矩阵可交换性的应用讲解

合集下载

矩阵可交换性质

矩阵可交换性质

矩阵可交换的条件及其性质摘要:矩阵在高等数学中是一个极重要且应用广泛的概念,是线性代数的核心。

本文通过对可交换矩阵理论的深入研究,对矩阵的可交换做了深入的探讨,归纳总结了矩阵可交换的条件及性质,给出了与已知矩阵可交换的矩阵的求法.关键词:矩阵;可交换;可交换矩阵The Conditions For The Commutation Of Matrix and SomePropertiesAbstract: Matrix in higher mathematics is a very important and widely used concept, is the coreof the linear algebra.This article through to exchange matrix theory research, the matrix interchange to do a further study and summarizes the matrix interchangeable condition and properties are given, and the known matrix can exchange the matrix is introduced.Key words:Matrix;Commutation;The Commutation Of Matrix目录1 引言........................................................................................................................................ - 1 -2 可交换矩阵的基本定义........................................................................................................ - 1 -3 矩阵可交换的条件................................................................................................................ - 1 -3.2 矩阵可交换的几个充要条件............................................................................................... - 3 -4 可交换矩阵的性质.................................................................................................................. -5 -5 与已知矩阵可交换的矩阵的求法........................................................................................ - 5 -5.1 定义法.......................................................................................................................... - 5 -6 结论(结束语).................................................................................................................... - 9 -7 致谢...................................................................................................................................... - 10 - 参考文献.................................................................................................................................... - 10 -1 引言矩阵在高等代数以及线性代数中是一个重要的内容.本文从可交换矩阵的定义出发,通过对矩阵理论的深入研究,总结归纳了矩阵可交换的充分条件、充要条件以及可交换矩阵的一些性质及给出了求可交换矩阵的一些方法,对矩阵理论的研究具有重要的意义(文中的矩阵均指n阶实方阵).2 可交换矩阵的基本定义一般说来,矩阵的乘法不适合交换律,即BAAB≠,这是由于在乘积中一方面要求第一个因子的列数等于第二个因子的行数,否则没有意义.所以当矩阵AB有意义时,矩阵BA未必有意义;另一方面,即使矩阵AB、BA都有意义时,它们的级数也未必相等.因为乘积的行数等于第一个因子的行数,列数等于第二个因子的列数.由此我们给出可交换矩阵这一特殊矩阵的定义.定义2.1[]1对于两个n阶方阵A,B,若BAAB=,则称方阵A与B是可交换的。

与a可交换的矩阵特点

与a可交换的矩阵特点

与a可交换的矩阵特点
在线性代数中,矩阵是一个常见且重要的数学概念。

在矩阵运算中,有一种特
殊情况,即与一个特定矩阵a相乘后结果与a交换位置仍然保持不变的矩阵。

这种
矩阵具有一些特点,下面将详细介绍。

首先,我们定义一个n×n的矩阵A,并设一个m×m的矩阵a,其中n>m。


果满足以下条件,即Aa = aA成立,那么我们称矩阵A与矩阵a是可交换的。

首先,可交换的矩阵A和a必须具有相同的特征值。

特征值是对于一个矩阵的
线性变换,通过一个标量因子来表示矩阵的性质。

当两个矩阵具有相同的特征值时,它们可以交换位置并保持结果不变。

其次,可交换的矩阵A和a必须具有相同的特征向量。

特征向量是与特征值相
关联的非零向量,通过矩阵的线性变换后,仍在同一方向上。

此外,可交换的矩阵A和a之间必须满足可逆的条件,即它们的乘积和交换位
置后的乘积都是可逆的。

可逆矩阵是指存在一个逆矩阵,乘以该矩阵后得到单位矩阵。

如果A和a不可逆,它们将无法交换位置并保持结果不变。

需要注意的是,矩阵的可交换性并不常见,大多数矩阵在与其他矩阵相乘后无
法交换位置并保持结果不变。

因此,可交换矩阵的特性在某些特定领域和问题中具有重要意义,如量子力学中的观测和测量。

总结起来,与一个特定矩阵a可交换的矩阵具有相同的特征值和特征向量,并
且可逆。

这种可交换矩阵在某些数学和物理领域中具有重要作用,并为我们理解矩阵运算的特殊情况提供了一定的指导。

矩阵可交换问题及其在高等代数考研中的应用

矩阵可交换问题及其在高等代数考研中的应用

( 详情请看文献 % 3 & ) " 即 它 们 之 间 存 在 着 同 构 的 关 系" 线 性变换的可交换对应着矩阵的可交换# 在每年的高等代 数考研试题的大题中"都会涉及有关矩阵(线性变换) 可交 换问题# 大致会从这几个方面来进行考察!($) 在求矩阵 的 , 次方幂时"可以观察矩阵的特点"将其拆分成两个可 交换的矩阵"再进行二项式展开# ())已知一个矩阵"求与 此矩阵可交换的矩阵是哪种类型的矩阵# (() 已知一个矩 阵"求与此矩阵可交换的所有矩阵# (3) 已知两个矩阵可 交换"求证对于二阶分块矩阵的行列式的计算方法类似二 阶数字矩阵的计算方法# (5)有关矩阵可交换问题而引出 的可同时三角化( 对角化) 问题# (0) 涉及线性变换下的 可交换问题# 下面通过对历年真题的研究"总结有关可交 换问题的考点#
科教论坛 !"#!$%&$'(') *+&,-./&$01$21(3$&)%)$((%$'
科技风 @A@B 年 BB 月
矩阵可交换问题及其在高等代数考研中的应用
张 蓉4陈国华#
湖南人文科技学院!湖南娄底!B"J###
摘4要高等代数是数学专业的学生必学的科目同时也是考研数学的专业课 有关矩阵的内容在高等代数的教学 中有着举足轻重的地位 我们知道矩阵的乘法一般都不满足交换律但是在特定的条件下矩阵之间是可以交换的而数 学主要研究的就是这类特殊的东西 可交换问题是高等代数教学中的重点内容之一同时也是高等代数考研数学中的热 点之一 本文罗列出了一些矩阵线性变换可交换问题在高等代数考研数学中的应用希望对考研数学有一定的帮助

交换矩阵

交换矩阵

A
=
1 2
2 3
的可交换矩阵。
解:设矩阵
B
a c
b d

A
的可交换矩阵。则有
AB
BA.
AB
=
1 2
2a
3
c
b d
a 2c 2a 3c
b 2d 2b 3d
C
a b 1 2 a 2b 2a 3b
BA
c
d
2
3
c
2d
2c
3d
D
a 2 a 2b
dn1
d1n

dnn
显然有 C D 。 (3) AB 与 BA 均有意义,且二者阶数也相同但是最后具体的乘积方阵还是 不一样。
比如说:矩阵
A
=
2 1
1 1

B
=
1 1
2 2

AB
=
2 1
1 1 1 1
2 3 2 2
6 4
=
C

但是
BA
=
1 1
2 2 2 1
1 1
4 4
3 3
=
D
。显然
C
定理 6: ( A B)2 A2 2AB B2 ; 证明:充分性 ( A B)2 ( A B)( A B) A2 AB BA B2
又 ( A B)2 A2 2AB B2 , 从而 AB BA 2AB 即 AB BA; 必要性: 若 AB BA 则 ( A B)2 ( A B)( A B) A2 AB BA B2 A2 2AB B2 , 必要性得证。 定理 7: (AB) AB ; 证明:充分性 由题知 (AB) AB ,又因为 (BA) AB ,

交换矩阵

交换矩阵

且 b11 b22 为任意数值,但 a11 b22 ,对 b12 不做要求。
例:
A
3 0
5 3
,则可与
A
交换的矩阵为
B
5 0
6 5


AB
BA
15
0
43
15

(3)对于三阶上三角矩阵,如果其主对角线的元素相同,则与之可交换的 矩阵同样为上三角矩阵,主对角线的值也一样。
a11 a12 a13
dn1
d1n

dnn
显然有 C D 。 (3) AB 与 BA 均有意义,且二者阶数也相同但是最后具体的乘积方阵还是 不一样。
比如说:矩阵
A
=
2 1
1 1

B
=
1 1
2 2

AB
=
2 1
1 1 1 1
2 3 2 2
6 4
=
C

但是
BA
=
1 1
2 2 2 1
1 1
4 4
3 3
=
D
。显然
C
○1
○ 再在 1 式两边同时右乘 A1 , 则出现 BA1 A1BAA1 A1B
所以 A1与B 可交换。该性质得证。
四、可交换矩阵的性质
上面我们了解到了一些可交换矩阵的判定方法和一些性质。掌握了这些, 下面给出可交换矩阵的求法。 (1)先介绍最基础最简单的基础求法。根据可交换矩阵的定义求。

1:求矩阵
所以成立 ( AB)1 A1B1 。
定理 9: ( AB)* A*B* 证明:充分性 因为 ( AB)* B* A* ,又由题可知 ( AB)* A*B* ,

矩阵可交换成立的条件与性质

矩阵可交换成立的条件与性质

长春师范学院本科生毕业论文矩阵可交换成立的条件与性质系(部):数学系专业:数学与应用数学学号:0707140305学生姓名:史丹指导教师:魏丽莉职称:副教授2010年12月摘要摘要:矩阵是高等数学中一个重要内容,在数学领域以及其他科学领域有着重大的理论意义。

众所周知,矩阵的乘法在一般情况下是不满足交换律的,即在通常情况下,AB≠BA。

但是,在某些特殊情况下,矩阵的乘法也能满足交换律。

可交换矩阵有着很多特殊的性质和重要的作用。

本文从可交换矩阵和相关知识的定义出发,探讨了矩阵可交换的一些条件和可交换矩阵的部分性质及应用,并且介绍了几类特殊的可交换矩阵。

关键词:矩阵;可交换;条件;性质;上3角矩阵TheConditionsForTheCommutationofMatrixandsomeproper tiesofTheCommutativeMatrixAbstract:Matrix, a important content inaltitude-mathematics, has a great theoretic significance in the aspect of both mathematics and other science field. As far as we have concerned, the multiplication of matrix could not satisfy the exchange rule under the normal condition, that is to say, normally, AB≠BA . Whereas, in some certain conditions, the multiplication of matrix could satisfy the exchange rule. The exchangeable matrix has many special properties and important effection. This paper discusses some conditions of the matrix exchange and part of the property of the exchangeable matrix , and also introduces several kinds of specific exchangeable matrix. All of these are discussed from the concept of exchangeable matrix and relative information.Key Words:Matrix;interchangeable;conditions;property;upper triangular matrix目录前言 (1)1.矩阵可交换成立的条件 (2)2.可交换矩阵的性质 (6)3.几类常用的可交换矩阵 (8)4.可交换矩阵的应用 10 总结 (14)参考文献 (15)致谢 (16)前言矩阵的乘法不适合交换律是指一般情形而说的,但是对于个别矩阵,它满足一定的条件,即它是可交换的。

论文:浅谈矩阵的可交换性3

论文:浅谈矩阵的可交换性3

浅谈矩阵的可交换性摘要:交换矩阵是矩阵理论及线性代数中的一个基本概念,是许多数学分支研究的重要工具,交换矩阵作为矩阵中较为特殊的一类,其理论和应用有自身的特点,而在我们的大学学习中,交换矩阵只是作为求解逆矩阵的工具出现的,并没有深入的研究。

因此本文针对一般的矩阵可交换这一性质进行了深入研究,对一些特殊的矩阵如上三角矩阵、数量矩阵等给出了一些可交换性质的充分条件和必要条件。

关键字:矩阵交换矩阵上三角矩阵数量矩阵本文分二章第一章为引言,主要介绍了对于矩阵可交换性研究的选题背景和本文有关的一些定义和相关概念。

第二章主要参考一些特殊的公式和通过一些特殊的矩阵如对角矩阵、数量矩阵、上三角矩阵等的研究来对矩阵可交换性的充分条件、必要条件的探讨和总结以及矩阵可交换性的一些性质的探讨。

选题背景随着科学技术的迅速发展和计算机技术的进步,科学与工程计算即科学计算的研究受到科学技术人员的极大重视,其应用范围已经渗透到各个学科领域计算机的日益普及,使得矩阵理论与应用越来越受到数学学者、工程技术人员和科技人员的关注,矩阵理论不仅仅是一们重要的数学理论,而且在数值分析、数学建模、最优化方法等数学分支上有极其重要的应用,还在计算机科学、无线电技术和卫星通信等尖端技术科学领域和社会学、经济数学等许多方面都有着重要的用途和具体应用背景,由于利用矩阵理论与方法来处理错综复杂的工程问题时,具有表达简洁、对工程问题的实质刻画深刻的优点。

因此研究矩阵的可交换性对我的后继学习有极大的帮助。

研究现状及本文所做的工作目前,对于交换矩阵性质的研究主要是围绕交换矩阵的基本性质进行的,重点是交换矩阵的运算性质、交换矩阵的继承性质以及交换矩阵的有关性质。

本文的主要工作是把交换矩阵的性质进行分类并进行相应的总结参考资料【1】高丽一类上三角形矩阵可交换的充要条件。

滨州师范学院学报,2000,16(4)31-33【2】阎家灏赵锡英可交换矩阵兰州工业高等专科学校学报,2002,9(3):51-54【3】曾梅兰。

可交换矩阵浅析

可交换矩阵浅析

= a22 , b11 = b22 ,所以 AB = BA 。
′ −1 −1 A′B′ = ⎡( A − kE ) B ⎤′ ⎡( A − kE ) A⎤ = B′ ( A − kE )′ A′ [ ( A − kE )′] = ⎣ ⎦ ⎣ ⎦ −1 −1 B′( A2 − kA)′ [ ( A − kE )′] = B′ [ ( A − kE ) A]′ [ ( A − kE )′] = B′A′ = ( AB)′ 。
[3]
ai ≠ a j (i ≠ j ) ,
B = ( bij ) n×n (i, j = 1, 2,L , n) ,因 AB = BA ,得到元素 ai ·bij = bij ·a j = a j ·bij , ai - a j ) bij = 0, ai ≠ a j , ( 因
199
2009 年
αβ
( A − β E )( B − α E ) = E , 故 依 定 理 2.1 ⑥ 得 : 1 ( B − α E )
αβ
性质 4.2 与主对角线上的元素互不相等的 n 阶对角阵 A 可交换
( A − β E ) = E ,于是 BA − α A − β B + αβ E = αβ E ,故 BA = α A +
两边取转置得 AB = BA 。或由 A−1 B −1 = ⎡( A − kE ) B ⎤ ⎣ ⎦
−1
−1
−1
⎡( A − kE )−1 A⎤ = B −1 ( A − kE )−1 A−1 ( A − kE ) = B ( A − kA) ⎣ ⎦
−1
2
aij ) n×n 中元素满足 aij =0, ≠ j , i
定义 1.3 在 n 阶对角阵 A 中, a11 若

可交换矩阵

可交换矩阵

(1) A - B = ( A + B) ( A - B) =( A - B) ( A
+ B)
(2) ( A ±B) 2 = A 2 ±2 AB + B2 ;
(3) ( AB)′= A′B′;
(4) ( AB)= AB
定理5
可逆矩阵 A , B 可交换的充要条件是:
(AB) = A ·B .
定理6
零矩阵.
(1) 设 A , B 均为(反) 对称矩阵, 则 A , B 可交换的充要条件是 AB 为对称矩阵; (2) 设 A , B 有一为对称矩阵,另一为反对称矩阵,则 A , B 可交换的充要条件是 AB 为反对称矩阵.
编辑本段可交换矩阵的一些性质
性质1
设 A , B 可交换,则有:
(1) A·B = B ·A , ( AB) = A B, 其中 m , k 都是正整数;
可交换矩阵
目录
矩阵可交换的几个充分条件和必要条件定理1 定理2 定理3 定理4 定理5 定理6
可交换矩阵的一些性质性质1 性阵,即矩阵 A,B 满足:A·B=B·A。

等代数中可交换矩阵具有一些特殊的性质。下面所说的的矩阵均指 n 阶实方阵.。
编辑本段矩阵可交换的几个充分条件和必要条件
定理1
下面是可交换矩阵的充分条件:
(1) 设 A , B 至少有一个为零矩阵,则 A , B
可交换;
(2) 设 A , B 至少有一个为单位矩阵, 则 A , B 可交换;
(3) 设 A , B
至少有一个为数量矩阵, 则 A , B 可交换;
(4) 设 A , B 均为对角矩阵,则 A , B 可
(2) 设 A m +αAB

矩阵可交换的条件及其性质

矩阵可交换的条件及其性质

中文摘要特殊矩阵在矩阵分析和矩阵计算中占有十分重要的地位,它们在计算数学、应用数学、经济学、物理学等方面都有着广泛的应用,对特殊矩阵的研究取得的实质性的进展,都将会对计算数学的发展起着重要的推动作用.随着矩阵应用程度的不断加深,矩阵的可交换性越来越被学者和技术人员所重视.矩阵的可交换性不仅在矩阵计算中起着重要作用,而且在卫星通讯等等许多领域也有着直接的应用.关键词:矩阵交换矩阵可交换特殊矩阵上三角矩阵数量矩阵ABSTRACTSpecial matrices play an important role in matrix analysis and matrix computation and have wide applications in computational mathematics, economics,physics,biology,applied mathematics and etc.Great progress obtained in the researchers on special matrices will give improvements in computational mathematics.With the applications of matrices are more and more abroad,the commutativity of matrix is more and more recognition by scholar and technology worker.The commutativity of matrix not only plays an important part in the matrix computation,but also in the secondary planet, communication and other fields.Keywords:the commutant of matrix,mathematics,exchangeable,special matrices,upper triangle matrices,scalar matrices矩阵的可交换性在各类矩阵的运算中应用十分重要,特别是在现在这种信息时代,在卫星通讯、网络安全方面、解码器以及电路系统镇定性问题、路由交换处理器等等都有着不可替代的作用.本文主要介绍了矩阵的可交换性质和可交换条件的研究以及矩阵交换的相关概念和基本定义.对矩阵可交换的基本定理和一些优美性质进行了叙述和总结,以及对一些特殊的矩阵例如数量矩阵、上三角矩阵等等,满足可交换条件的矩阵进行了探究.在高等代数及线性代数的教学中,矩阵是一个重要的教学内容。

矩阵可交换的论文讲解

矩阵可交换的论文讲解
1.2 国内外研究现状(文献综述)
线性代数是代数学的一大分支,而矩阵就是线性代数中最重要的内容之一. 矩阵在十九世纪受到很大的注意,而且写了成百上千篇关于这个课题的文章.线 性代数学科和矩阵理论是伴随着线性系统方程系数研究而引入和发展的.最早利 用矩阵概念的是拉格朗日( Lagrange ) 在 1700 年后的双线性型工作中体现 的.
中国•重庆 2009 年 4 月
数学与统计学院毕业论文(设计)
目录
目录
中文摘要 ......................................................................................... II
英文摘要 ........................................................................................ III
3 矩阵乘法可交换的应用...................................................................1717
4 结论............................................................................................. 21
中 A,B 均是可逆矩阵)利用分块矩阵来求.文献[10]给出一种同时利用行和列的 初等变换求逆矩阵的方法,以达到简便、快速求解的目的.
三对角矩阵及块三对角矩阵在数学、物理和工程的很多方面中都有重要的
应用.三对角矩阵是一种特殊的带型矩阵,所以到目前为止,研究块三对角矩阵
求逆的研究并不多见.文献[3]和文献[8]定义了三对角矩阵的概念,然后刻划了

可交换矩阵的性质及应用_孟献青

可交换矩阵的性质及应用_孟献青

1 性质
性质 1 设矩阵 A,B 可交换,且
λn
n
1
n n
n
n
n n n
λ1
n n n
n
n
A=
n n
……
n n
n
n
n n
λ
1n n
n
n
n
n
n n
λ
, n
n

bn
n n
1
n
n
n
n
B

n n
n
n
n
n
n
n
n
b2 b3 … b1 b2 …
…… b1
bn
n
n n
bn
n-1
n n
n
n
n
n
bn
2
n n
n
b1
。 n
λ I ≠
≠ ≠
1 n1



T-1AT=
≠ ≠ ≠




≠≠

λ2In2













λI ≠
s
ns
≠≠ ≠
收稿日期:2012-12-12
基金项目:山西省高等学校科技研究开发项目[20121015]
作者简介:孟献青(1979-),女,山西怀仁人,硕士,讲师,研究方向:图论与高等数学。
组基,在此基下 A,B 对应的线性变换 A,B 的矩
阵分别为
2 2 2 2 λ α
μβ
A1 = 0 Α2 B1 = 0 B2 ,

矩阵可交换成立的条件与性质

矩阵可交换成立的条件与性质

长春师范学院本科生毕业论文矩阵可交换成立的条件与性质系(部):数学系专业:数学与应用数学学号:0707140305学生姓名:史丹指导教师:魏丽莉职称:副教授2010年12月摘要摘要:矩阵是高等数学中一个重要内容,在数学领域以及其他科学领域有着重大的理论意义。

众所周知,矩阵的乘法在一般情况下是不满足交换律的,即在通常情况下,AB≠BA。

但是,在某些特殊情况下,矩阵的乘法也能满足交换律。

可交换矩阵有着很多特殊的性质和重要的作用。

本文从可交换矩阵和相关知识的定义出发,探讨了矩阵可交换的一些条件和可交换矩阵的部分性质及应用,并且介绍了几类特殊的可交换矩阵。

关键词:矩阵;可交换;条件;性质;上3角矩阵TheConditionsForTheCommutationofMatrixandsomeproper tiesofTheCommutativeMatrixAbstract:Matrix, a important content inaltitude-mathematics, has a great theoretic significance in the aspect of both mathematics and other science field. As far as we have concerned, the multiplication of matrix could not satisfy the exchange rule under the normal condition, that is to say, normally, AB≠BA . Whereas, in some certain conditions, the multiplication of matrix could satisfy the exchange rule. The exchangeable matrix has many special properties and important effection. This paper discusses some conditions of the matrix exchange and part of the property of the exchangeable matrix , and also introduces several kinds of specific exchangeable matrix. All of these are discussed from the concept of exchangeable matrix and relative information.Key Words:Matrix;interchangeable;conditions;property;upper triangular matrix目录前言 (1)1.矩阵可交换成立的条件 (2)2.可交换矩阵的性质 (6)3.几类常用的可交换矩阵 (8)4.可交换矩阵的应用 10 总结 (14)参考文献 (15)致谢 (16)前言矩阵的乘法不适合交换律是指一般情形而说的,但是对于个别矩阵,它满足一定的条件,即它是可交换的。

矩阵交换律的条件

矩阵交换律的条件

矩阵交换律那点事儿:啥时候能“你换我,我换你”?嘿,各位数学爱好者们,今天咱们来聊聊矩阵世界里的一个有趣话题——矩阵交换律的条件。

别一听这名字就觉得头疼,其实咱们用接地气的语言来聊聊,这事儿也挺有意思的。

首先,咱们得明白啥是矩阵交换律。

简单来说,就是两个矩阵相乘的时候,能不能先换个位置再乘,结果还跟原来一样。

就像是你和朋友交换礼物,你送我个苹果,我送你个橙子,不管谁先给谁,最后你手里还是橙子,我手里还是苹果,这就是交换律。

但在矩阵的世界里,可不是所有时候都能这么“随便换”的。

那么,啥条件下矩阵才能愉快地交换位置相乘呢?这里得提到一个关键概念——矩阵乘法满足交换律的特殊情况。

简单来说,就是当这两个矩阵满足某些特定条件时,它们就可以“你换我,我换你”,结果不变。

具体来说,有这么几种情况:单位矩阵:任何矩阵和单位矩阵相乘(不管是左乘还是右乘),结果都还是原矩阵。

这时候,你可以把单位矩阵想象成一个“超级变变变”的道具,它能让矩阵保持原样,所以交换位置当然没问题。

方阵且可交换:如果两个矩阵都是方阵(就是行数和列数相等的矩阵),并且它们相乘的结果与相乘的顺序无关,那么这两个矩阵就可以交换位置相乘。

这种情况比较少见,就像是在茫茫人海中找到两个能“互相理解”的朋友一样难得。

特殊矩阵:还有一些特殊的矩阵,比如对角矩阵、数量矩阵(所有元素都是同一个数的矩阵)等,它们在某些情况下也满足交换律。

这些矩阵就像是数学里的“明星”,有着自己独特的性质和规则。

总之啊,矩阵交换律可不是随便就能用的。

你得先看看这两个矩阵是不是满足上面提到的那些条件。

如果满足了,那你就可以放心大胆地“换位置”相乘了;如果不满足嘛,那就得老老实实按照矩阵乘法的规则来算了。

希望今天的分享能让大家对矩阵交换律的条件有更清晰的认识。

记得哦,学数学就像是在探索一个奇妙的世界,只要保持好奇心和耐心,你一定能发现更多有趣的秘密!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015届学士学位毕业论文矩阵可交换性的应用学号:11404111姓名:郭冬冬班级:数学1101指导教师:闫慧凰专业:数学与应用数学系别:数学系完成时间:2014年4月学生诚信承诺书本人郑重声明:所呈交的论文《矩阵可交换性的应用》是我个人在导师闫慧凰指导下进行的研究工作及取得的研究成果。

尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写的研究成果,也不包含为获得长治学院或其他教育机构的学位或证书所使用过的材料。

所有合作者对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。

签名:日期:论文使用授权说明本人完全了解长治学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。

签名:日期:指导教师声明书本人声明:该学位论文是本人指导学生完成的研究成果,已经审阅过论文的全部内容,并能够保证题目、关键词、摘要部分中英文内容的一致性和准确性。

指导教师签名:时间摘要矩阵在高等数学中是一个极重要且应用广泛的概念,是线性代数的核心。

而且在一些重要领域也用到了矩阵的计算,像应用数学、计算数学、经济学、数学物理、卫星通信等等,许多工作人员在大量计算这些矩阵时发现了一些对于特殊矩阵成立的公式和规律,本文将用这些规律来叙述一些特殊矩阵(可交换矩阵)的应用。

关键词:矩阵;可交换目录1.绪论 (1)2.基础知识 (1)2.1 矩阵相关概念 (1)2.2 线性变换相关概念 (2)3.矩阵可交换的应用 (3)3.1线性变换与矩阵(可交换)之间的联系 (3)3.2上三角矩阵可交换的应用 (4)矩阵可交换性的应用11404111 郭冬冬 数学与应用数学指导教师 闫慧凰1.绪论随着社会经济的发展,数学显得格外重要,在生产、生活中都或多或少的涉及到了数学,所以数学是每个人必须学会的,而对于一些技术分子则不仅仅是掌握基本的数学知识,而且要对数学中的一些比较高深的内容进行进一步的了解,之后对其进行应用,像从事计算科学、无线电技术和卫星通信领域工作的人都涉及到了矩阵的可交换方面的知识。

通常情况下,若A B 和都是m 阶矩阵,像22=B ⨯-(A+B )(A-B)A是不成立的,但如果已知A B 和可交换,那么上述这个公式就是成立的。

像这样的公式还有很多在可交换矩阵的条件下是成立的,如k k k AB A B =()等等,当然,有时候在解决一些问题的时候会将线性变换与矩阵结合起来,这样两者之间就可以转化,将问题简单化。

文献[9]就主要介绍了线性变换和矩阵之间的转化问题,文献[3]和文献[4]主要是对矩阵可交换的性质进行了探究。

本文第一部分主要介绍了矩阵可交换性的相关概念,第二部分讲了矩阵可交换在一些方面的应用,主要有线性变换与矩阵的转化、上三角矩阵可交换的计算等。

2.基础知识2.1 矩阵相关概念定义2.1.1 设矩阵A B 和,如果有=AB BA ,则称矩阵A B 与可交换。

定义2.1.2 在m 阶方阵B 中,倘若其中的元素=0,1,2,,ij b i j j m ≠=,,则称B 为m 阶对角矩阵,记为1100mm b b ⎛⎫ ⎪ ⎪ ⎪⎝⎭定义2.1.3 如果一个m m ⨯矩阵其主对角线上的元素全是1,其余的元素全是0,即1001m m⨯⎛⎫ ⎪ ⎪ ⎪⎝⎭,则称其为m 级单位矩阵,记为m E 或简写为E 。

显然有 sm m sm A E A =s sm sm E A A =定义2.1.4 矩阵1111m s sm ka ka ka ka ⎛⎫ ⎪ ⎪ ⎪⎝⎭称为矩阵=ij sm A (a )与数k 的数量乘积,记为kA ,换句话说,即用数k 乘矩阵就是把矩阵的每个元素都乘上k 。

定义2.1.5 设A =,所谓A 的转置就是指矩阵=A ',显然s m ⨯矩阵的转置是m s ⨯矩阵。

定义2.1.6 m 级方阵A 称为可逆的,若有m 级方阵B ,使得=AB BA E =,这里E 是m 级单位矩阵。

定义 2.1.7 设ij X 是矩阵A =中元素ij x 的代数余子式,矩阵*X =称为X 的伴随矩阵。

2.2 线性变换相关概念定义2.2.1 设V 是线性空间,σ和τ是V 上的线性变换,若=σττσ成立,则称线性变换σ和τ是可交换的。

定义2.2.2 设V 是数域P 上的m 维线性空间,()L V 是V 上的所有线性变换的集合,12m ααα,,是的一组基,即=V 12(,)m L ααα,记为1212(,,)=(,,)m m B σαααααα,().m m L V B P σ⨯∈∈ ① 在①式所设下,令:()f L V P →,且()f σ= B , ().m m L V B P σ⨯∈∈,则()m m f L V P ⨯是到的同构映射,因此()m m L V P ⨯≅3.矩阵可交换的应用3.1线性变换与矩阵(可交换)之间的联系设V 是数域P 上的m 维线性空间,由定义2.2.2我们得到了()m m L V P ⨯≅,如此便建立了数域上的m 维线性空间V 的线性变换与数域P 上的m m ⨯矩阵的关系,它们是相互唯一确定的。

解决上述中线性变换的问题就可以借助矩阵σ,这样有限维空间上的线性变换问题就可以转化为m m P ⨯中矩阵的问题了,反过来,m m P ⨯中矩阵的问题就可以转化为有限维空间上的线性变换问题。

在同构的前提下,()L V 中的线性变换的很多性质转化为矩阵语言同样成立,反之,也成立。

定理3.1.1 设V 是复数域P 上的m 维线性空间,στ和 是V 的线性变换,且=σττσ,(1) σ的每一个特征子空间都是τ的不变子空间;(2) σ与τ至少有一个公共的特征向量。

证明:(1)设b V 是的σ特种子空间,其中b 是σ的特征值,则对于b V ς∀∈,有()b σςς=,从而(())=()=()=(())()()b b στςστττσττσςτςτς==,故()b V τς∈,即σ的每一特征子空间都是τ的不变子空间。

(2)b V 是τ的不变子空间,则在复数域上,τ必有特征值η,并存在非零向量,(),()()b V b ςτςηςτςηςσςς∈===使故又,所以,ς是σ与τ的公共特征向量。

接下来,我们利用这个定理来证明两个题。

例1:设X Y 、是m 阶复矩阵,且X 的m 个特征值12,,m μμμ两两互异,XY YX =。

证明:Y 是个对角矩阵。

证明:设X 和Y 是m 维复空间V 的线性变换σ和τ在某组基下的矩阵,由已知可得12,,m μμμ是m 个两两互异的特征值,从而存在i ζ使得(),1,2,,i i i i m σζμζ==,其中12,,,m ζζζ线性无关,所以12,,,m ζζζ是V 的一组基,则=()i V L ζ是τ的一维不变子空间的直和.又因为XY YX =,所以=σττσ,根据定理得()i L ζ是τ的不变子空间,其中1,2,i m =,则有()(),1,2,,i i L i m τζζ∈=,即τ有m 个线性无关的特征向量12,,,m ζζζ,则τ可以对角化,所以Y 可以对角化,因此Y 是个对角矩阵。

例2:σ和τ是m 维:线性空间V 的线性变换,证明:若σ的m 个特征值两两互异,则=σττσ的充要条件是σ的特征向量也是τ的特征向量。

证明:设12,,m μμμ是σ的全部特征值,且,()j i i j μμ≠≠,属于i μ的特征向量为(1,2,,)i i m α=。

因为属于不同特征值的特征向量是线性无关的,所以12,,m ααα是V 的一个基。

必要性:设=σττσ,且σ和τ在基i α下的矩阵分别为X Y 、,则12112212(,,)(,,,)(,,)m m m m X σαααμαμαμαααα==,其中12X=(,,,)m diag μμμ。

因为=σττσ,所以XY YX =,由于与对角元素彼此不同的对角矩阵可交换的矩阵只能是对角矩阵,所以12=(,,,)m diag τηηη,这时从1212(,,)(,,)m m Y ταααααα=得到(1,2,,)i i i i m ταηα==。

充分性:若σ的特征向量也是τ的特征向量,则12121(,,)(,,)(,,)m m m diag σααααααμμ=12121(,,)(,,)(,,)m m m diag τααααααηη=,。

于是,σ与τ在基12,,m ααα下的矩阵X 与Y 可交换,12121212(,,,)(,,,)(,,,)(,,,)m m m m diag diag diag diag μμμηηηηηημμμ=即XY YX =,因此=σττσ。

3.2上三角矩阵可交换的应用首先,给出几个简单的定理,然后由这几个简单定理来推出一个比较复杂的性质,最后利用结论来解决矩阵方面的习题。

定理3.2.1 型如1112110x x X x ⎛⎫= ⎪⎝⎭的二阶上三角矩阵的可交换矩阵仍然是二阶上三角阵1112110y y Y y ⎛⎫= ⎪⎝⎭其中,(1,1,2)ij ij x y i ==为任意实数。

定理3.2.2 型如111213112311000x x x X x x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭的三阶上三角矩阵的可交换矩阵仍然是三阶上三角矩阵111213112311000y y y Y y y y ⎛⎫ ⎪= ⎪ ⎪⎝⎭(且12122323x y x y =)其中,(1,1,2)ij ij x y i j ==为任意实数。

定理3.2.3 型如0000x a X x a x ⎛⎫ ⎪= ⎪ ⎪⎝⎭的三阶方阵的可交换矩阵仍然是三阶方阵0000000y Y y ⎛⎫ ⎪= ⎪ ⎪⎝⎭其中,,a x y 为任意实数。

下面给出矩阵X =的上三角矩阵,再给出一个引理: 引理:与m 阶方阵Q =的可交换矩阵型如上述矩阵X = 根据以上引理,来证明一下如下定理。

定理3.2.4 m 阶方阵P 能与m 阶方阵X =可交换⇔P 是型如方阵X 的m 阶方阵。

证明:必要性:设方阵P 能与m 阶方阵X 可交换,那么与Q =也可交换,由引理可知P 是型如方阵X 的m 阶方阵。

充分性:设=P ,R =中,(1,2,,)i i k r i m =是任意实数,通过矩阵的乘法比较PR RP 和,得出=PR RP 。

接下来,应用以上定理来证明以下的题目。

相关文档
最新文档