切线的证明技巧
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典例精讲
类型二:无切点,作垂直,证半径
例:如图,点O在∠APB的平分线上,⊙O与PA相切于点C. 求证:直线PB也与⊙O相切;
证明:过点O作OD⊥PB于点D,连接OC, ∵PA切⊙O于点C, ∴OC⊥PA, 又∵点O在∠APB的角平分线上, ∴OC=OD,即OD的长等于⊙O的半径, ∴PB与⊙O相切;
变式练习
如图△ABC中,CA=CB,D为AB中点,以D为圆心的 圆与AC相切于点E,求证:BC与⊙O相切。
C
E
A
D
B
变式练习
如图,四边形ABCD中,∠A=∠ABC=90°, AD+BC=CD,求证:以AB为直径的圆与CD相切
A
D
O
B
C
课堂小结
切线证明的 常用方法
有切点,连半径, 证垂直
无切点,作垂直源自文库 证半径
典例精讲
类型一: 有切点,连半径,证垂直
如图,⊙O是△ABC的外接圆,BC为⊙O直径, 作∠CAD=∠B,且点D在BC的延长线上.求证: 直线AD是⊙O的切线.
典例精讲
类型一: 有切点,连半径,证垂直
证明:连结OA,如图, ∵BC为⊙O直径,∴∠BAC=90°, ∴∠B+∠ACB=90°, 而OC=OA,∴∠ACB=∠OAC, ∴∠B+∠OAC=90°, ∵∠CAD=∠B, ∴∠CAD+∠OAC=90°,即∠OAD=90°, ∴OA⊥AD, ∴直线AD是⊙O的切线.
下次课见
变式练习
例:如图,在△ABC中,以AB为直径的⊙O交AC于 点M,弦MN∥BC交AB于点E,且ME=1,AM=2, AE= .3 求证:BC是⊙O的切线;
证明:∵在△AME中,AM=2,ME=1,AE= 3,
∴AM=ME2+AE2, AM ME2 AE2
∴△AME是直角三角形,∴∠AEM=90°, 又∵MN∥BC, ∴∠ABC=90°, ∴AB⊥BC, 而AB为直径, ∴BC是⊙O的切线;
知识点
二.切线的证明方法: 1.作垂直,证半径
条件:圆与直线的公共点没有标明字母 方法:① 则过圆心作直线的垂线段为辅助线
② 再证垂线段的长等于半径的长
知识点
二.切线的证明方法: 2.连半径,证垂直 条件:圆与直线的公共点标明字母 方法:① 则连这个点和圆心得到辅助半径
② 再证所作半径与这条直线垂直
第一讲
切线证明的常用方法
CONTENTS
1 技巧讲解 2 例题讲解 3 对应习题 4 课程总结
初中数学知识点精讲课程
P a r t 1 切线证明的常用方法
知识点
一.圆的切线的判定方法有三种: ①.定义法: 直线l 与圆只有唯一的公共点 ②.距离法: 圆心O与直线l 的距离d=r ③.切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线。