切线长定理教案(优秀教案)

合集下载

数学切线长定理的教案范例解析与评价

数学切线长定理的教案范例解析与评价

一、教学目标1.理解数学切线长定理的概念以及应用。

2.熟练掌握数学切线长定理的求解方法。

3.能够与其他知识点进行联想,将数学切线长定理融入到实际应用中。

二、教学重点1.数学切线长定理的概念及应用。

2.数学切线长定理的求解方法。

三、教学难点1.如何将数学切线长定理运用到实际生活中。

四、教学过程1.引入(10分钟)本节课将学习数学切线长定理,这是一条很有用的数学公式,它可以解决许多现实生活中的问题。

例如,我们在开车时,经常需要知道车速,但有的时候车速表会坏掉,这时我们就可以用数学切线长定理来求解车速。

2.知识讲解(30分钟)1)概念及公式数学切线长定理是指:在一个圆上,一条与切线相交且途经圆心的弦等于圆的直径。

即:在一个圆上,切线与弦相交,途径圆心的弦等于直径。

公式表示为:2d = AB其中,d为圆的直径,AB为弦长。

2)求解方法在实际应用中,我们经常需要用到数学切线长定理来求解一些问题。

求解方法如下:Step 1:将切点A与圆心O连线,并延长过圆心O,交于弦上点B。

Step 2:根据数学切线长定理公式,2d = AB,求出弦长AB。

Step 3:根据已知条件,代入公式求解。

3.案例分析(30分钟)1)案例一现有一个圆的半径为5 cm,一条切线与该圆相交,交点离圆心距离为3 cm,求切线长。

Step 1:将切点与圆心连线,并延长连线至与弦相交于B点,连接OA,OA = 5 cm,OB = 3 cm。

Step 2:由切线原理得AB = 2 × OA = 10 cm。

Step 3:得切线长为10 cm。

2)案例二一辆车从A处以40 km/h的速度行驶,碰到前方的一街口,在那里停下来了。

由于速度表坏掉了,司机只好用数学切线长定理来求出车速。

这个街口是一个大圆,司机开车的时候正好到达圆周上的一个点B,如下图所示。

切线与圆心O相交于点A,弦BC长为48m,求A点处的车速。

Step 1:AB = 48 m,OB = R。

切线长定理教案(优秀教案)-(含多款)

切线长定理教案(优秀教案)-(含多款)

切线长定理教案(优秀教案)-(含多款)教案切线长定理教案一、教学目标1.让学生理解切线长定理的概念和意义,掌握切线长定理的证明和应用方法。

2.培养学生的几何思维能力,提高学生的空间想象力和逻辑推理能力。

3.培养学生运用切线长定理解决实际问题的能力,增强学生的数学应用意识。

二、教学内容1.切线长定理的概念和意义2.切线长定理的证明方法3.切线长定理的应用三、教学重点与难点1.教学重点:切线长定理的概念、证明和应用。

2.教学难点:切线长定理的证明过程,以及如何运用切线长定理解决实际问题。

四、教学方法1.采用启发式教学方法,引导学生自主探究切线长定理的证明和应用。

2.利用多媒体教学手段,展示切线长定理的直观图形,帮助学生理解定理。

3.设计丰富的例题和练习题,让学生在实践操作中掌握切线长定理的应用。

五、教学过程1.导入新课通过生活中的实例,如圆规作图等,引出切线长定理的概念,激发学生的学习兴趣。

2.讲解切线长定理的概念和意义(1)切线的定义:与圆相切,且与圆的半径垂直的直线。

(2)切线长定理:从圆外一点引圆的两条切线,切线长相等。

3.证明切线长定理(1)构造图形,连接圆心与切点,利用圆的半径相等,证明切线长相等。

(2)通过几何画板演示证明过程,让学生直观感受定理的正确性。

4.切线长定理的应用(1)讲解切线长定理在几何作图中的应用,如求圆的切线、等分弦等。

(2)讲解切线长定理在解决实际问题中的应用,如求圆的直径、周长等。

5.课堂练习设计不同难度的练习题,让学生独立完成,巩固切线长定理的应用。

6.总结与拓展(1)总结切线长定理的概念、证明和应用方法。

(2)拓展切线长定理的相关知识,如圆的切线方程、切线长定理的推广等。

7.课后作业布置适量的课后作业,让学生巩固所学知识,提高解题能力。

六、教学评价1.课堂参与度:观察学生在课堂上的发言和讨论情况,了解学生的学习兴趣和积极性。

2.作业完成情况:检查学生的作业,了解学生对切线长定理的掌握程度。

人教版九年级数学上册24.2.2切线长定理教案

人教版九年级数学上册24.2.2切线长定理教案
此外,小组讨论的环节中,我发现学生们在讨论切线长定理的实际应用时,思路不够开阔。这可能是因为他们在日常生活中对几何图形的观察不够细致,或者是缺乏将理论知识应用到实际中的经验。我打算在之后的课程中,增加一些观察和分析实际几何图形的练习,帮助学生培养从生活中发现数学的能力。
在难点解析部分,我发现通证明过程有了更清晰的认识。但仍有学生反映在理解证明思路时感到困难。我考虑在下一节课中,引入更多的辅助手段,如动画演示或实物模型,来帮助学生们更好地理解几何证明的思路。
-证明思路:证明过程中涉及到的几何变换和逻辑推理对学生来说是难点。
-举例:在证明过程中,如何通过构造全等三角形和使用圆的性质来推导切线长定理。
-问题解决:学生在应用切线长定理解决具体问题时,往往难以找到合适的解题切入点。
-举例:在求解切线长或证明线段相等的问题时,学生可能不知道如何利用切线长定理来简化问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了切线长定理的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对切线长定理的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。如果有任何疑问或不明白的地方,请随时向我提问。
二、核心素养目标
1.培养学生的几何直观与空间观念:通过切线长定理的学习,使学生能够观察和理解几何图形,发展空间想象力,提高解决几何问题的能力。
2.提升学生的逻辑推理与证明能力:引导学生探索切线长定理的证明过程,训练学生运用逻辑推理、几何论证的方法,培养严谨的数学思维。
3.增强学生的解决问题能力:通过切线长定理在具体题目中的应用,让学生掌握解决问题的方法和策略,提高解题效率,形成良好的数学解题习惯。

切线长定理教案优秀教案Word

切线长定理教案优秀教案Word

相等等,加深对定理的理解。
示范解题步骤
03
通过具体例题,示范切线长定理在解题中的应用,让学生明确
解题步骤和方法。
课堂练习环节
基础练习题
安排适量的基础练习题,让学生 运用切线长定理解决简单的几何
问题。
提高练习题
增加一定难度的提高练习题,引导 学生综合运用切线长定理和其他几 何知识解决问题。
小组讨论与展示
的几何意义。
教学挂图
展示切线长定理的相关 知识点和典型例题,便
于学生观看和学习。
多媒体资源准备
投影仪
用于展示切线长定理的课件、动 画和视频等教学资源。
电脑
播放教学资源,同时可用于实时 编辑和展示教学内容。
教学软件
如几何画板等,用于动态演示切 线长定理的几何图形和变化过程, 帮助学生形成直观印象。
网络资源
能够运用切线长定理解决与圆 有关的切线问题,包括切线的 判定、切线长的计算等。
了解切线长定理在实际问题中 的应用,如建筑设计、工程绘 图等领域。
过程与方法目标
通过观察、实验、归纳等过程,探究切线长定理的形成过程,培养学生的探究精神 和创新能力。
通过讲解、讨论、练习等方法,使学生掌握切线长切线概念
简要介绍切线的定义及性 质,引导学生思考切线与 圆的关系。
明确教学目标
阐述本节课的教学目标和 要求,让学生明确学习方 向。
新课学习环节
讲解切线长定理
01
详细讲解切线长定理的内容,包括定理的表述、证明及应用等。
探究切线长定理的推论
02
引导学生探究切线长定理的推论,如切线与半径垂直、切线长
PART 06
评价与反馈
REPORTING

24.2.2切线长定理和三角形的内切圆(教案)

24.2.2切线长定理和三角形的内切圆(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了切线长定理和三角形内切圆的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
三角形内切圆的部分,学生们在小组讨论和实验操作中表现出了很高的热情。通过实际操作,他们能够更好地掌握内切圆半径的计算方法,这也证明了实践活动在数学教学中的重要性。今后,我会继续加大实践环节的比重,让学生在实践中学习和探索。
在小组讨论环节,我发现有些学生较为内向,不太愿意主动表达自己的观点。为了鼓励他们积极参与,我会在今后的教学中更加关注这些学生,多给予他们肯定和鼓励,提高他们的自信心。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“切线长定理和三角形内切圆在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
24.2.2切线长定理和三角形的内切圆(教案)
一、教学内容
本节课选自教材24.2.2节,主要内容包括:
1.切线长定理:探讨圆的切线与半径的关系,推导并掌握切线长定理,即从圆外一点引圆的两条切线,切线长相等。
2.三角形的内切圆:介绍三角形内切圆的概念,探讨内切圆的半径与三角形面积的关系,掌握内切圆半径的计算公式。

初中切线长定理教案 切线长定理教案教学反思3篇

初中切线长定理教案 切线长定理教案教学反思3篇

初中切线长定理教案切线长定理教案教学反思3篇第1篇:学校切线长定理教案1、教材分析(1)学问结构(2)重点、难点分析重点:及其应用.因再次体现了圆的轴对称*,它为*线段相等、角相等、弧相等、垂直关系等供应了理论依据,它属于工具学问,常常应用,因此它是本节的重点.难点:与有关的*和计算问题.如120页练习题中第3题,它不仅应用,还用到解方程组的学问,是代数与几何的综合题,同学往往不能很好的把学问连贯起来.2、教法建议本节内容需要一个课时.(1)在教学中,组织同学自主观看、猜想、*,并深刻剖析的基本图形;对重要的结论准时总结;(2)在教学中,以"观看猜想*剖析应用归纳'为主线,开展在老师组织下,以同学为主体,活动式教学.教学目标1.理解切线长的概念,把握;2.通过对例题的分析,培育同学分析总结问题的习惯,提高同学综合运用学问解题的力量,培育数形结合的思想.3.通过对定理的猜想和*,激发同学的学习爱好,调动同学的学习乐观*,树立科学的学习态度.教学重点:是教学重点教学难点:的敏捷运用是教学难点教学过程设计:(一)观看、猜想、*,形成定理1、切线长的概念.如图,p是⊙o外一点,pa,pb是⊙o的两条切线,我们把线段pa,pb叫做点p到⊙o的切线长.引导同学理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.2、观看利用电脑变动点p的位置,观看图形的特征和各量之间的关系.3、猜想引导同学直观推断,猜想图中pa是否等于pb.pa=pb.4、*猜想,形成定理.猜想是否正确。

需要*.组织同学分析*方法.关键是作出帮助线oa,ob,要*pa=pb.想一想:依据图形,你还可以得到什么结论?opa=opb(如图)等.:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.5、归纳:把前面所学的切线的5条*质与一起归纳切线的*质6、的基本图形讨论如图,pa,pb是⊙o的两条切线,a,b为切点.直线op交⊙o于点d,e,交ap于c(1)写出图中全部的垂直关系;(2)写出图中全部的全等三角形;(3)写出图中全部的相像三角形;(4)写出图中全部的等腰三角形.说明:对基本图形的深刻讨论和熟悉是在学习几何中关键,它是敏捷应用学问的基础.(二)应用、归纳、反思例1、已知:如图,p为⊙o外一点,pa,pb为⊙o的切线,a和b是切点,bc是直径.求*:ac⊙op.分析:从条件想,由p是⊙o外一点,pa、pb为⊙o的切线,a,b是切点可得pa=pb,apo=bpo,又由条件bc是直径,可得ob=oc,由此联想到与直径有关的定理"垂径定理'和"直径所对的圆周角是直角'等.于是想到可能作帮助线ab.从结论想,要*ac⊙op,假如连结ab交op于o,转化为*caab,opab,或从od为⊙abc的中位线来考虑.也可考虑通过平行线的判定定理来*,可获得多种*法.*法一.如图.连结ab.pa,pb分别切⊙o于a,bpa=pbapo=bpoopab又⊙bc为⊙o直径acabac⊙op(同学板书)*法二.连结ab,交op于dpa,pb分别切⊙o于a、bpa=pbapo=bpoad=bd又⊙bo=dood是⊙abc的中位线ac⊙op*法三.连结ab,设op与ab弧交于点epa,pb分别切⊙o于a、bpa=pbopab=c=pobac⊙op反思:老师引导同学比较以上*法,激发同学的学习爱好,培育同学敏捷应用学问的力量.例2、圆的外切四边形的两组对边的和相等.(分析和解题略)反思:(1)例3事实上是圆外切四边形的一个重要*质,请同学记住结论.(2)圆内接四边形的*质:对角互补.p120练习:练习1填空如图,已知⊙o的半径为3厘米,po=6厘米,pa,pb分别切⊙o于a,b,则pa=_______,apb=________练习2已知:在⊙abc中,bc=14厘米,ac=9厘米,ab=13厘米,它的内切圆分别和bc,ac,ab切于点d,e,f,求af,ad和ce的长.分析:设各切线长af,bd和ce分别为x厘米,y厘米,z厘米.后列出关于x,y,z的方程组,解方程组便可求出结果.(解略)反思:解这个题时,除了要用三角形内切圆的概念和之外,还要用到解方程组的学问,是一道综合*较强的计算题.通过对本题的讨论培育同学的综合应用学问的力量.(三)小结1、提出问题同学归纳(1)这节课学习的详细内容;(2)学习用的数学思想方法;(3)应留意哪些概念之间的区分?2、归纳基本图形的结论3、学习了用代数方法解决几何问题的思想方法.(四)作业教材p131习题7.4a组1.(1),2,3,4.b组1题.探究活动图中找错你能找出(图1)与(图2)的错误所在吗?在图2中,p1a为⊙o1和⊙o3的切线、p1b为⊙o1和⊙o2的切线、p2c为⊙o2和⊙o3的切线.提示:在图1中,连结pc、pd,则pc、pd都是圆的直径,从圆上一点只能作一条直径,所以此图是一张错图,点o应在圆上.在图2中,设p1a=p1b=a,p2b=p2c=b,p3a=p3c=c,则有a=p1a=p1p3+p3a=p1p3+c①c=p3c=p2p3+p3a=p2p3+b②a=p1b=p1p2+p2b=p1p2+b③将②代人①式得a=p1p3+(p2p3+b)=p1p3+p2p3+b,a-b=p1p3+p2p3由③得a-b=p1p2得p1p2=p2p3+p1p3p1、p2、p3应重合,故图2是错误的。

《24.2.2 第3课时 切线长定理》教案、导学案、同步练习

《24.2.2 第3课时 切线长定理》教案、导学案、同步练习

《第3课时 切线长定理》教案【教学目标】1.掌握切线长定理,初步学会运用切线长定理进行计算与证明.2.了解有关三角形的内切圆和三角形的内心的概念.3.学会利用方程思想解决几何问题,体验数形结合思想.【教学过程】一、情境导入新农村建设中,张村计划在一个三角形中建一个最大面积的圆形花园,请你设计一个建筑方案.二、合作探究探究点一:切线长定理 【类型一】利用切线长定理求三角形的周长如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB于点E 、F ,切点C 在AB ︵上.若PA 长为2,则△PEF 的周长是________.解析:因为PA 、PB 分别与⊙O 相切于点A 、B ,所以PA =PB ,因为⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点为C ,所以EA =EC ,CF =BF ,所以△PEF 的周长PE +EF +PF =PE +EC +CF +PF =(PE +EC )+(CF +PF )=PA +PB =2+2=4. 【类型二】利用切线长定理求角的大小如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,点C 在⊙O 上,如果∠ACB =70°,那么∠OPA 的度数是________度.解析:如图所示,连接OA、OB.∵PA、PB是⊙O的切线,切点分别为A、B,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°.又∵∠AOB=2∠ACB=140°,∴∠APB =360°-∠PAO-∠AOB-∠OBP=360°-90°-140°-90°=40°.又易证△POA≌△POB,∴∠OPA=12∠APB=20°.故答案为20.方法总结:由公共点引出的两条切线,可以运用切线长定理得到等腰三角形.另外根据全等的判定,可得到PO平分∠APB.【类型三】切线长定理的实际应用为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一把刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径.若测得PA=5cm,则铁环的半径长是多少?说一说你是如何判断的.解:过O作OQ⊥AB于Q,设铁环的圆心为O,连接OP、OA.∵AP、AQ为⊙O 的切线,∴AO为∠PAQ的平分线,即∠PAO=∠QAO.又∠BAC=60°,∠PAO+∠QAO +∠BAC=180°,∴∠PAO=∠QAO=60°.在Rt△OPA中,PA=5,∠POA=30°,∴OP=55(cm),即铁环的半径为55cm.探究点二:三角形的内切圆【类型一】求三角形的内切圆的半径如图,⊙O是边长为2的等边△ABC的内切圆,则⊙O的半径为________.解析:如图,连接OD .由等边三角形的内心即为中线,底边高,角平分线的交点.所以∠OCD =30°,OD ⊥BC ,所以CD =12BC ,OC =2OD .又由BC =2,则CD =1.在Rt △OCD 中,根据勾股定理得OD 2+CD 2=OC 2,所以OD 2+12=(2OD )2,所以OD =33.即⊙O 的半径为33. 方法总结:等边三角形的内心为等边三角形中线,底边高,角平分线的交点,它到三边的距离相等. 【类型二】求三角形的周长如图,Rt △ABC 的内切圆⊙O 与两直角边AB ,BC 分别相切于点D 、E ,过劣弧DE ︵(不包括端点D 、E )上任一点P 作⊙O 的切线MN 与AB 、BC 分别交于点M 、N .若⊙O 的半径为r ,则Rt △MBN 的周长为( )A .r B.32r C .2r D.52r 解析:连接OD ,OE ,∵⊙O 是Rt △ABC 的内切圆,∴OD ⊥AB ,OE ⊥BC .又∵MD ,MP 都是⊙O 的切线,且D 、P 是切点,∴MD =MP ,同理可得NP =NE ,∴C Rt △MBN =MB +BN +NM =MB +BN +NP +PM =MB +MD +BN +NE =BD +BE =2r ,故选C. 三、板书设计【教学反思】教学过程中,强调用切线长定理可解决有关求角度、周长的问题.明确三角形内切圆的圆心是三角形三条角平分线的交点,到三边的距离相等.《第3课时切线长定理》教案【教学目标】:1、了解切线长定义,掌握切线长定理,并利用它进行有关计算。

切线长定理(教案、课后反思、导学案)

切线长定理(教案、课后反思、导学案)

第3课时切线长定理【知识与技能】理解掌握切线长的概念和切线长定理,了解三角形的内切圆和三角形的内心等概念.【过程与方法】利用圆的轴对称性帮助探求切线长的特征.结合求证三角形内面积最大的圆的问题,掌握三角形内切圆和内心的概念.【情感态度】经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力.【教学重点】切线长定理及其应用.【教学难点】内切圆、内心的概念及运用.一、情境导入,初步认识探究如图,纸上有一⊙O,PA为⊙O的一条切线,沿着直线PO对折,设圆上与点A重合的点为B,回答下列问题:(1)OB是⊙O半径吗?(2)PB是⊙O的切线吗?(3)PA、PB是什么关系?(4)∠APO和∠BPO有何关系?学生动手实验,观察分析,合作交流后,教师抽取几位学生回答问题.分析:OB与OA重合,OA是半径,∴OB也是半径.根据折叠前后的角不变,∴∠PBO=∠PAO=90°(即PB⊥OB),PA=PB,∠POA=∠POB;∠APO=∠BPO.而PB经过半径OB的外端点,∴PB是⊙O的切线.二、思考探究,获取新知1.切线长的定义及性质切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长叫做这点到圆的切线长.我们知道圆的切线是直线,而切线长是一条线段长,不是直线.如右图中,PA、PB是⊙O的两条切线,∴OA⊥PA,OB⊥PB.又OA=OB,OP=OP,∴Rt△AOP≌Rt△BOP,∴PA=PB,∠AOP=∠BOP,∠APO=∠BPO.由此我们得到切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.【教学说明】这个定理要让学生分清题设和结论.题设:过圆外一点作圆的切线.结论:①过圆外的这一点可作该圆的两条切线.②两条切线长相等.③这一点和圆心的连线平分两条切线的夹角.猜想:在上图中连接AB,则OP与AB有怎样的关系?分析:∵PA、PB是⊙O的切线,A、B是切点.∴PA=PB,∠OPA=∠OPB,∴OP⊥AB,且OP平分AB.2.三角形的内切圆思考如图是一张三角形的铁皮,如何在它上面截下一块圆形的用料,并且使圆的面积尽可能大呢?【教学说明】引导学生分析作图的关键,假设圆已经作出,圆心应满足什么条件,怎样根据这些条件确定圆心?圆心确定后,如何确定半径?教师引导,学生要互相讨论来解决这些问题.假设符合条件的圆已作出,那么这个圆与△ABC的三边都相切,这个圆的圆心到△ABC三边的距离都等于半径.又因为我们在角平分线这节中学过,三角形的三条角平分线交于一点,并且这个点到三条边的距离相等.因此,在△ABC 中,作∠B,∠C的角平分线BM和CN,它们相交于点I,则点I到AB、BC、AC的距离相等.∴以I为圆心,点I到BC的距离ID为半径作圆,则⊙I与△ABC 三边相切.内切圆:与三角形各边都相切的圆叫做三角形的内切圆.内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.三角形的内心到三角形三边的距离相等.【教学说明】要让学生对照图形理解三角形的内切圆的概念,并与三角形的外接圆进行比较.“接”和“切”是说明多边形的顶点和边与圆的关系;多边形的顶点都在圆上叫“接”,多边形的边都与圆相切叫“切”.三、典例精析,掌握新知例1 教材第100页,例2(本题较简单,教师指点,可由学生自主完成)例2 如图,P为⊙O外一点,PA、PB分别切⊙O于A、B两点,连接OP,交⊙O于C,若PA=6.PC=23.求⊙O的半径OA及两切线PA、PB的夹角.分析:连接OA,设AO=x,在Rt△AOP中利用勾股定理求出x,由切线长定理知∠APO=12∠APB.求出∠APO就可得∠APB.解:连接AO,∵PA是⊙O的切线,∴PA⊥OA,△PAO为直角三角形.设OA=x,则OC=x,在Rt△PAO中,OA2+PA2=OP2,∴x2+6232,解得3.∴33AOP=60°,∠APO=30°.∴∠APB=2∠APO=2×30°=60°.∴⊙O的半径OA为3PA、PB的夹角为60°.【教学说明】例1、例2是利用切线长定理进行计算,在解题过程中,我们常常用方程来解决几何问题.例3如图,在△ABC中,I是内心,∠BIC=100°,则∠A=____.分析:∵I是内心.∴BI,CI分别是∠ABC,∠ACB的平分线.∴∠ABC+∠ACB=2(∠IBC+∠ICB).又∵∠BIC=100°,∴∠IBC+∠ICB=80°.∴∠ABC+∠ACB=160°.∴∠A=180°-160°=20°.【教学说明】指导学生利用三角形内心的性质解决问题.四、运用新知,深化理解课本第100页练习1、2题.【教学说明】教师引导学生完成课本练习.五、师生互动,课堂小结这节课学习了哪几个重要知识点?你有哪些疑惑?【教学说明】学生自主交流并发言总结,教师予以补充和点评,让学生完整地领会本堂课的知识要点.1.布置作业:从教材“习题24.2”中选取.2.完成练习册中本课时练习的“课后作业”部分.本节课的教学是直线与圆的位置关系的继续,从探究切线长定理开始,通过如何作一个三角形的内切圆,引出三角形的内切圆和三角形内心的概念,经历这些探究过程,能使学生掌握图形的基本知识和基本技能,并能解决简单的问题.24.2.2直线和圆的位置关系第3课时切线长定理一、新课导入1.导入课题:情景:如图,纸上有一个⊙O, PA为⊙O的一条切线,沿着直线PO将纸对折,设与点A重合的点为B.问题1:OB是⊙O的半径吗?PB是⊙O的切线吗?问题2:猜一猜图中的PA与PB有什么关系?∠APO与∠BPO有什么关系?这节课我们继续探讨圆的切线的性质——切线长定理(板书课题).2.学习目标:(1)知道什么是圆的切线长,能叙述并证明切线长定理.(2)会作三角形的内切圆,知道三角形内心的含义和性质.(3)能用切线长定理和三角形内心的性质来解决简单的问题.3.学习重、难点:重点:切线长定理及其运用.难点:切线长定理的应用及如何作三角形的内切圆.二、分层学习1.自学指导:(1)自学内容:教材第99页“思考”之前的内容.(2)自学时间:8分钟.(3)自学方法:完成探究提纲.(4)探究提纲:①过⊙O外一点P画⊙O的切线.动手画图,看看这样的切线能作几条?能作两条.②在经过圆外一点的圆的切线上,这点和切点之间线段的长叫做这点到圆的切线长,如图的线段PA与线段PB的长就是点P到⊙O的切线长.③PA与PB,∠APO与∠BPO有什么关系?你能证明它们成立吗?PA=PB,∠APO=∠BPO.可利用HL证明Rt△AOP≌Rt△BOP,进而得出结论.④分别用文字语言和几何语言写出切线长定理.文字语言:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.几何语言:∵PA切⊙O于点A,PB切⊙O于点B.∴PA = PB,OP平分∠APB .2.自学:学生结合自学指导进行自学.3.助学:(1)师助生:①明了学情:看学生能否顺利完成定理的证明.②差异指导:根据学情确定指导方案.(2)生助生:小组内相互交流、研讨.4.强化:(1)切线长定理及它的证明.(2)交流:在提纲④的几何图形中,若连接AB交OP于点C,则图中有哪些垂直关系?哪些全等三角形?若设线段OP与⊙O的交点为D,且PA=4,PD=2,你能求出⊙O 的半径长吗?解:AB⊥OP,OA⊥AP,OB⊥BP;△OAC≌△OBC,△OAP≌△OBP,△ACP≌△BCP.设⊙O 的半径为r,则OP=OD+PD=r+2,在Rt△OAP中,OA2+AP2=OP2,即r2+42=(r+2)2.解得r=3. 即⊙O的半径长为3.1.自学指导:(1)自学内容:教材第99页“思考”到第100页的内容.(2)自学时间:8分钟.(3)自学方法:阅读,画图,推理,猜想.(4)自学参考提纲:①如图,作与△ABC的三边都相切的⊙I.因为⊙I与BA,BC都相切,所以点I在∠ABC的平分线上;因为⊙I与CA,CB都相切,所以点I在∠ACB的平分线上;所以点I是∠ABC与∠ACB平分线的交点.a.作∠ABC的平分线,∠ACB的平分线,交于点I;b.过I作ID⊥BC于D,以I 为圆心,ID为半径画圆,则⊙I即为所求.②三角形的内切圆是指与三角形各边都相切的圆,内切圆的圆心叫三角形的内心.它是三角形三条角平分线的交点,它到各条边的距离都相等.③已知:如图,在△ABC中,AB=9cm,BC=14cm,CA=13cm,它的内切圆分别和BC、AC、AB切于点D、E、F,求AF、BD和CE的长.设AF=x,则AE=x,CD=CE=AC-AE=13-x,BD=BF=AB-AF=9-x.由BD+CD=BC,可得(13-x)+(9-x)=14.解得x=4.因此AF=4cm,BD=5cm,CE=9cm.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:关注学生是否清楚三角形内切圆的作图思路.②差异指导:注意帮助学生理清前后知识间的联系.(2)生助生:生生互动,交流,研讨.4.强化:(1)三角形内切圆的作图和内心的概念和性质.(2)如图,△ABC中,∠ABC=50°,∠ACB=75°,点O是△ABC的内心,求∠BOC的度数.解:∵点O是△ABC的内心,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC+∠OCB=12∠ABC+12∠ACB=12×(50°+75°)=62.5°.∴∠BOC=180°-∠OBC-∠OCB=117.5°.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?掌握了哪些解题方法?2.教师对学生的评价:(1)表现性评价:点评学生学习的态度、积极性、学习的方法、效果及存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课的教学是直线与圆的位置关系的继续,从探究切线长定理开始,通过如何作一个三角形的内切圆,引出三角形的内切圆和三角形内心的概念,经历这些探究过程,能使学生掌握图形的基本知识和基本技能,并能解决简单的问题.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分) 如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB=11cm,BC=14cm,CA=13cm,则AF的长为(C)A.3cmB.4cmC.5cmD.9cm2.(10分) 如图,点O是△ABC的内心,若∠BAC=86°,则∠BOC=(C)A.172°B.130°C.133°D.100°3.(10分)如图,已知VP、VQ为⊙T的切线,P、Q为切点,若VP=3cm,则VQ=3cm.3.若∠PVQ=60°,则⊙T的半径PT=cm4.(20分)如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠BAC=25°,求∠P的度数.解:∵PA是⊙O的切线.∴∠OAP=90°.∵∠BAC=25°,∴∠BAP=65°.∵OA=OB,∴∠OBA=∠OAB=25°.∵PB是⊙O的切线,∴∠OBP=90°,∴∠ABP=65°.∴∠P=180°-∠BAP-∠ABP=50°.5.(20分)如图,一个油桶靠在墙边,量得WY=1.65m, 并且x Y⊥WY,这个油桶底面半径是多少?解:设圆心为O,连接OW,O x.∵YW,Y x均是⊙O的切线,∴OW⊥WY,O x⊥x Y,又∵x Y ⊥WY ,∴∠OWY =∠O x Y =∠WY x =90°,∴四边形OWY x 是矩形,又∵OW=O x .∴四边形OWY x 是正方形.∴OW=WY=1.65m.即这个油桶底面半径是1.65m.二、综合应用(15分)6.(15分)△ABC 的内切圆半径为r ,△ABC 的周长为l ,求△ABC 的面积.(提示:设△ABC 的内心为O ,连接OA 、OB 、OC )解:设△ABC 的内心为O ,连接OA 、OB 、OC.则ABC AOB BOC AOC S S S S =++ ()AB r BC r AC r AB BC AC r lr =++=++=1111122222. 三、拓展延伸(15分)7.(15分)如图,AB 、BC 、CD 分别与⊙O 相切于E 、F 、G 三点,且AB ∥CD ,BO =6cm ,CO =8cm ,求BC 的长.解:∵AB 、BC 、CD 分别与⊙O 相切,则OB 平分∠EBF ,DC 平分∠FCG .∵AB ∥CD,∴∠EBF+∠GCF=180°.∴∠BOC=180°-∠OBF-∠OCF=180°-12(∠EBF+∠GCF)=90°.∴在Rt △BOC 中,BC=OB2+OC2=62+82=10(cm ).。

切线长定理 教学案1

切线长定理  教学案1

切线长定理教学案教学目标:1.理解切线长的概念,掌握切线长定理;2.培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力;3.培养学生的动手实践能力和探究能力,培养学生的合作精神。

教学重点:切线长定理教学难点:切线长定理的灵活运用教学过程:一. 前提测评切线的性质定理:________________________________________________二.切线长定理1.想一想:经过平面上的已知点P作已知圆的切线,分别可画多少条呢?请同学们利用上图画一画.(答案:____________________________________________________________________。

)2.引出切线长的定义切线长:_________________________________________________________________________3.探究与实践:(小组合作讨论)如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB的长叫做点P到⊙O的切线长.(1)观察并猜想:①.切线长PA与PB的数量关系;___________②.∠OPA与∠OPB的关系。

___________(2)证明你的猜想:(3)归纳出切线长定理:_______________________________________________________________________________________________4.切线长定理图形研究:(小组合作讨论)结合右边的切线长的基本图(PA,PB分别切⊙O于A,B,直线PO交⊙O于D,E,交AB于C.),小组交流,研究下面的问题.①.整个图形是一个轴对称图形吗?若是,指出它的对称轴;②.写出和∠AEB相等的角:③.写出一个关于∠AEB与∠APB的等式:④.你能证明AD平分∠PAB吗?练习:已知:⊙O的半径为3厘米,点P和圆心O的距离为6厘米,经过点P作⊙O的两条切线,则这两条切线的夹角为_____°,切线长为_____厘米,两切点的距离为_______厘米.5.例1、已知:如图,P为⊙O外一点,PA,PB为⊙O的切线,A和B是切点,PA=10,∠P=500,F是优弧AB上一点。

数学切线长定理的教案设计及实践

数学切线长定理的教案设计及实践

教案设计及实践:数学切线长定理一、教学目标1.掌握切线长的计算方法;2.理解切线长的定义和数学切线长定理的概念;3.理解并应用数学切线长定理,解决相关问题;4.培养学生的数学思维、逻辑思维和创造性思维。

二、教学重点和难点1.重点:切线长的计算方法和数学切线长定理的概念及应用;2.难点:切线长的证明和数学切线长定理的应用。

三、教具和教材教具:黑板、彩色粉笔、直角三角形模型教材:高中数学教科书《数学》(人教版)四、教学过程1.导入(5分钟)教师向学生介绍切线和圆的关系,并出示一个圆和一根切线的图片。

2.过程1:切线长的计算(20分钟)从三角函数的角度出发,引入切线的计算公式,让学生了解如何计算切线的长度,以及掌握计算方法。

3.过程2:数学切线长定理的概念和证明(40分钟)从图像的角度出发,让学生了解什么是数学切线长定理,以及如何证明数学切线长定理。

这是难点环节,需要教师详细讲解证明过程,并让学生参与讨论。

4.过程3:数学切线长定理的应用(20分钟)让学生根据数学切线长定理的应用,解决一些实际问题,让学生巩固应用能力。

5.练习(20分钟)让学生进行相关题目的练习。

6.总结(5分钟)教师对今天的教学进行总结。

五、教学反思教学中,教师注重了理论与实践的结合,通过图像的距离和切线的长度,引入了数学切线长定理。

同时教师还注重学生的参与性,让学生自己练习问题,广泛地提升了学生的数学思维和逻辑思维能力。

但是,这种教学方法不够丰富,只是注重了理论的讲解和应用的实践。

基础上,可以加入一些实验和应用场景,来增加学生的兴趣和动力。

需要不断地更新教学方法和教学内容,配合学生不断变化的学习需求,提高教学质量。

24.2.2.3切线长定理优质课教案完美版

24.2.2.3切线长定理优质课教案完美版

作课类别课题24.2.2.3切线长定理课型新授教学媒体多媒体教学目标知识技能1.了解切线长的概念.2.理解切线长定理,了解三角形的内切圆和三角形的内心的概念,熟练掌握并能应用.过程方法复习圆与直线的位置关系和切线的判定和性质定理,知识迁移到切长线的概念和切线长定理,根据三角形角平分线的性质给出三角形的内切圆和三角形的内心概念,并应用解决相关问题.情感态度学生经历观察、实验、猜想、证明等数学活动,发展合情推理能力和初步演绎推理能力.能有条理地,清晰地写出推理过程.教学重点切线长定理及其运用教学难点切线长定理的推导和运用教学过程设计教学程序及教学内容师生行为设计意图一、复习引入这节课我们继续来研究切线.1.作△ABC的三条角平分线,有什么结论?2.回忆切线的判定定理和性质定理?二、探究新知(一)切线长定理1.操作探究:从上面的复习,可知,过⊙O上任一点A都可以作圆的一条切线,且只能作一条,根据下面提出的问题,操作、思考、并解决问题:在纸上画⊙O,并画出过圆上点A的切线PA,•连结PO,•沿着直线PO将纸对折,设与点A重合的点为B,这时,OB是⊙O的一条半径吗?PB是⊙O的切线吗?利用圆的轴对称性,思考图中的线段PA与线段PB,∠APO与∠BPO有什么数量关系?分析:对折之后,OB与OA重合,OA是半径,OB也是半径. B 为OB•的外端,根据对折后角的度数不变,所以PB是⊙O的又一条切线,且PA=PB,∠APO=∠BPO.我们把线段PA或PB的长,即经过圆外一点作圆的切线,这点和切点之间的线段的长,•叫做这点到圆的切线长.从上面的操作及圆的对称性可得:从圆外一点可以引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角.2.几何证明.如图,已知PA、PB是⊙O的两条切线.求证:PA=PB,∠OPA=∠OPB.分析:据所要证明的结论在图中分布的位置特点和已知条件,易得只要证明两个对应的三角形全等即可.得到老师在黑板上作出△ABC的三条角平分线,生口述其性质:①三条角平分线相交于一点;②交点到三条边的距离相等.学生独立按要求画图,操作,思考、并尝试解决问题,之后学生分组讨论,老师请3~4位同学回答这个问题,师生达成共识.学生理解点到圆的切线长概念,初步感知圆的切线长定理.学生观察图形,思考证明思路,书写规范的证明步骤,教师及时点拨,肯定.学生亲自动手作图,复习旧知识,为探究本节课知识做准备学生通过画图,折叠,观察获得结论,初步感知定理使学生结合图形理解概念学生运用全等知识进行几何推理证明,体会数学结论的严谨性,培养学生BA CE DOF切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. (二)三角形的内切圆如图,三角形的三条角平分线交于一点,设交点为I ,那么I 到AB 、AC 、BC 的距离相等,因此以点I 为圆心,点I 到BC 的距离ID 为半径作圆,则⊙I 与△ABC 的三条边都相切.与三角形各边都相切的圆叫做三角形的内切圆,•内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. (三)应用1.如图,已知⊙O 是△ABC 的内切圆,切点分别为D 、E 、F ,CD=1,AE=2,BF=3,且△ABC 的面积为6.求内切圆的半径r .分析:可知OD 、OE 、OE 分别垂直于BC 、AC 、AB ,由于面积是已知的,•因此转化为面积法来求.连结AO 、BO 、CO ,就可把三角形ABC 分为三块,•问题迎刃而解.2.如图,⊙O 的直径AB=12cm ,AM 、BN 是切线,DC 切⊙O 于E ,交AM 于D ,•交BN 于C ,设AD=x ,BC=y .(1)求y 与x 的函数关系式,并说明是什么函数? (2)若x 、y 是方程2t 2-30t+m=0的两根,求x ,y 的值. (3)求△COD 的面积.分析:(1)要求y 与x 的函数关系,就是求BC 与AD 的关系,根据切线长定理:DE=AD=x ,CE=CB=y ,即DC=x+y ,又因为AB=12,所以只要作DF ⊥BC 于 F ,根据勾股定理,便可求得.(2)∵x ,y 是2t 2-30t+m=0的两根,那么x 1+x 2=230=15,x 1x 2=2m ,结合(1)的结论便可求得x 、y 的值. 三、课堂训练 完成课本98页练习 四、小结归纳1.圆的切线长概念和定理; 2.三角形的内切圆及内心的概念 五、作业设计作业:复习巩固作业和综合运用为全体学生必做;拓广探索为成绩中上等学生必做.教师引导学生将“三角形的三条角平分线交于一点,这点与三边距离相等”和“圆心与圆上各点距离都等于半径”结合,理解三角形的内切圆的概念. 学生审题,思考利用切线长定理求出三角形三边的长度,从题中条件“ABC 的面积为6”出发,作辅助线,再以面积为等量关系,建立以r 为未知数的方程. 理清题意,观察图形,结合题中条件思考解题思路,综合运用勾股定理、一元二次方程的根与系数的关系和切线长定理.教师组织学生进行练习,教师巡回检查,师生交流评价,教师指导学生写出解答过程,进行题后反思.让学生尝试归纳,总结,,反思,教师点评汇总应用数学的意识和能力 从旧知识出发,呼应引课问题,自然引出三角形的内切圆概念,便于学生理解 使初步运用切线长定理,根据题中关键条件,考虑所求,灵活运用面积法得出解题方法,从而解决问题.培养学生综合解题能力,能从条件和结论出发,分析解题思路,化未知为已知,体会转化思想. 运用本节知识,形成做题技巧,培养学生的应用意识和能力归纳提升,加强反思,使学生对知识的掌握系统化 巩固深化提高板 书 设 计。

九年级数学上册《切线长定理》教案、教学设计

九年级数学上册《切线长定理》教案、教学设计
5.注重培养学生的合作交流意识,引导学生学会倾听、尊重他人意见,形成良好的团队合作氛围。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握切线长定理的定义及其证明过程。
2.能够运用切线长定理解决实际问题,如求切线长度、判断点到圆的距离等。
3.掌握切线长定理与其他数学知识(如相似三角形、勾股定理等)的联系与运用。
6.总结反思,提炼方法:在教学结束后,组织学生进行总结反思,提炼切线长定理的学习方法和解题技巧,培养学生的自主学习能力。
7.评价反馈,调整教学:通过课堂提问、课后作业、小组讨论等形式,了解学生的学习情况,给予及时反馈。根据学生的反馈,调整教学策略,以提高教学效果。
8.关注情感,培养态度:在教学过程中,关注学生的情感态度,鼓励学生积极参与,勇于克服困难。培养学生的团队合作意识,形成良好的学习氛围。
3.情感态度:强调数学在现实生活中的应用,激发学生对数学学科的兴趣和热爱。
4.课后作业:布置课后作业,巩固所学知识。要求学生按时完成,教师及时批改并给予反馈。
五、作业布置
为了巩固学生对切线长定理的理解和应用,布置以下作业:
1.基础巩固题:设计一些基础的切线长定理题目,要求学生熟练掌握定理的基本应用,如求解切线长度、判断点到圆的距离等。此类题目旨在帮助学生巩固课堂所学知识,提高解题速度和准确性。
(三)情感态度与价值观
1.培养学生主动探索、积极思考的学习态度,激发学生对数学学科的兴趣。
2.引导学生体会数学的严谨性和逻辑性,培养学生的理性思维和科学精神。
3.通过数学史的了解,让学生感受数学文化的魅力,增强民族自豪感。
4.培养学生的团队协作意识,学会倾听、尊重他人意见,形成良好的人际关系。
教学设计:

切线长定理教案

切线长定理教案

切线长定理教案【教案】主题:切线长定理教学目标:1. 了解切线长定理的概念和意义;2. 掌握切线长定理的计算方法;3. 能够应用切线长定理解决实际问题。

教学重难点:1. 理解切线长定理的概念和意义;2. 掌握切线长定理的计算方法;3. 运用切线长定理解决实际问题的能力。

教学准备:教师:黑板、粉笔、课件;学生:笔记本、铅笔、尺子。

教学过程:一、导入(5分钟)1. 导入前一节课的知识,回顾角的概念和性质,并复习角的度量方式。

2. 引入本节课的主题:切线长定理。

二、引入(10分钟)1. 通过课件展示一个圆和一条切线的示意图,引发学生对切线的理解和认识。

2. 引导学生观察、发现并讨论切线与圆之间的性质和关系,引入切线长定理的概念。

三、讲授(15分钟)1. 清晰地介绍切线长定理的定义和公式,即“切线长的平方等于切线外部弦长和弦所对的圆心角的乘积”。

2. 通过示意图和具体的计算实例,讲解切线长定理的计算方法。

四、练习(20分钟)1. 由简单到复杂,给学生提供一些切线长定理的计算题目,让他们在课堂上进行个人或小组练习。

2. 引导学生分析和解决问题的思路,并鼓励他们应用切线长定理解决不同类型的问题。

五、拓展(10分钟)1. 引导学生思考和讨论如何应用切线长定理求解更复杂的问题,如圆内接四边形的边长、圆弧的长度等。

2. 提出一些拓展问题,让学生进一步思考和探索切线长定理在实际问题中的应用。

六、归纳总结(5分钟)1. 让学生回顾所学的知识点,加深对切线长定理的理解和记忆。

2. 强调切线长定理的重要性和应用价值。

七、课堂小结(5分钟)1. 总结本节课的重点内容和要点,强调学生需要复习和巩固切线长定理的计算方法。

2. 布置课后作业,要求学生进一步练习和应用切线长定理解决问题。

教学反思:本节课通过引导学生观察和思考切线的性质和关系,引入切线长定理的概念,并通过具体实例讲解切线长定理的计算方法,达到了预期的教学目标。

课堂上给学生提供了足够的练习机会,让他们能够独立思考和解决问题。

2024北师大版数学九年级下册3.7《切线长定理》教案

2024北师大版数学九年级下册3.7《切线长定理》教案

2024北师大版数学九年级下册3.7《切线长定理》教案一. 教材分析《切线长定理》是北师大版数学九年级下册第3.7节的内容,主要讲述了圆的切线与圆内的点到切线的距离之间的关系。

本节内容是在学生已经掌握了圆的基本概念、切线的定义以及点与圆的位置关系的基础上进行学习的,为后续学习圆的性质和圆的方程打下基础。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和空间想象力,他们对圆的概念和性质有一定的了解。

但是,对于圆的切线长定理的理解和运用还需要通过实例进行引导和巩固。

三. 教学目标1.理解切线长定理的内容,能够运用切线长定理解决实际问题。

2.培养学生的空间想象力,提高学生分析问题和解决问题的能力。

3.培养学生的团队协作能力和语言表达能力。

四. 教学重难点1.切线长定理的证明和理解。

2.运用切线长定理解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生主动探究切线长定理。

2.运用多媒体课件,直观展示圆的切线和切线长定理。

3.采用小组讨论法,培养学生的团队协作能力和语言表达能力。

4.通过实例讲解,巩固学生对切线长定理的理解。

六. 教学准备1.多媒体课件。

2.圆规、直尺、彩色粉笔。

3.练习题和实例。

七. 教学过程1.导入(5分钟)利用多媒体课件展示一个圆和它的切线,引导学生回顾切线的定义。

然后提出问题:“圆内的点到切线的距离与切线有什么关系?”2.呈现(10分钟)利用多媒体课件呈现切线长定理的证明过程,引导学生直观地理解切线长定理。

同时,解释切线长定理的意义和应用。

3.操练(10分钟)让学生分组讨论,每组选取一个实例,运用切线长定理进行解答。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)让学生独立完成练习题,巩固对切线长定理的理解。

教师选取部分学生的作业进行讲解和分析。

5.拓展(10分钟)提出一些与切线长定理相关的问题,引导学生进行思考和讨论。

例如:在圆中,到一个定点等距离的点的轨迹是什么?6.小结(5分钟)教师引导学生总结本节课的主要内容和收获,强调切线长定理的应用。

《24.2.2 第3课时 切线长定理》教案、导学案、同步练习

《24.2.2 第3课时 切线长定理》教案、导学案、同步练习

《第3课时 切线长定理》教案【教学目标】1.掌握切线长定理,初步学会运用切线长定理进行计算与证明.2.了解有关三角形的内切圆和三角形的内心的概念.3.学会利用方程思想解决几何问题,体验数形结合思想.【教学过程】一、情境导入新农村建设中,张村计划在一个三角形中建一个最大面积的圆形花园,请你设计一个建筑方案.二、合作探究探究点一:切线长定理 【类型一】利用切线长定理求三角形的周长如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB于点E 、F ,切点C 在AB ︵上.若PA 长为2,则△PEF 的周长是________.解析:因为PA 、PB 分别与⊙O 相切于点A 、B ,所以PA =PB ,因为⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点为C ,所以EA =EC ,CF =BF ,所以△PEF 的周长PE +EF +PF =PE +EC +CF +PF =(PE +EC )+(CF +PF )=PA +PB =2+2=4. 【类型二】利用切线长定理求角的大小如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,点C 在⊙O 上,如果∠ACB =70°,那么∠OPA 的度数是________度.解析:如图所示,连接OA、OB.∵PA、PB是⊙O的切线,切点分别为A、B,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°.又∵∠AOB=2∠ACB=140°,∴∠APB =360°-∠PAO-∠AOB-∠OBP=360°-90°-140°-90°=40°.又易证△POA≌△POB,∴∠OPA=12∠APB=20°.故答案为20.方法总结:由公共点引出的两条切线,可以运用切线长定理得到等腰三角形.另外根据全等的判定,可得到PO平分∠APB.【类型三】切线长定理的实际应用为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一把刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径.若测得PA=5cm,则铁环的半径长是多少?说一说你是如何判断的.解:过O作OQ⊥AB于Q,设铁环的圆心为O,连接OP、OA.∵AP、AQ为⊙O 的切线,∴AO为∠PAQ的平分线,即∠PAO=∠QAO.又∠BAC=60°,∠PAO+∠QAO +∠BAC=180°,∴∠PAO=∠QAO=60°.在Rt△OPA中,PA=5,∠POA=30°,∴OP=55(cm),即铁环的半径为55cm.探究点二:三角形的内切圆【类型一】求三角形的内切圆的半径如图,⊙O是边长为2的等边△ABC的内切圆,则⊙O的半径为________.解析:如图,连接OD .由等边三角形的内心即为中线,底边高,角平分线的交点.所以∠OCD =30°,OD ⊥BC ,所以CD =12BC ,OC =2OD .又由BC =2,则CD =1.在Rt △OCD 中,根据勾股定理得OD 2+CD 2=OC 2,所以OD 2+12=(2OD )2,所以OD =33.即⊙O 的半径为33. 方法总结:等边三角形的内心为等边三角形中线,底边高,角平分线的交点,它到三边的距离相等. 【类型二】求三角形的周长如图,Rt △ABC 的内切圆⊙O 与两直角边AB ,BC 分别相切于点D 、E ,过劣弧DE ︵(不包括端点D 、E )上任一点P 作⊙O 的切线MN 与AB 、BC 分别交于点M 、N .若⊙O 的半径为r ,则Rt △MBN 的周长为( )A .r B.32r C .2r D.52r 解析:连接OD ,OE ,∵⊙O 是Rt △ABC 的内切圆,∴OD ⊥AB ,OE ⊥BC .又∵MD ,MP 都是⊙O 的切线,且D 、P 是切点,∴MD =MP ,同理可得NP =NE ,∴C Rt △MBN =MB +BN +NM =MB +BN +NP +PM =MB +MD +BN +NE =BD +BE =2r ,故选C. 三、板书设计【教学反思】教学过程中,强调用切线长定理可解决有关求角度、周长的问题.明确三角形内切圆的圆心是三角形三条角平分线的交点,到三边的距离相等.《第3课时切线长定理》教案【教学目标】:1、了解切线长定义,掌握切线长定理,并利用它进行有关计算。

3.1《切线长定理》教案

3.1《切线长定理》教案
索切线长定理,让学生在实际操作中形成对圆与直线关系的直观认识,提高空间想象力和几何直观能力。
2.发展学生的逻辑推理能力:在证明和应用切线长定理的过程中,训练学生运用严密的逻辑推理,学会用几何语言表达几何关系,提高几何证明能力。
3.增强学生的数学建模意识:引导学生将切线长定理应用于解决实际问题,培养数学建模意识,提高解决实际问题的能力。
实践活动环节,分组讨论和实验操作进行得相当顺利。学生们在讨论中积极思考,互相交流,展示环节也能看出他们对于切线长定理的理解和应用。但我也注意到,有些小组在解决问题时,思路不够开阔,容易陷入定式思维。因此,我需要在今后的教学中,多设计一些开放性问题,引导学生从多角度思考问题。
学生小组讨论环节,大家围绕切线长定理在实际生活中的应用展开了热烈的讨论。在这个过程中,我发现有些学生能够提出很有见地的观点,但也有一些同学发言不够积极。为了提高全体同学的参与度,我考虑在下次课中采用一些激励措施,如表扬积极发言的学生,以提高他们的积极性。
-与相似三角形知识的综合应用:如何将切线长定理与相似三角形的性质相结合,解决更复杂的几何问题,是学生学习的难点。
举例解释:
-在讲解切线长定理的证明时,引导学生从圆的半径、弦、切线等基本概念出发,运用几何图形和逻辑推理进行证明。
-在解决实际问题时,教师应引导学生分析问题,找出关键信息,并运用切线长定理进行求解。
3.1《切线长定理》教案
一、教学内容
本节课选自教材九年级下册第3章第1节《切线长定理》。教学内容主要包括以下几部分:
1.探索并理解切线长定理:通过直观演示和实际操作,引导学生发现并理解切线长定理,即从圆外一点引两条切线,切线长相等。
2.掌握切线长定理的应用:学会运用切线长定理解决相关问题,如求线段长度、证明线段相等等。

切线长定理教案优秀教案-2024鲜版

切线长定理教案优秀教案-2024鲜版
14
2024/3/27
04
CATALOGUE
教学过程设计
15
导入新课
2024/3/27
01
回顾圆的性质和相关定理,为切 线长定理的学习做铺垫。
02
通过实例或问题导入,如“如何 证明从圆外一点引圆的两条切线 长相等?”,激发学生的学习兴 趣。
16
新课学习
讲解切线长定理的内容,包括定理的 条件和结论。
6
02
CATALOGUE
教学内容与重点难点
2024/3/27
7
教学内容
切线长定理的定义和性质
阐述切线长定理的基本概念,包括切 线、切点、切线长等,并解释其性质 ,如切线长与半径的垂直关系等。
切线长定理的证明
切线长定理的应用
通过实例演示切线长定理在解决几何 问题中的应用,如计算线段长度、角 度等。
25
THANKS
感谢观看
2024/3/27
26
切线长定理教案优秀教案
2024/3/27
1
CATALOGUE
目 录
2024/3/27
• 教学目标与要求 • 教学内容与重点难点 • 教学方法与手段 • 教学过程设计 • 教学评价与反馈 • 作业布置与拓展延伸
2
2024/3/27
01
CATALOGUE
教学目标与要求
3
知识与技能目标
掌握切线长定理的基本概念和 性质,理解切线长定理的几何 意义。
针对学生的不同水平,设计不同 难度的练习题,以满足不同学生
的需求。
鼓励学生相互讨论和合作,共同 解决练习中的问题。
18
课堂小结
总结本节课所学的切线长定理及其证明 方法。

2024版切线长定理教案

2024版切线长定理教案

28
情感态度与价值观
激发学生对数学学习的兴趣, 培养学生的探究精神和合作意
识。
教学重点与难点
重点是切线长定理的理解和应 用,难点是定理的证明过程。
5
课程安排与时间
讲授新课(20分钟)
详细讲解切线长定理的内容、证 明过程及应用。
课堂练习(10分钟)
学生独立完成相关练习题,教师 巡视指导。
归纳小结(5分钟)
总结本节课的知识点,强调需要 注意的问题。
导入新课(5分钟)
通过回顾旧知,引出新课内容。
布置作业(5分钟)
布置课后作业,巩固所学知识。
2024/1/30
6
02
切线长定理基础知识
2024/1/30
7
切线、割线及切线长定义
01
02
03
切线
与圆只有一个公共点的直 线叫做圆的切线。
2024/1/30
割线
2024/1/30
引导学生思考切线长定理与圆 的切线性质之间的联系,加深 对定理的理解。
通过图形展示,让学生直观感 受切线长定理的几何意义。
4
教学目标与要求
01
02
03
04
知识与技能
掌握切线长定理的内容,能够 运用定理解决相关问题。
2024/1/30
过程与方法
通过探究学习,培养学生的逻 辑思维能力和推理能力。
23
06
拓展延伸与思考题
2024/1/30
24
深入探究切线长定理在其他领域应用
01
几何领域
在几何学中,切线长定理可用于解决与圆和切线相关的问题,如计算切
线长度、证明切线性质等。
02
物理领域
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

百度文库- 让每个人平等地提升自我《切线长定理》教案课题:§6.10切线长定理1、教学目标:(1)、知识目标:了解切线长的定义,掌握切线长定理,并利用它进行有关的计算;在运用切线长定理的解题过程中,进一步渗透方程的思想,熟悉用代数的方法解几何题。

(2)、能力目标:经历画图、度量、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,培养学生有条理地、清晰地阐述自己的观点的能力。

(3)、素质目标:初步学会从数学的角度提出问题、理解问题,并能运用所学的知识和技能解决问题,发展应用意识。

在解题中形成解决问题的基本策略,体验问题策略的多样性,发展实践能力与创新精神。

(4)、情感与态度目标:了解数学的价值,对数学有好奇心与求知欲,在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。

2、教学重点:理解切线长定理3、教学难点:应用切线长定理解决问题4、教学方法:教学方法采用引导发现法,辅之以讨论法。

利用“问题情境——建立数学模型——解释、应用、拓展”的模式进行教学。

本节课是概念、定理、解题的教学,因此,要利用概念模式元、定理教学模式元、解题教学模式元的有机组合,完成本节课的教学。

5、课型:综合课6、教具:多媒体计算机、自制圆半径测量仪、悠悠球7、学具:刻度尺2把、量角器、圆规、水杯、强力胶8、教学实施过程:百度文库- 让每个人平等地提升自我教学过程教学内容师生相互交往设计意图一、激发情趣导入新课同学们,请看这是什么玩具?(悠悠球)对,这是大家非常喜爱的一种玩具。

(教师演示一次)可是,大家在玩悠悠球时是否想到过它的转动过程中还包含着数学知识呢?是什么知识呢?我们来看一下它的构造。

(拆开球,出示球的剖面)这是悠悠球在转动的一瞬间的剖面,从中你能抽象出什么样的数学图形?(球的整体和中心轴可分别抽象成圆形,被拉直的线绳可抽象成线段。

)这些图形位置关系怎样?(两圆为同心圆,线段所在直线和小圆相切)[在这两问中,如果学生想不到球的整体时,这个圆可以不提]线段的两个端点和小圆的位置关系怎样?(一个是切点在小圆上,一个在小圆外)我们可以看出,球与手的距离就决定于这条线段的长度。

在几何中,我们把满足上述特征的线段的长叫做点到圆的切线长,这节课我们就来研究切线长的有关知识。

教师出示同学们熟悉并且喜爱的玩具之后连续几问转入正题。

学生看到玩具眼睛一亮,注意力被吸引,想到老师为什么会在课堂上拿出悠悠球,一时兴致勃勃。

当老师话锋一转,步入正题时,他们的兴致也随之而来,带着强烈的好奇心思考老师提出的问题。

此时教师又引导学生说出线段的特征,不失时机地引入新课,板书课题。

吸引学生的注意力,激发学生的求知欲,同时也使学生意识到数学知识广泛存在于日常生活之中。

二、合乎情理探索发现(一)、切线长定义1、板书定义:在经过圆外一点的切线上,这一点和切点之间的线段的长叫做这点到圆的切线长.2、剖析定义:(1)找出中心词,把定义进行缩句。

(线段的长叫做切线长)(2)定义中的“线段”具有什么特征?①在圆的切线上;②两个端点一个是切点,一个是圆外已知点。

3、在图形中辨别:(1)已知:如图1,PC和⊙O相切于点A ,点P到⊙O的切线长可以用哪一条线段的长来表示?(线段PA)C图1 图2(2)已知:如图2,PA和PB分别与⊙O相切于点A、B ,点P到⊙O的切线长可以用哪一条线段的长来表示?(线段PA或线段PB)(3)如图2,思考:点P到⊙O的切线长可以用三条或三条以上不同的线段的长来表示吗?这样的线段最多可以有几条?为什么?(4)既然点P到⊙O的切线长可以用两条不同的线段的长来表示,那么这两条线段之间一定存在着某种关系,是什么关系呢?我们来探索一下,出示探索教师在板书定义之后,通过对话交往,引导学生把对概念的感性认识上升到理性认识,然后在图形中进行识别,从而认识概念的本质特征,理解概念的外延。

在对话中,教师以民主的精神、平等的作风、宽容的态度、真挚的爱心和悦纳的情怀对待学生,在相互倾听、接受和共享中获得知识,使教学相长。

此处通过学生思考得出结论,再次加深学生对概念的理解,也使学生了解切线长与切线的关系,同时由这个结论教师适时引出探索使学生了解切线长的定义,并能在具体的图形中把它们识别出来。

培养学生合情推理能力、语言表达能力。

POABAPO教学过程教学内容师生相互交往设计意图二、合乎情理探索发现(二)、切线长定理:1、探索问题1:从⊙O外一点P引⊙O的两条切线,切点分别为A、B,那么线段PA和PB之间有何关系?探索步骤:(1)根据条件画出图形;(2)度量线段PA和PB的长度;(3)猜想:线段PA和PB之间的关系;(4)寻找证明猜想的途径;(5)在图3中还能得出哪些结论?并把它们归类。

(6)上述各结论中,你想把哪个结论作为切线长的性质?请说明理由。

由(5)得:线段相等:PA=PB;OA=OB;角相等:∠APO=∠BPO;∠AOP=∠BOP;垂直关系:OA⊥PA;图3OB⊥PB;三角形全等:△OAP≌△OBP.2、由(6)得出定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.3、剖析定理:(1)、指出定理的题设和结论;(2)用符号语言表示定理:∵PA、PB分别是⊙O的切线,点A、B分别为切点,(PA、PB分别与⊙O相切于点A、B)∴PA=PB,∠APO=∠BPO.定理教学的方式是学生自主探索,相互交流相结合。

首先出示探索步骤的前三个,等学生猜想出结论后,再明确仅凭观察、度量、猜想并不能说明结论的正确性,还需证明结论的正确性,同时激励学生寻找证明猜想的途径。

之后,再让学生探索更多的结论,并由(6)得出定理。

定理的剖析以对话形式进行。

在整个过程中,教师相应地进行板书。

随着一环紧扣一环的探索问题的深入,学生通过自主地发现问题、信息搜集与处理、表达与交流等探索活动,获得知识、技能,并获得积极的、深层次的体验,从而促进学生探究能力的发展。

OBAP三、创设情境巩固应用1、填空:如图3,PA、PB分别与⊙O相切于点A、B,(1)若PB=12,PO=13,则AO=___.(2)若PO=10,AO=6,则PB=___;(3)若PA=4,AO=3,则PO=___;PD=__;2、已知如图4,PA、PB分别与⊙O相切于点A、B,PO与⊙O相交于点D,且PA=4cm,PD=2cm.求半径OA的长.小结:图42题与1 题不同,不能用算术方法直接得出答案,需要设未知数列方程来解决,这是用代数的方法来解决几何题。

(渗透方程思想)口答笔答会利用定理进行有关的计算,在2题中,进一步渗透方程思想,熟悉用代数的方法解决几何题。

教学过程教学内容师生相互交往设计意图三、创设情境巩固应用3、解决实际问题:在我们日常生活中有很多物体呈圆形,例如花盆边沿、水杯口等,有时我们需要知道圆形物体的半径,那么利用本节所学的切线长定理,如何解决这个问题呢?小制作:名称:圆的半径测量仪材料:两把刻度尺用途:测量水杯口的半径过程:(1)出示问题,学生尝试;(2)遇到困难,设法解决;(3)设计方案,说明道理;(4)完成制作,实物测量。

教师出示问题,学生尝试,在尝试中遇到困难,师生共同设法解决。

在设计时,寻求多种方案,并说明方案的合理性,比较方案的简洁性,最后由学生完成制作,并进行实物测量。

运用所学知识解决实际问题,发展应用意识,在数学活动中体验策略的多样性,发展实践能力与创新精神。

在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心。

真正做到“以参与求体验,以创新求发展”。

四、顺应情势归纳总结1、探索问题2:连结图3中的两个切点AB交OP于点C,又能得出什么结论?并把它们分类。

2、通过本节课的实践、探索、交流,你有哪些收获?这节课我们所探索的有关切线长的知识是在给出圆的两条切线的情况下得出的,那么要是圆的三条切线两两相交,又会有什么样的结论呢?如果有四条切线呢?这些问题有待于我们课后去研究,请看课外作业。

学生探索问题2,得出结论后进而进行归纳总结。

教师给与适当的评价之后,把知识进行引申,出示探索问题3和4,留为作业。

培养学生归纳概括能力,把知识纳入系统,便于学生存储、提取和应用。

使学生了解数学的价值。

O DBAP五、心甘情愿课外作业1、探索问题3:已知:如图5,⊙O是△ABC的内切圆,切点分别为D、E、F,(1)图中共有几对相等线段?(2)若AD=4,BC=5,CF=6,则△ABC的周长是__;(3)若AB=4,BC=5,AC=6,则AD=__,BE=__,CF=__.2探索问题4:图5已知:如图6,四边形ABCD的边AB、BC、CD、DA和⊙O分别相切于点L、M、N、P.想一想:AB+CD与AD+BC之间有什么关系?说明你结论的正确性。

3、选做:出示课外作业针分层次,针对各类学生进行。

在课堂探索结束之时,鼓励学生继续进行课外探索,做到“课虽尽,思不止”。

六、深系情结板书设计*6.10 切线长定理一、切线长定义:线段相等:角相等:二、切线长定理:垂直关系:三角形全等:条理清晰重点突出帮助理解便于记忆FEDOCBAPNMLOCDBAO PCAB。

相关文档
最新文档