直线与平面垂直的判定练习题

合集下载

高中 直线、平面垂直的判定与性质 知识点+例题+练习

高中 直线、平面垂直的判定与性质 知识点+例题+练习

教学过程在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.规律方法证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面).解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.【训练1】(2013·江西卷改编)教学效果分析教学过程如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=2,AA1=3,E为CD上一点,DE=1,EC=3.证明:BE⊥平面BB1C1C.考点二平面与平面垂直的判定与性质【例2】(2014·深圳一模)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC=AA1,且AC=2BC,点D是AB的中点.证明:平面ABC1⊥平面B1CD.规律方法证明两个平面垂直,首先要考虑直线与平面的垂直,也教学效果分析教学过程可简单地记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明非常类似,这种转化方法是本讲内容的显著特征,掌握化归与转化思想方法是解决这类问题的关键.【训练2】如图,在长方体ABCDA1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.证明:平面ABM⊥平面A1B1M.考点三平行、垂直关系的综合问题教学效果分析教学过程【例3】(2013·山东卷)如图,在四棱锥P-ABCD中,AB⊥AC,AB⊥P A,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.(1)求证:CE∥平面P AD;(2)求证:平面EFG⊥平面EMN.规律方法线面关系与面面关系的证明离不开判定定理和性质定理,而形成结论的“证据链”依然是通过挖掘题目已知条件来实现的,如图形固有的位置关系、中点形成的三角形的中位线等,都为论证提供了丰富的素材.【训练3】(2013·辽宁卷)如图,AB是圆O的直径,P A垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面P AC;(2)设Q为P A的中点,G为△AOC的重心,求证:QG∥平面PBC.教学效果分析1.转化思想:垂直关系的转化2.在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.如有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.故熟练掌握“线线垂直”、“面面垂直”间的转化条件是解决这类问题的关键.创新突破6——求解立体几何中的探索性问题【典例】(2012·北京卷)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.[反思感悟] (1)解决探索性问题一般先假设其存在,把这个假设作已知条件,和题目的其他已知条件一起进行推理论证和计算,在推理论证和计算无误的前提下,如果得到了一个合理的结论,则说明存在,如果得到了一个不合理的结论,则说明不存在.(2)在处理空间折叠问题中,要注意平面图形与空间图形在折叠前后的相互位置关系与长度关系等,关键是点、线、面位置关系的转化与平面几何知识的应用,注意平面几何与立体几何中相关知识点的异同,盲目套用容易导致错误.【自主体验】(2014·韶关模拟)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=12AB=2,点E为AC中点,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2.(1)求证:DA⊥BC;(2)在CD上找一点F,使AD∥平面EFB.基础巩固题组(建议用时:40分钟)一、填空题1.设平面α与平面β相交于直线m,直线a在平面α内,直线b 在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的________条件.2.(2014·绍兴调研)设α,β为不重合的平面,m,n为不重合的直线,则下列正确命题的序号是________.①若α⊥β,α∩β=n,m⊥n,则m⊥α;②若m⊂α,n⊂β,m⊥n,则n⊥α;③若n⊥α,n⊥β,m⊥β,则m⊥α;④若m∥α,n∥β,m⊥n,则α⊥β.3.如图,AB是圆O的直径,P A垂直于圆O所在的平面,C是圆周上不同于A,B的任一点,则图形中有________对线面垂直.4.若M是线段AB的中点,A,B到平面α的距离分别是4 cm,6 cm,则M到平面α的距离为________.5.(2014·郑州模拟)已知平面α,β,γ和直线l,m,且l⊥m,α⊥γ,α∩γ=m,β∩γ=l,给出下列四个结论:①β⊥γ;②l⊥α;③m⊥β;④α⊥β.其中正确的是________.6.如图,在四棱锥P ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为正确的条件即可)7.设α,β是空间两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:________(用代号表示).8.如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.二、解答题9.(2013·北京卷)如图,在四棱锥P ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥底面ABCD,P A⊥AD.E和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.10.(2013·泉州模拟)如图所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.(1)求证:B1D1∥平面A1BD;(2)求证:MD⊥AC;(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.能力提升题组(建议用时:25分钟)一、填空题1.如图,在斜三棱柱ABCA1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在直线______上.2.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为________.①AC⊥BD;②AC∥截面PQMN;③AC=BD;④异面直线PM与BD所成的角为45°.3.(2013·南通二模)如图,已知六棱锥P ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).二、解答题4.(2014·北京西城一模)。

直线平面平行、垂直的判定及其性质习题

直线平面平行、垂直的判定及其性质习题

直线平面平行、垂直的判定及其性质习题(1)如果直线a平行于平面α,直线b ∥a,点A∈b,则b与α的位置关系是()(A)b∩α=A(B)b∥α或b⊂α(C)b⊂α(D)b∥α(2)下列命题中,真命题是()(A)若直线a∥平面α,且直线b⊂α,则α∥b(B)若直线a∥b,且直线α∥平面α,则b∥α(C)若直线a∥平面α,且直线b∥α,则a∥b(D)若直线α∩β=直线a,直线b⊂β,且b和α没有公共点,则b∥α(3)(2009·浙江高考)设α、β是两个不同的平面,l是一条直线,以下命题正确的是() A.若l⊥α,α⊥β,则l⊂βB.若l∥α,α∥β,则l⊂βC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β(4)(2004年北京,3)设m、n是两条不同的直线,α、β、γ是三个不同的平面.给出下列四个命题,其中正确命题的序号是①若m⊥α,n∥α,则m⊥n②若α∥β,β∥γ,m⊥α,则m⊥γ③若m∥α,n∥α,则m∥n ④若α⊥γ,β⊥γ,则α∥βA.①②B.②③C.③④D.①④(5)在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE:EB=CF:FB=1:3,则对角线AC和平面DEF的位置关系是___________.(6)已知:如图1—21,ABCD是平行四边形,S是平面ABCD外一点,M为SC的中点.求证:SA∥平面MDB.(7)(2010·江苏苏北三市模拟)如图,在正方体ABCD-A1B1C1D1中,M、N、G分别是A1A,D1C,AD的中点.求证:(1)MN∥平面ABCD;(2)MN⊥平面B1BG.(8)(2009·天津模拟)如图,在直三棱柱ABC -A 1B 1C 1中,AC =3,AB =5, cos ∠BAC =35. (1)求证:BC ⊥AC 1;(2)若D 是AB 的中点,求证:AC 1∥平面CDB 1.(9)如图,已知在四棱锥P -ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,PA =AD =1,AB=2,E 、F 分别是AB 、PD 的中点.(1)求证:AF ∥平面PEC ;(2)求PC 与平面ABCD 所成的角的正切值;(3)求二面角P -EC -D 的正切值.(10)已知直角三角形ABC 中,AB=AC=a ,AD 是斜边BC 上的高,以AD 为折痕使角BDC 成直角。

线面垂直判定(解答题)

线面垂直判定(解答题)

1如图1,在正方体1111ABCD A B C D-中,M为1CC的中点,AC交BD于点O,求证:1A O⊥平面MBD.2如图2,P是△ABC所在平面外的一点,且PA⊥平面ABC,AD⊥PC,平面PAC⊥平面PBC.求证:BC⊥平面PAC.3 如图1所示,ABCD为正方形,SA⊥平面ABCD,过A且垂直于SC的平面分别交SB SC SD,,于E F G,,.求证:AE SB⊥,AG SD⊥.4 如图2,在三棱锥A-BCD中,BC=AC,AD=BD,F是AB中点,作BE⊥CD,E为垂足,作AH⊥BE于H.求证:AH⊥平面BCD.5 如图3,AB是圆O的直径,C是圆周上一点,PA 平面ABC.若AE⊥PC,E为垂足,F是PB上任意一点,求证:平面AEF⊥平面PBC.6. 空间四边形ABCD中,若AB⊥CD,BC⊥AD,求证:AC⊥BDADB OC7. 证明:在正方体ABCD -A 1B 1C 1D 1中,A 1C ⊥平面BC 1DAC证明:连结ACBD AC ⊥AC 为A 1C 在平面AC 上的射影∴⊥⊥⎫⎬⎭⇒⊥BD A CA C BC A C BC D11111同理可证平面8. 如图,PA ⊥平面ABCD ,ABCD 是矩形,M 、N 分别是AB 、PC 的中点,求证:MN AB ⊥C. 证:取PD 中点E ,则EN DC //12C⇒EN AM //∴AE MN //又平面平面平面 CD AD PA AC CD PAD AE PAD ⊥⊥⎫⎬⎭⇒⊥⊂⎫⎬⎭⇒⊥⎫⎬⎪⎭⎪⇒⊥CD AE CD AB AE MN MN AB ////9如图在ΔABC 中, AD ⊥BC , ED=2AE , 过E 作FG ∥BC , 且将ΔAFG 沿FG 折起,使∠A'ED=60°,求证:A'E ⊥平面A'BC分析:弄清折叠前后,图形中各元素之间的数量关系和位置关系。

解: ∵FG ∥BC ,AD ⊥BC∴A'E ⊥FG∴A'E ⊥BC设A'E=a ,则ED=2a 由余弦定理得:A'D 2=A'E 2+ED 2-2•A'E •EDcos60°=3a2∴ED 2=A'D 2+A'E 2∴A'D ⊥A'E∴A'E ⊥平面A'BC10如图, 在空间四边形SABC 中, SA 平面ABC , ABC = 90, AN SB 于N , AM SC 于M 。

直线与平面的垂直判定和性质经典例题(教师)

直线与平面的垂直判定和性质经典例题(教师)

典型例题一例1下列图形中,满足唯一性的是( ).A .过直线外一点作与该直线垂直的直线B .过直线外一点与该直线平行的平面C .过平面外一点与平面平行的直线D .过一点作已知平面的垂线分析:本题考查的是空间线线关系和线面关系,对定义的准确理解是解本题的关键.要注意空间垂直并非一定相关. 解:A .过直线外一点作与这条直线垂直的直线,由于并没有强调相交,所以这样的垂线可以作无数条.事实上这无数条直线还在同一个平面内,这个平面为该直线的一个垂面.B .过直线外一点可以作一条而且仅能作一条直线与该直线平行,但可以作无数个平面和该直线平行.C .过此点作平面内任一直线的平行线,这条平行线都平行于平面.所以过平面外一点与平面平行的直线应有无数条.D .过一点作已知平面的垂线是有且仅有一条.假设空间点A 、平面α,过点A 有两条直线AB 、AC 都垂直于α,由于AB 、AC 为相交直线,不妨设AB 、AC 所确定的平面为β,α与β的交线为l ,则必有l AB ⊥,l AC ⊥,又由于AB 、AC 、l 都在平面β内,这样在β内经过A 点就有两条直线和直线l 垂直,与平面几何中经过一点有县仅有一条直线与已知直线垂直相矛盾.故选D .说明:有关“唯一性”结论的问题,常用反证法,或者借助于其它已证明过的唯一性命题来证明.在本书中,过一点作已知平面的垂线有且仅有一条,同时,过一点作已知直线的垂面也是有且仅有一个.它们都是“唯一性”命题,在空间作图题中常常用到.典型例题二例2 已知下列命题:(1)若一直线垂直于一个平面的一条斜线,则该直线必垂直于斜线在这个平面内的射影; (2)平面内与这个平面的一条斜线垂直的直线互相平行;(3)若平面外的两条直线,在这个平面上的射影互相垂直,则这两条直线互相垂直;(4)若两条直线互相垂直,且其中的一条平行一个平面,另一条是这个平面的斜线,则这两条直线在这个平面上的射影互相垂直.上述命题正确的是( ).A .(1)、(2)B .(2)、(3)C .(3)、(4)D .(2)、(4)分析:本题考查的三垂线定理及其逆定理的简单应用.应用这两个定理时要特别注意“平面内”这一条件,同时要注意各种不同位置的两定理的基本图形及其变式图形. 解:(1)已知直线不一定在平面内,所以不能用三垂线逆定理来判断垂直关系;(2)平面内与这个平面的一条斜线垂直的直线必定与斜线在平面内的射影垂直,所以它们之间也平行; (3)根据三垂线定理可证明直线与另一直线的射影垂直,但不能进一步说明直线和直线垂直; (4)根据三垂线定理的逆定理和空间两直线所成角的概念,不难证明此命题的正确性. 故选D . 说明:(3)中若一直线与另一直线的射影垂直,则有另一直线必与这一直线的射影垂直.如在正方体1111D C B A ABCD -中,F E 、分别为棱1AA 和1BB 上的点,G 为棱BC 上的点,且1BB EF ⊥,EG FC ⊥1,求FG D 1∠.典型例题三例3 如图,在正方体1111D C B A ABCD -中,E 是1BB 的中点,O 是底面正方形ABCD 的中心,求证:⊥OE 平面1ACD .分析:本题考查的是线面垂直的判定方法.根据线面垂直的判定方法,要证明⊥OE 平面1ACD ,只要在平面1ACD 内找两条相交直线与OE 垂直.证明:连结D B 1、D A 1、BD ,在△BD B 1中, ∵O E 、分别是B B 1和DB 的中点, ∴D B EO 1//. ∵⊥11A B 面D D AA 11,∴1DA 为1DB 在面D D AA 11内的射影.又∵D A AD 11⊥,∴11DB AD ⊥. 同理可证,C D D B 11⊥.又∵111D CD AD = ,1AD 、⊂C D 1面1ACD ,∴⊥D B 1平面1ACD .∵EO D B //1,∴⊥EO 平面1ACD .另证:连结CE AE 、,O D 1,设正方体1DB 的棱长为a ,易证CE AE =. 又∵OC AO =,∴AC OE ⊥. 在正方体1DB 中易求出:a a a DODD O D 2622222211=⎪⎪⎭⎫ ⎝⎛+=+=,a a a OBBEOE 232222222=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛=+= ()a a aEB B D E D 232222212111=⎪⎭⎫⎝⎛+=+=.∵21221E D OEO D =+,∴OE O D ⊥1.∵O AC O D = 1,O D 1、⊂AC 平面1ACD ,∴⊥OE 平面1ACD .说明:要证线面垂直可找线线垂直,这是立体几何证明线面垂直时常用的转化方法.在证明线线垂直时既要注意三垂线定理及其逆定理的应用,也要注意有时是从数量关系方面找垂直,即勾股定理或余弦定理的应用.典型例题四例4 如图,在△ABC 中, 90=∠B ,⊥SA 平面ABC ,点A 在SB 和SC 上的射影分别为N M 、,求证:SC MN ⊥.分析:本题考查的仍是线面垂直的判定和性质定理,以及线线垂直和线面垂直相互转化思想.欲证MN SC ⊥,可证⊥SC 面AMN ,为此须证AN SC ⊥,进而可转化为证明⊥AN 平面SBC ,而已知SB AN ⊥,所以只要证BC AN ⊥即可.由于图中线线垂直、线面垂直关系较多,所以本题也可以利用三垂线定理和逆定理来证线线垂直.证明:∵⊥SA 面ABC ,⊂BC 平面ABC ,∴BC SA ⊥.∵90=∠B ,即BC AB ⊥,A SA BA = ,∴⊥BC 平面SAB . ∵⊂AN 平面SAB .∴AN BC ⊥.又∵SB AN ⊥,B BC SB = ,∴⊥AN 平面SBC . ∵⊂SC 平面SBC ,∴SC AN ⊥, 又∵SC AM ⊥,A AN AM = ,∴⊥SC 平面AMN .∵⊂MN 平面AMN .∴MN SC ⊥. 另证:由上面可证⊥AN 平面SBC .∴MN 为AM 在平面SBC 内的射影.∵SC AM ⊥,∴SC MN ⊥.说明:在上面的证题过程中我们可以看出,证明线线垂直常转化为证明线面垂直,而证明线面垂直又转化为证明线线垂直.立体几何中的证明常常是在这种相互转化的过程中实现的.本题若改为下题,想想如何证:已知⊥SA ⊙O 所在平面,AB 为⊙O 的直径,C 为⊙O 上任意一点(C 与B A 、不重合).过点A 作SB 的垂面交SB 、SC 于点N M 、,求证:SC AN ⊥.典型例题五例5 如图,AB 为平面α的斜线,B 为斜足,AH 垂直平面α于H 点,BC 为平面α内的直线,θ=∠ABH ,α=∠HBC ,β=∠ABC ,求证:θαβcos cos cos ⋅=.分析:本题考查的是线面角的定义和计算.要证明三个角余弦值之间关系,可考虑构造直角三角形,在直角三角形中求出三个角的余弦值,再代入验证证明,其中构造直角三角形则需要用三垂线定理或逆定理.证明:过H 点作HD 垂直BC 于D 点,连AD . ∵α⊥AH ,∴AD 在平面α内射影为HD .∵HD BC ⊥,α⊂BC , ∴AD BC ⊥.在Rt △ABH 中有:BA BH =θcos ①在Rt △BHD 中有:BHBD =αcos ②在Rt △ABD 中有:BABD =βcos ③由①、②、③可得:αθβcos cos cos ⋅=.说明:由此题结论易知:斜线与平面所成的角,是这条斜线和这个平面内的直线所成的一切角中最小的角.若平面的斜线与平面所成角为θ,则斜线与平面内其它直线所成角β的范围为⎥⎦⎤⎢⎣⎡2πθ,典型例题六例6 如图,已知正方形ABCD 边长为4,⊥CG 平面ABCD ,2=CG ,F E 、分别是AD AB 、中点,求点B 到平面GEF 的距离. 分析:此题是1991年高考题,考查了直线与直线、直线与平面等位置关系以及逻辑推理和空间想像能力.本题是求平面外一点到平面的距离,可用转移法将该点到平面的距离转化为求另一点到该平面的距离.为此要寻找过点B 与平面GEF 平行的直线,因为与平面平行的直线上所有点到平面的距离相等. 证明:连结AC BD 、,EF 和BD 分别交AC 于O H 、,连GH ,作GH OK ⊥于K . ∵ABCD 为正方形,F E 、分别为AD AB 、的中点,∴BD EF //,H 为AO 中点.∵EF BD //,⊄BD 平面GFE ,∴//BD 平面GFE . ∴BD 与平面GFE 的距离就是O 点到平面EFG 的距离.∵AC BD ⊥,∴AC EF ⊥.∵⊥GC 面ABCD ,∴EF GC ⊥. ∵C AC GC = ,∴⊥EF 平面GCH . ∵⊂OK 平面GCH ,∴OK EF ⊥.又∵GH OK ⊥,H EF GH = ,∴⊥OK 平面GEF .即OK 长就是点B 到平面GEF 的距离. ∵正方形边长为4,2=CG ,∴24=AC ,2=HO ,23=HC .在Rt △HCG 中,2222=+=CGHCHG .在Rt △GCH 中,11112=⋅=HGGC HO OK .说明:求点到平面的距离常用三种方法:一是直接法.由该点向平面引垂线,直接计算垂线段的长.用此法的关键在于准确找到垂足位置.如本题可用下列证法:延长CB 交FE 的延长线于M ,连结GM ,作ME BP ⊥于P ,作CG BN //交MG 于N ,连结PN ,再作PN BH ⊥于H ,可得⊥BH 平面GFE ,BH 长即为B 点到平面EFG 的距离.二是转移法.将该点到平面的距离转化为直线到平面的距离.三是体积法.已知棱锥的体积和底面的面积.求顶点到底面的距离,可逆用体积公式.典型例题七例7 如图所示,直角ABC ∆所在平面外一点S ,且SC SB SA ==.(1)求证:点S 与斜边AC 中点D 的连线SD ⊥面ABC ;(2)若直角边BC BA =,求证:BD ⊥面SAC .分析:由等腰三角形底边上的中线得到线线垂直,从而得到线面垂直.证明:(1)在等腰SAC ∆中,D 为AC 中点,∴AC SD ⊥.取AB 中点E ,连DE 、SE .∵BC ED //,AB BC ⊥,∴AB DE ⊥.又AB SE ⊥,∴AB ⊥面SED ,∴SD AB ⊥. ∴SD ⊥面ABC (AB 、AC 是面ABC 内两相交直线).(2)∵BC BA =,∴AC BD ⊥.又∵SD ⊥面ABC ,∴BD SD ⊥.∵D AC SD = ,∴BD ⊥面SAC .说明:证明线面垂直的关键在于寻找直线与平面内的两条相交直线垂直.寻找途径可由等腰三角形底边上的中线与底边垂直,可由勾股定理进行计算,可由线面垂直得线线垂直等.典型例题八例8 如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面. 已知:b a //,α⊥a .求证:α⊥b .分析:由线面垂直的判定定理知,只需在α内找到两条相交直线与b 垂直即可.证明:如图所示,在平面α内作两条相交直线m 、n .∵α⊥a ,∴m a ⊥,n a ⊥. 又∵a b //,从而有m b ⊥,n b ⊥.由作图知m 、n 为α内两条相交直线.∴α⊥b . 说明:本题的结论可以作为判定线面垂直的依据,即当要证的直线与平面的垂直关系不明确或不易证出时,可以考虑证明与已知直线平行的直线与平面垂直.典型例题九例9 如图所示,已知平面α 平面β=EF ,A 为α、β外一点,α⊥AB 于B ,β⊥AC 于C ,α⊥CD 于D .证明:EF BD ⊥.分析:先证A 、B 、C 、D 四点共面,再证明EF ⊥平面ABCD ,从而得到EF BD ⊥. 证明:∵α⊥AB ,α⊥CD ,∴CD AB //.∴A 、B 、C 、D 四点共面. ∵α⊥AB ,β⊥AC ,EF =βα ,∴EF AB ⊥,EF AC ⊥.又A AC AB = ,∴EF ⊥平面ABCD .∴BD EF ⊥. 说明:与线面平行和线线平行交替使用一样,线面垂直和线线垂直也常互为条件和结论.即要证线面垂直,先找线线垂直;要证线线垂直,先找线面垂直.本题证明“A 、B 、C 、D 四点共面”非常重要,仅由EF ⊥平面ABC ,就断定BD EF ⊥,则证明是无效的.典型例题十例10 平面α内有一半圆,直径AB ,过A 作SA ⊥平面α,在半圆上任取一点M ,连SM 、SB ,且N 、H 分别是A 在SM 、SB 上的射影.(1)求证:SB NH ⊥;(2)这个图形中有多少个线面垂直关系?(3)这个图形中有多少个直角三角形?(4)这个图形中有多少对相互垂直的直线? 分析:注意利用直线与直线、直线与平面垂直的有关知识进行判断.(1)证明:连AM 、BM .如上图所示,∵AB 为已知圆的直径,∴BM AM ⊥.∵SA ⊥平面α,α⊂BM ,∴MB SA ⊥.∵A SA AM = ,∴BM ⊥平面SAM . ∵AN ⊂平面SAM ,∴AN BM ⊥.∵SM AN ⊥于N ,M SM BM = ,∴AN ⊥平面SMB .∵SB AH ⊥于H ,且NH 是AH 在平面SMB 的射影,∴SB NH ⊥.解(2):由(1)知,SA ⊥平面AMB ,BM ⊥平面SAM ,AN ⊥平面SMB . ∵AH SB ⊥且HN SB ⊥,∴SB ⊥平面ANH , ∴图中共有4个线面垂直关系.(3)∵SA ⊥平面AMB ,∴SAB ∆、SAM ∆均为直角三角形. ∵BM ⊥平面SAM ,∴BAM ∆、BMS ∆均为直角三角形.∵AN ⊥平面SMB ,∴ANS ∆、ANM ∆、ANH ∆均为直角三角形.∵SB ⊥平面ANH ,∴SHA ∆、BHA ∆、SHN ∆、BHN ∆均为直角三角形. 综上,图中共有11个直角三角形.(4)由SA ⊥平面AMB 知,AM SA ⊥,AB SA ⊥,BM SA ⊥. 由BM ⊥平面SAM 知,AM BM ⊥,SM BM ⊥,AN BM ⊥. 由AN ⊥平面SMB 知,SM AN ⊥,SB AN ⊥,NH AN ⊥. 由SB ⊥平面ANH 知,AH SB ⊥,HN SB ⊥. 综上,图中共有11对互相垂直的直线.说明:为了保证(2)(3)(4)答案不出错,首先应找准(2)的答案,由“线⊥面”可得到“线⊥面内线”,当“线⊥面内线”且相交时,可得到直角三角形;当“线⊥面内线”且不相交时,可得到异面且垂直的一对直线.典型例题十一例11 如图所示,︒=∠90BAC .在平面α内,PA 是α的斜线,︒=∠=∠60PAC PAB .求PA 与平面α所成的角.分析:求PA 与平面α所成角,关键是确定PA 在平面α上射影AO 的位置.由PAC PAB ∠=∠,可考虑通过构造直角三角形,通过全等三角形来确定AO 位置,构造直角三角形则需用三垂线定理. 解:如图所示,过P 作α⊥PO 于O .连结AO ,则AO 为AP 在面α上的射影,PAO ∠为PA 与平面α所成的角.作AC OM ⊥,由三重线定理可得AC PM ⊥.作AB ON ⊥,同理可得AB PN ⊥.由PAC PAB ∠=∠,︒=∠=∠90PNA PMA ,PA PA =, 可得PMA ∆≌PNA ∆,∴PN PM =.∵OM 、ON 分别为PM 、PN 在α内射影,∴ON OM =.所以点O 在BAC ∠的平分线上. 设a PA =,又︒=∠60PAM ,∴a AM 21=,︒=∠45OAM ,∴a AM AO 222==.在POA ∆中,22cos ==∠PAAO PAO ,∴︒=∠45PAO ,即PA 与α所成角为︒45. 说明:(1)本题在得出PA 在面α上的射影为BAC ∠的平分线后,可由公式βαθcos cos cos ⋅=来计算PA 与平面α所成的角,此时︒==∠60θPAC ,α=∠PAO ,︒==∠45βCAO .(2)由PA 与平面α上射影为BAC ∠平分线还可推出下面结论:四面体ABC P -中,若PAC PAB ∠=∠,PBC PBA ∠=∠,则点A 在面ABC 上的射影为ABC ∆的内心.典型例题十二例12 如图所示,在平面β内有ABC ∆,在平面β外有点S ,斜线AC SA ⊥,BC SB ⊥,且斜线SA 、SB 分别与平面β所成的角相等,设点S 与平面β的距离为cm 4,BC AC ⊥,且cm AB 6=.求点S 与直线AB 的距离.分析:由点S 向平面β引垂线,考查垂足D 的位置,连DB 、DA ,推得AC DA ⊥,BC DB ⊥,又︒=∠90ACB ,故A 、B 、C 、D 为矩形的四个顶点.解:作SD ⊥平面β,垂足为D ,连DA 、DB .∵AC SA ⊥,BC DB ⊥,∴由三垂线定理的逆定理,有:AC DA ⊥,BC DB ⊥,又BC AC ⊥,∴ACBD 为矩形.又∵SB SA =,∴DB DA =,∴ACBD 为正方形, ∴AB 、CD 互相垂直平分.设O 为AB 、CD 的交点,连结SO ,根据三垂线定理,有AB SO ⊥,则SO 为S 到AB 的距离.在SOD Rt ∆中,cm SD 4=,cm AB DO 321==,∴cm SO 5=.因此,点S 到AB 的距离为cm 5.说明:由本例可得到点到直线距离的作法:(1)若点、直线在确定平面内,可直接由点向直线引垂线,这点和垂足的距离即为所求.(2)若点在直线所在平面外,可由三垂线定理确定:由这点向平面引垂线得垂足,由垂足引直线的垂线得斜足,则这点与斜足的距离为点到直线的距离.(3)处理距离问题的基本步骤是:作、证、算,即作出符合要求的辅助线,然后证明所作距离符合定义,再通过解直角三角形进行计算.典型例题十三例13 如图,ABCD 是正方形,SA 垂直于平面ABCD ,过A 且垂直于SC 的平面交SB 、SC 、SD 分别于点E 、F 、G ,求证:SB AE ⊥,SD AG ⊥.分析:本题考查线面垂直的判定与性质定理,以及线线垂直和线面垂直相互转化的思想.由于图形的对称性,所以两个结论只需证一个即可.欲证SB AE ⊥,可证⊥AE 平面SBC ,为此须证BC AE ⊥、SC AE ⊥,进而转化证明⊥BC 平面SAB 、⊥SC 平面AEFG .证明:∵SA ⊥平面ABCD ,⊂BC 平面ABCD ,∴BC SA ⊥. 又∵ABCD 为正方形,∴AB BC ⊥.∴⊥BC 平面ASB . ∵⊂AE 平面ASB ,∴AE BC ⊥. 又∵⊥SC 平面AEFG ,∴AE SC ⊥. ∴⊥AE 平面SBC .又∵⊂SB 平面SBC , ∴SB AE ⊥,同理可证SD AG ⊥.说明:(1)证明线线垂直,常用的方法有:同一平面内线线垂直、线面垂直的性质定理,三垂线定理与它的逆定理,以及与两条平行线中一条垂直就与另一条垂直.(2)本题的证明过程中反复交替使用“线线垂直”与“线面垂直”的相互联系,充分体现了数学化思想的优越性.典型例题十四例14 如图,求证:如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面内的射影在这个角的平分线上.已知:BAC ∠在平面α内,点α∉P ,AB PE ⊥,AC PF ⊥,α⊥PO ,垂足分别是E 、F 、O ,PF PE =.求证:CAO BAO ∠=∠.证明:∵α⊥PO ,∴OE 为PE 在α内的射影.∵PE AB ⊥,α平面⊂AB ,∴OE AB ⊥. 同理可证:OF AC ⊥.又∵α⊥PO ,PF PE =,OF OE =, ∴CAO BAO ∠=∠.说明:本题是一个较为典型的题目,与此题类似的有下面命题:从一个角的顶点引这个角所在平面的斜射线,使斜射线和这个角两边的夹角相等,则斜射线在平面内的射影,是这个角的平分线所在的直线.由此结论和上一个例题很容易求解下面这道题:已知︒=∠90ACB ,S 为平面A C B 外一点,︒=∠=∠60SCB SCA ,求SC 与平面ACB 所成角.典型例题十五例15 判断题:正确的在括号内打“√”号,不正确的打“×”号. (1)一条直线和一个平面平行,它就和这个平面内的任何直线平行.( ) (2)如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直.( ) (3)垂直于三角形两边的直线必垂直于第三边.( )(4)过点A 垂直于直线a 的所有直线都在过点A 垂直于α的平面内.( )(5)如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.( )解(1)直线与平面平行,则直线与平面内的直线的位置关系不外乎有两种①平行②异面,因此应打“×”号 (2)该命题的关键是这无数条直线具有怎样的位置关系.①若为平行,则该命题应打“×”号;若为相交,则该命题应打“√”,正是因为这两种情况可能同时具备,因此,不说明面内无这数条线的位置关系,则该命题应打“×”号.(3)垂直于三角形两边的直线必垂直于三角形所在的平面,由线面垂直定义的逆用,则该直线必垂直于三角形的第三边,∴该命题应打“√”.(4)前面介绍了两个命题,①过一点有且只有一个平面与已知直线垂直,②过一点有且只有一条直线与已知平面垂直,根据第一个命题知:过点A 垂直于直线a 的平面惟一,因此,过点A 且与直线a 垂直的直线都在过点A 且与直线a 垂直的平面内,∴该命题应打“√”号.(5)三条共点直线两两垂直,设为a ,b ,c 且a ,b ,c 共点于O ,∵b a ⊥,c a ⊥,0=c b ,且b ,c 确定一平面,设为α,则α⊥a ,同理可知b 垂直于由a ,c 确定的平面,c 垂直于由了确定的平面,∴该命题应打“√”号.说明:本题是利用直线和平面垂直的定义及判定定理等知识来解答的问题.解答此类问题必须作到:概念清楚、问题理解透彻、相关知识能灵活运用.典型例题十六例16 如图,已知空间四边形ABCD 的边AC BC =,BD AD =,引CD BE ⊥,E 为垂足,作BE AH ⊥于H ,求证:BCD AH 平面⊥.分析:若证BCD AH 平面⊥,只须利用直线和平面垂直的判定定理,证AH 垂直平面BCD 中两条相交直线即可.证明:取AB 中点F ,连CF 、DF , ∵BC AC =,∴AB CF ⊥.又∵BD AD =,∴AB DF ⊥,∴CDF AB 平面⊥, 又CDF CD 平面⊂,∴AB CD ⊥又BE CD ⊥,∴ABE CD 平面⊥,AH CD ⊥, 又BE AH ⊥,∴BCD AH 平面⊥.典型例题十七例17 如果平面α与α外一条直线a 都垂直b ,那么α//a . 已知:直线α⊄a ,b a 直线⊥,α⊥b .求证:α//a .分析:若证线面平行,只须设法在平面α内找到一条直线'a ,使得'//a a ,由线面平行判定定理得证. 证明:(1)如图,若a 与b 相交,则由a 、b 确定平面β,设'a =αβ .αααβαα////,,'''''a a a a a ab a a b ab a b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎭⎪⎬⎫⊂⊥⊥⇒⎭⎬⎫⊂⊥又∵. (2)如图,若a 与b 不相交,则在a 上任取一点A ,过A 作b b //',a 、'b 确定平面β,设'a =αβ .αααβααα////,,////'''''''''''a a a a a a ab a b a b b b a b a b b b b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎪⎭⎪⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥⊥⇒⎪⎭⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥又又∵又∵. 典型例题十八例18 如图,已知在ABC ∆中,︒=∠60BAC ,线段ABC AD 平面⊥,DBC AH 平面⊥,H 为垂足.求证:H 不可能是DBC ∆的垂心.分析:根据本题所证结论,可采用反证法予以证明.证明:如图所示,假设H 是DBC ∆的垂心,则DC BH ⊥.∵DBC AH 平面⊥,∴AH DC ⊥, ∴ABH DC 平面⊥,∴DC AB ⊥.又∵ABC DA 平面⊥,∴DA AB ⊥, ∴DAC AB 平面⊥,∴AC AB ⊥,这与已知︒=∠60BAC 矛盾,∴假设不成立,故H 不可能是DBC ∆的垂心.说明:本题只要满足︒≠∠90BAC ,此题的结论总成立.不妨给予证明.典型例题十九例19 在空间,下列哪些命题是正确的( ).①平行于同一条直线的两条直线互相平行②垂直于同一条直线的两条直线互相平行 ③平行于同一个平面的两条直线互相平行④垂直于不一个平面的两条直线互相平行A .仅②不正确B .仅①、④正确C .仅①正确D .四个命题都正确分析:①该命题就是平行公理,即课本中的公理4,因此该命题是正确的;②如图,直线a ⊥平面α,α⊂b ,α⊂c ,且A c b = ,则b a ⊥,c a ⊥,即平面α内两条直交直线b ,c 都垂直于同一条直线a ,但b ,c 的位置关系并不是平行.另外,b ,c 的位置关系也可以是异面,如果把直线b 平移到平面α外,此时与a 的位置关系仍是垂直,但此时,b ,c 的位置关系是异面.③如图,在正方体1111D C B A ABCD -中,易知ABCD B A 平面//11,ABCD D A 平面//11,但11111A D A B A = ,因此该命题是错误的.④该命题是线面垂直的性质定理,因此是正确的. 综上可知①、④正确.∴应选B .典型例题二十例20 设a ,b 为异面直线,AB 为它们的公垂线 (1)若a ,b 都平行于平面α,则α⊥AB ;(2)若a ,b 分别垂直于平面α、β,且c =βα ,则c AB //.分析:依据直线和平面垂直的判定定理证明α⊥AB ;证明线与线的平行,由于此时垂直的关系较多,因此可以考虑利用线面垂直的性质证明c AB //.图1 图2证明:(1)如图1,在α内任取一点P ,设直线a 与点P 确定的平面与平面α的交线为'a ,设直线b 与点P 确定的平面与平面α的交线为'b∵α//a ,α//b ,∴'//a a ,'//b b 又∵a AB ⊥,b AB ⊥,∴'a AB ⊥,'b AB ⊥, ∴α⊥AB .(2)如图2,过B 作α⊥'BB ,则a BB //',则'BB AB ⊥又∵b AB ⊥,∴AB 垂直于由b 和'BB 确定的平面.∵β⊥b ,∴c b ⊥,α⊥'BB ,∴c BB ⊥'.∴c 也垂直于由'BB 和b 确定的平面.故AB c //.说明:由第(2)问的证明可以看出:利用线面垂直的性质证明线与线的平行,其关键是构造出平面,使所证线皆与该平面垂直.如题中,通过作出辅助线'BB ,构造出平面,即由相交直线b 与'BB 确定的平面.然后借助于题目中的其他垂直关系证得.典型例题二十一例21 如图,在正方体1111D C B A ABCD -中,EF 为异面直线D A 1与AC 的公垂线,求证:1//BD EF .分析:证明1//BD EF ,构造与EF 、1BD 都垂直的平面是关键.由于EF 是AC 和D A 1的公垂线,这一条件对构造线面垂直十分有用.证明:连结11C A ,由于11//C A AC ,AC EF ⊥,∴11C A EF ⊥.又D A EF 1⊥,1111A C A D A = ,∴D C A EF 11平面⊥. ① ∵11111D C B A BB 平面⊥,111111D C B A C A 平面⊂, ∴111C A BB ⊥.∵四边形1111D C B A 为正方形,∴1111D B C A ⊥,1111B BB D B = ,∴D D BB C A 1111平面⊥, 而D D BB BD 111平面⊂,∴111BD C A ⊥.同理11BD DC ⊥,1111C C A DC = ,∴D C A BD 111平面⊥. ② 由①、②可知:1//BD EF .典型例题二十二例22 如图,已知P 为ABC ∆外一点,PA 、PB 、PC 两两垂直,a PC PB PA ===,求P 点到平面ABC 的距离.分析:欲求点到平面的距离,可先过点作平面的垂线,进一步求出垂线段的长.解:过P 作ABC PO 平面⊥于O 点,连AO 、BO 、CO ,∴AO PO ⊥,BO PO ⊥,CO PO ⊥ ∵a PC PB PA ===,∴PAO ∆≌PBO ∆≌PCO ∆, ∴OC OB OA ==,∴O 为ABC ∆的外心. ∵PA 、PB 、PC 两两垂直, ∴a CA BC AB 2===,ABC ∆为正三角形,∴a AB AO 3633==,∴a AOPA PO 3322=-=.因此点P 到平面ABC 的距离a 33.说明:(1)求点到平面距离的基本程序是:首先找到或作出要求的距离;然后使所求距离在某一个三角形中;最后在三角形中根据三角形的边角关系求出距离.(2)求距离问题转化到解三角形有关问题后,在三角形中求距离常常用到勾股定理、正弦定理、余弦定理及有关三角函数知识.(3)点到平面距离是立体几何中一个重要内容,高考命题中出现较多,应充分注意,除了上面提到方法之外,还有其他一些方法,比如以后学习的等积法,希望同学们在学习过程不断总结.典型例题二十三例23 如图,已知在长方体1111D C B A ABCD -中,棱51=AA ,12=AB ,求直线11C B 和平面11BCD A的距离.分析:求线面距离,其基本方法是在线上选一点,作出点面距,距离然后根据求点面距的有关方法求解.解:如图,∵BC C B //11,且1111BCD A C B 平面⊄,11BCD A BC 平面⊂,∴1111//BCD A C B 平面.从而点1B 到平面11BCD A 的距离即为所求.过点1B 作B A E B 11⊥于E ,∵11ABB A BC 平面⊥,且B B AA E B 111平面⊂,∴E B BC 1⊥.又B B A BC =1 ,∴111BCD A E B 平面⊥.即线段E B 1的长即为所求,在B B A Rt 11∆中,13601251252211111=+⨯=⋅=B A BB B A E B , ∴直线11C B 到平面11BCD A 的距离为1360.说明:本题考查长方体的性质,线面距离的概念等基础知识以及计算能力和转化的数学思想,解答本题的关键是把线面距离转化为点面距离,进而转化为点线距离,再通过解三角形求解,这种转化的思想非常重要,数学解题的过程就是将复杂转化为简单,将未知转化为已知,从而求解.典型例题二十四例24 AD 、BC 分别为两条异面直线上的两条线段,已知这两条异面直线所成的角为︒30,cm AD 8=,BC AB ⊥,BC DC ⊥.求线段BC 的长.分析:首先依据题意,画出图形,利用平移,将异面直线AD 、BC 所成的角、垂直关系转化到某一个或某几个平面内,应用平面几何有关知识计算出BC 之长.解:如图,在平面α内,过A 作BC AE //,过C 作AB CE //,两线交于E .∵BC AE //,∴DAE ∠就是AD 、BC 所成的角,︒=∠30DAE .∵BC AB ⊥,∴四边形ABCE 是矩形.连DE ,∵CD BC ⊥,CE BC ⊥,且C CE CD = ,∴CDE BC 平面⊥.∵BC AE //,∴CDE AE 平面⊥.∵CDE DE 平面⊂,∴DE AE ⊥.在AED Rt ∆中,得34=AE ,∴)(34cm AE BC ==.说明:解决空间问题,常常将空间关系转化一个或几个平面上来,只有将空间问题归化到平面上来,才能应用平面几何知识解题,而平移变换是转化的重要手段.。

高三数学 直线、平面垂直的判定及其性质练习题(含答案)

高三数学   直线、平面垂直的判定及其性质练习题(含答案)

直线、平面垂直的判定及其性质建议用时:45分钟一、选择题1.设m,n是两条不同的直线,α,β是两个不同的平面,则下列说法正确的是()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥αC[A中,由m⊥n,n∥α可得m∥α或m与α相交或m⊥α,错误;B中,由m∥β,β⊥α可得m∥α或m与α相交或m⊂α,错误;C中,由m⊥β,n⊥β可得m∥n,又n⊥α,所以m⊥α,正确;D中,由m⊥n,n⊥β,β⊥α可得m∥α或m与α相交或m⊂α,错误.] 2.在下列四个正方体中,能得出AB⊥CD的是()A[A选项中,因为CD⊥平面AMB,所以CD⊥AB;B选项中,AB与CD 成60°角;C选项中,AB与CD成45°角;D选项中,AB与CD夹角的正切值为 2.]3.(2019·东北三省三校联考)在四棱锥P-ABCD中,P A⊥平面ABCD,底面ABCD是正方形,且P A=AB=2,则直线PB与平面P AC所成角为()A.π6 B.π4 C.π3 D.π2A[连接BD,交AC于点O.因为P A⊥平面ABCD,底面ABCD是正方形,所以BD⊥AC,BD⊥P A.又因为P A∩AC=A,所以BD⊥平面P AC,故BO⊥平面P AC.连接OP,则∠BPO即为直线PB与平面P AC所成角.又因为P A=AB=2,所以PB=22,BO= 2.所以sin∠BPO=BOPB=12,所以∠BPO=π6.故选A.]4.(2017·全国卷Ⅲ)在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则() A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥ACC[如图.∵A1E在平面ABCD上的投影为AE,而AE不与AC,BD垂直,∴B,D错;∵A1E在平面BCC1B1上的投影为B1C,且B1C⊥BC1,∴A1E⊥BC1,故C正确;(证明:由条件易知,BC1⊥B1C,BC1⊥CE,又CE∩B1C=C,∴BC1⊥平面CEA1B1.又A1E⊂平面CEA1B1,∴A1E⊥BC1)∵A1E在平面DCC1D1上的投影为D1E,而D1E不与DC1垂直,故A错.] 5.如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列结论正确的是()A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABCD[∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,∴BD⊥CD.又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,故CD⊥平面ABD,则CD⊥AB.又AD⊥AB,AD∩CD=D,AD⊂平面ADC,CD⊂平面ADC,故AB⊥平面ADC.又AB⊂平面ABC,∴平面ADC⊥平面ABC.]二、填空题6.如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,若该长方体的体积为82,则直线AC1与平面BB1C1C所成的角为.30°[连接BC1(图略),由AB⊥平面BB1C1C知∠AC1B就是直线AC1与平面BB1C1C所成的角.由2×2×AA1=82得AA1=22,∴BC1=BC2+CC21=23,在Rt△AC1B中,tan∠AC1B=ABBC1=223=33,∴∠AC1B=30°.]7.在正四棱柱ABCD-A1B1C1D1中,AA1=2AB=2,则点A1到平面AB1D1的距离是.23[如图,△AB1D1中,AB1=AD1=5,B1D1=2,∴△AB 1D 1的边B 1D 1上的高为(5)2-⎝ ⎛⎭⎪⎫222=322,∴S △AB 1D 1=12×2×322=32,设A 1到平面AB 1D 1的距离为h ;则有S △AB 1D 1×h =S △A 1B 1D 1×AA 1, 即32h =12×2,解得h =23.]8.(2016·全国卷Ⅱ)α,β是两个平面,m ,n 是两条直线,有下列四个命题: ①如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. ②如果m ⊥α,n ∥α,那么m ⊥n . ③如果α∥β,m ⊂α,那么m ∥β.④如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号)②③④ [对于①,α,β可以平行,可以相交也可以不垂直,故错误. 对于②,由线面平行的性质定理知存在直线l ⊂α,n ∥l ,又m ⊥α,所以m ⊥l ,所以m ⊥n ,故正确.对于③,因为α∥β,所以α,β没有公共点.又m ⊂α,所以m ,β没有公共点,由线面平行的定义可知m ∥β,故正确.对于④,因为m ∥n ,所以m 与α所成的角和n 与α所成的角相等.因为α∥β,所以n 与α所成的角和n 与β所成的角相等,所以m 与α所成的角和n 与β所成的角相等,故正确.]三、解答题9.(2018·北京高考)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,E ,F 分别为AD ,PB 的中点.(1)求证:PE⊥BC;(2)求证:平面P AB⊥平面PCD;(3)求证:EF∥平面PCD.[证明](1)因为P A=PD,E为AD的中点,所以PE⊥AD.因为底面ABCD为矩形,所以BC∥AD.所以PE⊥BC.(2)因为底面ABCD为矩形,所以AB⊥AD.又因为平面P AD⊥平面ABCD,所以AB⊥平面P AD.所以AB⊥PD.又因为P A⊥PD,所以PD⊥平面P AB.因为PD⊂平面PCD,所以平面P AB⊥平面PCD.(3)取PC中点G,连接FG,DG.因为F,G分别为PB,PC的中点,所以FG∥BC,FG=12BC.因为四边形ABCD为矩形,且E为AD的中点,所以DE∥BC,DE=12BC.所以DE∥FG,DE=FG.所以四边形DEFG为平行四边形,所以EF∥DG.又因为EF⊄平面PCD,DG⊂平面PCD,所以EF∥平面PCD.10.(2019·太原模拟)如图,在直三棱柱ABC-A1B1C1中,D是BC上的一点,AB=AC,且AD⊥BC.(1)求证:A1C∥平面AB1D;(2)若AB=BC=AA1=2,求点A1到平面AB1D的距离.[解](1)证明:如图,连接BA1,交AB1于点E,再连接DE,据直棱柱性质知,四边形ABB1A1为平行四边形,E为AB1的中点,∵AB=AC,AD⊥BC,∴D是BC的中点,∴DE∥A1C,又DE⊂平面AB1D,A1C⊄平面AB1D,∴A1C∥平面AB1D.(2)如图,在平面BCC1B1中,过点B作BF⊥B1D,垂足为F,∵D是BC中点,∴点C到平面AB1D与点B到平面AB1D距离相等,∵A1C∥平面AB1D,∴点A1到平面AB1D的距离等于点C到平面AB1D的距离,∴BF长为所求,在Rt△B1BD中,BD=1,BB1=2,B1D=5,∴BF=25=255,∴点A1到平面AB1D的距离为255.1.如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部A[连接AC1(图略),由AC⊥AB,AC⊥BC1,AB∩BC1=B,得AC⊥平面ABC1.∵AC⊂平面ABC,∴平面ABC1⊥平面ABC.∴C1在平面ABC上的射影H必在两平面的交线AB上.]2.(2019·唐山模拟)如图,在以下四个正方体中,直线AB与平面CDE垂直的是()①②③④A.①②B.②④C.①③D.②③B[对于①,易证AB与CE所成角为45°,则直线AB与平面CDE不垂直;对于②,易证AB⊥CE,AB⊥ED,且CE∩ED=E,则AB⊥平面CDE;对于③,易证AB与CE所成角为60°,则直线AB与平面CDE不垂直;对于④,易证ED⊥平面ABC,则ED⊥AB,同理EC⊥AB,可得AB⊥平面CDE.故选B.] 3.如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是.①②③[由BC⊥AC,BC⊥P A可得BC⊥平面P AC,又AF⊂平面P AC,所以AF⊥BC,又AF⊥PC,则AF⊥平面PBC,从而AF⊥PB,AF⊥BC,故①③正确;由PB⊥AF,PB⊥AE可得PB⊥平面AEF,从而PB⊥EF,故②正确;若AE⊥平面PBC,则由AF⊥平面PBC知AE∥AF与已知矛盾,故④错误.] 4.(2019·西宁模拟)已知三棱柱ABC-A1B1C1,A1在底面ABC上的射影恰为AC的中点D,∠BCA=90°,AC=BC=2,又知BA1⊥AC1.(1)求证:AC1⊥平面A1BC;(2)求点C到平面A1AB的距离.[解](1)证明:∠BCA=90°得BC⊥AC,因为A1D⊥平面ABC,所以A1D⊥BC,A1D∩AC=D,所以BC⊥平面A1ACC1,所以BC⊥AC1.因为BA1⊥AC1,BA1∩BC=B,所以AC1⊥平面A1BC.(2)作DE⊥AB于点E,连接A1E,作DF⊥A1E于点F.因为A1D⊥平面ABC,所以A1D⊥AB,DE⊥AB,DE∩A1D=D,所以AB⊥平面A1DE,又DF⊂平面A1DE,所以AB⊥DF,由DF⊥A1E,A1E∩AB=E,所以DF⊥平面A1AB,由(1)及已知得DE=22,A1D=3,Rt△A1DE中,DF =A 1D ·DE A 1E =217, 因为D 是AC 中点,所以C 到面A 1AB 距离2217.1.(2019·衡阳模拟)如图,在四面体ABCD 中,AD ⊥BD ,截面PQMN 是矩形,则下列结论不一定正确的是( )A .平面BDC ⊥平面ADCB .AC ∥平面PQMNC .平面ABD ⊥平面ADCD .AD ⊥平面BDCD [由PQ ∥MN ,MN ⊂平面ADC ,PQ ⊄平面ADC ,得PQ ∥平面ADC ,又PQ⊂平面ABC,平面ABC∩平面ADC=AC,∴PQ∥AC,同理QM∥BD,因为PQ⊥QM,∴AC⊥BD,又BD⊥AD,AC∩AD=A,∴BD⊥平面ADC,∴平面BDC⊥平面ADC,平面ABD⊥平面ADC,∴A和C选项均正确;由PQ∥AC,得AC∥平面PQMN,∴B选项正确.∵不能得到AD⊥DC或AD⊥BC,∴不能得到AD⊥平面BDC,故选项D 不一定正确.故选D.]2.(2019·泉州模拟)如图,在直三棱柱ABC-A1B1C1中,底面ABC是边长为2的正三角形,M,N分别是AB,AA1的中点,且A1M⊥B1N.(1)求证:B1N⊥A1C;(2)求M到平面A1B1C的距离.[解](1)证明:如图,连接CM.在直三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,CM ⊂平面ABC , 所以AA 1⊥CM .在△ABC 中,AC =BC ,AM =BM ,所以CM ⊥AB .又AA 1∩AB =A ,所以CM ⊥平面ABB 1A 1.因为B 1N ⊂平面ABB 1A 1,所以CM ⊥B 1N .又A 1M ⊥B 1N ,A 1M ∩CM =M ,所以B 1N ⊥平面A 1CM .因为A 1C ⊂平面A 1CM ,所以B 1N ⊥A 1C .(2)法一:连接B 1M .在矩形ABB 1A 1中,因为A 1M ⊥B 1N ,所以∠AA 1M =∠A 1B 1N .所以tan ∠AA 1M =tan ∠A 1B 1N ,即AM AA 1=A 1N A 1B 1. 因为△ABC 是边长为2的正三角形,M ,N 分别是AB ,AA 1的中点,所以AM =1,CM =3,A 1B 1=2.设AA 1=x ,则A 1N =x 2.所以1x =x 22,解得x =2.从而S △A 1B 1M =12S 正方形ABB 1A 1=2,A 1C =B 1C =2 2.在△A 1CB 1中,cos ∠A 1CB 1=A 1C 2+B 1C 2-A 1B 212A 1C ·B 1C =34,所以sin ∠A 1CB 1=74,所以S △A 1B 1C =12A 1C ·B 1C ·sin ∠A 1CB 1=7.设点M 到平面A 1B 1C 的距离为d ,由V 三棱锥M -A 1B 1C =V 三棱锥C -A 1B 1M ,得13S △A 1B 1C ·d =13S △A 1B 1M ·CM ,所以d =S △A 1B 1M ·CM S △A 1B 1C =2217,即点M 到平面A 1B 1C 的距离为2217. 法二:在矩形ABB 1A 1中,因为A 1M ⊥B 1N ,所以∠AA 1M =∠A 1B 1N ,所以tan ∠AA 1M =tan ∠A 1B 1N ,即AM AA 1=A 1N A 1B 1. 因为△ABC 是边长为2的正三角形,M ,N 分别是AB ,AA 1的中点, 所以AM =1,CM =3,A 1B 1=2.设AA 1=x ,则A 1N =x 2,所以1x =x22,解得x =2.如图,取A 1B 1的中点D ,连接MD ,CD ,过M 作MO ⊥CD 于O .在正方形ABB 1A 1中,易知A 1B 1⊥MD ,由(1)可得CM ⊥A 1B 1,又CM ∩MD =M ,所以A 1B 1⊥平面CDM .因为MO ⊂平面CDM ,所以A 1B 1⊥MO .又MO ⊥CD ,A 1B 1∩CD =D ,所以MO ⊥平面A 1B 1C ,即线段MO 的长就是点M 到平面A 1B 1C 的距离.由(1)可得CM⊥MD,又MD=2,所以由勾股定理,得CD=CM2+MD2=7.S△CMD=12·CD·MO=12·CM·MD,即12×7×MO=12×3×2,解得MO=2217,故点M到平面A1B1C的距离为221 7.。

2.3直线 平面垂直的判定及其性质习题

2.3直线 平面垂直的判定及其性质习题

11、一条直线和平面所成角为θ,那么θ的取值范围是 ( )A 、(0º,90º)B 、[0º,90º]C 、[0º,180º]D 、[0º,180º)2、两条平行直线在平面内的射影可能是①两条平行线;②两条相交直线;③一条直线;④两个点. 上述四个结论中,可能成立的个数是 ( )A 、1个B 、2个C 、3个D 、4个3、正方体ABCD-A 1B 1C 1D 1中,与AD 1垂直的平面是 ( ) A 、平面DD 1C 1C B 、平面A 1DB 1 C 、平面A 1B 1C 1D 1 D 、平面A 1DB4. 已知直线a ,b 和平面α,且a b ⊥,a α⊥,则b 与α的位置关系是 .答案:b α//或b α⊂.5. 已知两个平面垂直,下列命题①一个平面内已知直线必垂直于另一个平面内的任意一条直线. ②一个平面内的已知直线必垂直于另一个平面的无数条直线. ③一个平面内的任一条直线必垂直于另一个平面.④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.其中正确的个数是(B ) A .3B.2C.1D.06 已知直线l α⊥平面,有以下几个判断:①若m l ⊥,则m α//;②若m α⊥,则m l //;③若m α//,则m l ⊥;④若m l //,则m α⊥.上述判断中正确的是( B )A.①②③ B.②③④ C.①③④ D.①②④7 直线a 不垂直于平面α,则α内与a 垂直的直线有( C )A.0条 B.1条 C.无数条 D.α内所有直线8. 已知三条直线m ,n ,l ,三个平面α,β,γ.下面四个命题中,正确的是( D )A.αγαββγ⊥⎫⇒⎬⊥⎭// B.m l l m ββ⎫⇒⊥⎬⊥⎭// C.m m n n γγ⎫⇒⎬⎭//////D.m m n n γγ⊥⎫⇒⎬⊥⎭//9 在空间四边形A B C D 中,若A B B C =,AD C D =,E 为对角线A C 的中点,下列判断正确的是( D ) A.平面ABD ⊥平面B D C B.平面A B C ⊥平面A B D C.平面A B C ⊥平面A D C D.平面A B C ⊥平面B E D 10下面四个命题:其中正确的两个命题是(B)○1若直线a //平面α,则α内任何直线都与a 平行;○2若直线a ⊥平面α,则α内任何直线都与a 垂直;○3若平面α//平面β,则β内任何直线都与α平行;○4若平面α⊥平面β,则β内任何直线都与α垂直.A.①与② B.②与③ C.③与④ D.②与④11 设三棱锥P A B C -的顶点P 在底面ABC 内射影O (在A B C △内部,即过P 作P O ⊥底面ABC ,交于O ),且到三个侧面的距离相等,则O 是A B C △的(C. )2A.外心 B.垂心 C.内心 D.重心12在三棱锥P A B C -中,侧面PAC 与面ABC 垂直,3P A P B P C ===. (1) 求证:A B B C ⊥;(2)设AB BC ==,求A C 与平面PBC答案:证明:如图(1)所示,取A C 中点D ,连结B D ,P D P A P C =∵,PD AC ⊥∴.又平面P A C ⊥平面ABC ,PD ⊥∴面ABC . P A P B P C ==∵,D A D B D C ==∴.可知 A C 为A B C △的外接圆直径. ∴A B B C ⊥.(2)解:如图(2),作C F P B ⊥于F ,连结A F ,D F . P B C P B A ∵△≌△,AF PB ⊥∴,A F C F =.P B ⊥∴平面AFC .∴面A F C ⊥面PBC ,交线为C F .∴直线A C 在平面PBC 内的射影为直线C F . ∴A C F ∠为A C 与平面PBC 所成的角.在A B C Rt △中,AB BC ==,BD =∴在P D C Rt △中,D C =PD =.在P D B Rt △中,3PD D B D F PB=== .在F D C Rt △中,tan 3D F D C F D C∠===.30AC F ∠=∴þ.即A C 与平面PBC 所成角为30þ.13(07海南)如图,在三棱锥S A B C -中,侧面SA B 与侧面S A C 均为等边三角形,90B A C ∠=°, O 为B C 中点. (Ⅰ)证明:SO ⊥平面ABC ;(Ⅱ)求二面角A SC B --的余弦值。

直线、平面垂直的判定及其性质课时作业

直线、平面垂直的判定及其性质课时作业

课时作业48直线、平面垂直的判定及其性质一、选择题1.已知直线l⊥平面α,直线m⊂平面β,则“l∥m”是“α⊥β”的()A.充要条件B.必要条件C.充分条件D.既不充分又不必要条件解析:若l∥m,则m⊥平面α,由面面垂直的判定定理可知α⊥β,反过来,若α⊥β,l⊥α,则l∥β或l⊂β,又因为m⊂β,所以l与m 可能平行,异面或相交,所以“l∥m”是“α⊥β”的充分条件,故选C.答案:C2.已知m,n为两条不同直线,α,β为两个不同平面,直线m ⊂平面α,直线n⊥平面β,给出命题:①n⊥m⇒α∥β;②n∥m⇒α⊥β;③α∥β⇒n⊥m;④α⊥β⇒n∥m.其中正确命题为() A.①③B.②③C.②④D.①④解析:由直线n⊥面β,n∥m⇒m⊥面β,又因为直线m⊂平面α,所以α⊥β,②对,由题意,再结合α∥β⇒n⊥α⇒n⊥m,③对,故选B.答案:B3.设a,b是夹角为30°的异面直线,则满足条件“a⊂α,b⊂β,且α⊥β”的平面α,β()A.不存在B.有且只有一对C .有且只有两对D .有无数对解析:过直线a 的平面α有无数个,当平面α与直线b 平行时,两直线的公垂线与b 确定的平面β⊥α,当平面α与b 相交时,过交点作平面α的垂线与b 确定的平面β⊥α.故选D.答案:D4.如图所示,b ,c 在平面α内,a ∩c =B ,b ∩c =A ,且a ⊥b ,a ⊥c ,b ⊥c ,若C ∈a ,D ∈b (C ,D 均异于A ,B ),则△ACD 是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形解析:因为a ⊥b ,b ⊥c ,a ∩c =B ,所以b ⊥平面ABC ,AC ⊂平面ABC ,所以AD ⊥AC ,故△ACD 为直角三角形.答案:B5.如图,直三棱柱ABC —A 1B 1C 1中,侧棱长为2,AC =BC =1,∠ACB =90°,D 是A 1B 1的中点,F 是BB 1上的动点,AB 1,DF 交于点E .要使AB 1⊥平面C 1DF ,则线段B 1F 的长为( )A.12 B .1C.32 D .2解析:设B 1F =x ,因为AB 1⊥平面C 1DF ,DF ⊂平面C 1DF ,所以AB 1⊥DF .由已知可以得A 1B 1=2,设Rt △AA 1B 1斜边AB 1上的高为h ,则DE =12h .又2×2=h 22+(2)2,所以h =233,DE =33.在Rt△DB 1E 中,B 1E =⎝ ⎛⎭⎪⎫222-⎝ ⎛⎭⎪⎫332=66.由面积相等得66×x 2+⎝ ⎛⎭⎪⎫222=22x ,得x =12. 答案:A6.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =2,∠ASC =∠BSC =45°,则棱锥S —ABC 的体积为( ) A.33B.233C.433D.533解析:如图所示,由题意知,在棱锥S —ABC 中,△SAC ,△SBC 都是等腰直角三角形,其中AB =2,SC =4,SA =AC =SB =BC =2 2.取SC 的中点D ,易证SC 垂直于面ABD ,因此棱锥S —ABC 的体积为两个棱锥S —ABD 和C —ABD 的体积和,所以棱锥S —ABC 的体积V =13SC ·S △ADB =13×4×3=43 3.答案:C二、填空题7.正方体ABCD —A 1B 1C 1D 1中BB 1与平面ACD 1所成角的余弦值为________.解析:设BD 与AC 交于点O ,连接D 1O ,∵BB 1∥DD 1,∴DD 1与平面ACD 1所成的角就是BB 1与平面ACD 1成的角.∵AC ⊥BD ,AC ⊥DD 1,DD 1∩BD =D ,∴AC ⊥平面DD 1B ,平面DD 1B ∩平面ACD 1=OD 1,∴DD 1在平面ACD 1内的射影落在OD 1上,故∠DD 1O 为直线DD 1与平面ACD 1所成的角,设正方体的棱长为1,则DD 1=1,DO =22,D 1O =62,∴cos ∠DD 1O =DD 1D 1O =63, ∴BB 1与平面ACD 1所成角的余弦值为63. 答案:638.假设平面α∩平面β=EF ,AB ⊥α,CD ⊥β,垂足分别为B ,D ,如果增加一个条件,就能推出BD ⊥EF ,现有下面四个条件:①AC ⊥α;②AC 与α,β所成的角相等;③AC 与BD 在β内的射影在同一条直线上;④AC ∥EF .其中能成为增加条件的是________.(把你认为正确的条件序号都填上)解析:如果AB 与CD 在一个平面内,可以推出EF 垂直于该平面,又BD 在该平面内,所以BD ⊥EF .故要证BD ⊥EF ,只需AB ,CD 在一个平面内即可,只有①③能保证这一条件.答案:①③9.如图,在棱长为2的正方体ABCD —A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上.点P 到直线CC 1的距离的最小值为________.解析:点P 到直线CC 1的距离等于点P 在面ABCD 上的射影到点C 的距离,点P 在面ABCD 内的射影落在线段DE 上设为P ′,问题等价求为P ′C 的最小值,当P ′C ⊥DE 时,P ′C 的长度最小,此时P ′C =2×122+1=255. 答案:255三、解答题10.(2014·湖北卷)如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,P ,Q ,M ,N 分别是棱AB ,AD ,DD 1,BB 1,A 1B 1,A 1D 1的中点.求证:(1)直线BC1∥平面EFPQ;(2)直线AC1⊥平面PQMN.解:(1)连接AD1,由ABCD-A1B1C1D1是正方体,知AD1∥BC1,因为F,P分别是AD,DD1的中点,所以FP∥AD1.从而BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.(2)如图,连接AC,BD,则AC⊥BD.由CC1⊥平面ABCD,BD⊂平面ABCD,可得CC1⊥BD.又AC∩CC1=C,所以BD⊥平面ACC1.而AC1⊂平面ACC1,所以BD⊥AC1.因为M,N分别是A1B1,A1D1的中点,所以MN∥BD,从而MN ⊥AC1.同理可证PN⊥AC1.又PN∩MN=N,所以直线AC1⊥平面PQMN.11.如图,在矩形ABCD 中,AB =2BC ,P ,Q 分别为线段AB ,CD 的中点,EP ⊥平面ABCD .(1)求证:DP ⊥平面EPC .(1)问在EP 上是否存在点F 使平面AFD ⊥平面BFC ?若存在,求出FP AP 的值.解:(1)因为EP ⊥平面ABCD ,所以EP ⊥DP ,又四边形ABCD 为矩形,AB =2BC ,P ,Q 为AB ,CD 的中点,所以PQ ⊥DC ,且PQ =12DC ,所以DP ⊥PC .因为EP ∩PC =P ,所以DP ⊥平面EPC .(2)如图,假设存在F 使平面AFD ⊥平面BFC ,因为AD ∥BC ,AD ⊄平面BFC ,BC ⊂平面BFC ,所以AD ∥平面BFC ,所以AD 平行于平面AFD 与平面BFC 的交线l .因为EP ⊥平面ABCD ,所以EP⊥AD,而AD⊥AB,AB∩EP=P,所以AD⊥平面F AB,所以l⊥平面F AB,所以∠AFB为平面AFD与平面BFC所成二面角的平面角.因为P是AB的中点,且FP⊥AB,所以当∠AFB=90°时,FP=AP,所以当FP=AP,即FPAP=1时,平面AFD⊥平面BFC.1.如右图,在三棱锥P—ABC中,点E,F分别是棱PC,AC的中点.(1)求证:P A∥平面BEF;(2)若平面P AB⊥平面ABC,PB⊥BC,求证:BC⊥P A.解:(1)在△P AC中,E、F分别是PC、AC的中点,所以P A∥EF,又P A⊄平面BEF,EF⊂平面BEF,所以P A∥平面BEF.(2)在平面P AB内过点P作PD⊥AB,垂足为D.因为平面P AB⊥平面ABC,平面P AB∩平面ABC=AB,PD⊂平面P AB,所以PD⊥平面ABC,又BC⊂平面ABC,所以PD⊥BC,又PB⊥BC,PD∩PB=P,PD⊂平面P AB,PB⊂平面P AB,所以BC⊥平面P AB,又P A⊂平面P AB,所以BC⊥P A.2.(2014·广东卷)如图所示,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,EF∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D—AF—E的余弦值.解:(1)证明:PD⊥平面ABCD,PD⊂面PCD,∴平面PCD ⊥平面ABCD ,平面PCD ∩平面ABCD =CD ,AD ⊂平面ABCD ,AD ⊥CD ,∴AD ⊥平面PCD ,CF ⊂平面PCD ,∴CF ⊥AD ,又AF ⊥PC ,∴CF ⊥AF , AD ,AF ⊂平面ADF ,AD ∩AF =A ,∴CF ⊥平面ADF .(2)解法1:过E 作EG ∥CF 交DF 于G ,∵CF ⊥平面ADF , ∴EG ⊥平面ADF ,过G 作GH ⊥AF 于H ,连EH ,则∠EHG 为二面角D —AF —E 的平面角,设CD =2,∵∠DPC =30°,∴∠CDF =30°,从而CF =12CD =1,CP =4,∵EF ∥ DC ,∴DE DP =CF CP ,即DE 23=122, ∴DE =32,还易求得EF =32,DF =3,从而EG =DE ·EF DF =32·323=34,易得AE =192,AF =7,EF =32,∴EH =AE ·EF AF =192·327=31947, 故HG =(31947)2-(34)2=6347, ∴cos ∠EHG =GH EH =6347·47319=25719. 解法2:分别以DP ,DC ,DA 为x ,y ,z 轴建立空间直角坐标系,设DC =2,则A (0,0,2),C (0,2,0),P (23,0,0),设CF→=λCP →,则F (23λ,2-2λ,0),DF →⊥CF →,可得λ=14,从而F (32,32,0),易得E (32,0,0),取面ADF 的一个法向量为n 1=12CP →=(3,-1,0),设面AEF 的一个法向量为n 2=(x ,y ,z ),利用n 2·AE →=0,且n 2·AF→=0,得n 2可以是(4,0,3),从而所求二面角的余弦值为n 1·n 2|n 1|·|n 2|=432×19=25719.。

直线与平面的垂直的判定 性质单元测试题及答案

直线与平面的垂直的判定 性质单元测试题及答案

《直线与平面的垂直的判定、性质》单元测试卷一、 选择题1.如果直线l 和平面α内的无数条直线都垂直,那么( )A.α⊥lB.l 与α相交C.α⊄lD.l 与α的关系不确定2.如图,PA ⊥平面ABC ,△ABC 中,BC ⊥AC ,则图中直角三角形的个数是( )。

A.4 B.3 C.2 D.13.两条异面直线在同一平面内的射影是( ).A.两条平行直线B.两条相交直线C.一个点和一条直线D.以上都有可能4.已知Rt △ABC 中,∠C=90°,点P 在平面ABC 外,且PA=PB=PC, PO ⊥平面ABC 于点O ,则O 是( )A.AC 边的中点B.BC 边的中点C.AB 边的中点D.以上都有可能5.a,b 表示两条直线,α表示平面,给出以下命题,其中正确的命题是( ) ①a ⊥α,b ∥α⇒a ⊥b ②a ⊥α, a ⊥b ⇒ b ∥α③a ∥α, a ⊥b ⇒ b ⊥α ④a ⊥α,b ∥a ⇒b ⊥αA.①②B.②③C.③④D.①④6.已知P 是平面四边形ABCD 所在平面外一点,且P 到这个四边形各边的距离相等,那么这个四边形一定是( )。

A.圆内接四边形B.矩形C.圆外切四边形D.平行四边形7.正方体ABCD-A 1B 1C 1D 1中,E 为A 1C 1的中点,则直线CE 垂直于( )。

A.ACB.BDC.A 1D 1D.AA 18.下列命题中真命题是( )。

A.和平面的斜线垂直的直线也和这条斜线的射影垂直B.和斜线的射影垂直的直线也和斜线垂直C.如果两条直线垂直于同一个平面,那么这两条直线平行D.和斜线的射影不垂直的直线也和斜线不垂直9.从平面α外一点P 作与α相交的直线,使得P 与交点的距离为1,则满足条件的直线条数一定不可能是( ).A.0B.1C.2D.无数个10.已知PA ⊥平面ABCD ,四边形ABCD 是矩形,并且PA=6,AB=3,AD=4,则P 到BD 的距离是( ). A.5296 B.296 C.53 D.132 11. Rt △ABC 的斜边AB 在平面α内,直角顶点C 在平面α外,C 在α上的射影为D (不在AB 上),则△ABD 是( )。

高考数学刷题评估练:核心素养提升练 直线、平面垂直的判定及其性质

高考数学刷题评估练:核心素养提升练  直线、平面垂直的判定及其性质

核心素养提升练四十二直线、平面垂直的判定及其性质(30分钟60分)一、选择题(每小题5分,共30分)1.m是一条直线,α,β是两个不同的平面,以下命题正确的是( )A.若m∥α,α∥β,则m∥βB.若m∥α,m∥β,则α∥βC.若m∥α,α⊥β,则m⊥βD.若m∥α,m⊥β,则α⊥β【解析】选D.A.若m∥α,α∥β,则m∥β或m⊂β,A错;B,若m∥α,m∥β,则α∥β或α∩β=l,B错;C,若m∥α,α⊥β,则m与β相交或m∥β或m⊂β,C错;D,因为m∥α,存在直线n,使m∥n,n⊂α.因为m⊥β,所以n⊥β.又因为n⊂β,所以α⊥β.2.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题正确的是( )A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α【解析】选C.A中,由m⊥n,n∥α可得m∥α或m与α相交或m⊥α,错误;B中,由m∥β,β⊥α可得m∥α或m与α相交或m⊂α,错误;C中,由m⊥β,n⊥β可得m∥n,又n⊥α,所以m⊥α,正确;D 中,由m⊥n,n⊥β,β⊥α可得m∥α或m与α相交或m⊂α,错误.3.下列三个命题中,正确命题的个数是( )①若平面α⊥平面γ,且平面β⊥平面γ,则α∥β;②平面α⊥平面β,且α∩β=l,点A∈α,A∉l,若直线AB⊥l,则AB⊥β;③直线m,n为异面直线,且m⊥平面α,n⊥平面β,若m⊥n,则α⊥β.A.0B.1C.2D.3【解析】选B.①,例如墙角的三个面,则α⊥β;②,如果加入条件AB⊂α,则AB⊥β;③,从向量角度看,m与n分别是α,β的法向量,显然m⊥n,即α⊥β.所以只有③正确.4.四面体P-ABC的四个顶点都在球O的球面上,PA=8,BC=4,PB=PC=AB=AC,且平面PBC⊥平面ABC,则球O的表面积为( )A.64πB.65πC.66πD.128π【解析】选B.如图,D,E分别为BC,PA的中点,易知球心点O在线段DE上,因为PB=PC=AB=AC,则PD⊥BC,AD⊥BC,PD=AD.又因为平面PBC⊥平面ABC,平面PBC∩平面ABC=BC,所以PD⊥平面ABC,所以PD⊥AD,所以PD=AD=4.因为点E是PA的中点,所以ED⊥PA,且DE=EA=PE=4 .设球O的半径为R,OE=x,则OD=4-x.在Rt△OEA中,有R2=16+x2,在Rt△OBD中,有R2=4+(4-x)2,解得R2=,所以S=4πR2=65π.5.如图,在四棱锥P-ABCD中,△PAB与△PBC是正三角形,平面PAB⊥平面PBC,AC⊥BD,则下列结论不一定成立的是( )A.PB⊥ACB.PD⊥平面ABCDC.AC⊥PDD.平面PBD⊥平面ABCD【解析】选B.取BP的中点O,连接OA,OC,易得BP⊥OA,BP⊥OC⇒BP⊥平面OAC⇒BP⊥AC⇒选项A正确;又AC⊥BD⇒AC⊥平面BDP⇒AC⊥PD,平面PBD⊥平面ABCD,故选项C,D正确.6.直三棱柱ABC-A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的动点,AB1,DF相交于点E.要使AB1⊥平面C1DF,则线段B1F的长为( )A. B.1 C. D.2【解析】选A.设B1F=x,因为AB1⊥平面C1DF,DF⊂平面C1DF,所以AB1⊥DF.由已知可得A1B1=,设Rt△AA1B1斜边AB1上的高为h,则DE=h.又2×=h,所以h=,DE=.在Rt△DB1E中,B1E==.由面积相等得×=x,得x=.二、填空题(每小题5分,共10分)7.α,β是两个平面,AB,CD是两条线段,已知α∩β=EF,AB⊥α于B,CD⊥α于D,若增加一个条件,就能得出BD⊥EF,现有下列条件:①AC⊥β;②AC与α,β所成的角相等;③AC与CD在β内的射影在同一条直线上;④AC∥EF.其中能成为增加条件的序号是________.【解析】由题意得,AB∥CD,所以A,B,C,D四点共面,①因为AC⊥β,EF⊂β,所以AC⊥EF,又因为AB⊥α,EF⊂α,所以AB⊥EF,因为AB∩AC=A,所以EF⊥平面ABDC,又因为BD⊂平面ABDC,所以BD⊥EF,故①正确;②由①可知,若BD⊥EF成立,则有EF⊥平面ABDC,则有EF⊥AC成立,而AC与α,β所成角相等是无法得到EF⊥AC的,故②错误;③由AC与CD在β内的射影在同一条直线上可知EF⊥AC,由①可知③正确;④仿照②的分析过程可知④错误.答案:①③8.如图,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.【解析】由题意知PA⊥平面ABC,所以PA⊥BC.又AC⊥BC,且PA∩AC=A,所以BC⊥平面PAC,所以BC⊥AF.因为AF⊥PC,且BC∩PC=C,所以AF⊥平面PBC,所以AF⊥PB,又AE⊥PB,AE∩AF=A,所以PB⊥平面AEF,所以PB⊥EF.故①②③正确.答案:①②③三、解答题(每小题10分,共20分)9.如图,在三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD.(2)若AB=BD=CD=1,M为AD中点,求三棱锥A-MBC的体积. 【解析】(1)因为AB⊥平面BCD,CD⊂平面BCD,所以AB⊥CD.又因为CD⊥BD,AB∩BD=B,AB⊂平面ABD,BD⊂平面ABD,所以CD⊥平面ABD.(2)由AB⊥平面BCD,得AB⊥BD.又AB=BD=1,所以S△ABD=×12=.因为M是AD的中点,所以S△ABM=S△ABD=.根据(1)知,CD⊥平面ABD,则三棱锥C-ABM的高h=CD=1,故V A-MBC=V C-ABM=S△ABM·h=.10.如图,在四棱锥P-ABCD中,四边形ABCD是菱形,△PAD≌△BAD,平面PAD⊥平面ABCD,AB=4,PA=PD,M在棱PD上运动.(1)当M在何处时,PB∥平面MAC.(2)已知O为AD的中点,AC与OB交于点E,当PB∥平面MAC时,求三棱锥E-BCM的体积.【解析】(1)如图,设AC与BD相交于点N,当M为PD的中点时,PB∥平面MAC,证明:因为四边形ABCD是菱形,可得DN=NB,又因为M为PD的中点,可得DM=MP,所以NM为△BDP的中位线,可得NM∥PB,又因为NM⊂平面MAC,PB⊄平面MAC,所以PB∥平面MAC.(2)因为O为AD的中点,PA=PD,则OP⊥AD,又△PAD≌△BAD,所以OB⊥AD,且OB=2,又因为△AEO∽△CEB,所以==,所以BE=OB=,所以S△EBC=×4×=.又因为OP=4×=2,点M为PD的中点,所以M到平面EBC的距离为,所以V E-BCM=V M-EBC=××=.(20分钟40分)1.(5分)如图,在三棱锥D ABC中,若AB=CB,AD=CD,E是AC的中点,则下列命题中正确的是( )A.平面ABC⊥平面ABDB.平面ABD⊥平面BCDC.平面ABC⊥平面BDE,且平面ACD⊥平面BDED.平面ABC⊥平面ACD,且平面ACD⊥平面BDE【解析】选C.因为AB=CB,且E是AC的中点,所以BE⊥AC,同理有DE⊥AC,于是AC⊥平面BDE.因为AC ⊂平面ABC,所以平面ABC⊥平面BDE.又AC⊂平面ACD,所以平面ACD⊥平面BDE.2.(5分)下列命题中错误的是( )A.如果直线a与平面α不平行,则平面α内不存在与a平行的直线B.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么直线l⊥平面γC.如果直线l⊥平面β,那么过直线l的所有平面都垂直于平面βD.一条直线与两个平行平面中的一个平面相交,则必与另一个平面相交【解析】选A.如果直线a与平面α不平行,则直线a可能是平面α内一条直线,所以A错误;在平面γ内作两条相交直线m,n分别垂直于平面α与平面γ的交线及平面β与平面γ的交线,则由平面α⊥平面γ,平面β⊥平面γ,得m,n分别垂直于平面α及平面β,即m,n都垂直于直线l,因此直线l⊥平面γ,即B正确;由面面垂直的判定定理可知C正确;当一条直线与两个平行平面中的一个平面相交时,若此直线在另一个平面内,则与原平面无交点,矛盾,若此直线与另一个平面平行,则可得此直线与原平面平行或在原平面内,矛盾,因此此直线必与另一个平面相交,即D正确.3.(5分)在Rt△ABC中,AC⊥BC,BC=3,AB=5,点D,E分别在AC,AB边上,且DE∥BC,沿着DE将△ADE 折起至△A′DE的位置,使得平面A′DE⊥平面BCDE,其中点A′为点A翻折后对应的点,则当四棱锥A′-BCDE的体积取得最大值时,AD的长为________.【解析】由勾股定理易得:AC=4,设AD=x,则CD=4-x,而△AED∽△ABC,故DE=x,四棱锥A′-BCDE的体积:V(x)=×××(4-x)×x=(16x-x3)(0<x<4).求导可得:V′(x)=(16-3x2)(0<x<4),当0<x<时,V′(x)>0,V(x)单调递增;当<x<4时,V′(x)<0,V(x)单调递减;故当x=时,V(x)取得最大值.答案:4.(12分)如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC.(2)求证:平面MOC⊥平面VAB.(3)求三棱锥V-ABC的体积.【解析】(1)因为点O,M分别为AB,VA的中点,所以OM∥VB.又因为VB⊄平面MOC,所以VB∥平面MOC.(2)因为AC=BC,点O为AB的中点,所以OC⊥AB.又因为平面VAB⊥平面ABC,且OC⊂平面ABC,所以OC⊥平面VAB.又因为OC⊂平面MOC,所以平面MOC⊥平面VAB.(3)在等腰直角三角形ACB中,AC=BC=,所以AB=2,OC=1.所以等边三角形VAB的面积S△VAB=.又因为OC⊥平面VAB,所以三棱锥C-VAB的体积等于×OC×S△VAB=.又因为三棱锥V-ABC的体积与三棱锥C-VAB的体积相等,所以三棱锥V-ABC的体积为.5.(13分)如图M,N,P分别是正方体ABCD-A1B1C1D1的棱AB,BC,DD1上的点.(1)若=,求证:无论点P在D1D上如何移动,总有BP⊥MN.(2)棱DD1上是否存在这样的点P,使得平面APC1⊥平面ACC1?证明你的结论.【解析】(1)连接AC,BD,在△ABC中,因为=,所以MN∥AC.又因为AC⊥BD,DD1⊥底面ABCD.所以DD1⊥AC,因为BD∩DD1=D,所以AC⊥平面BDD1B1.所以MN⊥平面BDD1B1.因为BP⊂平面BDD1B1,所以MN⊥BP.(2)假设存在点P,使平面APC1⊥平面ACC1,过点P作PF⊥AC1,则PF⊥平面ACC1.又因为BD⊥平面ACC1,所以PF∥BD,而两平行线PF,BD所确定的平面即为两相交直线BD,DD1确定的对角面BB1D1D,所以F为AC1与对角面BB1D1D的交点,故F为AC1的中点,由PF∥BD,P∈DD1知,点P也是DD1的中点.显然,当点P为DD1的中点,点F为AC1的中点时,AP=PC1,所以PF⊥AC1又PF∥BD,BD⊥AC,所以PF⊥AC.从而PF⊥平面ACC1,则平面APC1⊥平面ACC1.故存在点P,当点P为DD1中点时,平面APC1⊥平面ACC1.关闭Word文档返回原板块。

直线、平面平行垂直的判定及其性质练习题

直线、平面平行垂直的判定及其性质练习题

1.对于平面α和共面的直线m 、n ,下列命题中假命题是 (填序号). ①若m ⊥α,m ⊥n ,则n ∥α ②若m ∥α,n ∥α,则m ∥n ③若m ⊂α,n ∥α,则m ∥n ④若m 、n 与α所成的角相等,则m ∥n2.已知直线a ,b ,平面α,则以下三个命题:其中真命题的个数是 . ①若a ∥b ,b ⊂α,则a ∥α; ②若a ∥b ,a ∥α,则b ∥α; ③若a ∥α,b ∥α,则a ∥b .3.下列命题,其中真命题的个数为 . ①直线l 平行于平面α内的无数条直线,则l ∥α; ②若直线a 在平面α外,则a ∥α; ③若直线a ∥b ,直线b ⊂α,则a ∥α;④若直线a ∥b ,b ⊂α,那么直线a 就平行于平面α内的无数条直线. 4. .对于不重合的两个平面α与β,给定下列条件: ①存在平面γ,使得α,β都垂直于γ;②存在平面γ,使得α,β都平行于γ; ③存在直线l ⊂α,直线m ⊂β,使得l ∥m ;④存在异面直线l 、m ,使得l ∥α,l ∥β,m ∥α,m ∥β.其中,可以判定α与β平行的条件有 (写出符合题意的序号).5. 已知平面α⊥平面β,α∩β=l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,一定成立的是 . ①AB ∥m②AC ⊥m ③AB ∥β④AC ⊥β6. 设有直线m 、n 和平面α、β.下列命题不正确的是 (填序号). ①若m ∥α,n ∥α,则m ∥n②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β ③若α⊥β,m ⊂α,则m ⊥β ④若α⊥β,m ⊥β,m ⊄α,则m ∥α7. a 、b 、c 为三条不重合的直线,α、β、γ为三个不重合的平面,现给出四个命题 ①⎭⎬⎫α∥c β∥c ⇒α∥β ②⎭⎬⎫α∥γβ∥γ⇒α∥β③⎭⎬⎫α∥c a ∥c ⇒a ∥α ④⎭⎬⎫a ∥γα∥γ⇒α∥a其中正确的命题是( ) A .①②③ B .①④ C .②D .①③④8 下面四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形是( ).A .①② B .①④ C .②③ D .③④9.如图所示,在三棱柱ABC—A1B1C1中,M、N分别是BC和A1B1的中点.求证:MN∥平面AA1C1.10.如图所示,正方体ABCD—A1B1C1D1中,侧面对角线AB1,BC1上分别有两点E,F,且B1E=C1F.求证:EF∥平面ABCD.11.如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为△SAB上的高,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.12.如图所示,在正方体ABCD—A1B1C1D1中,E、F、G、H分别是BC、CC1、C1D1、A1A的中点.求证:(1)BF∥HD1;(2)EG∥平面BB1D1D;(3)平面BDF∥平面B1D1H.13.如图所示,有正四棱锥P—ABCD,M,N分别为PA,BD上的点,且PM∶MA=BN∶ND=5∶8.求证:直线MN∥平面PBC;14.如图所示,两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB且AM=FN,求证:MN ∥平面BCE.1.下面四个命题:①若直线a∥平面,则内任何直线都与a平行;②若直线a⊥平面,则内任何直线都与a垂直;③若平面∥平面,则内任何直线都与平行;④若平面⊥平面,则内任何直线都与垂直.其中正确的两个命题是( )A.①与②B.②与③C.③与④D.②与④2.一个二面角的两个面分别垂直于另一个二面角的两个面,那么这两个二面角( ).A.相等B.互补C.关系无法确定D.相等或互补3.已知ABCD为矩形,SA⊥平面ABCD,过点A作AE⊥SB于点E,过点E作EF⊥SC于点F,如图所示.(1)求证:AF⊥SC;(2)若平面AEF交SD于点G,求证:AG⊥SD.4.如图,在正方体ABCD—A1B1C1D1中,EF⊥A1D,EF⊥AC,求证:EF∥BD1.5.如图所示,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.(1)证明:PA∥平面EDB;(2)证明:PB⊥平面EFD.。

直线、平面垂直的判定及其性质经典例题

直线、平面垂直的判定及其性质经典例题

直线、平面垂直的判定及其性质经典例题经典例题透析类型一、直线和平面垂直的定义1.下列命题中正确的个数是( )①如果直线与平面内的无数条直线垂直,则;②如果直线与平面内的一条直线垂直,则;③如果直线不垂直于,则内没有与垂直的直线;④如果直线不垂直于,则内也可以有无数条直线与垂直.A.0B.1 C.2 D.3答案:B解析:当内的无数条直线平行时,与不一定垂直,故①不对;当与内的一条直线垂直时,不能保证与垂直,故②不对;当与不垂直时,可能与内的无数条直线垂直,故③不对;④正确.故选B.总结升华:注意直线和平面垂直定义中的关键词语.举一反三:【变式1】(2010 山东)在空间,下列命题正确的是A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行答案:D解析:A项,平行直线的平行投影也可以是两条平行线;B项,平行于同一直线的两个平面可平行、可相交;C项,垂直于同一平面的两个平面可平行、可相交;D项,正确.总结升华:本题主要考察对基础知识的掌握.类型二、直线和直线、平面垂直的判定2.(2011 广东理18)如图,在椎体P-ABCD中,ABCD是边长为1的菱形,且∠DAB=60,,PB=2, E,F分别是BC,PC的中点.(1)证明:AD 平面DEF;(2)求二面角P-AD-B的余弦值.解析:(1)证明:取AD中点G,连接PG,BG,BD.∵PA=PD,∴,在中,,∴为等边三角形,∴,∴AD⊥平面PBG,∴又PB//EF,得,又∵DE//GB,得AD⊥DE,又,∴AD⊥平面DEF.(2)为二面角P—AD—B的平面角,在,在中,总结升华:要判定一条已知直线和一个平面是否垂直,取决于在这个平面内能否找出两条相交直线和这条直线垂直,至于这两条相交直线是否和已知直线有公共点,则无关紧要.举一反三:【变式1】如图所示,直三棱柱中,∠ACB=90°,AC=1,,侧棱,侧面的两条对角线交点为D,的中点为M.求证:平面CBD ⊥平面BDM.证明:如下图,连接、、,则.∵,∴为等腰三角形.又知D为其底边的中点,∴.∵,,∴.又,∴.∵为直角三角形,D为的中点,∴,.又,,∴..即CD⊥DM.∵、为平面BDM内两条相交直线,∴CD⊥平面BDM.又∵,∴平面CBD⊥平面BDM.总结升华:处理面面垂直问题转化为处理线面垂直问题,进一步转化为处理线线垂直问题.所以证明平面与平面垂直,只要在一个平面内找到两条相交直线和另一个平面内的一条直线垂直即可.类型三、直线和平面所成的角3.如图所示,已知∠BOC在平面内,OA是平面的斜线,且∠AOB=∠AOC=60°,OA=OB=OC=,BC=,求OA和平面所成的角.解析:∵,∠AOB=∠AOC=60°,∴△AOB、△AOC为正三角形,∴.∵,∴,∴△ABC为直角三角形.同理△BOC也为直角三角形.过A作AH垂直平面于H,连接OH,∵AO=AB=AC,∴OH=BH=CH,H为△BOC的外心.∴H在BC上,且H为BC的中点.∵Rt△AOH中,,∴,∴∠AOH=45°.即AO和平面所成角为45°.总结升华:(1)确定点在平面内的射影的位置,是解题的关键,因为只有确定了射影的位置,才能找到直线与平面所成的角,才能将空间的问题转化为平面的问题来解.(2)求斜线与平面所成的角的程序:①寻找过直线上一点与平面垂直的直线;②连接垂足和斜足得出射影,确定出所求解;③把该角放入三角形计算.(3)直线和平面所成的角,也应考虑到直线和平面垂直、直线和平面平行或在平面内诸情况,也就是直线和平面成90°角和0°角的情况,所以求线面所成角时,应想到以上两种情况.举一反三:【变式1】(2011 全国大纲19)如图,四棱锥中,,,侧面为等边三角形,.(Ⅰ)证明:;(Ⅱ)求与平面所成角的大小.解析:(I)取AB中点E,连结DE、SE,∴四边形BCDE为矩形,DE=CB=2,∵侧面为等边三角形∴又∵SD=1,,∴为直角.又∵,∴AB⊥平面SDE,∴.又SD与两条相交直线AB、SE都垂直.∴SD⊥平面SAB.(II)作垂足为F,FG⊥BC,垂足为G,连结SG∵AB⊥平面SDE,∴平面ABCD⊥平面SED.∴SF⊥平面ABCD,∵∴,又∵FG⊥BC,∴BC⊥平面SFG,∵∴平面SBC⊥平面SFG.作,H为垂足,则FH⊥平面SBC.又∵在中,,在中,∴,即F到平面SBC的距离为.∵ED//BC,∴ED//平面SBC,∴E到平面SBC的距离d也是.设AB与平面SBC所成的角为α,则.∴与平面所成的角为.【变式2】如图所示,在正三棱柱中,侧棱长为,底面三角形的边长为1,则与侧面所成的角是________.答案:解析:如下图.由题取AC中点O,连接BO.则BO⊥平面.故为与平面所成角.又在中,,.∴,∴.类型四、二面角4.如图所示,在四面体ABCD中,△ABD、△ACD、△BCD、△ABC都全等,且,,求以BC为棱,以面BCD和面BCA为面的二面角大小.解析:取BC的中点E,连接AE、DE,∵AB=AC,∴AE⊥BC.又∵△ABD≌△ACD,AB=AC,∴DB=DC,∴DE⊥BC.∴∠AED为二面角的平面角.又∵△ABC≌△BDC,∴AD=BC=2,在Rt△DEB中,DB=,BE=1,∴,同理.在△AED中,∵,,∴,∴∠AED=90°.∴以面BCD和面ABC为面的二面角大小为90°.总结升华:确定二面角的平面角,常常用定义来确定.举一反三:【变式1】已知D、E分别是正三棱柱的侧棱和上的点,且.求过D、E、C1的平面与棱柱的下底面所成的二面角的大小.解析:如图,在平面内延长DE和交于点F,则F是面与面的公共点,为这两个平面的交线,∴所求二面角就是的平面角.∵,且,∴E、分别DF和A1F的中点.∵,∴.又面,面,∴面,而面.∴.∴是二面角的平面角,由已知,∴.总结升华:当所求的二面角没有给出它的棱时,找出二面角的两个面的两个公共点,从而找出它的棱,进而求其平面角的大小即可.类型五、平面与平面垂直的判定5.在四面体ABCD中,,AB=AD=CB=CD=AC=,如图所示.求证:平面ABD⊥平面BCD.证明:∵△ABD与△BCD是全等的等腰三角形,∴取BD的中点E,连接AE、CE,则AE⊥BD,BD⊥CE,∴∠AEC为二面角A-BD-C的平面角.在△ABD中,,,∴.同理.在△AEC中,,,由于,∴AE⊥CE,即∠AEC=90°,即二面角A-BD-C的平面角为90°.∴平面ABD⊥平面BCD.总结升华:利用两个平面互相垂直的定义可以直接判定两个平面垂直,判定的方法是(1)找出两个相交平面的平面角;(2)证明这个平面角是直角;(3)根据定义,这两个平面互相垂直.举一反三:【变式1】如图所示,在空间四边形ABCD中,AB=BC,CD=DA,E、F、G分别为CD、DA和对角线AC的中点,求证:平面BEF⊥平面BGD.证明:∵AB=BC,CD=AD,G是AC的中点,∴BG⊥AC,DG⊥AC,∴AC⊥平面BGD.又EF∥AC,∴EF⊥平面BGD.∵EF平面BEF,∴平面BDG⊥平面BEF.总结升华:证面面垂直的方法:(1)证明两平面构成的二面角的平面角为90°;(2)证明一个平面经过另一个平面的一条垂线,将证明“面面垂直”的问题转化为证明线面垂直的问题.【变式2】如图所示,在Rt△AOB中,,斜边AB=4.Rt△AOC可以通过Rt△AOB以直线AO为轴旋转得到,且二面角B-AO-C是直二面角.D是AB的中点.求证:平面COD⊥平面AOB;证明:由题意,CO⊥AO,BO⊥AO,∴∠BOC是二面角B-AO-C的平面角.又∵二面角B-AO-C是直二面角.∴CO⊥BO.又∵AO∩BO=O,∴CO⊥平面AOB.又CO平面COD,∴平面COD⊥平面AOB.【变式3】过点P引三条长度相等但不共面的线段PA、PB、PC,有∠APB=∠APC=60°,∠BPC=90°,求证:平面ABC⊥平面BPC.证明:如图,已知PA=PB=PC=a,由∠APB=∠APC=60°,△PAC,△PAB为正三角形,则有:PA=PB=PC=AB=AC=a,取BC中点为E直角△BPC中,,,由AB=AC,AE⊥BC,直角△ABE中,,,,在△PEA中,,,∴,平面ABC⊥平面BPC.类型六、综合应用6.如图所示,△ABC为正三角形,CE⊥平面ABC,BD∥CE,且CE=AC=2BD,M是AE的中点,求证:(1)DE=DA;(2)平面BDM⊥平面ECA;(3)平面DEA⊥平面ECA.证明:(1)取EC的中点F,连接DF.∵CE⊥平面ABC,∴CE⊥BC.易知DF∥BC,CE⊥DF.∵BD∥CE,∴BD⊥平面ABC.在Rt△EFD和Rt△DBA中,∵,,∴Rt△EFD≌Rt△DBA.故DE=AD.(2)取AC的中点N,连接MN、BN,MN CF.∵BD CF,∴MN BD.N平面BDM.∵EC⊥平面ABC,∴EC⊥BN.又∵AC⊥BN,∴BN⊥平面ECA.又∵BN平面MNBD,∴平面BDM⊥平面ECA.(3)∵DM∥BN,BN⊥平面ECA,∴DM⊥平面ECA.又∵DM平面DEA,∴平面DEA⊥平面ECA.总结升华:本题涉及线面垂直、面面垂直的性质和判定,这里证明的关键是BN⊥平面ECA,应充分体会线线垂直、线面垂直与面面垂直的关系.7.如图所示,已知PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面PAD;(2)求证:MN⊥CD;(3)若∠PDA=45°,求证:MN⊥平面PCD.思路点拨:要证明MN∥平面PAD,须证MN平行于平面PAD内某一条直线.注意到M、N分别为AB,PC的中点,可取PD的中点E,从而只须证明MN∥AE即可.证明如下.证明:(1)取PD的中点E,连接AE、EN,则,故AMNE为平行四边形,∴MN∥AE.∵AE平面PAD,MN平面PAD,∴MN∥平面PAD.(2)要证MN⊥CD,可证MN⊥AB.由(1)知,需证AE⊥AB.∵PA⊥平面ABCD,∴PA⊥AB.又AD⊥AB,∴AB⊥平面PAD.∴AB⊥AE.即AB⊥MN.又CD∥AB,∴MN⊥CD.(3)由(2)知,MN⊥CD,即AE⊥CD,再证AE⊥PD即可.∵PA⊥平面ABCD,∴PA⊥AD.又∠PDA=45°,E为PD的中点.∴AE⊥PD,即MN⊥PD.又MN⊥CD,∴MN⊥平面PCD.总结升华:本题是涉及线面垂直、线面平行、线线垂直诸多知识点的一道综合题.(1)的关键是选取PD的中点E,所作的辅助线使问题处理的方向明朗化.线线垂直→线面垂直→线线垂直是转化规律.。

直线、平面垂直的判定及其性质_练习题1(答案)

直线、平面垂直的判定及其性质_练习题1(答案)

直线、平面垂直的判定及其性质一、选择题1、“直线l垂直于平面α内的无数条直线”是“l⊥α”的()A、充分条件B、必要条件C、充要条件D、既不充分也不必要条件2、如果一条直线l与平面α的一条垂线垂直,那么直线l与平面α的位置关系是()A、l⊂αB、l⊥αC、l∥αD、l⊂α或l∥α3、若两直线a⊥b,且a⊥平面α,则b与α的位置关系是()A、相交B、b∥αC、b⊂αD、b∥α,或b⊂α4、a∥α,则a平行于α内的( )A、一条确定的直线B、任意一条直线C、所有直线D、无数多条平行线5、如果直线a∥平面α,那么直线a与平面α内的 ( )A、一条直线不相交B、两条直线不相交C、无数条直线不相交D、任意一条直线都不相交6、若直线l上有两点P、Q到平面α的距离相等,则直线l与平面α的位置关系是( )A、平行B、相交C、平行或相交D、平行、相交或在平面α内二、填空题7、过直线外一点作直线的垂线有条;垂面有个;平行线有条;平行平面有个.8、过平面外一点作该平面的垂线有条;垂面有个;平行线有条;平行平面有个.9、过一点可作________个平面与已知平面垂直.10、过平面α的一条斜线可作_________个平面与平面α垂直.11、过平面α的一条平行线可作_________个平面与平面α垂直.三、解答题12、求证:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面13、过一点和已知平面垂直的直线只有一条14、有一根旗杆AB高8m,它的顶端A挂一条长10m的绳子,拉紧绳子并把它的下端放在地面上的两点(和旗杆脚不在同一直线上),C D,如果这两点都和旗杆脚B的距离是6m,那么旗杆就和地面垂直,为什么?15、已知直线l⊥平面α,垂足为A,直线AP⊥l求证:AP在α内参考答案一、选择题1、B ;2、D ;3、D ;4、D ;5、D ;6、D二、填空题7、无数,一,一,无数8、一,无数,无数,一9、无数10、一个11、一个三、解答题12、已知:a∥b,a⊥α 求证:b⊥α证明:设m 是α内的任意一条直线αααα⊥⇒⎭⎬⎫⊂⊥⇒⎭⎬⎫⊥⇒⎭⎬⎫⊂⊥b m m b b a m a m a //13、已知:平面α和一点P 求证:过点P 与α垂直的直线只有一条证明:不论P 在平面α内或外,设直线PA α⊥,垂足为A(或P ) 若另一直线PB α⊥,设,PA PB 确定的平面为β,且a αβ=I ∴,PA a PB a ⊥⊥又∵,PA PB 在平面β内,与平面几何中的定理矛盾 所以过点P 与α垂直的直线只有一条βαa P B A14、解:在ABC∆和ABD∆中,∵8,6,10=====AB m BC BD m AC AD m Array∴222222+=+==6810AB BC AC222222+=+==AB BD AD6810∴90ABC ABD∠=∠=o即,⊥⊥AB BC AB BD又∵,,B C D不共线∴AB⊥平面BCD,即旗杆和地面垂直;15、证明:设AP与l确定的平面为β如果AP不在α内,则可设α与β相交于直线AM∵l⊥α,∴l⊥AM又AP⊥l,于是在平面β内过点A有两条直线垂直于l,这是不可能的所以AP一定在α。

直线和平面垂直的判定和性质(习题)

直线和平面垂直的判定和性质(习题)

利用直线和平面垂直的性质解决 实际问题,如建筑物的设计、空 间定位等。
总结词:结合其他几何知识,考 察对直线和平面垂直的综合应用 能力。
在给定的几何图形中(如长方体 、正方体、球等),判断某一直 线是否与某一平面垂直,并证明 。
在解析几何中,结合直线和平面 垂直的性质,研究曲线的性质和 几何意义。
04
数学建模中的应用
解析几何
在解析几何中,直线和平面垂直 的性质是重要的概念之一,用于 描述几何图形中的垂直关系和位
置关系。
物理建模
在物理建模中,直线和平面垂直的 性质常常被用来描述物体的运动轨 迹和受力分析,以解决物理问题。
经济建模
在经济建模中测经 济发展趋势。
判定定理的应用
应用场景
在几何、工程、建筑等领域中,常常需要判断一条直线是否与某个平面垂直。 通过应用判定定理,可以快速准确地判断出结果。
实例
在建筑设计中,为了确保建筑物的稳定性,需要确保建筑物的支撑柱与地面垂 直。这时,可以通过应用直线和平面垂直的判定定理来判断支撑柱是否与地面 垂直。
02
直线和平面垂直的性质
解释
这个定理说明,只要一条直线与 平面内的一条直线垂直,那么这 条直线就与整个平面垂直,不需 要与平面内的所有直线都垂直。
判定定理的证明
• 证明方法:通过反证法,假设直线与平面不垂直,那么直线要么与平面斜交,要么与平面平行。但当直线与平面斜交或平 行时,直线不可能与平面内的任意一条直线都垂直,这与已知条件矛盾。因此,原假设不成立,直线与平面垂直。
性质的理解
直线和平面垂直时, 该直线与平面内任意 一条直线都垂直。
直线和平面垂直时, 该直线上的任意一点 到平面的距离都相等。

直线、平面垂直的判定及其性质(人教A版)(含答案)

直线、平面垂直的判定及其性质(人教A版)(含答案)

直线、平面垂直的判定及其性质(人教A版)一、单选题(共12道,每道8分)1.在空间,下列命题正确的是( )①如果直线a,b都与直线平行,那么a∥b②如果直线a与平面β内的直线b平行,那么a∥β③如果直线a与平面β内的直线b,c都垂直,那么a⊥β④如果平面β内的直线a垂直于平面α,那么α⊥βA.①③B.①④C.②④D.②③答案:B解题思路:试题难度:三颗星知识点:空间中直线与平面之间的位置关系2.已知α,β,γ是三个互不重合的平面,是一条直线,下列命题中正确命题是( ) A.B.C.D.答案:B解题思路:试题难度:三颗星知识点:面面垂直的判定3.给出下列关于互不相同的直线m,,n,平面α,β及点A的四个命题:①若m&#8834;α,∩α=A,点A&#8713;m,则与m不共面;②若m,是异面直线,∥α,m∥α,且n⊥,n⊥m,则n⊥α;③若∥α,m∥β,α∥β,则∥m;④若&#8834;α,m&#8834;α,∩m=A,∥β,m∥β,则α∥β.其中为假命题的是( )A.①B.②C.③D.④答案:C解题思路:试题难度:三颗星知识点:空间中直线与平面之间的位置关系4.如图,在正方体中,点P是CD上的动点,则直线与直线所成的角为( )A.30°B.45°C.60°D.90°答案:D解题思路:试题难度:三颗星知识点:直线与平面垂直的判定5.如图,在三棱锥S-ABC中,底面是边长为1的正三角形,O为△ABC的中心,侧棱长均为2,则侧棱与底面所成角的余弦值为( )A. B. C. D.答案:D解题思路:试题难度:三颗星知识点:空间中直线与平面之间的位置关系6.将边长为a的正方形ABCD沿对角线AC折起,使,则三棱锥D-ABC的体积为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:棱柱、棱锥、棱台的体积7.将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱锥D-ABC中,给出下列三个命题:①△DBC是等边三角形;②AC⊥BD;③三棱锥D-ABC的体积是.其中正确命题的个数为( )A.0个B.1个C.2个D.3个答案:C解题思路:试题难度:三颗星知识点:空间位置关系与距离8.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,已知AB=2,AD=,PA=2,则△PCD的面积为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:直线与平面垂直的性质9.(上接试题8)异面直线BC与AE所成的角的大小为( )A.90°B.60°C.45°D.30°答案:C解题思路:试题难度:三颗星知识点:异面直线及其所成的角10.如图,四棱锥P-ABCD的底面是边长为4的正方形,侧棱PA垂直于底面,且PA=3,则直线PC与平面ABCD所成角的正切值为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:直线与平面所成的角11.(上接试题10)异面直线PB与CD所成角的正切值为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:异面直线及其所成的角12.(上接试题10,11)四棱锥P-ABCD的表面积为( )A.80B.68C.60D.48答案:D解题思路:试题难度:三颗星知识点:棱柱、棱锥、棱台的侧面积和表面积第11页共11页。

直线平面垂直的判定及其性质一课一练完整版

直线平面垂直的判定及其性质一课一练完整版

直线平面垂直的判定及其性质一课一练集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]直线、平面垂直的判定及其性质一、选择题1、已知a,b,c是直线,,是平面,下列条件中,能得出直线a⊥平面的是()A、a⊥c,a⊥b,其中b,cB、a⊥b,b∥C、⊥,a∥D、a∥b,b⊥2、如果直线l⊥平面,①若直线m⊥l,则m∥;②若m⊥,则m∥l;③若m∥,则m⊥l;④若m∥l,则m⊥,上述判断正确的是()A、①②③B、②③④C、①③④D、②④3、直角△ABC的斜边BC在平面内,顶点A在平面外,则△ABC的两条直角边在平面内的射影与斜边BC组成的图形只能是()A、一条线段B、一个锐角三角形C、一个钝角三角形D、一条线段或一个钝角三角形4、下列命题中正确的是()A、过平面外一点作这个平面的垂面有且只有一个B、过直线外一点作这条直线的平行平面有且只有一个C、过直线外一点作这条直线的垂线有且只有一条D、过平面外的一条斜线作这个平面的垂面有且只有一个5、给出下列命题:①若平面α的两条斜线段PA、PB在α内的射影长相等,那么PA、PB 的长度相等;②已知PO是平面α的斜线段,AO是PO在平面α内的射影,若OQ⊥OP,则必有OQ⊥OA;③与两条异面直线都平行的平面有且只有一个;④平面α内有两条直线a、b都与另一个平面β平行,则α∥β、上述命题中不正确的命题是()A、①②③④B、①②③C、①③④D、②③④6、如果△ABC的三个顶点到平面的距离相等且不为零,那么△ABC的( )A、三边均与平行B、三边中至少有一边与?平行C、三边中至多有一边与?平行D、三边中至多有两边与?平行7、下列命题正确的是( )A 、一条直线与一个平面平行,它就和这个平面内的任意一条直线平行B 、平行于同一个平面的两条直线平行C 、与两个相交平面的交线平行的直线,必平行于这两个平面D 、平面外的两条平行直线中的一条与一个平面平行,则另一条直线也与此平面平行8、下列命题正确的是 ( )(A)αα////b a b a ⇒⎭⎬⎫⊥ (B)a b b a //⇒⎭⎬⎫⊥⊥αα (C)αα//b a b a ⇒⎭⎬⎫⊥⊥ (D)αα////b b a a ⇒⎭⎬⎫⊥ 9、如图2.3.1-2,在正方形ABCD 中,E 、F 分别是BC 、CD 的中点,G 是EF 的中点,现在沿AE 、AF 及EF 把这个正方形折成一个空间图形,使B 、C 、D 三点重合,重合后的点记为H ,那么,在这个空间图形中必有[ ]A 、AH⊥△EFH 所在平面B 、AD⊥△EFH 所在平面C 、HF⊥△AEF 所在平面D 、HD⊥△AEF 所在平面二、选择题10、直线a,b,c 是两两互相垂直的异面直线,直线 d 是b 和c 的公垂线,则d 和a 的位置关系是______________.11、在正方体中,与正方体的一条对角线垂直的各面上的对角线的条数是_________.三、解答题12、求证:经过平面外一点有且只有一个平面和已知平面平行已知:P α求证:过点P 有且只有一个平面β∥αE D CB A13、已知:空间四边形ABCD ,AB AC =,DB DC =,求证:BC AD ⊥14、如图,设三角形ABC 的三个顶点在平面α的同侧,A A '⊥α于A ',B B '⊥α于B ',C C '⊥α于C ',G 、G '分别是△ABC 和△A B C '''的重心,求证:G G '⊥α15、如图2.3.1-3,MN 是异面直线a 、b 的公垂线,平面α平行于a 和b ,求证:MN⊥平面α.B α AC A ' B ' C ' G ' G参考答案一、选择题1、D ;2、B ;3、D ;4、D ;5、B ;6、B ;7、D ;8、B ;9、A二、填空题10、a∥d11、4条三、解答题12、证明:过平面α外一点P 作直线⊥l α,再过点P 作平面β,使⊥l β,则α∥β.因为过点P 且与α平行的平面必与α的垂线l 也垂直,而过点P 与l 垂直的平面是唯一的,所以过点P 且与α平行的平面只有一个.13、证明:取BC 中点E ,连结,AE DE ,∵,AB AC DB DC ==,∴,AE BC DE BC ⊥⊥,∴BC ⊥平面AED ,又∵AD ⊂平面AED ,∴BC AD ⊥14、解:连接AG 并延长交BC 于D ,连A 'G '并延长交B 'C '于 D ',连D D '、G G ',由于 A A '⊥α,B B '⊥α,C C '⊥α,则A A '∥B B '∥C C '因为AG A G GD G D ''='',所以G G '∥A A ',因此G G '⊥α 15、证明:过相交直线a 和MN 作平面β,设α∩β=a′,∵a∥α.∴ a∥a′∵ MN 是a 、b 的公垂线,∴MN⊥a,于是MN⊥a′.同样过相交直线b 和MN 作平面γ,设α∩γ=b′,则可得MN⊥b′.∵a′、b′是α 内两条相交直线,∴MN⊥α.。

直线、平面垂直的判定与性质

直线、平面垂直的判定与性质

直线、平面垂直的判定与性质一、选择题1.设m、n是两条不同的直线,α、β是两个不同的平面,则( )A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α2.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是( )A.AB∥m B.AC⊥m C.AB∥β D.AC⊥β3.如图,已知△ABC为直角三角形,其中∠ACB=90°,M为AB的中点,PM垂直于△ABC所在平面,那么( )A.PA=PB>PC B.PA=PB<PC C.PA=PB=PC D.PA≠PB≠PC4.如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:①BD⊥AC;②△BAC是等边三角形;③三棱锥D-ABC是正三棱锥;④平面ADC⊥平面ABC。

其中正确的是( )A.①②④ B.①②③ C.②③④ D.①③④5.如图,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A­BCD,则在三棱锥A­BCD中,下面命题正确的是( )A.平面ABD⊥平面ABC B.平面ADC⊥平面BDCC.平面ABC⊥平面BDC D.平面ADC⊥平面ABC6.如图所示,AB是⊙O的直径,VA垂直于⊙O所在的平面,点C是圆周上不同于A,B的任意一点,M,N分别为VA,VC的中点,则下列结论正确的是( )A.MN∥AB B.MN与BC所成的角为45° C.OC⊥平面VAC D.平面VAC⊥平面VBC7.如图,在直角梯形ABCD中,BC⊥DC,AE⊥DC,且E为CD的中点,M,N分别是AD,BE的中点,将三角形ADE沿AE折起,则下列说法正确的是______。

高中数学例题:直线与平面垂直的判定

高中数学例题:直线与平面垂直的判定

高中数学例题:直线与平面垂直的判定例2.如图,已知空间四边形ABDC的边BC=AC,AD=BD,作BE ⊥CD,E为垂足,作AH⊥BE于H,求证:AH⊥平面BCD。

【思路点拨】要证AH⊥平面BCD,只需利用直线和平面垂直的判定定理,证AH垂直平面BCD中两条相交直线即可。

【解析】证明:取AB中点F,连CF,DF,∵AB=BD,∴CF⊥AB。

又∵AD=BD,∴DF⊥AB,∴AB⊥平面CDF,∴AB⊥CD。

又BE⊥CD,且AB∩BE=B,根据直线与平面垂直的判定定理,直线CD⊥平面ABE。

∴CD⊥AH。

而AH⊥BE,CD∩BE=E,∴AH⊥平面BCD。

【总结升华】本题主要考查线面垂直的判定,关键是找到平面BCD 内与AH垂直的两条相交直线,要证线面垂直,需证线线垂直;要证线线垂直,需证线面垂直,即通过判定定理实现线线垂直与线面垂直的互相转化。

例3.如图所示,四边形ABCD是矩形,PA⊥平面ABCD,△PAD是等腰三角形,M,N分别是AB,PC的中点,求证:MN⊥平面PCD。

【解析】取PD的中点E,连接AE,NE,∵N,E为中点,∴NE为△PCD的中位线,∴NE∥CD且NE=1CD。

2CD,又M为AB的中点,∴AM∥CD且AM=12∴AM∥NE且AM=NE,∴四边形AENM为平行四边形,∴AE∥MN。

又△PAD为等腰三角形,∴AE⊥PD,又PA⊥平面ABCD,∴PA⊥DC,而DC⊥AD。

∴DC⊥平面PAD。

∴AE⊥DC,∴AE⊥平面PDC。

由AE∥MN知,MN⊥平面PCD。

点评:(1)判定线面垂直的方法:①利用线面垂直定义:一直线垂直于平面内的任意直线,则这条直线垂直于该平面。

②用线面垂直判定定理:一直线与平面内的两相交直线都垂直,则这条直线与平面垂直。

③用线面垂直性质:两平行线之一垂直于平面,则另一条也必垂直于这个平面。

(2)证明线线(或线面)垂直有时需多次运用线面垂直的定义和线面垂直的判定定理,实现线线垂直与线面垂直的相互转化。

直线、平面垂直的判定与性质检测题

直线、平面垂直的判定与性质检测题

直线、平面垂直的判定与性质检测题(试卷满分100分,考试时间90分钟)一、选择题(每小题5分,共40分)1.关于直线l,m及平面α,β,下列命题中正确的是()A.若l∥α,α∩β=m,则l∥m B.若l∥α,m∥α,则l∥mC.若l⊥α,l∥β,则α⊥βD.若l∥α,m⊥l,则m⊥α解析:选C A中,l与m可能平行,异面,B中,l与m可能平行、相交、异面,故A、B错;m与α也可能平行,斜交,故D错;由l∥β知,平面β中存在直线n∥l,则由l ⊥α,可得n⊥α,由面面垂直的判定定理知α⊥β,故C正确.2.设α,β为两个不同的平面,直线l⊂α,则“l⊥β”是“α⊥β”成立的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A依题意,由l⊥β,l⊂α可以推出α⊥β;反过来,由α⊥β,l⊂α不能推出l⊥β.因此“l⊥β”是“α⊥β”成立的充分不必要条件,故选A.3.如图,在三棱锥P-ABC中,不能证明AP⊥BC的条件是()A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PBC.平面BPC⊥平面APC,BC⊥PCD.AP⊥平面PBC解析:选B A中,因为AP⊥PB,AP⊥PC,PB∩PC=P,所以AP⊥平面PBC,又BC⊂平面PBC,所以AP⊥BC,故A能证明AP⊥BC;C中,因为平面BPC⊥平面APC,BC⊥PC,所以BC⊥平面APC,又AP⊂平面APC,所以AP⊥BC,故C能证明AP⊥BC;由A知D能证明AP⊥BC;B中条件不能判断出AP⊥BC,故选B.4.如图,在以下四个正方体中,直线AB与平面CDE垂直的是()A.①② B.②④C.①③D.②③解析:选B对于①,易证AB与CE所成角为45°,则直线AB与平面CDE不垂直;对于②,易证AB⊥CE,AB⊥ED,且CE∩ED=E,则AB⊥平面CDE;对于③,易证AB 与CE所成角为60°,则直线AB与平面CDE不垂直;对于④,易证ED⊥平面ABC,则ED ⊥AB,同理EC⊥AB,可得AB⊥平面CDE.故选B.5.如图,在斜三棱柱ABC-A 1B1C1中,∠BAC=90°,且BC1⊥AC,过C1作C1H⊥底面ABC,垂足为H,则点H在()A.直线AC上 B.直线AB上C.直线BC上D.△ABC内部解析:选B如图,连接AC1.∵∠BAC=90°,∴AC⊥AB,∵BC1⊥AC,BC1∩AB=B,∴AC⊥平面ABC1,又AC在平面ABC内,∴根据面面垂直的判定定理,知平面ABC⊥平面ABC1,则根据面面垂直的性质定理知,在平面ABC1内一点C1向平面ABC作垂线,垂足必落在交线AB上.故选B.6.如图,在下列四个正方体ABCD-A1B1C1D1中,E,F,G均为所在棱的中点,过E,F,G作正方体的截面,则在各个正方体中,直线BD1与平面EFG不垂直的是()解析:选D如图,在正方体中,E,F,G,M,N,Q均为所在棱的中点,且六点共面,直线BD1与平面EFMNQG垂直,并且选项A、B、C中的平面与这个平面重合,满足题意.对于选项D中图形,由于E,F为AB,A1B1的中点,所以EF∥BB1,故∠B1BD1为异面直线EF与BD1所成的角,且tan∠B1BD1=2,即∠B1BD1不为直角,故BD1与平面EFG不垂直,故选D.7.设a,b,c是三条不同的直线,α,β是两个不同的平面,则a⊥b的一个充分条件是()A.a⊥c,b⊥c B.α⊥β,a⊂α,b⊂βC.a⊥α,b∥αD.a⊥α,b⊥α解析:选C对于选项C,在平面α内存在m∥b,因为a⊥α,所以a⊥m,故a⊥b;A、B选项中,直线a,b可能是平行直线,相交直线,也可能是异面直线;D选项中一定推出a∥b.8.如图,已知四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且MD =NB =1,E 为MC 的中点,则下列结论不正确的是( )A .平面BCE ⊥平面ABNB .MC ⊥ANC .平面CMN ⊥平面AMND .平面BDE ∥平面AMN解析:选C 如图,分别过A ,C 作平面ABCD 的垂线AP ,CQ ,使得AP =CQ =1, 连接PM ,PN ,QM ,QN ,将几何体补成棱长为1的正方体.∴BC ⊥平面ABN ,又BC ⊂平面BCE ,∴平面BCE ⊥平面ABN ,故A 正确;连接PB ,则PB ∥MC ,显然,PB ⊥AN ,∴MC ⊥AN ,故B 正确;取MN 的中点F ,连接AF ,CF ,AC .∵△AMN 和△CMN 都是边长为2的等边三角形,∴AF ⊥MN ,CF ⊥MN ,∴∠AFC 为二面角A -MN -C 的平面角,∵AF =CF =62,AC =2, ∴AF 2+CF 2≠AC 2,即∠AFC ≠π2, ∴平面CMN 与平面AMN 不垂直,故C 错误;∵DE ∥AN ,MN ∥BD ,DE ∩BD =D ,DE ⊂平面BDE ,BD ⊂平面BDE ,MN ∩AN =N ,MN ⊂平面AMN ,AN ⊂平面AMN ,∴平面BDE ∥平面AMN ,故D 正确.故选C.二、填空题(每小题5分,共20分)9.在矩形ABCD 中,AB <BC ,现将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折的过程中,给出下列结论:①存在某个位置,使得直线AC 与直线BD 垂直;②存在某个位置,使得直线AB 与直线CD 垂直;③存在某个位置,使得直线AD 与直线BC 垂直.其中正确结论的序号是________.解析:①假设AC 与BD 垂直,过点A 作AE ⊥BD 于E ,连接CE .则⎭⎪⎬⎪⎫AE ⊥BD BD ⊥AC ⇒BD ⊥平面AEC ⇒BD ⊥CE ,而在平面BCD 中,CE 与BD 不垂直,故假设不成立,①不正确.②假设AB ⊥CD ,∵AB ⊥AD ,∴AB ⊥平面ACD ,∴AB ⊥AC ,由AB <BC 可知,存在这样的等腰直角三角形,使AB ⊥CD ,故假设成立,②正确.③假设AD ⊥BC ,∵CD ⊥BC ,∴BC ⊥平面ACD ,∴BC ⊥AC ,即△ABC 为直角三角形,且AB 为斜边,而AB <BC ,故矛盾,假设不成立,③不正确.综上,填②.答案:②10.在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD .解析:∵△P AB ≌△P AD ,∴PB =PD ,∴△PDC ≌△PBC ,当BM ⊥PC 时,有DM ⊥PC ,此时PC ⊥平面MBD ,∴平面MBD ⊥平面PCD .故填BM ⊥PC (或DM ⊥PC ).答案:BM ⊥PC (或DM ⊥PC )11.点P 在正方体ABCD -A 1B 1C 1D 1的面对角线BC 1上运动,给出下列命题:①三棱锥A -D 1PC 的体积不变;②A 1P ∥平面ACD 1;③DP ⊥BC 1;④平面PDB 1⊥平面ACD 1.其中正确的命题序号是________.解析:对于①,VA -D 1PC =VP -AD 1C ,点P 到平面AD 1C 的距离即为线BC 1与平面AD 1C 的距离,为定值,故①正确;对于②,因为平面A 1C 1B ∥平面ACD 1,所以线A 1P ∥平面ACD 1;对于③,由于当点P 在B 点时,DB 不垂直于BC 1,即DP 不垂直于BC 1,故③错误;对于④,由于B 1D ⊥平面ACD 1,所以平面PDB 1⊥平面ACD 1.答案:①②④12.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F ,且EF =22,则下列结论: ①EF ∥平面ABCD ;②平面ACF ⊥平面BEF ;③三棱锥E -ABF 的体积为定值;④存在某个位置使得异面直线AE 与BF 所成的角为30°.其中正确的是________.(写出所有正确的结论序号)解析:由正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F ,且EF =22知,在①中,由EF ∥BD ,且EF ⊄平面ABCD ,BD ⊂平面ABCD ,得EF ∥平面ABCD ,故①正确;在②中,连接BD,CF,由AC⊥BD,AC⊥DD1,可知AC⊥平面BDD1B1,而BE ⊂平面BDD1B1,BF⊂平面BDD1B1,则AC⊥平面BEF.又因为AC⊂平面ACF,所以平面ACF⊥平面BEF,故②正确;在③中,三棱锥E-ABF的体积与三棱锥A-BEF的体积相等,三棱锥A-BEF的底面积和高都是定值,故三棱锥E-ABF的体积为定值,故③正确;在④中,令上底面中心为O,当E与D1重合时,此时点F与O重合,则两异面直线所成的角是∠OBC1,可求得∠OBC1=30°,故存在.答案:①②③④三、综合题(3个小题,共40分)13.(12分)如图所示,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明:(1)在直三棱柱ABC-A1B1C1中,A1C1∥AC.在△ABC中,∵D,E分别为AB,BC的中点,∴DE∥AC,∴DE∥A1C1.∵DE⊄平面A1C1F,A1C1⊂平面A1C1F,∴直线DE∥平面A1C1F.(2)在直三棱柱ABC-A1B1C1中,A1A⊥平面A1B1C1.∵A1C1⊂平面A1B1C1,∴A1A⊥A1C1.∵A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,∴A1C1⊥平面ABB1A1.∵B1D⊂平面ABB1A1,∴A1C1⊥B1D,又∵B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,∴B1D⊥平面A1C1F.∵直线B1D⊂平面B1DE,∴平面B1DE⊥平面A1C1F.14.(14分)如图,多面体ABC-A 1B1C1中,三角形ABC是边长为4的正三角形,AA1∥BB1∥CC1,AA1⊥平面ABC,AA1=BB1=2CC1=4.(1)若O是AB的中点,求证:OC1⊥A1B1;(2)在线段AB1上是否存在一点D,使得CD∥平面A1B1C1?若存在,确定点D的位置;若不存在,请说明理由.解:(1)证明:取线段A 1B 1的中点E ,连接OE ,C 1E ,CO ,已知等边三角形ABC 的边长为4,AA 1=BB 1=2CC 1=4,AA 1⊥平面ABC ,AA 1∥BB 1∥CC 1,所以四边形AA 1B 1B 是正方形,OE ⊥AB ,CO⊥AB .因为CO ∩OE =O ,所以AB ⊥平面EOCC 1,又A 1B 1∥AB ,OC 1⊂平面EOCC 1,所以OC 1⊥A 1B 1.(2)设OE ∩AB 1=D ,连接CD ,则点D 是AB 1的中点,所以ED ∥AA 1,ED =12AA 1, 又因为CC 1∥AA 1,CC 1=12AA 1, 所以四边形CC 1ED 是平行四边形,所以CD ∥C 1E ,所以CD ∥平面A 1B 1C 1,即存在点D ,使CD ∥平面A 1B 1C 1,且点D 是AB 1的中点.15.(14分)如图所示,在平行四边形ABCD 中,已知AD =2AB =2a ,BD =3a ,AC ∩BD =E ,将其沿对角线BD 折成直二面角.求证:(1)AB ⊥平面BCD ;(2)平面ACD ⊥平面ABD .证明:(1)在△ABD 中,AB =a ,AD =2a ,BD =3a ,∴AB 2+BD 2=AD 2,∴∠ABD =90°,∴AB ⊥BD .又∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AB ⊂平面ABD ,∴AB ⊥平面BCD .(2)∵折叠前四边形ABCD 是平行四边形,且AB ⊥BD ,∴CD ⊥BD .∵AB ⊥平面BCD ,∴AB ⊥CD .又∵AB ∩BD =B ,∴CD ⊥平面ABD .又∵CD ⊂平面ACD ,∴平面ACD ⊥平面ABD .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与平面垂直的判定练习题
1.如果一条直线l 与平面α的一条垂线垂直,那么直线l 与平面α的位置关系是 ( ) A.l ⊂α B.l ⊥α C.l ∥α D.l ⊂α或l ∥α
2.若两直线a⊥b,且a⊥平面α,则b 与α的位置关系是 ( )
A.相交
B.b∥α
C.b ⊂α
D.b∥α,或b ⊂α 3.a ∥α,则a 平行于α内的( )
A.一条确定的直线
B.任意一条直线
C.所有直线
D.无数多条平行线 4.若直线l 上有两点P.Q 到平面α的距离相等,则直线l 与平面α的位置关系是( ) A.平行 B.相交 C.平行或相交 D.平行.相交或在平面α内 5.下面各命题中正确的是( )
A.直线a ,b 异面,a ⊂α,b ⊂β,则α∥β;
B.直线a ∥b ,a ⊂α,b ⊂β,则α∥β;
C.直线a ⊥b ,a ⊥α,b ⊥β,则α⊥β;
D.直线a ⊂α,b ⊂β,α∥β,则a ,b 异面. 6.已知两条直线,m n ,两个平面,αβ,给出下面四个命题:
①//,m n m n αα⊥⇒⊥ ②//,,//m n m n αβαβ⊂⊂⇒ ③//,////m n m n αα⇒ ④//,//,m n m n αβαβ⊥⇒⊥ 其中正确命题的序号是( )
A .①③
B .②④
C .①④
D .②③
7.在△ABC 中,AB =AC =5,BC =6,PA ⊥平面ABC ,PA =8,则P 到BC 的距离等于( ) A .5 B .52 C .35 D .45 8.以下命题正确的有( ).

//a b b a αα⎫⇒⊥⎬⊥⎭. ②//a a b b αα⊥⎫⇒⎬⊥⎭. ③,,l m l n l m n ααα⊥⊥⎫
⇒⊥⎬⊂⊂⎭;

l m
l m αα⊥⎫
⇒⊥⎬⎭
是平面内的任意直线.
A . ①②
B . ①②③
C . ②③④
D . ①②④
9.如图,在四棱锥P ABCD -中,PA ⊥平面AC ,
且四边形ABCD 是矩形,则该四棱锥的四个侧面 中是直角三角形的有( ). A .1个 B .2个 C .3个
D .4个
10.在正方形S G 1G 2G 3中,E .F 分别是G 1G 2.G 2G 3的中点,现沿S E .S F .EF 把这个正方形折成一个四面体,使G 1.G 2.G 3重合为点G ,则有( ).
A. SG ⊥面EFG
B. EG ⊥面SEF
C. GF ⊥面SEF
D. SG ⊥面SEF 11. 已知直线l α⊥平面,有以下几个判断:①若m l ⊥,则m α//;②若m α⊥,则m l //;③若
m α//,则m l ⊥;④若m l //,则m α⊥.上述判断中正确的是(2 ) A.①②③
B.②③④
C.①③④
D.①②④
12.已知m 、n 是两条不同的直线,α、β是两个不同的平面.下列命题中不正确的是( 1 ) A .若m ∥α,α∩β=n ,则m ∥n
B .若m ∥n ,m ⊥α,则n ⊥α
C .若m ⊥α,m ⊥β,则α∥β
D .若m ⊥α,m ⊂β,则α⊥β
13.已知两条不同的直线m 、n ,两个不同的平面α、β,则下列命题中的真命题是( 1 )
A .若m ⊥α,n ⊥β,α⊥β,则m ⊥n
B .若m ∥α,n ∥β,α∥β,则m ∥n
C .若m ⊥α,n ∥β,α⊥β,则m ⊥n
D .若m ∥α,n ⊥β,α⊥β,则m ∥n
14.设α、β、γ是三个不重合的平面,l 是直线,给出下列命题
①若α⊥β,β⊥γ,则α⊥γ;②若l 上两点到α的距离相等,则l ∥α;③若l ⊥α,l ∥β,则α⊥β;④若α∥β,l ⊄β,且l ∥α,则l ∥β. 其中正确的命题是( 4 )
A .①②
B .②③
C .②④
D .③④
15.已知l 、m 是不同的两条直线,α、β是不重合的两个平面,则下列命题中为真命题的是(4 )
A .若l ⊥α,α⊥β,则l ∥β
B .若l ∥α,α⊥β,则l ∥β
C .若l ⊥m ,α∥β,m ⊂β,则l ⊥α
D .若l ⊥α,α∥β,m ⊂β,则l ⊥m
A
B
C
D
P
16.用,,表示三条不同的直线,表示平面,给出下列命题: ① 若∥,∥,则∥; ② 若⊥,⊥,则⊥; ③ 若∥
,∥
,则∥
; ④ 若⊥,⊥,则∥
.
其中真命题的序号是( ).
A.① ②
B.② ③
C.① ④
D.③ ④ 17.下列命题中错误的是( ).
A.如果平面⊥平面,那么平面内一定存在直线平行于平面
B.如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面
C.如果平面⊥平面,平面⊥平面,
,那么⊥平面
D.如果平面⊥平面,那么平面内所有直线都垂直于平面 18.已知两条直线,,两个平面,,给出下面四个命题: ①∥,⊥⊥; ②∥,

∥; ③∥,∥
∥; ④∥,∥,⊥
⊥.
其中正确命题的序号是
19. 如图, 在直三棱柱ABC -A 1B 1C 1中,AC BC ⊥,点D 是AB 的中点,
求证:(1)1AC BC ⊥ (2)AC 1//平面CDB 1;
20.如图,在三棱锥P ABC -中,AB AC =,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.
证明:AP ⊥BC ;
21.如图,AB 是圆O 的直径,PA 垂直于圆O 所在的平面,C 是圆周上不同于A 、B 的任意一点,过A 作AE PC ⊥于E ,
求证:(1) BC ⊥平面PAC ; (2) AE ⊥平面PBC
22.如图,四边形ABCD 是菱形,且PA ⊥平面ABCD,Q 为PA 的中点,求证: (1)PC//面QBD 、(2)BD ⊥平面PAC
23. 如图所示,直角ABC ∆所在平面外一点S ,且SC SB SA ==.
(1)求证:点S 与斜边AC 中点D 的连线SD ⊥面ABC ;
(2)若直角边BC BA =,求证:BD ⊥面SAC .
24.如图所示,ABCD 为正方形,SA ⊥平面ABCD ,过A 且垂直于SC 的平面分别交SB ,SC ,SD 于E ,F ,G . 求证:AE SB AG SD ⊥⊥,.
Q
S A
B
C F
E D G
25、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1)C 1O//面11AB D ;
(2 )1
AC ⊥面11AB D . (14分)
26如图,四棱锥S ABCD -的底面是正方形,SD ⊥平面ABCD ,E 是SD 的中点. (Ⅰ)求证://SB 平面EAC ;
(Ⅱ)求证:AC BE ⊥.
27.如图,已知四棱柱ABCD —A 1B 1C 1D 1的底面是菱形,侧棱BB 1⊥底面ABCD ,E 是侧棱CC 1的中点。

(I )求证:AC ⊥平面BDD 1B 1; (II )求证:AC//平面B 1DE 。

D 1O
D
B A
C 1
B 1
A 1
C。

相关文档
最新文档