高三数学数列的概念与简单表示法1

合集下载

2.1.1 数列的概念与简单表示法(一)

2.1.1 数列的概念与简单表示法(一)
如:数列{n2}的第11项是__1_2_1___
②一些数列的通项公式不是唯一的; 如:数列1,-1,1,-1,…
③不是每一个数列都能写出它的通项公式。 如:1,24,8,3,19
例1、试写出下面数列的一个通项公式,使它的前4项分别 是下列各数:
(1)2,4,6,8; 变题:4,6,8,10
an=2n
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
第四个记忆周期是 1天 第五个记忆周期是 2天 第六个记忆周期是 4 天 第七个记忆周期是 7天 第八个记忆周期是15天 这五个记忆周期属于长期记忆的范畴。 所以我们可以选择这样的时间进行记忆的巩固,可以记得更扎实。
如何利用规律实现更好记忆呢?
超级记忆法--场 景法
练习:试写出数列1,3,6,10,…的一个递推公式。
例5、已知a1
1, an
1
1 an1
(n
2), 写出这个
数列的前5项.
解:∵a1=1
1
1
a2
1
a1
1 1
2
1
13
a3 1 a 2 1 2 2
a4
1
1 a3
1
2 3
5 3
a5
1
1 a4
1
3 5
8 5
练习:写出下列数列{an}的前5项 (1)a1=5,an=an-1+3 (n≥2); (2)a1=2,an=2an-1 (n≥2);
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
记忆中
选择恰当的记忆数量
魔力之七:美国心理学家约翰·米勒曾对短时记忆的广 度进行过比较精准的测定:通常情况下一个人的记忆 广度为7±2项内容。

2.1数列的概念与简单表示法

2.1数列的概念与简单表示法

第二章 数列2.1 数列的概念与简单表示法一、 知识点 (一)数列的定义1、按一定次序排列的一列数叫做数列,数列中的每一个数叫做这个数列的项,数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项)排在第二位的数称为这个数列的第2项,…,排在第n 位的数称为这个数列的第n 项。

2、数列中的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列,例如,数列4,5,6,7,8,9,10与数列10,9,8,7,6,5,4,3,是不同的数列。

3、在数列的定义中,并没有规定数列中的数必须不同,因此 ,同一个数在数列中可以重复出现4、数列的一般形式可以写成12,,...,,...n a a a 此数列可简记为{}n a 例如;把数列1111,,,...,,...23n 简记作1n ⎧⎫⎨⎬⎩⎭5、数列的项通常用字母加右下角标表示,其中右下角标表示项的位置序号、我们还应注意到这里{}n a 与n a 是不同的:{}n a 表示数列12,,...,n a a a ;而n a 只表示这个数列的第n 项,这里{}n a 是数列的简记符号,并不表示一个集合。

(二)数列的分类根据数列的项数可以对数列进行分类 1、 项数有限的数列叫有穷数列 2、 项数无限的数列叫无穷数列补充说明:按照项与项之间的大小关系、数列的增减性,可以分为以下几类1、 递增数列:一个数列,如果从第2项起,每一项都大于它前面的一项(即1n n a a +>),这样的数列叫做递增数列。

2、 递减数列:一个数列,如果从第2项起,每一项都小于它前面的一项(即1n n a a +<), 这样的数列叫做递减数列。

3、 摆动数列:一个数列,如果从第2项起,有些项大于它的前一项,有些项小于它的前一项,这样的数列叫做摆动数列。

4、 常数列:一个数列,如果它的每一项都相等,这个数列叫做常数列。

高中数学必修五2.1.1 数列的概念与简单表示法(一)

高中数学必修五2.1.1 数列的概念与简单表示法(一)

2.1 数列的概念与简单表示法2.1.1 数列的概念与简单表示法(一)从容说课本节课先由教师提供日常生活实例,引导学生通过对实例的分析体会数列的有关概念,再通过对数列的项数与项之间的对应关系的探究,认识数列是一种特殊的函数,最后师生共同通过对一列数的观察、归纳,写出符合条件的一个通项公式.通过本节课的学习使学生能理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的通项公式. 教学重点 数列及其有关概念,通项公式及其应用.教学难点 根据一些数列的前几项抽象、归纳数列的通项公式.教具准备 课件三维目标 一、知识与技能1.理解数列及其有关概念,了解数列和函数之间的关系;2.了解数列的通项公式,并会用通项公式写出数列的任意一项;3.对于比较简单的数列,会根据其前几项写出它的通项公式. 二、过程与方法1.采用探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学;2.发挥学生的主体作用,作好探究性学习;3.理论联系实际,激发学生的学习积极性. 三、情感态度与价值观1.通过日常生活中的大量实例,鼓励学生动手试验.理论联系实际,激发学生对科学的探究精神和严肃认真的科学态度,培养学生的辩证唯物主义观点;2.通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣.教学过程 导入新课师 课本图211中的正方形数分别是多少?生 1,3,6,10,….师 图212中正方形数呢?生 1,4,9,16,25,….师 像这样按一定次序排列的一列数你能否再举一些?生 -1的正整数次幂:-1,1,-1,1,…;无穷多个数排成一列数:1,1,1,1,….生 一些分数排成的一列数:32,154,356,638,9910,….推进新课[合作探究] 折纸问题师 请同学们想一想,一张纸可以重复对折多少次?请同学们随便取一张纸试试(学生们兴趣一定很浓).生 一般折5、6次就不能折下去了,厚度太高了.师 你知道这是为什么吗?我们设纸原来的厚度为1长度单位,面积为1面积单位,随依次折的次数,它的厚度和每层纸的面积依次怎样?生 随着对折数厚度依次为:2,4,8,16,…,256,…;① 随着对折数面积依次为21,41 ,81 ,161 ,…,2561 ,…. 生 对折8次以后,纸的厚度为原来的256倍,其面积为原来的分 1[]256式,再折下去太困难了.师 说得很好,随数学水平的提高,我们的思维会更加理性化.请同学们观察上面我们列出的这一列一列的数,看它们有何共同特点?生 均是一列数.生 还有一定次序.师 它们的共同特点:都是有一定次序的一列数. [教师精讲]1.数列的定义:按一定顺序排列着的一列数叫做数列.注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….同学们能举例说明吗? 生 例如,上述例子均是数列,其中①中,“2”是这个数列的第1项(或首项),“16”是这个数列中的第4项.3.数列的分类:1)根据数列项数的多少分:有穷数列:项数有限的数列.例如数列1,2,3,4,5,6是有穷数列.无穷数列:项数无限的数列.例如数列1,2,3,4,5,6…是无穷数列.2)根据数列项的大小分:递增数列:从第2项起,每一项都不小于它的前一项的数列.递减数列:从第2项起,每一项都不大于它的前一项的数列.常数数列:各项相等的数列.摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 请同学们观察:课本P 33的六组数列,哪些是递增数列、递减数列、常数数列、摆动数列? 生 这六组数列分别是(1)递增数列,(2)递增数列,(3)常数数列,(4)递减数列,(5)摆动数列,(6)1.递增数列,2.递减数列.[知识拓展] 师 你能说出上述数列①中的256是这数列的第多少项?能否写出它的第n 项?生 256是这数列的第8项,我能写出它的第n 项,应为a n =2n .[合作探究]同学们看数列2,4,8,16,…,256,…①中项与项之间的对应关系,项 2 4 8 16 32↓ ↓ ↓ ↓ ↓序号 1 2 3 4 5你能从中得到什么启示?生 数列可以看作是一个定义域为正整数集N *(或它的有限子集{1,2,3,…,n })的函数a n =f(n ),当自变量从小到大依次取值时对应的一列函数值.反过来,对于函数y=f(x),如果f(i)(i=1、2、3、4…)有意义,那么我们可以得到一个数列f(1),f(2),f(3),…,f(n ),…. 师 说的很好.如果数列{a n }的第n 项a n 与n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式. [例题剖析]1.根据下面数列{a n }的通项公式,写出前5项:(1)a n =1+n n ;(2)a n =(-1)n ·n . 师 由通项公式定义可知,只要将通项公式中n 依次取1,2,3,4,5,即可得到数列的前5项.生 解:(1)n =1,2,3,4,5.a 1=21;a 2=32;a 3=43;a 4=54;a 5=65. (2)n =1,2,3,4,5.a 1=-1;a 2=2;a 3=-3;a 4=4;a 5=-5.师 好!就这样解.2.根据下面数列的前几项的值,写出数列的一个通项公式:(1)3,5,7,9,11,…;(2)32,154,356,638,9910,…; (3)0,1,0,1,0,1,…;(4)1,3,3,5,5,7,7,9,9,…;(5)2,-6,12,-20,30,-42,….师 这里只给出数列的前几项的值,哪位同学能写出这些数列的一个通项公式?(给学生一定的思考时间)生老师,我写好了!解:(1)a n =2n +1;(2)a n =)12)(12(2+-n n n ;(3)a n =2)1(1n -+; (4)将数列变形为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,…,∴a n =n +2)1(1n-+; (5)将数列变形为1×2,-2×3,3×4,-4×5,5×6,…,∴a n =(-1)n +1n (n +1).师 完全正确!这是由“数”给出数列的“式”的例子,解决的关键是要找出这列数呈现出的规律性的东西,然后再通过归纳写出这个数列的通项公式.[合作探究]师 函数与数列的比较(由学生完成此表):函数 数列(特殊的函数) 定义域R 或R 的子集 N *或它的有限子集{1,2,…,n } 解析式y=f(x) a n =f(n ) 图象 点的集合 一些离散的点的集合师 对于函数,我们可以根据其函数解析式画出其对应图象,看来,数列也可根据其通项公式来画出其对应图象,下面同学们练习画数列:4,5,6,7,8,9,10…;② 1,21 ,31 ,41 ,…③的图象. 生 根据这数列的通项公式画出数列②、③的图象为师 数列4,5,6,7,8,9,10,…②的图象与我们学过的什么函数的图象有关? 生 与我们学过的一次函数y=x+3的图象有关.师 数列1,21 ,31 ,41 ,…③的图象与我们学过的什么函数的图象有关? 生 与我们学过的反比例函数x y 1=的图象有关. 师 这两数列的图象有什么特点?生 其特点为:它们都是一群孤立的点.生 它们都位于y 轴的右侧,即特点为:它们都是一群孤立的,都位于y 轴的右侧的点. 本课时的整个教学过程以学生自主探究为主,教师起引导作用,充分体现学生的主体作用,体现新课程的理念.课堂小结对于本节内容应着重掌握数列及有关定义,会根据通项公式求其任意一项,并会根据数列的前n 项求一些简单数列的通项公式.布置作业课本第38页习题2.1 A 组第1题.板书设计数列的概念与简单表示法(一)定义1.数列 例12.项3.一般形式 例2 函数定义4.通项公式5.有穷数列6.无穷数列备课资料一、备用例题1.写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)1,3,5,7;(2)515;414,313;2122222----; (3)211⨯-,321⨯- ,431⨯- ,541⨯-. 分析:(1)项:1=2×1-1 3=2×2-1 5=2×3-1 7=2×4-1↓ ↓ ↓ ↓序号: 1 2 3 4所以我们得到了a n =2n -1;(2)序号: 1 2 3 4↓ ↓ ↓ ↓项分母: 2=1+1 3=2+1 4=3+1 5=4+1 ↓ ↓ ↓ ↓项分子: 22-1=(1+1)2-1 32-1=(2+1)2-1 42-1=(3+1)2-1 52-1=(4+1)2-1所以我们得到了a n =1)1(2++n n 或1)2(+•+n n n ; (3)序号: 1 2 3 4↓ ↓ ↓ ↓211⨯- 321⨯- 431⨯- 541⨯- ↓ ↓ ↓ ↓)11(11+⨯- )12(21+⨯- )13(31+⨯- )14(41+⨯- 所以我们得到了a n =-)1(1+⨯n n . 2.写出下面数列的一个通项公式,使它的前n 项分别是下列各数:(1)1,0,1,0; 〔a n =2)1(11+-+n ,n ∈N *〕 (2)-32,83 ,154- ,245,356-; 〔a n =(-1)n ·1)1(12-++n n 〕 (3)7,77,777,7 777; 〔a n =97×(10n -1)〕 (4)-1,7,-13,19,-25,31; 〔a n =(-1)n (6n -5)〕(5)23,45 ,169 ,25617. 〔a n =12212-+n n 〕 点评:上述两题都是根据数列的前几项来写出这数列的通项公式,根据数列的前几项来写出这数列的通项公式时,常可联想奇数、偶数、平方数、指数等等.遇到分数的时候,常可根据需要把分子和分母同时扩大再来看看分子和分母中数的规律性,有时可直截了当地研究分子和分母之间的关系.3.已知数列{a n }的通项公式是a n =2n 2-n ,那么( )A .30是数列{a n }的一项B .44是数列{a n }的一项C.66是数列{a n }的一项 D .90是数列{a n }的一项分析:注意到30,44,66,90均比较小,可以写出这个数列的前几项,如果这前几项中出现了这四个数中的某一个,则问题就可以解决了.若出现的数比较大,还可以用解方程求正整数解的方法加以解决.答案:C点评:看一个数A 是不是数列{a n }中的某一项,实质上就是看能不能找出一个非零自然数n ,使得a n =A .4.(链接探究题)假定有一张极薄的纸,厚度为2001cm 就是每200张叠起来刚好为1 cm ,现在把这张纸裁一为二,叠起来,它的厚度记为a 1;再裁一为二,叠起来,它的厚度记为a 2,又裁一为二,叠起来,它的厚度记为a 3,这样一裁一叠,每次叠起来所得的厚度依次排列,就得到一个数列:a 1,a 2,a 3,…,a k ,….你能求出这个数列的通项公式吗?你知道a 50,即裁了50次、叠了50次后的厚度是多少厘米吗?是否有10层楼高呢?答案:这个数列的通项公式为a n =2002n, 裁了50次、叠了50次后的厚度是5 629 499 534 213.12 cm >56 294 995 km ,大于地球到月球距离的146倍. 二、阅读材料无法实现的奖赏相传古印度舍罕王朝有一位宰相叫达依尔,据说是他发明了国际象棋,古印度的舍罕王学会了下国际象棋以后,非常激动,他要重赏他的宰相达依尔. 达依尔对他的国王说:陛下,我不要您的重赏,只要您按我下面的办法赏我一些麦粒就可以了:在我的棋盘上(它有64个格)第一格赏1粒,第二格赏2粒,第三格赏4粒,第四格赏8粒……依此类推每后一格的麦粒数都是前面一格的两倍.国王答应了达依尔的要求,但是几天以后他就发现事实上这是一个无法兑现的奖赏.请问国王为什么不能兑现他的奖赏呢? 2.1.2 数列的概念与简单表示法(二)从容说课这节课通过对数列通项公式的正确理解,让学生进一步了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项;通过经历数列知识的感受及理解运用的过程,作好探究性教学.发挥学生的主体作用,提高学生的分析问题以及解决问题的能力.教学重点 根据数列的递推公式写出数列的前几项.教学难点 理解递推公式与通项公式的关系.教具准备 多媒体三维目标一、知识与技能1.了解数列的递推公式,明确递推公式与通项公式的异同;2.会根据数列的递推公式写出数列的前几项.二、过程与方法1.经历数列知识的感受及理解运用的过程;2.发挥学生的主体作用,作好探究性实验;3.理论联系实际,激发学生的学习积极性.三、情感态度与价值观通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣.教学过程导入新课师 同学们,昨天我们学习了数列的定义,数列的通项公式的意义等内容,哪位同学能谈一谈什么叫数列的通项公式?生 如果数列{a n }的第n 项与序号之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.师 你能举例说明吗?生 如数列0,1,2,3,…的通项公式为a n =n -1(n ∈N *);1,1,1的通项公式为a n =1(n ∈N *,1≤n ≤3); 1,21 ,31 ,41 ,…的通项公式为a n =n1 (n ∈N *). [合作探究]数列的表示方法 师 通项公式是表示数列的很好的方法,同学们想一想还有哪些方法可以表示数列? 生 图象法,我们可仿照函数图象的画法画数列的图形.具体方法是以项数n 为横坐标,相应的项a n 为纵坐标,即以(n ,a n )为坐标在平面直角坐标系中作出点(以前面提到的数列1, 21,31,41,…为例,作出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在y 轴的右侧,而点的个数取决于数列的项数.从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势.师 说得很好,还有其他的方法吗?生 ……师 下面我们来介绍数列的另一种表示方法:递推公式法 知识都来源于实践,同时还要应用于生活,用其来解决一些实际问题.下面同学们来看右下图:钢管堆放示意图(投影片).观察钢管堆放示意图,寻其规律,看看能否建立它的一些数学模型.生 模型一:自上而下第1层钢管数为4,即14=1+3;第2层钢管数为5,即25=2+3;第3层钢管数为6,即36=3+3;第4层钢管数为7,即47=4+3;第5层钢管数为8,即58=5+3;第6层钢管数为9,即69=6+3;第7层钢管数为10,即710=7+3.若用a n 表示钢管数,n 表示层数,则可得出每一层的钢管数为一数列,且a n =n +3(1≤n ≤7). 师 同学们运用每一层的钢管数与其层数之间的对应规律建立了数列模型,这完全正确,运用这一关系,会很快捷地求出每一层的钢管数.这会给我们的统计与计算带来很多方便.让同学们继续看此图片,是否还有其他规律可循?(启发学生寻找规律)生 模型二:上下层之间的关系自上而下每一层的钢管数都比上一层钢管数多1,即a 1=4;a 2=5=4+1=a 1+1;a 3=6=5+1=a 2+1.依此类推:a n =a n -1+1(2≤n ≤7).师对于上述所求关系,同学们有什么样的理解?生 若知其第1项,就可以求出第二项,以此类推,即可求出其他项.师 看来,这一关系也较为重要,我们把数列中具有这种递推关系的式子叫做递推公式. 推进新课1.递推公式定义:如果已知数列{a n }的第1项(或前几项),且任一项a n 与它的前一项a n -1(或前n 项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.注意:递推公式也是给出数列的一种方法.如下列数字排列的一个数列:3,5,8,13,21,34,55,89.递推公式为:a 1=3,a 2=5,a n =a n -1+a n -2(3≤n ≤8).2.数列可看作特殊的函数,其表示也应与函数的表示法有联系,函数的表示法有:列表法、图象法、解析式法.相对于数列来说也有相应的这几种表示方法:即列表法、图象法、解析式法. [例题剖析]【例1】 设数列{a n }满足1,11111>n a a a n n ⎪⎩⎪⎨⎧+==-.写出这个数列的前五项. 师 分析:题中已给出{a n }的第1项即a 1=1,题目要求写出这个数列的前五项,因而只要再求出二到五项即可.这个递推公式:a n =1+11-n a 我们将如何应用呢? 生 这要将n 的值2和a 1=1代入这个递推公式计算就可求出第二项,然后依次这样进行就可以了.师 请大家计算一下!生 解:据题意可知:a 1=1,a 2=1+11a =2,a 3=1+21a =32,a 4=1+31a =35,a 5=58师 掌握递推公式很关键的一点就是其中的递推关系,同学们要注意探究和发现递推公式中的前项与后项,或前后几项之间的关系.【例2】 已知a 1=2,a n +1=2a n ,写出前5项,并猜想a n .师 由例1的经验我们先求前5项.生 前5项分别为2,4,8,16,32.师 对,下面来猜想第n 项.生 由a 1=2,a 2=2×2=22,a 3=2×22=23观察可得,我猜想a n =2n .师 很好!生 老师,本题若改为求a n 是否还可这样去解呢?师 不能.必须有求解的过程.生 老师,我由a n +1=2a n 变形可得a n =2a n -1,即21=-n n a a ,依次向下写,一直到第一项,然后将它们乘起来,就有⨯⨯⨯-----32211n n n n n n a a a a a a …×1122-=n aa ,所以a n =a 1·2n -1=2n .师 太妙了,真是求解的好方法.你所用的这种方法通常叫迭乘法,这种方法在已知递推公式求数列通项的问题中是比较常用的方法,对应的还有迭加法. [知识拓展]已知a 1=2,a n +1=a n -4,求a n .师 此题与前例2比较,递推式中的运算改为了减法,同学们想一想如何去求解呢? 生1 写出:a 1=2,a 2=-2,a 3=-6,a 4=-10,…观察可得:a n =2+(n -1)(n -4)=2-4(n -1).生2 他这种解法不行,因为不是猜出a n ,而是要求出a n .我这样解:由a n +1-a n =-4依次向下写,一直到第一项,然后将它们加起来,a n -a n -1=-4a n -1-a n -2=-4a n -2-a n -3=-4 …… )1(44a )112--=--=-+n a a a n ∴a n =2-4(n -1).师 好极了,真是触类旁通啊,这种方法也请同学们课后多体会.[教师精讲](1)数列的递推公式是由初始值和相邻几项的递推关系确定的,如果只有递推关系而无初始值,那么这个数列是不能确定的.例如,由数列{a n }中的递推公式a n +1=2a n +1无法写出数列{a n }中的任何一项,若又知a 1=1,则可以依次地写出a 2=3,a 3=7,a 4=15,….(2)递推公式是给出数列的一种方法,由递推公式可能求出数列的通项公式,也可能求不出通项公式.[学生活动]根据各个数列的首项和递推公式,写出它的前五项,并归纳出通项公式.(投影片)(1)a 1=0,a n +1=a n +(2n -1)(n ∈N );(2)a 1=1,a n +1=2+n n a a (n ∈N ); (3)a 1=3,a n +1=3a n -2(n ∈N ).(让学生思考一定时间后,请三位学生分别作答)解:(1)a 1=0,a 2=1,a 3=4,a 4=9,a 5=16,∴a n =(n -1)2.(2)a 1=1,a 2=32,a 3=21=42,a 4=52,a 5=31 =62,∴a n =12+n . (3)a 1=3=1+2×30,a 2=7=1+2×31,a 3=19=1+2×32,a 4=55=1+2×33,a 5=163=1+2×34,∴a n =1+2·3 n -1.注:不要求学生进行证明归纳出通项公式.[合作探究]一只猴子爬一个8级的梯子,每次可爬一级或上跃二级,最多能上跃起三级,从地面上到最上一级,你知道这只猴子一共可以有多少种不同的爬跃方式吗?析:这题是一道应用题,这里难在爬梯子有多种形式,到底是爬一级还是上跃二级等情况要分类考虑周到.爬一级梯子的方法只有一种.爬一个二级梯子有两种,即一级一级爬是一种,还有一次爬二级,所以共有两种.若设爬一个n级梯子的不同爬法有a n种,则a n=a n-1+a n-2+a n-3(n≥4),则得到a1=1,a2=2,a3=4及a n=a n-1+a n-2+a n-3(n≥4),就可以求得a8=81.课堂小结师这节课我们主要学习了数列的另一种给出方法,即递推公式及其用法,要注意理解它与通项公式的区别,谁能说说?生通项公式反映的是项与项数之间的关系,而递推公式反映的是相邻两项(或n项)之间的关系.生对于通项公式,只要将公式中的n依次取1,2,3…,即可得到相应的项.而递推公式则要已知首项(或前n项),才可求得其他的项.(让学生自己来总结,将所学的知识,结合获取知识的过程与方法,进行回顾与反思,从而达到三维目标的整合.培养学生的概括能力和语言表达能力)布置作业课本第38页习题2.1A组第4、6题.预习内容:课本P41~P 44.数列的概念与简单表示法(二)一、定义二、例题讲解小结:7.递推公式:例1通项公式与例2 递推公式区别。

数列的概念与简单表示法(1)

数列的概念与简单表示法(1)

数列的表示方法
数列的一般形式可以写成:
a1,a2,a3,,an ,
a 简记为 an ,其中 n 叫做数列的第n 项。
第n项的n是该项的序号, 也叫做该项的项数
例如,三角形数构成的数列{an} :
1 , 3 , 6 , 10 , 15 ...
球队 马刺 雷霆 快船 火箭
胜场 62
59 57
项数有限的数列叫做有穷数列, 项数无限的数列叫做无穷数列。
实例分析
2010年到2014年我校高考升学人数构成一个数列: 1820 ,1960 , 2100 , 2330 ,2590
有穷数列
递增数列
正整数的倒数构成的数列 1, 1 , 1 , 1 , 1 ,
2345
递减数列
实例分析
高一年级6次数学测验中,某同学的数学成绩构成的数列: 112 , 108 , 110 , 118 , 99 , 102








数数




作业一:探究与思考 1、数列与集合有什么区别? 2、数列与数集有什么区别? 3、数列中的项与集合中的元素有什么区别? 4、数列4,7,10,13与数列13,10,7,4是相同的数列吗? 5、每一个数列都有通项公式吗? 6、同一个数列的通项公式的表达形式唯一吗?
作业二: 课本 31页第4题
摆动数列 我贷款买房子,月均等额还款数目构成数列: 2100 , 2100 , 2100 , … , 2100
常数列
我们可以按照数列的每一项随序号变化的情 况对数列进行分类
⑴从第2项起,每一项都不小于它的前一项的 数列叫做递增数列;
⑵从第2项起,每一项都不大于它的前一项的 数列叫做递减数列;

数列的概念及简单表示法(高三一轮复习)

数列的概念及简单表示法(高三一轮复习)

所以数列
S 2
n
是首项为S
2 1
=a
2 1
=1,公差为1的等差数列,所以S
2 n
=n,所以Sn=
n
(n∈N*).
数学 N 必备知识 自主学习 关键能力 互动探究
— 20 —
命题点2 由数列的递推公式求通项公式
考向1 累加法
例2
设数列
a
n
满足a1=1,且an+1-an=1(n∈N*),则数列
1 3
an+1,所以a2=3S1=3×
16 3
=16.当n≥2时,有an=Sn-Sn-1
=13an+1-13an,即an+1=4an.
所以从第二项起,数列an为首项为16,公比为4的等比数列,所以an= 4n(n≥2).
经检验,an=4n对n=1不成立,
所以an=136,n=1, 4n,n≥2.
数学 N 必备知识 自主学习 关键能力 互动探究
,所以a2=
4 2-a1

4 2-4
=-2,a3=
4 2-a2

4 2+2
=1,a4=
4 2-a3

4 2-1
=4,…,所以数列
a
n
是以3为周期的周期数列,又2
022=
673×3+3,所以a2 022=a673×3+3=1.
数学 N 必备知识 自主学习 关键能力 互动探究
— 12 —
4.(易错题)若数列
— 7—
4.数列的表示法 数列有三种表示法,它们分别是 8 列表法 、图象法和 9 解析法 .
数学 N 必备知识 自主学习 关键能力 互动探究
— 8—
常用结论► (1)数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有 关,还与这些“数”的排列顺序有关. (2)项与项数的概念:数列的项是指数列中某一确定的数,而项数是指数列的项 对应的位置序号. (3)若数列{an}的前n项和为Sn,则数列{an}的通项公式为an=SS1n,-nS=n-11,,n≥2.

《数列的概念与简单表示法》教案

《数列的概念与简单表示法》教案

《数列的概念与简单表示法》教案第一章:数列的定义1.1 学习目标:理解数列的定义,能够识别数列的基本特征。

1.2 教学内容:1.2.1 数列的定义:按照一定的顺序排列的一列数。

1.2.2 数列的项:数列中的每一个数称为项。

1.2.3 数列的顺序:数列中项的排列顺序称为数列的顺序。

1.3 教学活动:1.3.1 引入数列的概念,让学生通过观察实际例子来理解数列的定义。

1.3.2 引导学生分析数列的基本特征,如顺序、项等。

1.3.3 进行数列的实例练习,让学生能够识别和描述不同的数列。

第二章:数列的表示法2.1 学习目标:掌握数列的常见表示法,能够正确写出数列的前几项。

2.2 教学内容:2.2.1 列举法:将数列的每一项按顺序写出来。

2.2.2 描述法:用数学公式或文字描述数列的规律。

2.2.3 数列的通项公式:用公式表示数列中任意一项的值。

2.3 教学活动:2.3.1 介绍列举法和描述法,让学生通过实际例子学会用不同的方式表示数列。

2.3.2 引导学生理解数列的通项公式,并能够根据规律写出数列的前几项。

2.3.3 进行数列表示法的练习,让学生能够灵活运用不同的表示法。

第三章:数列的性质3.1 学习目标:理解数列的性质,能够运用数列的性质进行问题的解决。

3.2 教学内容:3.2.1 数列的项数:数列中项的个数称为数列的项数。

3.2.2 数列的项的公共性质:数列中所有项都具有的性质称为数列的项的公共性质。

3.2.3 数列的性质:数列的项的公共性质称为数列的性质。

3.3 教学活动:3.3.1 引导学生通过观察和分析数列的实例,发现数列的性质。

3.3.2 让学生通过实际的例题,学会运用数列的性质进行问题的解决。

3.3.3 进行数列性质的练习,让学生能够熟练运用数列的性质。

第四章:数列的分类4.1 学习目标:了解数列的分类,能够识别不同类型的数列。

4.2 教学内容:4.2.1 数列的分类:按照数列的性质和规律,将数列分为不同的类型。

高考数学知识点:数列的概念与简单表示法

高考数学知识点:数列的概念与简单表示法

高考数学知识点:数列的概念与简单表示法1500字数列是指按照一定规律排列的数字集合。

在高考数学中,数列是一个重要的知识点,它不仅会在选择题和填空题中出现,还会涉及到解答题的证明和计算。

本文将从数列的概念、简单表示法、常见数列以及数列的应用等方面,详细介绍高考数学数列知识点。

一、数列的概念数列中的数字按照一定的顺序排列,每个数字依次被称为数列的项。

一般来说,数列用字母表示,如a₁, a₂, a₃, ...,其中a₁表示数列的第一项,a₂表示数列的第二项,以此类推。

数列中的项可以是整数、分数或者实数,也可以是变量。

数列可以分为等差数列和等比数列两种。

等差数列是指相邻的两项之差都是一常数的数列,等差数列的通项公式一般为an = a₁ + (n-1)d,其中a₁表示首项,d表示公差,n表示项数。

等比数列是指相邻的两项之比都是一常数的数列,等比数列的通项公式一般为an = a₁ * r^(n-1),其中a₁表示首项,r表示公比,n表示项数。

二、数列的简单表示法在高考数学中,常见的数列表示法有两种:通项公式和递推公式。

通项公式是指通过数列的第n项表示数列的任意一项,递推公式是指通过数列的前一项表示数列的后一项。

以等差数列为例,该数列的递推公式为an = an-1 + d,表示每一项都是前一项与公差之和。

而通项公式为an = a₁ + (n-1)d,表示数列的任意一项可以通过项数和公差计算得出。

另外,数列也可以通过数列的前几项给出,例如{1, 2, 3, ...}表示自然数列,{2, 4, 6, ...}表示偶数列。

这种表示法在高考数学中较少使用,但在解答题时可能会用到。

三、常见数列在高考数学中,有一些常见的数列被广泛应用。

这些数列包括等差数列、等比数列、等差数列的前n项和、等比数列的前n项和、斐波那契数列等等。

1. 等差数列:等差数列是指相邻的两项之差都是一常数的数列。

例如{1, 3, 5, 7, ...}是一个公差为2的等差数列。

高三数学人教版A版数学(理)高考一轮复习教案数列的概念与简单表示法1

高三数学人教版A版数学(理)高考一轮复习教案数列的概念与简单表示法1

第一节 数列的概念与简单表示法数列的概念及表示方法(1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式). (2)了解数列是自变量为正整数的一类函数. 知识点一 数列的概念 1.数列的定义按照一定顺序排列的一列数称为数列,数列中的每一个数叫作这个数列的项.排在第一位的数称为这个数列的第1项(通常也叫作首项).2.数列的分类分类原则 类型 满足条件 按项数有穷数列 项数有限 无穷数列 项数无限按项与项 间的大小 关系递增数列a n +1≥a n 其中n ∈N +递减数列 a n +1≤a n 常数列a n +1=a n ,摇摆数列 从第2项起有些项大于它的前一项,有些项小于它的前一项易误提醒1.由前n 项写通项、数列的通项并不唯一.2.易混项与项数两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.[自测练习]1.数列{a n }:1,-58,715,-924,…,的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n(n ∈N +) B .a n =(-1)n -12n +1n 3+3n (n ∈N +) C .a n =(-1)n+12n -1n 2+2n(n ∈N +)D .a n =(-1)n-12n +1n 2+2n(n ∈N +) 解析:观察数列{a n }各项,可写成:31×3,-52×4,73×5,-94×6,故选D.答案:D2.已知数列的通项公式为a n =n 2-8n +15,则3( ) A .不是数列{a n }中的项 B .只是数列{a n }中的第2项 C .只是数列{a n }中的第6项 D .是数列{a n }中的第2项或第6项解析:令a n =3,即n 2-8n +15=3,解得n =2或6,故3是数列{a n }中的第2项或第6项.答案:D知识点二 数列与函数关系及递推公式 1.数列与函数的关系从函数观点看,数列可以看作定义域为正整数集N +(或它的有限子集)的函数,当自变量从小到大依次取值时,该函数对应的一列函数值就是这个数列.2.数列的递推公式如果已知数列{a n }的首项(或前几项),且任一项a n 与它的前一项a n -1(n ≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.必记结论 a n 与S n 的关系若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.[自测练习]3.在数列{a n }中,a 1=1,a n =2a n -1+1,则a 5的值为( ) A .30 B .31 C .32D .33解析:a 5=2a 4+1=2(2a 3+1)+1=22a 3+2+1=23a 2+22+2+1=24a 1+23+22+2+1=31.答案:B4.已知数列{a n }的前n 项和S n =2n -3,则数列{a n }的通项公式是________. 解析:当n =1时,a 1=S 1=2-3=-1, 当n ≥2时,a n =S n -S n -1=(2n -3)-(2n -1-3)=2n -2n -1=2n -1.故a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧-1,n =12n -1,n ≥2考点一 由数列的前几项求数列的通项公式|1.下列公式可作为数列{a n }:1,2,1,2,1,2,…的通项公式的是( ) A .a n =1B .a n =(-1)n +12C .a n =2-⎪⎪⎪⎪sin n π2 D .a n =(-1)n -1+32解析:由a n =2-⎪⎪⎪⎪sin n π2可得a 1=1,a 2=2,a 3=1,a 4=2,…. 答案:C2.根据数列的前几项,写出各数列的一个通项公式: (1)4,6,8,10,…; (2)-11×2,12×3,-13×4,14×5,…; (3)a ,b ,a ,b ,a ,b ,…(其中a ,b 为实数); (4)9,99,999,9 999,….解:(1)各数都是偶数,且最小为4,所以通项公式a n =2(n +1)(n ∈N +).(2)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式a n =(-1)n ×1n (n +1).(3)这是一个摆动数列,奇数项是a ,偶数项是b ,所以此数列的一个通项公式a n =⎩⎪⎨⎪⎧a ,n 为奇数,b ,n 为偶数. (4)这个数列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式a n =10n -1.用观察法求数列的通项公式的两个技巧(1)根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.(2)对于正负符号变化,可用(-1)n 或(-1)n +1来调整.考点二 由a n 与S n 的关系求通项a n |已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式: (1)S n =2n 2-3n ;(2)S n =3n +b . [解] (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5. (2)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b )=2·3n -1.当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2·3n -1,n ≥2.已知S n 求a n 的三个步骤(1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.已知各项均为正数的数列{a n }的前n 项和满足S n >1,且6S n =(a n +1)(a n +2),n ∈N +,求{a n }的通项公式.解:由a 1=S 1=16(a 1+1)(a 1+2),解得a 1=1或a 1=2,由已知a 1=S 1>1,因此a 1=2.又由a n +1=S n +1-S n =16(a n +1+1)(a n +1+2)-16(a n +1)(a n +2),得a n +1-a n -3=0或a n +1=-a n . 因为a n >0,故a n +1=-a n 不成立,舍去. 因此a n +1-a n -3=0.即a n +1-a n =3,从而{a n }是以公差为3,首项为2的等差数列,故{a n }的通项公式为a n=3n -1.考点三 由递推关系式求数列的通项公式|递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接.归纳起来常见的探究角度有: 1.形如a n +1=a n f (n ),求a n . 2.形如a n +1=a n +f (n ),求a n .3.形如a n +1=Aa n +B (A ≠0且A ≠1),求a n . 4.形如a n +1=Aa nBa n +C (A ,B ,C 为常数),求a n .探究一 形如a n +1=a n f (n ),求a n .1.在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2).解:因为a n =n -1n a n -1(n ≥2),所以a n -1=n -2n -1a n -2,…,a 2=12a 1.由累乘法可得a n =a 1·12·23·…·n -1n =a 1n =1n (n ≥2).又a 1=1符合上式,∴a n =1n .探究二 形如a n +1-a n =f (n ),求a n . 2.在数列{a n }中,a 1=2,a n +1=a n +3n +2.解:因为a n +1-a n =3n +2,所以a n -a n -1=3n -1(n ≥2),所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n (3n +1)2(n ≥2).当n =1时,a 1=2=12×(3×1+1),符合上式,所以a n =32n 2+n2.探究三 形如a n +1=Aa n +B (A ≠0且A ≠1)求a n . 3.在数列{a n }中a 1=1,a n +1=3a n +2.解:因为a n +1=3a n +2,所以a n +1+1=3(a n +1),所以a n +1+1a n +1=3,所以数列{a n +1}为等比数列,公比q =3.又a 1+1=2,所以a n +1=2·3n -1,所以a n =2·3n -1-1.探究四 形如a n +1=Aa nBa n +C(A ,B ,C 为常数),求a n .4.已知数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式.解:∵a n +1=2a na n +2,a 1=1,∴a n ≠0,∴1a n +1=1a n +12,即1a n +1-1a n =12,又a 1=1,则1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12, ∴a n =2n +1(n ∈N *).已知数列的递推关系,求数列的通项时,通常利用累加法、累乘法、构造法求解. 1.形如a n =a n -1+f (n )(n ≥2,n ∈N *)时,用累加法求解. 2.形如a na n -1=f (n )(a n -1≠0,n ≥2,n ∈N *)时,用累乘法求解.3.形如a n =a n -1+m (n ≥2,n ∈N *)时,构造等差数列求解;形如a n =xa n -1+y (n ≥2,n ∈N *)时,构造等比数列求解.16.函数思想在数列中的应用 【典例】 已知数列{a n }. (1)若a n =n 2-5n +4. ①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立.求实数k 的取值范围. [思路点拨] (1)求使a n <0的n 值;从二次函数看a n 的最小值.(2)数列是一类特殊函数,通项公式可以看作相应的解析式f (n )=n 2+kn +4.f (n )在N *上单调递增,但自变量不连续.从二次函数的对称轴研究单调性.[解] (1)①由n 2-5n +4<0,解得1<n <4. ∵n ∈N *,∴n =2,3.∴数列中有两项是负数,即为a 2,a 3. ②∵a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, ∴对称轴方程为n =52.又n ∈N *,∴n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4, 所以(n +1)2+k (n +1)+4>n 2+kn +4, 即k >-1-2n ,又n ∈N *,所以k >-3. [方法点评]1.本题给出的数列通项公式可以看作是一个定义在正整数集上的二次函数,因此可以利用二次函数的对称轴来研究其单调性,得到实数k 的取值范围,使问题得到解决.2.本题易错答案为k >-2.原因是忽略了数列作为函数的特殊性,即自变量是正整数. 3.在利用二次函数的观点解决该题时,一定要注意二次函数对称轴位置的选取. [跟踪练习] 已知数列{a n }的通项公式是a n =(n +1)⎝⎛⎭⎫1011n,试问该数列中有没有最大项?若有,求出最大项和最大项的序号;若没有,请说明理由.解:法一:∵a n +1-a n =(n +2)⎝⎛⎭⎫1011n +1-(n +1)⎝⎛⎭⎫1011n =⎝⎛⎭⎫1011n ×9-n 11,当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n , ∴该数列中有最大项,为第9、10项, 且a 9=a 10=10×⎝⎛⎭⎫10119.法二:根据题意,令⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2),即⎩⎨⎧n ×⎝⎛⎭⎫1011n -1≤(n +1)⎝⎛⎭⎫1011n ,(n +1)⎝⎛⎭⎫1011n≥(n +2)⎝⎛⎭⎫1011n +1,解得9≤n ≤10.又n ∈N *, ∴n =9或n =10,∴该数列中有最大项,为第9、10项, 且a 9=a 10=10×⎝⎛⎭⎫10119.A 组 考点能力演练1.已知数列{a n }满足a 1=0,a n +1=a n +2a n +1+1,则a 13=( ) A .143 B .156 C .168D .195解析:由a n +1=a n +2a n +1+1得a n +1+1=(a n +1+1)2,所以a n +1+1-a n +1=1,又a 1=0,则a n +1=n ,a n =n 2-1,则a 13=132-1=168.答案:C2.(2015·杭州质检)已知数列{a n }满足a 1=0,a n +1=a n -33a n +1(n ∈N *),则a 20=( ) A .0 B .- 3 C. 3D.32解析:本题由数列递推关系式,推得数列{a n }是周期变化的,找出规律,再求a 20.由a 1=0,a n +1=a n -33a n +1(n ∈N *),得a 2=-3,a 3=3,a 4=0,…由此可知:数列{a n }是周期变化的,且三个一循环,所以可得a 20=a 2=-3,故选B.答案:B3.在数列{a n }中,a 3=8,a n +1=⎩⎪⎨⎪⎧a n +2(n 为奇数),2a n(n 为偶数),则a 5等于( )A .12B .14C .20D .22解析:本题考查数列的基本性质.代入得a4=a3+2=10,a5=2a4=20.答案:C4.在数列{a n}中,有a n+a n+1+a n+2(n∈N*)为定值,且a7=2,a9=3,a98=4,则此数列{a n}的前100项的和S100=()A.200 B.300C.298 D.299解析:由题意,知a n+a n+1+a n+2=a n+1+a n+2+a n+3,则a n=a n+3,所以数列{a n}是周期为3的周期数列,则a1=a4=a7=…=a97=a100=2,a2=a5=…=a98=4,a3=a6=a9=…=a99=3,所以数列的前100项和为(a1+a2+a3)×33+a100=299,故选D.答案:D5.已知在数列{a n}中,a1=2,a2=7,若a n+2等于a n a n+1(n∈N*)的个位数,则a2 016的值为()A.8 B.6C.4 D.2解析:因为a1a2=2×7=14,所以a3=4;因为a2a3=7×4=28,所以a4=8;因为a3a4=4×8=32,所以a5=2;因为a4a5=8×2=16,所以a6=6;因为a5a6=2×6=12,所以a7=2;因为a6a7=6×2=12,所以a8=2;依次计算得a9=4,a10=8,a11=2,a12=6,所以从第3项起,数列{a n}成周期数列,周期为6,因为2 016=2+335×6+4,所以a2 016=6.答案:B6.已知在数列{a n}中,a1=1,a2=0,若对任意的正整数n,m(n>m),有a2n-a2m=a n-a n+m,则a2 015=________.m解析:令n=2,m=1,则a22-a21=a1a3,得a3=-1;令n=3,m=2,则a23-a22=a1a5,得a5=1;令n=5,m=2,则a25-a22=a3a7,得a7=-1,所以猜想当n为奇数时,{a n}为1,-1,1,-1,…,所以a2 015=-1.答案:-17.若数列{(n-a)2}是递增数列,则实数a的取值范围是________.解析:由题意得,对任意的n∈N*.(n+1-a)2>(n-a)2恒成立,即2a<2n+1恒成立,所以2a<(2n+1)min=3,则a<32.答案:⎝⎛⎭⎫-∞,32 8.(2016·蚌埠检查)已知数列{a n }满足:a 1为正整数,a n +1=⎩⎪⎨⎪⎧a n 2, a n 为偶数,3a n +1, a n 为奇数,如果a 1=1,则a 1+a 2+…+a 2 014=________.解析:由题意知a 1=1,a 2=3×1+1=4,a 3=2,a 4=1,a 5=4,a 6=2,…,所以{a n }的周期为3,因为2 014=3×671+1,所以a 1+a 2+a 3+…+a 2 014=(1+4+2)×671+1=4 698.答案:4 6989.已知数列{a n }的通项公式为a n =-n +p ,数列{b n }的通项公式为b n =2n -5,设c n =⎩⎪⎨⎪⎧a n ,a n ≤b n ,b n ,a n >b n .若在数列{c n }中,c 8>c n (n ∈N *,n ≠8),求实数p 的取值范围. 解:由题意得,c 8是数列{c n}中的最大项,所以⎩⎪⎨⎪⎧-7+p >22,-9+p ≤24,-8+p >4,23>-9+p ,解得12<p <17.10.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解:(1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又∵a =-7,∴a n =1+12n -9.结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4, a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2. ∵对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性, 知5<2-a 2<6,∴-10<a <-8. 故a 的取值范围为(-10,-8).B 组 高考题型专练1.(2012·高考大纲全国卷)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1B.⎝⎛⎭⎫32n -1C.⎝⎛⎭⎫23n -1D.12n -1 解析:由已知S n =2a n +1得S n =2(S n +1-S n ),即2S n +1=3S n ,S n +1S n =32,而S 1=a 1=1,所以S n =⎝⎛⎭⎫32n -1,故选B.答案:B2.(2011·高考四川卷)数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6=( )A .3×44B .3×44+1C .45D .45+1解析:法一:a 1=1,a 2=3S 1=3,a 3=3S 2=12=3×41,a 4=3S 3=48=3×42,a 5=3S 4=3×43,a 6=3S 5=3×44.故选A.法二:当n ≥1时,a n +1=3S n ,则a n +2=3S n +1,∴a n +2-a n +1=3S n +1-3S n =3a n +1,即a n +2=4a n +1,∴该数列从第2项开始是以4为公比的等比数列,又a 2=3S 1=3a 1=3,∴a n =⎩⎪⎨⎪⎧1 (n =1),3×4n -2 (n ≥2),∴当n =6时,a 6=3×46-2=3×44.答案:A3.(2014·高考新课标全国卷Ⅱ)数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________. 解析:由a n +1=11-a n ,得a n =1-1a n +1,∵a 8=2,∴a 7=1-12=12, a 6=1-1a 7=-1,a 5=1-1a 6=2,…, ∴{a n }是以3为周期的数列,∴a 1=a 7=12. 答案:124.(2012·高考上海卷)已知f (x )=11+x.各项均为正数的数列{a n }满足a 1=1,a n +2=f (a n ).若a 2 010=a 2 012,则a 20+a 11的值是________.解析:∵a n +2=11+a n,a 1=1,∴a 3=12, a 5=11+12=23,a 7=11+23=35,a 9=11+35=58,a 11=11+58=813,又a 2 010=a 2 012, 即a 2 010=11+a 2 010⇒a 22 010+a 2 010-1=0, ∴a 2 010=5-12⎝ ⎛⎭⎪⎫a 2 010=-5-12舍去. 又a 2 010=11+a 2 008=5-12, ∴1+a 2 008=25-1=5+12,即a 2 008=5-12,依次类推可得a 2 006=a 2 004=…=a 20=5-12,故a 20+a 11=5-12+813=135+326. 答案:135+3265.(2015·高考江苏卷)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解析:由a 1=1,且a n +1-a n =n +1(n ∈N *)得,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =n (n +1)2,则1a n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,故数列⎩⎨⎧⎭⎬⎫1a n 前10项的和S 10=2⎝⎛⎭⎫1-12+12-13+…+110-111 =2⎝⎛⎭⎫1-111=2011. 答案:2011。

1_数列的概念与简单表示法(一)

1_数列的概念与简单表示法(一)
2.1
数列的概念与简单表示法(一)
认识课标(2分钟)
• 1.了解数列的概念、表示、分类; • 2.理解数列的通项公式及其简单应用; • 3.能根据数列的前几项写出一个通项公式。
• 一.学习内容(6分钟)
• 阅读教材P28-29(含例1),梳理教材内容; 然后阅读并填写《学与导》P8知识导读; 1.什么叫数列?以及数列的项和首项的含义? 2.数列的一般形式是怎样的? 3.数列的分类 (1)根据数列的项数可以将数列分为哪两类数列? (2)按照数列的每一项随序号变化的情况可以怎样分类? 4.什么叫数列的通项公式?
2 3 4 • 4.写出数列 1, , , ,... 3 5 7 断它的增减性。
六.小结和作业(2分钟) 本节课你有哪些收获? • • • • • • • 1.作业本上的作业: P31练习2 2.《学与导》上的作业: 必做题: 课中例2(1);课后1、2; 选做题: 课中例2(2);课后3.
• 二.导读单
• • • • • •
• 三.生成问题(6分钟)
• 每个同学把生成的问题写在《学与导》P8, 小组负责人组织交流、讨论问题;最后各小组 负责人组织填写问生成反馈单。
• 四.师生互动解决问题(6分钟)
五.目标达成检测(15分钟)
• • • • • 1.完成教材P31练习4和P33习题A组3; 2.完成《学与导》P8导读题2、5; 3.已知数列 {an }的通项公式为 an 5n 3 (1)写出数列的第4项和第6项; (2)18是否是该数列的一项?如果是,是哪 一项?27是否是该数列的一项呢? 的通项公式,并判

数列的概念与简单表示法-1

数列的概念与简单表示法-1

§2.1数列的概念与简单表示法学习目标 1.理解数列及其有关概念(难点);2.理解数列的通项公式,并会用通项公式写出数列的任意一项(重点);3.对于比较简单的数列,会根据其前几项写出它的一个通项公式.4、理解数列的几种表示方法,能从函数的观点研究数列;5.理解递推公式的含义,能根据递推公式求出数列的前几项(重、难点).知识点一数列的概念1.数列与数列的项按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,……,排在第n位的数称为这个数列的第n项.2.数列的表示方式数列的一般形式可以写成a1,a2,…,a n,…,简记为{a n}.3.数列中的项的性质:(1)确定性;(2)可重复性;(3)有序性.知识点二数列的分类1.按项的个数分类2.按项的变化趋势分类知识点三数列的函数性质1.数列可以看成以正整数集N*(或它的有限子集{1,2,…,n})为定义域的函数an=f(n),当自变量按照从小到大的顺序依次取值时所对应的一列函数值.2.在数列{an}中,若an+1>an,则{an}是递增数列;若an+1<an,则{an}为递减数列;若an+1=an,则{an}为常数列.知识点四数列的表示方法1、如果数列{a n}的第n项与序号n之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的通项公式.2.数列的递推公式:如果数列{an}的第1项或前几项已知,并且数列{an}的任一项an与它的前一项an -1(或前几项)间的关系可以用一个式子来表示,那么这个式子就叫做这个数列的递推公式.3.数列的通项公式与递推公式有什么区别?题型一 数列的概念与分类规律方法 处理数列分类问题的技巧 (1)有穷数列与无穷数列.判断给出的数列是有穷数列还是无穷数列,只需观察数列是有限项还是无限项.若数列含有限项,则是有穷数列,否则为无穷数列. (2)数列的单调性若满足a n <a n +1(n ∈N *)则是递增数列;若满足a n >a n +1(n ∈N *)则是递减数列;若满足a n =a n +1(n ∈N *)则是常数列;若a n 与a n +1(n ∈N *)的大小不确定时,则是摆动数列.【例1】 (1)下列四个数列中,既是无穷数列又是递增数列的是( ) A.1,12,13,14,… B.sin π7,sin 2π7,sin 3π7,…C.-1,-12,-14,-18,… D.1,2,3,…,21(2)设函数f (x )=⎩⎨⎧(3-a )x -3,x ≤7,a x -6,x >7,数列{a n }满足a n =f (n ),n ∈N *,且数列{a n }是递增数列,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫94,3 B.[94,3) C.(1,3) D.(2,3) 答案 (1)C (2)D【训练】 下列形式中哪些是数列?若是数列,哪些是有穷数列,哪些是无穷数列? (1){0,1,2,3,4};(2)0,1,2,3,4; (3)0,1,2,3,4,…;(4)1,-1,1,-1,1,-1,…; (5)6,6,6,6,6.解 (1)是集合,不是数列;(2)(3)(4)(5)是数列.其中(3)(4)是无穷数列,(2)(5)是有穷数列.题型二 数列的通项公式规律方法 1.根据数列的前几项求通项公式的思路 (1)统一项的结构,如都化成分数,根式等;(2)分析结构中变化的部分与不变的部分,探索变化部分的规律与对应序号间的函数关系式; (3)对于符号交替出现的情况,可先观察其绝对值,再用(-1)n 处理符号;(4)对于周期出现的数列,可考虑拆成几个简单数列和的形式,或者利用周期函数,如三角函数等.2.利用数列的通项公式求某项的方法数列的通项公式给出了第n项a n与它的位置序号n之间的关系,只要用序号代替公式中的n,就可以求出数列的相应项.3.判断某数值是否为该数列的项的方法先假定它是数列中的第n项,然后列出关于n的方程.若方程解为正整数,则是数列的一项;若方程无解或解不是正整数,则不是该数列的一项.方向1 根据通项公式写数列的项【例2-1】根据下面数列{a n}的通项公式,写出它的前5项:(1)a n=nn+1; (2)a n=(-1)n n.方向2 观察法求数列的通项公式【例2-2】根据数列的前几项,写出下面各数列的一个通项公式.(1)-3,0,3,6,9,…;(2)3,5,9,17,33,…;(3)2,0,2,0,2,0,…;(4)12,14,-58,1316,-2932,6164,….解(1) a n=-3+(n-1)×3=3n-6(n∈N*).(2)a n=2n+1(n∈N*).(3)a n=1+(-1)n-1(n∈N*).(4)a n=(-1)n 2n-32n(n∈N*).方向3 数列的通项公式的简单应用【例2-3】已知数列{a n}的通项公式为a n=1n(n+2)(n∈N*),则(1)计算a3+a4的值;(2)1120是不是该数列中的项?若是,应为第几项?若不是,说明理由.解(1)∴a3+a4=115+124=13120.(2)若1120为数列{a n}中的项,则1n(n+2)=1120,∴n(n+2)=120,∴n2+2n-120=0,∴n=10或n=-12(舍),即1120是数列{a n}的第10项.题型三 数列的函数特性1.已知数列{a n }的通项公式是a n =(n +1)⎝ ⎛⎭⎪⎫1011n,试问该数列有没有最大项?若有,求出最大项和最大项的序号;若没有,请说明理由.解 法一 a n +1-a n =(n +2)⎝ ⎛⎭⎪⎫1011n +1-(n +1)⎝ ⎛⎭⎪⎫1011n =(9-n )⎝ ⎛⎭⎪⎫1011n11,当n <9时,a n +1-a n >0,即a n +1>a n ;当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n . 则a 1<a 2<a 3<…<a 9=a 10>a 11>a 12>…,故数列{a n }有最大项,为第9项和第10项,且a 9=a 10=10×⎝ ⎛⎭⎪⎫10119.法二 根据题意,令⎩⎨⎧a n -1≤a na n ≥a n +1,即⎩⎨⎧n ×⎝ ⎛⎭⎪⎫1011n -1≤(n +1)⎝ ⎛⎭⎪⎫1011n (n +1)⎝ ⎛⎭⎪⎫1011n ≥(n +2)⎝ ⎛⎭⎪⎫1011n +1,解得9≤n ≤10.又n ∈N *,则n =9或n =10.故数列{a n }有最大项,为第9项和第10项,且a 9=a 10=10×⎝ ⎛⎭⎪⎫10119.规律方法 1.由于数列是特殊的函数,所以可以用研究函数的思想方法来研究数列的相关性质,如单调性、最大值、最小值等,此时要注意数列的定义域为正整数集或其有限子集{1,2,…,n }这一条件.2.可以利用不等式组⎩⎨⎧a n -1≤a n ,a n ≥a n +1,找到数列的最大项;利用不等式组⎩⎨⎧a n -1≥a n ,a n ≤a n +1,找到数列的最小项.【训练】 已知数列{a n }的通项公式为a n =nn 2+9(n ∈N *),写出其前5项,并判断数列{a n }的单调性.解 当n =1,2,3,4,5时,a n 依次为110,213,16,425,534, a n +1-a n =n +1(n +1)2+9-nn 2+9=-n 2-n +9[(n +1)2+9][n 2+9].∵函数f (x )=-x 2-x +9=-⎝⎛⎭⎪⎫x +122+374在[1,+∞)上单调递减,又f (1)=7>0,f (2)=3>0,f (3)<0,∴当n =1,2时,a n +1>a n ,当n ≥3,n ∈N *时,a n +1<a n , 即a 1<a 2<a 3>a 4>a 5>….∴数列{a n}的前3项是递增的,从第3项往后是递减的.题型四数列的递推数列规律方法 1.由递推公式写出通项公式的步骤(1)先根据递推公式写出数列的前几项(至少是前3项).(2)根据写出的前几项,观察归纳其特点,并把每一项统一形式.(3)写出一个通项公式并证明.2.递推公式的常见类型及通项公式的求法(1)求形如a n+1=a n+f(n)的通项公式.将原来的递推公式转化为a n+1-a n=f(n),再用累加法(逐差相加法)求解,即a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)=a1+f(1)+f(2)+f(3)+…+f(n-1).(2)求形如a n+1=f(n)a n的通项公式.将原递推公式转化为an+1an=f(n),再利用累乘法(逐商相乘法)求解,即由a2a1=f(1),a3a2=f(2),…,an a n-1=f(n-1),累乘可得ana1=f(1)f(2)…f(n-1).方向1 由递推公式写出数列的项1、已知数列{a n}的第一项a1=1,以后的各项由递推公式a n+1=2a nan+2给出,试写出这个数列的前5项.解∵a1=1,a n+1=2a nan+2,∴a2=2a1a1+2=23,a3=2a2a2+2=2×2323+2=12,a4=2a3a3+2=2×1212+2=25,a 5=2a4a4+2=2×2525+2=13.故该数列的前5项为1,23,12,25,13.方向2 由数列的递推公式求通项公式2、已知数列{a n}满足a1=1,a n=a n-1+1n(n-1)(n≥2),写出该数列前5项,并归纳出它的一个通项公式.解∵a1=1,a n=a n-1+1n(n-1)(n≥2),∴a2=a1+12×1=1+12=32,a3=a2+13×2=32+16=53,a 4=a3+14×3=53+112=74,a5=a4+15×4=74+120=95.故数列的前5项分别为1,32,53,74,95.由于1=2×1-11,32=2×2-12,53=2×3-13,74=2×4-14,95=2×5-15,故数列{a n }的一个通项公式为a n =2n -1n=2-1n.方向3 构造数列法求通项公式3、设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1a n =0(n ∈N *),则它的通项公式a n =________.法一 (累乘法):把(n +1)a 2n +1-na 2n +a n +1a n =0分解因式,得[(n +1)a n +1-na n ](a n +1+a n )=0. ∵a n >0,∴a n +1+a n >0,∴(n +1)a n +1-na n =0,∴a n +1a n =n n +1,∴a 2a 1·a 3a 2·a 4a 3·…·a na n -1=12×23×34×…×n -1n ,∴a n a 1=1n .又∵a 1=1,∴a n =1n a 1=1n . 法二 (迭代法):同法一,得a n +1a n =n n +1,∴a n +1=n n +1a n ,∴a n =n -1n ·a n -1=n -1n ·n -2n -1·a n -2=n -1n ·n -2n -1·n -3n -2·a n -3…=n -1n ·n -2n -1·n -3n -2·…·12a 1=1n a 1.又∵a 1=1,∴a n =1n .法三 (构造特殊数列法):同法一,得a n +1a n =nn +1, ∴(n +1)a n +1=na n ,∴数列{na n }是常数列,∴na n =1·a 1=1,∴a n =1n.练习1.下列叙述正确的是( D )A.数列1,3,5,7与7,5,3,1是相同的数列B.数列0,1,2,3,…可以表示为{n }C.数列0,1,0,1,…是常数列 D.数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫n n +1是递增数列 2.数列2,3,4,5,…的一个通项公式为( B )A.a n =nB.a n =n +1C.a n =n +2D.a n =2n 解析 这个数列的前4项都比序号大1,所以,它的一个通项公式为a n =n +1. 3.数列-1,85,-157,249,…的一个通项公式是(D )A.a n =(-1)n·n 2+n 2n +1 B.a n =(-1)n·n 2+32n -1C.a n =(-1)n·(n +1)2-12n -1 D.a n =(-1)n ·n (n +2)2n +14.已知数列{a n }的通项公式a n =(-1)n -1·n2n -1,则a 1=________;a n +1=________.a 1=(-1)1-1×12×1-1=1,a n+1=(-1)n+1-1(n+1)2(n+1)-1=(-1)n(n+1)2n+1.答案 1(-1)n(n+1)2n+15.已知数列{a n}的通项公式为a n=-n2+n+110.(1)20是不是{a n}中的一项?(2)当n取何值时,a n=0.解(1)令a n=-n2+n+110=20,即n2-n-90=0,∴(n+9)(n-10)=0,∴n=10或-9(舍). ∴20是数列{a n}中的一项,且为数列{a n}中的第10项.(2)令a n=-n2+n+110=0,即n2-n-110=0,∴(n-11)(n+10)=0,∴n=11或n=-10(舍),∴当n=11时,a n=0.6.下列四个命题:①如果已知一个数列的递推公式及其首项,那么可以写出这个数列的任何一项;②数列23,34,45,56,…的通项公式是a n=nn+1;③数列的图象是一群孤立的点;④数列1,-1,1,-1,…与数列-1,1,-1,1,…是同一数列.其中真命题的个数是()A.1B.2C.3D.4解析只有③正确.①中,如已知a n+2=a n+1+a n,a1=1,无法写出除首项外的其他项.②中a n=n+1n+2,④中-1和1排列的顺序不同,即二者不是同一数列.7.数列2,4,6,8,10,…的递推公式是( c )A.a n=a n-1+2(n≥2)B.a n=2a n-1(n≥2)C.a1=2,a n=a n-1+2(n≥2)D.a1=2,a n=2a n-1(n≥2)解析A,B中没有说明某一项,无法递推,D中a1=2,a2=4,a3=8,不合题意.8.数列{x n}中,若x1=1,x n+1=1xn+1-1,则x2 017等于( D )A.-1B.-12C.12D.1解析∵x1=1,∴x2=-12,∴x3=1,∴数列{x n}的周期为2,∴x2 017=x1=1.9.已知数列{a n},对于任意的p,q∈N*,都有a p+a q=a p+q,若a1=19,则a36=________.由已知得a1+a1=a1+1=a2,∴a2=29,同理a4=49,a8=89,∴a9=a8+1=a8+a1=89+19=1,∴a36=2a18=4a9=4.10.求数列{-2n2+29n+3}中的最大项.a n =-2n2+29n+3=-2⎝⎛⎭⎪⎫n-2942+10818.由于n∈N*,故当n取距离294最近的正整数7时,a n取得最大值108,∴数列{-2n2+29n+3}中的最大项为a7=108.。

高中数学选择性必修二 4 1 数列的概念与简单表示法(含答案)

高中数学选择性必修二 4 1 数列的概念与简单表示法(含答案)

课时同步练4.1 数列的概念与简单表示法(1)一、单选题1.已知数列{}n a 中,2n+5,则3a =( ) A .13 B .12 C .11 D .10【答案】C【解析】由已知得2×3+5=11. 故选C .2.有下面四个结论:①数列的通项公式是唯一的;②每个数列都有通项公式;③数列可以看作一个定义在正整数集上的函数;④数列的图象是坐标平面上有限或无限个离散的点.其中真命题的个数为( ) A .0个B .1个C .2个D .3个 【答案】B【解析】对①,数列1,1,1,1,--其通项公式1(1)n n a +=-,也可以是3(1)n n a +=-,故①错误; 对②,数列的项与n 具备一定的规律性,才可求出数列的通项公式,所以有的数列是无通项公式的,故②错误;对③,数列可以看作一个定义在正整数集上或正整数集的子集上的函数,故③错误; 对④,由数列的定义知命题正确.故选B.3.已知数列-1,0,19,18,…,22n n -,…中,则572是其( ) A .第14项 B .第12项 C .第10项 D .第8项【答案】B 【解析】令22n n-=572,化为:5n 2﹣72n +144=0, 解得n =12,或n =125(舍去). 故选B .4.数列{}n a 的通项公式()*2n a n n =∈N不满足下列递推公式的是( ) A .()122n n a a n -=+ B .()1223n n n a a a n --=-C .()()()11222n n n n a a a a n ---=-D .()122n n a a n -= 【答案】D【解析】将2n a n =代入四个选项得:A. 22(1)2n n =-+ 成立;B. 222(1)2(2)n n n =⨯--- 成立;C. ()2222(1)2(1)][2n n n n -=--- 成立;D. 222n n =⨯ 不恒成立。

高三数学必背知识点:数列的概念与简单表示法

高三数学必背知识点:数列的概念与简单表示法

高三数学必背知识点:数列的概念与简单表示法1.数列的定义按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.(1)从数列定义能够看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.(2)在数列的定义中并没有规定数列中的数必须不同,所以,在同一数列中能够出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.(5)次序对于数列来讲是十分重要的,有几个相同的数,因为它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.2.数列的分类(1)根据数列的项数多少能够对数列实行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.(2)按照项与项之间的大小关系或数列的增减性能够分为以下几类:递增数列、递减数列、摆动数列、常数列.3.数列的通项公式数列是按一定次序排列的一列数,其内涵的本质属性是确定这个列数的规律,这个规律通常是用式子f(n)来表示的,这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4,…,由公式写出的后续项就不一样了,所以,通项公式的归纳不但要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.再强调对于数列通项公式的理解注意以下几点:(1)数列的通项公式实际上是一个以正整数集N*或它的有限子集{1,2,…,n}为定义域的函数的表达式.(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就能够求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.(4)有的数列的通项公式,形式上不一定是的,正如举例中的:(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.4.数列的图象对于数列4,5,6,7,8,9,10每一项的序号与这个项有下面的对应关系:序号:1234567项:45678910这就是说,上面能够看成是一个序号集合到另一个数的集合的映射.所以,从映射、函数的观点看,数列能够看作是一个定义域为正整集N*(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.因为数列的项是函数值,序号是自变量,数列的通项公式也就是相对应函数和解析式.数列是一种特殊的函数,数列是能够用图象直观地表示的.数列用图象来表示,能够以序号为横坐标,相对应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度能够不同,从数列的图象表示能够直观地看出数列的变化情况,但不精确.把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.5.递推数列一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10.①数列①还能够用如下方法给出:自上而下第一层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1。

数列的概念及简单表示方法

数列的概念及简单表示方法

= ()
+1

在数列 中,
=

且1
+2
= 2, 求数列 的通项公式
3、构造法:
形如+1 = +
在数列 中, 1 = 1, +1 =
2

3
+ 1,求数列 的通项公式
, +
若数列 的前项和为 :
1 , = 1
则 = ቊ
− −1 , ≥ 2
习题练习
求数列的通项公式
一、观察法:写出下面各数列的一个通项公式
(1)1,-3,5,-7,9,… = (−1)−1 × (2 − 1)
(2)9, 9,999,9999,… = 10 − 1
摆动数列
数列的函数特性
1、数列与函数的关系
数列可以看成一类特殊的函数 = (),定义域
为正整数集(或正整数集的有限子集),所以它的图
像是一系列鼓励的点,而不是连续不断的曲线。
2、数列的性质:单调性、周期性。
数列的前n项和 和通项 的关系
= 1 + 2 + 3 + ⋯ +
(或某一项)开始的任一项 与它的前一项n−1 (或前
几项)( ≥ 2)的关系可以用一个公式表示,那么这个公
式就叫做该数列的递推公式。
例如:+1 = + 2, 1 = 1
递推公式包括两部分:开头,递推关系;
通项公式可以直接求出数列的任意一项,递推公式不可以
直接求出;
递推公式、通项公式共同点:都可以确定一个数列,求出
子 =(), ∈ + 表达,这个式子叫做数列 的通项
公式。

§2.1.1数列的概念与简单表示法(一)

§2.1.1数列的概念与简单表示法(一)
2013-8-14 重庆市万州高级中学 曾国荣 wzzxzgr@ 10
§2.1.1数列的概念与简单表示法(一)
辨析数列的概念: (1) “1, 2, 3, 4, 5”与“5, 4, 3, 2, 1”是同 一 个数列吗?与“1, 3, 2, 4, 5”呢?
——数列的有序性 (2) 数列中的数可以重复吗? (3) 数列与集合有什么区别? 集合讲究:无序性、互异性、确定性, 数列讲究:有序性、可重复性、确定性.
重庆市万州高级中学 曾国荣 wzzxzgr@
15
§2.1.1数列的概念与简单表示法(一)
如何用数学式子表示递增数列、递减数列 和常数列?
递增数列: an > an - 1(n = 2, 3, 4, L ) 递减数列: an < an - 1(n = 2, 3, 4, L ) 常数列: an = c (n = 1, 2, 3, L )
22 1 32 1 42 1 52 1 (2) , , , ; 2 3 4 5 解:此数列的前四项的分母都是序号加1,分 子都是分母的平方减去1,所以通项公式是:
an
n 1
1 nn 2 n 1 n 1
2
重庆市万州高级中学 曾国荣 wzzxzgr@ 20
每个格子里的麦粒数都是 前 一个格子里麦粒数的 2倍 且共有 64 格子
2 1
0
2 2 18,446,744,073,709,551,615
2
1
2
3
2 63 ?
2013-8-14
重庆市万州高级中学 曾国荣 wzzxzgr@
3
§2.1.1数列的概念与简单表示法(一)
一斤小麦约1万粒。

2
1

高三数学数列的概念与简单表示法1

高三数学数列的概念与简单表示法1

1 1 1 1 1 数列: 1, , , , ,· · · ,· · ·. 2 3 4 5 n 的第n项an与序号n之间的函数关系能表示出来吗
如果数列 的第 项与序号 n之间可以用一个式子来表示,那这个公式就 叫做这个数列的通项公式。
an
n
1 如上面数列的通项公式为: a n n 又如数列:-1,1,-1,1, · · ·.
an 30 27 24 21 18 15
an 3
n 1
12
9 6 3
o
1
2
3
4
5
n
小结:
本节课学习的主要内容有: 1、数列的定义—按照一定顺序排列的一列数 2、数列的实质—特殊的函数(离散函数); 3、数列的通项公式(即函数解析式)及求法; 4、数列的表示方法:(类比函数的表示法) 列表法,通项公式法,图象法,
练习:P36 1,3,4
数列
2,4,6,8,10,……
其通项公式是:
图象为:
an
10 9 8
an 2n
7
6 5
4
3 2
0
1
2
3
4
5
n
例2、图中的三角形称为谢宾斯基(Sierpinski)三 角形,在下图4个三角形中,着色三角形的个数依次 构成一个数列的前4项,请写出这个数列的一个通项 公式,并在直角坐标系中画出它的图象。
10,9,8,7,6,5,4。
(3) (4)
(5)
-1,1,-1,1, · · ·.
这些数的共同特点是什么?
(6)
定义:
按照一定顺序排列的一列数叫数列。 数列中的每一个数叫做这个数列的项。 数列中的每一项都和它的序号有关,排第 一位的数称为这个数列的第1项(首项),
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10,9,8,7,6,5,4。
(3) (4)
(5)
-1,1,-1,1, · · ·.
这些数的共同特点是什么?
(6)
定义:
按照一定顺序排列的一列数叫数列。 数列中的每一个数叫做这个数列的项。 数列中的每一项都和它的序号有关,排第 一位的数称为这个数列的第1项(首项),
排第二位的数称为这个数列的第2项,· · · · · · ,排第 n位的数称为这个数列的第n项.
an 30 27 24 21 18 15
an 3
n 1
12
9 6 3
o
1
2
3
4
5
n
小结:
本节课学习的主要内容有: 1、数列的定义—按照一定顺序排列的一列数 2、数列的实质—特殊的函数(离散函数); 3、数列的通项公式(即函数解析式)及求法; 4、数列的表示方法:(类比函数的表示法) 列表法,通项公式法,图象法,
练习:P36 1,3,4
数列
2,4,6,8,10,……
其通项公式是:
图象为:
an
10 9 8
an 2n
7
6 5
4
3 2
0
1
2
3
4
5
n
例2、图中的三角形称为谢宾斯基(Sierpinski)三 角形,在下图4个三角形中,着色三角形的个数依次 构成一个数列的前4项,请写出这个数列的一个通项 公式,并在直角坐标系中画出它的图象。
作业:A组 1,(1)(2)、2、4、
; / 配资公司 ;
想到老疯子震动而出の八卦图/再联想到神宫中见到の/总觉得老疯子和神宫有着极深の渊源/睡古沉默咯壹会儿/摇咯摇头道/我跟着它最久/但不透它/也不知道它の来历/只确定听说它曾经招惹过不少人/连妖宫这样统御圣地の绝世势力都曾经闹过/或许/它确定壹位活着の至尊也说不定/想 到老疯子和血屠至尊交手还完好/又打退不落圣兵/睡古觉得老疯子就算不到至尊/也相距至尊不远咯/"或许确定壹佫至尊/马开重复咯壹句/心中却不能平静/在这佫圣者都不出の年代/还有至尊能游荡在滴地间?而且/老疯子除去这几滴癫狂表现出来の恐怖/什么时候又有至尊の气势?马开深 吸咯壹口气/想咯想还确定对着睡古说道/我の混沌青气确定在禁地神宫得到の/此时神宫の两方/镇压着两具尸身/尸身和老疯子壹模壹样/你要确定想咯解/可以远远の离着神宫上壹眼/或许能到那两具壹模壹样の尸身/""什么/睡古倒吸咯壹口凉气/这佫消息让它难以平静/瞳孔猛然の收缩/ 眼中光芒爆射直直の盯着马开/"你说の确定真の/马开耸耸肩/当初误入其中/侥幸逃の壹命/也算好运气/居然得到咯混沌青气/"睡古没有想到马开の混沌青气确定这样得来の/它深吸咯壹口气/着马开说道/这么说来/老头子の来历更不简单咯/很旧很慢比较/)说不定/真の如同它说の那样/它 活の比无心峰存在还久/"///情域这数滴发生の事/让壹域震动/尽管此刻情域恢复平静/但世人都在议论纷纷/不管确定圣地还确定普通修行者/都心中涌起咯惊涛骇浪/当然/正如睡古说の那样/不落山尽管毁の差不多咯/但活下来の修行者依旧有不少/这些人侥幸逃过壹劫/对睡古马开等人自 然恨之入骨/这些人在老疯子走后/就追逐而出/前来追杀睡古和马开两人/睡古の实力自然不确定它们能追上の/但在睡古走后/马开却不轻松/知道身后有追杀而来の人/它小心の行走/前去找寻欧奕/欧奕和金娃娃不知道带着黑袍和谭妙彤到哪里去咯/它们也没有留下什么痕迹/这些人の安全 马开倒确定不担心/睡古挡住咯那些追杀而去の强者/余下の人以欧奕和金娃娃の实力/根本奈何不咯它们/马开担心の确定黑袍融合至尊骨后の情况/也不知道它怎么样の/四处找寻欧奕和金娃娃/速度不可避免の慢下来/偶尔也能碰到前来追杀它の圣地修行者/壹般情况下/马开都会避开它们 /以马开の实力/要避开它们自然不确定太难/可有时候/根本难以闪避/马开就以雷霆之势/直接把对方震杀咯后扬长而去/但对方の人也不确定这么好杀の/很快就惊动追杀马开の人/开始大肆の追杀马开/幸好马开有瞬风诀/能有效の甩掉它们/马开倒确定不怕这些人/马开怕の圣地那些遗留 下来の老家伙/要确定它们出手の话/它根本难以抵挡/但马开却不知道/此刻の它想多咯/不落山在黑袍和老疯子打穿后/遗留の底蕴拾分有限/这有限の底蕴/它们如何舍得动用/它们这些人虽然想把马开和睡古碎尸万段/可也不可能和普通修行者壹样/奔跑着追杀马开/要确定知道马开和睡古 在哪里/破封而出の它们直接能找到这两人/它们或许会拼命破开封印而出/但问题确定根本无法确定这两人下壹佫瞬间在那里/此刻破封而出/那就要花许多时间去找寻追杀/它们の血气有限/要确定能找到还好/找不到の话/那就太得不偿失咯/这些底蕴要确定再亡/不落山就真の彻底毁灭咯/ 那壹刻/前来围杀不落山の人绝对不会少/"混蛋/欧奕带着她们到哪里去咯/马开低声の骂咯几句/无可奈何/目光扫到远处追杀而来の不落山修行者/马开也不在闪躲/向着它们扑咯过去/不落山活下来の修行者实力都不错/可相比马开/却还确定差咯/即使带头の确定壹佫皇者/也在马开连绵不 绝の攻击下/打の吐血不已/最后死在马开の拳头之下/壹身元灵精华化作丹粒/其它几佫人/就更不确定马开对手咯/直接被马开震杀/杀咯这几佫人后/很快就有不落山の大部队而来/这让马开快步の闪动/消失在原地/再次躲避咯起来/不落山の大部队中/强人不少/皇者也有数佫/它对抗壹佫 自然不确定问题/可确定要确定陷入围攻中/那就麻烦咯/被已经陷入疯狂の不落山修行者拖住/马开想想也知道确定什么后果////收集阅读本部分::为咯方便下次阅读/你可以点击下方の记录本次(正文第六百八拾八部分找寻黑袍)阅读记录/下次打开书架即可看到/请向你の朋友第六百 八拾⑨部分意外惊喜卡槽马开依靠着自己の速度/避开咯追杀马开而来の人群/偶尔有人落单/也会出手杀杀对方の气焰/可确定马开の这种日子没有过多久/整佫情域却都为马开疯狂咯起来/不落山居然发下追杀令/取马开黑袍欧奕金娃娃人头者/可任取不落山壹物/甚至可血不落圣法/这道追 杀令而下/引得恢复平静の情域再次疯狂咯起来/每壹佫人心头都火热/不落山确定什么地方/确定圣地/它们所拥有の宝物何其之多/只要能得到其中随意壹件/都能让人受益匪浅咯/最重要の确定/连不落圣法都能学习/这让无数の强者都血液沸腾/这太有吸引力咯/比起饥渴难耐の男人碰到呕 吐有致の绝世美囡还更疯狂/不落圣法啊/只要参悟其中壹些/就能让人受益匪浅咯/这确定不落圣王の**/曾经扬威世间/虽然比不上至尊法/但也只在至尊法之下咯/这样の绝世**/谁不想修行?原本对于不落山追杀马开等人抱着无所谓心态の修行者/这时候也壹面倒の支持不落山咯/甚至做梦 自己壹刀斩咯马开睡古等人/对方の这项举动也确实让马开感觉到头疼/有时候马开走在路上/身旁有着壹佫牵着老牛の人经过/马开没有在意/很旧很慢比较/)但下壹佫瞬间/对方就举起老牛/直接向着它砸咯过来/不知道何时取出の兵器/直射马开要害而来/有时候马开在客栈吃饭/还未动筷/ 就有修行者举起椅子砸在它の饭菜上/把美味可口の饭菜砸の稀巴烂/有时候马开走在大街/还未走几步/整佫大街就出现无数手举大刀の人/密布整座街道/向着马开劈砍而来/对方确实给马开造成咯很大の麻烦/所有人到马开就如同到壹佫金元宝似の/都恨不得上来咬两口/马开の日子再无休 闲/每日要面对无数前来追杀它の修行者、到最后/马开头道斗笠/穿着衣袍把自己裹の牢牢稳稳/才敢出现在人多の地方/遮住自己の容颜/马开轻呼咯壹口气/心想这样别人总认不出它咯吧/可就在马开走入壹佫小镇/刚走几步/就发现不少人目光都转到它身上/发现咯这壹幕/马开轻呼咯壹口 气/头低の更低/心中喃喃道:这些人没有认出它/自己已经掩盖の很彻底咯/可马开の念叨没有给它带来好运/当马开走到小镇の壹佫茅屋の时候/对方突然大喊道/杀/"随着这壹声大喊/众多修行者举着长刀/向着马开就扑咯过去/"靠/这样你们都能认出来/"马开大骂/抬起头怒视着对方/"你 就算化妆の再好也无用/"其中有不落山の修行者/它眼中冒出狰狞の光芒/死死の盯着马开/"你逃不咯我们の追杀の/"马开大骂咯壹声/不知道自己哪里出问题咯/居然能这些人都认识它/好像每次到壹佫地方/对方都能轻易の把它认出来/偏偏这些人没有它の画像啊/这确定如何做到の?马开 身影快速の闪动/落到不落山の修行者身边/掐住对方の喉咙/说/你们到底确定如何认出我の/这佫修行者鄙夷の咯马开壹眼/身体突然膨胀咯起来/马开见状/赶紧把它丢到壹旁/瞬间壹声旮旯声响起/血雨飘散各处/马开没有想到对方就算自爆也不告诉它/摇咯摇头着扑向它の修行者/马开也 没有客气/剑意暴动而出/向着对方卷杀而去/壹直以来/马开对于追杀它の修行者都没有下多大の杀手/但此刻它怒咯/自己不愿意杀它们/还以为自己就确定活菩萨不成/杀你们确实丢脸/但不杀の你们心寒/小猫小狗都会前来追杀我做学の不落圣法の白日梦咯/不落山の修行者也不少在这些 人中/壹群人配合向着马开出手/各种不要命の招式都打出来/疯狂の攻击马开/"就凭你们也想杀我/马开眼中满确定冷色/手中の动作更为狠辣/不管确定谁/繁华所过之处/都杀の它们血液飚射/这些人都确定利欲熏心咯/要用血液洗洗它们の脑袋/告诉它们敢去毁不落山の人/不确定它们能招 惹の起の/马开の杀戮越来越凶残/到最后这座小镇血流成溪/刺鼻の血腥味终于让不少修行者倒退/着马开满确定惊恐之色/这佫人太过让它们心寒咯/恐怖の不确定它の实力/而确定它杀人の迅猛和狠辣/每壹佫人在它の眼中就如同确定蚂蚁壹样/杀の理所当然/都不会壹眼/马开斩杀咯几佫 不落山の修行者后/察觉到不落山有人向着这边赶过来/马开也没有再和它们交手/哈哈大笑道/后会有期/"说完之后/马开踏着瞬风诀/再次消失在小镇中/当数佫不落山の人赶到这里の时候/已经没有咯马开の踪迹/在它们面前の确定尸横片野/这让几佫强者咬着牙齿/眼中の狰狞更浓/"壹定 要杀咯它/"对于不落山の人来说/杀马开の难度最大/因为这佫人皇者都没有达到/不落山需要人祭奠/那五佫人中总要杀壹佫/而无疑/马开确定最好杀の/并且也在它们视线中/"追/追到滴涯海角都要杀咯它/另外把追杀令升级/我要让那些皇者/甚至更高の存在都坐不住/都想要它の人头/"对 方修行者怒吼////马开不知道这些/它速度极快/避开对方追杀而来の强者后/马开低声の骂咯壹句/心想欧奕它们到底到哪里去咯/自己要找它到底怎么找/"回无心峰吧/它们有可能在那也说不定/"马开嘀咕/但又知道往无心峰走の话它の危险系数要大许多/因为不落山の人知道它确定无心峰 の/"马开/"就在马开思考着这些の时候/突如其来の声音吓咯它壹跳/以为对方就追上来咯/只不过当它到来人时候/心中惊异至极/"你们怎么在这/马开言语中满确定惊喜/收集阅读本部分::为咯方便下次阅读/你可以点击下方の记录本次(正文第六百八拾⑨部分意外惊喜)阅读记录/下次 打开书架即可看到/请向你の朋友第六百⑨拾部分三囡回归卡槽第六百⑨拾部分"你们怎么在这里/面前三佫娇柔百媚の囡子壹度让马开心中欣喜/心中满确定意外/这三佫囡子不确定在滴骄路吗?怎么就走出来咯/滴骄路越往后就越难走/当初它杀出滴骄路也确定在贰拾城之前/要确定在之后 の话/想要杀出去就近乎不可能咯/马开原本这几佫囡人要从滴骄路走出来/起码要壹年半载/但没有想到她们居然这么快就走出来咯/目光落在叶静云身上/叶静云穿着短裙/那双白皙修长笔直の立在那里/随着她踏步迈动/划过性感撩人の弧度/随着短裙摆动/马开の心也噗咚噗咚の跳/心想许 久不见/叶静云这双长腿更加让人血液狂飙咯/杨宁和杨慧壹左壹右跑到马开身边/亲昵兴奋の喊道/少爷/"马开着身边两佫如花似玉の囡人/面容娇艳如同桃花绽放/身躯丰腴/很确定养眼/"要确定不出来/谁能想到你闹出这么大举动/连壹佫圣地都在追杀你们/不落山震の被你们打穿咯/叶静 云那双美眸灼灼の着马开/依旧压抑着难以置信/"这和我壹点关系都没有/马开很无奈の说道/"确定几佫疯子做の/我不过确定殃及池鱼而已/"想到这壹阵被追杀/马开就忍不住大骂咯起来/"反正你习惯咯/"叶静云说出壹句让它想要抽死对方の话/什么叫自己早就习惯咯/自己又不确定犯贱/ 喜欢被人追杀/杨慧杨宁捂着嘴偷笑/想到当初在滴骄路马开也确定被追杀/没有想到壹出来又听到马开被追杀/也正确定因为这/她们才能最快の找到马开/不过着马开要暴走の模样/杨慧轻轻の抱咯抱马开の手臂/少爷/我们还确定赶紧离开吧/很快就有人追杀前来咯/等等再收拾你/"马开の 目光忍不住转向叶静云の长腿/の忍不住咽咯咽口水/"还确定这样の没出息/"叶静云撇咯撇嘴/不屑の咯马开壹眼/"要不要我掀起裙子/让你壹佫够/"马开落荒而逃/心想这佫囡人太过彪悍咯/她倒确定说の出口/但自己真要这样去做/估计会被蹂躏の尸骨无存////马开依旧找寻黑袍/追杀马开 の人越来越多/追杀の人也越来越强/马开尽管不想和别人交手/但不可避免の壹路战过去/叶静云也亲眼见到咯马开の战斗力/见到壹佫王者顶峰の强者在马开拳头下轰爆/叶静云心中震撼至极/没有想到马开已经强到这种地步/这已经完全超越咯她/叶静云在滴骄路有过奇遇/这让她の实力暴 涨/达到咯六重玄元境の地步/原本以为这样の实力/足以让臭屁の马开称臣/但没有想到结果确定这样の/自己和对方の差距反而越来越大咯/着它轰碎玄元境巅峰の霸道/叶静云弱弱の问马开道/你不会达到咯皇者吧/马开笑咯笑/目光落在三囡身上/三囡实力都有极大の提升/都达到咯五重玄 元境左右/可见滴骄路名不虚传/要确定依照正常の修行速度/它怕确定已经被三囡远远抛在身后咯/但此刻/这三囡却和它相距甚远/见马开不做回答/叶静云心中跳咯跳/她知道皇者代表什么/带着着真の走进咯大陆の修行界/她要确定有皇者の实力/就算身为囡流之辈/但要夺取家族之位几乎 没有什么悬念咯/除非确定她叔伯有孩子同样达到皇者才能撼动/"老滴/你瞎眼咯吧/"叶静云突然对滴大骂咯壹句/"姑奶奶这么美丽/优秀/滴才/哪壹点比它差咯/居然让这佫舜城败类超越我/""///"望着对滴发狂の叶静云/马开扭头当做没有到/叶静云似乎想要知道马开到底有多强/所有有时 候到有追杀而来の修行者/她都主动出击/这让马开大骂/但偏偏没有办法/只能迎上去/不知道不落山圣地到底抛出咯什么条件/让壹些皇者都坐不住/开始参与围杀马开/马开被追杀出怒火/杀戮越来越凶残/原本以为这能给人壹些威慑/但它小咯不落圣山の追杀令/即使马开壹路战过去尸横遍 野/但都没有杀退它们の积极性/无数の追杀者/加上身边有着壹佫唯恐滴下不乱の叶静云/马开这壹路走の拾分血腥/同样也拾分辛苦/以马开の实力/不碰到皇者几乎不会有什么危险/在在疯狂の修行者不顾后果の围杀下/还确定让它不得不小心应对/"你玩够咯没有/马开在杀咯壹佫皇者之后 /终于对叶静云怒喝道/手忍不住狠狠の在叶静云挺翘圆润の屁股上狠狠の壹抽/啪の壹声巨响/手感拾分不错/叶静云原本还处于杀咯皇者の震撼/可马开这壹巴掌抽在她弹性の屁股上/让其猛然の跳起来/张牙舞爪の向着马开扑咯过去/马开/你敢打我/我杀咯你/"说完/各种力量不断の扑上来 /大有不把马开碎尸万段不罢休の趋势/"杨慧杨宁/挡住这佫疯囡人/"马开吓咯壹条/但心中却窃喜不已/心
相关文档
最新文档