2-2x+2=0无实根,而抛物线y=x2-2x+2的图象开口向上,所以原不等式的解集为R.。

高中数学必修一 (教案)二次函数与一元二次方程、不等式

高中数学必修一 (教案)二次函数与一元二次方程、不等式

二次函数与一元二次方程、不等式【教材分析】三个“二次”即一元二次函数、一元二次方程、一元二次不等式是高中数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具高考试题中近一半的试题与这三个“二次”问题有关本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。

【教学目标】课程目标1.通过探索,使学生理解二次函数与一元二次方程,一元二次不等式之间的联系。

2.使学生能够运用二次函数及其图像,性质解决实际问题。

3.渗透数形结合思想,进一步培养学生综合解题能力。

数学学科素养1.数学抽象:一元二次函数与一元二次方程,一元二次不等式之间的联系;2.逻辑推理:一元二次不等式恒成立问题;3.数学运算:解一元二次不等式;4.数据分析:一元二次不等式解决实际问题;5.数学建模:运用数形结合的思想,逐步渗透一元二次函数与一元二次方程,一元二次不等式之间的联系。

【教学重难点】重点:一元二次函数与一元二次方程的关系,利用二次函数图像求一元二次方程的实数根和不等式的解集;难点:一元二次方程根的情况与二次函数图像与x轴位置关系的联系,数形结合思想的运用。

【教学准备】【教学方法】以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

【教学过程】一、情景导入在初中,我们从一次函数的角度看一元一次方程、一元一次不等式,发现了三者之间的内在联系,利用这种联系可以更好地解决相关问题。

类似地,能否从二次函数的观点看一元二次方程和一元二次不等式,进而得到一元二次不等式的求解方法呢?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察。

研探。

二、预习课本,引入新课阅读课本,思考并完成以下问题1.二次函数与一元二次方程、不等式的解的对应关系。

2.解一元二次不等方的步骤?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究1.一元二次不等式与相应的一元二次函数及一元二次方程的关系如下表:判别式Δ=b 2-4acΔ>0Δ=0Δ<0二次函数y=ax 2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2没有实数根ax2+bx+c>0(a>0)的解集{x|x>x2或x<x1}{x|x≠−2ba}Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅ab2-=2.一元二次不等式ax2+bx+c>0(a>0)的求解的算法。

2.3+二次函数与一元二次方程不等式(共2课时)(教学课件)高一数学必修第一册(人教A版2019)

2.3+二次函数与一元二次方程不等式(共2课时)(教学课件)高一数学必修第一册(人教A版2019)

(1)若此不等式的解集是 1,2 ,求a 的值;
(2)讨论此不等式的解集.
详解
(2) x2 x a2 a 0 就是 x2 x aa 1 0 ,即 x a 1 x a 0 .
方程 x a 1 x a 0 的两根是 x1 a 1, x2 a .
(①1)当由a题意1知a,,即1,a2是 1时x2 , x此 a不2 等a式 0的的解两集根是,a 1, a .
能力提升
题型一:不含参一元二次不等式的解法 【练习 1】解下列不等式:
(1)-2x2+x-6<0;(2)-x2+6x-9≥0;(3)x2-2x-3>0.
解 (3)方程 x2-2x-3=0 的两根是 x1=-1,x2=3. 函数 y=x2-2x-3 的图象是开口向上的抛物线, 与 x 轴有两个交点(-1,0)和(3,0),如图所示. 结合图象可得不等式的解集为{x|x<-1 或 x>3}.
函数的零点
ax2+bx+c>0;ax2+bx+c<0 ax2+bx+c≥0;ax2+bx+c≤0
其中a、b、c为常数,a≠0.
方程的根
2.使一元二次不等式成立的的所有解 x 组成的集合叫做 一元二次不等式的解集(用集合的描述法表示).
函数图象与x 轴交点横坐标
3.方程ax2+bx+c=0的实数解x叫做二次函数y=ax2+bx+c的零点.
注:使得 ax2 bx c 0 成立的实数x(方程 ax2 bx c 0 的解)即为二次函 数 y ax2 bx c 的零点.
学习新知
观察一元二次不等式x2-12x+20<0与二次函数y=x2-12x+20间有何关系?
二次函数y=x2-12x+20 的两个零点x1=2,x2=10将x轴分成三段.

一元二次不等式教案

一元二次不等式教案

一元二次不等式教案一元二次不等式教案1教学目标:(1)透彻理解、掌握一元二次方程、一元二次不等式与二次函数的内在联系,会解一元二次不等式;(2)培养学生数学的数形结合思想和转化能力,学会主动探求问题和寻找解决问题的方法。

教学重点:一元二次不等式的解法(图象法)教学难点:(1)一元二次方程、一元二次不等式与二次函数的关系;(2)数形结合思想的渗透教学方法与教学手段:尝试探索教学法、归纳概括。

教学过程:一、复习引入1.复习一元一次方程、一元一次不等式与一次函数的关系[师]前面我们已经学习了绝对值不等式的解法,今天开始研究一元二次不等式的解法。

(板书课题)记得在初中我们已学习了一元一次不等式的解法,还记得是用什么方法解的吗?学生可能回答是代数方法,也可能说是利用直线图象。

[师]初中学习了一次函数的图象,使得我们对一元一次不等式的解法有了更深入的了解。

首先请同学们画出 y=2x-7[师]请同学们画出图象,并回答问题。

一次函数y=2x-7的图象如下:填表:当x 时,y = 0,即 2x-7 0;当x 时,y < 0,即 2x-7 0;当x 时,y > 0,即 2x-7 0;注:(1)引导学生由图象得出结论(数形结合)(2)由学生填空(一边演示y<0,y>0部分图象)从上例的特殊情形,你能得出什么结论?注:教师引导下学生发现其结论,并由学生尝试叙述:一元一次方程ax+b=0的根实质上就是直线y=ax+b与x轴交点的横坐标;一元一次不等式ax+b>0(或ax+b<0)的解集实质上就是使得函数的图象在x轴上方还是下方时x的取值范围。

2.新课导入[师]我们可以利用一次函数的图象快速准确地求出一元一次不等式的解集,那能否也可以借助二次函数的图象来解一元二次不等式呢?二、讲解新课1、一元二次不等式解法的探索[师] 你知道二次函数的草图是怎样画出的吗?(用"特殊点法"而非课本上的"列表描点法")你能回答以下问题吗?二次函数 y=x2-4x+3的图象如下:填表:方程x2-4x+3=0(即y=0)的解是不等式x2-4x+3>0(即y>0)的解集是不等式x2-4x+3<0(即y<0)的解集是注:学生类比前面的知识,能根据二次函数的图象确定与x轴的交点,确定对应的一元二次方程的根,从而确定一元二次不等式的解集。

三个“二次”及关系

三个“二次”及关系

三个“二次”及关系三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具.高考试题中近一半的试题与这三个“二次”问题有关.本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法.●难点磁场已知对于x的所有实数值,二次函数f(x)=x2-4ax+2a+12(a∈R)x=|a-1|+2的根的取值范围. 的值都是非负的,求关于x的方程2a●案例探究[例1]已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a、b、c满足a>b>c,a+b+c=0,(a,b,c∈R).(1)求证:两函数的图象交于不同的两点A、B;(2)求线段AB在x轴上的射影A1B1的长的取值范围.命题意图:本题主要考查考生对函数中函数与方程思想的运用能力.属于★★★★★题目.知识依托:解答本题的闪光点是熟练应用方程的知识来解决问题及数与形的完美结合.错解分析:由于此题表面上重在“形”,因而本题难点就是一些考生可能走入误区,老是想在“形”上找解问题的突破口,而忽略了“数”.技巧与方法:利用方程思想巧妙转化.(1)证明:由⎩⎨⎧-=++=bxy cbx ax y 2消去y 得ax 2+2bx +c =0Δ=4b 2-4ac =4(-a -c )2-4ac =4(a 2+ac +c 2)=4[(a +43)22+c c 2]∵a +b +c =0,a >b >c ,∴a >0,c <0∴43c 2>0,∴Δ>0,即两函数的图象交于不同的两点.(2)解:设方程ax 2+bx +c =0的两根为x 1和x 2,则x 1+x 2=-ab2,x 1x 2=a c.|A 1B 1|2=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2]43)21[(4]1)[(44)(4444)2(2222222++=++=---=-=--=a c a c a c a ac c a a ac b a c a b∵a >b >c ,a +b +c =0,a >0,c <0 ∴a >-a -c >c ,解得ac ∈(-2,-21)∵]1)[(4)(2++=ac ac ac f 的对称轴方程是21-=ac .ac ∈(-2,-21)时,为减函数∴|A 1B 1|2∈(3,12),故|A 1B 1|∈(32,3).[例2]已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围.(2)若方程两根均在区间(0,1)内,求m 的范围.命题意图:本题重点考查方程的根的分布问题,属★★★★级题目.知识依托:解答本题的闪光点是熟知方程的根对于二次函数性质所具有的意义.错解分析:用二次函数的性质对方程的根进行限制时,条件不严谨是解答本题的难点.技巧与方法:设出二次方程对应的函数,可画出相应的示意图,然后用函数性质加以限制.解:(1)条件说明抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧->-<∈-<⇒⎪⎪⎩⎪⎪⎨⎧>+=<+=>=-<+=65,21,21056)2(,024)1(,02)1(,012)0(m m R m m m f m f f m f ∴2165-<<-m .(2)据抛物线与x轴交点落在区间(0,1)内,列不等式组⎪⎪⎩⎪⎪⎨⎧<-<≥∆>>10,0,0)1(,0)0(m f f ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<--≤+≥->->⇒.01,2121,21,21m m m m m 或 (这里0<-m <1是因为对称轴x =-m 应在区间(0,1)内通过) ●锦囊妙计1.二次函数的基本性质 (1)二次函数的三种表示法:y =ax 2+bx +c ;y =a (x -x 1)(x -x 2);y =a (x -x 0)2+n .(2)当a >0,f (x )在区间[p ,q ]上的最大值M ,最小值m ,令x 0=21(p +q ).若-ab2<p ,则f (p )=m ,f (q )=M ; 若p ≤-a b 2<x 0,则f (-ab 2)=m ,f (q )=M ;若x 0≤-a b 2<q ,则f (p )=M ,f (-ab 2)=m ;若-ab 2≥q ,则f (p )=M ,f (q )=m .2.二次方程f (x )=ax 2+bx +c =0的实根分布及条件.(1)方程f (x )=0的两根中一根比r 大,另一根比r 小⇔a ·f (r )<0;(2)二次方程f (x )=0的两根都大于r ⇔⎪⎪⎩⎪⎪⎨⎧>⋅>->-=∆0)(,2,042r f a r a bac b (3)二次方程f (x )=0在区间(p ,q )内有两根⎪⎪⎪⎩⎪⎪⎪⎨⎧>⋅>⋅<-<>-=∆⇔;0)(,0)(,2,042p f a q f a q ab p ac b (4)二次方程f (x )=0在区间(p ,q )内只有一根⇔f (p )·f (q )<0,或f (p )=0(检验)或f (q )=0(检验)检验另一根若在(p ,q )内成立.(5)方程f (x )=0两根的一根大于p ,另一根小于q (p <q )⇔⎩⎨⎧>⋅<⋅0)(0)(q f a p f a .3.二次不等式转化策略(1)二次不等式f (x )=ax 2+bx +c ≤0的解集是:(-∞,α])∪[β,+∞)⇔a <0且f (α)=f (β)=0;(2)当a >0时,f (α)<f (β)⇔ |α+a b2|<|β+ab 2|,当a <0时,f (α)<f (β)⇔|α+ab2|> |β+ab2|; (3)当a >0时,二次不等式f (x )>0在[p ,q ]恒成立⎪⎩⎪⎨⎧><-⇔,0)(,2p f p ab或⎪⎩⎪⎨⎧≥≥-⎪⎪⎩⎪⎪⎨⎧>-<-≤;0)(;2,0)2(,2q f p ab a b f q a b p 或 (4)f (x )>0恒成立⎩⎨⎧<==⎩⎨⎧<∆<⇔<⎩⎨⎧>==⎩⎨⎧<∆>⇔.00,0,00)(;0,0,0,0c b a a x f c b a a 或恒成立或 ●歼灭难点训练 一、选择题1.(★★★★)若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则a 的取值范围是( )A.(-∞,2]B.[-2,2]C.(-2,2]D.(-∞,-2)2.(★★★★)设二次函数f (x )=x 2-x +a (a >0),若f (m )<0,则f (m -1)的值为( )A.正数B.负数C.非负数D.正数、负数和零都有可能二、填空题3.(★★★★★)已知二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,若在区间[-1,1]内至少存在一个实数c ,使f (c )>0,则实数p 的取值范围是_________.4.(★★★★★)二次函数f (x )的二次项系数为正,且对任意实数x 恒有f (2+x )=f (2-x ),若f (1-2x 2)<f (1+2x -x 2),则x 的取值范围是_________.三、解答题5.(★★★★★)已知实数t 满足关系式33log log ay a t a a= (a >0且a≠1)(1)令t=a x ,求y =f (x )的表达式;(2)若x ∈(0,2]时,y 有最小值8,求a 和x 的值.6.(★★★★)如果二次函数y =mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点的右侧,试求m 的取值范围.7.(★★★★★)二次函数f (x )=px 2+qx +r 中实数p 、q 、r 满足mrm q m p ++++12=0,其中m >0,求证:(1)pf (1+m m )<0;(2)方程f (x )=0在(0,1)内恒有解.8.(★★★★)一个小服装厂生产某种风衣,月销售量x (件)与售价P (元/件)之间的关系为P =160-2x ,生产x 件的成本R =500+30x 元.(1)该厂的月产量多大时,月获得的利润不少于1300元? (2)当月产量为多少时,可获得最大利润?最大利润是多少元?参考答案难点磁场解:由条件知Δ≤0,即(-4a )2-4(2a +12)≤0,∴-23≤a ≤2(1)当-23≤a <1时,原方程化为:x =-a 2+a +6,∵-a 2+a +6=-(a-21)2+425.∴a =-23时,x mi n =49,a =21时,x max =425.∴49≤x ≤425.(2)当1≤a ≤2时,x =a 2+3a +2=(a +23)2-41∴当a =1时,x mi n =6,当a =2时,x max =12,∴6≤x ≤12. 综上所述,49≤x ≤12.歼灭难点训练一、1.解析:当a -2=0即a =2时,不等式为-4<0,恒成立.∴a =2,当a -2≠0时,则a 满足⎩⎨⎧<∆<-02a ,解得-2<a <2,所以a 的范围是-2<a ≤2.答案:C2.解析:∵f (x )=x 2-x +a 的对称轴为x =21,且f (1)>0,则f (0)>0,而f (m )<0,∴m ∈(0,1),∴m -1<0,∴f (m -1)>0. 答案:A二、3.解析:只需f (1)=-2p 2-3p +9>0或f (-1)=-2p 2+p +1>0即-3<p <23或-21<p <1.∴p ∈(-3, 23).答案:(-3,23)4.解析:由f (2+x )=f (2-x )知x =2为对称轴,由于距对称轴较近的点的纵坐标较小,∴|1-2x 2-2|<|1+2x -x 2-2|,∴-2<x <0. 答案:-2<x <0 三、5.解:(1)由log a33log a y a t t =得log a t -3=log t y -3log t a由t =a x 知x =log a t ,代入上式得x -3=xxy a 3log -,∴log a y =x 2-3x +3,即y =a 332+-x x (x ≠0).(2)令u =x 2-3x +3=(x -23)2+43 (x ≠0),则y =a u①若0<a <1,要使y =a u 有最小值8,则u =(x -23)2+43在(0,2]上应有最大值,但u 在(0,2]上不存在最大值.②若a >1,要使y =a u 有最小值8,则u =(x -23)2+43,x ∈(0,2]应有最小值∴当x =23时,u mi n =43,y mi n =43a 由43a =8得a =16.∴所求a =16,x =23.6.解:∵f (0)=1>0(1)当m <0时,二次函数图象与x 轴有两个交点且分别在y 轴两侧,符合题意.(2)当m >0时,则⎪⎩⎪⎨⎧>-≥∆030mm解得0<m ≤1综上所述,m 的取值范围是{m |m ≤1且m ≠0}. 7.证明:(1)])1()1([)1(2r m m q m m p p m m pf ++++=+])2()1()1()2([]2)1([]1)1([22222+++-+=+-+=++++=m m m m m m p m pm pm pm m r m q m pm pm)2()1(122++-=m m pm ,由于f (x )是二次函数,故p ≠0,又m >0,所以,pf (1+m m)<0. (2)由题意,得f (0)=r ,f (1)=p +q +r ①当p <0时,由(1)知f (1+m m)<0 若r >0,则f (0)>0,又f (1+m m)<0,所以f (x )=0在(0,1+m m)内有解;若r ≤0,则f (1)=p +q +r =p +(m +1)=(-mrm p -+2)+r =mrm p -+2>0,又f (1+m m)<0,所以f (x )=0在(1+m m,1)内有解. ②当p <0时同理可证.8.解:(1)设该厂的月获利为y ,依题意得y =(160-2x )x -(500+30x )=-2x 2+130x -500由y ≥1300知-2x 2+130x -500≥1300∴x 2-65x +900≤0,∴(x -20)(x -45)≤0,解得20≤x ≤45 ∴当月产量在20~45件之间时,月获利不少于1300元. (2)由(1)知y =-2x 2+130x -500=-2(x -265)2+1612.5∵x 为正整数,∴x =32或33时,y 取得最大值为1612元, ∴当月产量为32件或33件时,可获得最大利润1612元.。

二次函数图象和性质知识点总结

二次函数图象和性质知识点总结
三、综合练习
1、小李从如图所示的二次函数 的图象中,观察得出了下面四条信息:(1)b2-4ac>0;(2)c>1;(3)ab>0;(4)a-b+c<0. 你认为其中错误的有( )
A. 2个B. 3个C. 4个D. 1个 第1题
2.已知二次函数 经过点M(-1,2)和点N(1,-2),交x轴于A,B两点,交y轴于C则……()
①一般式: (a、b、c为常数,a≠0)
②顶点式: (a、h、k为常数,a≠0),其中(h,k)为顶点坐标。
③交点式: ,其中 是抛物线与x轴交点的横坐标,即一元二次方程 的两个根,且a≠0,(也叫两根式)。
2.二次函数 的图象
①二次函数 的图象是对称轴平行于(包括重合)y轴的抛物线,几个不同的二次函数,如果a相同,那么抛物线的开口方向,开口大小(即形状)完全相同,只是位置不同。
(I)当每辆车的月租金定为3600元时,能租出多少辆车?
(II)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
解答:(I)当每辆车的月租金定为3600元时,未租出的车辆数为 ,故租出了88辆;
(II)设每辆车月租金定为 元,则租赁公司的月收益为
故当月租金定为4050元时,租赁公司的月收益最大为307050元。
说明:本题利用了函数的单调性,很快求出了函数的值域,这是求函数值域的一个重要方法。
考点五二次函数的最值
例5.试求函数 在区间[1,3]上的最值。
分析:本题需就对称轴 与区间的相对位置关系进行分类讨论: <1, ∈[1,2], ∈(2,3], >3。
解答:函数的对称轴
I、当 <1即 时:函数在[1,3]上是增函数,故 ;
(1)求抛物线的函数解析式;

2019届高考数学二轮复习专题三不等式第1讲三个“二次”的问题学案

2019届高考数学二轮复习专题三不等式第1讲三个“二次”的问题学案

第1讲 三个“二次”的问题1. “三个二次”在历年高考中都有考查,体现出二次函数、二次方程和二次不等式之间有密不可分的联系,即函数的研究离不开方程和不等式;方程和不等式的解的讨论同样要结合函数的图象和性质.2. 主要涉及的题型有:一是求二次函数的解析式;二是求二次函数的值域或最值,考查二次函数和一元二次方程、一元二次不等式的综合应用;三是考查一元二次不等式的解法及“三个二次”间的关系问题;四是从实际情景中抽象出一元二次不等式模型;五是以函数、导数为载体,考查不等式的参数范围问题.1. 不等式(1+x)(1-x)>0的解集是________. 答案:{x|-1<x<1}解析:原式可化为(x +1)(x -1)<0,所以不等式的解集为-1<x<1.2. (2018·海安第一次学业质量测试)关于x 的不等式x +ax+b≤0(a,b ∈R )的解集为{x |3≤x ≤4},则a +b 的值为________.答案:5解析:由题意可得⎩⎪⎨⎪⎧3+a3+b =0,4+a 4+b =0,解得⎩⎪⎨⎪⎧a =12,b =-7,所以a +b =5.3. (2018·镇江期末)已知函数f(x)=x 2-kx +4,对任意的x∈[1,3],不等式f(x)≥0恒成立,则实数k 的最大值为________.答案:4解析:由题意知x 2-kx +4≥0,x ∈[1,3],所以k≤x +4x对任意的x∈[1,3]恒成立.因为x +4x≥4(当且仅当x =2时取等号),所以k≤4,故实数k 的最大值为4.4. (2018·昆山中学月考)不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围是________.答案:[-1,4]解析:x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4,解得-1≤a≤4., 一)一元二次不等式的求解, 1)已知f(x)=-3x 2+a(6-a)x +b.(1) 解关于a 的不等式f(1)>0;(2) 当不等式f(x)>0的解集为(-1,3)时,求实数a ,b 的值.解:(1) f(1)=-3+a(6-a)+b =-a 2+6a +b -3.因为f(1)>0,所以a 2-6a +3-b <0.Δ=24+4b ,当Δ≤0,即b≤-6时,f(1)>0的解集为∅;当Δ>0,即b >-6时,3-b +6<a <3+b +6,所以b >-6时,f(1)>0的解集为{a|3-b +6<a <3+b +6}.(2) 因为不等式-3x 2+a(6-a)x +b >0的解集为(-1,3),所以⎩⎪⎨⎪⎧2=a (6-a )3,-3=b -3,解得⎩⎨⎧a =3±3,b =9.(2018·苏北四市一模)已知函数f(x)= ⎩⎪⎨⎪⎧2-|x +1|,x≤1,(x -1)2,x >1.若函数g(x)=f(x)+f(-x),则不等式g(x)≤2的解集为________.答案:[-2,2] 解析:f(x)=⎩⎪⎨⎪⎧3+x ,x <-1,-x +1,-1≤x≤1,(x -1)2,x>1, 所以f(-x)=⎩⎪⎨⎪⎧(x +1)2,x<-1,x +1,-1≤x≤1,-x +3,x >1,所以g(x)=f(x)+f(-x)=⎩⎪⎨⎪⎧x2+3x +4,x<-1 ①,2,-1≤x≤1 ②,x2-3x +4,x>1 ③.由不等式g(x)≤2,解得①⎩⎪⎨⎪⎧x<-1,x2+3x +4≤2⇒-2≤x<-1;②⎩⎪⎨⎪⎧-1≤x≤1,2≤2⇒-1≤x≤1;③⎩⎪⎨⎪⎧x>1,x2-3x +4≤2⇒1<x ≤2.综上所述,不等式g(x)≤2的解集为[-2,2]., 二)二次函数与二次不等式, 2)(2018·北京朝阳统考)已知函数f(x)=x 2-2ax -1+a ,a ∈R .(1) 若a =2,试求函数y =f (x )x(x >0)的最小值;(2) 对于任意的x ∈[0,2],不等式f (x )≤a 恒成立,试求a 的取值范围.解:(1) 依题意得y =f (x )x =x2-4x +1x =x +1x-4.因为x >0,所以x +1x ≥2.当且仅当x =1x,即x =1时,等号成立.所以y ≥-2. 所以当x =1时,y =f (x )x的最小值为-2.(2) 因为f (x )-a =x 2-2ax -1,所以要使得“∀x ∈[0,2],不等式f (x )≤a 恒成立”,只要“x 2-2ax -1≤0在[0,2]上恒成立”. 不妨设g (x )=x 2-2ax -1,则只要g (x )≤0在[0,2]上恒成立即可.所以⎩⎪⎨⎪⎧g (0)≤0,g (2)≤0,即⎩⎪⎨⎪⎧0-0-1≤0,4-4a -1≤0,解得a ≥34,则a 的取值范围是⎣⎢⎡⎭⎪⎫34,+∞.已知函数g (x )=ax 2-2ax +1+b (a >0)在区间[2,3]上的最大值为4,最小值为1,记f (x )=g (|x |).(1) 求实数a ,b 的值;(2) 若不等式f (log 2k )>f (2)成立,求实数k 的取值范围;(3) 定义在[p ,q ]上的一个函数m (x ),用分法T :p =x 0<x 1<…<x i -1<x i <…<x n =q 将区间[p ,q ]任意划分成n 个小区间,如果存在一个常数M >0,使得和式错误!f(x i )=f(x 1)+f(x 2)+…+f(x n ))解:(1) g(x)=a(x -1)2+1+b -a ,因为a>0,所以g(x)在区间[2,3]上是增函数,故⎩⎪⎨⎪⎧g (2)=1,g (3)=4,解得⎩⎪⎨⎪⎧a =1,b =0.(2) 由已知可得f(x)=g(|x|)=x 2-2|x|+1为偶函数,所以不等式f(log 2k )>f (2)可化为|log 2k |>2,解得k >4或0<k <14,故实数k 的取值范围是(0,14)∪(4,+∞).(3) 设函数f (x )为[1,3]上的有界变差函数.因为函数f (x )为[1,3]上的单调递增函数, 且对任意划分T :1=x 0<x 1<…<x i -1<x i <…<x n =3, 有f (1)=f (x 0)<f (x 1)<…<f (x n -1)<f (x n )=f (3),所以错误!|m(x i )-m(x i -1)|≤M 恒成立,所以M 的最小值为4., 三)二次方程与二次不等式, 3)对于函数f(x),若f(x 0)=x 0,则称x 0为函数f(x)的“不动点”;若f(f(x 0))=x 0,则称x 0为函数f(x)的“稳定点”.如果f(x)=x 2+a(a∈R )的“稳定点”恰是它的“不动点”,求实数a 的取值范围.解:(解法1)因为函数的“稳定点”恰是它的“不动点”,由f (f (x ))=x ,可得(x 2+a )2+a =x .方程可化为(x 2-x +a )(x 2+x +a +1)=0,所以方程x 2-x +a =0有解,且方程x 2+x +a +1=0无解或其解都是x 2-x +a =0的解,由方程x 2-x +a =0有解,得Δ1=1-4a ≥0,解得a ≤14.由方程x 2+x +a +1=0无解,得Δ2=1-4(a +1)<0,解得a >-34.若方程x 2+x +a +1=0有解且都是x 2-x +a =0的解.因为方程x 2-x +a =0与方程x 2+x +a +1=0不可能同解, 所以方程x 2+x +a +1=0必有两个相等的实根且是方程x 2-x +a =0的解,此时,Δ2=1-4(a +1)=0,解得a =-34,经检验,符合题意.综上,a 的取值范围是[-34,14].(解法2)显然,函数的“不动点”一定是“稳定点”,而函数的“稳定点”恰是它的“不动点”,即不存在非“不动点”的“稳定点”,所以f (x )=x 有解,但方程组⎩⎪⎨⎪⎧f (x1)=x2,f (x2)=x1(x 1≠x 2)无解.由f (x )=x ,得x 2-x +a =0有解,所以1-4a ≥0,解得a ≤14.由⎩⎪⎨⎪⎧f (x1)=x2,f (x2)=x1,得⎩⎪⎨⎪⎧x21+a =x 2,x 2+a =x 1,两式相减,得(x 1-x 2)(x 1+x 2)=x 2-x 1.因为x 1≠x 2,所以x 2=-x 1-1,两式相减,得(x 1-x 2)(x 1+x 2)=x 2-x 1.因为x 1≠x 2,所以x 2=-x 1-1, 代入消去x 2,得x 21+x 1+a +1=0.因为方程x 21+x 1+a +1=0无解或仅有两个相等的实根,所以1-4(a +1)≤0,解得a ≥-34,故a 的取值范围是[-34,14].定义:关于x 的两个不等式f (x )<0和g (x )<0的解集分别为(a ,b )和(1b ,1a),则称这两个不等式为对偶不等式.如果不等式x 2-43x cos θ+2<0与不等式x 2+2x sin θ+1<0为对偶不等式,且θ∈(π2,π),则θ=________.答案:2π3解析:由题意知不等式x 2-43x cos θ+2<0的解集为(a ,b ),所以a +b =43cos θ,ab =2.又不等式x 2+2x sin θ+1<0的解集为(1b ,1a),所以1b +1a=-2sin θ.又1b +1a =a +b ab =43cos θ2=-2sin θ,所以tan θ=-3. 又θ∈(π2,π),所以θ=2π3., 四)三个“二次”的综合问题, 4)设函数f(x)=ax 2+bx +c(a ,b ,c ∈R ),且f (1)=-a2,3a >2c >2b ,求证:(1) a >0且-3<b a <-34;(2) 函数f (x )在区间(0,2)内至少有一个零点;(3) 若x 1,x 2是函数f (x )的两个零点,则2≤|x 1-x 2|<574.证明:(1) 因为f (1)=a +b +c =-a2,所以3a +2b +2c =0.又3a >2c >2b ,所以3a >0,2b <0,所以a >0,b <0. 又2c =-3a -2b ,3a >2c >2b ,所以3a >-3a -2b >2b .因为a >0,所以-3<b a <-34.(2) 因为f (0)=c ,f (2)=4a +2b +c =a -c ,①当c >0时,因为a >0,所以f (1)=-a2<0,且f (0)=c >0,所以函数f (x )在区间(0,1)内至少有一个零点;②当c ≤0时,因为a >0,所以f (1)=-a2<0,且f (2)=a -c >0,所以函数f (x )在区间(1,2)内至少有一个零点. 综合①②得函数f (x )在区间(0,2)内至少有一个零点.(3) 因为x 1,x 2是函数f (x )的两个零点,则x 1,x 2是方程ax 2+bx +c =0的两根.所以|x 1-x 2|=(x1+x2)2-4x1x2=(-b a )2-4(-32-ba)=(ba+2)2+2.因为-3<b a <-34,所以2≤|x 1-x 2|<574.已知函数f (x )=2x 2+ax -1,g (log 2x )=x 2-x2a -2.(1) 求函数g (x )的解析式,并写出当a =1时,不等式g (x )<8的解集;(2) 若f (x ),g (x )同时满足下列两个条件:①∃t ∈[1,4],使f (-t 2-3)=f (4t );②∀x ∈(-∞,a ],使g (x )<8.求实数a 的取值范围.解:(1) 令t =log 2x ,则x =2t,由g (log 2x )=x 2-x 2a -2,可得g (t )=22t -2t +2-a,即g (x )=22x -2x +2-a,当a =1时,不等式g (x )<8⇔22x-2x +1<8⇔(2x +2)(2x-4)<0,即2x<4,所以x <2,即不等式g (x )<8的解集为(-∞,2).(2) 因为f (x )=2x 2+ax -1,所以由①∃t ∈[1,4],使f (-t 2-3)=f (4t ),得∃t ∈[1,4],(-t 2-3)+4t =-a 2,即∃t ∈[1,4],a =2(t -2)2-2,所以a ∈[-2,6];由②∀x ∈(-∞,a ],使g (x )<8得∀x ∈(-∞,a ],42a >2x -82x,令μ=2x ,x ∈(-∞,a ],则y =2x-82x =μ-8μ,μ∈(0,2a],易知函数y =μ-8μ在(0,2a ]上是增函数,y max =2a-82a,所以42a>2a-82a,所以2a<23,所以a <1+12log 23.综上,实数a 的取值范围是[-2,1+12log 23).1. 函数y =3-2x -x2的定义域是 ________.答案:[-3,1]解析:要使函数有意义,必须有3-2x -x 2≥0,即x 2+2x -3≤0,所以-3≤x≤1.2. 设集合A ={x|x 2-4x +3<0},B ={x|2x -3>0},则A∩B=________.答案:(32,3)解析:集合A =(1,3),B =(32,+∞),所以A∩B=(32,3).3. (2017·山东卷)已知命题p :∃x ∈R ,x 2-x +1≥0;命题q :若a 2<b 2,则a <b .则命题p ∧綈q 的真假性为________.答案:真解析:易知命题p 为真命题,命题q 为假命题,所以綈q 为真命题,由复合命题真值表知,p ∧綈q 为真命题.4. 已知函数f (x )=⎩⎪⎨⎪⎧x2,x≤1,x +6x-6,x>1,则f (f (-2))=________,f (x )的最小值是________.答案:-1226-6解析:f (-2)=(-2)2=4,所以f (f (-2))=f (4)=4+64-6=-12.当x ≤1时,f (x )≥0;当x >1时,f (x )≥26-6,当x =6时取等号,所以函数f (x )的最小值为26-6.5. 已知二次函数f(x)=ax 2+bx +c(a>0,c>0)的图象与x 轴有两个不同的公共点,且f(c)=0,当0<x<c 时,恒有f(x)>0. (1) 当a =13,c =2时,求不等式f(x)<0的解集;(2) 若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,且ac =12,求a 的值;(3) 若f(0)=1,且f(x)≤m 2-2m +1对所有x∈[0,c]恒成立,求正实数m 的最小值.解:(1) 当a =13,c =2时,f(x)=13x 2+bx +2,f(x)的图象与x 轴有两个不同交点.因为f(2)=0,设另一个根为x 1,则2x 1=6,x 1=3.则f(x)<0的解集为{x|2<x<3}.(2) 函数f(x)的图象与x 轴有两个交点,因为f(c)=0,设另一个根为x 2,则cx 2=c a ,于是x 2=1a.又当0<x<c 时,恒有f(x)>0,则1a >c ,则三交点分别为(c ,0),(1a,0),(0,c),以这三交点为顶点的三角形的面积为S =12(1a -c)c =8,且ac =12,解得a =18,c =4.(3) 当0<x<c 时,恒有f(x)>0,则1a>c ,所以f(x)在[0,c]上是单调递减的,且在x =0处取到最大值1,要使f(x)≤m 2-2m +1对所有x∈[0,c]恒成立,必须f(x)max =1≤m 2-2m +1成立,即m 2-2m +1≥1,即m 2-2m ≥0,解得m ≥2或m ≤0,而m >0,所以m 的最小值为2.(本题模拟高考评分标准,满分16分)(2017·南通考前模拟)已知二次函数f (x )=x 2+ax +b (a ,b ∈R ).(1) 当a =-6时,函数f (x )的定义域和值域都是[1,b 2],求b 的值;(2) 若函数f (x )在区间(0,1)上有两个零点,求b 2+ab +b +1的取值范围.解:(1) 当a =-6时,f (x )=x 2-6x +b ,函数的对称轴为直线x =3, 故f (x )在区间[1,3]上单调递减,在区间(3,+∞)上单调递增.(2分)①当2<b ≤6时,f (x )在区间[1,b2]上单调递减;故⎩⎪⎨⎪⎧f (1)=b2,f (b2)=1,方程组无解;(4分)②当6<b ≤10时,f (x )在区间[1,3]上单调递减,在(3,b 2]上单调递增,且f (1)≥f (b 2),故⎩⎪⎨⎪⎧f (1)=b 2,f (3)=1,解得b =10;(6分)③当b >10时,f (x )在区间[1,3]上单调递减,在(3,b 2]上单调递增,且f (1)<f (b 2),故⎩⎪⎨⎪⎧f (b 2)=b 2,f (3)=1,方程组无解.所以b 的值为10.(8分)(2) 设函数f (x )=x 2+ax +b 的两个零点为x 1,x 2(0<x 1<x 2<1),则f (x )=(x -x 1)(x -x 2).又f (0)=b =x 1x 2>0,f (1)=1+a +b =(1-x 1)·(1-x 2)>0,(10分)所以b 2+ab +b +1=b (1+a +b )+1=f (0)f (1)+1,而0<f (0)f (1)=x 1x 2(1-x 1)(1-x 2)≤(x1+1-x12)2(x2+1-x22)2=116.(14分)由于x 1<x 2,故0<f (0)f (1)<116,则1<b 2+ab +b +1<1716,即b 2+ab +b +1的取值范围是(1,1716).(16分)1. 在R 上定义运算:⎝ ⎛⎭⎪⎫ab cd =ad -bc ,若不等式⎝⎛⎭⎪⎫x -1 a -2a +1 x ≥1对任意实数x 恒成立,则实数a 的最大值为________.答案:32解析:由定义知,不等式⎝⎛⎭⎪⎫x -1 a -2a +1 x ≥1等价于x 2-x -(a 2-a -2)≥1,∴x 2-x +1≥a 2-a 对任意实数x 恒成立.∵ x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,∴a 2-a ≤34,解得-12≤a ≤32,则实数a 的最大值为32.2. 已知f(x)=-3x 2+a(6-a)x +6.(1) 解关于a 的不等式f(1)>0;(2) 若不等式f(x)>b 的解集为(-1,3),求实数a ,b 的值.解:(1) ∵ f(x)=-3x 2+a(6-a)x +6,∴ f(1)=-3+a(6-a)+6=-a 2+6a +3>0,即a 2-6a -3<0,解得3-23<a<3+23,∴不等式的解集为{a|3-23<a<3+23}.(2) ∵ f(x)>b 的解集为(-1,3), ∴方程-3x 2+a(6-a)x +6-b =0的两根为-1,3,∴⎩⎪⎨⎪⎧-1+3=a (6-a )3,-1×3=-6-b 3,解得⎩⎨⎧a =3±3,b =-3.故a 的值为3+3或3-3,b 的值为-3.3. 已知函数f(x)=x2+cax(x≠0,a >0,c <0),当x ∈[1,3]时,函数f(x)的取值范围是⎣⎢⎡⎦⎥⎤-32,56. (1) 求函数f(x)的解析式;(2) 若向量m =⎝ ⎛⎭⎪⎫-1x ,12,n =(k 2+k +2,3k +1)(k >-1),解关于x 的不等式f (x )<m ·n .解:(1) 因为c <0,f (x )=1a ⎝ ⎛⎭⎪⎫x +c x 在[1,3]上单调递增,所以⎩⎪⎨⎪⎧f (1)=-32,f (3)=56,解得⎩⎪⎨⎪⎧a =2,c =-4,故f (x )=x2-42x .(2) 由题意,得x2-42x <-k2+k +2x +3k +12,即x (x -2k )[x -(k +1)]<0.①当-1<k <0时,不等式的解集是(-∞,2k )∪(0,k +1); ②当0≤k <1时,不等式的解集是(-∞,0)∪(2k ,k +1);③当k =1时,不等式的解集是(-∞,0);④当k >1时,不等式的解集是(-∞,0)∪(k +1,2k ).。

[精]中考数学考点专题-二次函数

[精]中考数学考点专题-二次函数

中考数学考点专题-二次函数二次函数1.二次函数的概念:一般地,自变量x和因变量y之间存在如下关系:y=ax2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。

抛物线叫做二次函数的一般式。

2.二次函数y=ax2 +bx+c(a≠0)的图像与性质(1)对称轴:(2)顶点坐标:(3)与y轴交点坐标(0,c)(4)增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小。

3.二次函数的解析式三种形式。

(1)一般式y=ax2 +bx+c(a≠0).已知图像上三点或三对、的值,通常选择一般式.(2)顶点式已知图像的顶点或对称轴,通常选择顶点式。

(3)交点式已知图像与轴的交点坐标、,通常选用交点式。

4.根据图像判断a,b,c的符号(1)a 确定开口方向:当a>0时,抛物线的开口向上;当a<0时,抛物线的开口向下。

(2)b ——对称轴与a 左同右异。

(3)抛物线与y轴交点坐标(0,c)5.二次函数与一元二次方程的关系抛物线y=ax2 +bx+c与x轴交点的横坐标x1, x2 是一元二次方程ax2+bx+c=0(a≠0)的根。

抛物线y=ax2 +bx+c,当y=0时,抛物线便转化为一元二次方程ax2 +bx+c=0 >0时,一元二次方程有两个不相等的实根,二次函数图像与x轴有两个交点;=0时,一元二次方程有两个相等的实根,二次函数图像与x轴有一个交点;<0时,一元二次方程有不等的实根,二次函数图像与x轴没有交点。

6.函数平移规律:左加右减、上加下减.图像平移步骤(1)配方为:,确定顶点(h,k)(2)对x轴,左加右减;对y轴,上加下减。

7.二次函数的对称性二次函数是轴对称图形,有这样一个结论:当横坐标为x1, x2 其对应的纵坐标相等,那么对称轴【例题1】(2019湖北荆州)二次函数y=﹣2x2﹣4x+5的最大值是.【答案】7【解析】y=﹣2x2﹣4x+5=﹣2(x+1)2+7,即二次函数y=﹣x2﹣4x+5的最大值是7,故答案为:7.【例题2】(2019广西贺州)已知抛物线的对称轴是直线,其部分图象如图所示,下列说法中:①;②;③;④当时,,正确的是(填写序号).【答案】①③④【解析】根据图象可得:,,对称轴:,,,,,故①正确;把代入函数关系式中得:,由抛物线的对称轴是直线,且过点,可得当时,,,故②错误;,,即:,故③正确;由图形可以直接看出④正确.故答案为:①③④.【例题3】(2019贵州省毕节市)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如表:x(元)152030…y(袋)252010…若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元【答案】见解析。

一元二次方程根与系数的关系

一元二次方程根与系数的关系

第一讲 一元二次方程根与系数的关系一、一元二次方程的根的判别式一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为: 2224()24b b ac x a a-+= (1) 当240b ac ->时,方程有两个不相等的实数根:x =(2) 当240b ac -=时,方程有两个相等的实数根:1,22b x a=-; (3) 当240b ac -<时,方程没有实数根.由于可以用24b ac -的取值情况来判定一元二次方程的根的情况.因此,把24b ac -叫做一元二次方程20 (0)ax bx c a ++=≠的根的判别式:∆=24b ac -.二、一元二次方程的根与系数的关系一元二次方程20 (0)ax bx c a ++=≠的两个根为:1222b b x x a a-+--==所以:12b x x a+=+=-,221222()422(2)4b b b ac cx x a a a a a-+----⋅=⋅===定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么: 12x x +=______________, 12x x =______________.说明:一元二次方程根与系数的关系由十六世纪的法国数学家韦达发现,所以通常把此定理称为韦达定理.上述定理成立的前提是0∆≥.例1:已知实数x 、y 满足22210x y xy x y +-+-+=,试求x 、y 的值.例2:若12,x x 是方程2220090x x +-=的两个根,试求下列各式的值:(1) 2212x x +; (2)1211x x +; (3) 12(5)(5)x x --;(4) 12||x x -.说明:在求判断式时,务必先把方程变形为一元二次方程的一般形式. 例3:已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根. (1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由. (2) 求使12212x x x x +-的值为整数的实数k 的整数值.练习:1.已知一元二次方程2(1)210k x x ---=有两个不等的实数根,求k 的取值范围.2.若方程22(1)30x k x k -+++=的两根之差为1,求k 的值.3.已知关于x 的一元二次方程2(41)210x m x m +++-=. (1) 求证:不论m 为任何实数,方程总有两个不相等的实数根; (2) 若方程的两根为12,x x ,且满足121112x x +=-,求m 的值.图(12) 第二讲 一次函数、反比例函数、二次函数1.当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为 ,对称轴为直线 ;当x <2b a -时,y 随着x 的增大而 ;当x >2ba-时,y 随着x 的增大而 ;当x =2ba-时,函数取最小值y = .2.当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为 ,对称轴为直线 ;当x <2b a -时,y 随着x 的增大而 ;当x >2ba-时,y 随着x 的增大而 ;当x =2ba-时,函数取最大值y = .3.二次函数的三种表示方式:一般式 顶点式 交点式 注:确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则.二次函数的关系式可设如下三种形式:①给出三点坐标可利用一般式来求;②给出两点,且其中一点为顶点时可利用顶点式来求.③给出三点,其中两点为与x 轴的两个交点)0,(1x .)0,(2x 时可利用交点式来求.例1:如图,反比例函数ky x=的图象与一次函数y mx b =+的图象交于A (1)B n -,两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x 取何值时,反比例函数的值大于一次函数的值.例2:求二次函数y =-3x 2-6x +1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x 取何值时,y 随x 的增大而增大(或减小)?并画出该函数的图象.例3:根据下列条件,分别求出对应的二次函数的关系式.(1)某二次函数的最大值为2,图像的顶点在直线y =x +1上,并且图象经过点(3,-1); (2)已知二次函数的图象过点(-3,0),(1,0),且顶点到x 轴的距离等于2; (3)已知二次函数的图象过点(-1,-22),(0,-8),(2,8).巩固练习1.若函数12-+=a ax y 在11≤≤-x 上的值有正也有负,则a 的取值范围是_________2.若关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,则实数a 的取值范围是_____________.3.二次函数y =-x 2+23x +1的函数图象与x 轴两交点之间的距离为 .4.把函数y =-(x -1)2+4的图象向左平移2个单位,向下平移3个单位,所得图象对应的解析式为________________.第三讲 解不等式一、一元一次不等式(组)及其解法 :例1:(1)解关于x 的不等式组0,231x a x -<⎧⎨-+<⎩二、一元二次不等式及其解法形如20(0) (0)ax bx c a ++><≠或其中的不等式称为关于x 的一元二次不等式例2:解下列不等式:(1) 260x x +->; (2)(2)(3)6x x +-< (3) (1)(2)(2)(21)x x x x -+≥-+例:3:已知关于x 的不等式22(1)30kx k x -+-<的解为13x -<<,求k 的值.二、简单分式不等式的解法例4:解下列不等式: (1) 2301x x -<+; (2)2301x x x +≥-+.例5:解不等式132x ≤+.三、含绝对值不等式的解法 例6:解不等式:(1) 13x ->; (2) 327x x ++-< ;练习:1、二次函数2365y x x =--+的图像的顶点坐标是________.2、如果22()530x a b x b x x ++⋅+=--,则b =___________.3、若2是关于x 的一元二次方程23100x mx +-=的一个根,则m =________.4、若一次函数(12)y k x k =--的图像不经过第二象限,则k 的取值范围是________.5、若函数2y x b =--与24y x =+的图像交于x 轴上一点A ,且与y 轴分别交于B ,C 两点,则ABC ∆的面积为________.6、已知一个直角三角形的两个直角边的长恰是方程22870x x -+=的两个根,则这个直角三角形的斜边长为____________.7、当22x -≤≤时,函数223y x x =--的最大值为______.8、不等式260x x -+<的解为_______.9、已知关于x 的方程22310x x m -++-=的两个实根同号,则实数m 的取值范围为____.10、函数231y ax x =-+的最小值大于0,则实数a 的取值范围为_________.11、两个数的和为60,它们的积的最大值为___________.12、如果不等式210ax ax ++<无解,则a 的取值范围是_________.13、已知(3,2),(1,1)M N -,点P 在y 轴上,且PM PN +最短,则点P 的坐标为_______.14、解下列不等式:(1) 23180x x --≤ ; (2)31221x x +<-; (3)116x x -++>. 15、已知关于x 的不等式20mx x m -+<的解是一切实数,求m 的取值范围.16、解关于x 的不等式(2)1m x m ->-.17、已知关于x 的方程2(1)(23)10k x k x k -+-++=有两个不相等的实数根12,x x . (1)求实数k 的取值范围;(2)是否存在实数k ,使方程的两实根互为相反数?如果存在,求出k 的值;如果不存在,请说明理由.18、已知二次函数212y x bx c =-++的图像经过(2,0),(0,6)A B -两点. (1) 求这个二次函数的解析式;(2) 设该二次函数图像的对称轴与x 轴交于点C ,连接,BA BC ,求ABC ∆的面积.19、已知关于x 的函数222y x ax =++在55x -≤≤上. (1) 当1a =-时,求函数的最大值和最小值; (2) 当a 为实数时,求函数的最大值.。

二次函数知识点归纳总结

二次函数知识点归纳总结

二次函数知识点归纳总结二次函数知识点总结二次函数是形如y=ax²+bx+c(a≠0)的函数。

与一元二次方程类似,二次项系数a≠0,而b和c可以为零。

二次函数的定义域是全体实数。

二次函数的根本形式是y=ax²。

a的绝对值越大,抛物线的开口越小。

a的符号决定开口方向。

当a>0时,开口向上;当a<0时,开口向下。

顶点坐标是(0,0),对称轴是y轴。

当x增大时,y随之增大,当x减小时,y随之减小,当x=0时,y有最小值。

当二次函数的形式为y=ax²+c时,顶点坐标是(0,c),对称轴是y轴。

其他性质与y=ax²相同。

当二次函数的形式为y=a(x-h)²时,顶点坐标是(h,0),对称轴是以顶点为中心的垂直于x轴的直线。

当x增大时,y随之增大,当x减小时,y随之减小,当x=h时,y有最小值。

当二次函数的形式为y=a(x-h)²+k时,顶点坐标是(h,k),对称轴是以顶点为中心的垂直于x轴的直线。

其他性质与y=a(x-h)²相同。

平移二次函数的图像,可以将抛物线的顶点平移到(h,k)处。

具体方法是保持抛物线形状不变,将其顶点平移到(h,k)处。

如果k>0,则向上平移|k|个单位;如果k<0,则向下平移|k|个单位。

y=ax^2+k向右移动h个单位(h>0)或向左移动|h|个单位(h0)或向下移动|k|个单位(k<0)。

y=a(x-h)^2向上移动k个单位(k>0)或向下移动|k|个单位(k<0),平移规律为“左加右减,上加下减”,概括为八个字。

另一种方法是对于y=ax^2+bx+c,沿y轴平移m个单位向上(下)为y=ax^2+bx+c+m(或y=ax^2+bx+c-m),沿轴平移m个单位向左(右)为y=a(x+m)^2+b(x+m)+c(或y=a(x-m)^2+b(x-m)+c)。

对于二次函数y=a(x-h)^2+k和y=ax+bx+c,两者是不同的表达形式,通过配方可以得到y=ax^2+bx+c,其中h=-b/2a,k=a(h^2)+b(h)+c。

三个二次之间的关系探究

三个二次之间的关系探究

《三个二次之间的关系探究》教学设计原州区第五中学田风高一、教学内容人教版九年级上第二十六章《二次函数》后续探究——二次函数、一元二次方程、一元二次不等式三者之间的关系。

二、教材分析1、教材的地位和作用函数是中学数学的经络,函数思想贯穿着中学数学教学的始终,也是微积分、泛函分析等高等数学的基础。

同时在现实生活及其它学科中具有广泛的应用,比如:物理学中的自由落体运动、生物学中的细胞繁殖、经济学中生产成本的核算、Excle中的数据处理、花园中喷水池的建造、拱形桥的设计、导弹的路径……,可以说,函数在现实生活中无处不在,无时不有。

2、学情分析学生已经掌握了一次函数、二次函数的图像与性质,已有数形结合思想,会用图像说话。

对于新知识也充满着好奇心和强烈的求知欲望。

因此,本节课学生在教师的引导下,自主探三个二次之间的关系,不仅能巩固二次函数的图像和性质,而且对他们的数形结合思想、二次函数模型的应用意识也有了一定的提高。

三、教学目标1、掌握二次函数的图像和性质,理解二次函数的图像、一元二次方程及一元二次不等式之间的关系。

2、通过绘制二次函数的图像体会一元二次方程的根与函数图像与x轴的交点的关系,一元二次不等式的解集与二次函数图像上的点的关系。

3、培养学生的识图、绘图、用图能力,体会数形结合思想及普遍联系的辩证观。

四、教学重点、难点因为,数形结合是函数学习的基本方法,所以熟练地绘制二次函数的大致图像及图像的变换是掌握二次函数的性质的基石。

因此,本节课的重点是二次函数的图像、性质及三个二次之间的关系。

由于学生的试图能力有限,对函数处理的方法不完整,没有形成模式,故而,在三个二次之间的关系探究中需要教师的指导,是本节的难点。

通过学生观察、讨论分散难点。

五、教法、学法分析义务教育《数学课程标准》(实验稿)指出“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。

教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

第22章二次函数全章知识点归纳总结人教版九年级数学上册

第22章二次函数全章知识点归纳总结人教版九年级数学上册

初三上学期二次函数全章知识点归纳总结【例1】下列函数是二次函数的有()①y=(x+1)2﹣x2;②y=﹣3x2+5;③y=x3﹣2x;④y=x2−1x+3.A.1个B.2个C.3个D.4个【变式11】下列函数中,是二次函数的有()①y=√x2+2;②y=﹣x2﹣3x;③y=x(x2+x+1);④y=11+x2;⑤y=﹣x+x2.A.1个B.2个C.3个D.4个【例2】若y=(a+1)x|a+3|﹣x+3是关于x的二次函数,则a的值是()A.1B.﹣5C.﹣1D.﹣5或﹣1【变式21】函数y=(a﹣5)x a2+4a+5+2x﹣1,当a=时,它是一次函数;当a=时,它是二次函数.【例3】关于函数y=(500﹣10x)(40+x),下列说法不正确的是()A.y是x的二次函数B.二次项系数是﹣10C.一次项是100D.常数项是20000【例4】下列具有二次函数关系的是()A.正方形的周长y与边长x B.速度一定时,路程s与时间tC.正方形的面积y与边长x D.三角形的高一定时,面积y与底边长x【例5】某种商品的价格是2元,准备进行两次降价.如果每次降价的百分率都是x,经过两次降价后的价格y(单位:元)随每次降价的百分率x的变化而变化,则y关于x的函数解析式是()A.y=2(x+1)2B.y=2(1﹣x)2C.y=(x+1)2D.y=(x﹣1)2【变式51】据省统计局公布的数据,合肥市2021年第一季度GDP总值约为2.4千亿元人民币,若我市第三季度GDP总值为y千亿元人民币,平均每个季度GDP增长的百分率为x,则y关于x的函数表达式是()A.y=2.4(1+2x)B.y=2.4(1﹣x)2C.y=2.4(1+x)2D.y=2.4+2.4(1+x)+2.4(1+x)【例1】用配方法将下列函数化成y=a(x+h)2+k的形式,并指出抛物线的开口方向,对称轴和顶点坐标.(1)y=12x2﹣2x+3;(2)y=(1﹣x)(1+2x).【变式11】把下列二次函数化成顶点式,即y=a(x+m)2+k的形式,并写出他们顶点坐标及最大值或最小值.(1)y=﹣2x﹣3+12x2(2)y=﹣2x2﹣5x+7【变式12】用配方法可以解一元二次方程,还可以用它来解决很多问题例如:因为5a2≥0,所以5a2+1≥1,即:当a=0时,5a2+1有最小值1.同样,因为﹣5(a2+1)≤0,所以﹣5(a2+1)+6≤6有最大值1,即当a=1时,﹣5(a2+1)+6有最大值6.(1)当x=时,代数式﹣3(x﹣2)2+4有最(填写大或小)值为.(2)当x=时,代数式﹣x2+4x+4有最(填写大或小)值为.(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是14m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 【例2】已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:x … 0 1 2 3 4 … y…52125…(1)求该二次函数的表达式; (2)当x =6时,求y 的值;(3)在所给坐标系中画出该二次函数的图象.【变式21】如图,已知二次函数y =−12x 2+bx +c 的图象经过A (2,0)、B (0,﹣6)两点. (1)求这个二次函数的解析式;(2)求该二次函数图象的顶点坐标、对称轴以及二次函数图象与x 轴的另一个交点; (3)在右图的直角坐标系内描点画出该二次函数的图象及对称轴. 【知识点3 二次函数的图象与各系数之间的关系】在y 轴的右侧则0<ab ,概括的说就是“左同右异” ③常数项c :总结起来,c 决定了抛物线与y 轴交点的位置. 【知识点4 二次函数图象的平移变换】 (1)平移步骤:变式21例2①将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ①保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【例4】把抛物线y =ax 2+bx +c 的图象先向右平移2个单位,再向上平移2个单位,所得的图象的解析式是y =(x ﹣3)2+5,则a +b +c = .【变式41】要得到函数y =﹣(x ﹣2)2+3的图象,可以将函数y =﹣(x ﹣3)2的图象( ) A .向右平移1个单位,再向上平移3个单位 B .向右平移1个单位,再向下平移3个单位 C .向左平移1个单位,再向上平移3个单位 D .向左平移1个单位,再向下平移3个单位 【知识点5 二次函数图象的对称变换】 (1)关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;(2)关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;(3)关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; (4)关于顶点对称(即:抛物线绕顶点旋转180°)()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.向上 向下【例1】已知二次函数y =x 2﹣2x ﹣3的自变量x 1,x 2,x 3对应的函数值分别为y 1,y 2,y 3.当﹣1<x 1<0,1<x 2<2,x 3>3时,y 1,y 2,y 3三者之间的大小关系是( ) A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3【例2】在二次函数y =﹣x 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:则m 、n 的大小关系为x … ﹣1 1 3 4 … y … ﹣6m n﹣6…A .m <nB .m >nC .m =nD .无法确定0a >0a <【变式21】二次函数y=ax2+bx+c(a≠0)中x,y的部分对应值如下表:x…﹣2﹣1012…y…0﹣4﹣6﹣6﹣4…则该二次函数图象的对称轴为()A.y轴B.直线x=12C.直线x=1D.直线x=32【知识点1 二次函数图象与x轴的交点情况决定一元二次方程根的情况】二次函数的图象【例1】抛物线y=(x﹣x1)(x﹣x2)+mx+n与x轴只有一个交点(x1,0).下列式子中正确的是()A.x1﹣x2=m B.x2﹣x1=m C.m(x1﹣x2)=n D.m(x1+x2)=n【变式11】抛物线y=x2+2x﹣3与坐标轴的交点个数有()A.0个B.1个C.2个D.3个【例2】二次函数与一元二次方程有着紧密的联系,一元二次方程问题有时可以转化为二次函数问题.请你根据这句话所提供的思想方法解决如下问题:若s,t(s<t)是关于x的方程1+(x﹣m)(x﹣n)=0的两根,且m<n,则m,n,s,t的大小关系是()A.s<m<n<t B.m<s<n<t C.m<s<t<n D.s<m<t<n【知识点1 解二次函数的实际应用问题的一般步骤】审:审清题意,弄清题中涉及哪些量,已知量有几个,已知量与变量之间的基本关系是什么,找出等量关系(即函数关系);设:设出两个变量,注意分清自变量和因变量,同时还要注意所设变量的单位要准确;列:列函数解析式,抓住题中含有等量关系的语句,将此语句抽象为含变量的等式,这就是二次函数;解:按题目要求结合二次函数的性质解答相应的问题;检:检验所得的解,是否符合实际,即是否为所提问题的答案;答:写出答案.【例1】为优化迪荡湖公园的灯光布局,需要在一处岸堤(岸堤足够长)为一边,用总长为80m的灯带在湖中围成了如图所示的①②③三块灯光喷泉的矩形区域,且要求这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?【变式11】爱动脑筋的小明在学过用配方法解一元二次方程后,他发现二次三项式也可以配方,从而解决一些问题.例如:x2﹣6x+10=(x2﹣6x+9﹣9)+10=(x﹣3)2﹣9+10=(x﹣3)2+1≥1;因此x2﹣6x+10有最小值是1,只有当x=3时,才能得到这个式子的最小值1.同样﹣3x2﹣6x+5=﹣3(x2+2x+1﹣1)+5=﹣3(x+1)2+8,因此﹣3x2﹣6x+5有最大值是8,只有当x=﹣1时,才能得到这个式子的最小值8.(1)当x=时,代数式﹣2(x﹣3)2+5有最大值为.(2)当x=时,代数式2x2+4x+3有最小值为.(3)矩形自行车场地ABCD一边靠墙(墙长10m),在AB和BC边各开一个1米宽的小门(不用木板),现有能围成14m长的木板,当AD长为多少时,自行车场地的面积最大?最大面积是多少?【例2】如图,在矩形ABCD中,AB=12cm,BC=9cm.P、Q两点同时从点B、D出发,分别沿BA、DA 方向匀速运动(当P运动到A时,P、Q同时停止运动),已知P点的速度比Q点大1cm/s,设P点的运动时间为x秒,△P AQ的面积为ycm2,(1)经过3秒△P AQ的面积是矩形ABCD面积的1时,求P、Q两点的运动速度分别是多少?3(2)以(1)中求出的结论为条件,写出y与x的函数关系式,并求出自变量x的取值范围.【变式31】廊桥是我国古老的文化遗产,如图,是某座抛物线型的廊桥示意图.已知水面AB宽40米,抛物线最高点C到水面AB的距离为10米,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,求这两盏灯的水平距离EF.(结果保留根号)。

2022年人教版(通用)中考数学分类专项精讲精解第六讲 函数(二)

2022年人教版(通用)中考数学分类专项精讲精解第六讲  函数(二)

第六讲函数(二)专项一二次函数的图象和性质知识清单1.二次函数的概念一般地,形如(a,b,c为常数,a≠0)的函数叫做二次函数.2.二次函数的图象和性质考点例析例1 二次函数y=-x2-2x+3图象的顶点坐标为.分析:确定a,b,c的值,代入顶点公式计算即可;也可以将“一般式”化为“顶点式”求得其顶点坐标.解:例2 已知(-3,y1),(-2,y2),(1,y3)是抛物线y=-3x2-12x+m上的点,则()A.y3<y2<y1B.y3<y1<y2C.y2<y3<y1D.y1<y3<y2分析:易得抛物线的对称轴为x=-2,因为a=-3<0,所以当x=-2时,函数值最大,即y2最大,再根据二次函数的对称性和增减性判断y1,y3的大小即可.解:归纳:对于这类问题一般利用抛物线上对称点的纵坐标相等,把各点转化到对称轴的同侧,再利用二次函数的增减性进行函数值的大小比较.例3 点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上,则m-n的最大值等于()A.154B.4C.154-D.174-分析:由二次函数图象的对称轴为y轴可得a=0,将点P(m,n)代入解析式可得m,n的关系式,然后将m-n表示为含m的代数式-m2+m-4,最后利用二次函数的性质可求得其最大值.解:跟踪训练1.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(-1,0),对称轴是x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A.72⎛⎫⎪⎝⎭,B.(3,0)C.52⎛⎫⎪⎝⎭,D.(2,0)第1题图2.请写出一个函数解析式,使其图象的对称轴为y轴:.3.抛物线y=3(x-1)2+8的顶点坐标为.4.当-1≤x≤3时,二次函数y=x2-4x+5有最大值m,则m=.专项二二次函数的图象与系数的关系知识清单二次函数y=ax2+bx+c(a≠0)的图象特征与其系数a,b,c的符号有密切的联系,它们之间的关系如下表:例1 一次函数y =acx +b 与二次函数y =ax 2+bx +c 在同一平面直角坐标系中的图象可能是( )A B C D分析:选项A ,由抛物线开口向上可知a >0,对称轴在y 轴右侧可知a ,b 异号,与y 轴的交点在x 轴上方可知c >0,所以ac >0,b <0,由直线可知ac>0,b >0,故本选项不合题意;用同样的方法分别判断其余选项即可.解:例 2 二次函数y =ax 2+bx +c 的图象如图所示,有如下结论:①abc >0;①2a +b =0;①3b -2c <0;①am 2+bm ≥a +b (m 为实数).其中正确结论的个数是( )A .1B .2C .3D .4分析:由抛物线的开口方向、对称轴的位置、与y 轴的交点可得a ,b ,c 的符号,从而得出abc 的正负;由对称轴x =2b a-=1可得2a +b =0;由图象可知当x =-1时,y =a -b +c >0,结合2a +b =0,利用不等式的性质可判断3b -2c 的正负;由图象知当x =1时,y 有最小值为a +b +c ,由此可判断am 2+bm 与a +b 的大小关系.解:归纳:几种常见代数式的判断跟踪训练1.在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b的图象可能是()A B C D2.如图,二次函数y=ax2+bx+c的图象与x轴相交于A(-2,0),B(1,0)两点,则以下结论:①ac >0;①二次函数y=ax2+bx+c图象的对称轴为x=-1;①2a+c=0;①a-b+c>0.其中正确结论的个数为()A.0B.1C.2D.3第2题图专项三确定二次函数的解析式知识清单用待定系数法求二次函数的解析式时,若已知条件给出了图象上任意三点(或任意三组对应值),可设解析式为;若给出顶点坐标为(h,k),则可设解析式为;若给出抛物线与x轴的两个交点为(x1,0),(x2,0),则可设解析式为.考点例析例(2020·江西改编)已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…-2-1012…y…m0-3n-3…求抛物线的解析式及m,n的值.分析:结合给出的数据可知c=-3,再将(-1,0),(2,-3)代入解析式得到关于a,b的二元一次方程组,解方程组即可确定抛物线的解析式,最后令x=-2或1,可求得m,n的值.解:跟踪训练1.已知函数y=a(x-h)2+k(a,h,k是实数,a≠0),当x=1时,y=1;当x=8时,y=8.()A.若h=4,则a<0B.若h=5,则a>0C.若h=6,则a<0D.若h=7,则a>02.若抛物线y=ax2-2ax-3+2a2(a≠0)的顶点在x轴上,求其解析式.专项四二次函数图象的平移知识清单抛物线y=ax2向左(右)或向上(下)平移,可得抛物线y=a(x-h)2+k,平移的方向、距离要根据h,k的值来决定.当h>0时,抛物线向平移|h|个单位长度;当h<0时,抛物线向平移|h|个单位长度.当k>0时,抛物线向平移|k|个单位长度;当k<0时,抛物线向平移|k|个单位长度,即“左加右减自变量,上加下减常数项”.考点例析例将抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2,求抛物线C2的解析式.分析:先将抛物线C1的“一般式”化为“顶点式”,再根据抛物线的平移规律得到新抛物线C2的解析式.解:跟踪训练1.将抛物线y=2(x-3)2+2向左平移3个单位长度,再向下平移2个单位长度,得到抛物线的解析式为()A.y=2(x-6)2 B.y=2(x-6)2+4C.y=2x2 D.y=2x2+42.将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线为()A.y=(x+3)2+5B.y=(x-3)2+5C.y=(x+5)2+3D.y=(x-5)2+33.将抛物线y=ax2+bx-1向上平移3个单位长度后,经过点(-2,5),则8a-4b-11的值是.专项五二次函数与一元二次方程的关系知识清单二次函数y=ax2+bx+c(a≠0)与一元二次方程ax2+bx+c=0(a≠0)的关系:考点例析例1 抛物线y=(k-1)x2-x+1与x轴有交点,则k的取值范围是.分析:由抛物线与x轴有交点,得Δ≥0,再结合二次函数的意义,得k-1≠0,解两个不等式即可得k的取值范围.解:例2 (2020·娄底)二次函数y=(x-a)(x-b)-2(a<b)与x轴的两个交点的横坐标分别为m和n,且m<n,下列结论正确的是()A.m<a<n<b B.a<m<b<n C.m<a<b<n D.a<m<n<b分析:易知二次函数y=(x-a)(x-b)与x轴的交点的横坐标为a,b,将其图象向下平移2个单位长n,a,b的大小关系.度可得二次函数y=(x-a)(x-b)-2的图象,如图所示,观察图象可判断m,跟踪训练1.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=2.若x1,x2是一元二次方程ax2+bx+c =0(a≠0)的两个根,且x1<x2,-1<x1<0,则下列说法正确的是()A.x1+x2<0B.4<x2<5C.b2-4ac<0D.ab>0第1题图第3题图2.抛物线y=2x2+2(k-1)x-k(k为常数)与x轴交点的个数是.3.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(-3,0),对称轴为x=-1,则当y<0时,x的取值范围是.4.在平面直角坐标系中,已知A(-1,m),B(5,m)是抛物线y=x2+bx+1上的两点,将抛物线y=x2+bx+1的图象向上平移n(n是正整数)个单位长度,使平移后的图象与x轴没有交点,则n的最小值为.专项六二次函数的应用知识清单构建二次函数模型解决实际问题的一般步骤:(1)审题,分析问题中的变量和常量;(2)建立二次函数模型表示它们之间的关系;(3)充分结合已知条件,利用函数解析式或图象等得出相应问题的答案,或把二次函数解析式用顶点坐标公式或用配方法化为顶点式,确定出二次函数的最大(小)值;(4)结合自变量的取值范围和问题的实际意义,检验结果的合理性.考点例析例1 “闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行煎炸时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,可食用率P与煎炸时间t(单位:分钟)近似满足的函数关系为:P=at2+bt+c(a,b,c是常数,a≠0),如图1记录了三次实验的数据.根据上述函数关系和实验数据,可以得到煎炸臭豆腐的最佳时间为()A.3.50分钟B.4.05分钟C.3.75分钟D.4.25分钟图1分析:将三组实验数据(3,0.8),(4,0.9),(5,0.6)代入函数关系式P=at2+bt+c,可确定a,b 的值,利用t =2b a计算抛物线顶点的横坐标即为煎炸臭豆腐的最佳时间. 解: 例2 某服装厂生产A 品种服装,每件成本为71元,零售商到此服装厂一次性批发A 品牌服装x 件时,批发单价为y 元,y 与x 之间满足如图2所示的函数关系,其中批发件数x 为10的正整数倍.(1)当100≤x ≤300时,y 与x 的函数解析式为 ;(2)零售商到此服装厂一次性批发A 品牌服装200件,需要支付多少元?(3)零售商到此服装厂一次性批发A 品牌服装x (100≤x ≤400)件,服装厂的利润为w 元,问:x 为何值时,w 最大?最大值是多少?图2分析:(1)设y 与x 的函数解析式为y =kx +b ,将(100,100),(300,80)代入即可求得其解析式;(2)因为100≤200≤300,所以在(1)的解析式中,令x =200,可求得此时的批发单价y ,再乘件数即可求得需要支付的总费用;(3)分两种情况讨论:当100≤x ≤300时,可列出w 关于x 的二次函数解析式,根据二次函数的性质结合“批发件数x 为10的正整数倍”可求得此时w 的最大值;当300<x ≤400时,可列出w 关于x 的一次函数解析式,根据一次函数的性质可求得其最大值,两种情况进行对比可得最终结果.解:跟踪训练1.某公司新产品上市30天全部售完,图①表示产品的市场日销售量与上市时间之间的关系,图①表示单件产品的销售利润与上市时间之间的关系,则最大日销售利润是 元.① ①第1题图2.如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD ,为美化环境,用总长为100 m 的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE =3BE ;(2)在(1)的条件下,设BC 的长为x m ,矩形区域ABCD 的面积为y m 2,求y 关于x 的函数解析式,并写出自变量x 的取值范围.第2题图3.某商店销售一种销售成本为每件40元的玩具,若按每件50元销售,一个月可售出500件,销售价每涨1元,月销量就减少10件.设销售价为每件x 元(x ≥50),月销量为y 件,月销售利润为w 元.(1)写出y 与x 的函数解析式和w 与x 的函数解析式;(2)商店要在月销售成本不超过10 000的情况下,使月销售利润达到8000元,销售价应定为每件多少元?(3)当销售价定为每件多少元时会获得最大利润?求最大利润.专项七 二次函数中的分类讨论思想知识清单分类讨论思想是当待解决的问题包含两种或两种以上的可能情况时,需要按不同情况分类来解决问题的一种思想方法,同时它也是一种解题策略.考点例析例 已知抛物线y =x 2+(2m -6)x +m 2-3与y 轴交于点A ,与直线x =4交于点B ,当x >2时,y 随x 的增大而增大.记抛物线在线段AB 下方的部分为G (包含A ,B 两点),M 为G 上任意一点,设点M 的纵坐标为t ,若t ≥-3,则m 的取值范围是( )A .m ≥32B .32≤m ≤3C .m ≥3D .1≤m ≤3分析:根据题意,得x =2b a-≤2,244ac b a -≥-3,然后再分对称轴在y 轴右侧、为y 轴、在y 轴左侧三种情况对b 的正负进行讨论,最后综合三种情况得出m 的取值范围.解:跟踪训练1.若函数y=(m-1)x2-6x+32m的图象与x轴有且只有一个交点,则m的值为()A.-2或3 B.-2或-3 C.1或-2或3 D.1或-2或-32.二次函数y=ax2-3ax+3的图象过点A(6,0),且与y轴交于点B,点M在该抛物线的对称轴上.若①ABM是以AB为直角边的直角三角形,则点M的坐标为.参考答案专项一二次函数的图象和性质例1 (-1,4)例2 B 例3 C1.B 2.答案不唯一,如y=x23.(1,8)4.10专项二二次函数的图象与系数的关系例1 B 例2 D1.C 2.C专项三确定二次函数的解析式例抛物线的解析式为y=x2-2x-3,m=5,n=-4.1.C2.解:因为y=ax2-2ax-3+2a2=a(x-1)2+2a2-a-3,且抛物线的顶点在x轴上,所以2a2-a-3=0.解得a=32或a=-1.所以抛物线的解析式为y=32x2-3x+32或y=-x2+2x-1.专项四二次函数图象的平移例y=(x-3)2-3.1.C 2.D 3.-5专项五二次函数与一元二次方程的关系例1 k≤54且k≠1 例2 C111.B 2.2 3.-3<x <1 4.4专项六 二次函数的应用例1 C例2 (1)y =110-x +110 (2)当x =200时,y =-20+110=90.90×200=18 000(元).答:零售商一次性批发A 品牌服装200件,需要支付18 000元.(3)分两种情况:①当100≤x ≤300时,w =11107110x x ⎛⎫-+- ⎪⎝⎭=110-x 2+39x =110-(x -195)2+3802.5. 因为110-<0,且批发件数x 为10的正整数倍,所以当x =190或200时,w 有最大值,为110-(200-195)2+3802.5=3800;②当300<x ≤400时,w =(80-71)x =9x .因为9>0,所以当x =400时,w 有最大值,为9×400=3600.综上,零售商一次性批发A 品牌服装x (100≤x ≤400)件,x 为190或200时,w 最大,最大值是3800元.1.18002.(1)证明:因为矩形MEFN 与矩形EBCF 的面积相等,所以ME =BE .因为四块矩形花圃的面积相等,所以S 矩形AMND =2S 矩形MEFN ,所以AM =2ME .所以AE =3BE .(2)解:因为篱笆总长为100 m ,所以2AB +GH +3BC =100.所以AB =40-65BC . 所以y =BC ·AB =x 6405x ⎛⎫-⎪⎝⎭=26405x x -+. 因为BE =14AB =10-310x >0,解得x <1003,所以0<x <1003. 所以y 关于x 的函数解析式为y =26405x x -+(0<x <1003). 3.解:(1)y =500-10(x -50)=-10x +1000;w =(x -40)(-10x +1000)=-10x 2+1400x -40 000.(2)由题意,得-10x 2+1400x -40 000=8000,解得x 1=60,x 2=80.当x=60时,成本为40×(-10×60+1000)=16 000>10 000不符合要求,舍去;当x=80时,成本为40×(-10×80+1000)=8000<10 000符合要求.所以销售价应定为每件80元.(3)因为w=-10x2+1400x-40 000=-10(x-70)2+9000.因为-10<0,所以当x=70时,w取最大值,为9000.所以销售价定为每件70元时会获得最大利润,最大利润为9000元.专项七二次函数中的分类讨论思想例A1.C 2.3-92⎛⎫⎪⎝⎭,或362⎛⎫⎪⎝⎭,12。

《二次函数》PPT优秀课件

《二次函数》PPT优秀课件
说一说以上二次函数解析式的各项系数.
链接中考
1.下列函数解析式中,一定为二次函数的是( C )
A.y=3x-1 C.s=2t2-2t+1
B.y=ax2+bx+c
D.y=x2+
1
2
x
链接中考
2.已知函数 y=(m²﹣m)x²+(m﹣1)x+m+1. (1)若这个函数是一次函数,求m的值; (2)若这个函数是二次函数,则m的值应怎样? 解:(1)根据一次函数的定义,得m2﹣m=0,
探究新知
素养考点 1 二次函数的识别
例1 下列函数中是二次函数的有 ①⑤⑥ .
①√ y= 2x2 2
×③y x2(1 x2 ) 1
最高次数是4
⑤√ y=x( x 1)
×②y 2x2 x(1 2x) a=0
×④y
1 x2
x2
√⑥y
x4 x2 x2 1
=x2
二次函数:y=ax²+bx+c(a,b,c为常数,a≠0)
素养目标
2. 能根据实际问题中的数量关系列出二次函数 解析式,并能指出二次函数的项及各项系数.
1.掌握二次函数的定义,并能判断所给函数 是否是二次函数.
探究新知
知识点 1 二次函数的概念
问题1 正方体的六个面是全等的正方形(如下图),设正方
形的棱长为x,表面积为y,显然对于x的每一个值, y都 有一个对应值,即y是x的函数,它们的具体关系可以表 示为 y=6x2①.
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的 步骤: (1)将函数解析式右边整理为含自变量的代 数式,左边是函数(因变量)的形式; (2)判断右边含自变量的代数式是否是整式; (3)判断自变量的最高次数是否是2; (4)判断二次项系数是否不等于0.

二次函数知识点总结(最新)

二次函数知识点总结(最新)

二次函数知识点总结I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]交点式:y=a(x-x)(x-x)[仅限于与x轴有交点A(x,0)和B(x,0)的抛物线] 注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax,x=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质1.抛物线是轴对称图形。

对称轴为直线x=-b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P 在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ=b^2-4ac>0时,抛物线与x轴有2个交点。

Δ=b^2-4ac=0时,抛物线与x轴有1个交点。

“一次经营”及“二次经营”“三次经营”

“一次经营”及“二次经营”“三次经营”

.word 可编写 .“一次经营”与“二次经营”“三次经营”的关系及联合的商讨工作一、“一次经营”、二“次经营”、三“次经营”的观点1、“一次经营”就是公司为了获得工程项目所发生的全部经营行为。

它的最后目的是在固化的条件下获得合同。

2、“二次经营”就是指甲乙两方执行合同时所发生的全部经营行为。

它的最后目的是在合同执行过程中经过降本增效获得最好的管理效益。

3、“三次经营”就是指在项目完工后,售后服务、完工结算、审计和清欠过程所发生的全部行经营行为。

它的最后目的有两点:(1)依据合同商定供给最好的售后服务,为承接后续工程供给强有力的保证,力求与业主“第二次握手”、“第三次握手”,成立起长久的战略合作伙伴关系。

(2)在结算、审计、清欠过程中采纳各样有效的手段获得最正确的结算效益和实时回完工程款。

二、一次经营与二次经营、三次经营的关系界定三者的界定关系就是市场营销、合同签约;施工管理、设计更改、现场签证、索赔和反索赔;结算、审计和清欠.word 可编写 .一次经营:招标与签约二次经营:施工准备、施工、扫尾三次经营:完工结算、用后服务阶段1、一次经营、二次经营、三次经营互为因果,密切联系、互相促使、互相限制。

2、“一次经营”是建筑公司的“生命”,是基础;是“二次经营”的前提;“二次经营”是建筑公司的“灵魂”,是重点和核心;是“一次经营”的重要连续,又为此后的“一次经营”创建条件,经过“二次经营”能够促使甲乙两方的关系,提高履约质量,为承接后续工程创建更有益的条件。

“三次经营”是“一、二次经营”的综合集中,是公司经济效益的最后表现。

3、一次经营的最后目的是获得合同;二次经营和三次经营的目的是在保证公司信用、品牌的同时实现合同增值,获得最正确的经济效益,三者的根本目的是为了公司的利益,促使公司的良性、高速的发展。

三、“一次经营”、二“次经营”、三“次经营”之间的差别阶段目标不一致,营销主体不一致,营销对象不一致,营销职责不一致。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档