求异面直线所成的角

合集下载

异面直线所成角的几种求法资料讲解

异面直线所成角的几种求法资料讲解

异面直线所成角的几种求法仅供学习与交流,如有侵权请联系网站删除 谢谢2异面直线所成角的几种求法异面直线所成角的大小,是由空间一点分别引它们的平行线所成的锐角(或直角)来定义的。

因此,通常我们要求异面直线所成的角会要求学生通过平移直线,形成角,然后在某个三角形中求出角的方法来得到异面直线所成角的大小。

在这一方法中,平移直线是求异面直线所成角的关键,而如何平移直线要求学生有良好的空间观和作图能力。

一、向量法求异面直线所成的角例1:如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是相邻两侧面BCC 1B 1及CDD 1C 1的中心。

求A 1E 和B 1F 所成的角的大小。

解法一:(作图法)作图关键是平移直线,可平移其中一条直线,也可平移两条直线到某个点上。

作法:连结B 1E ,取B 1E 中点G 及A 1B 1中点H , 连结GH ,有GH//A 1E 。

过F 作CD 的平行线RS , 分别交CC 1、DD 1于点R 、S ,连结SH ,连结GS 。

由B 1H//C 1D 1//FS ,B 1H=FS ,可得B 1F//SH 。

在△GHS 中,设正方体边长为a 。

GH=46a (作直线GQ//BC 交BB 1于点Q , B A CD FEB 1 A 1 D 1C 1G HSRPQ仅供学习与交流,如有侵权请联系网站删除 谢谢3连QH ,可知△GQH 为直角三角形),HS=26a (连A 1S ,可知△HA 1S 为直角三角形), GS=426a (作直线GP 交BC 于点P ,连PD ,可知四边形GPDS 为直角梯形)。

∴Cos ∠GHS=61。

所以直线A 1E 与直线B 1F解法二:(向量法)分析:因为给出的立体图形是一个正方体, 所以可以在空间建立直角坐标系,从而可以利用 点的坐标表示出空间中每一个向量,从而可以用 向量的方法来求出两条直线间的夹角。

以B 为原点,BC 为x 轴,BA 为y 轴,BB 1为z 轴,设BC 长度为2。

异面直线所成角的三种经典求法

异面直线所成角的三种经典求法

直 线 所成 角 的通 法 , 常见 是 “ 一 静 一
动” :将 另 一 直 线 平移 至 已知 点 , 通
D + D c 。 一 E c 2 +( 2 、 /2) 一 2
2 D E・ DC 2. 2. 2 、 /
过 求 解 三 角形 来 解 决 异 面 直 线所 成
2 定 理 可得 c 。 s D 剧 — DE %E F DF2

方 法 归 纳 2: 补 形 法 的 实 质 是 将 直 线往 更 多的 “ 地 方” 平移 , 其 目 的 也 是将 异 面 直线 所成 的 角平 面化.


方法 四 : 建 立 空 间 直 角 坐标 系 ,

图1
可 .不 过 这 里 要 注 意 向 量 夹 角 与 异
± 皇 : 二 : :
2 。 4 1・曰
A B

所 以

加 41 = .
图2
面 直 线 所 成 的 角 的 取 值 范 围 不 一
样. 雹
A B = 2 V , A D
1 = 2 , 求 异 面 直 线
A D =X / — D D ] + — A D z = 、

,.
- 2 、 / ,
图4
DE与AB 所 成 的 角.
ADl =
.在 R t AD D ̄ B中 ,
D E = 肋 = 2 .& AD E F  ̄ , 由余 弦
, 1 ) , = ( 0 , 2 、 / , 0 ) .
、 / 可
= V2 2 + ( 2 、 / ) 2 + 2 = 4 .

设 异 面 直 线D E与AB所 成 的 角 为 ,

异面直线成角求法

异面直线成角求法

求异面直线所成的角求异面直线所成的角,一般有两种方法,一种是几何法,这是高二数学人教版(A )版本倡导的传统的方法,其基本解题思路是“异面化共面,认定再计算”,即利用平移法和补形法将两条异面直线转化到同一个三角形中,结合余弦定理来求。

还有一种方法是向量法,即建立空间直角坐标系,利用向量的代数法和几何法求解,这是高二数学人教版(B )倡导的方法,下面举例说明两种方法的应用。

例:长方体ABCD -A 1B 1C 1D 1中,AB=AA 1=2cm ,AD=1cm ,求异面直线A 1C 1与BD 1所成的角。

解法1:平移法设A 1C 1与B 1D 1交于O ,取B 1B 中点E ,连接OE ,因为OE//D 1B ,所以∠C 1OE 或其补角就是异面直线A 1C 1与BD 1所成的角△C 1OE 中211E B C B E C 2312221BD 21OE 25C A 21OC 22212111221111=+=+==++⋅====()552325222325OEOC 2E C OE OC OE C cos 2221212211=⨯⨯-⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⋅-+=∠所以55a r c c o sOE C 1=∠所以 所以异面直线111BD C A 与所成的角为55arccos图1解法2:补形法在长方体ABCD —A 1B 1C 1D 1的面BC 1上补上一个同样大小的长方体,将AC 平移到BE ,则∠D 1BE 或其补角就是异面直线A 1C 1与BD 1所成的角,在△BD 1E 中,BD 1=3,5BE =,5224E D 221=+=()()555325253BE BD 2E D BE BD BE D cos 2221212211-=⨯⨯-+=⋅-+=∠所以异面直线A 1C 1与BD 1所成的角为55arccos图2解法3:利用公式21cos cos cos θθθ⋅=设OA 是平面α的一条斜线,OB 是OA 在α内的射影,OC 是平面α内过O 的任意一条直线,设OA 与OC 、OA 与OB 、OB 与OC 所成的角分别是θ、θ1、θ2,则21cos cos cos θθθ⋅=(注:在上述题设条件中,把平面α内的OC 换成平面α内不经过O 点的任意一条直线,则上述结论同样成立)D 1B 在平面ABCD 内射影是BD ,AC 看作是底面ABCD 内不经过B 点的一条直线,BD 与AC 所成的角为∠AOD ,D 1B 与BD 所成角为∠D 1BD ,设D 1B 与AC 所成角为θ,AOD cos BD D cos cos 1∠⋅∠=θ,55BD BD BD D cos 11==∠。

异面直线所成角的正弦值公式

异面直线所成角的正弦值公式

异面直线所成角的正弦值公式正文:异面直线是指两条直线不在同一个平面内,它们之间的距离称为角度。

如果我们将异面直线上的两个点 A 和 B 连接起来,并且连接点 A 和 B 的线段与异面直线垂直,那么我们可以得到一个角θ,这个角是异面直线所成角。

正弦值是指一个角的正弦值,它是角的角度值与正弦值的比值。

在数学上,正弦值可以表示为:sinθ = 角度值 / 正弦值其中,角度值是指异面直线所成角的大小,正弦值是指这个角的正弦值。

异面直线所成角的正弦值公式可以通过以下方式得到:1. 假设两条直线分别为 A 和 B,它们之间的距离为 d,角度为θ。

2. 那么这两条直线的夹角β就是异面直线所成角。

3. 由于β是一个角度,所以它的正弦值可以用正弦公式计算: sinθ = 1 / 2 * (√(AB^2 + AA^2) - AA^2 / AB^2) 其中,AA 表示直线 A 的终点到直线 B 的起点的距离,AB 表示直线 A 和直线 B 之间的距离。

4. 由于β是异面直线所成角,所以它的余弦值可以用余弦公式计算:cosβ = (AA^2 + BB^2 - AB^2) / 2 * AA * BB其中,AA 和 BB 分别表示直线 A 和直线 B 的起点到终点的距离。

5. 最后,我们可以将上述两个公式联立起来,得到异面直线所成角的正弦值公式:sinθ = 1 / 2 * (√(AB^2 + AA^2) - AA^2 / AB^2) 其中,θ是异面直线所成角的大小,AB 是直线 A 和直线 B 之间的距离,AA 是直线 A 的起点到终点的距离。

拓展:异面直线所成角的余弦值公式也可以通过类似的步骤得到。

假设两条直线分别为 A 和 B,它们之间的距离为 d,角度为β。

那么,异面直线所成角的余弦值可以表示为:cosβ = (AA^2 + BB^2 - AB^2) / 2 * AA * BB其中,AA 和 BB 分别表示直线 A 和直线 B 的起点到终点的距离。

高中数学:异面直线所成的角求法(汇总大全)

高中数学:异面直线所成的角求法(汇总大全)

异面直线所成的角一、平移法:常见三种平移方法:直接平移:中位线平移(尤其是图中出现了中点):补形平移法:“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。

直角平移法:1.在空间四边形ABCD 中,AD =BC =2,E ,F 分别为AB 、CD 的中点,EF =3,求AD 、BC 所成角的大小.解:设BD 的中点G ,连接FG ,EG 。

在△EFG 中 EF =3FG =EG =1∴∠EGF =120° ∴AD 与BC 成60°的角。

2.正∆ABC 的边长为a ,S 为∆ABC 所在平面外的一点,SA =SB =SC =a ,E ,F 分别是SC和AB 的中点.求异面直线SA 和EF 所成角. 正确答案:45°3.S 是正三角形ABC 所在平面外的一点,如图SA =SB =SC ,且∠ASB =∠BSC =∠CSA=2π,M 、N 分别是AB 和SC 的中点.求异面直线SM 与BN 所成的角的余弦值. 证明:连结CM ,设Q 为CM 的中点,连结QN ,则QN ∥SM∴∠QNB 是SM 与BN 所成的角或其补角 连结BQ ,设SC =a ,在△BQN 中 BN =a 25 NQ =21SM =42a BQ =a 414∴COS ∠QNB =5102222=⋅-+NQ BN BQ NQ BN4.如图,在直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M 、N 分别是A 1B 1和A 1C 1的中点,若BC =CA =CC 1,求BM 与AN 所成的角.解:连接MN ,作NG ∥BM 交BC 于G ,连接AG , 易证∠GNA 是BM 与AN 所成的角.设:BC =CA =CC 1=2,则AG =AN =5,GN =BM =6, cos ∠GNA =1030562556=⨯⨯-+。

如何求异面直线所成的角

如何求异面直线所成的角

如何求异面直线所成的角立体几何在中学数学中有着重要的地位,求异面直线所成的角是其中重的内容之一,也是高考的热点,求异面直线所成的角常分为三个步骤:作→证→求。

其中“作”是关键,那么如何作两条异面直线所成的角呢本文就如何求异面直线所成的角提出了最常见的几种处理方法。

Ⅰ、用平移法作两条异面直线所成的角一、端点平移法例1、在直三棱柱111C B A ABC -中,090CBA ∠=,点D ,F 分别是11A C ,11A B 的中点,若1AB BC CC ==,求CD 与AF 所成的角的余弦值。

解:取BC 的中点E ,连结EF ,DF ,//DF EC 且DF EC =∴四边形DFEC 为平行四边形//EF DC ∴EFA ∴∠(或它的补角)为CD 与AF 所成的角。

设2AB =,则EF =AF =EA =故2222EF FA EA EFA EF FA +-∠==arccos10EFA ∴∠=二、中点平移法例2、在正四面体ABCD 中, M ,N 分别是BC ,AD 的中点,求AM 与CN 所成的角的余弦值。

解:连结MD ,取MD 的中点O ,连结NO ,1O 、N 分别MD 、AD 为的中点,∴NO 为DAM ∆的中位线, ∴//NO AM ,ONC ∴∠(或它的补角)为AM 与CN 所成的角。

设正四面体ABCD 的棱长为2,则有2NO =,CN =2CO =, 故2222cos 23NO CN CO ONC NO CN +-∠== 2arccos 3ONC ∴∠=三、特殊点平移法例3、如图,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知4AB =,20CD =,7EF =,13AF BE FD EC ==,求异面直线AB 与CD 所成的角。

解:在BD 上取一点G ,使得13BG GD =,连结EG FG 、,在BCD ∆中,13BE BG EC GD ==,故//EG CD ,同理可证://FG ABFGE ∴∠(或它的补角)为AB 与CD 所成的角。

异面直线所成角公式

异面直线所成角公式

异面直线所成角公式
异面直线所成角是指两条直线在同一平面内,但并不重合,且有一个交点的角度。

这种角度可以用以下公式来计算:
所成角(°)= 180° - 倾斜角1 - 倾斜角2
其中,倾斜角1和倾斜角2分别表示两条直线的倾斜角度。

注意,倾斜角是指直线与水平面的夹角,一般情况下,倾斜角的取值范围是0°~90°。

举个例子,如果有两条直线,倾斜角分别为30°和45°,那么它们所成角的大小就可以用以下公式计算:
所成角(°)= 180° - 30° - 45° = 105°
总之,异面直线所成角是指两条直线在同一平面内,但并不重合,且有一个交点的角度,可以使用以上公式来计算。

【高中数学】高中数学知识点:异面直线所成的角

【高中数学】高中数学知识点:异面直线所成的角

【高中数学】高中数学知识点:异面直线所成的角异面直线所成角的定义:直线a和B是具有不同平面的直线。

如果它们通过空间中的任意点O并分别引导直线a′和B′B,则直线a′和B′形成的锐角(或直角)称为直线a和B与不同平面形成的角,如下图所示。

两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。

在不同平面上直线形成的角度定义中,空间中的点O是可选的,与点O的位置无关。

求异面直线所成角的步骤:a、通过定义构造角度,一个可以固定,另一个可以平移,或者两个可以同时平移到特定位置,并且可以在特定位置选择顶点。

b、证明作出的角即为所求角;c、使用三角形来寻找角度。

特别提醒:(1)两条直线在不同平面上形成的角度与点O(平移后两条直线的交点)的选择无关(2)两异面直线所成角θ的取值范围是0<θ≤90.(3)判断空间中两条直线是不同平面直线的方法① 判断定理:平面外a点与平面内B点之间的连线与平面内的直线,但B点是不同的平面直线;② 相反的证明:不可能证明两条直线是共面的线线角的求法:(1)定义方法:使用“平移变换”使其成为两条相交直线形成的角度。

当不同平面上的直线垂直时,使用直线平面垂直度的定义或三垂线定理和逆定理来确定角度为90.(2)向量法:设两条直线所成的角为θ(锐角),直线l一和l二的方向向量分别为高中数学相关知识点:直线与平面的夹角直线与平面所成的角的定义:① 直线和平面形成三个角:a.斜线和平面所成的角:一条直线与平面α相交,但不和α垂直,这条直线叫做平面α的斜线.斜线与α的交点叫做斜足,过斜线上斜足以外的点向平面引垂线,过垂足与斜足的直线叫做斜线在平面α内的射影,平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.b、垂直线与平面之间的角度:如果直线与平面垂直,则它们形成的角度为直角。

c.一条直线和平面平行,或在平面内,则它们所成的角为0零.② 取值范围:0≤ θ≤90.求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。

异面直线所成的角的求法

异面直线所成的角的求法

异面直线所成的角的求法法一:平移法例1:在正方体ABCD-A1BC11D1中,求下列各对异面直线所成的角。

(1)AA1与BC;(2)DD1与A1B;(3)A1B与AC。

法二:中位线例2:在空间四边形ABCD中,AB=CD,且AB⊥CD,点M、N分别为BC、AD的中点,求直线AB与MN所成的角。

变式:在空间四边形ABCD中,点M、N分别为BC、AD的中点,AB=CD=2,且MN=AB与CD所成的角。

法三:补形法例3:如图,PA⊥平面ABC,∠ACB=90°且PA=AC=BC,求下列各对异面直线所成的角的正切值.(1)PB与AC;(2)AB与PC。

法四:空间向量法例4:在正方体ABCD-A1BC11D1中,E、F分别是BB1F 1,CD的中点,求证:AE⊥D法五:证明垂直法例5:在正方体ABCD-A1BC11D1中,E、F分别是BB1F所成的1,CD的中点,求AE与D角。

变式:在长方体ABCD-A1B1C1D1中,E是BB1的中点,AA1=2,AB=BC,求AE与D1C所成的角。

练习题:1.在正四面体ABCD中,点M、N分别为BC、AD的中点,则直线AB与MN 所成的角为_______。

2.长方体ABCD—A1B1C1D1中,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,则异面直线A1E与GF所成的角为_______3.直三棱柱ABC-A1B1C1中,若∠BAC=90︒,AB=AC=AA1,则异面直线BA1与AC1所成的角等于________________.E为AA1中点,4. 已知正四棱柱ABCD-A则异面直线BE与CD1AA1=2AB,1BC11D1中,所成的角的余弦值为________________.5.已知正四棱锥S-ABCD的侧棱长与底面边长都相等,E是SB 的中点,则AE,SD所成的角的余弦值为________________.6.如图1,P是正方形ABCD所在平面外一点,PD⊥平面ABCD,PD=AD,则PA与BD所成的角的度数为________________.7。

异面直线所成的角的求法

异面直线所成的角的求法

异面直线所成的角的求法法一:平移法例1:在正方体1111ABCD A B C D -中,求下列各对异面直线所成的角。

(1)1AA 与BC ; (2)1DD 与1A B ; (3)1A B 与AC 。

法二:中位线例2:在空间四边形ABCD 中,AB =CD ,且AB ⊥CD ,点M 、N 分别为BC 、AD 的中点,求直线AB 与MN 所成的角。

变式:在空间四边形ABCD 中,点M 、N 分别为BC 、AD 的中点,AB =CD =2,且MN =2,求直线AB 与CD 所成的角。

习题1.在空间四边形ABCD 中,AD =BC =2,E ,F 分别为AB 、CD 的中点,EF =3,求AD 、BC 所成角的大小.2.正∆ABC 的边长为a ,S 为∆ABC 所在平面外的一点,SA =SB =SC =a ,E ,F 分别是SC 和AB 的中点.求异面直线SA 和EF 所成角.3.S 是正三角形ABC 所在平面外的一点,如图SA =SB =SC ,且∠ASB =∠BSC =∠CSA =2π,M 、N 分别是AB 和SC 的中点.求异面直线SM 与BN 所成的角的余弦值. 4.如图,在直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M 、N 分别是A 1B 1和A 1C 1的中点,若BC =CA =CC 1,求BM 与AN 所成的角. 5.如图1—28的正方体中,E 是A′D′的中点(1)图中哪些棱所在的直线与直线BA′成异面直线? (2)求直线BA′和CC′所成的角的大小; (3)求直线AE 和CC′所成的角的正切值;(4)求直线AE 和BA′所成的角的余弦值法三:补形法 例3:如图,PA ⊥平面ABC ,∠ACB=90°且PA=AC=BC ,求下列各对异面直线所成的角的正切值.(1)PB 与AC ;(2)AB 与PC 。

法四:空间向量法例4:在正方体1111ABCD A B C D -中,E 、F 分别是1,BB CD 的中点,求证:1AE D F⊥ 变式1. 如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是相邻两侧面BCC 1B 1及CDD 1C 1的中心。

2023届高考数学二轮复习提升微专题几何篇第28讲怎么求异面直线所成角含解析

2023届高考数学二轮复习提升微专题几何篇第28讲怎么求异面直线所成角含解析

第28讲 怎么求异面直线所成角一、知识与方法1异面直线所成角的定义(线线角)直线,a b 是两异面直线,经过空间任意一点O ,分别作//,//a a b b '',则两相交直线a ',b '所成的锐角(或直角)叫作两异面直线,a b 所成的角,两条异面直线所成的角的范围是0,2π⎛⎤⎥⎝⎦2求异面直线所成的角的方法求异面直线所成的角是通过平移直线,把异面问题转化为共面问题来解决,根据等角定理,异面直线所成的角的大小与顶点位置无关,一般将角的顶点取在一些特殊点上(如线段端点,中点等),还可以用空间向量法求解就不用平移了.3平移法求异面直线所成角的一般步骤(1)平移:选择适当的点,平移异面直线中的一条或两条成为相交直线,这里的点通常选择特殊位置的点,如线段的中点或端点,也可以是异面直线中某一条直线上的特殊点.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角的范围是0,.2π⎛⎤⎥⎝⎦所以所作的角为钝角时,应取它的补角作为异面直线所成的角.4立体几何中,解计算题的一般步骤(1)作图;(2)证明; (3)计算.三步缺一不可.二、典型例题【例1】(1)在正四面体ABCD 中(如图31-所示),,E F 分别是,AB CD 的中点,则EF 和BC 所成的角为________;(2)已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( ).A.16C.13(3)在正四面体ABCD 中,(如图32-所示)线段MN 是棱AC 的中点和BCD 中心的连线,而线段DE 是ABD 的高.求MN 和DE 所成角的余弦值.【分析】本例3小题都是求正四面体上两异面直线所成角.通常是通过平移化空间为平面,再解三角形求得,一般情况下运用余弦定理[如第(2)(3)问的解法],也可用原图形的扩展,每个四面体都有其外接平行六面体,四面体的棱为平行六面体的面对角线,而正四面体的外接平行六面体是正方体或者说正四面体是正方体的六条面对角线所构成的内接图形,第(1)(2)问的解法二用的就是这种解法. 【解析】(1)【解法一】(平移法)如图33-所示,取BD 的中点M ,连接,EM FM ,则11//,//.22EM AD FM BC EFM ∴∠是EF 与BC 所成的角或其补角.ABCD 是正四面体,AD ∴BC =且AD BC ⊥,于是EM FM =且EM FM ⊥,即EMF 是等腰直角三角形.45EFM ︒∴∠=,即EF 与BC 所成角为45︒. 【解法二】(补体法)如图34-所示,作正四面体ABCD 的外接正方体,则,E F 分别为正方体相对两个面的中心,//EF BG ∴.于是EF 与BC 所成角即为CBG ∠,其大小为45︒. (2)【解法一】(平移法)如图35-所示,取AD 的中点F ,连接,EF CF ,则//.EF BD 故CEF ∠(或其补角)即为异面直线CE 与BD 所成的角.设正四面体的棱长为2,则1CE CF EF ===.在CEF 中,由余弦定理得222cos2CE EF CF CEF CE EF +-∠===⋅∴异面直线CE 与BD 所成角的余弦值为6,故选B . 【解法二】(补体法+向量法)在正方体中嵌套一个正四面体ABCD ,建立空间直角坐标系,如图36-所示,不妨设正方体的棱长为2,则(0,0,2),A B (2,0,0),(0,2,0),(2,2,2),C DE 是AB 的中点,(1,0,1)E ∴,又(1,2,1),CE =-,||(0,2,2),cos |cos ,|||||CE BD BD CE BD CE BD θ⋅=∴=〈〉===故选B . (3)如图37-所示,连接DN ,延长交BC 于F ,可知F 为BC 中点,连接EF ,取EF 三等分点G ,使21EG GF =.连接,GN GM ,则//GN DE 且1,3GN DE GNM =∴∠是MN 和DE 所成的角或其补角.设正四面体棱长为.a 在GMN 中,,GN GM ==连接1,,,cos 2NC MC a NC MCN ==∠=.2222112cos ,42MN MC NC MC NC MCN a MN a ∴=+-⋅⋅∠=∴=222cos 2NG MN GM GNM NG MN +-∴∠==⋅MN ∴与DE 所成角为【例2】如图38-所示,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,,E F 分别为,AB BC 的中点,设异面直线EM 与AF 所成的角为θ,则cos θ的最大值为________.【分析】立体几何中动态问题具有较大的综合性,是解立体几何问题中的一个难点,通常有儿何法与向量法两种解题方法,几何法可以结合图形分析何时取得最大值,当点M 在P 处时,EM 与AF 所成角为直角,此时余弦值为0(最小),当M 到达Q 点时,角最小,从而余弦值最大.当然若设QM x =,求得cos θ关于x 的函数,借助于函数的单调性求得最大值,可谓殊途同归,结合图形中动点变化时,EM 与AF 所成角大小的变化,显示出数形结合,以形助数的魅力,这是一种很好的思维方法.当然本题极易建立空间直角坐标系,利用向量解无疑是求空间角的常用方法,易于操作. 【解法一】(平移法十函数单调性)如图39-所示,设正方形的边长为2,QM x =,则0x2.取BF 中点G ,连接,EG MG ,则//,EG AF MEG ∠或其邻补角即为异面直线EM 与AF 所成的角,设MEG θ∠=,连接EQ .在Rt AQE 中,易得QE=在Rt MQE 中,易得ME =而AF =,则EG =,过点G 作GH AD ⊥,过点M 作MR AD ⊥,则12HR x =-.在Rt GHR 中,易得GR=在Rt MRG 中,易得2222EG EM MG MG EG EM θ+-==⋅===易知()f x =在[0,2]x ∈上是减函数.∴当0x =时,max 2()5f x =,即cos θ的最大值为25.【解法二】(向量法+基本不等式)以A 为原点,分别以射线,,AB AD AQ 为x 轴,y 轴,z 轴的正半轴建立空间直角坐标系A xyz -,如图310-所示,设1AB =,则AF =111,,0,,0,022E ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭. 设(0,,1)(01)M y y ,则1,,12EM y ⎛⎫=- ⎪⎝⎭.由于异面直线所成角的范围为0,2π⎛⎤⎥⎝⎦,cosθ∴===令81,[1,9]t y t=+∈,而281161814552yy tt+=++-,当1t=时取等号.1122cos5555θ∴=⨯=当0y=时,即点M与点Q重合时,cosθ取得最大值为25.【例3】如图311-所示,平行六面体1111ABCD A B C D-中,底面ABCD是边长为1的正方形, 1112,AA A AB A AD=∠=∠120︒=,求异面直线1AC和1A D所成角的余弦值.【分析】求两异面直线所成角的余弦值,从立体几何角度讲,通常采用平移法,但有时平移后的图形不易作出,可用补体的方法,即补体后再平移,当然,运用向量法求两异面直线所成的角是好方法.而向量法通常又分为纯向量法和坐标法.当空间直角坐标系难认建立时,可考虑纯向量的方法,还必须提醒的是两异面直线所成角的范围为0,2π⎛⎤⎥⎝⎦,而两向量所成角的范围是[0,]π,这是容易出错的地方.【解法一】(补体法)如图312-所示,补上一个同样的平行六面体2222ABCD A B C D -,则12C AD ∠或其补角即为异面直线1AC 和1A D 所成角.在12C AD 中,可算出21AD AC =21D C =故由余弦定理得12cos 7 C AD ∠==-而两异面直线所成角的范围为0,2π⎛⎤⎥⎝⎦,故异面直线1AC 和1A D . 【解法二】(纯向量法)注意到从点A 出发的三条棱长和两两夹角都是已知的,故可设AB1,,a AD b AA c ===,如图313-所示.则10,1212a b a c b c ⎛⎫⋅=⋅=⋅=⨯⨯-=- ⎪⎝⎭11,,AC a b c A D b c =++=-故1()()AC AD a b c b c ⋅=++⋅-22212,()7,a b a c b c A D b c ⋅-⋅+-=-=-=112111|()2cos2AC A D AC a b c AC A Dθ⋅=++=∴=== 故异面直线1AC 和1A D 所成角的余弦值为7. 三、易错警示【例】空间四边形ABCD 中,2,1,AD AB CB CD AD ====与BC 所成的角为60,E ︒,F 分别为,AB CD 的中点,求AB 与CD 所成的角及EF 的长. 【错解】如图314-所示,过点D 作//DP CB ,过点B 作//BP ,CD DP 与BP 交于点P .1,CB CD ==∴四边形BCDP 是边长为1的菱形.则ADP ∠就是AD 与BC 所成的角,即60ADP ︒∠=. ABP ∠是AB 与CD 所成的角.在ADP 和ABP 中,,,.AB AD PD PB AP AP ===.60ADP ABP ABPADP ︒∴≅∴∠=∠=,因此,AB 与CD 所成的角为60.︒ 在ADP 中,1,60,2PD BC ADP AD ︒==∠==.则由余弦定理,得AP==.取AC 的中点为Q ,则//,//EQ BC QF AD ,且1,1,602EQ QF EQF ︒==∴∠=. 则2EF ==,因此,EF 的长为2.【评析及正解】上述解法对异面直线所成角的概念不凊晰,其实ADP ∠是AD 与BC 所成的角或其补角,所认在上述解法的基础上还应补上120ADP ︒∠=的情形.如图315-所示,不论60ADP ︒∠=还是120ADP ︒∠=,异面直线AB 与CD 所成角都为60.︒取AC 的中点Q ,则////,EQ BC PD QF //.AD 且1, 1.602EQ QF EQF ︒==∴∠=或120.EQF ︒∠=当60EQF ︒∠=时EF ==当120EQF ︒∠=时,EF ==因此,EF 的长为2. 四、难题攻略【例】将边长为1的正方形11AA O O (及其内部)绕1OO 旋转一周形成圆柱,如图316-所示,AC 长为112,3A B π长为3π,其中1B 与C 在平面11AA O O 的同侧. (1)求三棱锥111C O A B -的体积; (2)求异面直线1B C 与1AA 所成角的大小.【分析】本题的载体为圆柱,情景有所不同,但仍然依据求两异面直线所成角的3种基本方法求解,即①立体几何平移法;②化向量的方法;③向量坐标法.【解析】(1)11133V Sh ===(2)【解法一】(平移法)如图316-所示,过C 作11//CC AA ,则11C CB ∠为异面直线1B C 与1AA 所成的角. 在11Rt CC B 中,1111,1B C CC ==.因此,1111tan 1.C CB C CB ∠=∴∠4π=∴异面直线1B C 与1AA 所成的角为.4π【解法二】(纯向量法)如图317(1)-所示,由11BC BO OC =+,且11A A OO =,得()1111111B C A A B O OC O O B O O O OC O O ⋅=+⋅=⋅+⋅1111cos 0112B O O O B OO =∠+=⨯=因此11cos ,2B C AA ==∴异面直线1B C 与1AA 所成的角为4π.【解法三】(向量坐标法)建立如图317(2)-所示空间直角坐标系,则(0,1,0)A ,111111(0,1,1),,0,,1(0,0,1),(0,1,1) 2222A C B AA B C ⎛⎫⎛⎫-==-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭因此11111112cos ,2A ABC AA B C A A B C⋅==∴异面直线1B C 与1A A 所成的角为4π. 五、强化训练1.如图318-所示.三棱锥111ABC A B C -中,底面边长和侧棱长都相等.1160BAA CAA ︒∠=∠=,求异面直线1AB 与1BC 所成角的余弦值.【解析】【解法一】(直接平移法):如图①所示,作底面,由可知,为的角平分线,且面,于是,四边形为矩形.取的中点,联结交于点,则为的中点, ∴异面直线与所成角等于与所成的角,即或其补角.设三棱柱的棱长为,由题意即可得于是.故异面直线与【解法二】(补体法一):在三棱柱的上底面补一个大小相同的三棱柱,如图②所示,联结,且交于点,则或其补角为异面直线与所成角,设,易得1AO ⊥ABC 1160BAA CAA ∠=∠=︒AO BAC ∠,AO BC BC ⊥⊥11,AAO BC AA ⊥1BC BB ⊥11BB C C AC E 1B C 1BC F F 1B C 112EF AB //1AB 1BC EF BF BFE ∠2111122BE EF AB BF BC ====222cos 2BF EF BE BFE BF EF +-∠===1AB 1BC 111ABC A B C -111222A B C A B C -22,BC AC 2AC 11A C D 12AB C ∠1AB 1BC 1BC =.在中,有,异面直线与所成角的余弦.【解法三】(补体法二):将三棱柱补为平行六面体,再放同样的一个平行六面体,如图③所示.就是异面直线与所成的角,设棱长为,在中,易求得.在中,易求,∴,从而在中,求得.在中,由余弦定理得. 【解法四】(纯向量法):不妨设长为,∵,∴,∴,∴. ∵,∴.∴异面直线与【解法五】(向量坐标法):如图④所示,以为原点建立空间直角坐标系,过作平面于,则必在轴上,且,从而.设棱长为,则.∴∴,设异面直线与所成角为,则. 12122B CBC AC AD ====12AB C 12cos AB C ∠==1AB 1BC 1C BE ∠1AB 1BC 11B AB 1AB=BE =11AC E 1C E =1BC AA ⊥1BC CC ⊥1BCC 1BC =1BC E 1cos 223C BE ∠==⨯⨯AB 111111111,BC BA AA AC AB AA A B =++=+221111()2BC BA AA AC =++=12BC =221111()3AB AA A B =+=13AB =111111111()()1BC AB BA AA AC AB AA A B =++=+=1111cos 2BC AB BC AB θ===1AB 1BC A 1A 1A M ⊥ABC M M x 1cos 3A AM ∠1sin 3A AM ∠=1111,0),,0)22A B C -11115312(,,),62AB AA AB AC AA AC =+==+=1,)23-113(3BC AC AB =-=-1AB 1BC θ11116cos 6BC AB BC AB θ==。

求异面直线所成角的常用措施

求异面直线所成角的常用措施

解题宝典空间角问题是历届高考数学中的必考内容,重点考查同学们的抽象思维能力和空间想象能力.异面直线所成的角的问题主要考查求作异面直线的平行线的方法以及将空间几何问题转化为平面几何问题的方法.本文介绍两种求异面直线所成角的方法.一、定义法设a 、b 是两条异面直线,经过空间任一点O 作直线a '∥a ,b '∥b ,我们把a '与b '所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).在求异面直线所成的角时,可以依据异面直线所成的角的定义,在空间中的某一点作平行于异面直线的直线,将异面直线所成的角转化为平面内的角进行求解.例1.如图1,正方体ABCD -A 1B 1C 1D 1的棱长为2,O 是底面ABCD 的中心,E ,F 分别是CC 1,AD 的中点,求异面直线OE 和FD 1所成的角的余弦值.解:取D 1C 1的中点M ,连结MO ,∵O 为底面中心,∴O 为BD 的中点,FO 为△DAB 的中位线,∴FO 12AB D 1M ,∴四边形D 1FOM 为平行四边形,∴MO ∥D 1F ,∴∠MOE (或其补角)即为异面直线D 1F 和OE 所成的角,在△MOE 中,OM =D 1F =22+1=5,ME =2,0E =3,由余弦定理得,cos ∠MOE =OM 2+OE 2-ME 22OM ∙0E =.解答本题主要运用了定义法,通过添加辅助线MO ,构造出平行四边形D 1FOM ,证明MO ∥D 1F ,将异面直线OE 和FD 1所成的角转化为∠MOE ,通过解三角形,利用余弦定理求得∠MOE 的余弦值,即可得出异面直线OE 和FD 1所成角的余弦值.图1图2图3例2.如图2,正方形ABCD -A 1B 1C 1D 1的棱长为a ,求异面直线B 1D 1和C 1A 所成的角.解:取DD 1,B 1B 的中点分别为M 、N ,连接MN ,AN ,∴B 1D 1∥MN ,且MN 过正方体的中点O 点,∴∠AON 为所求异面直线B 1D 1和C 1A 所成的角或其补角,∵BB 1=a ,NB =a 2,在RtΔABN 中,AN 2=AB 2+NB 2=54a 2,∴MN =B 1D 1=2,AC 1=3a ,∴ON =12MN ,而AO =12AC 1=,∴AO 2+ON 2=54a 2,∴△AON 是直角三角形,∠AON =90°∴异面直线B 1D 1和C 1A 所成的角为90°.这里根据异面直线所成角的定义,选择适当的点,通过平行移动直线B 1D 1得到与异面直线B 1D 1和C 1A 所成的角等价的平面角∠AON ,然后利用平面几何知识求得平面角的大小即可.二、向量法向量法一般适用于解答方便建立空间直角坐标系的几何问题.在运用向量法求异面直线所成的角时,首先需要建立合适的空间直角坐标系,用向量表示所求的两条异面直线,利用空间向量的数量积公式α=arccos n 1→∙n 2→||||||n 1→||||||n 2→,便可求得两异面直线所成的角.运用向量法能将复杂的几何问题转化为简单的向量计算问题,有利于拓宽解题的思路.例3.如图3,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E ,F ,G 分别是DD 1,AB ,CC 1,的中点,求异面直线A 1E 与GF 所成的角的值.解:以D 为坐标原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴建立空间直角坐标系,易知,F (1,1,0),G (0,2,1),E (O ,0,1),A ,(1,0,2).∴ FG =(-1,1,1), A 1E =(-1,0,-1),∵ FG + A 1E =0,∴FG ⊥AE ,∴异面直线A 1E 与GF 所成的角为90°.解答本题主要运用了向量法,在建立空间直角坐标系后,便可运用向量表示两异面直线,通过向量运算便可求得异面直线A 1E 与GF 所成的角.定义法和向量法是求异面直线所成角的常用方法.定义法是一种较为直接的方法,适用范围较广;向量法虽然简单,但是适用范围较窄.同学们在学习的时候,要善于总结规律,及时归纳,熟练掌握求异面直线所成的角两种基本方法.(作者单位:甘肃省甘南藏族自治州夏河县藏族中学)当子吉40。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
E
M
B F
D
C
㈢.利用平行四边形平移
例4.正方体AC1中若E、F分别为AB和BB1的中点, 求AE与CF所成角的余弦
D1
A1
M
C㈣.利用补形平移
例5.再长方体AC1中已知AB=a,BC=b,(a>b) AA1=c,求异面直线D1B和AC所成角的余弦值
D1 A1 B1 C1 G H
wrg52xua
是,我才不得不相信,我和这些饰品一起,成为了陪葬品。我用尽全部是法术撞 击房间的墙壁,可整个房间都封闭的很严,石块又厚又重, 而且还被下了封印,不论我怎样进攻,石壁都是纹丝不动,没有一点裂痕。”“话说你是怎么在墓穴里看的那么清晰的?”“不要小看猫 科动物的夜视能力。”茉莉语气依旧清冷,“正当我彻底绝望的时候,突然听到一阵抓挠的声音,是从两个被压在其它陪葬品下的箱子里 发出的。我打开了那两个箱子,里面爬出了几只黑猫,从它们脖子上和耳朵上沉重而又华贵的珠宝可以看出,它们都有着和我相同的遭遇。 它们被放出来之后,也是疯狂的抓着石壁,企图挖开一条生路,我试着和它们沟通,告诉它们这种方法不可行,但他们根本不理解我的表 达,只是一味地抓着,锋利的爪子在不断磨损,殷红的血液沁透了石壁,和五彩斑斓的壁画融为一体,形成了最耀眼的一抹太阳的光 辉……随着时间的流逝和体力的消耗,饥饿最终还是降临了。在长期劳累并且没有食物和水源的情况下,一只猫产生了幻觉,居然用头撞 向石壁,一次……两次……三次……我蜷缩在一个角落里,和其他猫一样眼睁睁看着它撞向石壁,却毫无办法。终于,它的鲜血和脑浆喷 洒在石壁上渐渐凝固了,它自己则静静地趴在地上,再也不动了。所有猫都一起向后退,退到了另外一个角落,刻意与那具尸体保持距离。 时间缓慢的流啊,而我们,就像是他沙漏中的玩物,待沙漏流进之时,便是我们的离去之日。第072章 番外 劫数“不知过了多久,当我再 次醒来的时候,那具尸体已经变成残骸,只剩下了冰冷的骨架。当我把询问的目光投向那群正在整理毛发的黑猫时,它们都可以躲避了我 的目光。这个时候我突然明白了,它们只是普通的猫,而我已经修炼多年,这种程度的饥饿对于我来说还可以忍受,但它们就不行了…… 如果不去吃掉那只已死的猫,它们也会死掉……我这个样子向自己解释。我就这样胆战心惊的又度过了好多天……”“话说你是怎么知道 时间的?”慕容凌娢再次吐槽。“猫的生物钟可是很准确的!”茉莉有些不屑的反驳了柯蒂丽娅的吐槽,“ 就这样胆战心惊的又度过了好 多天,有一次,当我准备休息时,我感觉到哪一群猫正在向我靠拢,而且是呈扇形的捕猎姿势。我闭着眼睛假装不知情,实际上在暗中仔 细探查它们的动机。其中一只为首的黑猫离我最近,悄无声息的朝我扑了过来。我一跃而起,咬住了他的耳朵,和他扭打在一起。这时, 其他猫也都向我发起进攻,迫不得已,我只好先结束了那只为首黑猫的性命,很利索的咬断了他的喉咙,不会感觉到一点疼痛……就在他 血管破裂,鲜血涌出的一瞬间,我感觉到一种莫名的力量指使着我,拼命的吮 吸这还带有生命
A
E G B
D F C
例2.在棱长都相等的三棱锥A—BCD中,E、F分 别为棱AD、BC的中点,连接AF、CE。求异面直 线AF、CE所成角的大小
A E
B F
M
D
C
㈡.利用平行线分线段成比例的推论平移
例3.空间四边形ABCD中,AB=CD=3,E、F分别是 AD、BC上的点,且AE∶ED=BF∶FC=1∶2, EF= 7 ,求异面直线AB和CD所成的角
D
A B
C
E
F
练习: 1.在正方体AC1中A1B1=4B1E1,D1C1=4D1F1, 则BE1与DF1所成角的余弦值是————
2.将正方形ABCD沿对角线BD折成直二面角 A—BD—C,则AB与CD所成的角为_____
3.正方体AC1中,E为AB中点,D1B与EC所 成角的余弦值为_____
qq红包群 / qq红包群
求异面直线所成的角
一、手段:空间问题平面化 二、要点:1.通过平移把空间角转化为平面角
2.解包含此平面角的三角形,常用到锐角三 角函数的定义、正弦定理、余弦定理 3.结合角的范围写出答案
三、求法: ㈠.利用三角形的中位线平移
例1.空间四边形ABCD中,E、F分别是AB、 CD的中点,AD⊥BC,且AD=BC,求EF 与BC所成的角
相关文档
最新文档